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AlgoWiki: an Open Encyclopedia of Parallel Algorithmic

Features

Vladimir V. Voevodin12, Alexander S. Antonov13, Jack Dongarra45
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The main goal of this project is to formalize the mapping of algorithms onto the architecture

of parallel computing systems. The basic idea is that features of algorithms are independent of

any computing system. A detailed description of a given algorithm with a special emphasis on its

parallel properties is made once, and after that it can be used repeatedly for various implemen-

tations of the algorithm on different computing platforms. Machine-dependent, part of this work

is devoted to describing features of algorithms implementation for different parallel architectures.

The proposed description of algorithms includes many non-trivial features such as: parallel algo-

rithm complexity, resource of parallelism and its properties, features of the informational graph,

computational cost of algorithms, data locality analysis as well as analysis of scalability potential,

and many others. Descriptions of algorithms form the basis of AlgoWiki, which allows for collabo-

ration with the computing community in order to produce different implementations and achieve

improvement. Project website: http://algowiki-project.org/en/.

Keywords: algorithm structure, resource of parallelism, parallel computing, efficiency, perfor-

mance, supercomputers, scalability, data locality, encyclopedia of algorithmic features.

Introduction

Computers evolve quickly, and there have been at least six generations of computing ar-

chitecture over the last forty years that caused the need for radical changes in software. Vector

computers, vector-parallel, massive parallel computers, shared-memory nodes, clusters of shared-

memory computers, computers with accelerators. . . The computing community has survived this,

but in each evolution, the software basically had to be rewritten from scratch as each new gener-

ation of machines required singling out new properties in the algorithms, and that was reflected

in the software.

Alas, there is no reason to hope that the situation will change for the better in the future.

Vendors are already considering various prospective architectures, featuring light and/or heavy

computing cores, accelerators of various types, SIMD and data-flow processing concepts. In this

situation, codes will yet again have to be rewritten in order to utilize the full potential of future

computers. It’s an endless process that — understandably — doesn’t make software developers

any happier.

However, the situation isn’t quite hopeless. Indeed, new computing systems require a full

review of the legacy code. But the algorithms themselves don’t change; only the requirements

that new computers present to the structure of algorithms and programs change. To support

vector computing, data parallelism needs to be built into the innermost loops within a program.

The key concern in ensuring the efficient usage of massive parallel computers is to find a repre-

sentation of an algorithm whereby a large number of computing nodes can work independently

from each other, minimizing data exchange. This is true for every generation of parallel com-
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puting systems: the new architecture requires taking a new look at the properties of existing

algorithms, in order to find the most efficient way of implementing them.

There are two facts that matter in this situation: the algorithms themselves don’t change

much, and their properties do not depend on the computing system. This means that once

algorithm’s properties have been described in detail, this information can be used repeatedly for

any computing platform — existing today or in the future.

The idea of a deep a priori analysis of properties of algorithms and their implementation

formed the basis for the AlgoWiki project. The main purpose of the project is to present a

description of the fundamental properties of various algorithms giving a complete understanding

of both their theoretical potential and the particular aspects of their implementation for various

classes of parallel computing systems.

The description of all algorithms in AlgoWiki consists of two parts. The first part describes

algorithms and their properties. The second part is dedicated to describing particular aspects

of their implementation on various computing platforms. This division is made intentionally, to

highlight the machine-independent properties of algorithms which determine their potential and

the quality of their implementations on parallel computing systems, and to describe them sepa-

rately from a number of issues related to the subsequent stages of programming and executing

the resulting programs.

AlgoWiki provides an exhaustive description of an algorithm. In addition to classical algo-

rithm properties such as serial complexity, AlgoWiki also presents additional information, which

together provides a complete description of the algorithm: its parallel complexity, parallel struc-

ture, determinacy, data locality, performance and scalability estimates, communication profiles

for specific implementations, and many others.

In AlgoWiki, details matter. Classical basic algorithms must be supplemented with their

important practical modifications. For example, AlgoWiki contains a description of a basic point-

structured real version of Cholesky factorization for a dense symmetrical positive-definite matrix.

In practice, modifications of the algorithm are just as important: a block-structured version,

a version for a dense complex-Hermitian matrix (both point-structured and block-structured),

versions of the algorithm for sparse matrices, etc. It is also important to consider the use of

Cholesky factorization in iterative methods, etc.

Equally important are the details related to particular aspects of an algorithm’s implementa-

tion on specific parallel computing platforms: multi-core processors, SMP, clusters, accelerators,

using vector processing and so on. In many cases it is necessary to go one step lower, describing

the implementation of an algorithm, for example, not just for a specific accelerator, but to single

out relatively important individual cases, such as GPU and Xeon Phi. At the same time, when

we provide data about execution time, performance and scalability, we are not only laying out

some estimates of the possible implementation quality of a given algorithm on a specific com-

puter, but also setting the foundation for comparative analysis of various computing platforms

with regards to the algorithms provided in AlgoWiki.

The outcome of the AlgoWiki project is an open encyclopedia of algorithm properties and the

particular aspects of their computer implementation. It was started with a focus on using Wiki

technologies, enabling the entire computing community to collaborate on algorithm descriptions.

Currently, the encyclopedia is actively being expanded by outside experts; a multi-lingual version

is also in the works which will eventually become the main version. The pilot version of the

encyclopedia is available at http://algowiki-project.org/en/.
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1. Background and Related Work

Today, efficiency and parallelism support throughout the entire supercomputing software

stack are the central topics in all supercomputing forums worldwide. The same issues are be-

ing discussed within major international projects that formulate key challenges and prepare

roadmaps of supercomputing software development for decades to come, e.g., International Ex-

ascale Software Project [1], Big Data and Extreme Computing [2], European Exascale Software

Initiative I and II [3].

In many cases, research on the process of mapping algorithms onto parallel computing

system architecture comes down to studying types of algorithm structures which are used as

building blocks for a number of programs in many different subject areas. For example, a group

of researchers at Berkeley are using the term “motifs” (previously “dwarfs”) to describe methods

that use certain common templates for computations and communications [4, 5]. Sandia National

Laboratories runs the Mantevo project aimed at studying mini-applications, which represent

computational kernels for various scientific and engineering applications [6, 7]. A similar approach

is used by the TORCH project [8–10].

Studies of parallel algorithm properties have been conducted for a long time, starting with

this fundamental work [11], and a rather wide range of algorithms has been considered in the

work [12]. In many cases the authors stick to one specific subject area; for example, parallel

algorithms for linear algebra are reviewed in the works [13–15].

In this project, the key aspect is using an algorithm graph (also known as an information

graph or dependency graph in literature) for identifying and utilizing algorithm properties. The

idea of true information dependency and its usage for software transformation was described

in [16], and laid the foundation for a theory of studying the properties of algorithms and programs

developed in [17–19].

There are no direct analogues to AlgoWiki — an open encyclopedia of algorithm properties

being built within this project. While there are a number of projects attempting to classify and

describe properties, and write up implementations of various algorithms [20–23], none of them

follows a unified predefined structure to describe all relevant algorithm properties and parallel

implementations for various target architectures.

2. A Description of Algorithm Structure and Properties

All fundamentally important issues affecting the efficiency of the resulting parallel programs

must be reflected in the description of the properties and structure of the algorithms. With this

in mind, an algorithm description structure was developed, which formed the basis for the

AlgoWiki encyclopedia. The encyclopedia offers standardized elements for different sections and

recommendations for building them, so that descriptions of different algorithms could easily be

compared.

Sections 3 and 4 of this paper describe the two parts that form the description of each

algorithm within AlgoWiki. Structure of these sections repeats exactly the structure of the

description (ten subsections for the Part I and seven subsections for the Part II).

AlgoWiki: an Open Encyclopedia of Parallel Algorithmic Features
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3. AlgoWiki Encyclopedia: “PART I. Algorithm Structure and

Properties”

Algorithm properties are independent of the computing system, and, in this regard, this part

of AlgoWiki is an important thing by itself. An algorithm description is only prepared once;

afterwards, it is used repeatedly for implementation within various computing environments.

Even though this part is dedicated to the machine-independent properties of algorithms, things

to consider during the implementation process or links to respective items in the second part of

AlgoWiki are acceptable here.

3.1. General description of algorithms

This section contains a general description of the problems the algorithm is intended to

address. The description shows specific features of the algorithm itself and objects it works

with.

3.2. Mathematical description of algorithms

A mathematical description of the problem to be addressed is presented as a combination

of formulas, as it is commonly described in textbooks. The description must be sufficient for an

unambiguous understanding of the description by a person who is familiar with mathematics.

3.3. Computational kernel of algorithms

The computational kernel (the part of algorithm that takes up most of the processing time)

is separated and described here. If an algorithm has more than one computational kernel, each

one is described separately.

3.4. Macro structure of algorithms

If an algorithm relies on other algorithms as its constituent parts, this must be specified in

this section. If it makes sense to provide the further description of the algorithm in the form of its

macro structure, the structure of macro operations is described here. Typical macro operations

include finding the sum of vector elements, dot product, matrix-vector multiplication, solving a

system of linear equations of small rank, calculating the value of a function at a specific point,

searching for the minimum value in an array, matrix transposition, reverse matrix calculation,

and many others.

The macro structure description is very useful in practice. The parallel structure for most

algorithms is best seen at the macro level, while reflection of all operations would clutter the

picture.

The choice of macro operations is not fixed; by grouping macro operations in different ways

it is possible to emphasize different properties of the algorithms. In this regard, several macro

structure options can be shown here to provide an additional aspect of its overall structure.

3.5. A description of algorithms’ serial implementation

This section describes the steps that need to be performed in the serial implementation of

this algorithm. To a certain degree, this section is redundant, as the mathematical description
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already contains all the necessary information. However, it is still useful; the implementation of

the algorithm is clearly laid out, helping to unambiguously interpret the properties and estimates

presented below.

3.6. Serial complexity of algorithms

This section of the algorithm description shows an estimate of its serial complexity, i.e.,

the number of operations that need to be performed if the algorithm is executed serially (in

accordance with section 3.5). For different algorithms, the meaning of an operation used to

evaluate its complexity can vary greatly. This can include operations on real numbers, integers,

bit operations, memory reads, array element updating, elementary functions, macro operations,

etc. LU factorization is dominated by arithmetic operations on real numbers, while only memory

reads and writes are important for matrix transposition; this must be reflected in the description.

For example, the complexity of a vector elements pairwise summation is n−1. The complex-

ity of fast Fourier transformation (Cooley-Tukey algorithm) for vector lengths equals a power

of two — n log2 n complex addition operations and (n log2 n)/2 complex multiplication opera-

tions. The complexity of a basic Cholesky factorization algorithm (point-structured version for a

dense symmetrical and positive-definite matrix) is n square root calculations, n(n−1)/2 division

operations, and (n3 − n)/6 multiplication and addition (subtraction) operations each.

3.7. Information graph

This is a very important part of the description. This is where one can show (see) the par-

allel structure of the algorithm, for which there is a description and a picture of its information

graph [19]. There are many interesting options for reflecting the information structure of al-

gorithms in this section. Some algorithms require showing a maximum-detail structure, while

using only the macro structure is sufficient for others. A lot of information is available in vari-

ous projections of the information graph, which make its regular components stand out, while

minimizing insignificant details.

Overall, the task of displaying an algorithm graph is non-trivial. To begin with, the graph is

potentially endless, as its number of vertices and edges is determined by the values of external

variables, which can be very large. Situations like this can usually be saved by the “similarity”

approach, which makes graphs for different values of an external variable “similar”: in most

cases it is enough to present a relatively small-sized graph, and the graphs for other values will

be “exactly the same”. In practice, it isn’t always so simple, and one needs to be very careful.

Further, an algorithm graph is potentially a multi-dimensional object. The most natural

system for placing the vertices and edges of the information graph is based on the nesting loops

in the algorithm implementation. If the nesting loop level does not exceed three, the graph

can be placed in the traditional three-dimensional space; more complex loop constructs with a

nesting level of 4 or more require special graph display and presentation methods.

Fig. 1 shows the information structure of a matrix multiplication algorithm and of an al-

gorithm for solving a system of linear algebraic equations with a block-structured bidiagonal

matrix. A more complex example is shown in fig. 2, it demonstrates the information structure

of a Cholesky algorithm with input and output data.

AlgoWiki: an Open Encyclopedia of Parallel Algorithmic Features
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(a) (b)

Figure 1. Information structure of a matrix multiplication algorithm (a) and of an algorithm

for solving a system of linear algebraic equations with a block-structured bidiagonal matrix (b)

Figure 2. Information structure of a Cholesky algorithm with input and output data: SQ is

the square-root operation, F is the operation a-bc, Div is division, In and Out indicate input

and output data

3.8. Describing the resource parallelism of algorithms

This section shows an estimate of the algorithm’s parallel complexity: the number of steps

it takes to execute the algorithm assuming an infinite number of processors (functional units,

computing nodes, cores, etc.). The parallel complexity of an algorithm is understood as the

height of its canonical parallel form [19]. It is necessary to indicate in terms of which operations

the estimate is provided. It is also necessary to describe the balance of parallel steps by the

number and type of operations, which determines the layer width in the canonical parallel form

and the composition of operations within the layers.

Parallelism in algorithms frequently has a natural hierarchical structure. This fact is highly

useful in practice and must be reflected in the description. As a rule, such hierarchical parallelism

structures are well reflected in the serial implementation of the algorithm through the program’s

loop profile, which can well be used to reflect the parallelism resource.

V. Voevodin, A. Antonov, J. Dongarra

2015, Vol. 2, No. 1 9



Describing the parallelism resource for an algorithm requires specifying key parallel branches

in terms of finite and mass parallelism. The parallelism resource isn’t always expressed in simple

terms, e.g., through coordinate parallelism; the skewed parallelism resource is equally important.

Unlike coordinate parallelism, skewed parallelism is much harder to use in practice, but it is an

important option to keep in mind, as sometimes it is the only option. A good illustration is the

algorithm structure shown in fig. 1b: there is no coordinate parallelism, but skewed parallelism

is there, and using it reduces the complexity from n ×m in serial execution to (n + m − 1) in

the parallel version.

For example, let’s look at the algorithms, for which serial complexity has been considered

in section 3.6. The parallel complexity for vector elements pairwise summation is log2 n, with

the number of operations at each level decreasing from n/2 to 1. The parallel complexity of

the fast Fourier transformation (Cooley-Tukey algorithm) for vector lengths equal to a power

of two is log2 n. The parallel complexity of a basic Cholesky factorization algorithm (point-

structured version for a dense symmetrical and positive-definite matrix) is n steps for square

root calculations, (n− 1) steps for division operations and (n− 1) steps for multiplication and

addition operations.

3.9. Input/output data description

This section contains a description of the structure, features and properties of the algorithm’s

input and output data: vectors, matrices, scalars, arrays, a dense or sparse data structure, and

their total amount.

3.10. Algorithm properties

This section describes other properties of the algorithm that are worth considering in the

implementation process. As noted above, there is no connection to any specific computing plat-

form, but since implementation issues always prevail in a project, there is a distinct need to

discuss additional properties of an algorithm.

The computational power of an algorithm is the ratio of the total number of operations to

the total amount of input and output data. Despite its simplicity, this ratio is exceptionally

useful in practice: the higher the computational power, the less the overhead cost of moving

data for processing, e.g., on a co-processor, accelerator, or another node within a cluster. For

example, the computational power of the dot product operation is 1; the computational power

of multiplying two square matrices is 2n/3.

The issue of utmost importance is the algorithm stability. Anything related to this notion,

particularly the stability estimate, must be described in this section.

The balance of the computing process can be viewed from different perspectives. This in-

cludes the balance between different types of operations, particularly arithmetic operations

(addition, multiplication, division) together or between arithmetic operations and memory ac-

cess operations. This also includes the balance of operations between parallel branches of the

algorithm.

The determinacy of an algorithm is also important in practice, and it is understood as the

uniformity of the computing process. From this point of view, the classical multiplication of dense

matrices is a highly deterministic algorithm, as its structure, given a fixed matrix size, does not

depend on the elements of the input matrices. Multiplying sparse matrices, where matrices are

AlgoWiki: an Open Encyclopedia of Parallel Algorithmic Features
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stored in a special format, is no longer deterministic: data locality depends on the structure of

the input matrices. An iteration algorithm with precision-based exit is also not deterministic,

as the number of iterations (and therefore the number of operations) changes depending on the

input data.

A serious issue affecting the indeterminacy of a parallel program is a change in the order of

execution for associative operations. A typical example is the use of global MPI operations, e.g.,

finding the sum of elements in a distributed array. An MPI runtime system dynamically chooses

the order of operations, assuming associativity; as a result, rounding errors change between runs,

leading to changes in the final output of the program. This is a serious and quite common issue

today in massive parallel systems, which translates to lack of reproducible results in parallel

program execution. This feature is characteristic for the second part of AlgoWiki, dedicated to

algorithm implementations. But the issue is quite important and the respective considerations

should be mentioned here as well.

It should be noted that in some cases, a lack of determinacy can be “rectified” by introducing

the respective macro operations, which makes the structure both more deterministic and more

understandable.

“Long” edges in the information graph are a sign of potential challenges in placing data in

the computer’s memory hierarchy during the program execution. On the one hand, edge length

depends on the specific coordinate system chosen for placing graph vertices, so long as edges can

disappear in a different coordinate system (but that can lead to even more long edges appearing

elsewhere). On the other hand, regardless of the coordinate system, their presence can signal

the need to store data for a long time at a specific hierarchy level, which imposes additional

restrictions on the efficiency of the algorithm implementation. One reason for long edges is a

scalar value broadcasted over all iterations of a specific loop: in this case long edges do not cause

any serious issues in practice.

Compact packing of the information graph is of interest in developing specialized processors

or implementing an algorithm on FPGAs; it can also be included in this section.

4. AlgoWiki Encyclopedia: “PART II. Software

Implementation of Algorithms”

The Part II of the algorithm description in AlgoWiki deals with all of the components of

the implementation process for an algorithm described in Part I. Both the serial and parallel

implementations of an algorithm are considered. This part shows the connection between the

properties of the programs implementing the algorithm and the features of the computer archi-

tecture they are executed on. Data and computation locality are explained, and the scalability

and efficiency of parallel software are described along with the performance achieved with a

given program. This is also the place to discuss specific aspects of implementation for different

computing architecture classes and to provide references to implementations in existing libraries.

4.1. Features of algorithms’ serial implementation

This section describes the aspects and variations of implementing an algorithm within a

serial program that affect its efficiency. In particular, it makes sense to mention the existence

of block-structured versions of the algorithm implementation, further describing the prospective

advantages and drawbacks of this approach. Another important aspect is related to the options
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for organizing work with data, variations on data structures, temporary arrays and other simi-

lar issues. The required parallelism resource and memory amount for different implementation

options need to be specified.

Another important feature is a description of the precision of operations within the algo-

rithm. In practice, it is rarely necessary to perform all arithmetic operations on real numbers

with 64-bit floating point arithmetic (double precision), as it doesn’t affect the stability of the

algorithm or the precision of the results obtained. In this case, if most operations can be per-

formed on a float single precision data, and some fragments require switching to the double, this

must be specified here.

Based on information from section 3.8, when describing the serial version of the program,

it is worth noting the possibility of equivalent transformaions for programs implementing this

algorithm. For example, parallelism of iterations of the innermost loop is normally used for

vectorization. However, in some cases this parallelism can be “moved” up the nested loops,

which enables more efficient implementation of this algorithm on multi-processor multi-core

SMP computers.

4.2. A description of data and computation locality

The issues of data and computation locality are rarely studied in practice, but locality is

what affects the program execution efficiency on modern computing platforms. This section

provides an estimate of data and computation locality in the program, considering both the

temporal and spacial locality. Positive and negative locality-related facts should be mentioned,

along with what situations could arise under what circumstances. This section also specifies how

locality changes when passing from a serial to a parallel implementation. Key patterns in the

program’s interaction with memory are identified here. Note any possible interrelation between

the programming language used and the degree of locality in the resulting programs.

Separately, memory access profiles are specified for computational kernels and key fragments.

Fig. 3 shows memory access profiles for programs implementing Cholesky factorization and fast

Fourier transformation, which illustrates the difference between the locality properties of the

two algorithms.

(a) (b)

Figure 3. Memory access profiles for programs implementing Cholesky factorization (a) and

fast Fourier transformation (b)
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4.3. Possible methods and considerations for parallel implementation of

algorithms

This is a rather big section that must describe key facts and statements that define a parallel

program. These can include:

• a hierarchically presented parallelism resource based on the program’s loop structure and

program call graph;

• a combination (hierarchy) of mass parallelism and finite parallelism;

• possible ways to distribute operations between processes/threads;

• possible strategies to distribute data;

• an estimate of the number of operations, amount and number of data transfers (both the

total number and the share for each parallel process);

• an estimate of data locality, etc.

This section should also include recommendations or comments regarding the algorithm’s

implementation using various parallel programming technologies: MPI, OpenMP, CUDA, or

using vectorization directives.

4.4. Scalability of algorithms and their implementation

This section is intended to show the algorithm’s scalability limits on various platforms.

The impact of barrier synchronization points, global operations, data gather/scatter operations,

estimates of strong or weak scalability for the algorithm and its implementations.

An algorithm’s scalability determines the properties of the algorithm regardless of the com-

puter being used. It shows how much the algorithm enables the computer’s actual performance

to increase with a potentially infinite increase in the number of processors. The scalability of

parallel programs is determined in connection with a specific computer and shows how much the

performance of this computer running this program can increase when utilizing more computing

power.

The central idea of this section is to show the actual scalability of the program implementing

a given algorithm on various computing platforms, depending on the number of processors and

the size of the problem. It is important to understand a correlation between the number of

processors and the size of the problem, so as to reflect all features in behavior of the parallel

program, particularly achieving maximum performance, and more subtle effects arising, for

example, from the algorithm’s block structure or memory hierarchy.

Fig. 4a shows the scalability of a classical matrix multiplication algorithm, depending on

the number of processes and the size of the problem. The chart shows visible areas with greater

performance, reflecting cache memory levels. Fig. 4b shows the scalability of the Linpack bench-

mark.

4.5. Dynamic characteristics and efficiency of algorithm implementation

This is a rather large section of AlgoWiki, as evaluating an algorithm’s efficiency requires

a comprehensive approach and careful analysis of all steps — from the computer architecture

to the algorithm itself. Efficiency is understood rather broadly in this section: this includes the

efficiency of program parallelization, and the efficiency of program execution relative to the peak

performance of computing systems.
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(a) (b)

Figure 4. Scalability of programs implementing classical matrix multiplication (a) and

Linpack benchmark (b)

In addition to the actual performance, all major reasons should be described that limit

further increase in the performance of a given parallel program on a specific computing platform.

This is not an easy task, as there is no commonly accepted methodology or respective tools that

facilitate such an analysis at the present time. One needs to estimate and describe the efficiency

of interaction with the memory subsystem (features of the program’s memory access profile), the

efficiency of using a resource of parallelism built into the algorithm, the efficiency of interconnect

usage (features of the communication profile), the efficiency of input/output operations, etc.

Sometimes overall program efficiency characteristics are sufficient; in some cases it is important

to show lower-level system monitoring data, such as CPU load, cache misses, Infiniband network

usage intensity, etc.

In our studies of parallel programs for the AlgoWiki project, we use Job Digest [24], a tool

for building reports on program performance. Fig. 5 shows some results of the execution of a

program implementing ten iterations of a Cholesky decomposition for dense real positive-definite

matrices.

Fig. 5a shows that, during the runtime of the program, the processor usage level is about

50%. That is a good result for programs executed without the usage of the Hyper-threading

technology. Fig. 5b shows the number of floating point operations per second during the Cholesky

decomposition exection time. To the end of each iteration, the number of opertations increases

intensively. From fig. 5c it follows that the number of L1 cache-misses is large enough (about

25 millions per second on the average for all nodes). Fig. 5d shows that the interconnest IB)

is intensively used at each interation. To the end of each iteration, the data transfer intensity

increases significantly. Overall, the data obtained from the monitoring system allows one to come

to the conclusion that this program was working in an efficient and stable manner. The memory

and communication environment usage is intensive, which can lead to an efficiency reduction

with an increase of the matrix order or the number of processors in use.

4.6. Conclusions for different classes of computer architecture

This section should contain recommendations on implementing the algorithm for various

architecture classes. If the architecture of a specific computer or platform has any specific features

affecting the implementation efficiency, this must be noted here.
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Figure 5. Ten iterations of a Cholesky decomposition for dense real positive-definite

matrices: CPU load during program run (a); number of floating point operations per

second (b); L1 cache misses (c); Infiniband network data transmission speed, bytes/sec (d)

It is important to point out both positive and negative facts with regards to specific classes

of computers. Possible optimization techniques or even “tips and tricks” in writing programs for

a target architecture class can be described.

4.7. Existing implementations of algorithms

For many algorithm-computer pairs, good implementations have already been developed

which can and should be used in practice. This section is here to provide references to existing
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serial and parallel implementations of an algorithm that are available for use today. It indicates

whether an implementation is open-source or proprietary, what type of license it is distributed

under, the distributive location and any other available descriptions. If there is any information

on the particular features, strengths and/or weaknesses of various implementations, these can

be pointed out here.

Conclusion

AlgoWiki Encyclopedia is an exceptionally large-scale project, which, despite its youth, is

actively being developed today and has a number of areas for future development. Materials

from the encyclopedia can be used efficiently for a comparative analysis of computing platforms

over different applications. We are talking about a direct extension of the methodology used in

the Top500 list, which is currently based on just the Linpack test, and by which it is criticized

by many researchers. With AlgoWiki, an additional item can be included in Part II for each

algorithm to present performance data for various supercomputing platforms. This extension

will come naturally for AlgoWiki, and given the encyclopedia’s open nature and potential for

community contribution, it can become a supplement to the Top500 list, expandable to any

algorithm.

An important issue is using the AlgoWiki algorithm information structure in the education

process. It is not enough to know the mathematical description, it is vital to understand the

structure and special features of every basic step, from formulating the algorithm to its execu-

tion. This knowledge is vital in the supercomputing world where everything must be done with

the ideas of supercomputing co-design. But this is also necessary for today’s ordinary comput-

ers, where even smartphones and tablets have become parallel. All of the problems of parallel

computing have become important everywhere — from supercomputers to mobile gadgets; this

is what brought the AlgoWiki project forward.
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Studies of real complex physical and engineering problems represented by multiscale and

multiphysics computer simulations have an increasing demand for computing power. The demand

is driven by the increasing scales and complexity of the scientific problems investigated or the

time constraints. Ultrascale computing systems could offer the computing power required to solve

these problems. Future ultrascale systems will be large-scale complex computing systems com-

bining technologies from high performance computing, distributed systems, big data, and cloud

computing. The challenge of developing and programming complex algorithms that can efficiently

perform on such systems is twofold. Firstly, the complex computer simulations have to be either

developed from scratch, or redesigned in order to yield high performance, while retaining correct

functional behaviour. Secondly, ultrascale computing systems impose a number of non-functional

cross-cutting concerns, such as fault tolerance or energy consumption, which can significantly im-

pact the deployment of applications on large complex computing systems. This article discusses

the state-of-the-art of programming for current and future large-scale computing systems with an

emphasis on complex applications. We derive a number of requirements regarding programming

and execution support by studying several computationally demanding applications that the au-

thors are currently developing and discuss their potential and necessary upgrades for ultrascale

execution on ultrascale facilities.

Keywords: sustainable ultrascale systems, impact factors on applications, multiscale and mul-

tiphysics applications, computational modelling.

Introduction

A glance over the historical development of computational science shows that software and

hardware developments have always been driven by the need for a continual growth. For software

this is a continuously increasing growth in complexity of algorithms, of data sizes and process-

ing requirements; for hardware these have been and are the technological inventions providing

increasing computing power and storage capabilities. Topics such as High Performance Comput-

ing (HPC), distributed systems, big data and cloud computing are well-established domains of

software and hardware development reflecting this tendency. In the near future, the growth in al-

gorithmic complexity, data volumes to be processed, and available computing power is expected
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to reach extreme scales. Successful handling of this growth and maintaining performance on

such scales requires the existing and the emerging hardware and software aspects and concerns

to be re-evaluated and adapted to the new paradigms. The generic term ultrascale computing

captures all these efforts and challenges.

Ultrascale computing systems are expected to have the form of large-scale complex sys-

tems comprising parallel and distributed components as well as heterogeneous processors, e.g.

enhanced by Graphical Processing Units (GPU), Field Programmable Gate Arrays (FPGA) or

other types of accelerators. These compute facilities might be provided by cloud architectures

that are made available to scientific computing communities in an effort to achieve scientific

cloud computing [85]. Large-scale scientific simulations often have to deal with large volumes

of data which may come from multiple sources and are diverse, complex, and have massive

scale, requiring the big data techniques to be included. Due to the complexity of ultrascale

systems, their efficient usage is a challenging task which exceeds the effort for programming

and maintaining the HPC systems that are available today. Consequently, adequate support

for developing software on different levels is needed to properly exploit the hardware potential

offered by ultrascale systems.

The experience with current HPC systems has shown that some of the available application

codes and also some of the well-developed algorithms are not suitable for the hardware, since their

internal structure and behavior lacks a high degree of parallelism and flexibility [30, 89]. This

situation is expected to be even more critical for ultrascale computing. An important starting

point for investigating the potential of ultrascale computing is to identify algorithms, applica-

tions, and services amenable to ultrascale systems. In addition, the requirements that need to

be fulfilled to port applications to ultrascale systems have to be identified. This will enable the

development of new applications that will conform to these requirements and recommendations.

In this article, we discuss a large variety of aspects which might be crucial for applica-

tion codes to be suitable for ultrascale computing systems and to exploit the compute power

for achieving a sufficiently high performance and scalability of those applications on emerging

ultrascale platforms. In this context, we highlight the issues that are important for migrating

existing parallel applications to ultrascale platforms. Application areas amenable to ultrascale

computing include earth sciences, astrophysics, chemistry such as molecular dynamics, material

sciences, life sciences such as analysis of short-read sequencing data, health science, high energy

physics such as QCD, fluid dynamics, coupled multiscale and multiphysics methods. In addition,

diverse applications for analysing large and heterogeneous data sets in social, financial, and in-

dustrial contexts are candidate areas for ultrascale computing. To illustrate the significance of

these issues, we first review the current state-of-the-art in HPC execution of a typical multi-scale

simulation with separated spatio-temporal scales. We then proceed with a review of several real

parallel applications that the authors of this article are working on and discuss the likely impact

that the ultrascale execution paradigm will have on these applications.

Ultrascale computing offers a way to provide sufficient computing resources for a persistent

increase in problem sizes and parameter sets needed to process increasingly larger computa-

tional tasks in a required amount of time. It is general consent that applications will have to be

re-designed or re-programmed substantially in order to perform efficiently on the heterogeneous

hardware and to exploit fully the available technology of ultrascale computing systems [26].

This might require new data structures, new algorithms, or even new mathematics. New pro-

gramming models for flexible coding and performance adaptation as well as more abstract and
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advanced programming interfaces and domain-specific languages might be the key components

for delivering highly sustainable and scalable applications. However, each redesign of an appli-

cation for ultrascale computing systems must take into consideration cross-cutting issues, which

include resilience and fault tolerance mechanisms, handling of data I/O, especially for a growing

amount of data on geographically distributed systems (big data), power management and energy

efficiency as well as programmability and portability with respect to the underlying ultrascale

hardware system.

This article discusses the challenges for achieving ultrascale performance from an application

perspective. The rest of the article is structured as follows: In Section 1 we discuss hardware

as well as software development and program execution issues related to ultrascale computing.

Then, in Section 2 we consider a number of specific applications from different areas and discuss

their potential and requirements for ultrascale computing. Section 2.2.7 concludes the article.

1. Hardware and software issues for programming ultrascale

computing applications

Designing applications for ultrascale computing systems includes a multitude of different

interacting challenges. Firstly, this involves programming of a functionally correct application

software that provides correct simulation results. In this context, it is useful that the appli-

cation is based on a developed mathematical formalism of the scientific problem. A numerical

computation problem, for example, can benefit from algorithms that have proven asymptotic

convergence and provide error estimates. Secondly, the ultrascale application software has to

fulfill non-functional properties, including a large variety of criteria ensuring software efficiency.

There is a whole range of hardware and software issues and challenges associated with

computing on ultrascale platforms. From user’s requirements point of view we emphasize time

constraints (closely related to the total execution time and the reservation of HPC resources),

the energy consumption, resilience (measured as the average time between consecutive failures

within the system), and the impact of speed, security and quality of service of the interconnection

networks. From the user involvement perspective, the productivity, i.e., the effort required to

develop an ultrascale application (either from scratch or adapting an existing application to a

new computing platform) is relevant. This section discusses a number of hardware and software

properties that are expected to be of utmost importance for ultrascale computing.

1.1. Hardware and infrastructure issues

The emergence of new hardware platforms aimed at achieving ultrascale performance in-

volves new heterogeneous technologies, such as accelerators (GPUs, FPGAs, or many integration

core (MIC) architectures), as well as techniques for reducing energy consumption or network

enhancements.

1.1.1. Power consumption and energy efficiency

The reduction and control of the energy consumption per flop (floating-point operation)

is essential for achieving sustainable ultrascale computing. Energy-efficient processors with fea-

tures such as power gating or DVFS (dynamic voltage frequency scaling) are designed to enable

a reduction of the energy consumption at hardware level. These energy-saving hardware features
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are supported at different software levels. At the system software level, appropriate runtime sys-

tems can be developed to map computational parts of an application to hardware resources such

that the overall energy consumption is reduced. The runtime systems are based on suitable load

balancing and scheduling methods with the goal to minimize the resulting energy consumption.

Access to energy-minimizing runtime systems at the application level opens an opportunity for

developing energy-aware ultrascale applications.

As a basis for an energy-efficient mapping of computations to hardware resources, suitable

energy models are required that capture the power and energy behavior of application pro-

grams [83]. These models have to take the computational characteristics of an application into

consideration to provide good estimates for its power consumption on a target architecture.

The availability of suitable energy models is an important requirement to address the energy

behavior of ultrascale systems from the application perspective. Accurate energy models depend

on the identification of the key influencing factors, which is still an open research question.

At the application level, it can be observed that different applications may lead to a dif-

ferent power consumptions, depending on the computational behavior of the application and

the resulting usage of hardware resources [84]. For ultrascale systems, the memory access and

communication patterns will definitely play an important role. The redesign and reimplementa-

tion of the algorithms/codes for ultrascale applications need to address the problem of extensive

communication patterns. In addition, the use of specialised architectures such as FPGAs, which

are known to have favourable flop/Joule ratios [46], can be considered for reimplementing some

frequently used kernels from scientific codes, for example, parts of the linear algebra routines.

1.1.2. Sustainable data storage and data management

Ultrascale applications have a wide variety of data storage and management requirements.

The execution time of traditional HPC applications is typically dominated by floating-point

computations, i.e. they are computationally intensive. An emerging class of ultrascale applica-

tions are big data applications [50, 92, 95], for which the application performance is determined

by the performance of data access operations. Such applications are essential in fields such as ge-

nomics, astronomy, high-energy physics, or data analysis in web-scale companies. Some complex

applications also combine computationally intensive and data intensive parts. Examples from

the life sciences domain include machine learning techniques that process, among other inputs,

high-resolution images.

Computationally intensive applications are typically executed on hardware platforms with

a centralized network-attached high capacity storage system. Such platforms may restrict the

choice of resource allocation for the distributed multiscale applications to be described in Sec-

tion 2. Applications transfer data from the storage system to the compute nodes, execute the

computations, and write the results back to the storage system. The data transfer may be trans-

parent to the applications, or exposed through a library for parallel I/O such as MPI-IO. Since

the execution time is computation bound, the I/O bandwidth does not significantly influence the

application performance. In contrast, data intensive applications require much higher I/O band-

width. To achieve high aggregated I/O bandwidth, the storage can be distributed among the

compute nodes such that the data to be processed is read directly from a local disk. The Hadoop

Distributed File System [90] (an implementation of the Google File System design [35]) provides

such a distributed storage system. Current distributed storage systems such as Spanner [22]

provide data management services for data stored on geographically separated sites.
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Data-intensive applications may be implemented using programming models such as MapRe-

duce [25] or Spark [104], high-level languages such as Pig [76], SQL-like languages such as

HiveQL [96], or libraries such as Mahout [78]. In addition, applications may require services

such as fault-tolerance [25], random I/O [21], low-latency operations [59], iterative computa-

tions [104], incremental computations [39], transaction support [22], or secure data storage.

1.1.3. Self-configurability

FPGA accelerators, being reconfigurable, offer some desirable possibilities for introducing

self-configurability in ultrascale platforms, allowing a flexible re-adjustment of the hardware

features to match the requirements of a particular application. Compared to general-purpose

computers of equivalent performance, FPGAs are characterized by a better performance to

power consumption ratio and lower cost. The combination of a general-purpose processor and

application-specific processors synthesized in a reconfigurable logic with a structure utilizing

features of the executed algorithms allows an increase of the overall performance by orders of

magnitude.

However, FPGA-based accelerators and reconfigurable computer systems (that use FPGAs

as a processing unit) face some typical problems: (1) The process of coding applications requires

a special program to perform computing tasks load-balanced between the general-purpose com-

puter and the FPGAs. (2) FPGAs require designing application-specific processor soft-cores;

(3) FPGAs are only effective for certain classes of problems and data patterns, for which the

application-specific processor soft-cores have originally been developed. Problems related to de-

signing heterogeneous computer systems with hardware accelerators, are discussed in [71].

1.1.4. Interconnection networks

The interconnection network (ICN) is a critical element of every high performance com-

puting system. It strongly determines its overall performance as well as the development and

the operating costs. Enabling future advances in ultrascale computing requires the development

of efficient, flexible, and highly scalable ICNs. The main responsibility of an interconnection

network is to provide fast and reliable data transfer with respect to point-to-point and collec-

tive communication. The requirements for communication performance of the network imply

high and stable maximal bandwidth and low latency. In a contemporary parallel system, the

ICN connects hundreds of thousands of computing nodes. As the amount of computing nodes

increases, the communication traffic and the resulting latency can rise dramatically, resulting

in a degradation of system’s computational performance. In order to overcome the scalability

limitations, the developers usually implement enhanced interconnection networks based on high

radix switches and specially tuned up topologies, routing algorithms and flow control mecha-

nisms. Furthermore, the operating system and the management of the communication between

the processes are highly optimized to efficiently utilize the communicational resources. From

user’s point of view, the underlying structure and characteristics of the network are known and

can be used for optimization of the parallel code. In a sense, it is of paramount importance

for the resulting performance to take the structure of the ICN into account when developing a

specific code for ultrascale systems.

Due to their direct influence on speed-up and scalability, and consequently the run-time and

power consumption of applications, ICNs play an important role in cooperating and coordinating
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ultrascale computing systems. Today the ICN’s performance has the same relevance as the

performance of the CPU because the execution time depends on both communication time

and computation time. The efficiency of most realistic parallel applications is determined to a

large extent by the architecture’s ICN. Matching the application communication patterns to

the architecture of the ICN can shorten the overall execution time and increase the number of

processors that can be efficiently exploited, which both leads to a higher ultimate speedup. The

throughput, performance, low latency and quality of service of the ICNs are crucial for achieving

scalability and good performance when applications are run on federated HPC resources (see,

for example the multi-scale model described in Section 2). The performance of the ICNs for

realistic multiscale applications has been studied in detail in [23].

The performance of ICNs depends on many factors with the three most relevant ones being

topology, routing, and flow-control algorithms. The routing and flow-control algorithms have

advanced to a state where efficient techniques are already developed and used [24]. Many net-

work topologies have already been present since the dawn of parallel computing and are still

widely used. With contemporary standards like Infiniband, vendors and end-users do not have

the possibility to alter the routing and flow-control. Recent initiatives in the Network Functions

Virtualization (NFV) support software-based virtual implementations of networking devices [28]

such as switches, routers, firewalls, traffic analyzers, load balancers, etc. NFV can be easily com-

bined with the concept of Software Defined Networking (SDN), which improves the performance

and manageability of network functions. The end users can apply SDN to define a number of

different topologies, based on an anticipated usage.

A further step towards a performance increase is made possible by an improved ICN topology

or by innovative technological approaches in optical networking, which could solve current ICN

bottlenecks such as message latency and non-efficient collective communication. New approaches

in Networks on Chips (NoC) with high-level node radices will be considered as an option for

further improvement of the performance on the chip level. It is expected that ICNs will be able

to adapt dynamically to the current application in some optimal way in the near future. It is

important to analyze the applications requirements regarding the currently used ICN technolo-

gies in HPC parallel systems [97], focusing on ICNs used in the present top-level systems. Based

on past and present technology trends it is also relevant to establish several proposals for fu-

ture development of ICNs that are expected to fit better the needs of high-performance parallel

computer applications [98] or to be specifically tailored to exascale applications.

Most of the applications from Section 2 are sensitive to the ICN performance because of

underlying matrix operations and advanced data structure with complex, often non-local, data

manipulation. For example, well-known parallel performance degradations that can be observed

for computations with sparse matrices, see Section 2.2.6, could be overcome in part by developing

data traffic models that try to optimize those for frequently used sparse matrix kernels. These

computations are inherently problematic on parallel architectures due to their low computation

to communication ratios.

1.1.5. Cloud computing

The cloud is a type of parallel and distributed system consisting of a collection of intercon-

nected and virtualized compute facilities, which are shared between users and can be used by

a service mechanism. Thus, the cloud can play an important role for ultrascale computing. The

term cloud computing refers both to the hardware and software providing the services and to
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the application software provided as a service over the internet [11]. A network of parallel and

distributed compute facilities belonging to different administrative domains has already been

used in grid computing, which has been successful in scientific applications usually provided as

task applications, scientific workflows, or MPI applications. However, grid computing has also

some disadvantages, such as applications not fitting to those programming models or issues of

being unable to get access to grid infrastructures. Cloud computing aims at solving these prob-

lems by, e.g., providing the entire computing stack from hardware to the application level and

a pay by use basis.

The use of cloud computing for scientific application and high performance is being discussed

and investigated recently. Programming models comprise task models, thread models, MapRe-

duce models, scientific workflows, actor models or the parameter sweep model (PSM) [100].

Popular infrastructures include Amazon EC2, Google App Engine, Microsoft Azure, or Manjra-

soft Aneka. The performance and cost are of specific interest. The Amazon EC2 infrastructure

is evaluated for the scientific code FEFF [85] and for several other scientific workflows [53].

Open-source cloud computing solutions, including Eucalyptus, CloudStack and OpenNebula,

have been studied with respect to their use and performance in geosciences [45]. A recent study

on the application of cloud computing to scientific workflows discusses data intensive appli-

cations [13]. The active scientific discussion of this topic shows that there are very promising

approaches and that cloud computing may play a very important role for scientific applications

in ultrascale computing. The integration of cloud computing and big data is a necessary next

step and first studies are given in [10].

1.2. Program Execution Issues

Program execution issues comprise properties such as scalability, resilience, security, in-

tegrity and privacy of data, which are connected with properties of the actual processing of

applications.

1.2.1. Scalability

Throughout the development history of parallel systems, scalability was one of the pivotal

features, and will remain so when moving to ultrascales. Two aspects of scalability have to

be mentioned. The first one is the scalability of the hardware resources, ensuring that adding

more such resources will allow the maintainance of the system’s properties and operability.

The second aspect is the software scalability, measured as the effect of increased computational

and communication load as well as increased input and output, which can sustain a near-peak

performance. A scalable system should allow an upscaling from few-variable small data sets

on current parallel systems to many-variable large data sets on future ultrascale systems while

maintaining high level system’s efficiency.

Two principal types of hardware scalability can be distinguished: scale-out scalability means

that more compute nodes are added to a system, and scale-up scalabilty means that more

resources are added to a node, where the previously mentioned heterogeneity at micro-level can

play a role [72]. Scalability raises difficult challenges as well in the case of substantial increase

of the size of databases where strong consistency might be needed to be replaced by the weaker

eventual consistency.

L.A. Bongo, R. Ciegis, N. Frasheri, J. Gong, D. Kimovski, P. Kropf, S. Margenov...

2015, Vol. 2, No. 1 25



Software scalability captures the behavior of an application on a hardware system with

substantial computing resources on which the application should exhibit satisfactory efficiency

[74]. For HPC systems, software scalability is typically related to the execution time and the

resulting speedup when running the application. We distinguish between strong scaling or fixed

size scalability, capturing the scaling behavior of a problem of fixed size running on increasing

resources, and weak scaling, capturing the scaling behavior when the problem size is increased

in line with the number of computational resources, thus keeping the computational load per

resource, e.g. the CPU core, roughly constant. However, weak scaling is much more relevant for

ultrascale execution. Many applications, such as those presented in Section 2, would struggle to

achieve very good strong scaling beyond hundreds of processors, but with a suitable load per

processor may weakly scale way beyond that. Software scalability is especially important, since

the resources of the ultrascale systems should be used efficiently without a significant re-writing

of the application code when porting it to another hardware platform.

As very different heterogeneous system architectures are expected to become available in the

near future, software adaptivity also plays an important role in the context of ultrascale systems.

Ideally, the application software should be able to adapt automatically or with minimal changes

to a new execution situation on a new architecture and a good scalability may ease this process.

Scalability for ultrascale systems requires novel or improved approaches, such as task-based

approaches or Network Functions Virtualization and Software Defined Networks as previously

discussed in Section 1.1.4.

1.2.2. Resilience

Efficient utilisation of ultrascale computer architectures in scientific computing is restricted

by possible deficiencies in the availability and reliability of the resources. To handle hardware

failures, the software needs fault-tolerance features, such as checkpointing and rollback facilities.

In particular, the possibility of unavailable resources requires that an application has frequent

checkpoints for synchronisation and correctness verification. For example in the case of a mul-

tiscale model described in Section 2, the information exchange points between the models are

the natural choice for checkpointing. Changing of the runtime system configuration caused by

failing processing elements are usually difficult to handle by deterministic numerical algorithms

and require a complete restart of the application. This can be alleviated to some extent by

checkpointing. Efficient mapping of numerical algorithms to high-end architectures should allow

for robust execution in the presence of hardware failures, either by the ability to take preemp-

tive actions before a failure affects a running application, or, by creating a (hardware/software)

fault-tolerant version of the algorithm, capable of recovering the solution within a timescale that

is much shorter than that of re-running the entire application. An example is a fault-tolerant

multigrid solver for exascale computation [47]. In addition, the computational error introduced

by this process should be mathematically bounded, e.g. easy to measure and control. Some al-

gorithms, such as iterative solution methods, can handle a certain amount of (non-repetitive)

hardware failures and regain consistence without requiring any additional hardware features,

see [19] for a more detailed discussion.
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1.2.3. Security, integrity and privacy of data

Security, integrity and privacy of data are essential in the development of state-of-the-art

ultrascale computing systems, in particular if these are cloud-based. The intrinsic heterogeneity

of such systems induces flexible and ever-changing structures in the sense of geographical and

logical distribution of the hardware resources, thus allowing scalability of the system to a very

large size. Unfortunately, this architectural concept requires numerous remote data transfers.

The problem is aggravated when we take into account that nodes distributed on different ge-

ographical points could be instructed to execute simultaneously several codes on a given data

set, which is frequently locally stored.

The transfer and storage of data poses security threats, which includes risks involved in

the transfer itself and security risks connected with the enormous scaling of the system. Each

time a new node is connected to the system, the security risks could increase, as the new node

could be infected by an ill-intended code or it could be a Trojan node. Moreover, frequent data

transfers could be intercepted and the data could be stolen and used for unwanted purposes. The

data security, especially in today’s big data world, still remains an open problem. An interesting

concept that is yet to be investigated is to consider whether computations could be performed

on coded data.

1.3. Program Development Issues

Program development may constitute a significant effort, especially for ultrascale systems,

and effective support for reducing program development time is important. In this section, we

discuss the related issues of programmability, portability, and productivity in more detail.

1.3.1. Programmability

Programmability of highly parallel, heterogeneous computing systems is a major concern for

potential applications. It expresses the ability to implement an application in such a way that

ultrascale computer systems can be efficiently exploited to ensure its high-performance execution

and good utilisation of computer resources. The term programmability includes the requirement

for portability, since parts of or the entire application may have to be ported to newer and larger

hardware platforms. Well-established and standardized programming models, such as MPI or

OpenMP, as well as portable libraries or simulation tools are important to support portability. In

the context of grid applications, such as a distributed multi-scale problem discussed in Section 2,

various flexible coupling tools have been developed to couple existing (parallel) single-scale

models. Such coupling tools should be flexible and generic as much as possible, thus minimising

the development effort and maximising software reusability [14, 16].

However, porting codes are usually not enough to achieve high performance and a redesign

or sometimes even a reimplementation of an application might be required. The complex task

of redesigning an application has to be supported by a programming environment and a concise

programming model for ultrascale applications. Such a programming model should provide an

abstract view of the coarse (top-down) structure of an application. The specific way to support

programmability is still to be investigated and proposed solutions may be application-specific.

For example, a formalism based on complex automata was developed for the design of mul-

tiscale models, and a markup language, called MML has been designed to allow their formal

description [15, 44]. The implementations based on the abstract view may include many well-
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known subsolutions and the inclusion of standards, such as MPI, seems reasonable [82]. The

requirement for the support of programmability will be investigated for specific applications in

Section 2. Programmability is also strongly related to productivity in code design for sustainable

ultrascale computing.

Task-based programming approaches in combination with suitable runtime systems can

support the software adaptivity of applications, since the task-based approach allows a hardware-

independent formulation of the application and the mapping of tasks to hardware resources can

be performed by a runtime system so that the resources are efficiently used. The task-based

programming decouples the specification of application’s computations from the actual mapping

to the computing resources. The runtime system can dynamically map tasks that are ready for

execution to the computing resources, thus providing a dynamic load balancing that can adapt to

the current execution situation of the hardware platform. This can help to enable an efficient use

of the computing resources and a good overall scalability of the application, provided that enough

tasks are available for execution at each point in time during the execution of the application. An

example of a high-level runtime system that allows the allocation of federated HPC resources for

distributed component applications, e.g. a loosely coupled multiscale model, is the Application

Hosting Environment (AHE) [38]. Task-based approaches can be used with single-processor

tasks [58], where each task is executed by a single execution unit, or multiprocessor tasks, where

each task can be executed by multiple execution units in parallel [80, 81]. In the latter case,

the actual number of execution units can be adapted to the execution situation at the time of

task execution. Task-based approaches can also be used for balancing load between CPU and

GPU by providing tasks in different versions for different platforms such as CPU or GPU and

assigning a suitable version to the platforms with free resources [66].

The task-based programming paradigm is a promising approach for developing scalable

solvers for ultrascale computers. However, it has to be taken into account that a considerable

number of large real world applications are dealing with parallel algorithms for models based on

partial differential equations (PDE). Parallelization of such algorithms is based on the paradigm

of data parallelism. It is important to investigate whether the existing parallel algorithms can

be redesigned by using the task-based templates (e.g. Monte-Carlo methods).

1.3.2. Portability

The portability of parallel codes and algorithms is an essential issue for any specialist in-

volved in parallel computing and applications. There are two aspects of portability: portability

of functionality and portability of efficiency. Clearly, the portability issues are mainly connected

to selection, definition and continuous improvement of programming languages and standards

such as MPI, OpenMP and hybrid programming MPI+OpenMP. These have served as program-

ming models very efficiently for the last 20 years. Now the situation is changing and new parallel

architectures such as manycores GPU require new ideas and tools, e.g. CUDA. Interesting ap-

proaches in this direction include several new languages that are based on a Partitioned Global

Address Space (PGAS) concept which uses a global address space that is logically partitioned

between the resources such that each resource has a portion of the address space attached to

it to support the locality of memory reference. Languages, such as Cilk, that are based on the

concept of tasks or task-based libraries also provide a useful abstraction that can support the

portability to new hardware systems, see the discussion in Section 1.2.1.
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Another way to provide portability is to use special libraries and templates or macros, well

adapted to some specialized types of problems. This is often done for stencil driven algorithms.

Examples of such libraries and toolkits are PETSc, LAPACK, ML, Hypre, CVODE [3, 4, 6–8].

These software packages are expected to be highly scalable and adaptable when used in ultrascale

systems incorporating different architecture. Due to the portability of the libraries, their use can

increase the portability of application codes. There is an interaction between the development

of scientific libraries and the usage of new programming approaches for the development of

these libraries in the sense that the usage of specific programming approaches influences the

characteristics and the efficiency of the libraries. The third way to provide portability is to

use simulation tools such as OpenFOAM, COMSOL, ANSYS [1, 2, 5], where the portability of

solvers is guaranteed by the developers of the software packages.

1.3.3. Productivity

Productivity refers to the efficiency of implementing applications on specific architectures.

The resulting application should be functional and reasonably efficient. Productivity for ultra-

scale systems involves the effort required to extend existing (parallel) applications to the new

ultrascale systems such that the available resources are sufficiently well exploited. It is clear that

a complete re-architecturing and re-implementation of the application with a new programming

model should be avoided if possible. For large applications, this would be a huge effort even if

large code blocks could be re-used. However, it would be unreasonable to expect that no change

in the software will be required in order to use it efficiently on an ultrascale system. A preferred

scenario involves applications that can be adapted with minor changes to the new platforms.

Another aspect of productivity is the extensibility of the application code to include new features

and functionalities without negative effect on its scalability and efficiency.

The reimplementation effort needs to be sustainable in the sense of making an application

reasonably efficient on various ultrascale architectures. The use of novel task-based runtime

systems which decouple the concerns of the computation specification and its mapping to com-

putational resources can be an important step towards an increase in software development

productivity for ultrascale systems. Productivity is inherently intertwined with other require-

ments discussed in previous subsections. In particular, a good portability as well as a good

scalability of an application code leads to a higher productivity.

Related to productivity are radically new cross-platform software development and perfor-

mance analysis tools aiming at increasing the capabilities of the codes to take an advantage of

the phenomenal power of ultrascale computing platforms. Examples of highly scalable debuggers

that target exa- and ultrascale systems are TotalView and Allinea, that provide troubleshooting

for a wide variety of applications including serial, parallel, multi-threaded, multiprocess, and

remote applications.

Performance analysis of parallel codes is already increasingly difficult at existing scales.

Therefore, novel paradigms and techniques to measure, track, analyse and visualize performance

data are necessary to be developed, in order to facilitate faster and more intuitive analysis of a

wide range of gathered performance data, including execution time, memory system behavior,

power consumption and resiliency to faults.
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2. Some specific applications and implementation requirements

In this section, specific applications are investigated concerning their requirements for ex-

ascale execution, as identified in Section 1. After discussing a prototype multisclae application

in Subsection 2.1, we present several specific applications in Subsection 2.2.

2.1. A prototype multiscale application

Processes and phenomena of interest in many scientific disciplines involve a complex mix

of sub-systems that may operate on inherently different spatio-temporal scales. To model ac-

curately the behaviour of such systems one needs to develop a scheme which would capture

with sufficient detail the contributions of each sub-model, and couple them seamlessly into a

global, computationally feasible system. Such models are commonly referred to as multiscale

models. Multiscale modelling has numerous applications, including astrophysics (simulation of

thermonuclear processes in stars and galaxies [34]), biology (studies of live organisms, span-

ning from genome to the entire population [88]), high energy physics (modelling of the fusion

process and nuclear reactors [41]), engineering (simulations of structures, devices and chemical

processes [69]), environmental science (climate modelling, weather prediction [57]), and material

science (nano-composites [93]), to name a few.

The main components of a multiscale method are the single scale sub-models, the scale

bridging techniques, and the deployment strategies. To emphasize the challenges related to per-

forming computer simulations of a multiscale problem on a ultrascale computing facility we

restrict our attention to a model application involving two single scale sub-models with well sep-

arated spatio-temporal scales. The single scale sub-models are assumed to be implemented as

parallel legacy codes (e.g. using MPI or OpenMP). Putting the single scale sub-models together

is the main algorithmic and software engineering challenge in multiscale modelling. This process

is referred to as the scale bridging. Domain-specific techniques, such as sampling, projection,

lifting, homogenisation (coarse graining), micro-macro coupling are the instances of scale bridg-

ing techniques. In terms of the coupling strategies, we can distinguish between tight coupling

and loose coupling. Tight coupling is a feasible alternative when spatio-temporal scales of the

sub-models are close, or partially overlap. In such cases, monolithic coupling may be an advanta-

geous option [40]. Loose coupling strategies are effective for multiscale models with sub-models

operating on well separated scales. This approach is more flexible in terms of the reuse of legacy

codes for single scale sub-models and their deployment on distributed HPC resources.

At the methodology level there is a number of challenges that are awaiting answers, for

example, finding generic theories and formalisms for model coupling, defining the minimal set of

conservation laws for scale bridging, formulating mathematically rigorous theories for multiscale

modelling, including the error analysis [43]. At the implementation level, scale bridging is usually

handled by the software middleware, commonly referred to as coupling framework [38]. In terms

of the coupling patterns, we can distinguish acyclically coupled simulations, in which the sub-

models (codes) are run sequentially, with the output of one model serving as an input of the other

(i.e. the sub-models are not mutually dependent during the execution), or cyclically coupled,

where a mutual interdependency (a feedback loop) between the sub-models exist. In the latter

case the sub-models can be run either sequentially or concurrently.

Concerning the mapping of computational tasks to a specific architecture, distributed com-

puting strategies are of particular interest for achieving ultrascale performance. An efficient
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mapping of sub-models depends on the software systems that handle the advanced reservation

of federated computational resources, monitor data transfers, and provide easy to use GUI on a

server. An example of such a system is the Application Hosting Environment (AHE) [105].

Next, we discuss how the issues covered in Section 1 affect the execution of a distributed

multiscale application. In terms of the hardware issues, mentioned in Section 1.1, power con-

sumption and energy efficiency can be addressed by deploying single scale applications on the

architectures most suitable for the underlying algorithms (see the discussion in [14]). In this

context, the use of hardware accelerators for certain sub-tasks within single scale sub-models

can be beneficial, providing that the legacy codes support such extensions. Based on the ex-

isting experience, the impact of the interconnections speed on the performance of distributed

multiscale applications is well documented (see [23]) and no drastic change of the behaviour is

forseen. If cross-site applications with significant data traffic are executed, or the applications

have requirements for interactive graphical rendering and steering, the existence of high band-

width, low latency dedicated network interconnects between the HPC sites is one of the crucial

factors for achieving high-performance execution.

In terms of program execution issues, scalability of a multiscale application depends on the

choice of HPC architectures to execute single scale sub-models [14]. This would involve consid-

erations, such as employing data locality when using large data sets (cf. Subsection 1.2.3) and

software licenses. To achieve better scalability of single scale sub-models, some reprogramming

and even redesign of algorithms may be necessary. This also applies to the attempts to improve

the resilience of single scale models, as well as utilize energy saving options if such are provided.

In terms of programming development issues, such as programmability (Subsection 1.3),

and productivity (Subsection 1.3.3), the strategy of using well-established legacy codes, coupled

together with general-purpose coupling frameworks [16], [38] and deployed flexibly on distributed

HPC resources via the virtualisation tools, such as AHE [105] is currently considered to be state-

of-the-art. However, significant programming effort may be needed in some cases to bring the

single scale models to scale well on the emerging ultrascale architectures.

2.2. Scientific Computing applications

In the remaining part of this section we present seven applied problems, that are based

on the solution of discrete systems of PDEs and lead to important classes of supercomputing

applications. During the last few decades computational mathematics and numerical simulations

have been steadily drawing much attention, enabling the development of advanced technologies

and contributing to better understanding of numerous natural phenomena that are not tractable

via classical theoretical research or lab or field experiments. Performing numerical simulation

of very complex physical, biological or social systems enables the society to address important

issues such as identifying environmental problems, improving technological processes, developing

biomedical applications, new materials, etc. In addition, numerical simulations are sometimes

the only viable option in studying large systems, for example when the experiments are too

expensive, time consuming or unethical to perform.

A significant class of mathematical models involves partial differential equations (PDEs),

which are converted into discrete models using some suitable discretization methods such as

Finite Differences (FDM), Finite Elements (FEM), Finite Volume (FVM), Isogeometric Analysis

(IgA), referred to as local methods or as Boundary Integral Methods (BEM), meshless methods or

spectral methods, referred to as global methods. Some combinations of local and global methods
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are also in use. We note that, in general, the local discretization methods give raise to very

large linear algebraic systems of equations with sparse matrices, while the matrices arising from

global methods are much smaller, but dense. The type of discretization method is tightly related

to certain data structures that in turn have a significant impact on the potential performance

of those problems, when implemented on HPC and parallel computer platforms.

The methods of choice for solving large sparse systems of linear algebraic equations are the

iterative solution methods, in particular, the preconditioned Krylov solvers, see [87].

2.2.1. Finite element based supercomputer applications

Problem 1 [FEM]: Nowadays, FEM are considered as one of the leading computational tech-

nologies for continuum (macroscopic) modelling in science and engineering. The advanced FEM-

based simulations are often inter-disciplinary and involve multiple spatio-temporal scales, leading

to practically unlimited requirements for supercomputing resources. The FEM supercomputing

applications are inherently computationally intensive. At the same time, the most frequently

used algorithms and their parallel implementations, are strongly coupled, e.g., via scalar prod-

ucts that entail global reduction operations, causing specific requirements with respect to the

balance between computations and communications. In this context, we focus on topics related

to single process problems (scalar or vector) which could be stationary (e.g. elliptic PDEs) or

time dependent (e.g. parabolic PDEs).

More than 70% of the entire computing time of FEM-based engineering simulations is spent

in solving linear algebra problems. This can be verified by using popular libraries, such as

Trilinos [8] and HYPRE [3]. The included efficient fast parallel preconditioned conjugate gra-

dients type solvers are often of (nearly) optimal complexity, see e.g. the available implementa-

tions of algebraic multigrid (AMG) methods. However, the robustness of these solvers for some

classes of problems is still a challenging problem. As an example, we mention models of strongly

heterogeneous media and/or strong anisotropy, where the well-established solution techniques

face difficulties. The same applies to singular perturbations of the elliptic PDEs, such as the

convection-diffusion problem, which is a major issue in fluid mechanics and transport phenom-

ena.

The efficient implementation of FEM models requires mesh generation and partitioning of

the graph representing the sparsity pattern of the matrices in the resulting linear systems. The

available mesh generators construct a coarse unstructured mesh (for example using Netgen),

which is then refined uniformly in parallel. This is not necessarily a computationally optimal

scenario and adaptive refinement may be a better option, but requires frequent grid reparti-

tioning to preserve the load balance. One potential solution to this problem can be the low

cost mechanism for particle distribution, described in Subsection 2.2.7. The complete parallel

generation of conforming unstructured meshes is still a challenge. The next related problem

concerns the mesh partitioning. To illustrate it, we could refer to the commonly used software

packages ParMETIS and SCOTCH. These packages are based on recursive partitioning strate-

gies balancing the measure of the sub graphs and minimizing at the same time the measure of

the interfaces. In this respect, the quality of the results could be considered as acceptable. The

problem is that the number of the neighbors is not properly controlled which leads to serious

problems mapping the graph of the algorithm onto the graph of the parallel architecture.

The last related comment concerns the more general problem of balancing local and

global communications. For parallel distributed systems with hundreds of thousands of pro-
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cessors/cores, the global communications related, e.g., to dot product, Fast Fourier Transform

(FFT), etc. have become one of the fundamental bottlenecks, indicating that some of the user

communities will have to change their way of thinking. As a consequence, most probably some of

the FFT-based codes will have to be modified to AMG solvers as a way to avoid the transposition

step reducing also avoid the logarithmic factor in the almost optimal order of computational

complexity. Similar to other approaches, AMG may have its own problems when mapped to

an architecture with a large number of processors – recent works aimed at reducing the oper-

ator complexity, improving the quality of interpolation, reducing the communication patterns

at coarse levels, exploring fine-grained parallelism, while retaining numerical robustness are

definitely of interest.

Challenges towards ultrascale FEM applications: The energy efficiency of FEM ap-

plications on ultrascale systems is one of the key challenges. New proper metrics need to be

developed and tuned to get a complex assessment of the related simulators. The fault-tolerance

issues need to be addressed in a proper way at the method, algorithm and software implemen-

tation level. Iterative solvers and the time-stepping algorithms have inherently self-correcting

mechanisms which should be developed further and tuned in the context of ultrascale computing.

The development of specific algorithm-based fault tolerance mechanisms will become increas-

ingly significant with the scale of the computer system. For example, faults that occur in the

parallel geometric multigrid solver are studied in various model scenarios in [47].

The general conclusion is that systematic algorithmic adaptations will be required if antici-

pated ultrascale hardware is to fully utilise its potential for FEM applications. Such algorithms

aim to minimize synchronizations, memory usage, and memory transfers, while extra flops on

locally cached data are almost ”free”, see e.g. [55]. In multilevel/multigrid solvers this could

be achieved by more aggressive coarsening. An important complementary approach is the hy-

bridization of algorithms (including hybrid deterministic-stochastic solvers), aimed at better fit

to the hybrid hardware architecture.

Current experience: The experience of the IICT-BAS team includes FEM supercomputing

simulations of bio-medical, environmental and engineering problems. High parallel scalability

(both, strong and weak) is obtained on heterogeneous Linux platforms, including IBM Blue

Gene/P, HPC CPU clusters, and more recently hybrid CPU/GPU/MIC clusters. The used pro-

gramming methods and environments include C, MPI, OpenMP, CUDA. Among more recently

released libraries for platforms with accelerators, we could mention PARALUTION. More infor-

mation can be found in [74, 75, 79].

2.2.2. Parallel preconditioning of multi-physics problems

Problem 2 [BlockPrec]: Recent advances in computational modelling techniques and the

increasing computing power allow us to tackle complex multi-physics and engineering prob-

lems that involve several unknown physical quantities described by a system of PDEs, such as

thermal convection, fluid-structure interaction, magnetohydrodynamics. Grouping the discrete

unknowns of the same type imposes in a natural way a block structure on the coefficient matrix.

In this context, block preconditioners are commonly deployed to accelerate the convergence of

Krylov solvers. The block structure of the coefficient matrix enables the use of existing precondi-

tioners for the constituent single-physics sub-problems and available software libraries (such as

AMG implemented in Hypre [3] or Trilinos [8]) to solve approximately the scalar subproblems.

Implementing the solution of subproblems using available highly tuned and computationally
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efficient software toolboxes reflects the programmability and productivity issues, highlighted in

Section 1. Block preconditioners also favour local interprocessor communications, as opposed

to long range communications that are prevalent in global multigrid solvers for multi-physics

problems.

Current experience: We have developed the block preconditioning framework (BPF) within

OOMPH-LIB (see http://oomph-lib.org/), an object-oriented multi-physics finite element li-

brary [29, 73, 91]. The BPF facilitates rapid development of new preconditioners, while hiding

the low-level implementation details (including parallelisation). However, the overall parallel per-

formance of any multi-physics solver crucially depends on scalar solvers (usually library codes

produced by third parties), such as algebraic multigrid (AMG). Standard AMG codes, such as

BoomerAMG [3] (developed at LLNL) perform robustly and show good scalability over hun-

dreds of processors. Novel coarsening techniques (PIMS, HIMS, non-Galerkin) and techniques

for enhanced (long-distance) interpolation are designed to reduce communication and enhance

scalability, while retaining robustness, especially for complex diffusion and convection-diffusion

problems.

Challenges towards ultrascale FEM applications: In contrast to the extensive studies

of the numerical properties of these methods, there is comparatively little work on resilience

and energy efficiency of AMG solvers (some recent results are found in [47]). AMG and the

more general multilevel and domain decomposition frameworks are among the most numerically

efficient techniques for solving large scale linear systems with sparse matrices, arising from

discrete PDE models. The numerical efficiency, usually measured in the number of iterations,

required to obtain convergent solution, relates to the underlying hierarchical structure of these

methods, that allows a fast transfer of error information through the utilization of coarse problem

representations. The implementational counterpart of the coarse data structures is the long

range communication, and this is expected to be a serious bottleneck for ultrascale systems.

Local communications are very attractive for massively parallel implementations, however in

general, these do not guarantee sufficient numerical efficiency. Therefore, upgrading the existing

and developing new optimal linear solvers that perform efficiently on ultrascale computers while

satisfying resilience and ennergy efficiency requirements is very relevant.

2.2.3. Numerical solutions of multi-physics problems using Meshless methods

Problem 3 [Meshless]: A common feature of the local discretization methods, such as DFM,

FEM, FVM, IgA, BEM, is that they rely on some discretization mesh and this fact sometimes

poses additional difficulties as resolving complex geometries, adaptive refinements that involve

local mesh refinements and derefinements, large stencils, handling moving meshes to resolve

dynamical interfaces, etc., see Subsection 2.2.1 and [73]. The latter requirements affect the par-

allelization and implementation of these methods on HPC platforms, namely, the load balancing,

the amount of local communications, etc.

A promising alternative to the mesh-based methods is the class of the so-called Local Mesh-

less Methods (LMM), based on scattered discretization points. Of particular interest are the

methods that result in algebraic systems of equations with better conditioned matrices [63].

LMM allow for easy implementation of local refinements and derefinements [61], basis augmen-

tation, increasing approximation quality, treating special features in the problem, such as sharp

discontinues or other intricate situations, which might occur in complex simulations. These po-

tential advantages can be usually accomplished by an increased number of discretization nodes
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to preserve the desired accuracy with additional work in the identification of nearest meshless

nodes that influence the solution [99]. The validation of potential benefits of LMM on ultrascale

architectures remains a significant research challenge [32].

Current experience: A parallel computational framework for solving multi-physics problems

based on LMM has been developed, (see http://www-e6.ijs.si/ParallelAndDistributedSystems/)

providing the possibility to model and perform numerical simulations of problems originating

from molecular dynamics, graph algorithms (clique) and discrete simulations (ECG simula-

tor based on Action Potential in cells), multiple transport equations (heat, bio-heat, solute,

radiation, etc.), multi-phase fluid flow (free fluid, porous media), phase change dynamics on

micro-macro levels, drift-diffusion equations (semiconductor simulations) [62], r-adaptive dy-

namic nodal distributions, all on non-uniform domains. The code is parallelized and can be

efficiently executed on multi-core computers and distributed systems [60]. The communication

issues have been studied and tested on an in-house computing cluster. The solvers are cou-

pled with an evolutionary multiobjective optimization package for automatic optimization of

parameters. The local meshless code could be extended to exascale range and could be used for

performance benchmarking on novel ultrascale hardware platforms.

2.2.4. Earth Sciences Applications

Problem 4a [GEO1]: Earth sciences include a number of scientific disciplines such as geology,

geophysics, ecology, hydrology, oceanography, climatology etc., that are relevant for the living

conditions of human society, the extraction of raw materials and circulation of wastes. Earth

System Science mixes together physics, geology, geophysics, engineering, chemistry, mathemat-

ics and computations to study interconnected systems operating on extreme time and spacial

scales where small-scale heterogeneities affect large-scale phenomena (see also the discussion

in Section 2.1). The scientific research accommodating these scales pushes and challenges the

frontiers of numerical and computational methods [31, 49, 103].

The complexity of physical, chemical and biological processes, as well as the volume of

data structures makes the HPC an imperative for the analysis, modeling and simulation of the

underlying processes. For such problems, where experiments are impossible, the extreme-scale

computer simulations can enable the solution of high resolution models and the analysis of very

large data sets, including: regional climate changes (sea level rise, drought and flooding, and se-

vere weather patterns). Climate models, developed through decades, have over one million lines

of code. At the same time the architectural changes of the computer platforms need more sophis-

ticated algorithms and computer techniques [12, 51, 52], in order to utilize fully the computing

power provided by the new hardware. Oceanographic, atmospheric and climate simulations are

typical examples of applications that require HPC to process a huge volume of data (for example,

the analysis of remote sensing data in space-time domains to evaluate environmental changes

and predict their future evolution) [9, 68, 101]. Moreover, such an analysis must be coupled with

the simulation of related environmental processes and interfaced with human activities.

A particular instance of Earth science applications is geophysical modelling and inversion.

A related work within the FP7 project HP-SEE on ”Geophysical Modeling and Inversion” is

performed in the Center for Research and Development in IT of the Polytechnic University of

Tirana in collaboration with specialists from the Faculty of Geology and Mining and of the

Academy of Sciences in Albania. It illustrates the scalability of geoscience applications in HPC

systems and the need for ultra-scale computing in order to cope with high resolution models
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required for regional and local scientific and engineering studies. The project targets inverse

problems, related to gravity anomalies using approximation based on relaxation methods with

runtimes in the range of O(N8) where N is the spatial resolution in one dimension. Geosections

are represented by 3D matrices, the structure and density of which changes during iterations.

Due to 2D to 3D mapping, the problem is, in general, very ill-conditioned.

Current experience: The implementation has been developed in C with MPI and OpenMP.

Tests have been performed on the HPCG Cluster at the Institute of Information and Com-

munication Technologies, Bulgarian Academy of Sciences, and the SGE system of the NIIFI

Supercomputing Center at University of Pécs, Hungary, with up to 1000 cores. It was possible

to achieve in a reasonable runtime a resolution with N = 80 nodes corresponding to a spatial step

of 50 meters. This may be sufficient when simulating gravity effects but the resolution should

be much higher when studying other geophysical phenomena of interest, for instance, searching

for 2D structures with thickness of the order of one meter in a complicated heterogeneous and

partially anisotropic medium for applications in other areas, such as magnetism and electricity.

The implementation maintains a balance between energy consumption and network commu-

nications. To facilitate this, each process on the individual cores does some redundant compu-

tations, thus reducing the communication at the expense of the increased energy consumption.

Problem 4b [GEO2]: Another example of a geophysical application problem that is of signifi-

cant importance and a potential impact for our society is the so-called glacial isostatic adjustment

(GIA) that comprises the response of the solid Earth to redistribution of mass due to alternating

glaciation and deglaciation periods. The processes that cause subsidence or uplift of the Earth

surface are active today. To fully understand the interplay between the different processes, and,

for example, be able to predict how coast lines will be affected and how glaciers and ice sheets

will retreat, these have to be coupled also to recent global warming trend and melting of the

current ice sheets and glaciers world wide.

Due to the extreme space and time scales involved (the simulations should be performed

on the Earth globe for time periods of about 100000 years) the GIA processes can only be

studied via computer simulations. A detailed model of the phenomena includes three-dimensional

geometry, viscoelastic and inhomogeneous material behavior, self-gravitation effects, modelled

via a coupled system of partial differential equations.

Current experience: Presently, at the Division of Scientific Computing, Uppsala University,

a two-dimensional benchmark, often used by the geophysicists, has been studied from a point

of view of accuracy as well as regarding numerical and computational efficiency. The problem

is discretized using FEM and performance studies have been done on CPU and GPU platforms

using OpenMP and MPI paradigms (cf. [27]). The long-term aim is to couple GIA modeling

with other large scale models, such as Climate and Sea-level changes, Ice modeling etc.

Problem 4c [GEO3]: Massive paralleism can be achieved when simulating environmental

systems, for instance studying surface water - groundwater interactions. The HydroGeoSphere

(HGS) software package ( [17]) is an advanced tool, allowing for modelling physics-based interac-

tions and feedback mechanisms between the two compartments. HGS is a numerically demanding

code implementing a 3D control-volume finite element hydrologic model with a fully integrated

surface-subsurface water flow and solute, including thermal energy transport.

The model parameters employed in HGS need to be calibrated in order to adequately rep-

resent a given environmental system. So-called data assimilation systems provide an alternative

to conventional model calibration systems: they allow sequential update of system states and
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model parameters whenever new data becomes available, thus guaranteeing a continuous im-

provement of the predictions. The Ensemble Kalman Filter (EnKF) [33] allows to quantify the

prediction uncertancies, thus providing an optimal data assimilation mechanism in conjuction

with HGS and the environmental data. The prediction provided by an EnKF-based simulation

is then represented by the statistical moments of the ensemble of realizations. Such modelling

systems are ideal for parallel processing, due to the high number of required simulations, and

the readjustment and the recalibration of the model parameters allowed by the EnKF data

assimilation technologies.

Current experience: At the University of Neuchatel, a cloud-based environment (OpenStack,

AWS S3 compliant object store) has been developed to provide near-real-time re-adjustment of

system states and re-calibration of model parameters whenever new monitoring data becomes

available [65, 67]. When simulating larger fine grained HGS models, parallelization is essential

because tightly-coupled highly-nonlinear partial differential equations are solved. The target

parallelization includes the assembly of the Jacobian matrix for the iterative linearization method

and the iterative solution method, in this case the preconditioned BiCGSTAB method, [48].

Performance studies of linear solvers are currently undertaken on CPU and GPU using OpenMP

and MPI paradigms.

2.2.5. OpenACC acceleration for Nek5000: spectral element CFD code

Problem 5 [CFD]: This application targets problems in Computational Fluid Dynamics

(CFD), in particular, very large scale simulations of incompressible flow problems, efficient

and robust solvers for the arising linear systems and achieving high performance efficiency on

heterogeneous HPC platforms.

Current experience: At present, the numerical simulations are performed using Nek5000 –

an open-source code for simulating incompressible flows and its discretization scheme is based

on the spectral-element method [37, 70]. In this approach, the incompressible Navier-Stokes

equations are discretized in space by using high-order, weighted residual techniques employing

tensor-product polynomial bases.

The code is widely used in a broad range of applications and more than 200 users are using

Nek5000 in the world. Within the EU project CRESTA (Collaborative Research into Exas-

cale Systemware, Tools and Applications), PDC-HPC at KTH Royal Institute of Technology

mainly focuses on software challenges using hybrid computer architectures with accelerators for

ultrascale simulations in collaboration with KTH Mechanics, EPCC, Cray UK and Argonne Na-

tional laboratory. We have ported the CFD code Nek5000 on massive parallel hybrid CPU/GPU

systems and presented a case study of porting simplified version, NekBone, to a parallel GPU-

accelerated system. We reached a parallel efficiency of 68.7% on 16,384 GPUs of the Titan XK7

supercomputer at the Oak Ridge National Laboratory. Currently the full Nek5000 code is ported

and optimized to multi-GPU systems and can run on 1,024 GPUs. The application is written

in mixed C/Fortran and requires a system with multi-GPUs.

As discussed in Section 1.3, a particular attention should be paid to portability and pro-

ductivity of ultrascale applications on heterogeneous HPC architectures. Productivity will be

decreased if codes are rewritten in a low-level language such as CUDA for GPU accelerator

systems. With the OpenACC [77] compiler directives, to port Nek5000 to GPU systems only

requires a few additional command lines of code [70].
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Nek5000 employs a multigrid preconditioner that combines the Schwarz overlapping method

with subdomain solvers based on the fast diagonalization method. A sophisticated multigrid pre-

conditioner is expected to reduce the global solution time when the Nek5000 code is ported to

multi-GPU systems. For further improvements we intend to investigate the efficient precondi-

tioner discussed in Section 2.2.2.

2.2.6. The EULAG numerical model

Problem 6 [STENCIL]: The EULAG model [86] is an ideal tool for performing numerical

experiments in a virtual laboratory using time-dependent 3D adaptive meshes and complex,

time-dependent model geometries. The flexibility is due to the unique model design that com-

bines the nonoscillatory forward-in-time (NFT) numerical algorithms and a robust elliptic solver

with generalized coordinates. The code is written as a research tool with numerous options con-

trolling the numerical accuracy, and allows for a wide range of numerical sensitivity tests. The

computational core of EULAG consists of two main parts: MPDATA advective transport algo-

rithm [94] and the Generalized Conjugate Residual (GCR) elliptic solver [18] with the Thomas

preconditioner. A more sophisticated preconditioner could be used in this context, see Sec-

tion 2.2.2.

When implementing the EULAG model, the most time-consuming parts correspond to

stencil-based computations. The suitability of stencil-based computations for ultrascale sys-

tems is studied in [56] for the CFD simulations on clusters with GPU nodes and in [102] for

mesoscale atmospheric modeling on the Tianhye-2 system with Intel Xeon Phi co-processors. In

the multi-GPU implementation, the PCI Express bandwidth and synchronization overheads are

among the main bottlenecks. An important observation for this rather complex code is that the

operations performed at the subdomain boundaries are currently performed much slower than

fast stencil operations in the subdomain interiors, which restricts the overall code performance.

In line with this observations, the algorithm proposed for Tianhye-2 is simplified as much as

possible, allowing to achieve weak scaling efficiency up to 6,144 nodes, with over 8% of the peak

performance in double precision.

Current experience: The development of the model and the implementation are a collabora-

tive effort between the Czestochowa University of Technology, Poznan Supercomputing and the

Networking Center, Institute of Meteorology and Water Management in Warsaw. The code is

ported to multi GPUs and multi Intel Xeon Phi platforms [86, 94]. The application is written

in C++/Fortran using CUDA, OpenMP and MPI standards. It requires a cluster with nodes

containing NVIDIA GPUs or Intel Xeon Phi co-processors. The application is optimized for

Fermi and Kepler GPU architectures, as well as Intel MIC architecture. Memory requirements

include about 20 GB of HDD (for input and output data), and about 16 GB of RAM per node

and about 8 GB of inter co-processor memory.

The performance of the EULAG system within a single node of cluster is mostly limited by

the low flop-per-byte ratio of computation - less than 1.7 for MPDATA, and even less than 0.2

for the GCR solver, while the minimum flop-per-byte ratio required e.q. by NVIDIA Tesla K40m

to achieve the maximum performance is 5.2. The main constraint for providing scalability of the

application across cluster nodes is the presence of global communications in the GCR elliptic

solver. As already pointed out, this is the crucial bottleneck for all sparse matrix calculations –

a low computation to fetch ratios, made even worse on multicore architectures where multiple

cores have common fetch buses.
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2.2.7. Particle–In-Cell method for particle distributions – Helsim

Problem 7 [SPACE]: Space weather refers to conditions on the Sun, in the interplanetary

space and in the Earth space environment. These conditions can influence the performance and

reliability of space-borne and ground-based technological systems, and can affect human life or

health [54].

Astrophysicists researching space weather are interested in the behavior of plasma, a high

energy and highly conductive gas, where the atoms have been broken into their nuclei and their

freely moving electrons. To study the small-scale plasma behavior, necessary to understand its

kinetic effects, the Vlasov equation, self consistently coupled with Maxwell’s equations, needs

to be solved [64]. This is commonly solved using the particle-in-cell (PIC) method [42]. In PIC,

individual macro-particles in a Lagrangian frame, that mimic the behaviour of the distribution

function, are tracked in a continuous phase space. Moments of the distribution function, such

as charge densities for plasma physics simulations, are computed simultaneously on an Eulerian

frame (fixed cells).

Current experience: The software package Helsim implements an explicit three-dimensional

electro-magnetic PIC simulation. It was developed in the ExaScience Lab in Leuven, Belgium,

with contributions from many partners in the project. A particular care of load balancing is taken

in Helism, which allows the simulation of experimental configurations with highly non-uniform

particle distributions. Moreover, Helsim includes interactive in-situ visualization capabilities.

Helsim uses the Shark Library [20] 15 to store all distributed data structures, including

the particles and the various grids. Shark is a high-level library for programming distributed

n-dimensional grids in a highly productive manner, aiming to improve programmability and

productivity while remaining portable (see Section 1.3). Broadly speaking, Shark manages the

bookkeeping and the distribution of grid data structures, and offers specific computation and

communication operations to work with the grid data. It extensively uses C++ constructs, such

as lambda-expressions, to make the work with distributed n-dimensional grids easy. The Shark

runtime system manages parallelism on three levels, which are common in today’s multicore

cluster architectures: distributed memory parallelism using one-sided communication from MPI

2/3; shared memory parallelism using a thread scheduler such as OpenMP, direct Pthreads, Intel

Threading Building Blocks (TBB), and others; and SIMD vector instructions using compiler

auto-vectorization, assisted with pragmas. The work on Shark continues in the context of the

FP7 project Exa2ct, where we are integrating with the GASPI/GPI (Global Address Space

Programming Interface) 16.

Specific for Helsim, when compared to other PIC simulators, is that particles are evenly

distributed over the cluster such that each core holds the same amount of particles, stored

according to the cell they belong to. As particles move throughout space during the simulation

a low-cost, lightweight mechanism is used to adjust the particle distributions. It was initially

opted for this dedicated mechanism but it could be worthwhile to use (or at least get inspiration

from) grid or mesh partitioning techniques as discussed in Section 2.2.1.

The 3D fields (electric field, magnetic field, etc.) are block-distributed over the cluster,

completely decoupled from the particle data structures. When particle information is propagated

to the fields (charge density and current interpolation), and vice versa (interpolating the electric

and magnetic fields to particle positions) each core uses a local representation of the grid in

15Freely available on github: https://github.com/ExaScience/shark
16See http://www.gpi-site.com/gpi2/gaspi/
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order to be able to work locally and overlap computation with communication (updating the

actual distributed grid). When done, this local information is then propagated to (and merged

with) the distributed grid.

The current version of Helsim uses a fairly simple CG solver but we are currently integrating

the state-of-the-art pipelined CG solvers developed at the lab [36]. It may be worthwhile to

explore whether preconditioning techniques might help even more, see Section 2.2.2.

Helsim also features in-situ visualisation that runs in parallel with the simulation, directly

using the data from the simulation, using a custom distributed raycasting engine. Helsim was

run on up to 32 thousands cores on the Curie T0 System in France, as well as on various smaller

clusters. The primary goal is to increase weak scaling (see 1.2.1), which is important to be able

to tackle ever larger simulations. Helsim was developed at the ExaScience Lab, a collaboration

between Imec, Intel, and all five Flemish universities.

Conclusions

We have put forward a number of hardware, software and program execution issues which

will, in our opinion, influence the development and upgrades of computing applications for future

ultrascale architectures. In this context, a prototype multiscale application and seven specific

simulation applications from science and engineering serve as a testbed for a discussion on their

current state-of-the-art and their future development directions, based on current experience.

Although each of the applications has specific demands for porting to ultrascale systems, a

pattern favouring coupled applications of increasing complexity and size as candidates for ul-

trascale execution, is clearly emerging. This means that future computational power will be

used for advanced applications simulating increasingly complex phemonena, while reusing the

existing single scale/physics models. Thus, it seems important to invest an effort into support

for programmability enabling the porting of legacy codes into a single application that couples

well-established sub-models. A variety of general or domain-specific well-established coupling

platforms already exist, and it is timely to provide the standardization, which would support

productivity for the application programmer. Full and proper understanding the algorithmic or

mathematical model behind the coupling is essential for the standardization process, which is

currently restricted to single coupled simulation codes. Mathematical standardization of model

coupling would help to create more accurate and computationally efficient ultrascale applica-

tions. In summary, there seems to be a high potential for future ultrascale applications from

the simulation problem point-of-view. A challenging task is the integration of the cross-cutting

concerns, fault tolerance and reduction of the energy consumption. An open research question is

whether these issues should be included into the simulation algorithm or being solved separately.

The work presented in this paper has been partially supported by EU under the COST pro-

gramme Action IC1305,“Network for Sustainable Ultrascale Computing (NESUS)” and is co-

authored by members of the Working group 6 on Applications of this action.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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83. T. Rauber and G. Rünger. Modeling and Analyzing the Energy Consumption of Fork-Join-

based Task Parallel Programs. Concurrency and Computation: Practice and Experience,

27(1):211–236, 2015.

Applications for Ultrascale Computing

46 Supercomputing Frontiers and Innovations
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Dense Matrix Computations on NUMA Architectures
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We employ the dynamic runtime system OmpSs to decrease the overhead of data motion

in the now ubiquitous non-uniform memory access (NUMA) high concurrency environment of

multicore processors. The dense numerical linear algebra algorithms of Cholesky factorization and

symmetric matrix inversion are employed as representative benchmarks. Work stealing occurs

within an innovative NUMA-aware scheduling policy to reduce data movement between NUMA

nodes. The overall approach achieves separation of concerns by abstracting the complexity of the

hardware from the end users so that high productivity can be achieved. Performance results on

a large NUMA system outperform the state-of-the-art existing implementations up to a twofold

speedup for the Cholesky factorization, as well as the symmetric matrix inversion, while the

OmpSs-enabled code maintains strong similarity to its original sequential version.

Keywords: Dense Matrix Computations, Dynamic Runtime Systems, Software Productivity,

Non-Uniform Memory Access, Data Locality, Work Stealing, High Performance Computing.

Introduction

Multicore Non-Uniform Memory Access (NUMA) machines are increasingly common in high

performance computing, and a primary challenge of extreme computing today (see, e.g., the in-

ternational exascale campaign [13]) is in expanding the number of cores per node in strong

scaling. In contrast, expanding the number of nodes, which has already reached 105 for the

BlueGene/Q system ranked #3 in the November 2014 TOP500 list, in weak scaling is well

understood, at least for typical scientific SPMD codes based on load-balanced domain decompo-

sition run on performance-reliable nodes [21]. In the last decade, dense linear algebra software

underwent drastic algorithm and software stack redesigns, to maintain pace with the hardware

evolution towards high concurrency. The Standard dense numerical algorithms and their state-of-

the-art implementations in LAPACK [5] and ScaLAPACK [7] rely on the bulk synchronous parallel

model for performance purposes. This model will display increasing vulnerability to synchro-

nization going forward. Parallel programming models based on fine-granularity computations

have shown promising results to weaken global synchronizations and to reduce data motion.

In particular, task-based programming models have been successfully developed and integrated

in several high performance dense linear algebra libraries (i.e., PLASMA [1] and Libflame [30]).

Along with “taskifying” existing dense numerical algorithms, one of the main challenges is to

deal with the actual scheduling of these tasks and the ever-changing hardware with its NUMA

complexity.

While the potential of multicore NUMA architectures can be exploited with considerable ease

for algorithms with good load balance at arbitrary concurrency, such as matrix multiplication,

there are others in which load balance and data locality cannot be maintained simultaneously,
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and the cost of accessing remote NUMA nodes comes with performance penalties. This is the

case of the Cholesky factorization and the symmetric matrix inversion algorithms studied in this

paper, which are representative benchmarks of dense factorizations and more advanced dense

matrix operations, respectively. These compute-intensive operations are the basic blocks for

many scientific applications (e.g., in statistics and machine learning), which require the explicit

calculation of the inverse of large covariance matrices [2]. The trade-off between load balance

and data locality is the key not only to the future of algorithms with time-varying work per unit

memory, such as the Cholesky factorization and even more for the symmetric matrix inversion,

but also to the future of hardware that is less performance-reliable due to compromises required

to reduce the energy of computation. As future hardware is operated closer to unit signal to

noise ratio in voltage level and as core clock rates are varied to maintain safe thermal dissipation

levels, work stealing will be required to maintain load balance even for algorithms with regular

work per unit memory ratios throughout their execution. Work stealing that does not cost more

in performance than the imbalance it is designed to rectify is challenging to arrange.

The authors herein consider a limited type of “distance-aware” work stealing that respects

the critical path of execution and the realities of NUMA. We have extended some of the func-

tionalities of the OmpSs task-based programming model [6], [15] to efficiently handle NUMA

architectures through an innovative distance-aware scheduling policy to reduce data movement

between NUMA nodes, for instance, while performing work stealing. We have chosen OmpSs

as the programming model because it provides a simple and non-intrusive interface (OpenMP-

like) to program challenging hardware systems by abstracting the hardware complexity from

end users, while keeping high productivity in mind. This new scheduling policy is aware of the

NUMA architecture on which it is running, spreads work over the available cores, and imple-

ments stealing to prevent starvation.

On shared-memory systems composed of tens of NUMA nodes and for asymptotic matrix

sizes, the Cholesky factorization and the symmetric matrix inversion achieve up to a twofold

improvement in flop rate relative to less discriminating policies, while improving performance

by a twofold speedup over the best existing implementations for both dense matrix operations

on the same hardware overall.

This paper is structured as follows. We continue with the related work in Section 1. Section 2

describes the OmpSs framework and presents its different components. In Section 3, we briefly

recall the Cholesky factorization and the symmetric matrix inversion. The implementation details

of the scheduling policy are given in Section 4. In Section 5, we present the performance impact

of the scheduling policy on various systems and compare against the state-of-the-art commercial

and open-source high performance dense numerical libraries. Section 6 shows performance traces

of both algorithms to support our performance results, and we conclude in Section 6.

1. Related Work

The volume of literature on NUMA-aware work stealing indicates the importance of adapting

many classes of algorithms, linear algebra among them, to strong scaling within shared memory.

Our review cannot be complete within page scope, but focuses on contributions that provide

the context for ours.

Runtime frameworks for scheduling dense linear algebra algorithms have been well studied

in the last few years [10, 20, 23, 24, 26]. The key idea is the redesign of the numerical algorithms

so that more parallelism can be exposed and a runtime system is then employed to concurrently
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schedule the computational tasks. This is the approach adopted by the PLASMA and FLAME

high performance dense linear algebra libraries. The PLASMA library [1] provides a collection of

dense linear algebra operations and is intended eventually to supersede LAPACK [5]. It can use

internally a static (originally introduced in [22]) or a dynamic runtime system [29]. It has shown

significant improvement compared to the existing approaches [4]. The FLAME library [30] provides

similar functionalities and relies on the dynamic runtime system SuperMatrix [11] to execute

the algorithms-by-blocks. These are high-productivity runtime systems in the sense that the

user does not need to adapt to the architecture at the source-code level. However, although the

scheduling frameworks of both libraries aforementioned provide features for data locality, work

stealing and task priority on shared-memory systems, they do not offer scheduling policies to cope

with challenging NUMA architecture. Moreover, Jeannot [19] has proposed a symbolic mapping

with a static data allocation on NUMA machines, specifically for the Cholesky factorization.

The main idea is to group threads by NUMA nodes to exploit the memory hierarchy. This static

methodology precludes work stealing and may further impede performance for load imbalanced

applications.

Recently, LAWS [12] proposes a runtime library for Divide and Conquer applications in

NUMA systems. It features a work stealing algorithm designed for NUMA systems, very focused

in reducing remote memory accesses and last-level cache pollution. However, it does not take

into account that distances between nodes might differ across the whole system; the applications

targeted are recursive, unlike Cholesky; their tasks use the same amount of data, which allows

the auto tuning of the cut-off threshold.

Drebes [14] presents a scheduling and allocation algorithm for the OpenStream language.

While similar to this paper in topic and features (detection of the node with the most data for

a given task, locality aware stealing that takes into account distances between NUMA nodes),

there are considerable differences: a task is assigned to a thread based on its input location

only, experimental results are validated only up to 64 threads, a slab allocator is used that may

give incorrect information about the node where a memory chunk is allocated which in turn,

according to the paper, results in a speedup of 0.99 over their base line (random stealing).

There are also standalone dynamic runtime system libraries for general purpose. HPT [28]

presents an abstraction for task parallelism and data movement. The memory hierarchy is rep-

resented as a tree where workers belong to leaf nodes. In this approach, a task assigned to a

memory place (cache, NUMA node, etc.) will be executed only by workers below its assigned

place. For instance, a task assigned to an L3 cache can run in any core below that cache, but

not in the cores that share a different L3 cache. In the scheduling policy described in this paper,

we further leverage this principle to tackle NUMA node locality. The Wool library [16] presents

an efficient work stealing approach, but it does not take into account data locality. Wool re-

quires the programmer to modify the source code, whereas we use OmpSs to annotate the source

code, with very few modifications. Furthermore, Wool tasks must be independent and therefore,

the scope of applications susceptible to adhere to this restriction is rather narrowed. Recently,

Muddukrishna [25] proposes some ideas to preserve locality in an OpenMP runtime/compiler in-

frastructure, but the evaluation was performed in a 48-core machine, and using benchmarks

(such as the matrix multiplication) that do not have dependencies between tasks as complex as

the dense matrix operations experimented in this paper. Last but not least, providing locality

hints has been proposed and studied in Broquedis et al. [8], where scheduling hints are used

to choose the best thread and data distribution. Their approach was evaluated using a 16-core
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machine, while our experimental platforms are additionally composed by a 8-node, 48-core and a

128-node, 1024-cores NUMA systems. Similarly, ForestGOMP runtime maps nested thread teams

to the underlying hardware resources.

2. The OmpSs Framework

OmpSs is a high-level, task-based, parallel programming model supporting SMPs, heteroge-

neous systems (like GPGPU systems) and clusters. OmpSs consists of a language specification,

a source-to-source compiler for C, C++ and Fortran; and a runtime. The OmpSs programming

model is powered by the Nanos++ runtime, which provides services to support task parallelism

using synchronizations based on data-dependencies. Data parallelism is also supported by means

of services mapped on top of its task support.

2.1. The Nanos++ Dynamic Runtime System

Figure 1 depicts the infrastructure of the Nanos++ dynamic runtime system. Nanos++

interfaces the application with the underlying hardware architecture. A core component of the

runtime is in charge of handling data movement and ensuring coherency, so that the program-

mer does not need to deal with memory allocation and movements. Another core component

is the module of scheduling policies, which will ultimately integrate the distance-aware work

stealing policy introduced in this paper. OmpSs also supports heterogeneous programming and

that is reflected in the modular support for different architectures in Nanos++ (SMP, CUDA,

OpenCL, simulators such as tasksim, etc.). Nanos++ provides also instrumentation tools to help

identifying performance issues.

Figure 1. The Nanos++ infrastructure

2.2. Task-Based Programming Model in OmpSs

In OmpSs, data dependencies are contained in a directed acyclic graph (DAG). Tasks are

blocked until all their dependencies are satisfied. Once a task is released, the scheduler is then in

charge of taking the proper runtime decisions. Each scheduling policy defines a certain behavior.

For instance, a simple policy might implement a global first-in, first-out (FIFO) queue, where
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tasks are executed in the order of dependency release; or we could define a policy that holds

one queue per worker thread, where tasks are sorted based on a priority value selected by the

programmer. The thread management consists in a pool of worker threads that start to execute

work once it becomes available. When a worker thread is aware of new available work, it will

query the scheduling policy, which will provide a new task to the worker if it so decides. For

instance, in a NUMA aware scheduling policy that ensures locality on top of every other aspect,

if a worker thread is requesting new work and the scheduling policy only has work for threads

of other NUMA nodes, it will not give a new task to the demanding worker thread, for the

sake of enforcing locality. Regarding data dependencies, Nanos++ delegates that component

to plugins, in a similar way to scheduling policies. As this runtime is designed to work with a

wide range of applications, some may be simple (when it comes to specify dependencies) and do

not need the added complexity inherent to the handling of more complex dependencies (such as

non-contiguous memory regions) that other applications rely on.

2.3. OmpSs Tools for Performance Analysis

Nanos++ has an instrumentation plugin system used to obtain traces of the executions. In

this paper, we have chosen the plugin that works with Extrae, the core instrumentation package

developed by the Performance Tools group at Barcelona Supercomputing Center, and Paraver,

a very flexible data browser developed by the same group. Together, they enable programmers

to analyze the behavior of the applications, identify potential problems and understand how

they can be solved. Extrae uses different interposition mechanisms to inject probes into tar-

get applications so as to gather information regarding the application performance. Nanos++

features an instrumentation module with support for Extrae, thus, obtaining traces for OmpSs

applications is just a matter of running them with the instrumentation plugin enabled. As for

Paraver, Nanos++ comes with a vast set of Paraver configuration files that convert tracing

events to human-readable information that can be displayed as timelines (such as user functions

duration), histograms (e.g., thread state to know how much the application was running, idling

and the overhead introduced by the runtime) and three-dimensional histograms.

3. The Cholesky Factorization and the Symmetric Matrix

Inversion Algorithm

This Section briefly recalls the standard block and the new tile variants of the Cholesky

factorization and the symmetric matrix inversion. Further algorithmic details can be found

in [3, 10, 11].

3.1. Block Algorithm Variant

Computing the Cholesky factorization is the first step toward solving dense systems of

linear equations for symmetric positive-definite matrices, which arise in many scientific applica-

tions [17]. Based on the Cholesky factorization, the symmetric matrix inversion is also important

for the computation of the variance-covariance matrix in statistics [18]. The state-of-the-art dense

linear algebra library LAPACK [5] uses block algorithms. The computation is basically split into

successive sequences composed by two phases: (1) the panel computation phase, mainly based

on level 2 BLAS, in which the transformations are accumulated within a panel of the matrix
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and (2) the update of the trailing submatrix, in which the transformations from the panel phase

are applied at once to the trailing submatrix in terms of level 3 BLAS operations. One of the

bottlenecks with such approach is the creation of unnecessary synchronization points between

the phases. Moreover, LAPACK extracts its performance for the most part from the parallel mul-

tithreaded BLAS. The parallel paradigm behind it is very similar to the OpenMP fork-join model,

which further exacerbates the issue related to artifactual synchronization points. The design

of the block algorithms for calculating the Cholesky factorization and the symmetric matrix

inversion also fall into this category. The original matrix is reduced using the Cholesky factor-

ization A = LLT (using the DPOTRF routine), where L is a lower triangular square matrix

with positive diagonal elements. Following the factorization, there are two additional dense op-

erations for the symmetric matrix inversion: (1) triangular matrix inversion A = L−1 (using

the DTRTRI routine) and (2) triangular matrix product A = L−TL−1 (using the DLAUUM

routine). The block variant of the Cholesky factorization and the symmetric matrix inversion

are therefore very limited in terms of parallelism and cannot fully benefit from now commonly

available highly-parallel processing units.

#pragma omp task inout([NB][NB]A) priority(HIGHEST)

void DPOTRF(double *A);

#pragma omp task inout([NB][NB]A)

void DTRTRI(double *A);

#pragma omp task inout([NB][NB]A)

void DLAUUM(double *A);

#pragma omp task input([NB][NB]A) inout([NB][NB]C) priority( NT - k )

void DSYRK(double *A, double *C);

#pragma omp task input([NB][NB]A) inout([NB][NB]C) priority( NT - k )

void DTRSM(double *A, double *C);

#pragma omp task input([NB][NB]A) inout([NB][NB]C) priority( NT - k )

void DTRMM(double *A, double *C);

#pragma omp task input([NB][NB]A, [NB][NB]B) inout([NB][NB]C)

void DGEMM(double *A, double *B, double *C);

for k = 0 to NT−1 do

// Stage 1: Cholesky factorization A = LLT

DPOTRF(Ak,k);

for m = k+1 to NT−1 do

DTRSM(Ak,k, A
T
m,k);

end for

for m = k+1 to NT−1 do

DSYRK(Am,k, Ak,k);

for n = k+1 to m−1 do

DGEMM(Am,k, A
T
n,k, Am,n);

end for

end for

// Stage 2: Calculate A = L−1

for m = k+1 to NT−1 do

DTRSM(Ak,k, Am,k);

for n = 0 to k−1 do
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DGEMM(Am,k, Ak,n, Am,n);

end for

end for

for m = k+1 to k−1 do

DTRSM(Ak,k, Ak,m);

end for

DTRTRI(Ak,k);

//Stage 3: Compute A−1 = L−T × L−1

for n = 0 to k−1 do

DSYRK(AT
k,n, An,n);

for m = n+1 to k−1 do

DGEMM(Ak,m, AT
k,n, Am,n);

end for

end for

for n = 0 to k−1 do

DTRMM(AT
k,k, Ak,n);

end for

DLAUUM(Ak,k);

end for

Algorithm 1: Tile OmpSs-enabled distance-aware Cholesky factorization and symmetric ma-

trix inversion algorithms.

3.2. Tile Algorithm Variant

The idea behind tile algorithms is to transform the original matrix data with column-major

data layout into tile data layout. The parallelism becomes then exposed to the user, thanks

to the task fine granularity. Indeed, the matrix tiles can be seen as the fundamental unit of

computations of the numerical algorithms. The rigid panel-update sequence, previously described

in Section 3.1, is now replaced by an out-of-order task execution flow, where computational tasks

operating on tiles from different loop iterations can concurrently run. The algorithmic complexity

of the block variant of both dense matrix computation algorithms does not change with the tile

variant and is equal to 1/3n3 and n3 for the Cholesky factorization and the symmetric matrix

inversion algorithm, respectively.

The sequential program can now be represented as a DAG, where nodes stand for tasks and

edges correspond to data dependencies. The strong and artifactual synchronization points, seen

in block algorithm variant, are considerably alleviated using tile algorithms. For instance, the

next panel factorization can proceed while the updates of the previous panel have not finished yet,

as long as data dependencies on the corresponding tiles are satisfied. Now, it is up to a runtime

system to schedule all generated tasks and to enforce their inter-task data dependencies. In

particular, the OmpSs programming model has the advantage of being non-intrusive and relies on

simple pragmas, similar to OpenMP programming model syntax. In fact, OpenMP 3.0 onwards,

the tasking concept has been integrated to further help supporting mainstream applications.

Algorithm 1 shows the parallel OmpSs-enabled version of the tile sequential Cholesky factorization

(stage 1 only) and the symmetric matrix inversion (all stages) for an NT ×NT tile symmetric

positive-definite matrix A with a tile size NB. It is still the user’s duty to describe the data
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directions (input, output and inout) for each computational task, through compiler directives

(i.e., pragmas).

4. Distance-Aware Work Stealing Scheduling Policy

This section provides implementation details of the new distance-aware work stealing

scheduling policy and its incorporation into Nanos++ runtime.

4.1. Task queues

In order to maintain data locality, we have a task queue per NUMA node. This queue is a

linked list sorted by task priority: the programmer is able to specify the priority of each task as

a way to outline the critical path. Sorting is performed on insertion, thus the queue is sorted at

any given time (ensuring the execution of tasks based on priorities as much as possible).

Priority-sorted linked lists are not a burden, given the granularity of the tasks of the ex-

periments we carried. To prove that point, we developed a synthetic benchmark creating 10000

tasks lasting one microsecond each. There was no statistically measurable difference between a

vector-based queue and a linked list based queue in total execution time or in runtime overhead

when analyzing execution traces.

Threads belonging to a NUMA node are only able to retrieve tasks from their node’s queue.

This is accomplished by obtaining the number of NUMA nodes and the node corresponding to

each worker thread from the Portable Hardware Locality (hwloc) library [9], and assigning each

thread the number of the queue it should query.

4.2. Data distribution and locality detection

The runtime is able to track the location of the data and schedule tasks in the node with

the highest number of bytes. To track the locality, it assumes a first touch policy and looks for

initialization tasks. The criteria to detect such tasks is plain and simple: tasks with an output

dependency (at least one) where it is the first time that data will be written. In our Cholesky

implementation those tasks are the ones that initialize a block of the matrix.

Initialization tasks are scheduled in round robin across the available NUMA nodes, enabling

us to use a similar data distribution. When a task of that type is executed, the data it initializes

will be marked as located in the NUMA node of the running thread.

Otherwise, when a non initialization task is submitted, the number of bytes accessed by each

node will be computed, based on the dependency information provided by the programmer, and

the task will be scheduled in the node with the largest amount of data.

Note that once work stealing is introduced, the locality information becomes a hint that the

runtime will always follow unless there is starvation in the local node.

Kurzak [23] described an implementation of the Cholesky factorization using static schedul-

ing where threads work only on a one-dimensional cyclic distribution in order to keep locality.

4.3. Distance-aware work stealing

We choose to steal from neighbor nodes following a round-robin approach, with each node

having an independent node index for stealing: steal from nodes in a cyclic way. In a NUMA

architecture where some nodes are further than others, the distance-aware work stealing schedul-
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ing policy ensures a thread will only steal tasks that are as close as possible. Thankfully, this

information is provided by the Linux kernel. The distance between nodes provided by the op-

erating system is not an accurate measure of the practical latency. The OS first tries to get

this information by reading the System Locality Information (SLIT) table in the BIOS and if

it fails, it may generate its own table, even if the vendor has explicitly provided a SLIT table.

For instance, assume a system with 8 nodes, with the distance between node 1 and node 3 is

21 and between node 1 and node 4 is 42. In fact, these distances are default values from the

BIOS SLIT table and they do not necessarily mean that the latency of accessing memory of

node 3 from node 1 is half of accessing node 4. We can only be sure that node 4 is further

from 1 than 3, and this is the reason why we only consider valid steal targets adjacent nodes.

If in the previous example there was a node 5 with distance 22, it could still have a latency

higher enough than node 3 that would hamper performance and eliminate any benefit of work

stealing. We observed when comparing executions with and without work stealing, where the

execution time of the tasks was noticeably worse with work stealing. In the execution without

work stealing we discovered small gaps between a finalized task and the next one that were not

present in the work stealing trace. The reason for such gaps is that the coming tasks are not yet

available in the corresponding ready queue. As worker threads are constantly looking for work,

with work stealing is enabled we observed that delaying for a small number of iterations (of the

OmpSs runtime loop that looks for work for a given thread before giving up) would prevent those

situations, thus increasing locality at the cost of a lower balance factor. This is controlled via a

user defined variable, which can be set to zero to disable waiting. Please note that if that value

is set to a large number it could effectively disable work stealing: worker threads will have to

wait so long that they might find work available in their local queues before allowed to steal. To

sum up, stealing does not come for free: while it reduces load imbalance, it obviously reduces

data locality for stolen tasks. In other words, some tasks will take longer to complete and that

is the reason why work stealing cannot be allowed to be performed indiscriminately.

These mechanisms we have described are able to improve load balance, while minimizing

an increase in task execution time, as highlighted in the next Section.

5. Experimental Results

This Section highlights the impact of the distance-aware with work stealing scheduling policy

in terms of performance (Gflop/s) and compares the new OmpSs-enabled Cholesky factorization

and symmetric matrix inversion against existing commercial and open-source high performance

dense linear algebra libraries.

5.1. Environment Description

Experiments were performed on three NUMA systems. System (A) is a quad processor AMD

Magny-Cours 6172 with four sockets, twelve cores each, running at 2.1GHz with two NUMA

nodes per socket (there are two dies in each physical package), with four HyperTransport links

by socket resulting in a maximum distance between NUMA nodes of two hops. System (B) is an

AMD Istanbul 8439 SE Processor with eight sockets, six cores each, running at 2.8GHz with one

NUMA node and three HyperTransport links per socket. Both systems have 128GB of memory.

It is noteworthy to mention that the NUMA nodes of system (B) are unequally distant and

further away from each other compared to the NUMA nodes of system (A), as this system (B)
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is composed of two 4P boards connected via two HyperTransport connectors, for a maximum

distance of three hops between nodes. The third system (C) is an SGI Altix 1000 UltraViolet

shared-memory machine based on Intel Nehalem EX processors featuring 128 sockets, eight cores

each, running at 2.0GHz with one NUMA node per socket. This system has 4 TB of global shared

memory in a single system image. We compared the Cholesky factorization and the symmetric

matrix inversion using OmpSs against PLASMA v2.4.5, Libflame v5.0, LAPACK v3.4.2, and Intel

compiler/MKL v10.1.015 on systems (A) and (B) and v11.1.038 on system (C). The PLASMA

(providing QUARK as well as a static runtime system) and Libflame (using SuperMatrix) libraries

are compiled with the sequential MKL BLAS, while LAPACK uses the multithreaded MKL BLAS.

PLASMA and Libflame have been tuned for the underlying hardware by selecting an optimal block

size. The command numactl --interleave=all has been executed to ensure a fair comparison

against LAPACK and MKL implementations, which uses static data distribution. Moreover, in order

to prevent false sharing, memory is aligned to the page size using posix memalign. Otherwise,

the distance-aware scheduling policy would be working with invalid locality information. Last

but not least, all performance graphs in Gflop/s report the theoretical peak performance of the

different system. The idea is to provide a good (but not realistic) upper-bound on all performance

curves.

5.2. Distance-Aware Scheduling Policy Optimization Analysis

One of the main critical tasks of the Cholesky factorization and the symmetric matrix

inversion is the matrix multiplication kernel DGEMM. Based on its number of tasks (called in

the inner loop of Algorithm 1) and its execution time, we observed that it was the utmost task

to focus on, when it comes to increasing the overall performance.

Figure 2. Task execution time histogram of DGEMM ’s tasks on System (A)

with the distance-aware scheduling policy
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Figure 2 shows the task execution time histogram (horizontal axis) for DGEMM ’s tasks,

when distance-aware scheduling policy is turned on (work stealing mode) or not (no work stealing

mode). A high value in the vertical axis represents a high concentration of DGEMM ’s tasks for

that particular time interval, and a low one means a small concentration. The other kernels

involved in the dense matrix computation algorithms have been removed from the timing trace

diagram for simplicity of presentation. Ideally, we should have an almost vertical line. This

directly translates to very little variation (no scattered points across the horizontal and therefore,

high concentration of tasks). In the case with no work stealing we have a situation very similar

to the ideal one, where a very high data locality results in the system taking more or less the

same time to execute tasks.

On the contrary, when work stealing takes effect, Figure 2 shows that most of DGEMM ’s

tasks have slightly shifted to the right of the histogram, because they take longer to terminate.

There is also higher variability compared to the distance-aware without stealing policy. This

indicates that threads have accessed data from remote NUMA nodes. Indeed, transferring data

between farther NUMA nodes through the various hops creates a huge performance penalty

because of the higher memory latency required when accessing distant nodes compared to local

memory or adjacent NUMA nodes. Note that a perfect data distribution on large NUMA system

is challenging due to the nature of the dense matrix computation algorithms and the complexity

of the system studied here. Numerical algorithms using hierarchical data representation (e.g.,

fast multipole method [27]) or divide-and-conquer mechanism can better leverage such hardware

architecture, hence the challenge.

These observations validate our initial concern that work stealing introduces a performance

penalty and that we should only steal from adjacent nodes to mitigate its negative impact.

The next Section demonstrates whether the OmpSs framework is still able to compensate the

work stealing overhead by diminishing load imbalance and ultimately increasing the overall

performance (Gflop/s).

5.3. Performance Impact of Various Scheduling Policies

Figure 3 and 4 show the performance impact of various scheduling policies on the Cholesky

factorization and the symmetric matrix inversion using systems (A) and (B), respectively, where

the matrix size is increased in 4K increments along the horizontal axis until an asymptotic

performance is reached. Due to the proximities of the NUMA nodes on system (A), Figure 3a

does not show any difference whether we are running with or without the distance-aware policy.

There is still a slight performance improvement, when work stealing is turned on (320 Gflop/s

i.e., 80% of peak), thanks to a better data locality management. However, when NUMA nodes

are farther, as in system (B), we can clearly distinguish the performance impact of scheduling

policies. Figure 3b captures this discrepancy. The distance-aware with work stealing scheduling

policy scores a 30% and 15% improvement in Gflop/s compared to the distance-aware without

stealing and the distance-oblivious scheduling policies, respectively and reaches 390 Gflop/s i.e.,

72% of peak. Although the symmetric matrix inversion presents more complex memory accesses

due to two additional computational stages besides the Cholesky factorization, the distance-

aware with work stealing scheduling policy is able to maintain as similar performance impact as

the Cholesky factorization, on system (A) (Figure 4a) and system (B) (Figure 4b).

The performance impact is even further amplified with large number of NUMA nodes from

system (C), as shown in Figures 5 and 6 for the Cholesky factorization and the symmetric matrix
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Figure 3. Performance impact of various scheduling policies on the Cholesky factorization

inversion, respectively. The distance-aware with work stealing scheduling policy become critical

to sustain performance, as the number of NUMA nodes increases. On 32 sockets (256 threads),

the distance-aware with work stealing scheduling policy achieves roughly fourfold and twofold

performance improvement against the distance-aware without stealing and the distance-oblivious

scheduling policies, respectively.

5.4. Performance Comparisons Against State-of-the-Art High Performance

Dense Linear Algebra Libraries

Figures 7 and 8 show performance comparisons of the OmpSs-enabled Cholesky factorization

and symmetric matrix inversion, respectively, with distance-aware with work stealing scheduling

policy against existing high performance dense linear algebra implementations: PLASMA (provid-

ing two scheduler types: static and QUARK), Libflame (SuperMatrix), the commercial Intel MKL

and the open-source LAPACK library. For the PLASMA library, only the scheduler type achieving

the best performance is reported.

On system (A) (Figure 7a), the LAPACK implementation of the Cholesky factorization per-

forms the worst due to the inefficient panel-update sequences, which generated lots of syn-

chronizations, as previously mentioned in Section 3.1. The performance of the Intel MKL variant
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Figure 4. Performance impact of various scheduling policies on the symmetric matrix

inversion algorithm

increases substantially but still seems to suffer from memory accesses, as indicated by the curve’s

dips. The Cholesky implementations of OmpSs, PLASMA and Libflame have similar performance

behavior on this system (A) with clustered NUMA nodes. On system (B) (Figure 7b), the

OmpSs implementation scores up to 30% improvement against PLASMA with the dynamic sched-

uler QUARK (open-source package) for asymptotic sizes and more than twofold speedup against

Intel MKL (commercial package).

Figures 8a and 8b show the performance of the symmetric matrix inversion on systems (A)

and (B), respectively. The performance of the LAPACK symmetric matrix inversion is extremely

low on both systems, again due to the lack of parallelism and data locality as well as artifactual

barriers. The Cholesky factorization using the distance-aware with work stealing scheduling

policy from OmpSs outperforms Libflame up to 50% across all matrix sizes and PLASMA by up

to 50% and 25% for small and large matrix sizes, respectively.

The Cholesky factorization using static scheduler from PLASMA gives lower performance than

QUARK and is not reported in Figures 7 and 8. The dynamic scheduler QUARK has thread binding,

affinity mechanisms and is able to deal with load imbalance coming from thread starvation

on these systems with rather small number of NUMA nodes. However, the overhead of the

work stealing strategy as implemented in QUARK becomes significant in presence of large number
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Figure 5. Performance impact of various scheduling policies on the Cholesky factorization on

system (C)

of distant NUMA nodes and exceeds the overhead of load imbalance generated by the static

scheduler due to idling of many worker threads. For the following subsequent graphs, we will

therefore only refer to PLASMA static scheduler.

Figures 9 and 10 highlight the performance comparisons against existing Cholesky factor-

ization and symmetric matrix inversion implementations on system (C). The OmpSs-enabled

Cholesky factorization using the distance-aware with work stealing scheduling policy outper-

forms PLASMA (static scheduler) and Libflame implementations up to 65% on eight NUMA

nodes and up to 200% on 32 NUMA nodes. MKL and LAPACK Cholesky (similarly for the sym-

metric matrix inversion) have not been run beyond eight sockets because performance would

have been extremely low anyway. By the same token, the OmpSs-enabled symmetric matrix in-

version using the distance-aware with work stealing scheduling policy is capable of sustaining

the Cholesky factorization performance against the same other implementations i.e., twofold

Dense Matrix Computations on NUMA Architectures with Distance-Aware Work Stealing

62 Supercomputing Frontiers and Innovations



 20

 40

 60

 80

 100

 120

 140

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
Distance-aware (Steal)

Distance-aware (No-Steal)
Distance-oblivious

a) 2 sockets (16 threads)

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
Distance-aware (Steal)

Distance-aware (No-Steal)
Distance-oblivious

b) 4 sockets (32 threads)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
Distance-aware (Steal)

Distance-aware (No-Steal)
Distance-oblivious

c) 8 sockets (64 threads)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
Distance-aware (Steal)

Distance-aware (No-Steal)
Distance-oblivious

d) 16 sockets (128 threads)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
Distance-aware (Steal)

Distance-aware (No-Steal)
Distance-oblivious

e) 32 sockets (256 threads)

Figure 6. Performance impact of various scheduling policies on symmetric matrix inversion

using system (C)

performance improvement. Although the OmpSs dynamic runtime system associated with the

new scheduling policy seems to decently exploit the underlying NUMA architecture, it is note-

worthy to mention that the best performance achieved by the distance-aware with work stealing

scheduling policy represents only 40% of the theoretical peak of system (C) on 32 sockets. It is

well-known that a system’s theoretical peak performance is a loose upper bound. We can still

identify possible reasons for this low sustained peak performance. The shared-memory system is

a shared resource and other users’ applications running at the same time may engender memory

bandwidth saturation causing further overheads. The overhead of the OS for ensuring cache

coherency may also explain it, which is typical for such a the large memory system. There is

also, of course, room for improvement at the runtime level and also further tuning of the tile

size for large matrix sizes may further pay off.
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Figure 7. Performance comparisons against existing Cholesky factorization implementations

6. Performance Traces

To further analyze the performance results shown in Section 5, the OmpSs-enabled Cholesky

factorization and symmetric matrix inversion have been instrumented in order to generate traces

using the Extrae tracing and the Paraver libraries.

Figures 11 and 12 show the execution traces of distance-oblivious and distance-aware (with

and without work stealing) scheduling policies of the Cholesky factorization and the symmet-

ric matrix inversion algorithm on system (B) using 48 cores, respectively, with a matrix size

30720× 30720. The horizontal axis represents the timeline, the vertical axis the threads and the

colors refer to different tasks. Figures 11a and 12a, representing traces for both dense matrix

computation algorithms based on the distance-oblivious scheduling policy, show rather long but

compact timelines.

Figures 11b and 12b represent traces for both dense matrix computation algorithms based

on the distance-aware without stealing scheduling policy. These figures show shorter timelines

but reveal severe idle time. This is mainly due to thread starvation, which engenders significant

load imbalance between NUMA nodes. Targeting only data locality should not exclusively be

the main concern for high performance applications. In fact, performance can be hindered by

excessively hinting for data locality.
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Figure 8. Performance comparisons against existing symmetric matrix inversion

implementations

Figures 11c and 12c highlight traces for both dense matrix computation algorithms based

on the distance-aware with stealing scheduling policy. The timelines are now even shorter than

distance-aware without stealing scheduling policy, despite a slightly longer elapsed time for

DGEMM kernel, as detailed previously in Figure 2. The distance-aware with stealing scheduling

policy is able to compensate the overhead of increased DGEMM ’s elapsed time by removing

most of stalls in the execution trace. One can now visualize the benefit of stealing from adjacent

nodes, where tasks are continuously scheduled without gaps until the end of execution.

Conclusions and Future Work

We have demonstrated the role for the distance-aware scheduling policy, which increases

data locality, to significantly improve the performance of two important dense linear algebra

algorithms with time-varying work per unit memory at relatively high programmer productiv-

ity. We have also highlighted that work stealing in addition to distance-aware scheduling policy

is paramount to attenuate load imbalance and to be ultimately effective on NUMA systems.

Performance results on a large NUMA system outperform the best state-of-the-art existing im-

plementations up to a twofold speedup for the Cholesky factorization as well as the symmetric
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Figure 9. Performance comparisons against existing Cholesky factorization implementations

on system (C)

matrix inversion algorithm. Developed in the context of the OmpSs framework, this new system-

atic scheduling policy approach allows the OmpSs-enabled code to maintain strong similarity to

its original sequential version.

One of the challenges we faced is that the distance between NUMA nodes provided by the

operating system does not proportionally translate into access times. A future refinement would

be to compute an accurate distance matrix offline and provide that information to the runtime.

The Portable Hardware Locality library has facilities to export the system topology information

in an XML file, modify the topology information (in our case, the node distance), and use the

modified XML file as the topology information. With this, we could relax the conditions for

work stealing and allow stealing from non-adjacent nodes if the access time is feasible. Another

way would be to modify the System Locality Information Table in the BIOS, but this is usually

difficult in production supercomputers.

Dense Matrix Computations on NUMA Architectures with Distance-Aware Work Stealing

66 Supercomputing Frontiers and Innovations



 20

 40

 60

 80

 100

 120

 140

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
OmpSs Distance-aware (Steal)

PLASMA Static
LibFlame
LAPACK

a) 2 sockets (16 threads)

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
OmpSs Distance-aware (Steal)

PLASMA Static
LibFlame
LAPACK

b) 4 sockets (32 threads)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
OmpSs Distance-aware (Steal)

PLASMA Static
LibFlame
LAPACK

c) 8 sockets (64 threads)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
OmpSs Distance-aware (Steal)

PLASMA Static
LibFlame

d) 16 sockets (128 threads)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1024  5120  9216  13312
 17408

 21504
 25600

 29696
 33792

 37888
 41984

 46080

G
flo

p/
s

Matrix Size

Theoretical Peak Performance
OmpSs Distance-aware (Steal)

PLASMA Static
LibFlame

e) 32 sockets (256 threads)

Figure 10. Performance comparisons against existing symmetric matrix inversion

implementations on system (C)

Other tasks in dense linear algebra are generally combinations of routines of similar time-

varying load character and easier-to-handle regular workloads. The policy demonstrated herein

should be applicable to such general tasks on multicore NUMA architectures, with benefits

proportional to the fraction of dynamically varying workload. Many high profile computational

tasks beyond dense linear algebra, such as sparse linear algebra, adaptive algorithms for partial

differential equations, and complex physics/multiphysics simulations should also be amenable

to performance improvements through the same philosophy, if not identical heuristics. Beyond

multicore NUMA, multi-GPU systems and hybrid architectures introduce trade-offs between

load balance and data locality that will require locality-aware work stealing. We believe that

the mechanisms of OmpSs and similar programming models possess great potential in practically

extending the performance portability of scientific simulation.
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a) Distance-oblivious

b) Distance-aware without work stealing

c) Distance-aware with work stealing

Figure 11. Traces of the Cholesky factorization using various scheduling policies on

system (B)
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a) Distance-oblivious
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Figure 12. Traces of the symmetric matrix inversion algorithm using various scheduling

policies on system (B)
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The growing velocity of biological big data is the way beyond Moore’s Law of compute power

growth. The amount of genomic data has been explosively accumulating, which calls for an enor-

mous amount of computing power, while current computation methods cannot scale out with

the data explosion. In this paper, we try to utilize huge computing resources to solve the big

dataproblems of genome processing on TH-2 supercomputer. TH-2 supercomputer adopts neo-

heterogeneous architecture and owns 16,000 compute nodes: 32000 Intel Xeon CPUs + 48000

Xeon Phi MICs. The heterogeneity, scalability, and parallel efficiency pose great challenges for

the deployment of the genome analysis software pipeline on TH-2. Runtime profiling shows that

SOAP3-dp and SOAPsnp are the most time-consuming parts (up to 70% of total runtime) in the

whole pipeline, which need parallelized optimization deeply and large-scale deployment. To address

this issue, we first design a series of new parallel algorithms for SOAP3-dp and SOAPsnp, respec-

tively, to eliminatethe spatial-temporal redundancy. Then we propose a CPU/MIC collaborated

parallel computing method in one node to fully fill the CPU/MIC time slots. We also propose a

series of scalable parallel algorithms and large scale programming methods to reduce the amount

of communications between different nodes. Moreover, we deploy and evaluate our works on the

TH-2 supercomputer in different scales. At the most large scale, the whole process takes 8.37 hours

using 8192 nodes to finish the analysis of a 300TB dataset of whole genome sequences from 2,000

human beings, which can take as long as 8 months on a commodity server. The speedup is about

700x.

Keywords: biological big data; parallelized optimization; TH-2; sequence alignment; SNP de-

tection; whole genome re-sequencing.

Introduction

Whole genome re-sequencing refers to the procedure of genome sequencing of different indi-

viduals of species with a reference genome and the execution of divergence analysis on individ-

ual or colony. Using whole genome re-sequencing, researchers can obtain plentiful information

of variations like single nucleotide polymorphisms (SNP), copy number variation (CNV), in-

sertion/deletion (INDEL) and structure variation (SV). Its application areas include clinical

pharmaceuticals (cancer, Ebola, AIDS, leukemia etc.), population genetics, correlation analysis,

evolution analysis and so on. With the development of personalized medicine and sequencing

technologies, the cost of sequencing has been decreasing (currently the sequencing of one human

genome costs less than 1000$). Consequently, the scale of sequences is growing rapidly. However,

if the accumulated data could not be analyzed efficiently, a large amount of useful information

would be left unused or discarded.

BGI, one of the top three gene sequencing institutions in the world, produces 6TBs sequences

every day. Their current analysis pipeline and solutions need two months to accomplish the

comparison and mutation detection of those data with one single server. The DNA sequences of

2000 people constitute a dataset as large as 300TB. The ongoing million people genome project
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needs to analyze 500PB of DNA sequences. Given the current analyzing efficiency, it would be

a mission impossible.

Our analysis shows that sequencing alignment and mutation detection tools occupy 70% of

total time. These two applications and the output data are essential to the whole pipeline; there-

fore, it would be beneficial for the whole pipeline if we can explore the parallelism and improve

the computing scale and parallel efficiency of those two components using supercomputer.

The TH-2 supercomputer, developed by the National University of Defense Technol-

ogy(NUDT), is the outstanding achievement of the National 863 Program. Now the TH-2 is

installed in the Guangzhou Supercomputing Center. TH-2 is co-designed with international col-

laboration and adopts a new neo-heterogeneous architecture. The compute array has 16,000

compute nodes. Each node contains and 2 multi-core Xeon CPUs and 3 many-core Xeon Phi

MICs.It is an innovative architecture which significantly expands the application domains of

the TH-2. It is a big challenge to solve the problems of genome big data processing and high

throughput biological applications on TH-2.

In this paper, we try to utilize huge computing resources to solve the big dataproblems of

genome processing on TH-2 supercomputer. We aim to address the above biological big data

problem by carrying out parallelization and scalability on the aforementioned key components

and implementing the optimized pipeline on the TH-2. To address these issues of genome big

data alignment and SNP detection, we propose a set of algorithms and parallel strategies of

intra-node and inter-node.

Intra-node: We partition genome analysis tasks and data into each node of TH-2 evenly

and fully. A series of methods are proposed in order to fully use 3 MICs and 2 CPUs on one

node, such as three-channel IO latency hiding, elimination of computation redundancy, spatial-

temporal compression, vectorization of 512 Bit wide SIMD command, CPU/MIC collaborated

parallel computing method, and so on. Our programming and parallelized optimization also aim

at one computation node on TH-2 in order to make our algorithms scalable and extendible when

the data scale up.

Inter-node: A series ofscalable parallel algorithms and large scale programming methods

are also proposed to reduce the amount of communications between different nodes according to

the genome sequence data suffix and characteristics, such as fast windows Iteration and scalable

multilevel parallelism. Moreover, experiments and evaluations in different scale from 512 to 8192

nodes are analyzed and shown on TH-2. And some inspiring results are generated: we can use

8192 nodes to finish the analysis a 300TB dataset of whole genome sequences from 2,000 human

beings within 8.37 hours, which can take as long as 8 months on a commodity server.

1. Background

1.1. Pipeline of Human Genome Re-sequencing Analysis

The pipeline of human genome re-sequencing is composed of several components. The first

step is to perform quality control of original reads in order to reduce noise. Sequence align-

ment and single nucleotide polymorphisms (SNP) detection are then conducted consecutively.

Sequence alignment is the procedure of comparing screened sequences to the reference genome,

confirming its occurring frequency and appearing location in the reference genome. The output

will be stored in either SAM or BAM format. SNP calling is the procedure of detecting bases

deletion, insertion, transition and perversion in DNA sequences. It takes alignment results, the
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reference sequence, and curated SNP databases as input and detects SNPs. These two steps

are essential for consequent analysis including correlation analysis, functional annotation, and

population genomics analysis [6]. We performed runtime profiling and found that short-read

alignment and variation detection are the most time-consuming parts (up to 70% of total run-

time) in the whole pipeline. So we are devoted to accelerating the most worldwide used software

for each part, namely SOAP3-dp and SOAPsnp correspondingly. We also ported other parts

of the whole pipeline to TH-2 in order to fully utilize the computational resources of different

nodes on TH-2.

1.2. Neo-heterogeneous Architecture of TH-2 supercomputer

Capable of a peak performance of 54.9PFlops, the TH-2 achieves a sustained performance

of 33.9PFlops on Linpack with a performance-per-watt of 1.9GFlops/W. The compute array

has 16,000 compute nodes: 32000 Intel Xeon CPUs + 48000 Xeon Phi MICs. Each node con-

tains and two multi-core Xeon CPUs and three many-core Xeon Phi MICs. It is an innovative

architecture, which significantly expands the application domains of the TH-2. We named it:

Neo-Heterogeneous Architecture Compute Array, which significantly improves the compatibility,

the flexibility and the usability of the applications. Here the phrase neo-heterogeneous refers to

the fact that compared with CPU+GPU architecture, CPU+MIC is less heterogeneous as MIC

is x-86 compatible.

Intel Many Integrated Core (MIC) architecture is also known as Intel Xeon Phi coprocessor.

A MIC card is equipped with 50+ cores clocked at 1 GHz and 6 GB or more on-card memory;

each core supports 4 hardware threads and owns a 512-bit wide SIMD vector process unit (VPU).

Each MIC card can achieve a double precision arithmetic performance of 1TFlops per second,

which makes it a competitive type of accelerator. MIC architecture is x86-compatible, which

alleviates the efforts required to port applications to Xeon Phi compared to its counterpart

GPUs. Some simple applications can even run directly on Xeon Phi simply after re-compilation.

There are two major modes to employ Xeon Phi in an application:

1) native mode, where Xeon Phi has a whole copy of the application and runs the applica-

tions, just like a normal compute node.

2) offload mode, where the application runs as a master thread on CPU and offloads some

selected part to Xeon Phi, which treats Xeon Phi as a coprocessor.

2. Related Work

Short Oligonucleotide Analysis Package (SOAP [3]) is an integrated software package in-

cludes a lot of software such as SOAPsnp, SOAP3-dp, SOAPfusion and so on. SOAP is dedicated

to next generation sequencing data analysis.

SOAP3-dp is known as a fast, accurate, sensitive short read aligner [2]. It is designed by BGI

and belongs to SOAP (Short Oligonucleotide Analysis Package) series analysis tools. It comes

from SOAP3, a GPU-based software for aligning sort reads to reference sequence[2]. So as to

adapt to the increasing throughput of next-generation sequencing, SOAP3-dp was proposed to

increase the performance of SOAP3 [5] in terms of speed and sensitivity. For instance, it takes

less than 10 seconds for SOAP3-dp to align length-100 single-end reads with the human genome

per million reads, while SOAP3, tens of seconds. The main improvement is that SOAP3-dp

can tackle lots of reads in parallel by means of exploiting compressed indexing and memory-
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optimizing dynamic programming on GPU. As a result, the gapped alignments can be examined

extensively and compared to other tools; SOAP3-dp has the advantages of high speed, accuracy

and sensitivity [3]. To our best of knowledge, there is no MIC version for SOAP3-dp so it cannot

utilize the compute power provided by MIC cards equipped on TH-2.

SOAPsnp is a popular SNP detection tool developed by BGI as a member of its SOAP (Short

Oligonucleotide Analysis Package) series analysis tools. The software adopts the Bayesian model

to call consensus genotype by carefully considering the data quality, alignment and recurring

experimental errors. All these information is integrated into a single quality score for each base

to measure the calling accuracy. SOAPsnp usually costs several days or even more to analyze

a human genome, which accounts for more than 30% time of normal genome analysis pipeline.

The low efficiency calls for a performance boost by advanced computing technologies [6].

3. Programming and Optimization on TH-2 supercomputer

3.1. MICA: A MIC version of SOAP3-dp

To utilize the compute power provided by TH-2, we developed MICA, a tool that can

make full use of both CPU and MIC to execute alignment of short reads from high throughput

sequencing. It took less than 1 hour to complete comparison of 17T short sequence data using

932 compute nodes when MICA was tested on TH-2, which would take about 3 months on

a commodity server. The MICA is designed and developed by National University of Defense

Technology (NUDT) and BGI, and it is open online to all biologists [7].

3.1.1. Three-channel IO Latency Hiding

MICA is optimized for the configuration of both software and hardware on Tian-he2. Con-

sidering that each compute node has three MICs, we allocate three input buffers and three

output buffers to hide the delay produced by data transfer, as depicted in fig. 1.

Figure 1. Three Channel IO Design

3.1.2. Vectorization of 512 Bit Wide SIMD Command

Each MIC core owns one 512-bit wide VPU, so we implement the core functions 512 Bit

Wide SIMD Command to make full use of vector units of MIC. Core code can be seen as

below (fig. 2).
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Figure 2. 512 Bit Wide Vector SIMD Code

3.1.3. Parallelized Construction and Vectorization of Smith-Waterman Dynamic Matrix

DNA sequence imprecise alignment adopts Smith-Waterman Dynamic Programming algo-

rithm. Procedure of filling Smith-Waterman Dynamic Matrix is one of the hotspots of the whole

software. The Smith-Waterman Dynamic Score Matrix is filled as below:

Here we calculate the values in the matrix diagonal wise, and use 512 bit wide vectorization

to rewrite the original function. The new order of our filling matrix algorithm is from left to

right and from top to bottom, and the Smith-Waterman Matrix can be parallelized built along

diagonal, as is shown in fig. 3:

→

Figure 3. Parallel Constructing Smith-Waterman Matrixalong Diagonal

3.1.4. Using Inline Function to Decrease Overhead of Function Call

When it comes to the processing of large sequencing dataset, the overhead of function call

cannot be ignored. For the processing of 17T sequence data, there will be 1.2P times calling of

the function. So we set the core function to be inline function or macro to increase the efficiency

of function execution.
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3.1.5. Perfecting of Index Data

The BWT (BurrowsWheeler Transform) index array is a core data structure in SOAPsnp. It

will be frequently visited by a number of threads. To avoid memory overhead, increase efficiency

of CPU, we prefetching the data for next loop.

3.2. Optimization of SOAPsnp

Hotspots of SOAPsnp are two modules: likelihood and recycle, as shown in the tab. 1.

Table 1. Time breakdown of SOAPsnp

Module likelihood recycle Other modules Total

Time/s 1478.36 752.98 40.59 2552.18

Percentage 57.93% 29.50% 12.57% 1

We analyzed the characteristics of the original implementation of SOAPsnp and developed

high performance version - mSOAPsnp. We devised a number of optimization methods to achieve

an optimized performance assisted by MIC.

3.2.1. Compression of 4-D Sparse Matrix

The main function of the likelihood module is to traverse the base info matrix, which is a 4-D

sparse matrix with 0.08% non-zero elements. The matrix saves the information of short sequence,

and occupies 1MB space. Frequent access to the base info matrix leads to low efficiency due to

unnecessary memory accesses. So we compressed the 4-D sparse matrix, only saving non-zero

elements of the matrix; we also modified the original algorithm from 4 levels of loops to only

one loop, which reduces the memory overhead down to 5%. By this improvement, the program

gets a speedup of 2.3x.

3.2.2. Fast Windows Iteration

The recycle module handles sequences that are located at overlapped area of two windows

in the phase of windows iteration, copying SNP information (100 SNPs) from one window to the

next one. Therefore, the recycle module has a large amount of duplicated variables and memory

copying operations. We found that copying the base info matrix introduces the most overhead.

The size of base info matrix is 1MB, every SNP has one base info matrix, so in each iteration

of shifting the window, we need to copy 100 base info matrixes, which is 100MB in total. The

whole program needs to iterate over 50000 windows, which results in a total amount of 5TBs

memory copying. Such a big overhead is not acceptable for efficient processing.

With sparse matrix compression, we decrease the memory usage down to 800B, every win-

dows changing-over just needs 80KB, it is 875.6x faster than the original way.

3.2.3. Elimination of Redundancy via Building a Fast Table

When calculating the SNP probability, the likelihood module reads revising probability from

p matrix and stores the results to type likely after calculation. The results has 262144 probable

values, while there are 500 trillion calculation in one pass execution of the program. So that
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most of the calculations are duplicated and can be avoided. We built a fast access table for

computed values to eliminate redundant computation. We pre-calculate all probable results and

save them into the table. Although it introduces additional 64MBs memory overhead, repeated

calculation is prevented. For results storing, we save the data based on spatial locality of SNP

probability calculation, so that we can increase the cache-hit rate. The likelihood module is 5x

faster when employing this method.

3.2.4. Consistency Sort of the Gradient

Bases need to be sorted in likelihood the module to ensure the access order is in accordance

with the calculation model. The original sorting algorithm consists of three rounds of multidi-

mensional mixed gradient algorithm. For improvement, we carefully analyzed the characteristics

of base data, and adjusted the original data storage pattern, making the original three rounds

of hybrid gradient consistency gradient sorting sorted into one round.

3.2.5. Scalable Multilevel Parallelism

The original single CPU program is weak in scalability. For better performance, we exploit

multilevel parallelism, which employs multi-threading for sites within the window and MPI based

parallel processing across different compute nodes. A nearly linear scalability was achieved in

our test.

3.2.6. Optimization of Utilizing MIC

After all above improvements, we found that the overall performance of the program is still

not as good as expected and we discovered that the program has a low utilization rate of CPU

and MIC wide vector unit. After a thorough analysis, we found that the original program is

exhibiting poor locality of data accesses in the core algorithm.

To address this problem, we used loop expansion and space padding to improve spatial

locality of data and the amount of calculation in loops, as well as making full use of CPU’s

256-bit VPU and MIC’s 512-bit VPU. Our test demonstrated that the utilization rate of CPU

and MIC VPUs are up by more than 30%.

3.2.7. CPU/MIC Collaborated Parallel Computing Method

We used the offload mode to utilize the computing power of MIC. However, in a ”naive”

offload mode, CPU will be in an idle state after launching the offload part, and will only continue

to work after the computation on MIC side completes and return the results back to the host

CPU. Consequently, many CPU cycles are wasted.

To fully utilize all CPU cycles, we design the CPU/MIC neo-heterogeneous parallel comput-

ing framework, in which the CPU can do computation currently with the offload part running

on MIC. This can be achieved by using one thread on CPU to communicate with MIC and using

other threads for computation.
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4. Evaluations on TH-2 supercomputer

4.1. Fast Windows Iteration

We evaluated the performance of MICA and compared it with SOAP3-dp and BWA in the

following configuration: MICA: Compiled with Intel C/C++ Compiler version 13.1; one to three

57-core MIC cards (8G, ECC enabled). SOAP3-dp: version r176. Compiled with GCC 4.7.2 and

CUDA SDK 5.5; one nVidia GeForce GTX680 (4G); 4 CPU cores; serial BAM output. BWA-

MEM: version 0.7.5a. Compiled with GCC 4.7.2; 6 CPU cores; SAM output. Host machine:

Intel i7-3730k, 6-core @3.2GHz; 64G memory. The performance comparison is listed in tab. 2.

Table 2. Performance of MICA

Data set Yh150

MICA

1 card 22751(6.32h)

2 cards 11479(3.19h)

2 cards scale-up 1.98X

3 cards 7728(2.15h)

3 cards scale-up 2.94X

Properly paired 95.48%

SOAP3-dp
1 card 22751(6.32h)

Properly paired 95.01%

BWA-MEM
6 cores 101466(28.19h)

Properly paired 92.32%

To note, there is no dependence among the sequences, so the sequence comparison has

inherent parallelism, the parallel efficiency will not decrease when the number of nodes increases,

as illustrated in tab. 3. The code of MICA is open-source online and evaluations in detail can

be seen in [7].

Table 3. Speedup of MICA

Threads Time elapsed Speedup Efficiency

56 58.3137 1.0000 1.0000

112 37.7260% 1.5457% 0.7729

224 21.8856% 1.6645% 0.6661

4.2. Evaluations of SOAPsnp

4.2.1. Evaluation Environment

Program optimization effects on a single compute node were tested in the Lv-Liang Super-

computing Center of China; the large-scale test was performed in TH-2 located in the National

Supercomputing Center of Guangzhou. Compute nodes in two supercomputer centers share the

same configuration, as shown in tab. 4.
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Table 4. Data size and computation scale

Short sequence Reference sequence SNP database Output results Computation scale

2.2 GB 49 MB 9.7 MB 3.1 GB 50million sites

4.2.2. Effects of Algorithm Optimization

We have adopted a series of strategies to optimize our algorithms. Our strategies reduce

the complexity of the algorithm, improve the efficiency of the algorithm of time and space,

and further improve the program inherent parallelism, which has laid a solid foundation for

heterogeneous parallel optimization. The effects of our optimization are illustrated in fig. 7.

Fig. 4 shows the acceleration effect of algorithm redesigning, ”o0” represents the original al-

gorithm, ”o1” represents acceleration effect of 4-d matrix dimension reduction, it gets a speedup

of around 2.3X, ”o1+o2” represents acceleration effect using elimination of redundancy and

building fast table on the foundation of ”o1”, the speedup is around 1.7X, ”o1+o2+o3” repre-

sents acceleration effect of consistent gradient sorting on the foundation of ”o1+o2”, the speed

up is about 1.6X.

Figure 4. Algorithm Acceleration Effect of Mixed Methods

4.2.3. Overall Performance Boost via Parallelization on a Single Node

We utilized a CPU-MIC collaborated way to exploit the maximum of parallelism provided

by each compute node. Fig. 5 demonstrates the speedups test on a single compute node of TH-2,

using different number of MICs. It can be seen that one MIC card can achieve a performance

equivalent to the CPU performance.

4.2.4. Hotspot Optimization Effect

Running time of the optimized program module is shown in Table V. Compared with the

numbers before optimization ( tab. 5), two hot module likelihood and recycle achieves a speedup

of 85.4x and 875.6x respectively.

4.2.5. Overall Performance Boost via Parallelization and Scalability

The parallelism on a single node is mainly implemented via OpenMP while the parallelism

across different compute nodes is achieve via MPI. We tested the scalability of our program on
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Figure 5. Heterogeneous Collaborative Parallel Accerleration

Table 5. Data size and computation scale

Module likelyhood recycle Other modules Total

Time/s 17.32 0.86 278.56 296.74

Percentage 5.84% 0.29% 93.87% 1

the TH-2 using at maximum 512 compute nodes. The scalability is depicted in fig. 6. Good

scalability can be gained when we do large scale test using more human genome data (2000

human beings) on TH-2 supercomputer.

Figure 6. Scalability of the program

Conclusions

We analyzed the human genome resequencing software pipeline, and conducted in-depth

parallel optimizations of two core components: SOAP3-dp and SOAP-snp. For SOAP3-dp, we

improve the algorithm from a number of aspects, three-channel IO Latency hiding, vectorization

of 512 Bit wide SIMD command, and parallelized construction of Smith-Waterman Dynamic

matrix Etc. to accelerate the alignment procedure. We used 932 nodes on TH-2 to process

17.4TB whole human genome sequencing data, finished the work in one hour, getting a speedup

of 2160x. For SOAPsnp, we propose 4-D matrix compression, fast windows iteration, scalable

multilevel parallelism, CPU/MIC collaborated parallelism, and vectorization Etc. methods. We

optimized the SOAPsnp in both algorithm and parallelism. The resulting program can achieve a

50x speedup on one single compute node, with a parallel efficiency over 73.6%. Tests on 512 nodes

on TH-2 showed a speedup of 483.6x. It can finish the processing within one hour that would
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take one week originally. At last, we analyze 300TB (2000 human beings whole genome) big data

set using different scale nodes from 512 to 8192 nodes to analyze the scalability. At most, 8192

nodes on TH-2 are used to speed up the human genome resequencing analysis software pipeline

deeply, which has generated some inspiring results. Using the improved pipeline, we performed

an analysis of the 2000 peoples sequencing data and finished it in 8.37 hours, which would take

8 months using the original pipeline. In general, our optimized version is 700x faster. For future

work, we are aiming for large-scale and long term deployment of our optimized pipeline on TH-2

supercomputer and we will perform analysis of genomics data from a much larger population of

people, say 1 million human genome data.
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