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Distillation for Adaptation Language Models to Russian

Language

Grigory P. Kovalev1 , Mikhail M. Tikhomirov1

c© The Authors 2025. This paper is published with open access at SuperFri.org

Adapting large language models (LLMs) to morphologically rich languages like Russian

presents a major challenge, as multilingual models often exhibit limited transfer due to predomi-

nantly English-centric pre-training. This study investigates knowledge distillation (KD) as a more

effective alternative to supervised fine-tuning (SFT) for the final calibration stage of language

adaptation. We introduce an efficient offline top-K distillation approach that transfers knowledge

from a 32B Russian-adapted teacher model to a 4B student model through tokenizer alignment

and direct logit transfer. Experimental results demonstrate that KD consistently surpasses SFT,

achieving up to a 4.22% performance improvement, with top-100 distillation yielding the highest

gains (3.27% on average) albeit with increased memory consumption (62 GB vs. 7 GB for top-10).

Moreover, the advantages of KD are most pronounced for student models with lower adaptive

capacity (i.e., smaller LoRA α values). These findings underscore the efficacy of KD as a practi-

cal and scalable approach for language adaptation, while emphasizing the necessity of balancing

performance improvements against computational efficiency.

Keywords: large language model, distillation, fine-tuning, model adaptation, Russian language.

Introduction

Large Language Models (LLMs) such as Qwen [20], DeepSeek [3], Llama [4], and GPT [1]

have rapidly advanced the state of the art in NLP. Despite nominal multilinguality, their pre-

training data is heavily dominated by English, which limits performance in underrepresented

languages. The gap is particularly pronounced for morphologically rich languages like Russian,

where inflectional complexity and orthographic variation amplify subword fragmentation under

default tokenizers. As a result, language adaptation – porting an existing LLM to a target

language and tokenizer while preserving its instruction alignment and skills – remains a practical

necessity.

A common adaptation pipeline involves extending the model’s tokenizer, performing con-

tinued pre-training, and then conducting supervised fine-tuning (SFT) to align the model with

language-specific instructions. While this approach improves fluency, SFT relies on hard tar-

gets and may not be the most effective way to transfer knowledge, especially when adapting a

smaller model under the guidance of a much larger, more capable one. A more potent alternative

is knowledge distillation, where a “student” model learns from the full output distribution of

a “teacher” model. However, distillation is often complicated by tokenizer mismatches, making

direct logit transfer between different models problematic.

This paper investigates logit distillation as a superior alternative to SFT within a language

adaptation pipeline. Our core methodology resolves the tokenizer mismatch problem by first

aligning the vocabularies of the teacher and student models through a shared extension of

Russian-specific tokens. This enables a direct and clean transfer of knowledge. Concretely, we

leverage a pre-existing 32B Qwen32 model, which was fully adapted for Russian. We then use it

as a teacher to guide the adaptation of a 4B Qwen33 student model. Our primary contribution

1Lomonosov Moscow State University, Moscow, Russian Federation
2https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct
3https://huggingface.co/Qwen/Qwen3-4B
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is a comprehensive comparison showing that replacing the final SFT stage with tokenization-

aligned logit distillation results in a more powerful and efficient Russian language model.

To ensure reproducibility and to facilitate the development of language-specific models, we

publicly release our code on GitHub4.

The remainder of this paper is organized as follows. Section 1 reviews prior work on mul-

tilingual large language model adaptation and knowledge distillation. Section 2 describes the

model adaptation pipeline based on tokenization alignment and the Learned Embedding Prop-

agation (LEP) technique. Section 3 presents the proposed logit distillation approach designed

to improve training efficiency and stability. Section 4 details the datasets used for adaptation

and fine-tuning, while Section 5 outlines the evaluation framework and benchmarks employed

to assess model performance across diverse linguistic and reasoning tasks. Section 6 reports ex-

perimental results and analysis. Section 7 discusses the main limitations of our study, and the

paper concludes with a summary of key findings and outlines directions for future research.

1. Background

Several adaptation methods have been proposed to overcome the limitations of multilingual

LLMs for languages such as Russian. The most straightforward method for such adaptation

is supervised fine-tuning (SFT) on target-language instructions [16]. A more complex but effi-

cient variant is to perform tokenization vocabulary adaptation [21] before the SFT step, which

can better align the model’s internal representations with the target language’s morphology.

The fine-tuning process itself is an active area of research, with methods including classical

SFT, reinforcement learning from human feedback (RLHF) to align outputs with human pref-

erences [17], and knowledge distillation, where a smaller “student” model learns from a larger

“teacher” models outputs to transfer knowledge efficiently [10]. Among these, knowledge distil-

lation is particularly promising for language adaptation, as it enables the creation of compact,

language-specific models without full retraining. However, fine-tuning is not without challenges,

as modern LLMs have dense knowledge distributions, and improper fine-tuning can lead to

forgetting, where the model loses previously learned capabilities.

2. Model Adaptation

Our work builds upon the methodology proposed by Tikhomirov et al. [21] for adapting large

language models (LLMs) to target languages, with a focus on addressing the challenges posed by

morphologically rich languages like Russian. This approach systematically modifies the model’s

tokenization and internal representations to better capture language-specific nuances, followed

by a calibration phase to optimize performance on target-language tasks. The adaptation process

consists of the following steps:

1. Construction of a new tokenization vocabulary: A language-specific vocabulary is

created to account for the morphological and linguistic characteristics of the target language,

augmenting the original tokenizer’s vocabulary.

2. Training embeddings for new vocabulary elements: New token embeddings are

trained to represent the added vocabulary items, ensuring compatibility with the model’s

architecture and preserving semantic richness.

4https://github.com/RefalMachine/ruadapt
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3. Alignment of the base language model with the new vocabulary: The model’s

parameters are adjusted to align with the updated tokenizer, ensuring seamless integration

of the new embeddings into the model’s existing knowledge [21].

4. Transfer of core linguistic knowledge: Core linguistic knowledge is transferred to the

target version of the model using the Learned Embedding Propagation (LEP) method [21].

5. Calibration of the adapted model: The adapted model is fine-tuned on task-specific

examples in the target language to optimize performance.

Figure 1. Language adaptation scheme

The fifth step – calibration of the adapted model – is the primary focus of our research.

Calibration is critical, as it ensures that the model not only understands the target language’s

linguistic structures but also performs effectively on downstream tasks. To address this, we ex-

plore efficient yet computationally effective calibration methods, comparing classical supervised

fine-tuning (SFT) with knowledge distillation. Classical SFT directly optimizes the model on

labeled target-language data, while knowledge distillation transfers task-specific knowledge from

a larger teacher model to a smaller student model.

In our experiments, we selected a relatively small student model to enable extensive exper-

imentation, thereby providing deeper insights into the benefits of our proposed methodology.

Specifically, we used an adapted version of the 4B Qwen3 model, evaluating its performance

on both English and Russian-specific benchmarks to assess the trade-offs between efficiency,

computational cost, and task performance. Our findings aim to provide practical guidelines for

adapting LLMs to low-resource languages with complex morphologies.

3. Distillation Methodology

Knowledge distillation is a well-established technique for transferring knowledge from a

larger “teacher” model to a smaller “student” model, enabling efficient model compression while

G.P. Kovalev, M.M. Tikhomirov
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preserving performance [8, 10, 11, 15]. Its flexibility lies not only in the variety of distillation

methods but also in the ability to experiment with the teacher model’s configuration and outputs.

As previously mentioned, the student model is an adapted version of the 4B Qwen3 following

the Learned Embedding Propagation (LEP) step [21]. In this step, we applied the LEP procedure

described in [21] to propagate the newly learned token embeddings and linguistic knowledge

from the base 4B Qwen3 model to the instruction-tuned 4B variant. The method approximates

full re-training with a newly adapted tokenizer through a series of learned linear operators

that align embedding spaces between the source (multilingual) and target (Russian-adapted)

vocabularies. Before LEP, the base model underwent re-tokenization with an extended Unigram-

based vocabulary optimized for Russian morphology and subsequent fine-tuning of embeddings

and internal layers on approximately 150 GB of Russian text data constructed as a combination

of the rulm [9] and Fineweb-2 [18] corpora. LEP then transferred these updated embeddings and

LoRA adapter weights onto the instruction-tuned 4B checkpoint, allowing the resulting model

to preserve instruction-following capabilities while achieving native-level Russian tokenization

and representation quality. This approach substantially reduces the computational cost of full

re-training.

For the “teacher” model, we chose RuadaptQwen3-32B5, which has been pre-adapted for

Russian-language tasks and is currently the largest and most capable publicly available model

using the same tokenization.

Simultaneously storing both models in memory for distillation is challenging due to their

sizes, and directly training the student model on the teacher’s full output distributions is com-

putationally expensive, especially when aiming for an efficient adaptation methodology that

balances quality and resource demands.

To address these challenges, we adopt a top-k offline distillation approach [2, 19], which

separates the teacher logit generation and student training phases to reduce computational

overhead. In the first step, we generate and store the top-k logits produced by the teacher model

for each token in the training dataset, where k is a tunable hyperparameter that controls the

trade-off between information retention and memory efficiency. This precomputation eliminates

the need to load the teacher model during student model training, significantly reducing memory

requirements. In the second step, we train the student model using these precomputed logits. To

further enhance efficiency, we employ parameter-efficient fine-tuning via Low-Rank Adaptation

(LoRA) adapters, which minimize the number of trainable parameters while maintaining per-

formance [12]. The student model is trained on the same dataset used to generate the teacher’s

logits, ensuring consistency in the knowledge transfer process.

Our training objective combines two loss functions: (1) a classical supervised fine-tuning

(SFT) loss, specifically Cross-Entropy between the true tokens and the student’s predicted

tokens, to calibrate the model for Russian-specific tasks; and (2) a Kullback–Leibler Divergence

(KLDivLoss) term that aligns the student’s output distribution with the teacher’s precomputed

top-k logits [10]. This combination enables the student model to learn both from ground-truth

data and the teacher’s “dark knowledge” – patterns in the teacher’s output probabilities that

enhance generalization [10]. Our combined loss function adopts the formulation proposed by

Raman et al. [19], integrating Cross-Entropy and Kullback–Leibler Divergence to balance task-

5https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct

Distillation for Adaptation Language Models to Russian Language

8 Supercomputing Frontiers and Innovations

https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct


specific calibration and knowledge transfer from the teacher model.

Lfinal = LCE + λ

(
1− exp

(
− si
ti + ε

))
LKD, (1)

where:

• LCE is the cross-entropy loss between the student predictions and the ground-truth labels;

• LKD is the knowledge distillation loss, computed as the KL divergence between the students

and teachers probability distributions over the top-K tokens;

• si is the student logit corresponding to the ground-truth token at position i;

• ti is the teacher logit for the ground-truth token at position i (if the token is not in the

teachers top-K, ti is set to 0);

• ε is a small constant added for numerical stability;

• λ is a scaling coefficient (denoted as loss multi in our implementation).

4. Data

The quality of training data is paramount in any training process, whether pre-training or

fine-tuning, as it directly influences model performance. Fine-tuning, in particular, is a delicate

process, as inconsistencies or contradictions between new training data and the data used for

prior training can result in neutral or even negative outcomes. To ensure effective fine-tuning

for Russian language adaptation, we selected the RefalMachine/ruadapt hybrid instruct

dataset6, which comprises approximately 80,000 instruction samples tailored for Russian-

language tasks.

This dataset was originally introduced as part of the RuAdapt framework7 and was specif-

ically designed to serve as calibration data for Russian instruction-tuned models. It consists

of high-quality synthetic examples generated by the Qwen3-235B-A22B model using prompts

drawn from the GrandMaster-PRO-MAX [16] collection. For each prompt, three candidate re-

sponses were produced, and the shortest valid response written in Russian and free of non-cyrillic

symbols was retained. The resulting dataset captures a broad spectrum of instruction-following

behaviors while maintaining linguistic consistency with the target language.

5. Evaluation

For evaluation in our experiments, we utilized the llmtf framework8, an open-source toolkit

designed to assess the performance of instruction-tuned language models in both few-shot and

zero-shot scenarios. This framework supports flexible evaluation across diverse tasks, enabling

comprehensive analysis of model capabilities on Russian-specific benchmarks. The llmtf frame-

work also standardizes prompt templates and scoring procedures, ensuring reproducibility of the

reported results.

To obtain a balanced picture of model performance, we evaluated the models in the zero-

shot setting on a diverse suite of datasets that cover multiple linguistic and reasoning abilities.

Specifically, the following benchmarks were used:

6https://huggingface.co/datasets/RefalMachine/ruadapt_hybrid_instruct
7https://github.com/RefalMachine/ruadapt
8https://github.com/RefalMachine/llmtf_open
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• NEREL [13], a Russian named entity recognition benchmark derived from news and

Wikipedia texts, testing the models ability to identify and classify named entities in con-

text.

• Summ9, a summarization dataset based on Russian news articles, assessing the models

capacity for text compression and important information extraction.

• MultiQ and USE (from MERA [5]), multi-domain question-answering and semantic un-

derstanding benchmarks that evaluate reasoning and general comprehension abilities across

diverse Russian topics.

• Copy, a diagnostic test of generation robustness that measures the models tendency to

produce repetitive or degenerate outputs under constrained input prompts.

• FLORES (ru–en and en–ru) [6], a multilingual machine translation benchmark used to

measure cross-lingual generalization and translation consistency between Russian and En-

glish.

• enMMLU and ruMMLU, multilingual general knowledge and reasoning benchmarks

adapted from the Massive Multitask Language Understanding dataset, providing a stan-

dardized measure of factual recall and reasoning accuracy across academic domains.

• IFEval (en and ru versions) [22], a meta-evaluation suite for instruction-following behavior

that quantifies how well a model adheres to explicit task instructions and constraints.

• ruOpinionNE [14], a sentiment analysis dataset focusing on Russian social media and

news, testing contextual polarity and stance detection.

• ruParam [7], a benchmark for paraphrase and semantic similarity detection in Russian,

designed to measure semantic coherence and lexical flexibility.

Together, these benchmarks cover a wide range of linguistic competencies, including named

entity recognition, summarization, question answering, translation, reasoning, and adherence

to instructions. This diversity allows us to evaluate both general language understanding and

the effectiveness of Russian-specific adaptation. All evaluations were conducted in the zero-shot

setting, using the default templates provided by llmtf, to ensure fair comparison across models

and reproducibility of results.

6. Experiments

The distillation process is undoubtedly more computationally demanding. To assess its effec-

tiveness, we conducted a series of experiments comparing classical supervised fine-tuning (SFT)

with knowledge distillation during the calibration stage of model adaptation. Our central ques-

tion is whether knowledge distillation can improve model performance over classical SFT, and

whether the potential gains justify its additional cost.

6.1. Supervised Fine-Tuning

For the supervised fine-tuning (SFT) stage, we employed LoRA adapters [12]. Building on

prior experiments, we fixed the LoRA rank at 128 and treated LoRA α together with the learn-

ing rate as tunable hyperparameters. Since our distillation approach introduces two additional

hyperparameters – top-K and λ – we first identified the optimal values of LoRA α and the

learning rate using classical SFT, and only then extended the setup to knowledge distillation.

9https://huggingface.co/datasets/IlyaGusev/gazeta
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Table 1. Comparison of different hyperparameter configurations

(a – LoRA alpha, lr – learning rate) across multiple evaluation benchmarks

Config
mean NEREL Summ MultiQ USE flores copy

ru
babllong

en
IFEval

ru
IFEval

en
MMLU

ru
MMLU

ru
opinionqa

ru
parama lr

64

1e-4 0.484 0.489 0.225 0.200 0.034 0.507 0.940 0.504 0.712 0.636 0.705 0.621 0.088 0.632

2e-5 0.468 0.478 0.154 0.186 0.029 0.504 0.985 0.490 0.688 0.560 0.706 0.620 0.088 0.600

5e-5 0.483 0.475 0.223 0.195 0.041 0.507 0.950 0.509 0.704 0.621 0.708 0.624 0.097 0.631

128

1e-4 0.483 0.495 0.224 0.194 0.037 0.508 0.945 0.504 0.717 0.601 0.706 0.620 0.092 0.634

2e-5 0.472 0.480 0.181 0.183 0.028 0.506 0.980 0.494 0.684 0.582 0.706 0.622 0.084 0.603

5e-5 0.482 0.478 0.223 0.193 0.031 0.508 0.955 0.507 0.693 0.608 0.705 0.620 0.091 0.653

256

1e-4 0.490 0.497 0.223 0.200 0.043 0.508 0.940 0.510 0.726 0.636 0.707 0.623 0.106 0.647

2e-5 0.479 0.477 0.205 0.185 0.025 0.507 0.980 0.498 0.702 0.584 0.706 0.621 0.100 0.634

5e-5 0.477 0.479 0.223 0.195 0.031 0.507 0.955 0.514 0.682 0.590 0.705 0.618 0.095 0.609

512

1e-4 0.494 0.503 0.222 0.195 0.039 0.507 0.950 0.516 0.738 0.617 0.704 0.623 0.112 0.692

2e-5 0.475 0.475 0.218 0.189 0.028 0.506 0.970 0.509 0.710 0.584 0.707 0.620 0.088 0.568

5e-5 0.488 0.484 0.224 0.191 0.036 0.506 0.970 0.500 0.713 0.608 0.705 0.621 0.096 0.694

From a performance perspective, we selected the four most promising configurations for

further investigation of the distillation approach. These configurations were chosen based on

their average performance across a diverse set of benchmarks, ensuring robust generalization.

The selected configurations are: (1) a = 128, lr=1e − 4, (2) a = 256, lr=1e − 4, (3) a = 512,

lr=1e− 4, and (4) a = 512, lr=5e− 5.

6.2. Knowledge Distillation

We adopted the LoRA rank, α, and learning rate values from the selected SFT config-

urations, while treating top-K and λ as the main hyperparameters of interest in this series

of experiments. Each chosen SFT setup was compared against eight distillation variants, with

λ ∈ {0.1, 0.2, 0.5, 1} and top-K ∈ {10, 100}. The top-K parameter controls the number of

top-ranked teacher model predictions used in the distillation process, while λ balances the con-

tribution of the distillation loss against the supervised loss. To ensure a fair comparison, we

maintained identical training conditions (e.g., batch size, training epochs, and dataset) across

SFT and distillation experiments.

The results, presented in Tables 2 to 5 (Table 6 shows more detailed results), demonstrate

that knowledge distillation consistently enhances model performance over the SFT baselines.

The most significant improvement was observed for the SFT baseline with α = 128 and lr=1e-4.

When distilled with top-K=100 and λ = 0.5, this model achieved an aggregate score of 0.503, a

4.22% increase over its SFT counterpart. This highlights the potential of distillation to further

refine already fine-tuned models.

The Influence of top-K. A clear pattern emerges when comparing top-K values: using

a larger context from the teacher model (top-100) generally yields superior results compared

to a smaller one (top-10). For instance, with the α = 128 baseline, the average improvement

for top-100 variants was 3.27%, compared to 2.82% for top-10. However, this performance gain

comes at a significant computational cost. Storing precomputed logits for top-100 required 62 GB

of memory, whereas top-10 required only 7 GB – an 8.9-fold reduction. This trade-off makes

top-10 a resource-efficient option for achieving modest gains, while top-100 is preferable when

maximizing performance is the priority and resources permit.

Tuning the Distillation Weight λ. Our experiments show that λ = 0.2 emerges as a

robust and generally effective choice for the distillation weight. It delivered the highest perfor-

mance gains in the majority of our tested configurations. However, the single best result (4.22%

growth) was achieved with λ = 0.5 in the α = 128 setup. This suggests that while λ = 0.2 is a

strong starting point for tuning, the optimal value can vary depending on other hyperparameters.
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Table 2. SFT a=128, lr=1e-4

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=128, lr=1e-4
— 0.483 —

a=128,
lr=1e-4,
top-10

λ=0.1 0.498 3.17

λ=0.2 0.497 2.95

λ=0.5 0.495 2.56

λ=1 0.495 2.58

Avg. Growth Top-10 2.82

Max. Growth Top-10 3.17

a=128,
lr=1e-4,
top-100

λ=0.1 0.498 3.20

λ=0.2 0.498 3.15

λ=0.5 0.503 4.22

λ=1 0.495 2.50

Avg. Growth Top-100 3.27

Max. Growth Top-100 4.22

Table 3. SFT a=256, lr=1e-4

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=256, lr=1e-4
— 0.490 —

a=256,
lr=1e-4,
top-10

λ=0.1 0.500 2.16

λ=0.2 0.503 2.67

λ=0.5 0.500 2.13

λ=1 0.500 2.08

Avg. Growth Top-10 2.26

Max. Growth Top-10 2.67

a=256,
lr=1e-4,
top-100

λ=0.1 0.497 1.57

λ=0.2 0.500 2.04

λ=0.5 0.499 1.84

λ=1 0.496 1.33

Avg. Growth Top-100 1.70

Max. Growth Top-100 2.04

Table 4. SFT a=512, lr=1e-4

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=512, lr=1e-4
— 0.494 —

a=512,
lr=1e-4,
top-10

λ=0.1 0.496 0.38

λ=0.2 0.502 1.63

λ=0.5 0.496 0.41

λ=1 0.499 1.00

Avg. Growth Top-10 0.86

Max. Growth Top-10 1.63

a=512,
lr=1e-4,
top-100

λ=0.1 0.502 1.66

λ=0.2 0.503 1.83

λ=0.5 0.501 1.46

λ=1 0.501 1.40

Avg. Growth Top-100 1.59

Max. Growth Top-100 1.83

Table 5. SFT a=512, lr=5e-5

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=512, lr=5e-5
— 0.488 —

a=512,
lr=5e-5,
top-10

λ=0.1 0.491 0.61

λ=0.2 0.494 1.06

λ=0.5 0.491 0.56

λ=1 0.489 0.18

Avg. Growth Top-10 0.60

Max. Growth Top-10 1.06

a=512,
lr=5e-5,
top-100

λ=0.1 0.496 1.56

λ=0.2 0.497 1.80

λ=0.5 0.494 1.16

λ=1 0.488 −0.14

Avg. Growth Top-100 1.10

Max. Growth Top-100 1.80

7. Limitations

While the proposed approach demonstrates consistent improvements in performance and

efficiency over standard knowledge distillation baselines, several limitations remain that should

be addressed in future work.

First, the observed performance gains are relatively modest (approximately 2–4% across

benchmarks). Although the experiments show improvements, they suggest that further opti-

mization of the distillation procedure is necessary to fully exploit the potential of cross-model

knowledge transfer.

Second, the current study investigates only a single teacher–student configuration

(Qwen3-32B→ Qwen3-4B), as the 32B teacher model is currently the largest available model shar-

ing the same tokenizer. Nevertheless, we believe that the proposed methodology is generalizable

and can be applied to other model combinations, potentially leading to greater improvements.

Third, although the method is designed to improve training efficiency, we did not include

quantitative measurements such as training throughput, total duration, or GPU-hour cost per

epoch. Our analysis focused primarily on algorithmic efficiency and qualitative reductions in

computational overhead (e.g., precomputed logits, use of LoRA). A more detailed profiling of

hardware utilization and memory footprint will be presented in future work.
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Finally, all experiments were conducted within a single computational environment and

evaluated on a fixed set of Russian-language benchmarks described in Section 5.

Conclusion

This study evaluated the effectiveness of knowledge distillation (KD) relative to clas-

sical supervised fine-tuning (SFT) during the calibration phase of large language model

adaptation for Russian. Our experiments, which distilled knowledge from a Russian-adapted

RuadaptQwen3-32B teacher model into a 4B Qwen3 student, conclusively demonstrate that KD

is a superior approach for enhancing model performance.

A key finding from our research is the fundamental trade-off between performance and com-

putational efficiency, governed by the top-K hyperparameter. Incorporating a broader knowledge

context from the teacher (top-100) consistently yielded superior results, achieving average per-

formance gains of up to 3.27%. This performance, however, comes at a significant cost, requiring

62 GB of memory for the precomputed logits. Conversely, a top-10 configuration emerges as a vi-

able, resource-efficient alternative, providing modest gains with a substantially smaller memory

footprint of just 7 GB.

Our analysis also provides practical tuning guidelines. We found that a distillation weight

of λ = 0.2 offers a robust and effective starting point across most configurations. Furthermore,

we observed that the benefits of distillation are most pronounced for models with a lower LoRA

α, indicating that simpler student models with less adaptive capacity gain the most from the

teacher’s guidance.

Our findings provide a practical roadmap for adapting large language models to morpho-

logically complex languages like Russian, demonstrating that knowledge distillation effectively

enhances the adaptation pipeline while emphasizing the importance of strategically balancing

hyperparameters such as top-K, λ, and α with the available computational budget to achieve

optimal performance.
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Appendix

Table 6. Comparison of different hyperparameter configurations
(a – LoRA alpha, lr – learning rate) across multiple evaluation benchmarks

a lr top λ mean NEREL Summ MultiQ USE flores copy
ru

babilong
en

IFEval
ru

IFEval
en

MMLU
ru

MMLU
ru

opinionne
ru

param

128 1e-4

10

0.1 0.498 0.485 0.224 0.219 0.089 0.508 0.950 0.508 0.721 0.628 0.708 0.624 0.107 0.704

0.2 0.497 0.494 0.226 0.223 0.113 0.509 0.940 0.512 0.719 0.627 0.709 0.621 0.104 0.665

0.5 0.495 0.489 0.225 0.226 0.134 0.506 0.940 0.503 0.717 0.638 0.707 0.620 0.097 0.635

1 0.495 0.479 0.224 0.226 0.162 0.505 0.945 0.498 0.708 0.612 0.708 0.622 0.105 0.644

100

0.1 0.498 0.482 0.226 0.222 0.116 0.510 0.950 0.517 0.713 0.623 0.708 0.623 0.102 0.685

0.2 0.498 0.488 0.225 0.225 0.126 0.508 0.945 0.515 0.713 0.634 0.706 0.623 0.100 0.666

0.5 0.503 0.495 0.224 0.234 0.165 0.506 0.955 0.518 0.726 0.603 0.708 0.621 0.107 0.679

1 0.495 0.494 0.225 0.230 0.161 0.503 0.960 0.500 0.702 0.603 0.708 0.619 0.093 0.636

256 1e-4

10

0.1 0.502 0.487 0.224 0.225 0.087 0.508 0.945 0.512 0.750 0.632 0.706 0.619 0.107 0.725

0.2 0.503 0.496 0.225 0.221 0.117 0.509 0.955 0.515 0.708 0.645 0.707 0.621 0.108 0.709

0.5 0.500 0.489 0.224 0.225 0.147 0.507 0.950 0.500 0.728 0.632 0.706 0.622 0.100 0.671

1 0.500 0.492 0.226 0.219 0.170 0.505 0.960 0.493 0.726 0.619 0.706 0.623 0.101 0.657

100

0.1 0.497 0.483 0.225 0.221 0.102 0.509 0.960 0.515 0.719 0.643 0.705 0.621 0.093 0.670

0.2 0.500 0.492 0.224 0.221 0.155 0.508 0.960 0.507 0.721 0.623 0.706 0.622 0.107 0.649

0.5 0.499 0.498 0.225 0.218 0.164 0.506 0.960 0.490 0.710 0.630 0.708 0.621 0.111 0.642

1 0.496 0.490 0.225 0.230 0.159 0.504 0.965 0.498 0.702 0.621 0.705 0.616 0.099 0.636

512

1e-4

10

0.1 0.496 0.491 0.221 0.218 0.112 0.507 0.965 0.506 0.721 0.628 0.706 0.622 0.103 0.642

0.2 0.502 0.510 0.227 0.222 0.109 0.508 0.960 0.522 0.730 0.619 0.707 0.622 0.093 0.693

0.5 0.496 0.498 0.225 0.219 0.121 0.506 0.960 0.511 0.726 0.614 0.707 0.625 0.113 0.619

1 0.499 0.495 0.225 0.225 0.151 0.507 0.960 0.506 0.726 0.617 0.706 0.622 0.112 0.630

100

0.1 0.502 0.500 0.223 0.225 0.112 0.508 0.960 0.521 0.710 0.638 0.705 0.621 0.101 0.700

0.2 0.503 0.502 0.224 0.223 0.125 0.509 0.960 0.507 0.728 0.638 0.705 0.620 0.118 0.676

0.5 0.501 0.498 0.226 0.225 0.151 0.507 0.965 0.491 0.721 0.628 0.706 0.621 0.113 0.659

1 0.501 0.490 0.228 0.234 0.167 0.503 0.960 0.507 0.726 0.610 0.707 0.619 0.106 0.650

5e-5

10

0.1 0.491 0.482 0.225 0.216 0.056 0.506 0.955 0.508 0.719 0.623 0.707 0.622 0.115 0.653

0.2 0.492 0.480 0.226 0.221 0.076 0.507 0.955 0.501 0.701 0.614 0.707 0.623 0.120 0.660

0.5 0.491 0.468 0.228 0.220 0.104 0.507 0.960 0.506 0.715 0.628 0.706 0.620 0.104 0.618

1 0.489 0.467 0.230 0.225 0.105 0.504 0.955 0.497 0.723 0.623 0.705 0.618 0.102 0.605

100

0.1 0.496 0.487 0.224 0.220 0.073 0.507 0.960 0.513 0.713 0.628 0.705 0.619 0.113 0.685

0.2 0.497 0.486 0.226 0.225 0.093 0.507 0.955 0.502 0.721 0.634 0.706 0.618 0.118 0.671

0.5 0.494 0.474 0.229 0.222 0.102 0.506 0.960 0.503 0.717 0.617 0.705 0.617 0.120 0.646

1 0.488 0.484 0.229 0.231 0.112 0.503 0.965 0.486 0.717 0.595 0.706 0.617 0.093 0.601
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The paper considers an approach to applying the ideas of supercomputing co-design for the

effective use of arbitrary multiprocessor computing systems with distributed memory when using

iterative regularization algorithms to solve ill-posed linear inverse problems, which are reduced

to solving large overdetermined systems of linear algebraic equations with a dense matrix. The

proposed methodology allows for a large number of algorithms to select the best virtual topol-

ogy of processes (in terms of parallelization efficiency) for solving problems of the class under

consideration within the allocated resources of the supercomputer system being used.

Keywords: supercomputing co-design, parallelization efficiency, parallelism, autotuning,

AlgoWiki, inverse problem, iterative regularization, conjugate gradient method.

Introduction

In many cases, applied inverse problems are linear and come down to the need to solve large

overdetermined systems of linear algebraic equations of the form

Ax = bδ (1)

with a dense matrix. Here A ∈ RM×N , x ∈ RN , bδ ∈ RM . Usually M > N and instead of

the exact right-hand side b its approximation bδ is known, measured in an experiment with an

error δ, i.e., ‖b−bδ‖ 6 δ. The matrix can also be specified with an error, i.e., instead of the exact

matrix A, its approximation Ah is known, where ‖A−Ah‖ 6 h (hereafter, all vector norms are

assumed to be Euclidean, and matrix norms – Frobenius, unless otherwise stated).

Often, such problems are ill-posed, and to solve them, it is necessary to use regularizing algo-

rithms (see, for example, the classical work [10]). One of the most common classes of regularizing

algorithms are iterative regularization algorithms. Most iterative regularization algorithms for

solving problems of the form (1) contain only the following computational operations that allow

for parallel implementation:

1. multiplication of a matrix of size M ×N by a vector of size N (which requires performing

M · N multiplications and M · (N − 1) additions – in the sum of M · (2N − 1) arithmetic

operations);

2. multiplication of a transposed matrix of size N ×M by a vector of size M (requires per-

forming N · (2M − 1) arithmetic operations);

3. scalar product of vectors of size N (N multiplications and N − 1 additions – in the sum of

2N − 1 arithmetic operations) or vectors of size M (requires performing 2M − 1 arithmetic

operations);

4. adding vectors of size N or M or multiplying them by a number (requires performing N

and M arithmetic operations, respectively).
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Two classical iterative regularization algorithms are given below as examples of such algo-

rithms: the conjugate gradient method and the Nesterov accelerated method (see the description

of the features of these algorithms in [3, 4] and [5, 7], respectively):

Algorithm 1: Conjugate gradient

method.
Data: A, bδ, δ

Result: x

s← 1

x← 0

p← 0

while ‖Ax− bδ‖2 > δ2 do

if s = 1 then

r ← AT (Ax− bδ)
else

r ← r − q

(p, q)

end

p← p+
r

(r, r)
q ← AT (Ap)

x← x− p

(p, q)
s← s+ 1

end

Algorithm 2: Nesterov accelerated

method.
Data: A, bδ, δ, β > −1

Result: x

s← 1

x← 0

p← 0

while ‖Ax− bδ‖2 > δ2 do

if s = 1 then

x← AT bδ
else

xprevious ← x

p← x+
s− 2

s− 1 + β
(x−xprevious)

x← p−AT (Ap− bδ)
end

s← s+ 1
end

Note. Sometimes in the literature, these algorithms are presented in a form that assumes

that the matrix A of the system (1) is symmetric and positive definite. In this case, the corre-

sponding algorithm implementations do not include the operation of multiplying the transposed

matrix by a vector. This type can also be used in the specified implementations of the algo-

rithms if someone replaces A := ATA and bδ := AT bδ. But this replacement is not constructive

when using algorithms in practice to solve large problems. This is due to the following fact.

The computational complexity of the written algorithms at each iteration is O(MN) arithmetic

operations. At the same time, the number of iterations siter that need to be performed is often

significantly less than the number of unknowns N – when developing new algorithms for solving

problems of the class under consideration, the main motivation is to increase the convergence

rate, i.e., to reduce the number of iterations needed to achieve convergence. Thus, the com-

putational complexity of the presented algorithms can often be estimated as O(MN) provided

siter � N . This is one of the main advantages of using iterative algorithms for solving problems

like (1). These substitutions reduce the computational complexity of each iteration by about

2 times, but they require the preliminary execution of O(MN2) arithmetic operations, which

negates the practical advantages of using iterative solution algorithms.

The approaches to the construction of parallel algorithms and their software implementation

used in linear algebra operations in such iterative algorithms are well known. They are usually

based on a two-dimensional partition of the matrix A into blocks. In this case, a Cartesian

virtual topology based on a two-dimensional rectangular process grid is usually used, – in the

address space of each computing process, its own block Apart of the original matrix A is stored

(see Fig. 1). The size of such a process grid is usually chosen intuitively – most often, the number
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of rows and columns of this process grid is made as uniform as possible. However, such a choice

may not be optimal (in terms of parallelization efficiency) in many special cases, as it depends

on various factors, the key ones of which are the following.

First, the optimal choice of the ratio of the sizes of the process grid depends on the problem

being solved, namely, on the sizes M and N corresponding to the matrix. If, in the case of a

square matrix, it is optimal to choose the same sizes of a two-dimensional process grid, then in

the case of significantly different values of M and N , which is quite common in solving applied

problems, such a choice will be far from optimal.

Secondly, the optimal size ratio of the process grid depends on the architecture of the

multiprocessor computing system used. In particular, there may be a significant dependence on

the resources allocated for running the application, which may change with each subsequent

launch. At the same time, even if the application is running on the same number of computing

nodes, each new launch may result in a set of computing nodes with a significantly different

communication profile from the previous set (dedicated processes are located differently in the

physical topology of a multiprocessor system).

Therefore, the purpose of this work is to create a methodology that will allow, within the

framework of solving the problem of supercomputing co-design, to automatically match the size

of the problem being solved and the topology of the computing resources allocated at application

launch with the optimal size of a two-dimensional process grid defining the virtual topology of

processes in a parallel software implementation of the algorithm.

Solving ill-posed linear inverse problems using iterative algorithms is extremely important

for many applied problems in science and technology, while at the same time allowing us to

demonstrate the basic ideas of supercomputing co-design [2]. Therefore, it has been chosen as

a significant reference problem requiring high-performance computing facilities that test the

approaches, methods, tools, techniques and recommendations implemented by the authors of

the project to develop the fundamentals of supercomputing co-design based on the descriptions

of algorithms in the AlgoWiki Open Encyclopedia of Parallel Algorithmic Features [11].

In connection with the above, the structure of this work will be as follows. Section 1 describes

an approach to evaluating the parallelization efficiency of an algorithm for solving a problem of

type (1) with fixed dimensions using the allocated resources of a supercomputer system. Section 2

presents a technique for matching the size of the Cartesian virtual topology of processes with the

size of the problem being solved, the selected algorithm, and the allocated computing resources

in the form of a practice-oriented algorithm. Section 3 demonstrates some of the results of

numerical experiments. Section 4 discusses some of the features of the proposed methodology.

1. An Approach to Evaluating the Parallelization Efficiency

of an Algorithm within the Framework of the Used

Supercomputer System

First, subsection 1.1 will describe the proposed structure for storing problem data in the

distributed address space of computing processes. Taking into account the specifics of the prob-

lem being solved, the data distribution will be used in accordance with the Cartesian virtual

topology of two-dimensional grid type processes. Then, in subsections 1.2–1.5, estimates of the

total running time of computational operations that allow for parallel implementation will be

presented. Finally, subsection 1.6 will provide a formula for calculating the parallelization effi-
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Figure 1. An example of the distribution of data across nine computational processes
that form a two-dimensional grid 3× 3

ciency of the proposed software implementation of the algorithm under consideration for solving

the problem (1), depending on the size of the selected virtual process topology. MPI [1] tech-

nology is assumed to be a parallel programming technology for software implementations of the

studied algorithms on a computer with distributed memory.

1.1. Distribution of Data by Processes Involved in Calculations

It is assumed that all task data is distributed over the address space of n computing processes

involved in the calculations as follows.

Each computing process has its own identifier/number rank ∈ 0, . . . , n− 1. The matrix A

of dimensions M ×N is divided among these processes in two dimensions (see Fig. 1) for blocks

Apart(rank) of sizes Mpart(k) ×Npart(l).

It is assumed that the processes form a two-dimensional process grid of size n1 × n2 (with

n1 · n2 = n). Therefore, the process number rank is associated with the indexes k and l, which

determine the coordinates of the process in the two-dimensional process grid as follows:

k =

⌊
rank

n2

⌋
, l = rank−

⌊
rank

n2

⌋
· n2.

Or, if it is necessary to recalculate rank by k and l:

rank = k · n2 + l.

We also note that
n1−1∑

k=0

Mpart(k) = M,

n2−1∑

l=0

Npart(l) = N.

The vector x is divided into n2 parts xpart(l), l = 0, n2 − 1, of sizes Npart(l). In this case, the

part xpart(l) for a fixed index l is stored on all processes in the column of the process grid with

index l (see Fig. 1), that is, on processes with the coordinate (·, l) in a two-dimensional process

grid.

The vector b is divided into n1 parts bpart(k), k = 0, n1 − 1, of sizes Mpart(k). In this case,

the part bpart(k) for a fixed index k is stored on all processes in the row of the process grid with

index k (see Fig. 1), that is, on processes with the coordinate (k, ·) in a two-dimensional process

grid.
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Figure 2. A parallel algorithm for matrix-vector multiplication in the case of two-dimensional
matrix partition into blocks. The figure shows the case of data distribution over nine

computing processes that form a two-dimensional grid 3× 3

Thus, it is assumed that each computing process contains one of the blocks Apart(·) of the

matrix A, as well as one of the parts xpart(·) and bpart(·) of the vectors x and b, respectively.

1.2. Estimation of the Implementation Time of a Parallel Matrix-Vector

Multiplication Algorithm in the Case of Two-Dimensional Matrix

Partition Into Blocks

With the formulated method of storing data on computational processes, the result of mul-

tiplying the matrix A of size M × N by the vector x of size N will be a vector (Ax), which

will be distributed over various computational processes in parts (Ax)part(·). At the same time,

the distribution structure of this vector for various processes should correspond to the distribu-

tion structure of the vector b (see Fig. 1). Part of the vector (Ax) can be calculated using the

following formula:

(Ax)part(k) =

n2−1∑

l=0

Apart(k·n2+l)
xpart(l), k = 0, . . . , n1 − 1. (2)

An example explaining this formula is provided in Fig. 2.

Each process involved in the calculations can compute the term Apart(k·n2+l)
xpart(l) for its

pair of values (k, l), independently of similar calculations performed by other processes. That

is, the terms in the formula (2) can be calculated in parallel. Then the terms located on the

processes of the row of the process grid with index k should be summed up, and the result – vector

(Ax)part(k) – should be placed on all processes of this row of the process grid. The organization of

the interaction of processes entails overhead costs for receiving/transmitting messages containing

the results of intermediate calculations through the physical communication environment of a

multiprocessor computing system.

Let us estimate the total running time of this parallel algorithm, taking into account the

overhead costs of organizing the interaction of computing processes.

First, we note that the running time of the sequential implementation of the operation of

multiplying the matrix A of size M×N by the vector x of size N (totaling M ·(2N−1) arithmetic

operations) can be evaluated using the formula

TAx1 = C1 ·M(2N − 1). (3)
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Hereafter, the superscript T denotes the operation being evaluated (in this case, the operation

of multiplying a matrix by a vector – Ax), and the subscript denotes the number of processes

used for calculation (in this sequential case – 1); C1 is the average speed of performing one

arithmetic operation (determined by the architecture of the processor and the computing node

on which the computing process is performed, and is considered known or can be calculated).

At the same time, it is further assumed that the number of processor cycles required for adding

numbers and multiplying them is equal.

If n computing nodes are used for parallel computing within a processor grid of size n1×n2,
the time spent by each computing node on computation can be estimated as

C1(n1, n2) ·
M

n1

(
2
N

n2
− 1
)
≡ C1(n1, n2) ·

M(2N − n2)
n

.

Note. Hereafter, it is assumed that the difference in the sizes of Mpart(k) and Npart(l) data

blocks on various processes can be ignored and considered equal to Mpart(k) ≡ M/n1 and

Npart(l) ≡ N/n2 respectively. This is due to the fact that usually the maximum difference in the

size of data blocks distributed across different processes is no more than 1, which means that in

the case of solving “large” problems, this difference can be ignored.

At the same time, it is specifically noted that the coefficient C1 depends on the sizes n1 and

n2 of the process grid, since these sizes determine the sizes of the blocks (Ax)part(·) of matrix A

that are involved in calculations. Given that in popular programming languages used for parallel

programming (for example, C/C++ and Python), matrices (i.e., two-dimensional arrays) are

stored line-by-line in memory, the sizes of these matrices will determine the access time to their

elements during the software implementation of matrix-vector multiplication.

The overhead time for organizing the interaction of each group of n2 processes included

in each of the rows of the process grid can be estimated as follows. First, the amount of data

transmitted by each process is proportional to
M

n1
(the proportionality coefficient is determined

by the type of data transmitted). Secondly, the number of data transfer operations with optimal

organization of transfers is proportional to log2 n2 (the proportionality coefficient is determined

by the implementation of the corresponding function of interaction of computational processes

within the framework of the parallel programming technology used — for example, the function

of collective interaction of processes Allreduce() from MPI). Thus, the overhead time will be

proportional to
M

n1
· log2 n2, where the proportionality coefficient will take into account both the

already mentioned proportionality coefficients and the technical features of the communication

network, as well as the implemented option for distributing processes across computing nodes.

Thus, the total running time of the corresponding parallel algorithm can be estimated using

the formula

TAxn = C1(n1, n2) ·
M(2N − n2)

n
+ C2(n1, n2) ·

M

n1
· log2 n2. (4)

Here, the coefficient C2 is considered known and 1) depends on the speed of transmission of

a unit of information over a communication network, which, in turn, depends on the relative

location of computing nodes, in particular, as determined by the sizes n1 and n2 of the process

grid, as well as on the implemented option for distributing processes across computing nodes;

2) depends on the implementation of the function of collective interaction of processes.
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Figure 3. A parallel algorithm for multiplying a transposed matrix by a vector in the case of
a two-dimensional matrix partition into blocks. The figure shows the case of data distribution
across nine computing processes that form a two-dimensional 3× 3 grid. Taking into account
the transposition, it is assumed that the rows of the presented process grid are the columns of
the original process grid; similarly, the columns of the presented process grid are the rows of

the original process grid

The estimates (3) and (4) will be used in subsection 1.6 to construct a formula for evaluating

the effectiveness of the parallelization of the software implementation of the algorithm for solving

the problem (1).

1.3. Estimation of the Implementation Time of a Parallel Algorithm

for Multiplying a Transposed Matrix by a Vector in the Case

of a Two-Dimensional Matrix Partition Into Blocks

The result of multiplying the transposed matrix AT of size N ×M by the vector b of size M

will be a vector (AT b), which will be distributed over various computational processes in parts

(ATx)part(·). At the same time, the distribution structure of this vector for various processes

should correspond to the distribution structure of the vector x (see Fig. 1). Part of the vector

(AT b) can be calculated using the following formula:

(AT b)part(l) =

n1−1∑

k=0

ATpart(k·n2+l)
bpart(k), l = 0, . . . , n2 − 1. (5)

An example explaining this formula is provided in Fig. 3.

Each process involved in the calculations can compute the term ATpart(k·n2+l)
bpart(k) for its

pair of values (k, l), independently of the similar calculations performed by other processes.

That is, the terms in the formula (5) can be calculated in parallel. Then the corresponding

terms located on the processes of the column of the process grid with index l should be summed

up, and the result – vector (AT b)part(l) – should be placed on all processes of this column of

the process grid. The organization of the interaction of processes entails overhead costs for

receiving and transmitting messages containing the results of intermediate calculations through

the physical communication environment of a multiprocessor computing system.

Similarly to the method described in the previous subsection, it is possible to obtain an

estimate of the time required for the sequential implementation of this operation.

TA
Tx

1 = C̃1 ·N(2M − 1)
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and parallel:

TA
Tx

n = C̃1(n1, n2) ·
N · (2M − n1)

n
+ C2(n1, n2) ·

N

n2
· log2 n1.

The fundamental difference between these formulas and the formulas presented in the pre-

vious subsection is that the coefficient C1 has been replaced by C̃1. This is due to the fact that

the implementation of the multiplication of a transposed matrix by a vector involves sequential

access to the elements of the rows of this matrix; however, the transposed matrix is stored in

memory by columns. In order to save memory when solving “large” problems, the preliminary

transposition of the matrix is not constructive, as it requires additional memory space that may

not be available. A different order of access to the elements of the matrix leads to the fact that

the coefficient C̃1 may differ significantly from the coefficient C1.

1.4. Estimation of the Implementation Time of the Parallel Scalar Product

Algorithm of Vectors

Since the size of the vectors in sequential algorithms for solving the problem (1) is either M

or N , we will use characteristic vectors of these sizes. Therefore, if the vector x is mentioned,

its size will be assumed to be N , and if the vector b is mentioned, its size will be assumed to be

M . It is assumed that these vectors are distributed over computational processes according to

the scheme shown in Fig. 1.

The result of the scalar product of vectors x(1) and x(2) of size N will be the value (x(1), x(2)).

It can be calculated using the following formula:

(x(1), x(2)) =

n2−1∑

l=0

(
x
(1)
part(l)

, x
(2)
part(l)

)
. (6)

Each process involved in the calculations can compute the term
(
x
(1)
part(l)

, x
(2)
part(l)

)
for its

value l, which is independent of similar calculations performed by other processes. That is, the

terms in the formula (6) can be calculated in parallel. Then the corresponding terms located on

the processes of the row of the process grid should be summed up, and the result – the number

(x(1), x(2)) – must be placed on all processes in this row of the process grid. The organization of

the interaction of processes entails overhead costs for receiving/transmitting messages containing

the results of intermediate calculations through the physical communication environment of a

multiprocessor computing system.

The running time of a sequential scalar product operation of vectors can be estimated using

the formula

T
(x(1), x(2))
1 = C1 · (2N − 1),

and the running time of the corresponding parallel algorithm (taking into account overhead

costs) can be estimated using the formula

T (x(1), x(2))
n = C1(n1, n2) ·

2N − n2
n2

+ C2(n1, n2) · log2 n2.

It is necessary to note the following two features of the algorithm. First, the processes of

each row of the process grid perform the same calculations as the processes of the other rows of

the process grid. Thus, scalar product calculations are not parallelized over all n computational
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processes, but only over n2 processes. This approach is constructive, since distributing the vectors

x(1) and x(2) across all n processes (and not just the n2 processes of the row of the process grid),

and then collecting data from all of them, will require additional overhead proportional to

log2 n, which almost always exceeds the gain in reducing the time of direct calculations when

solving “large” problems (C1(2N − 1)/n instead of C1(2N − 1)/n2 in the considered version of

the parallel algorithm). Secondly, it assumes that the parts of the vector are well localized in

the address space of each process. In this regard, the same estimate can be used for the average

execution speed of one arithmetic operation C1 as in subsection 1.2.

Similarly, the result of the scalar product of vectors b(1) and b(2) of size M will be the value

(b(1), b(2)). It can be calculated using the following formula:

(b(1), b(2)) =

n1−1∑

k=0

(
b
(1)
part(k)

, b
(2)
part(k)

)
. (7)

Each process involved in the calculations can calculate the term
(
b
(1)
part(k)

, b
(2)
part(k)

)
for its

value k is independent of similar calculations performed by other processes. That is, the terms

in the formula (7) can be calculated in parallel. Then the corresponding terms located on the

processes of the column of the process grid should be summed up, and the result – the number

(b(1), b(2)) – must be placed on all processes in this column of the process grid. The organization of

the interaction of processes entails overhead costs for receiving/transmitting messages containing

the results of intermediate calculations through the physical communication environment of a

multiprocessor computing system.

The running time of a sequential scalar product operation of vectors can be estimated using

the formula

T
(b(1), b(2))
1 = C1 · (2M − 1),

and the running time of the implementation of the corresponding parallel algorithm (taking into

account overhead costs) can be estimated using the formula

T (b(1), b(2))
n = C1(n1, n2) ·

2M − n1
n1

+ C2(n1, n2) · log2 n1.

1.5. Estimation of the Implementation Time of a Parallel Algorithm

for Adding/subtracting Vectors or Multiplying/dividing a Vector

by a Number

When distributing vectors across computational processes according to the scheme shown

in Fig. 1, in the case of adding two vectors x(1) and x(2) of size N , the following calculations

will be performed on each process:

(x(1) + x(2))part(l) = x
(1)
part(l)

+ x
(2)
part(l)

.

There will be no need to exchange messages between computational processes, since the storage

structure of the resulting vector corresponds to that used in the parallel algorithms of linear

algebra operations described earlier.
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Therefore, the time of successive operations of adding vectors of the appropriate size can be

estimated using the formulas

T x
(1)+x(2)

1 = C1 ·N,
T
(b(1)+ b(2))
1 = C1 ·M,

and the operating time of the implementation of the corresponding parallel algorithms can be

estimated using the formulas

T x
(1)+x(2)

n = C1 ·
N

n2
,

T (b(1)+ b(2))
n = C1 ·

M

n1
.

Exactly the same estimates are true for operations of multiplying the corresponding vectors

by a number. Therefore, the formulas for estimating the values of T c·x and T c·b are not written

out separately and are considered equivalent to those described above.

At the same time, similarly to the previous subsection (subsection 1.4), it should be noted

that the processes of each row (column) of the process grid perform the same calculations as

the processes of the other rows (columns) of the process grid. Thus, the corresponding calcula-

tions are not parallelized over all n computing processes, but only over n2 (n1) processes. The

motivation for this approach is similar to that given in subsection 1.4.

1.6. Evaluation of the Parallelization Efficiency of a Parallel Algorithm

The parallelization efficiency of the iterative algorithm for solving the problem (1) can be

estimated by the parallelization efficiency of one iteration using the following formula:

En
(
n1, n2,~k, C1, C̃1, C2,M,N

)
=

∑

op∈
{
Ax; AT b; (x(1), x(2)); (b(1), b(2)); x(1)+x(2); b(1)+b(2)

} k
opT op

1

∑

op∈
{
Ax; AT b; (x(1), x(2)); (b(1), b(2)); x(1)+x(2); b(1)+b(2)

} kopT
op
n n

. (8)

Here:

• n1, n2 are determined by the selected Cartesian topology of parallel processes of the two-

dimensional grid type;

• M , N are determined by the size of the problem being solved;

• ~k =
{
kAx; kA

T b; k(x
(1), x(2)); k(b

(1), b(2)); kx
(1)+x(2)

; kb
(1)+b(2)

}
is determined by the iterative

algorithm for solving the problem (1) and contains the values of the number of corre-

sponding operations (while calculating the values of kx
(1)+x(2)

and kb
(1)+b(2) , the number of

multiplications/divisions of vectors of the appropriate size by a number is also taken into

account);

• C1, C̃1 are determined by the architecture of the processor and computing node;

• C2 is determined by the communication network, the implemented option for distributing

processes across computing nodes, and the selected implementation of the operation for

collective interaction of processes of the Allreduce() type (at the same time, as mentioned

earlier, this parameter also depends on the size (M and N) of the problem and the selected

size (n1 and n2) of virtual process topologies – they determine the volume and number of

messages transmitted over the communication network);

• T op
1 and T op

n are defined by formulas written out in subsections 1.2–1.5.
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Example 1. For the algorithm 1, the expression (8) for the main iterations (s > 2) is

written as

En =
2 · TAx1 + 1 · TAT b

1 + 2 · T (x(1), x(2))
1 + 1 · T (b(1), b(2))

1 + 6 · T x(1)+x(2)

1 + 1 · T b(1)+b(2)1(
2 · TAxn + 1 · TAT b

n + 2 · T (x(1), x(2))
n + 1 · T (b(1), b(2))

n + 6 · T x(1)+x(2)

n + 1 · T b(1)+b(2)n

)
n
,

Example 2. For the algorithm 2, the expression (8) for the main iterations (s > 2) is

written as

En =
2 · TAx1 + 1 · TAT b

1 + 3 · T x(1)+x(2)

1 + 2 · T b(1)+b(2)1(
2 · TAxn + 1 · TAT b

n + 3 · T x(1)+x(2)

n + 2 · T b(1)+b(2)n

)
n
.

2. Choosing the Optimal Size of the Virtual Process Topology

The problem of choosing the optimal sizes n1 and n2 of the virtual process topology can

be set as follows: it is necessary to determine the values of n1 and n2 at which the paralleliza-

tion efficiency of the selected iterative algorithm for solving the problem (1) on the allocated

resources of the supercomputer system will be maximum. Such a statement of the problem can

be formalized in the following form:

(n1, n2) = argmax
n1,n2

n1·n2=n

En(n1, n2;~k,C1, C̃1, C2,M,N). (9)

Here, the first two arguments of the function En are specially separated from the remaining

arguments by a semicolon to emphasize that these arguments are used for maximization, while

the remaining arguments are known parameters.

Therefore, for the practical application of this formula, two questions remain to be solved:

1. How can someone take into account the condition n1 · n2 = n? Obviously, on the one hand,

the formal mathematical solution to the problem (9) in many cases will be non-integers, and

on the other hand, the prime number n cannot be decomposed into factors, each of which

is different from 1.

2. How does someone define the coefficients C1, C̃1, C2? Taking into account the comments

made earlier regarding these constants, it is obvious that the formal evaluation of them can

be extremely difficult. For example, we repeat that the coefficient C2 depends 1) on the

technical features of the communication network, 2) on the sizes n1 and n2 of the selected

virtual process topology, 3) on how well this virtual topology was mapped to the computing

resources allocated at the start of the program, 4) on the implementation option of the

function of collective interaction of processes in the package used for parallel programming.

The first issue can be solved as follows. It is necessary to impose a convenient limit on the

number of computing processes n. Such a natural limitation for many multiprocessor systems

is n = 2k, where k is an integer. Thus, in the algorithm formulated below for determining the

optimal values of n1 and n2, we will assume that n is a power of two, and the values of n1 and

n2 must be found as integers.

The second issue can be solved as follows. On the allocated computing resources, before

starting the main calculations, it is possible to run a preliminary test using matrices and vectors

of characteristic sizes M , N , which will determine C1, C̃1 and C2. That is, the corresponding

coefficients will be determined automatically for the features of the allocated resources and

the selected compiler options that determine the algorithms for implementing the function of

collective interaction of processes. Moreover, the corresponding test runs should be made for
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different values of n1 and n2 in order to determine the dependencies of C1(n1, n2), C̃1(n1, n2)

and C2(n1, n2).

Thus, an algorithm is proposed for determining the optimal values n1 and n2 of the virtual

process topology, designed as Algorithm 3.

3. Numerical Experiments

Computational experiments were conducted on the “Lomonosov-2” supercomputer [12] and

were constructed as follows. The sizes M and N , which determine the computational complexity

of the problem (1), were chosen in such a way that, on the one hand, the matrix A of the

system (1) had significant size, and on the other hand, a part Apart(·) of this matrix, which

each individual computing process is responsible for storing, fit into the RAM of the computing

node. For example, for pairs (M,N) ∈ {(105, 105), (106, 104), (107, 103)}, when using the data

type float64 (“double precision”) the matrix A requires 298 GB for its storage in memory

(while Apart(·) requires 1.2 GB when using 64 computing nodes), and for pairs of (M,N) ∈
{(5 · 105, 5 · 105), (5 · 106, 5 · 104), (5 · 107, 5 · 103)} – 1 863 GB (1.8 Tb) (Apart(·) – 29 GB when

using the same number of computing nodes).

At the same time, computational experiments were conducted for a series of these pairs

of (M,N) in order to demonstrate that problems of the same computational complexity can

correspond to completely different values of n1 and n2, which determine the optimal virtual

topology of processes for parallel computing.

The MPI parallel programming technology was used for the software implementation of the

Algorithm 3. The program code implementing the pseudocode from Algorithm 3 is not provided

in this article, since the pseudocode is designed in such a way that the corresponding software

implementation can be recovered from it in an unambiguous way (in the sense of choosing

software solutions that may affect the parallelization efficiency). It should be noted that for the

software implementation of the function of collective interaction of processes Allreduce(), its

blocking version was used.

The computation results are shown in Fig. 4. It is perfectly clear that the values of n1 and

n2, which determine the optimal virtual topology for parallel computing, depend both on the

computational complexity of the problem and on the relative sizes of M and N . In particular,

the intuitive facts are experimentally confirmed that, for example, for “elongated matrices” the

optimal “elongated process topology” is obtained, and the closer the matrix is to the “square”

one, the more optimal it is to use the “square process topology” for calculations.

However, there are some non-obvious results. For example, there may be situations where,

if the virtual topology is chosen incorrectly, the parallelization efficiency may be close to zero.

Although such a result is obtained for extreme cases (for example, M = 5 · 107, N = 5 · 103, i.e.,

the number of equations exceeds the number of unknowns by four orders of magnitude), which

are extremely rare in solving applied problems, it is necessary to keep in mind the possibility of

such effects in practice. It is also necessary to note the effect of a sharp increase in parallelization

efficiency for a limiting process grid of size n1 × n2 ≡ 1× 64 (noted in Fig. 4 by dotted line).

Remark 1. If someone uses a variant of the function Allreduce() implemented using per-

sistent interaction requests from the MPI-4 standard, the results will obviously change. This is

due to the following fact. Functionally (in the sense of the result), the operation of the func-

tion Allreduce() is equivalent to the sequence of launching functions Allreduce init() “+”

start() “+” wait() from the standard MPI-4. Given that the function Allreduce() can be im-
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Algorithm 3: The pseudocode of the algorithm for determining the optimal size of the

virtual topology of processes using the MPI parallel programming technology.

Data: N , M , ~k, n – the power of two

Result: n1, n2

comm← MPI.COMM WORLD

n1 ← n; n2 ← 1

while n1 >= 1 and n1 <= n do
comm cart← comm.Create cart(dims=(n1, n2), periods=True, reorder=True)

rank cart← comm cart.Get rank()

comm col← comm cart.Split(rank cart % n2, rank cart)

comm row← comm cart.Split(rank cart // n2, rank cart)

// formation of arbitrary matrices of characteristic dimensions

Apart ← random(M/n1, N/n2); xpart ← random(N/n2); bpart ← random(M/n1)

// estimation of the value of the coefficient C1

time start← MPI.Wtime()

(Ax)part ← Apart · xpart
time elapsed← MPI.Wtime()− time start

C1 ←
time elapsed · n
M · (2N − n2)

comm cart.Allreduce(C1/n→ C1, op=MPI.SUM) // averaging C1

// estimation of the value of the coefficient C̃1

time start← MPI.Wtime()

(AT b)part ← ATpart · bpart
time elapsed← MPI.Wtime()− time start

C̃1 ←
time elapsed · n
N · (2M − n1)

comm cart.Allreduce(C̃1/n→ C̃1, op=MPI.SUM) // averaging C̃1

// estimation of the value of the coefficient C2

comm cart.Barrier()

time start← MPI.Wtime()

comm col.Allreduce((AT b)part → xpart, op=MPI.SUM)

time elapsed← MPI.Wtime()− time start

if n1 = 1 then C2temp1
← 0 else C2temp1

← time elapsed

N/n2 · log2 n1
comm cart.Barrier()

time start← MPI.Wtime()

comm row.Allreduce((Ax)part → bpart, op=MPI.SUM)

time elapsed← MPI.Wtime()− time start

if n2 = 1 then C2temp2
← 0 else C2temp2

← time elapsed

M/n1 · log2 n2
if n1 = 1 then C2temp2

← 0; if n2 = 1 then C2temp1
← 0

if n1 6= 1 and n2 6= 1 then C2 ← (C2temp1
+ C2temp2

)/2

comm cart.Allreduce(C2/n→ C2, op=MPI.SUM)

// parallelization efficiency estimation

E(n1, n2)← En(n1, n2;~k, C1, C̃1, C2,M,N)

n1 ← n1/2; n2 ← n2 · 2
end

(n1, n2)← argmaxE(n1, n2)
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Figure 4. Graphs of the dependence of the parallelization efficiency of Algorithm 1 for
matrices of different dimensions, but with the same number of elements, depending on the

selected virtual topology when computing on a fixed number of nodes of the “Lomonosov-2”
supercomputer [12]

plemented over the same areas of the address space, the same Allreduce init() operation can

be performed outside the while loop. This can significantly reduce the overhead of receiving and

transmitting messages containing the results of intermediate calculations (for more information,

see [6]). As a result, the estimate of C2 may decrease significantly.

Remark 2. It is obvious that the method proposed in the paper for calculating the paral-

lelization efficiency in determining the optimal virtual topology is an estimated one. Therefore,

the question arises: how much does the actual parallelization efficiency differ from the estimated

one in typical tasks? To answer this question, the following experiment was conducted. An

example was chosen for (M,N) = (8 ·104, 8 ·104). In this case, the matrix A will require 47.8 GB

for its storage, as a result of which it will completely fit into the RAM of one computing node

(64 GB) of the “Lomonosov-2” supercomputer, which is required to determine the operating

time T1 of the sequential version of the Algorithm 1. For this matrix A and some model right-

hand side bδ of the system (1), a parallel implementation of the Algorithm 1 was launched in two

versions – using the functions of collective communication of MPI-processes within the MPI-3

standard and with using the functions of collective communication of MPI-processes within the

MPI-4 standard (see previous remark). At the same time, the number of iterations in the Al-

gorithm 1 was forcibly limited to 300 iterations in order to obtain a reasonable counting time

for the sequential implementation of the Algorithm T1 = 864 seconds, which is a fairly repre-

sentative counting time, but at the same time slightly less than the upper limit of 15 minutes,

which limits the counting time on the test queue of the “Lomonosov-2” supercomputer. For this

example, as for similar examples with a square matrix of higher dimensions, the optimal topol-

ogy is a “square” one. Therefore, parallel implementations of the algorithm were launched on

n ∈ {4, 9, 16, 25, 36, 49, 64} MPI-processes so that n1 ≡ n2 ≡
√
n. The running time Tn for each

run was detected, then the speedup of calculations was calculated using the formula Sn = T1/Tn
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Figure 5. Graphs of the dependence of the counting time, speedup, and parallelization
efficiency of the Algorithm 1 depending on the selected number of computing nodes within the

framework of the “quadratic process topology”. The graphs are typical for a typical launch,
rather than the average values for a series of experiments. On the efficiency graph, the points
“estimated” are marked separately, the values of which are calculated using the Algorithm 3

and the parallelization efficiency using the formula En = Sn/n. Based on these data, work sched-

ules, speedup, and efficiency were constructed, as shown in Fig. 5. The key graph here is the

graph of the real parallelization efficiency, which demonstrates certain differences between the

real parallelization efficiency and the estimated one. However, these differences look insignificant

from a practical point of view, which confirms the applicability of the proposed Algorithm 3.

4. Discussion

1. Large-scale autotuning. The ideas for adjusting the algorithm parameters to the charac-

teristics of the target computing system, used in the development of the proposed method-

ology, are consonant with the ideas of autotuning (see, for example, the works [8, 9, 13–15]).

However, in these works, the ideas considered mainly relate to “small-scale autotuning” –

features of adjusting algorithms to the technical capabilities of “small” computing systems

(a multicore processor or a graphics processing unit). The ideas proposed in our work relate

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

30 Supercomputing Frontiers and Innovations



to adjusting the algorithm parameters to the characteristics of a distributed memory super-

computer and have not been previously considered in detail in publicly available sources.

2. The invariance of the proposed algorithm with respect to the properties of the

computing system used. Such important characteristics of a communication network as

latency, data transfer rate, topology of the communication network, and distribution of pro-

cesses across computing nodes are important in the a priori estimation of the coefficient C2.

Also, many technical features of the computing node must be taken into account when a

priori estimating the coefficients C1 and C̃1. In fact, the paper proposes a posteriori method

for determining these constants based on the results of some preliminary tests, which auto-

matically sets in them the corresponding characteristics of the used communication network

and computing nodes. Thus, the proposed algorithm for determining the optimal values

of the virtual topology of processes is relevant for any hardware, any parallel program-

ming technology, any compilation options, and any features of the system and application

software.

3. Possible improvements to the proposed algorithm. In the derivation of all formulas,

the assumption was made that the computational complexity of all arithmetic operations

is equivalent. If desired, the reader can clarify the output of the corresponding formulas,

taking into account that, for example, addition of two numbers requires 1–3 CPU cycles,

multiplication – 1–7 cycles, and division – 10–40 cycles. The values of the coefficients C1

and C̃1 on a processor-homogeneous computing system should not change much from launch

to launch; therefore, they could potentially be calculated once before the start of all exper-

iments, saved and used in the future. However, the distribution of processes across the

computing nodes of a supercomputer can vary from launch to launch, even on the same

set of computing nodes. Therefore, the coefficient C2 must be calculated before each run of

the computational algorithm implementation. The values of the coefficients C1 and C̃1 are

averaged over all application processes. Considering that it is supposed to use a computer

system that is homogeneous in terms of processors, this should not be a serious limitation

and simplification. The coefficient C2 is calculated as the average value for Allreduce()

operations performed across rows and columns of the process grid. For greater accuracy of

the algorithm, one can do without averaging and use two separate coefficients. Next, the

value of the coefficient C2 is averaged over all application processes, and the impact of this

averaging may be significant. Further experiments should demonstrate how significant this

factor is in practice and needs to be taken into account in order to obtain more accurate

results.

4. Theoretical assumptions. Using only powers of two for the values of n1 and n2 does not

represent a serious limitation of generality. This assumption is often used in practice when

evaluating various dynamic characteristics of software implementations.

5. Applicability of the algorithm. The algorithm described in this article is designed to

solve linear algebra problems using a two-dimensional Cartesian topology of processes, but

it can be easily adapted to solve other problems using other topologies.

6. Features of software implementation of algorithms. Some statements made in sub-

sections 1.1–1.5 when estimating the implementation time of parallel algorithms using basic

linear algebra operations may be incomprehensible to readers who have not previously im-

plemented parallel versions of iterative algorithms for solving systems of linear algebraic

equations. For example, the statement may not be obvious (see subsection 1.5), that with
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the chosen data storage structure, when adding vectors, there will be no need to exchange

messages between different computing processes. Therefore, we provide a link to the work [6],

which contains an example of a software implementation of an iterative algorithm from the

class of algorithms under consideration (including using the functions of collective interac-

tion of processes from various MPI standards: MPI-3 and MPI-4).

7. The case of a heterogeneous computing system. The approach discussed in this article

is applicable without additional modifications for computing systems that are homogeneous

in terms of core computing – whether they are central processing units (CPUs) or graphics

accelerators (GPUs), while the system may be heterogeneous over a communication network.

If a supercomputer co-design is required for a more complex heterogeneous system, then a

more complex approach beyond the scope of this article may be required to distribute basic

computing operations across heterogeneous computers.

Conclusion

The paper demonstrates the fundamental possibility of using the ideas of supercomputing

co-design to automatically match the optimal topology of calculations with the features of the

problem being solved, the features of the supercomputer system used and parallel programming

technology. The proposed methodology for algorithms that are in demand in solving applied

problems can increase the efficiency of using supercomputer systems by users.
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This article concerns the developing of supercomputer methods for solving inverse problems

of ultrasonic tomography in application to nondestructive testing of thin plates using Lamb waves.

Such problems are computationally expensive, as longitudinal, shear, and other waves propagate

in solids, requiring the use of vector elastic models of wave propagation. Iterative methods for

solving the inverse problem have been developed. The methods are based on gradient descent

methods of minimizing the residual functional. Efficiency of the proposed algorithms is illustrated

on model problems. The field of wave tomography, which is currently under development, requires

powerful computing resources. Parallel computations in this study have been performed on general-

purpose processors of the Lomonosov supercomputer complex. Solving the Helmholtz equation is

the core element of the developed algorithms for solving inverse problems of wave tomography.

The most demanding computations involve solving linear equations with large-scale sparse matrices

using LU-decomposition method. The algorithms were implemented using linear algebra libraries

with serial and parallel code. Effectiveness, scalability and performance of the method has been

evaluated on CPU computing platforms.

Keywords: supercomputer, mathematical modeling, guided wave tomography, inverse problems,

Lamb waves.

Introduction

This paper concerns the developing of developing ultrasonic tomographic imaging methods

for non-destructive testing of solids. Immediately after the advent of the first medical X-ray

tomographs, the idea of ultrasonic tomographic imaging devices arose. Solving this problem

would eliminate the use of ionizing radiation in medical imaging. Ultrasonic tomography opens

up fundamentally new possibilities for nondestructive imaging of solids. However, developing

wave tomography devices has proven much more complex than X-ray ones, primarily due to

the mathematical challenges involved. While the inverse problems in X-ray tomography can be

solved using linear mathematical models, wave tomography imaging requires solving nonlinear

inverse problems.

Over the past 20 years, breakthrough results in ultrasound tomography have been achieved

in soft tissue diagnostics. One of the key challenges in modern medicine is the diagnosis of

breast cancer in the early stages of the disease. This problem can be successfully solved using

ultrasound tomography [1–5]. A unique feature of breast cancer diagnostics is the ability to

interpret tomography data in a scalar wave model, since soft tissues are more than 90% water.

Mostly the pressure waves propagate through soft tissues. However, even in this simple model,

the inverse problem is nonlinear, and its solution requires the use of supercomputers [6]. Efficient

iterative algorithms for interpreting experimental data have been developed using the explicit

formulation of the gradient of the residual functional between the calculated and measured wave

fields at the detectors [7, 8]. Effectiveness of the developed methods has been evaluated on

supercomputers using various computing platforms [9, 10].

Inverse problems of ultrasound tomography in NDT are much more complex, since the

mathematical model must describe the propagation of both longitudinal and shear waves. The
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displacement of a point is described by a vector, and a system of second-order differential

equations is constructed for the components of the displacement vectors [11–14]. The inverse

problem is reduced to minimizing a functional dependent on three unknowns: density and two

elasticity coefficients as functions of spatial coordinates. As in the scalar case, a representation

for the gradient of the residual functional with respect to these three parameters is obtained in

the vector elastic model [13, 15, 16]. Thus, from a mathematical standpoint, in both the scalar

and vector models, the objective is to solve a coefficient inverse problem for differential equations.

Iterative methods for finding an approximate solution employ the explicit representation for the

gradient of the residual functional.

However, in this formulation, the inverse problem is computationally very expensive. For

a number of practically important non-destructive testing (NDT) problems, the use of sim-

pler mathematical models appears promising [17]. One such problem is ultrasonic diagnostics

of defects in thin plates [18–21]. This study evaluates the supercomputer implementation of the

ultrasonic tomographic imaging method for NDT using Lamb waves. Capabilities of the approx-

imate solution method for the inverse problem of detecting surface defects in metal plates are

examined in detail. Solving the Helmholtz equation is the core element of the proposed imaging

algorithms. A specialized scalar model for thin-plate defect diagnostics allows for determining

not only shapes, but also the depth map of defects. Even in this simplified model, a super-

computer is required to implement the developed algorithms in practice. The effectiveness of

tomographic image reconstruction algorithms on a CPU platform is discussed in detail.

The article is organized as follows. Sections 1, 4.1, 4.2 are devoted to the formulation and

model computations of the direct problem of ultrasound tomography. Sections 2, 3, 4.3, 4.4 are

devoted to the formulation and model computations of the inverse problem. Section 5 contains

performance analysis of a supercomputer implementation. Conclusion summarizes the study.

1. Statement of the Direct Problem of Ultrasound Tomography

in a Vector Elastic Model

The object of tomographic imaging in this study is a thin, homogeneous flat plate, the

thickness of which is on the order of the central wavelength of the sounding pulse (Fig. 1).

Defect detection in thin plates and pipes is a pressing practical issue [18, 19]. The specificity of

this problem is that Lamb waves of different modes propagate in thin plates and pipes. Defects

in the imaged sample can be internal, associated with a local change in the parameters of the

medium, or surface defects, associated with a local change in the plate thickness. First, we

present the formulations of the direct and inverse problems for the case of internal defects.

Figure 1 shows a diagram of a tomographic imaging experiment, including sources and

detectors of ultrasonic radiation. The sources sequentially emit ultrasonic sounding pulses, which

are recorded by the detectors.

Figure 1. Scheme of the tomographic experiment
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We assume that the sounding waves propagate in isotropic, linear, perfectly elastic media

described by the Lame parameters and the density of the material. To simulate the wave prop-

agation process in elastic media, the problem is often formulated in terms of particle velocity

and stress. The dynamic equations in R3 describing wave propagation in an elastic volumetric

plate in the velocity-stress formulation have the form of a first-order hyperbolic system [22]

ρ
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(1)

Here u (t, r) = (u1, u2, u3) is the shear velocity vector, σ (t, r) = σij is the stress tensor of size

3× 3; µ (r), λ (r) are the Lame coefficients; ρ (r) is the bulk density; f (t, r) = fij is the tensor

defining the external force. For these equations, we should also specify the initial conditions of

rest at the time t = 0

u (0, x) = 0, σ (0, x) = 0. (2)

When solving the direct problem of elastic wave propagation, the functions µ (r), λ (r),

ρ (r) are known, and the components of the wave field for each point of the region Ω are to be

determined. Boundary conditions are applied on the boundary ∂Ω of the plate Ω. The lateral

sides of the boundary Γ⊂∂Ω are assumed stationary with the following boundary conditions

u (t, r) |Γ= 0. (3)

The rest of the boundary (the upper and lower sides of the plate) ∂Ω \ Γ is assumed a free

boundary, i.e., no external forces act on ∂Ω \ Γ, and we apply the conditions

σ (t, r)n |∂Ω\Γ= 0, (4)

where n is the outer normal vector to the boundary at point r.

In all the computations presented, the following sounding waveform was used as the external

disturbance

f33(x1, x2, x3 = 0, t) =

{
C sin (2

3πν0t) sin (2πν0t), 0 < t < 3/w0,

0, otherwise,
(5)

and the remaining components of the force tensor fij = 0. Here w0 is the central frequency of

the sounding pulse. The constant C determines the amplitude of the external disturbance. For

the simulations presented below, we assume C = 1 GPa/µs = 10−6 kg/(mm · µs3). The time

dependence of the pulse is a smooth function with a zero time derivative at the boundaries and

a zero integral over the time of action. Under these conditions, the pulse spectrum does not

contain very low and very high frequencies. The external disturbance is applied at a certain

point on the upper surface of the plate.
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2. Statement of the Inverse Problem of Ultrasonic

Tomographic Imaging of Internal Defects in a Plate

in Elastic Vector Models

Let us consider the inverse problem of ultrasonic tomography for the velocity-stress equa-

tions for detecting internal defects in a plate. Figure 1 shows a diagram of ultrasonic tomog-

raphy of a plate. A defect with three unknown parameters of the medium (µ (r) , λ (r) , ρ(r))

occupies a region G. A plate Ω has a known constant thickness d0 and parameters (µ0, λ0, ρ0)

outside the defect G. Ultrasound emitters and detectors are placed around the defect G on the

surface of the plate. The emitters are located at points qj with a total of M emitter positions

j = 1, . . . ,M . Wave field v(t, r; qj) is measured at the boundary S surrounding the region G. Let

V (t, s; qj) denote the experimental data collected for detector position s∈S, source position qj ,

j = 1, . . . ,M , over the time interval [0, T ]. A known function f (t, r) describes the sounding

pulse. In the inverse problem, the goal is to determine the unknown parameters of the medium

(µ (r) , λ (r) , ρ(r)) for r∈G, knowing the measured experimental data V (t, s; qj). The displace-

ment function v(t, r; qj ;µ, λ, ρ) is obtained by solving the main problem (1)–(4) for velocities

and stresses, followed by integrating the velocity function using the formula v(t, r) =
∫ t

0 u(t, r)dt.

The wave field v(t, s; qj ;µ, λ, ρ) computed for the parameters (µ (r) , λ (r) , ρ(r)) must satisfy

the equation v
(
t, s; qj ;µ, λ, ρ

)
= V (t, s; qj), where s∈S, for all source positions qj and for the

exact (unknown) values of the parameters (µ (r) , λ (r) , ρ(r)).

Let us introduce the residual functional Φ(µ, λ, ρ) of the arguments (µ(r), λ(r), ρ(r)), which

is the difference between the experimental data and the computed data

Φ(µ, λ, ρ) =
∑M

j=1

1

2

∫ T

0

∫

S
(v(t, s, qj ;µ, λ, ρ)− V (t, s; qj))

2dsdt. (6)

For multiple wave sources, the residual functional is the sum of the values j = 1, . . . ,M

obtained for each source. For each fixed source j, the integrals over the time interval [0, T ]

and over the boundary S are calculated for all the detectors in S. Mathematically, the inverse

problem is posed as the problem of finding functions (µ(r), λ(r), ρ(r)) that minimize the residual

functional (6) (µ(r), λ(r), ρ(r)) : min
µ,λ,ρ

Φ(µ, λ, ρ) = Φ(µ, λ, ρ). The functions (µ(r), λ(r), ρ(r))

constitute an approximate solution to the inverse problem.

To minimize the residual functional, we use gradient descent methods. A rigorous mathemat-

ical formulation for the gradient of the residual functional Φ (µ, λ, ρ) with respect to parameters

(µ, λ, ρ) was obtained in [15] and has the following form:

Φµ(r;µ, λ, ρ) =
∑M

j=1

∫ T

0
ε(v(t, r; qj ;µ, λ, ρ)) : ε(h(t, r; qj ;µ, λ, ρ))dt,

Φλ(r;µ, λ, ρ) =
∑M

j=1

∫ T

0
div(v(t, r; qj ;µ, λ, ρ)) · div(h(t, r; qj ;µ, λ, ρ))dt,

Φρ(r;µ, λ, ρ) =
∑M

j=1

∫ T

0
(vt(t, r; qj ;µ, λ, ρ),ht(t, r; qj ;µ, λ, ρ))dt.

(7)

Here, ε(v(t, r)) = (Dv(t, r) + (Dv(t, r))T )/2; Dv is the Jacobian of v(t, r) with respect to r;

and similarly for h(t, r). In the first line, the operator (A : B) =
∑

ij AijBij denotes the element-

wise scalar product of two matrices, and in the third line (·, ·) is the scalar product of vectors

from R3. Equation (7) uses the displacement functions v(t, r; qj ;µ, λ, ρ) and h(t, r; qj ;µ, λ, ρ).

The displacement function v(t, r; qj ;µ, λ, ρ) is obtained by solving the main problem (1)–(4)
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for velocities and stresses, followed by integrating the velocity function using the formula

v(t, r) =

∫ t

0
u(t, r)dt, (8)

where the initial conditions of rest are used for u(t, r). Function h(t, r; qj ;µ, λ, ρ) is obtained

from the solution of the following adjoint velocity-stress problem (9)–(10) for the given values

(µ, λ, ρ) followed by integration of the velocity function using formula (11).

{
ρ(r)∂ω(t,r)

∂t − div σ(t, r) = u(t, s; qj ;µ, λ, ρ)−U(t, s; qj),
∂σ(t,r)
∂t = 2µ(r)∂ε(t,r)

∂t + λ(r)div ω(t, r) I.
(9)

ω(t = T, r, qj ;µ, λ, ρ) = 0, σ(t = T, r, qj ;µ, λ, ρ) = 0, ω(t, r) |Γ= 0, σ(t, r)n |∂Ω\Γ= 0. (10)

h(t, r, qj ;µ, λ, ρ) = −
∫ T

t
ω(t, r, qj ;µ, λ, ρ)dt. (11)

Here, ε(t, r)=(Dω(t, r)+(Dω(t, r))T )/2 ; Dω is the Jacobian of ω(t, r); I is the identity matrix.

For numerical integration over time in formulas (8) in order to obtain v(t, r, qj ;µ, λ, ρ),

it is convenient to use the formula for integration in reverse time v(t, r) =
∫ t

0 u(t, r)dt =∫ T
0 v(t, r)dt−

∫ T
t v(t, r)dt, where the value

∫ T
0 v(t, r)dt is computed in advance during solving

the main problem (1)–(4). In order to compute the gradient using formulas (7), the functions

vt(t, r, qj ;µ, λ, ρ) and ht(t, r, qj ;µ, λ, ρ) are replaced by u(t, s, qj ;µ, λ, ρ) and ω(t, r, qj ;µ, λ, ρ),

respectively, which are obtained explicitly from the solution of the main and adjoint problems.

If the lateral boundaries of the plate Ω are located sufficiently far away, it is convenient to re-

place boundary condition (3) u(t, r) |Γ= 0 with some boundary transparency condition on Γ [23]

in the computations of the main and adjoint problems. Iterative gradient-descent methods have

proven highly effective in solving inverse coefficient problems. It is expected that the inverse

problem in the presented formulation can be solved using high-performance computers.

3. Statement of the Inverse Problem of Ultrasonic Tomography

for Detecting Surface Defects in a Plate Using a Scalar

Model

To solve the inverse problem of detecting defects inside a plate rigorously, it is necessary to

formulate the inverse problem in a three-dimensional vector model, as described in Section 2.

However, such a formulation is associated with a huge amount of computations, which is a

demanding task even for HPC systems.

Figure 2a shows a tomographic scheme for examining surface defects on a plate. Let the

defect represent a localized change in plate thickness d(r); outside the defect, the plate thickness

is constant and equal to d0 (Fig. 2b). Ultrasonic radiation sources 1 are located around the defect.

The wave field is recorded on line 2. The case where the defect is located on the side opposite

to the sources and detectors (lower side on Fig. 2a) is of greatest interest.

Based on a number of considerations, among the various Lamb wave modes, the A0 mode [24]

is suitable for tomographic imaging. Let us consider a simplified formulation of the inverse

problem for detecting surface defects. For a plate thickness that smoothly varies in the region
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(a) location of sources 1 and detectors 2 (b) mathematical model of a 2D inverse problem

of plate thickness reconstruction d(r)

Figure 2. Scheme of tomographic diagnostics of surface defects

of defects, the propagation of Lamb waves of A0 mode is approximately described by a two-

dimensional scalar wave model with varying wave velocity in the defect region. We introduce a

two-dimensional coordinate system XY on the lower surface of the plate, where the sources and

detectors are located. A point r on the surface thus has the coordinates r = (x, y)∈R2. The

propagation of vertical oscillations of A0 mode Lamb waves on the lower surface of the plate

is approximately described by a two-dimensional scalar model. Since the wave velocity of A0

mode depends on the frequency, we use the Helmholtz equations for a certain set of frequencies

from the spectrum of the sounding pulse

∆ru(wi, r, qj) + (wi/c(r, wi, d(r)))2u(wi, r, qj) = F δ(r − qj), (12)

where u(wi, r, qj) is a scalar wave at a point r∈R2 on the lower surface of the plate; wi is the

sounding frequency (i = 1, . . . , N); qj∈R2 (j = 1, . . . ,M) is the position of the source on the

lower surface of the plate; c(r, wi, d(r)) is the velocity of A0 mode waves, which depends on the

frequency wi and plate thickness d(r) at a point r in accordance with the dispersion relation [24].

F is the amplitude of the sounding wave. Non-reflecting boundary condition is applied at the

boundary of the computational domain.

The inverse 2D problem is to determine the thickness d(r) that minimizes the residual

functional Φ(d(r)), which depends on the thickness d(r)

Φ(d(r)) =
∑M

j=1

∑N

i=1

∫

S
(u(wi, s, qj , d(r))−U(wi, s, qj))

2ds. (13)

Here, U(wi, s, qj) are the experimental data, which represent vertical oscillations of the A0 mode

Lamb wave at the detector locations s. The gradient of the residual functional can be computed

explicitly

δΦ(d(r))

δd(r)
=

N∑

i=1

2c2
0(wi)

c3(wi, d(r))

δc(wi, d(r))

δd(r)

M∑

j=1

(
wi

c0(wi)

)2

Re(u(wi, r, qj , d(r))z(wi, r, qj , d(r))),

(14)

where z(wi, r, q,d(r)) is the solution to the adjoint problem [25]; c(wi,d(r)) and its derivative

is determined from the dispersion relation [24]. Knowing the gradient, we can use iterative

gradient-descent methods for minimizing the residual functional in order to solve the inverse

problem.
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4. Model Computations

4.1. Numerical Method for Solving the Direct Problem of Elastic Wave

Propagation in a Solid Body

For the numerical solution of the system of equations of the dynamic elasticity theory (1),

a standard explicit finite-difference scheme on staggered grids is used [26–28]. The grid consists

of integer and half-integer nodes. We will use the following notation

(x1)i = ih1, (x1)i+1/2 = (i+ 1/2)h1, (x2)j = jh2, (x2)j+1/2 = (j + 1/2)h2,

(x3)k = kh3, (x3)k+1/2 = (k + 1/2)h3, tn = nτ, tn+1/2 = (n+ 1/2)τ,

where hm is the grid step along the coordinate xm, and τ is the time step. Discretized functions

at integer and half-integer grid points are introduced

(u1)ni+1/2,j,k = u1((x1)i+1/2, (x2)j , (x3)k, t
n), (u2)ni,j+1/2,k = u2((x1)i, (x2)j+1/2, (x3)k, t

n),

(u3)ni,j,k+1/2 = u3((x1)i, (x2)j , (x3)k+1/2, t
n), (σ11)

n+1/2
i,j,k = σ11((x1)i, (x2)j , (x3)k, t

n+1/2),

(σ22)
n+1/2
i,j,k = σ22((x1)i, (x2)j , (x3)k, t

n+1/2), (σ33)
n+1/2
i,j,k = σ33((x1)i, (x2)j , (x3)k, t

n+1/2),

(σ23)
n+1/2
i,j+1/2,k+1/2 = σ23((x1)i, (x2)j+1/2, (x3)k+1/2, t

n+1/2),

(σ13)
n+1/2
i+1/2,j,k+1/2 = σ13((x1)i+1/2, (x2)j , (x3)k+1/2, t

n+1/2),

(σ12)
n+1/2
i+1/2,j+1/2,k = σ12((x1)i+1/2, (x2)j+1/2, (x3)k, t

n+1/2).

To construct an explicit finite-difference scheme, the following approximations for time deriva-

tives are used Dt [f ]NI,J,K =
(
f
N+1/2
I,J,K − fN−1/2

I,J,K

)
/τ , where f is the differentiated function.

Lowercase subscripts denote integer values, while uppercase subscripts are used for both in-

teger and half-integer values. Spatial derivative of f with respect to x1 is approximated as

D1 [f ]NI,J,K =
(
fNI+1/2,J,K − fNI−1/2,J,K

)
/τ .

Approximations of other spatial derivatives are constructed similarly. The numerical ap-

proximation of the system of equations (1) takes the following form:

ρi+1/2,j,kDt[u1]
n−1/2
i+1/2,j,k = D1[σ11]

n−1/2
i+1/2,j,k +D2[σ12]

n−1/2
i+1/2,j,k +D3[σ13]

n−1/2
i+1/2,j,k,

ρi,j+1/2,kDt[u2]
n−1/2
i+1/2,j,k = D1[σ12]

n−1/2
i,j+1/2,k +D2[σ22]

n−1/2
i,j+1/2,k +D3[σ23]

n−1/2
i,j+1/2,k,

ρi,j,k+1/2Dt[u3]
n−1/2
i,j,k+1/2 = D1[σ13]

n−1/2
i,j,k+1/2 +D2[σ23]

n−1/2
i,j,k+1/2 +D3[σ33]

n−1/2
i,j,k+1/2,

Dt[σ11]ni,j,k = (λi,j,k + 2µi,j,k)D1[u1]ni,j,k + λi,j,kD2[u2]ni,j,k + λi,j,kD3[u3]ni,j,k + [f11]ni,j,k,

Dt[σ22]ni,j,k = λi,j,kD1[u1]ni,j,k + (λi,j,k + 2µi,j,k)D2[u2]ni,j,k + λi,j,kD3[u3]ni,j,k + [f22]ni,j,k,

Dt[σ33]ni,j,k = λi,j,kD1[u1]ni,j,k + λi,j,kD2[u2]ni,j,k + (λi,j,k + 2µi,j,k)D3[u3]ni,j,k + [f33]ni,j,k,

Dt[σ23]ni,j+1/2,k+1/2 = µi,j+1/2,k+1/2(D2[u3]ni,j+1/2,k+1/2 +D3[u2]ni,j+1/2,k+1/2) + [f23]ni,j+1/2,k+1/2,

Dt[σ13]ni+1/2,j,k+1/2 = µi+1/2,j,k+1/2(D3[u1]ni+1/2,j,k+1/2 +D1[u3]ni+1/2,j,k+1/2) + [f13]ni+1/2,j,k+1/2,

Dt[σ12]ni+1/2,j+1/2,k = µi+1/2,j+1/2,k(D1[u2]ni+1/2,j+1/2,k +D2[u1]ni+1/2,j+1/2,k) + [f12]ni+1/2,j+1/2,k.

(15)

The stability condition for scheme (15) has the form of cp

√(
1
h2
1

+ 1
h2
2

+ 1
h2
3

)
≤1, where cp is the

longitudinal wave velocity in the material.
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4.2. Model Computations of the Direct Problem of Wave Propagation

in Thin Plates

The problem of computing the wave field in thin plates is of particular interest in this work.

Due to the complex effects of interference in thin plates, the resulting waves are so-called normal

waves or Lamb waves. We consider Lamb waves in plates with a thickness comparable to the

wavelength. Lamb waves have different modes, each traveling at a different speed. A distinction

is made between symmetric modes (denoted as Si) and asymmetric modes (denoted as Ai) of

Lamb waves. In symmetric modes, the upper and lower surfaces of the plate move in opposite

directions along the Z-axis perpendicular to the surfaces, while in asymmetric modes the surfaces

move in the same direction.

An important feature of Lamb waves is that for a given plate thickness only the zero-order A0

and S0 modes are excited for frequencies below a certain threshold frequency. As the frequency

increases, additional higher-order modes appear. In tomographic experiments, it is advisable

to use the frequencies below this threshold frequency to avoid the appearance of additional

modes. The fewer modes are present, the simpler and more reliable are the experimental data

obtained. The A0 mode is excited much more easily than the S0 mode by striking the plate

from above. Furthermore, with this type of pulse excitation, as shown by model computations,

the amplitude of the A0 mode is significantly higher than the amplitude of the S0 mode. The

propagation velocities of the A0 and S0 modes in the frequency range under consideration differ

by approximately a factor of 2, which allows for reliable separation of these modes in processing

the experimental data for solving inverse problems of thin plate diagnostics.

As an example, we present a computation of the wave field in a plate (Fig. 3) with a notch-

shaped defect, with a depth smoothly increasing from zero toward the defect center as a cosine

function. The parameter values used in the computation effectively excite only the A0 Lamb

wave mode:

• ω = 75 kHz is the central frequency of the pulse;

• R = 5 mm is the radius of the circle of force application;

• L= 62.5 cm is the plate length;

• d= 1.0 cm is the plate thickness;

• a1 = 106.3 mm, b1 = 156.3 mm are the coordinates of the center of the force application;

• L = 8.5 cm; h = 0.5 cm are the diameter and maximum depth of the defect.

(a) 25 µs (b) 50 µs (c) 75 µs

Figure 3. Velocity u3 on the plate surface at different moments of time
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As can be seen from this figure, the defect significantly distorts the wavefront (the defect is

highlighted by the black line in Fig. 3a. This distortion appears due to the fact that the residual

plate thickness under the defect is 70% of the initial plate thickness, which leads to a decrease

in the propagation velocity of the A0 Lamb waves, since their velocity decreases with decreasing

plate thickness.

4.3. Numerical Method for Solving the Inverse Problem of Plate Thickness

Reconstruction

The inverse problem of plate thickness reconstruction was solved using a two-dimensional

scalar model approximation, described by the Helmholtz equation (12) for a certain set of

frequencies. To numerically solve the inverse problem of minimizing the residual functional

Φ (d (r)) (13), an iterative process was constructed consisting of the following steps:

1. The initial approximation at the first iteration is d1 (r) =d0=const , where d0 is the thickness

of the plate without defects.

2. For a given dn (r), the direct problem (12) of computing the wave field is solved using the

finite difference approximation (16).

3. Using the simulated measured values of the wave field on the detectors U (wi, s, qj) and

computed u (wi, s, qj , d (r)) for a given d (r), the adjoint problem is solved in finite difference

approximation.

4. Using the obtained values z (wi, r, qj , d (r)) and u (wi, r, qj , d (r)), the gradient of the residual

functional Φ
′

d (d (r)) is computed by formula (14).

5. Knowing the gradient, we compute the next iterative approximation using the formula

dn+1 (r) =dn (r) -γ (n) Φ
′

d (d (r)). The step size at the first iteration is determined based on

prior considerations. If the value of the residual functional increases at the next iteration,

γ (n) is reduced by a factor of 2. The process returns to step 2.

The Helmholtz equation is discretized on a uniform rectangular grid, and the correspond-

ing derivatives are approximated by finite differences using standard formulas. The discretized

Helmholtz equation takes the following form:

ui+1j − 2uij + ui−1j

∆x2
+

uij+1 − 2uij + uij−1

∆y2
+

ω

c2(ω, d(rij))
uij = Fi,j . (16)

The system of algebraic equations is constructed as the indices i, j run through all the values

within the workspace. The matrix of this system is sparse and stored in CSR format. The Eigen

library is used for sparse matrix manipulation and solving the problem. We will discuss the

implementation details in Section 5.

4.4. Model Computations of the Inverse Problem of Plate Thickness

Reconstruction

A series of computational experiments were conducted on solving the inverse problem of

surface defect imaging. The experiment involved solving the forward problem using a three-

dimensional vector wave model and recording the detector data. These data were then used

as simulated experimental data to solve the inverse problem for a two-dimensional scalar wave

equation.
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The direct problem was solved for a three-dimensional thin steel plate (Fig. 2) with a

thickness d and a size of L×L. Free boundary conditions were applied on the upper and lower

boundaries. The size of the computational domain and the locations of the sources and detectors

were chosen such that the wave reflected from the boundary of the computational domain arrived

at the detector sufficiently later than the wave reflected from the defect. A square workspace is

located in the center of the computational domain. Defects, which are cylindrical depressions on

the underside of the plate, are located within the workspace. Sources and detectors are located

at the edges of the workspace on the upper side of the plate.

The sources generate sounding pulses defined by formula (5). The detectors are uniformly

distributed around the perimeter of the workspace and record the vertical component of the

displacement velocity u3(t, r) on the upper side of the plate. Data is recorded with the same

time step as in the forward problem calculation. For each source-detector pair, the data recorded

is a function of time. For each detector, the data undergoes a Fourier transform, and the result

is used as U(w, s; qj) to solve the inverse problem for the Helmholtz equation. An example of

a recorded signal is shown in (Fig. 4a), and a plot of the Fourier transform modulus for one

detector is shown in (Fig. 4b).

t, µs

(a) example of a recorded signal

ν, kHz

(b) spectrum of a recorded signal

x,m

(c) real part of the Fourier

transform. u3. Blue (solid) is a

vector model, red (dashed) is a

scalar model, yellow is difference

Figure 4. Signal and its spectrum and comparison u3 in vector model with u3 in scalar model

A key aspect in solving the inverse problem in a scalar two-dimensional wave model described

by the Helmholtz equation is the correct selection of the amplitude and phase of the source

perturbation and the wave propagation velocity for each harmonic. These parameters cannot be

obtained explicitly with the required accuracy, even if the source and medium parameters in the

forward three-dimensional problem for an elastic vector medium are known. In a real physical

experiment, these parameters are unknown or approximate, making the case even worse.

In order to determine the missing parameters, data fitting was performed on a single-source

problem with standardly positioned detectors on a defect-free plate. The vector model was used

to compute the wave field at the detectors, perform a Fourier transform, and obtain complex-

valued data at the detectors for the selected frequency. The phase, velocity, and amplitude of

the harmonics in the scalar model were determined by minimizing the norm of the difference

between the complex-valued data at the detectors for a given frequency in the scalar and vector

problems.
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Figure 4c shows the data fitting error between the two models. Blue line represents the

data from the vector model, red line represents the data from the scalar model, and yellow

line represents their difference. The root-mean-square fitting error is approximately 0.02%. The

procedure for determining these parameters was performed for each frequency used in solving

the inverse problem.

To demonstrate the algorithm for solving the inverse problem of plate thickness imaging,

a computational experiment was conducted with 12 sources located 10 cm inwards from the

midpoints of the sides of a 30×30 cm square computational domain. 1200 detectors were placed

equally spaced around the perimeter of the square. The computations used 41 frequencies in the

range of 23–147 kHz. The simulated sample object contains a collection of defects in the form

of cylindrical depressions.

(a) sample (b) gradient at the first iteration

(c) reconstructed image after 50 iterations (d) reconstructed image after 140 iterations

Figure 5. Simulation experiment

Figure 5 shows the sample, the gradient at the first iteration, and the reconstructed image

after 50 and 140 iterations. The results demonstrate that defects are localized with high accuracy,

and their shape is precisely reconstructed. A large number of model simulations were performed

with defects of varying shapes and depths. These simulations demonstrated that the developed

Supercomputer Methods of Ultrasound Tomographic Imaging in NDT Based on Lamb...

44 Supercomputing Frontiers and Innovations



algorithm reliably detects both point-like and extended defects, precisely reconstructs their shape

and depth, and has high spatial resolution.

5. Performance Analysis of a Supercomputer Implementation

for Solving Inverse Problems of Ultrasound Tomography

Using the Lamb Wave

Solving the inverse problems under consideration requires huge computational resources.

During the iterative solution process, the Helmholtz differential equation (12) must be solved

for both the direct and the adjoint problem at each iteration, for each source position, and for

each frequency used. Typical numbers of sources and frequencies can vary from a few to several

dozen. For the model computations presented in Section 4.4, 12 sources and 41 frequencies were

used, in which case the Helmholtz equation must be solved 12 × 41 × 2 = 984 times for every

iteration.

A finite-difference approximation was used for the Helmholtz equation, resulting in a system

of linear algebraic equations (SLAE), the solution of which is the most computationally expensive

and time-consuming task. Third-party linear algebra libraries were used for SLAE solution. The

SLAE matrix has a size equal to the number of grid points and is highly sparse, with a fill-factor

of approximately 0.0008%. The matrix is stored in CSR format. For the model computations

from Section 4.4, the matrix size was approximately 6.4·105×6.4·105 with the number of nonzero

elements approximately 3.2× 106. Note that the matrix in this problem is not symmetric.

An inverse problem solution algorithm was implemented using C++ language plus MPI for

parallelization, and Eigen library [29] to fill in the matrix, the right-hand side, and solving the

SLAE. In this Section, we analyze the performance of the developed application for solving in-

verse problems. The computations were performed in the “compute” section of the Lomonosov-2

supercomputer [30]. In this section, each node contains a single 14-core Intel Xeon E5-2697 v3

CPU with 64 GB of RAM. The application was run on 164 processes. Intel MPI 2017 was used

to compile and run the distributed MPI version. For this performance analysis, the program

was configured to run for ∼5 minutes, this was achieved by reducing the number of iterations.

The iterations are essentially identical, so the overall picture in this case matches the program’s

behavior when using the number of iterations used for real-life calculations.

First, it was necessary to determine the optimal number of processes per node. This program

is quite memory-intensive, and in such cases, it is sometimes beneficial to occupy only a part of

processor cores in order to reduce memory contention. Experiments with 8 to 14 processes per

node were performed in the “compute” section, with 10 launches of every experiment performed

in order to obtain enough statistics. A smaller number of processes per node was not considered

in this case because it involves too many compute nodes, which was considered inexpedient.

Table 1 shows the minimum execution times obtained. We consider the minimum value, not

average or mean, because supercomputers often experience different external factors that can

slow down a user program (such as influence of other users’ applications running concurrently,

the overload of distributed file system, OS noise, etc.). This leads to periodic anomalous or simply

slower executions, which have notably longer execution times and are of no interest in our case.

But we note that the average execution time behaves generally similarly to the minimum time.

Considering the minimum time allows us to estimate how quickly a program can potentially

execute under the chosen parameters, without the influence of external factors.
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Table 1. Program execution time with different numbers of processes per node

Processes per node 8 9 10 11 12 13 14

Minimum execution time, s 360 360 294 222 222 228 228

It can be seen that the program executes the slowest at 8–9 processes per node, then the

execution time begins to decrease, reaching a minimum at 11–12 processes per node. This is

presumably due to the fact that fewer compute nodes are required as the number of processes

per node increases, and, as a result, the amount of data transferred between nodes decreases

(i.e., the communication decreases). The execution time then increases slightly, likely due to the

aforementioned effect of memory contention between processes on the node. Thus, the minimum

execution time is achieved at 11–12 processes per node. However, it should be taken into account

that when running user programs on a supercomputer, a queuing system is used, and the more

nodes a program requires, the longer it will usually wait in the queue for the required number

of nodes to become available. Given that the difference in execution time between the versions

with 11–12 and 14 processes per node is small (a slowdown of ∼3%), but fewer nodes are used

(difference in two nodes, or 16.7%), it is recommended to run this program on 14 processes per

node, thereby utilizing all available processor cores. This will both speed up the job’s progress

through the queue and reduce the overall resource consumption in terms of node-hours, thereby

saving resources for other users’ jobs.

Next, we analyzed the program’s performance, using 14 processes per node. First, we ex-

amined the MPI usage in the program. mpiP 3.5 profiling tool [31] was used for this purpose.

Analysis of its results showed that program processes spend 3–10% of their execution time on

MPI, which can be considered as a good result for a program running on 164 processes and

12 compute nodes. It should be noted that MPI usage characteristics do not differ significantly

for individual processes, i.e., there is no significant imbalance in the program.

Approximately 70–75% of the execution time spent on MPI is accounted for by just two

MPI Allreduce calls, with almost all of the remaining time accounted for by two MPI Bcast

calls. It is interesting to note that both MPI Allreduce calls are responsible for transferring a

tiny amount of data – less than 0.1% of the total amount of transferred data (while MPI Bcast

calls are responsible for transferring the rest of the data). Therefore, if there is a need to optimize

MPI usage, these MPI Allreduce calls can clearly be singled out as the main candidates, since

they account for the majority of the time, but they transfer very little data. One could assume

that the reason for their long execution is related to imbalance caused by some processes reaching

this MPI operation earlier and simply waiting for the other processes to start, but this is not

always the case. In some cases, all involved processes spent significant time performing these

operations. The exact reasons for this behavior are currently unknown; however, the total time

spent on MPI in the current program configuration is quite small, so further detailed analysis

and optimization in this direction is not of great interest at the moment (this may change in the

future if a larger number of processes are involved, likely leading to the increase of MPI share

in execution time).

After studying MPI usage, an analysis of the execution efficiency of one individual process

was conducted. The program is generally well-balanced, so the overall results for one process pre-

sented below hold true for others as well. The analysis was performed using Intel VTune 2019.5

and Intel Advisor 2019.5.
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Initially, the most general performance characteristics of parallel programs were studied:

• The average number of cycles per instruction (CPI) is ∼0.5, i.e., two instructions are

executed per clock cycle on average, which is high for real-world HPC applications.

• The utilization of processor cores is also quite high, at 85–90%.

• The Retiring metric, which roughly shows the percentage of time the CPU was fully utilized

by performing useful operations, is of interest as well. This metric is calculated using a

Top-down approach proposed by Intel [32], the goal of which is to identify the dominant

bottlenecks in an application performance. For this program, the value of this metric is

45–55%, which indicates a fairly efficient HPC program (according to Intel, an expected

range of Retiring value for well-tuned HPC programs is 30–70% [32]).

Intel VTune allows collecting various useful information using the Top-down approach. How-

ever, Hyperthreading is enabled on compute nodes in the “compute” partition, making some

Top-down metrics unavailable in VTune. Therefore, to analyze these metrics, we conducted spe-

cial launches of the program in the “pascal” partition of the Lomonosov-2 supercomputer. The

nodes in this partition are equipped with a different processor – a 12-core Intel Xeon Gold 6126.

However, the comparison showed that the overall picture provided by Top-down approach al-

most does not change across runs in different partitions, so here we show a more complete list

of metrics after running in the “pascal” partition.

Figure 6 shows the Top-down metrics for this program provided by Intel VTune. It can be

seen that there are no issues with data prefetch or instruction preparation (Bad Speculation and

Front-End Bound metrics, respectively). In this case, the application is classified as Back-End

Bound (50%), meaning that processor slots were frequently only partially occupied, with the

main reason for this being memory management (Memory Bound = 29%). It should be noted

here that Core Bound in the screenshot is just slightly lower than Memory Bound, and this is

the only noticeable difference from what is observed in the “compute” section (being of primary

interest for us), where Core Bound is 10%, being a small value. Therefore, we do not consider

this issue, since it does not occur when running in “compute”.

Figure 6. Top-down metrics obtained by Intel VTune
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In terms of memory usage, this program exhibits no issues with any cache levels (L1/L2/L3

Bound values are very small). However, some problems with RAM can be noted. These include

mainly memory bandwidth issues (the program reaches maximum bandwidth to RAM, likely

causing a slowdown) as well as some memory latency issues (the program has to wait for data

from RAM, as the retrieval process takes notable time). The values for these metrics are not

very high, meaning the issues are apparently not that significant, but they are still present.

The presence of performance issues with RAM is as well confirmed by studying the values

of performance monitoring counters also provided by VTune. They show that when accessing

L3 cache, there are 2.5 misses for every hit on average (and L3 miss necessitates an access

to RAM), which is a very poor indicator. Furthermore, one L3 cache miss occurs for every

200 memory accesses, meaning the L3 is used quite heavily. This suggests that memory access

is organized not in the most efficient manner, leading to fairly frequent RAM accesses and,

consequently, waiting for data from memory.

The vectorization level using Intel Advisor was also studied. It revealed that the program

is not vectorized at all: only 0.1% of the execution time is spent in vectorized code fragments.

Furthermore, vectorization does not use the newer AVX instructions, only SSE and SSE2. This,

however, is currently not particularly significant given that almost all the code is scalar.

A separate study of the most computationally intensive fragments (those that consume the

most time during program execution) was conducted. A general analysis on the level of modules

revealed that the program spends >90% of its execution time within its own code, with another

∼5% executing MPI functions, 1.5% interacting with the OS kernel (vmlinux), and ∼1% calling

the libm math library. Within the program itself, almost all of the time is spent executing the

code from the aforementioned Eigen library.

Thus, the following conclusions can be drawn from the analysis performed. The program

demonstrates relatively high performance, with MPI operations taking up only a small portion

of the program’s execution time – ∼5% of the total runtime, which is quite low for a program

with 164 processes. Certain performance issues with RAM usage were noted; they do not signif-

icantly slow down the program but do represent a potential area for optimization. Vectorization

is essentially absent, which is also a clear candidate for optimization (if this area is further to be

explored, a detailed analysis of the non-vectorized code fragments will be required to determine

the feasibility of vectorization). However, everything discussed regarding memory and vector-

ization applies to the usage of external Eigen library, as almost all execution time not spent on

MPI is spent working with it, which significantly complicates the possibility of making changes

and optimizations. One of the possible solutions in this case is to switch to using other libraries

for solving SLAE like MKL.

Conclusion

This study examines the challenges of supercomputer implementation of ultrasonic tomo-

graphic imaging of internal and surface defects for nondestructive testing of solids. It has been

shown that the imaging problem of ultrasonic imaging of thin plates using Lamb waves is a coef-

ficient inverse problem, i.e., it involves determining unknown coefficients in differential equations

describing wave propagation in scalar and vector models.

It has been shown that a scalar two-dimensional model is quite suitable for detecting surface

defects. A simplified formulation of the inverse problem assumes that the propagation of Lamb

waves of mode A0 is approximately described by the Helmholtz equation. The experimental data
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were obtained from a numerical solution of the direct problem in a 3D elastic model in time

domain. An explicit expression for the residual functional gradient with respect to the plate

thickness was formulated for a range of frequencies. Iterative methods have been developed to

solve the inverse problem. The methods are based on gradient descent methods to minimize the

residual functional. Efficiency of the proposed algorithms is illustrated on model problems.

Within this simplified model, tomographic imaging technique makes it possible to recon-

struct the shape, size, and depth of defects. Solving the Helmholtz equation is the core element

of the developed algorithms for solving inverse problems of wave tomography. The most de-

manding computations involve solving linear equations with large-scale sparse matrices using

LU-decomposition method. The algorithms were implemented using linear algebra Eigen li-

brary. The performance analysis of the solution of the inverse problem in the scalar formulation

of the Helmholtz equation (with Eigen library used for solving SLAE) was performed on the

Lomonosov-2 supercomputer.
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4. Lucka, F., Pérez-Liva, M., Treeby, B.E., Cox, B.T.: High resolution 3D ultrasonic breast

imaging by time-domain full waveform inversion. Inverse Problems 38(2), 025008 (2022).

https://10.1088/1361-6420/ac3b64

5. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency ultrasonic tomog-

raphy: Mathematical methods and experimental results. Moscow University Physics Bul-

letin 74(1), 43–51 (2019). https://doi.org/10.3103/S0027134919010090

A.S. Belyaev, A.V. Goncharsky, S.Y. Romanov, Vad.V. Voevodin

2025, Vol. 12, No. 4 49

https://rscf.ru/en/project/25-11-00089/
https://doi.org/10.1093/jbi/wbaa084
https://doi.org/10.1121/1.4805138
https://doi.org/10.1121/1.4805138
https://10.1088/1361-6420/ac3b64
https://doi.org/10.3103/S0027134919010090


6. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Supercomputer technologies in tomo-

graphic imaging applications. Supercomputing Frontiers and Innovations 3(1), 41–66 (2016).

https://doi.org/10.14529/jsfi160103

7. Goncharsky, A.V., Kubyshkin, V.A., Makan, I.I., et al.: Supercomputer simulations in design-

ing medical ultrasound tomographic imaging devices. Lobachevskii Journal of Mathematics

45(7), 3038–3050 (2024). https://doi.org/10.1134/S199508022460393X

8. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Multistage Iterative Method to Tackle

Inverse Problems of WaveTomography. Supercomputing Frontiers and Innovations 9(1), 87–

107 (2022). https://doi.org/10.14529/jsfi220106

9. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Computational Efficiency of Itera-

tive Methods for Solving Inverse Problems. In: Voevodin, V., Sobolev, S., Yakobovskiy, M.,

Shagaliev, R. (eds.) Supercomputing. RuSCDays 2023. Lecture Notes in Computer Sci-

ence, vol. 14388, pp. 35–46. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-

49432-1 3

10. Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Parallel CPU- and

GPU-algorithms for inverse problems in nondestructive testing. Lobachevskii Journal of

Mathematics 39(4), 486–493 (2018). https://doi.org/10.1134/S1995080218040030

11. Yang, P., Brossier, R., Metivier, L., Virieux, J.: A review on the systematic formulation

of 3-D multiparameter full waveform inversion in viscoelastic medium. Geophys. J. Int. 207,

129–149 (2016). https://doi.org/10.1093/gji/ggw262

12. Virieux, J., Asnaashari, A., Brossier, R., et al.: An introduction to full waveform inver-

sion. Society of Exploration Geophysicists 6, R1-1–R1-40 (2014). https://doi.org/10.1190/

1.9781560803027.entry6

13. Pan, W., Innanen, K.A.: Elastic full-waveform inversion: density effects, cycle-skipping, and

inter-parameter mapping. CREWES Research Report 28, 62.1–62.18 (2016).

14. Li, Y., Gu, H.: Full waveform inversion for velocity and density with rock physical rela-

tionship constraints. Journal of Applied Geophysics 167, 106–117 (2019). https://doi.org/

10.1016/j.jappgeo.2019.04.005

15. Lechleiter, A., Schlasche, J.W.: Identifying Lamé parameters from time-dependent elastic
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This paper presents an efficient computational approach for calculating the characteristics of

multi-port antenna systems using boundary integral equations. Modeling of antenna radiation is

based on finding surface currents placed on the antenna structural elements. Numerical solution

of integral equations for unknown currents is carried out by the Galerkin method using RWG

basis functions. The antennas excitation is modeled by placing a system of lumped ports. A key

challenge addressed is the calculating of mutual coupling characteristics (mutual impedance ma-

trices, S-parameters) for various conditions of ports loading. This requires multiple solutions of

a system of linear equations. In each case, the system matrix undergoes a change in blocks con-

sisting of elements responsible for the interaction of the antenna ports with each other and with

surface currents. To overcome this, an algorithm based on the Woodbury formula is developed,

significantly reducing computational costs by leveraging the low-rank nature of port-related ma-

trix modifications. The method’s effectiveness is demonstrated for both wire and patch antenna

arrays, showing substantial speedups – approximately proportional to the number of ports for di-

rect solvers and significant gains for iterative solvers using mosaic-skeleton approximations while

maintaining solution accuracy.

Keywords: matrix methods, numerical algorithms, computational electrodynamics, antenna

radiation, boundary integral equations, Woodbury formula.

Introduction

The Method of Moments (MoM) approach allows for the simulation of the performance

of antennas with metal and dielectric parts. In case of metallic antennas, the electromagnetic

field has an integral representation via surface currents on their metal parts, and the problem of

antenna radiation can be treated as the scattering problem of some primary field generated by the

antenna itself. One common mathematical model for such fields is the lumped port model, also

known as the delta-gap model [2]. With a known primary field, MoM reduces antenna simulation

to a system of surface integral equations [2, 13]. Some common performance characteristics, such

as impedance, S-parameters, and the Voltage Standing Wave Ratio (VSWR), can be expressed

in terms of electric currents, which are the solution of these integral equations.

MoM holds an advantage over volume-discretization techniques, as it does not require mesh-

ing the entire problem space, only the surfaces. Furthermore, it inherently satisfies the radiation

condition at infinity.

In multi-port systems, mutual coupling between ports significantly affects the overall radia-

tion characteristics. Matrices of mutual impedance and S-parameters are central to the analysis

of this coupling. These matrices are computed through a series of numerical simulations, where

individual ports are activated sequentially as active sources while the others are terminated with

passive loads (e.g., matched feeder lines). This approach requires one simulation for each active

port, leading to specific computational challenges.

A well-known challenge of MoM is that discretizing the integral equations yields linear

systems with large dense matrices. Solving these systems is the dominant computational cost of

the numerical simulation.
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For antenna systems, the main part of the system matrix describes the electromagnetic

interaction between surface discretization elements (e.g., mesh cells). However, some rows and

columns are modified according to the current active port. Thus, computing the complete mutual

coupling matrices involves solving a series of linear systems, each with a modified system matrix.

Such matrices can be represented as the sum of a fixed matrix (from the structure) and a low-rank

correction per port configuration. A naive approach, solving each modified system independently,

results in a computational cost proportional to the number of ports.

To address this inefficiency, we propose an algorithm based on the Woodbury matrix iden-

tity [3]. This identity allows for the efficient computation of the inverse of a matrix after it

has been modified by a low-rank update. For a system of n equations, a direct solution via

LU decomposition requires Ω = O(n3) operations and iterative solution requires Ω = O(n2I0)

operations (I0 is the number of iterations). Solving for m ports naively would therefore scale

as mΩ. Our algorithm leverages the Woodbury formula to obtain the exact solution for all

port configurations by solving only one linear system with m right-hand sides. This requires

Ω + O(nm2 + m3) operations, making the time for the multi-port solution comparable to that

of a single simulation when m� n.

For systems with a moderate number of unknowns (up to approximately 40,000), we em-

ploy a direct solver. For larger problems, we use an iterative solver – the Generalized Minimal

Residual Method (GMRES) [7] – accelerated by performing matrix-vector multiplications in

the mosaic-skeleton format [10]. This format is a data-sparse approximation that operates on a

compressed representation of the dense matrix [11]. The proposed method applies both direct

and iterative solvers. We present computational examples of antenna arrays with numerous feed

points, demonstrating the significant efficiency gains achieved by our method.

The article is organized as follows. The first section contains the statement of the problem,

the boundary integral equation method, the numerical scheme and the description of antenna

model. The algorithm based on the Woodbury matrix identity is also described in this section.

The second section includes the testing of the developed algorithm on two examples: wire

antenna array and patch antenna array. The discussion of the results is given in the conclusion

section.

1. Mathematical Model

We consider a perfectly conducting antenna system. The antenna system includes a set of

radiating elements connected to a feeder. Each such element can operate either for radiation or

for signal reception.

Let Σ denote the union of all perfectly conducting surfaces forming the antenna structure.

We consider the problem of antenna system radiation as a scattering problem. The primary field

is created by a system of antenna ports. The antenna excitation is described in subsection 1.3.

Let us consider the general formulation of the problem of scattering a given primary field

for monochromatic wave [13]. The electric and magnetic fields are sought in the form:

~E(x, t) = E(x)e−iωt, ~H(x, t) =

√
ε0

µ0
H(x)e−iωt, (1)

where ε0 and µ0 are the electric and magnetic constants, ω is the angular frequency. The problem

is reduced to the spatial components of the electric and magnetic fields E(x) and H(x).
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The surrounding medium is assumed to be isotropic, homogeneous, and without conductiv-

ity. The electromagnetic field everywhere outside the antenna structural elements is described

by Maxwell’s equations. In the monochromatic case they have the following form:

rotE = iωkH,

rotH = −iωkE,
(2)

here k is the wave number, defined by the formula k = ω
√
ε0µ0.

The magnetic field can be excluded from equation (2). The equations for the electric field

are:

∆E + k2E = 0, divE = 0, (3)

provided that the magnetic field has the form

H =
rotE

ik
. (4)

We assume that the total electric and magnetic fields have the form [2, 13]

Etot = Einc + E, Htot = Hinc + H. (5)

Here Einc(x) and Hinc(x) are the primary electric and magnetic fields created by the antenna

excitation, E(x) and H(x) are the unknown secondary electric and magnetic fields. These sec-

ondary fields must satisfy equations (3)–(4) outside the antenna structural elements. The total

field must satisfy the boundary condition on the antenna surface Σ:

n×Etot = 0, x ∈ Σ. (6)

Also the secondary fields have to satisfy the Sommerfeld radiation condition at infinity:

E(x) = O

(
1

|x|

)
,

∂E(x)

∂|x| − ikE(x) = o

(
1

|x|

)
, |x| → ∞. (7)

H(x) = O

(
1

|x|

)
,

∂H(x)

∂|x| − ikH(x) = o

(
1

|x|

)
, |x| → ∞. (8)

1.1. Method of Moments

In this subsection we describe the integral representation for the electric field and the integral

equation system [2].

The electric field:

E(x) =
i

k0
K[Σ, g](x), x ∈ R3 \ Σ, (9)

where K[Σ, g] is the electric field operator:

K[S, g](x) = rot rot

∫

S

g(y)F (x− y)dσy. (10)

In formula (10), S is random surface, g is a tangential vector field defined on the surface S, F

is the Green’s function F (x− y) = eik|x−y|

|x−y| .

In expression (9), g is the unknown surface current.
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The integral operator K in (10) is defined everywhere outside the integration domain S. The

field defined by this operator for a sufficiently smooth function g has boundary values on both

sides of the surface S, for which the formula [15] is:

K±[S, k, g](x) = K[S, k, g](x)± 2πn(x) Div g(x), x ∈ S, (11)

where x is a point of smoothness of the surface, not lying on its edge, n(x) is the unit vector of

the positive normal at point x, the signs ± correspond to the boundary values from the side of

the normal vector (from the positive side of the surface) and from the opposite side (from the

negative side of the surface), respectively. Here K[S, k, g](x) is the direct value of the operator

on the surface. It arises if the value of the point x ∈ S is substituted directly into the expression:

K[S, g](x) =

∫

S

rot xrot x(g(y)F (x− y))dσy. (12)

In this case the hypersingular integral on the right-hand side is a Hadamard finite part integral.

We substitute expression (9) into the boundary condition (6) and apply the formula (11)

for the boundary values of the integral operator (11) to obtain the boundary integral equation

for the unknown function g ∈ Σ:

i

k0
n(x)×K[Σ, g](x) = −n×Einc(x), x ∈ Σ. (13)

Note that in equation (13), the operator K is defined by the formula (12) with the hypersingular

integral on the right-hand side.

We solve these equations and substitute the obtained currents into formulas (9) and (4) to

calculate the values of the secondary electric and magnetic fields at an arbitrary point outside

the surface Σ.

1.2. Numerical Method

For the numerical solution of equation (13) we employ a widely used numerical scheme of the

Galerkin method with piecewise linear basis functions (RWG functions). This numerical scheme

was first described in [6] and its modern version is described in [2, 13].

The surface Σ is approximated by a conformal system of triangular cells. Let Σ̃ =
⋃
i=1,N σi

be the approximation of the original total surface Σ.

The approximation of the unknown currents g is a linear combination of RWG basis func-

tions [6].

g(x) =
∑

i=1,M

givi(x) (14)

Each basis function vi(x), i = 1, ...,M is associated with an edge common to two cells σ1
i and σ2

i

and characterizes the flux of the vector field through this edge. If an edge is common to exactly

two mesh cells, then one basis function from the list of functions with indices i = 1, ...,M is

associated with this edge. If an edge is a junction of p > 2 cells σj1 , ..., σjp (these cells are

numbered in a clockwise order), then p − 1 basis functions are associated with this edge. Each

basis function corresponds to a pair of cells (σj1 , σj2), (σjp−1
, σjp). Thus an ordered pair of cells

σ1
i and σ2

i is associated with each basis function vi(x), i = 1, ...,M (see [14]). Let s1
i and s2

i be

the areas of cells σ1
i and σ2

i . We also denote the vertices that lie opposite to the common edge

of cells σ1
i and σ2

i as C1
i and C2

i for each basis function vi(x).
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The Bubnov–Galerkin method is used for the numerical solution of the boundary integral

equations (vi,Kvj)Σ̃ = (vi,K[Σ̃,vj ])Σ̃. The scalar product of two vector functions is understood

as the integral over the surface Σ: (g,f)Σ̃ =
∫

Σ̃(g,f)dσ.

The scalar product with the electric operator is defined by the following expression:

(vi,Kvj)Σ̃ =

∫

σ1
i∪σ2

i

∫

σ1
j∪σ2

j

(
k2vi(x) · vj(y)−DiDj

)
F (x− y)dσydσx =

=
∑

p=1,2

∑

q=1,2

(−1)p+q

spi s
q
j

∫

σp
i

∫

σq
j

(
k2(Cpi − x) · (Cqj − y)− 4

) eikr
r
dσydσx. (15)

To compute the integral in expression (15), we use formulas with analytical extraction

and integration of the singularity [2]. For regular integrals we developed an adaptive integration

procedure based on Gaussian quadrature with subdivision of cells into smaller ones and accuracy

control.

The system of boundary integral equations (13) is reduced to a system of linear algebraic

equations.

i

k0

M∑

j=1

(vi,Kvj)Σ̃ gj = −(vi,Einc)Σ̃, i = 1, ...,M. (16)

After the system (16) is solved for the variables gi, i = 1, ...,M , the surface currents g are

computed using formula (14).

1.3. Antenna Model

1.3.1. Antenna excitation

We use the well-known delta-gap model [2]. A port is a small gap of width d between certain

mesh edges. There is a potential difference in this gap. A port is called active if a voltage U

created by an EMF ε is applied across it. A port is called passive if a resistance R is connected

across it. It is possible to specify both voltage and resistance simultaneously, but such cases

are not considered in this work. A port is approximated as a line consisting of one or several

consecutive edges. Let Θ denote the set of indices i for which the edge between cells σ1
i and σ2

i

lies on the port line.

The primary field Einc is defined as

Einc =
U

d
e0, (17)

where e0 is the unit vector indicating the current direction. The voltage on each edge from the

set of port edges Θ satisfies the formula

U = ε−R(e0, gc), (18)

where gc is the value of the surface current on this edge.

In case of an active port the EMF ε is given and the resistance R = 0. The scalar product

of the primary field and the basis function is the following:

(vi,Einc)Σ̃ =
U

d
(vi, e0) =

U

d

∫

D

(Ci − x, e0)

si
dσ =

U

d

∫

D

2

L
dσ = 2U, i ∈ Θ, (19)
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D is the part of the surface Σ where the gap is located. If the i-th edge does not belong to the

set Θ, then (vi, Einc)Σ̃ = 0. That is, the right-hand side is a vector consisting of two values: 0

or 2U . In case of a passive port (vi, Einc) = 0 for i 6∈ Θ, as well for the active port.

Now let us consider the passive port edges

(vi,Einc)Σ̃ = 2U = −2R(e0, gc) = = −2R
∑

k∈Θ

gk(e0,vi) = −4R
∑

k∈Θ

gk, i ∈ Θ. (20)

This term is not included into the right-hand side. It is added to the system of equations as a

sparse matrix B where bik = −4R if i, k ∈ Θ.

1.3.2. Current and impedance

Important antenna characteristics are the port current, input impedance, S-parameters,

and standing wave ratio (VSWR). The input impedance of an antenna is the complex ratio

of the voltage to the current at its feed point. S-parameters (scattering parameters) describe

how electromagnetic power propagates through a multi-port network, quantifying reflection and

transmission coefficients. The VSWR is a measure of the impedance mismatch between the

antenna and its feed line, defined as the ratio of the maximum to the minimum voltage of the

standing wave along the line.

First we consider a single antenna. The current through the port is the flux of the vector g

through the line consisting of all port edges

Y = (e0, gc) = 2
∑

k∈Θ

gk. (21)

We denote Z as the port impedance, S as the S-parameter, η as the VSWR, and R0 as the

matching impedance (a given value). According to [5], the following formulas are used for these

characteristics:

Z =
U

Y
, (22)

S =
Z −R0

Z +R0
, (23)

η =
1 + |S|
1− |S| . (24)

Now we consider an antenna system consisting of m active ports. Each port consists of a

set of edges Θm. In this case, the calculation of the antenna system characteristics is performed

according to the following scheme. Each port is sequentially considered active with an EMF

ε = 1 V, while the others are set as passive with the same resistance R0. The currents Yij are

computed:

Yij = 2
∑

k∈Θi

gk, ε 6= 0 on Θj .
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As a result, a current matrix Y is obtained. The mutual impedance matrix Z, S-parameter

matrix, and VSWR values are calculated using the formulas [5]:

Z = Y −1, (25)

S =

(
Z

R0
+ I

)−1( Z

R0
− I
)
, (26)

ηi =
1 + |Sii|
1− |Sii|

. (27)

Here Y , Z and S are complex matrices of size m×m, and η is a real vector of size m.

1.3.3. Optimization of calculations

Now let us consider an antenna system with a number of ports m > 1, for which it is required

to compute the mutual impedance, S-parameter and VSWR of all ports. In the resulting system

of equations, the main part of the matrix is independent of the ports and is assembled according

to formula (16). However, when passive ports are present, the addition term (20) appears. If

the problem is solved “head-on”, the matrix is calculated m times and the system is solved m

times. To avoid an increase in the computational complexity of the problem, we used a well-

known formula from linear algebra, namely the Woodbury formula, which is a generalization of

Sherman–Morrison formula [3].

Let us introduce the notation: A ∈ Cn×n, U ∈ Cn×m, V ∈ Ck×n, and Im ∈ Rm×m is the

identity matrix.

B = A+ UV ⇒ B−1 = A−1 −A−1U(Im + V A−1U)−1V A−1. (28)

If the rank of the correction is m � n, then this formula has an asymptotic complexity of

O(nm2 + m3), which is insignificant compared to complexity of matrix invertion O(n3). So

we can get all the required antenna characteristics with O(n3) instead of O(mn3) in case of

sequentially solving the problems.

However for large linear systems, constructing the inverse matrix A−1 is impossible. The

problem is solved approximately using one or another iterative method. To apply the Woodbury

formula to the iterative method for solving the problem described above, we do the following.

For each port we form an indicator vector up = {0, 1}n, p ∈ {1, . . . ,m}, where ones are only in

those rows that correspond to the edges of this port. If this port is the only passive one, and its

input impedance is R0, then the system matrix is equal to

B = A− 4R0upu
T
p . (29)

Since the ports do not intersect, U = [u1, . . . , um] is a matrix with linearly independent columns.

Let us split U into up and Ũp = [u1, . . . , up−1, up+1, . . . , um]. If port p is the only active one,

then the system takes the form

(A− 4R0 ŨpŨ
T
p )y = −2up. (30)

The construction of the solution for all ports is carried out according to Algorithm 1. This

algorithm is applicable to both direct and iterative methods for solving the system AY = U .

Thus, instead of solving m systems with different matrices, it is sufficient to solve one system

with m right-hand sides and compute the currents using the specified formula.
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Algorithm 1 Computation of currents using the Woodbury formula

1: Solve AY = U

2: X ← Y ∗ 2R0

3: for p = 1 to m do

4: xp, X̃p ← X

5: gp ← xp − X̃p

(
Im−1 + ŨTp X̃p

)−1
ŨTp xp

6: end for

7: return g

2. Results

The calculations were performed using the authors’ program “edmpis” [4]. This program al-

lows to solve the problems of electromagnetic wave scattering and antenna radiation not only for

perfectly conducting but also for dielectric objects. For small-scale problems (up to 40,000 equa-

tions), a direct LU-decomposition method from LAPACK library is employed. For large-scale

problems, the matrix is computed using the mosaic-skeleton approximation method [1, 8], and

the system of linear algebraic equations is solved using the minimal residual method optimized

for multiple right-hand sides [9].

The “edmpis” program uses MPI and OpenMP libraries to accelerate computations. When

using the direct LU solver, matrix assembly is accelerated using OpenMP. When using the

iterative solver with matrix approximation, MPI is used, and to a lesser extent, OpenMP. The

testing of acceleration of parallel program was performed in [8].

It should be noted that the fast multipole algorithm is considered to be the classical method

for compression of dense matrices in the electrodynamic problems. We use the mosaic-skeleton

approximation because of its universality and good compression. The testing of acceleration

of mosaic-skeleton approximation [12] shows almost linear speedup with the increase of MPI

processes.

The calculations were performed on the cluster of the Marchuk Institute of Numerical Math-

ematics, Russian Academy of Sciences. The main cluster specifications are provided below.

Computational nodes “normal”:

• 40 cores (two 20-core Intel Xeon Gold 6230@2.10GHz processors);

• 384 GB RAM;

• 480 GB SSD storage;

• Operating system: SUSE Linux Enterprise Server 15 SP6 (x86 64).

Computational nodes “short”:

• 24 cores (two 12-core Intel Xeon Silver 4214@2.20GHz processors);

• 128 GB RAM;

• 480 GB SSD storage;

• Operating system: SUSE Linux Enterprise High Performance Computing 15 SP4 (x86 64).

2.1. Wire Antenna

As a simple example we consider a thin wire with a radius of 1 cm and a length of 50 cm.

Such a wire can be considered as a linear antenna. The calculation was performed on a single

“short” type node using 24 cores. In this case the system of linear equations was solved by a

direct method.
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(a) wire1x1 (b) wire2x2 (c) wire4x2 (d) wire4x4

Figure 1. Antenna arrays composed of wire antennas and their VSWR

Figure 1 shows a single antenna (“strip1x1”) and three antenna systems obtained by copying

this antenna: “strip2x2”, “strip4x2”, “strip4x4”. The numbers indicate the calculated VSWR

values of the antenna system elements in the case where this element is active and the other

elements are passive.

Table 1. Program execution time for wire antennas

Geometry m Neq TW T0

wire1x1 1 1788 5.35 5.31

wire2x2 4 7152 31.03 131.48

wire4x2 8 14304 90.77 730.25

wire4x4 16 28608 317.01 5169.51

Table 1 shows the program execution time for calculations without optimization (T0) and

with optimization using the Woodbury formula (TW ). Time is measured in seconds. Neq is the

number of equations. It can be noted that the optimization sped up the program by a factor of

m as expected.

For illustration, Fig. 2 shows the radiation patterns of the antenna systems at a frequency

of 0.3 GHz for one of the port loading variants. In all cases, the only active antenna is the one

in the lower left corner of Fig. 1. The radiation patterns reflect the dependence of the radiation

power asymptote at large distances on the direction to the receiver:

F = lim
R→∞

4π|E(x)|2
R2

, x = Rτ , (31)

where τ is a unit vector indicating the direction to the receiver.

The radiation patterns, VSWR, and other characteristics calculated by the direct method

and using the Woodbury formula coincide with a relative accuracy of 10−5. This is due only to

rounding errors, since the Woodbury formula allows for an exact, not an approximate, solution.
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(a) wire1x1 (b) wire2x2

(c) wire4x2 (d) wire4x4

Figure 2. Radiation patterns of antenna arrays composed of wire antennas

at a frequency of 0.3 GHz

2.2. Patch Antenna

Another example is a system of patch antennas. Each patch antenna consists of two plates.

The excitation of the antenna is defined by a narrow strip connecting the antenna patches, where

a lumped port is placed.

The calculation was performed on a single “normal” type node using 40 cores. The problem

was solved by an iterative method with an accuracy of 10−2, which influenced the difference

between the solution with optimization and without it.

Figure 3 shows a single patch antenna and three antenna arrays obtained by copying this

antenna: “patch2x2”, “patch4x2”, “patch4x4”. Unlike the previous example, the VSWR of the

patch antennas is mostly independent of the array configuration and the position of the specific

antenna. The VSWR of the active antenna is approximately 1.7 for all patch antennas in these
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(a) patch1x1 (b) patch2x2 (c) patch4x2 (d) patch4x4

Figure 3. Antenna arrays composed of patch antennas

systems. The mutual influence of patch antennas on each other is significantly less than that of

strip antennas. For the mutual impedances the relation Zij

Zii
' 10−2, i 6= j is typical.

Figure 4 shows the radiation patterns of the antenna arrays at a frequency of 4.25 GHz

for one of the loading variants. In all cases the only active antenna is the one in the lower left

corner. It can be observed how the increase in the number of antennas in the system increases

the noise level of the radiation pattern.

Table 2. Program execution time for patch antennas

Geometry m Neq TW T0 IW I0

patch1x1 1 8879 38.18 38.16 323 323

patch2x2 4 35516 181.32 610.9 1589 2592

patch4x2 8 71032 506.92 2530.08 3285 6306

patch4x4 16 142064 1829.72 9987.38 7071 14380

Table 2 shows the program execution time for calculations without optimization and with

optimization using the Woodbury formula. IW is the number of GMRES iterations in the op-

timized program, I0 is the total number of GMRES iterations when solving m systems in the

program without optimization. The radiation patterns, VSWR, and other characteristics coin-

cide with the accuracy of 10−2, which corresponds to the accuracy of the iterative method.

Conclusion

The purpose of this paper was to accelerate the calculation of characteristics of mutual

coupling of elements in antenna arrays by the optimization with the Woodbury formula. The

numerical experiment demonstrated that in case of direct method the execution time of the

optimized program differs from the execution time of the program without optimization by

approximately a factor of m, where m is the number of antennas in the system (calculation of

the linear antenna system). In the case of iterative method with a low-rank approximation of the

system matrix (example with the patch antenna system), optimization also achieves a significant

acceleration of computations, but with a smaller factor. For instance, the computation time for

a system of 16 antennas decreased by approximately 5.5 times.
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(a) patch1x1 (b) patch2x2

(c) patch4x2 (d) patch4x4

Figure 4. Radiation patterns of antenna arrays composed of patch antennas

at a frequency of 4.25 GHz

The difference in the acceleration of computations when applying direct and iterative meth-

ods is as follows. In the direct algorithm, an LU decomposition of the matrix is constructed

using the LAPACK library, after which the problem is solved for one or m right-hand sides

in approximately the same time. For the patch antenna first the matrix is approximated and

then the GMRES solver is called. When using optimization, the matrix approximation is per-

formed once instead of m times. Also, the used iterative solver is optimized for problems with

multiple right-hand sides: the Krylov basis built for previous right-hand sides is used for the

next one. However in this example the total number of iterations increases with the number of

ports compared to the case of a single port, but with a smaller factor than the number of ports.

When using optimization, the number of iterations decreases by 1.5 to 2 times compared to the

total number of iterations without optimization. It is known that the right-hand side vectors up,
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p = 1, . . . ,m, are orthogonal to each other, but this information is insufficient to predict the

behavior of the iterative method on an arbitrary antenna array.

To sum up, the developed method sufficiently accelerates the calculation of characteristics

of an antenna system with many active excitation elements.
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We discuss the development of the large-eddy simulation (LES) model of the atmospheric

boundary layer with embedded two-moment bulk cloud microphysics scheme well-suited for

massively-parallel heterogeneous supercomputers based on GPU (Graphics Processing Units) ar-

chitecture. To evaluate the LES model and its computational efficiency, we consider the numerical

setup corresponding to the development of an intense Arctic cold-air outbreak case. It is shown

that the dynamic closure approach for calculation of subgrid scale fluxes, applied to both heat and

moisture transport, allows to correctly reproduce moist convective boundary layers with mixed-

phased clouds even with coarse grid resolution. Implementation of state-of-the-art microphysics

scheme for GPU systems not only led to significant speedup of the computations, but in general

improved the multi-GPU scaling of the model.

Keywords: large-eddy simulation, boundary layer turbulence, cloud-resolving modeling, com-

putational performance, graphics processing unit.

Introduction

The atmospheric processes are characterized by a large spectra of motions. With a ratio of

largest-to-smallest scales approaching ten orders of magnitude [46] they range from planetary

waves (108 m) and cyclones to convective and cloud processes and finally to microscale turbulence

(10−2 m). The rise in supercomputer performance in general coincides with grid refinement in

state-of-the-art large-scale numerical weather prediction (NWP) and climate models, allowing

to resolve increasingly larger span of scales and, in turn, to improve model predictions.

While cloud-resolving simulations are still (and will be in coming decades) a complex com-

putational challenge for global atmospheric models [39], where convective processes are parame-

terized using RANS (Reynolds-Averaged Navier–Stokes) closures [34], the large-eddy simulation

approach allows to explicitly reproduce the largest and most energy-containing scales contribut-

ing to both turbulence mixing and cloudy convection owing to the self-similarity of turbulence

in the inertial range. This allows to study inherently linked turbulence, cloud-scale circulations

and microphysical processes.

Unfortunately, the LES approach with available HPC resources in most cases is limited to

diurnal studies and spatial scales reaching at best the order of 10 km. Current developments,

see review [40], in numerical models and their optimization for supercomputers seem to bring

the gap closer between NWP (at least for regional scale models) and LES. However, there is

still a long way ahead, with the largest uncertainties related to representation of land surface-

atmosphere interaction processes and the lack of turbulence closures suited for the so-called

“grey-zone” resolution, where both LES and RANS underlying assumptions may fail.

One of our overall goals is the development of LES models, which are able to reproduce

the atmospheric boundary layer (ABL) turbulence even with coarse resolution approaching

“grey-zone” restrictions, while allowing to study the interaction of microscale processes and

mesoscale organization of cloud clusters [42] with feasible simulations in domains of the order of
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10–100 km. The former sets stringent requirements for the subgrid/subfilter closure, while the

evident prerequisite for the latter is an efficient implementation of the model on supercomputers.

GPU-accelerated HPC systems may provide a significant increase in computational performance

of numerical models, e.g., see [3], where 150× speedup compared to CPU (Central Processing

Unit)-only code was achieved in large-eddy simulation of pollutant dispersion and [40], where a

LES model supplemented with single-moment ice microphysics scheme was implemented using

CUDA.

In this paper we discuss the implementation of a large-eddy simulation model of the ABL

with embedded bulk two-moment microphysics scheme capable of reproducing complex mixed-

phase cloud processes on GPU-based architecture. We assess both the efficiency of GPU im-

plementation and the sensitivity of the LES model to grid resolution in reproducing an intense

Arctic cold-air outbreak case. Bulk microphysics schemes have some notable problems due to

simplification in representing collection and sedimentation processes, compared with much com-

putationally demanding bin-based or spectral models [26]. Despite this, they are commonly used

in both cloud-resolving LES and large-scale NWP and climate models. In particular, we consider

the two-moment cloud microphysics scheme [41, 43], which with some modifications is used in

DALES [21] and PALM [29] atmospheric boundary layer LES codes, COSMO [1] and ICON [16]

NWP models. In this regard, the results obtained in this study may be useful for improving such

models as well.

The paper is structured as follows. In Section 1 we give an overview of the LES governing

equations and the subgrid turbulence closure. The cloud microphysics scheme for liquid-phase

and mixed-phases processes is presented in Section 2. The numerical aspects of the model and

its implementation for supercomputers are given in Section 3. In Section 4 we assess the LES

model and its efficiency on GPU architecture, followed by summary and conclusions.

1. Governing Equations and Subgrid-scale Model

We consider the dynamics of a stratified atmosphere governed by the Navier–Stokes equa-

tions in the Boussinesq approximation, which is described by a coupled system comprising

momentum, continuity, heat and moisture transport equations:

∂ui
∂t

+
∂uiuj
∂xj

= −∂τij
∂xj
− 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ εij3fuj + F i, (1)

∂ui
∂xi

= 0, (2)

∂Θ

∂t
+
∂uiΘ

∂xi
= −∂hΘ,i

∂xi
+ χΘ

∂2Θ

∂xi∂xi
+ ΦΘ + FΘ, (3)

∂q

∂t
+
∂uiq

∂xi
= −∂hq,i

∂xi
+ χq

∂2q

∂xi∂xi
+ +Φq + F q, (4)

where u = (u1, u2, u3) ≡ (u, v, w) denotes the wind velocity vector with components aligned

along the coordinates x = (x1, x2, x3) ≡ (x, y, z), respectively, p is the pressure and ρ0 is the

reference air density, ν and χ[Θ,q] stand for coefficients of molecular kinematic viscosity and

diffusivity, t is time. The term εij3fuj accounts for the Coriolis acceleration, where εijk is the

Levi-Civita symbol (alternating tensor), f = 2Ω sinφ – Coriolis parameter for latitude φ and

Ω is the angular speed of Earth’s rotation. The vector F i corresponds to external forces acting

on the flow, Φ[Θ,q] are tendencies due to cloud microphysical processes and F [Θ,q] are any other
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sinks or sources of heat and moisture. For stratified atmosphere F i includes the buoyancy force

Fb = αgΘv · e3, where

Θv = Θp

[
1 +

(
Rv
Rd
− 1

)
qv − qliquid − qsolid

]
(5)

is the virtual potential temperature equivalent to potential temperature Θp in dry air,

q[v,liquid,solid] are the water vapor, liquid water and solid water mixing ratios, respectively, R[d,v]

are the specific gas constants for dry air and water vapor, α is the thermal expansion coeffi-

cient, g is the acceleration due to gravity and e3 is the unity vector in the vertical z direc-

tion (positive upwards). We consider prognostic equations (3), (4) for conservative (in terms

of wet adiabatic processes, e.g., condensation/evaporation) variables – the total water content

q = qv + qliquid + qsolid and the liquid/solid water potential temperature Θ:

Θ = Θp −
Lv
cpΠ

qliquid −
Ls
cpΠ

qsolid, (6)

where Π = (ph/p0)Rd/cp is the Exner function with hydrostatic pressure ph non-dimensionalized

by reference value p0, cp is the heat capacity of dry air at constant pressure, L[v,s] are constants

attributed to latent heat of vaporization and sublimation, respectively. The liquid qliquid and

“solid” (i.e., ice) qsolid water content mixing ratios are calculated by the cloud microphysics part

of the model, which is described in subsequent section.

The (·) in the system of equations (1)–(4) denotes spatial filtering applied in the LES

approach, a(x, t) = F∆a(x, t), where ∆ is the filter width and a is any scalar variable or vector

component. The subfilter or subgrid-scale (as the filter width is related to the grid spacing of

the discrete system) stress terms τij and scalar fluxes ha,i are expressed as:

τij = uiuj − uiuj , (7)

ha,i = uia− uia, (8)

where, e.g., a = [Θ, q]. The system of equations (1)–(4) requires turbulence closure and the

subfilter terms have to be defined in terms of resolved (filtered) variables.

We use the well-known dynamic Smagorisnky eddy viscosity model [38], which implies that

the anisotorpoic part τaij of τij tensor is aligned with the strain rate of the resolved scales:

τaij = τij −
1

3
δijτkk ≈ τ smag

ij = −2KmSij , (9)

where Sij denotes the strain rate tensor of the filtered velocity field:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (10)

Here the eddy viscosity coefficient Km is defined as:

Km =
(
Cs∆

)2 ∣∣S
∣∣ , (11)

where Cs is the Smagorinsky coefficient and
∣∣S
∣∣ =

√
2SijSij is the tensor norm.
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The subgrid/subfilter-scale fluxes of temperature Θ and total water content q are expressed

in the same vein using the eddy diffusivity hypothesis:

hΘ,i = −KΘ,h
∂Θ

∂xi
= −KmPr

−1
sgs

∂Θ

∂xi
, (12)

hq,i = −Kq,h
∂q

∂xi
= −KmSc

−1
sgs

∂q

∂xi
, (13)

where Prsgs and Scsgs are the subgrid Prandtl and Schmidt numbers, respectively, which we

assume may be distinct for heat and moisture fluxes.

The dynamic procedure [27] based on the Germano identity [15] is applied for calculation

of the Smagorinsky coefficient, Cs ≡ Cs(x, t), and Prsgs(x, t), Scsgs(x, t) dependent on spatial

coordinates and time. The Lagrangian averaging along the flow pathlines, as proposed in [5, 30],

is used for solving the resulting minimization problem. Assuming that exponentially decaying

weights are used in the averaging, the problem reduces to simple relaxation-transport equations,

which may be efficiently solved with first-order approximation in time, see [50] for details.

The dynamic procedure defines subgrid Prandtl Prsgs(x, t) and Schmidt numbers Scsgs(x, t)

without additional ad hoc assumptions on the flow dynamics, and is known to improve the

model performance in simulations of stably stratified atmospheric boundary layers on coarse

grids [9, 25].

2. Cloud Microphysics

The cloud microphysics model is based on the two-moment bulk scheme, proposed in [41, 43].

In the liquid-phase only case it assumes separation of droplet spectrum by radii threshold rth
in two parts, corresponding to cloud droplets r < rth and rain droplets r ≥ rth. In the two-

moment approach only the first two moments of each part of spectra are predicted. The system

of equations (1)–(4) is supplemented with prognostic equations for number concentrations of

cloud and rain droplets, N c and N r, and mixing ratios of cloud and rain water content, qc and

qr:

∂Na

∂t
+
∂uiNa

∂xi
= −∂hNa,i

∂xi
+ χNa

∂2Na

∂xi∂xi
+ ΦNa

, (14)

∂qa
∂t

+
∂uiqa
∂xi

= −∂hqa,i
∂xi

+ χqa
∂2qa
∂xi∂xi

+ Φqa , (15)

where a = [c, r] and qliquid = qc + qr. The terms Φ in the right-hand side stand for different

cloud microphysics processes. For liquid part of cloud model these are:

ΦNc
=
∂N c

∂t

∣∣∣∣
act

+
∂N c

∂t

∣∣∣∣
evap

+
∂N c

∂t

∣∣∣∣
auto

+
∂N c

∂t

∣∣∣∣
accr

+
∂N c

∂t

∣∣∣∣
sed

, (16)

ΦNr
=
∂N r

∂t

∣∣∣∣
auto

+
∂N r

∂t

∣∣∣∣
slf/brk

+
∂N r

∂t

∣∣∣∣
evap

+
∂N r

∂t

∣∣∣∣
sed

, (17)

Φqc =
∂qc
∂t

∣∣∣∣
cond

+
∂qc
∂t

∣∣∣∣
evap

+
∂qc
∂t

∣∣∣∣
auto

+
∂qc
∂t

∣∣∣∣
accr

+
∂qc
∂t

∣∣∣∣
sed

, (18)

Φqr =
∂qr
∂t

∣∣∣∣
auto

+
∂qr
∂t

∣∣∣∣
accr

+
∂qr
∂t

∣∣∣∣
evap

+
∂qr
∂t

∣∣∣∣
sed

. (19)
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The tendencies correspond to activation of cloud droplets (act), represented by Twomey-type

parameterizations linking cloud condensation nuclei with prescribed dry aerosol number con-

centration, condensation (cond) and evaporation (evap) of cloud and rain droplets, autocon-

version (auto) of cloud droplets to rain, accretion (accr), merging and splitting of rain droplets

(slf/brk), with the latter affecting only the number concentration N r. Their formulation is given

in [41, 43, 44] and assumes that droplet spectra follows a gamma distribution and that the distri-

bution’s slope and shape parameters may be estimated based on predicted bulk characteristics.

The sedimentation tendencies (sed) are calculated using a simple upwind scheme.

We use the extension of the two-moment scheme for mixed-phase clouds as described in [41],

where additional prognostic equations are considered for both number concentrations and mixing

ratios of three hydrometeors: cloud ice, snow and graupel, e.g., a = [i, s, g] in (14) and (15),

qsolid = qi+qs+qg. The microphysics scheme assumes power-law relations for diameter-mass and

velocity-mass relations for each category, as well as generalized gamma particle size distributions.

The mixed-phase scheme accounts for primary ice production processes – ice nucleation

following [37], homogeneous/heterogeneous freezing [4, 7] of cloud and rain droplets, and con-

siders ice multiplication parameterization by the Hallett-Mossop processes, which occurs due

to riming of ice particles. The tendencies in equations for number concentrations and mixing

ratios of ice, snow and graupel hydrometeors also include deposition (with ventilation coeffi-

cients for spherical particles), riming, aggregation and self-collection of snow, partial conversion

of snow and ice crystals to graupel, collection of snow by graupel, sublimation, evaporation,

melting and its enhancement due to collisions with liquid droplets in temperature range above

freezing. The collection processes between different categories are formulated using a gener-

alized approach suggested by [55], where the use of gamma-distribution for particle size and

mass-diameter power-law relations allows to evaluate collection integrals analytically in terms

of Gamma-functions in a unified manner.

The sedimentation tendencies of all hydrometeors are non-conservative and included in

equations for liquid/solid water potential temperature Θ and total water content q:

ΦΘ = − Lv
cpΠ

(
∂qc
∂t

∣∣∣∣
sed

+
∂qr
∂t

∣∣∣∣
sed

)
− Ls
cpΠ

(
∂qi
∂t

∣∣∣∣
sed

+
∂qs
∂t

∣∣∣∣
sed

+
∂qg
∂t

∣∣∣∣
sed

)
, (20)

Φq =
∂qc
∂t

∣∣∣∣
sed

+
∂qr
∂t

∣∣∣∣
sed

+
∂qi
∂t

∣∣∣∣
sed

+
∂qs
∂t

∣∣∣∣
sed

+
∂qg
∂t

∣∣∣∣
sed

. (21)

The time-advancement of the cloud microphysics model supports both the sequential-

tendency splitting and parallel splitting approaches [11]. In the former during a single time

step all tendencies associated with different processes (e.g., for the liquid-phase part of the

model these are the terms appearing in the right-hand side in (16)–(19)) are calculated sequen-

tially taking into account the tendencies evaluated beforehand. In the latter case, which will be

used in GPU performance analysis in the subsequent section, all tendencies are calculated using

the same state variables as they are given at the beginning of the time step. The subgrid terms

hNa,i and hqa,i in (14) and (15) are evaluated using the eddy diffusivity of total water content

Kq,h, i.e., the dynamic procedure is applied to conservative scalars Θ and q only.

The cloud model supports some further simplifications. In particular, assuming that N [c,i]

represent fixed quantities or distributions and, moreover, that any supersaturation is removed

in cloud or ice water content instantaneously. In this case, qc and qi are diagnostic parameters

evaluated using the saturation adjustment procedure by considering excess water content qv−qsat
(qv > qsat) above saturation mixing ratio qsat over water and ice surfaces. This partition of
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excessive vapor between cloud droplets and ice crystals depends on absolute temperature of air

T ≡ ΘpΠ, see [51] for details.

The implementation of the two-moment bulk microphysics scheme was verified using exten-

sive datasets of LES intercomparison studies, in particular, simulations of trade wind cumulus

convection [45], precipitating cumulus-topped boundary layers [52] and mixed-phase stratiform

Arctic clouds [36].

3. Numerical Implementation

The large-eddy simulation model with embedded two-moment mixed-phase microphysics

bulk scheme was implemented as part of the DNS-, LES- and RANS- unified C/C++ code

developed at the Lomonosov Moscow State University and the Marchuk Institute of Numerical

Mathematics of the Russian Academy of Science [32, 33, 35]. The unified code is designed for

numerical modeling of geophysical turbulent flows, includes an extensive set of LES and RANS

subgrid closures [17, 18, 50], and was used in studies of the atmospheric boundary layer [9, 20,

25, 47, 48] and for large-eddy and direct numerical simulation (DNS) of urban canopy [18, 49, 53]

and channel flows [2, 24].

The code makes use of hybrid MPI/OpenMP/CUDA approach for CPU and GPU compu-

tations, however, any possible optimizations due to OpenMP are omitted from this study. The

MPI CPU-only implementation was used in large scale simulations of turbulent flows with the

grid size of the order of 108 cells, e.g., see [57, 58]. The code supports 1D, 2D or 3D spatial

decomposition of the computational grid among MPI-processes with common optimizations for

improving scaling on HPC systems. This, in particular, includes options for combining MPI data

transfers for a number of arrays (e.g., vector or tensor components) or increasing the width of

the grid halo region [10] for reducing MPI communications latency. The latter allows to lower the

number of calls to MPI functions but at the cost of additional computational overhead, which

may be negligible when the size of the problem on MPI-process is comparatively small. The bulk

cloud microphysics model was implemented supporting both CPU and GPU computations with

additional optimizations for tracer transport equations proposed in [12, 33] for HPC systems.

The numerical method is based on conservative in momentum and energy second-order finite-

difference approximation [31] of governing equations (1)–(4) on rectangular grids with staggered

arrangement of nodes. The projection method [6] is applied for the time advancement of momen-

tum equations (1) coupled with incompressibility constraint (2). Explicit third-order Adams–

Bashforth scheme is used for the approximation in time of scalar transport equations (3), (4),

(14), (15) and for the calculation of non divergence-free intermediate velocity at the first step

of the projection method.

Biconjugate gradient stabilized (BiCGstab) iterative method with a V-cycle geometric multi-

grid preconditioner is used for solving the finite-difference approximation of the Poisson equation.

On each grid in the multigrid sequence smoothing iterations are performed by successive upper

relaxation method (SOR) for red-black ordering of nodes. The projection onto coarse grid and

the prolongation operator onto a fine grid correspond to a bilinear interpolation consistent with

the averaging operator used in finite-difference stencils.

In the LES subgrid closures we define the filter width ∆ as equal to the geometric mean

of grid cell widths, ∆ = (∆x∆y∆z)
1/3. The dynamic procedure requires explicit definition of

test filter F∆̂, which is chosen the same as the ones used in [19, 50], while the filter width ratio

α is calculated according to [28]. The filtering operations incur considerable additional MPI
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communications and the filters are applied for each dimension of the 3D field sequentially to

reduce the number of computations. Due to high computational cost (see analysis in [50, 54])

the dynamic procedure for the evaluation of Smagorinsky constant Cs(x, t), the subgrid Prandtl

Prsgs(x, t) and Schmidt numbers Scsgs(x, t) is applied only every three integration time steps.

4. LES Model Evaluation

4.1. Cold-air Outbreak Case

We consider the numerical setup proposed in the COMBLE (Cold-Air Outbreaks in the

Marine Boundary Layer Experiment) model-observation intercomparison project [13, 14, 23, 56],

which aims to foster studies of key cloud microphysics and aerosol processes interactions and, in

particular, evaluate LES and single-column models (SCM) capabilities in reproducing an intense

supercooled cold-air outbreak (CAO) case observed over the Norwegian sea on 13 March 2020.

Here the transition from ice surface to open water results in formation of a growing convective

boundary layer (CBL) with mixed-phase clouds and stratocumulus to cumulus transition.

The setup emulates transition of air mass in Lagrangian frame of reference (over ∼ 1000 km

distance) with development of Arctic convective cloud features under strong CAO conditions

with spatially variable forcing converted to time-varying surface temperature and time- and

height-varying geostrophic wind for a horizontally homogeneous domain. Periodic boundary con-

ditions are set in horizontal directions: φ(x = Lx, t) ≡ φ(x = 0, t) and φ(y = Ly, t) ≡ φ(y = 0, t),

where φ is any scalar variable or vector component. The surface layer momentum, sensible and

latent heat fluxes are calculated using MOST (Monin–Obukhov Similarity Theory) approxi-

mation in each surface grid cell using Businger–Dyer stability functions [9]. The momentum

and thermal roughness values are kept fixed, with values close to the ones obtained in simula-

tions with dynamic water surface roughness using Charnock parameterization (see analysis of

sensitivity to roughness parameterizations in [23]).

The size of the domain is Lx × Ly × Lz ≡ 25×25×7 km3. At the top of the domain free-

slip and zero flux boundary conditions are applied to horizontal components of momentum and

scalars, respectively. We follow the COMBLE part I configuration, which fixes cloud droplet

number concentration and for mixed-phase simulations prescribes diagnostic ice formation with

homogeneous freezing of drops also included.

The LES and SCM intercomparison results are available in [23] and on the project web-

site [22] (and include the MSU/INM LES model). In this paper we focus on evaluation of LES

subgrid model and the efficiency of GPU-computations. Note that we do not consider any long-

wave radiation heating to remove any influence of external packages and libraries (i.e., MSU/INM

LES model uses the RRTMG library for long-wave radiation transfer in cloudy atmosphere [8],

which depending on temporal and vertical discretization of the radiation scheme may take up

to 90% of computational time) on the performance of the LES model with embedded cloud

microphysics scheme.

4.2. Grid Resolution Sensitivity

The COMBLE case represents a suitable scenario to assess model performance and sensi-

tivity to grid resolution and subgrid closure, as it includes strong turbulence convection and
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precipitation events with complex mixed-phase cloud interactions all having noticeable effect on

distribution of water content in the boundary layer.

As a reference case we use grid size of 256×256×140 cells, similar to the one proposed in the

intercomparison project, but with uniform grid steps in each direction, i.e., ∆x = ∆y = 100 m

and ∆z = 50 m. Contrary to the COMBLE setup specification, no grid refinement towards

the surface is used, and this way we exclude any influence of non-uniform grid steps on the

LES filtering. Starting from the reference case we successively coarsen the resolution and study

how the LES model reproduces the horizontally averaged and domain-averaged quantities. The

horizontal grid step is increased up to ∆x = ∆y = 800 m, while the vertical grid step is increased

up to ∆z = 400 m, i.e., eight-fold compared to the reference computational grid.

Figure 1. Domain-averaged cloud characteristics: (a) cloud area fraction Ac, (b) liquid water

path, (c) ice water path and (d) total precipitation Pt with the decrease in horizontal (solid

lines) and vertical (dashed lines) resolution of the large-eddy simulation model. The bold black

line denotes the reference simulations on the finest computational grid

Figure 1 shows the domain-averaged characteristics of the key cloud properties: the cloud

area fraction (Fig. 1a) Ac, the distribution of total water content (Fig. 1b and Fig. 1c) and the

total precipitation rate Pt (Fig. 1d), which is related to ice-phase sedimentation, with negligible

contribution from the liquid-phase. The total water content is given in terms of horizontally-

averaged values of liquid water path (LWP) and ice water path (IWP):

LWP(x, y) =

∫ Lz

0
ρ0qliquiddz ≡

∫ Lz

0
ρ0 (qc + qr) dz,

IWP(x, y) =

∫ Lz

0
ρ0qsoliddz ≡

∫ Lz

0
ρ0 (qi + qs + qg) dz.

Here and hereafter we drop the LES-filtering notation, i.e., (·), when denoting the model fields

to make the presentation of results more concise.

The decrease in vertical resolution (dashed lines in Fig. 1) has the most effect on cloudy

boundary layer characteristics. In particular, it significantly reduces the cloud area fraction,
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damps the liquid-phase and, to a lesser extent, the ice-phase water content. This in turn affects

the precipitation intensity at the early stages of cold-air outbreak, which is mostly due to ice

and snow hydrometeors. At the later stages (after 10 hours from the start of simulations, when

the cloud top reaches around 2000 m) the boundary layer is sufficiently resolved even with the

coarsest grid step of 400 m, and the water content and precipitation estimates almost match

the reference case. Notably, the increase of grid steps (solid lines in Fig. 1) in the horizontal

directions has a minor influence even on Ac and any other domain-averaged quantities, with

only notable excessive condensation during the initial growth of convective boundary layer.

Figure 2. Horizontally-averaged cloud droplet water content, qc, depending on the grid

resolution: (a) reference case with ∆x = ∆y = 100 m, ∆z = 50 m, (b) two-fold decrease

in horizontal and vertical resolution, (c) coarsening in horizontal direction

to ∆x = ∆y = 800 m, (d) coarsening in vertical direction to ∆z = 200 m

The horizontally averaged cloud droplet (qc), ice (qi) and snow combined with graupel

(qs + qg) water content depending on the resolution of the LES model are shown in Figs. 2, 3

and 4, respectively. The two-fold increase of grid steps in both horizontal and vertical resolu-

tion, see Figs. 2–4b, only slightly influences the results. Approaching the coarsest resolution in

horizontal directions, ∆x = ∆y = 800 m (Figs. 2–4c), shows that even though the convective

boundary layer growth rate is reduced, resulting in more pronounced saturation and formation

of cloud droplets, the ice formation mechanisms and the overall ice-phase water content remains

only slightly affected, including the distribution with height of precipitating snow and graupel.

When the vertical grid step approaches 200 m (Figs. 2–4d) the entrainment layer at the initial

stages is under-resolved suppressing the formation of liquid-phase cloud. This also results in
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a more thicker distribution of ice water content, in part suppressing conversion to snow and

precipitation before and during the transition from stratocumulus to cumulus.

Figure 3. Horizontally-averaged ice water content, qi, depending on the grid resolution

as given in Fig. 2

Our findings show that the developed LES model is capable to reproduce the CAO case

characteristics even with highly coarse horizontal resolution of 800 m, while the maximum CBL

depth is around 3 km. The horizontal grid resolution only slightly affects the distribution of

water content if the turbulence dynamics and the structure of CBL are even barely reproduced.

This shows good promise in using the LES model with the dynamic closure approach, applied

to momentum, and both heat and moisture transport, to study complex mixed-phase cloud

dynamics. On the other hand, as the cloud formation processes are strongly tied with entrain-

ment/detrainment of air, the vertical resolution appears to be more important. While the grid

step of 400 m in the vertical direction appears too coarse and unable to resolve the initial growth

of boundary layer, the modeling results during the stratocumulus to cumulus transition appear

sensitive to even finer resolutions up to 100 m in domain-averaged and horizontally-averaged

characteristics, implying also the sensitivity to subgrid closure.

4.3. Computational Performance

To assess the computational performance of the LES model with embedded two-moment

bulk microphysics scheme on GPUs, we consider two distinct numerical setups proposed in the

COMBLE intercomparison project [23]: the liquid-only setup, where only processes related with

cloud and rain droplets occur and any ice formation or transport of ice water content is excluded,
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Figure 4. Horizontally-averaged snow and graupel water content, qs + qg, depending on

the grid resolution as given in Fig. 2

and the mixed-phase setup with all the liquid- and solid-phase hydrometeors. For the liquid-only

microphysics we use the saturation adjustment procedure, i.e., the qc is diagnostic, while the

number concentration of cloud droplets, Nc, is fixed. All numerical tests were performed on the

Lomonosov-2 supercomputer on nodes with an Intel Xeon Gold 6142 CPUs and NVIDIA V100

GPUs.

To verify the implementation on GPU of the cloud microphysics scheme, the simulations

of COMBLE scenario were compared with those obtained on central processing units. Tur-

bulent convective cloud systems are highly nonlinear and we do not expect that the trajec-

tories in both runs would match each other even with minor implementation differences, e.g.

order of finite-precision arithmetic operations. The computational grid in these simulations was

128× 128× 75 cells, which corresponds to horizontal resolution ∆x = ∆y = 200 m and a ver-

tical grid step of around ∆z ∼ 90 m. Figure 5 shows the difference between the averaged in

horizontal directions vertical profiles of ice and snow water content in CPU and GPU runs for

the mixed-phase case. While the observed differences appear substantial in the later half of sim-

ulations, where strong precipitation events occur, we stress that they are within the ensemble

spread of LES model for this CAO case. This is also evident in comparison of CPU-GPU imple-

mentation results for domain-averaged quantities – liquid and ice water paths shown in Fig. 6,

where the relative differences are much smaller.

The two-moment cloud microphysics scheme accounts for circa 50% of total computational

time on single CPU core. This is the most computationally demanding part of model time-
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Figure 5. Time evolution of horizontally-averaged vertical profiles for ice, qi, (a, b)

and snow, qs, (c, d) water content and their respective differences (e, f) between CPU- (a, c)

and GPU-based (b, d) implementations in mixed-phase case

step, projection method used for solving equations (1) and (2) takes the second place and the

dynamic LES closure occupies the third place. This warrants the next part of our study – inves-

tigating to what extent the porting of cloud microphysics to GPU architecture could improve

the computational performance of the large-eddy simulation model of cloudy boundary layers.

To facilitate these tests, we performed a set of numerical experiments with two-moment cloud

microphysics scheme for a range of grid sizes: from 128 × 128 × 75 up to 512 × 512 × 75 cells.

Note that for mixed-phase case the largest grid size is slightly lower (576 × 256 × 75 cells)

because of increased memory demand – storing additional solid-phase hydrometeor fields and

their tendencies makes model reach the 16 GB VRAM limit of V100 devices.

The speedup estimates of running the LES model on GPUs as compared with CPU-only

implementation are given in Figs. 7 and 8 for liquid-only and mixed-phase simulations, respec-

tively. Figure 7 shows the speedup of the entire model (Fig. 7a) and its individual components

(Fig. 7b, c and d) for the liquid-only case, comparing performance of single GPU with single

CPU core. With the increase in grid size (N) the speedup increases for the surface layer flux

scheme (Fig. 7b: surface layer), the projection method for solving the momentum equations

with incompressibility constraint (Fig. 7c: momentum eq.), and, in particular, the implemen-

tation of the BiCGstab algorithm with multigrid preconditioner for solving the finite-difference

Poisson equation (Fig. 7c: poisson eq.). The opposite behavior is observed for other components

(Fig. 7b, c, d), including the cloud microphysics scheme. This dependence of GPU performance

on grid resolution is evident for the mixed-phase simulations as well (Fig. 8). In both cases

the microphysics scheme (Fig. 7b and Fig. 8b), while being one of the most time-consuming,
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Figure 6. Differences between CPU- and GPU-based implementation of the LES model for

liquid water path (LWP) in (a) liquid-only and (b) mixed-phase cases, (c) ice water path (IWP)

achieves the most significant reduction in run-time over CPU implementation with the speedup

in mixed-phase well over 200 times compared to single CPU core. Notably, the overall model per-

formance is hindered by less efficient GPU-implementation of explicit in time numerical methods

for solving advection-diffusion type equations for liquid/solid water potential temperature Θ, to-

tal water content q, mixing ratios qa and number concentrations Na of all the hydrometeors,

where a = [c, r, i, s, g]. Optimization of tracer transport algorithms (see analysis in [12]) seems

especially relevant for the mixed-phase simulations, as the two-moment microphysics scheme

may involve solving ten additional transport equations.

Next, we focus on MPI-scalability of the LES model, shown in Figs. 9 and 10. This evaluation

is important for both CPU- and GPU-based implementations. For the former, efficient MPI-

scaling is crucial to shorten single GPU-card-to-core gap, and, for the latter, memory constraints

on the GPU (compared to CPU) require the use of multiples of devices for very large grids. In

numerical tests we enlarged the computational domain in each horizontal direction up to 100 km,

resulting in a grid comprising 512× 512× 75 cells.

The LES model (Fig. 9a) and almost all of its components (Fig. 9b, c, d, e, f) exhibit a

near-linear speedup with increase in the number of MPI processes for CPU-based implemen-

tation. The only notable exceptions are the microphysics scheme (Fig. 9b: microphysics) and

computations related to evaluation of virtual potential temperature (Fig. 9c: state eq.). This

could be attributed to additional MPI communications performed in these parts of the model.

For the MPI-CUDA hybrid implementation we bind each GPU to a separate MPI process,

while the speedup is calculated relative to the run time achieved on 2 MPI processes due to

insufficient memory available on a single GPU. The results for the GPU-based implementation

(Fig. 10) show that MPI-scaling is less efficient, compared with baseline CPU results. In par-
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Figure 7. Single GPU over single CPU core implementation speedup of the LES model

and its components for liquid-only simulations depending on the number of grid cells N

ticular, additional communications with CPU-GPU data transfers thwart the scalability of the

dynamics part of the model (Fig. 10c: momentum eq. and poisson eq.). This is primary related

to communications and grid coarsening applied in the multigrid method (Fig. 10c: poisson eq.).

The reason for poor MPI scalability for the surface flux layer calculations (Fig. 10b: surface

layer) appears to be rather small workload, since those calculations are performed only with

2D surface layer data. On the other hand, almost 4-times speedup of the model on 16 GPUs

(compared with run time on 2 GPUs) is due to highly-efficient MPI-scaling of the transport

equations and, especially, the microphysics scheme.

Some further improvements on MPI-scaling could be expected on novel NVIDIA GPU de-

vices interconnected via high-bandwidth communication links called NVLink. This allows for

effective memory exchange between GPUs without utilising CPU RAM (Random Access Mem-

ory). For instance, NVLink connection between two A100 GPUs provides 600 GB/s bidirectional

bandwidth. Moreover, peer-to-peer exchange between the GPUs on the different computational

nodes can be performed if they are connected using RDMA (Remote Direct Memory Access) sup-

ported communication links: Infiniband or RoCE – RDMA over Converged Ethernet. Such CPU-

excluding data transfers can be implemented in LES models with the communication libraries

introduced by coprocessor suppliers (e.g., NVIDIA or AMD). Particularly, NCCL (NVIDIA Col-

lective Communications Library) provides optimized multi-GPU and multi-node communication

primitives.
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Figure 8. Single GPU over single CPU core implementation speedup of the LES model

and its components for mixed-phase simulations depending on the number of grid cells N

Conclusions

In this paper we discussed the development of the large-eddy simulation model supplemented

with two-moment bulk cloud microphysics scheme for GPU-based HPC systems. The model is

based on the dynamic approach for calculation of subgrid scale fluxes, applied to both heat

and moisture transport. The analysis of large-eddy simulation of an intense cold-air outbreak

case in the Arctic showed little sensitivity in reproducing bulk characteristics of mixed-phase

cloudy convection to horizontal grid resolution. On the other hand, the results highlight stronger

dependence on vertical resolution even in cases where the CBL dynamics could be expected to be

well-resolved by the LES model. Here the grid coarsening led to pronounced reduction in cloud

cover, weakened cloud formation during the stratocumuls to cumulus transition, but overall

only slightly affected domain-averaged water content and precipitation estimates. In this regard

future studies of cloud transition mechanisms during CAO should take into account the possible

significant sensitivity to vertical grid resolution and subgrid closure in the LES approach.

The performance evaluation tests demonstrated that GPU implementation provides up to

200 times higher computing performance than single CPU core (or more than 10 times per

a CPU node) for computationally demanding cloud microphysics schemes. Numerical solution

of tracer transport equations represents one of the main bottlenecks in GPU implementation,

relative to other components of the model, achieving a performance comparable to only 1.5 CPU

nodes. With the overall estimated threefold speedup of the LES model on graphics processing

unit compared to CPU node, adopting code to GPU allows to expand possible range of domain
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Figure 9. MPI-scalability of the CPU-based implementation of the LES model

and its components, P is the number of MPI processes

and grid sizes. This is a prerequisite for studies of complex mixed-phase cloud processes and

cloud organizations.

One of the main concerns is related to inefficient MPI multi-GPU scaling of the LES model,

which requires further improvement. While the cloud microphysics scheme achieves even super-

linear speedup when using 16 GPUs, the overall efficiency of the LES model is hampered by the

implementation of multigrid method for solving finite-difference approximation of the Poisson

equation, which heavily relies on data coarsening to achieve higher convergence rates and in-

volves a significant amount of communications. These findings suggest the necessity for further

optimization of MPI data transfers in GPU-based LES models. In this regard, such improve-

ments could be achieved by excluding CPU RAM in MPI communications, using specialized

technologies (e.g., NVLink) and libraries (e.g. NCCL) for device-to-device high bandwidth link

between state-of-the-art GPUs.
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This work presents an automatic adjoint-model construction within the Carbon Cycle Model

Constructor (CCMC) that enables variational data assimilation (VDA) for estimating the initial

state of soil dynamic carbon models. The adjoint is generated once from the generic pool-flux rep-

resentation used in CCMC, which allows efficient gradient evaluation and iterative optimization

of the initial pool vector without constructing a model-specific adjoint. The proposed approach is

tested with two soil carbon models: SOCS (Soil Organic Carbon Saturation) and RothC (Rotham-

sted model). Data assimilation experiments are performed using long-term field observations of

soil carbon content. The entire VDA workflow, including the adjoint solver and optimization al-

gorithm, is implemented in the same Fortran code base as CCMC. CCMC+VDA implementation

is fully compatible with the MPI+OpenMP TerM land surface model and provides a reusable,

scalable foundation for variational soil-carbon data assimilation on modern supercomputers.

Keywords: data assimilation, carbon dynamic models, adjoint model, automatic differentia-

tion.

Introduction

Variational data assimilation (VDA) is a class of mathematical methods and numerical

techniques used to reduce uncertainty in the external parameters of mathematical models by

optimizing performance metrics (objective or cost function) with respect to observed data and

prior estimates. VDA relies on the adjoint-equation framework to compute the gradient of the

objective (cost) function. Among geophysical models, hydrodynamical models of the atmosphere

and the ocean have most benefited from deep integration of VDA into research and operational

systems over the last decades [18]. Land surface models have benefited less from VDA, even

though they include many parameters and initial states that are not directly measurable. Specif-

ically, this relates to terrestrial carbon-cycle models, where soil carbon pools are rarely measured

in situ, and equation parameters are usually phenomenological, suggesting no method of field

assessment. For the carbon cycle, VDA can potentially align model parameters and states with

a variety of observations (e.g., soil carbon content, CO2 fluxes, sensible and latent heat fluxes,

etc.).

Over the past decade, the practical effectiveness of VDA-based modeling systems has been

demonstrated at both regional and global levels [7, 8, 11, 17, 22, 23]. In [11], the authors pro-

pose a step-by-step data assimilation system that sequentially optimizes the parameters of the

ORCHIDEE model to improve the model’s estimation of terrestrial carbon uptake using three

data streams: Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Differ-

ence Vegetation Index (NDVI) satellite observations, net ecosystem exchange (NEE) and latent

heat (LE) flux measurements from FLUXNET stations, and atmospheric CO2 concentrations

modeled using the general circulation model (GCM) of the Laboratoire de Météorologie Dy-
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namique (LMDz). In [17], the posterior parameter covariance obtained by applying a variational

method to the BETHY land surface model is used to quantify forecast errors of CO2 fluxes and

atmospheric concentrations.

In these studies, adjoint model construction relies on source-to-source automatic differen-

tiation (AD) to obtain adjoint code; the most widely used tool is TAF [7, 8, 11, 12, 16]. An

alternative is to build the model within the YAO variational-assimilation platform, where the

model is described as a modular graph for which an adjoint is generated automatically, as in [2].

These approaches are tightly coupled to specific model implementations. Using TAF requires

restructuring and annotating the Fortran code to satisfy the constraints of the AD toolchain,

YAO requires rewriting the model as a component graph within its own modeling language. As

a result, adjoints must be rebuilt and revalidated for each individual model and model version.

In this work, we develop a module for automatic adjoint construction for models specified

in the Carbon Cycle Model Constructor (CCMC) [5] to seek the initial conditions by VDA.

The constructor is a general-purpose tool for building carbon-cycle models and is intended for

integration into the INM RAS-MSU land active-layer model TerM (Terrestrial Model) [20]. By

integrating adjoint generation into CCMC itself, we obtain a reusable, model-agnostic adjoint

solver that automatically adapts to any CCMC-defined model without rewriting model code.

The paper is organized as follows. Section 1 briefly reviews the basic VDA framework to

be then applied for carbon cycle models. Next, Section 2 presents the concept of carbon cycle

model constructor (CCMC), which has been recently proposed and implemented by the authors;

introduction of the VDA algorithm to CCMC code is described. Numerical experiments for

testing the created CCMC+VDA code are performed with RothC and SOCS model, as detailed

in Section 3; the code scalability towards larger scale problems and multicore computer systems

and distributed-memory supercomputers is discussed. The Conclusions section summarizes the

demonstrated properties of the developed CCMC+VDA code and draws prospects for future

research.

1. Variational Data Assimilation

The variational data assimilation problem can be formulated as follows [9, 10, 14, 15]. Let

us consider a model described by a system of differential equations:

{
dC(t)
dt = F (C, t), t ∈ (0, T ),

C(0) = C0,
(1)

where C is the state vector of the model (for carbon-cycle models, C typically represents a vector

of carbon pools); F is the models dynamical operator; and C0 is the unknown initial state to be

determined. The optimal initial state Ca
0 is found as the solution to the following minimization

problem:

Ca
0 = arg min

C0

J(C0), (2)

J(C0) =
1

2

(
C0 − Cb0

)>
B−1

(
C0 − Cb0

)
+

1

2

∫ T

0

[
HC(t)− yobs(t)

]>
R−1

[
HC(t)− yobs(t)

]
dt,

(3)

where Cb0 is the background (prior) initial state, B and R are the covariance matrices of back-

ground and observation errors, respectively, yobs denotes the observation vector, and H is the
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corresponding observation operator, projecting the model state vector to the vector of obser-

vations. In the variational assimilation approach, the gradient of the cost function J(C0) is

computed by solving the adjoint problem, yielding the optimality system (1), (4), (5), which

can be derived, for example, via the method of Lagrange multipliers:

{
dC∗(t)

dt = − [∇CF (C, t)]>C∗(t) +H>R−1
(
HC(t)− yobs(t)

)
, t ∈ (0, T ),

C∗(T ) = 0.
(4)

∇C0
J = B−1(C0 − Cb0)− C∗(0) = 0. (5)

We then solve, in sequence, the forward model (1) and the adjoint model (4); their outputs are

inserted into (5) to compute the cost-function gradient, which drives an update of C0 using an

appropriate gradient-based optimization method. Iterations proceed until the change between

successive estimates of C0 becomes sufficiently small or until a maximal number of iterations is

exceeded.

2. Carbon Cycle Model Constructor and Data Assimilation

2.1. CCMC Concept and Implementation

The Carbon Cycle Model Constructor [5] enables the implementation of models repre-

sentable as a system of differential equations that describe the dynamics of Np carbon pools:

dCi
dt

= Fi =

Np∑

j=1

Nf
i,j∑

k=1

F ki,j , F ki,j =

Nm
i,j,k∏

m=1

fmi,j,k
(
ψmi,j,k

)
, i = 1, . . . , Np, (6)

where Ci is the carbon content in the i-th pool (a scalar variable); Nf
i,j is the number of fluxes

between pools i and j; F ki,j is the k-th flux between pools i and j; Nm
i,j,k is the number of

multiplicative factors in the expression for the k-th flux between pools i and j; fmi,j,k(·) is the

m-th single-argument function in the expression for the k-th flux between pools i and j; and

ψmi,j,k is the argument of the m-th function, representing a biotic or abiotic driver of the process,

which can be either one of the pools or an external given variable.

The set of possible forms of fmi,j,k(ψ
m
i,j,k) in most carbon cycle models reduces to a number

of standard functional dependencies (linear, exponential, Michaelis–Menten, etc.). This allows

most models to be implemented within a single code in which the model structure is specified

by a collection of standardized multiplicative factors f = f(ψ). Accordingly, the constructor

provides an interface for setting the number of pools, the graph of fluxes between pools, and the

factors fmi,j,k so that a solver for the general system (6) implements the model in a such specified

configuration.

In order to implement a data assimilation system in CCMC for initial-state estimation for

any model specified in CCMC, it is necessary to set the initial guess Cb0, the error-covariance

matrices B and R, and the observation operator H, as well as construct the adjoint model. As can

be seen from (4), this requires computing partial derivatives of the models dynamics operator

with respect to the carbon pools. The next section describes how this differentiation can be

automated for models formulated within CCMC framework, i.e., those that can be specified

by (6).
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2.2. Automatic Construction of Adjoint Models in CCMC

CCMC solves the forward problem (1) numerically using a first-order explicit time-stepping

scheme with a fixed time step ∆t. The adjoint problem (4) for the general CCMC equation (6)

takes the form:

dC∗(t)
dt

= −
[
∂F

∂C
(C(t), t)

]>
C∗(t) +H>R−1

[
HC(t)− yobs(t)

]
, F = (F1, . . . , FNp

). (7)

To construct the adjoint problem (7), it is necessary to evaluate ∂Fi

∂Cl
, where i, l = 1, . . . , Np. It

can be shown that

∂Fi
∂Cl

=

Np∑

j=1

Nf
i,j∑

k=1

F ki,j

Nm
i,j,k∑

m=1

1

fmi,j,k

(
ψmi,j,k

)
∂fmi,j,k

(
ψmi,j,k

)

∂Cl
, l = 1, . . . , Np. (8)

In the numerical implementation, to avoid division by zero, we replace 1
fm
i,j,k(ψm

i,j,k)
with

1
fm
i,j,k(ψm

i,j,k)+ε
, where ε is a small regularization constant. In the current CCMC programming

code, eight basic multiplicative factor functions are available: constant, linear, hyperbolic,

Michaelis–Menthen, a step function, an exponential, and two piecewise-linear functions, which

form the extendable library of functions. By specifying, for each function, the form of its deriva-

tive with respect to Cl (using a library of derivatives df/dψ), i.e.,
∂fm

i,j,k

∂Cl
, one can compute

and store ∂Fi

∂Cl
alongside the evaluation of Fi. With ∂Fi

∂Cl
available, the adjoint problem can be

integrated in CCMC using the explicit solver used for the forward model.

2.3. Code Modifications to CCMC

To enable automatic adjoint solver construction within CCMC and to solve the data-

assimilation system for restoring the initial-state vector, the constructor code was modified

as follows:

1. For each base factor function fmi,j,k implemented in the constructor, their derivatives with

respect to Ci were added.

2. A function returning ∂Fi

∂Cl
using formula (8) was added to the method that calculates the

right-hand side Fi. The computed derivatives are stored over all time levels, since the adjoint

solver requires access to their full temporal history when integrating backward in time.

3. A module was added in which, after solving the forward problem, the adjoint one is solved

numerically using an explicit time scheme. The error-covariance matrices B,R, the obser-

vation operator H, and the first approximation for the optimized initial state Cb0 are also

specified in this module.

4. A function was added which computes the gradient of the cost function J(C0) via (5).

5. The iterative adaptive gradient method Adagrad [4] was implemented to update the initial

condition C0 values according to the following formulas:

gk = ∇C0
J(C0,k−1),

Gk = Gk−1 + gk � gk,
C0,k = C0,k−1 − α

gk√
Gk + ε

.

(9)

Here, � denotes the elementwise product of vectors, and the operations of squaring, division,

and taking square roots of vectors are all taken elementwise; k is the iteration number, α
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is the learning rate, and ε is a small constant for numerical stability. Adagrad was chosen

because the scale of the pools can vary greatly, and dynamically recalculating the learning

step at each iteration for each pool allows this to be taken into account, thus achieving

better convergence [4]. Figure 1 illustrates the schematic flow of CCMC with the embedded

adjoint and optimization components.

CCMC + Adjoint-based Data Assimilation (Initial-State Estimation)
Forward model (CCMC)

Forward solver

Adjoint & Optimization (Data Assimilation)

Init carbon model
(pools, fluxes, factor multipliers)

Loop over:
• time t

• grid (i, j)

Compute Fᵢ

Compute ∂Fᵢ/∂Cₗ

Integrate state C(t)

Write outputs
(NetCDF, diagnostics)

Set DA components
(B, R, H, C₀ᵇ)

misfit
J(C₀ₖ)

B: background
covariance

R: observation
covariance

H: observation
operator

C₀ᵇ: background
initial state

Run adjoint model
(backward in time)

Compute gradient
∇J(C₀)

Adagrad update:
Gₖ = Gₖ₋₁ + gₖ ⊙ gₖ

C₀ₖ = C₀ₖ₋₁ − α · gₖ / √(Gₖ + ε)

Converged?

No: update C₀ₖ
and rerun forward

Save optimal C₀*
export outputs

Yes

Figure 1. Flowchart of the variational data assimilation module in the carbon cycle model

constructor

3. Numerical Experiments

The data-assimilation system for initial-state estimation within CCMC was tested for the

two carbon-soil models implemented in CCMC: SOCS (Soil Organic Carbon Saturation) [13] and

RothC (Rothamsted model) [3]. In both cases the optimization is performed in a low-dimensional

state space: in a single site (zero-dimensional column) the control vector C0 has dimension Np,

with Np = 2 for SOCS and Np = 4 for RothC.

3.1. SOCS Model

This model describes the dynamics of two soil-organic-matter (SOM) pools: a free (un-

protected) pool and a protected pool formed through organo-mineral interactions and physical
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occlusion within microaggregates [13]. The model equations read:

dC1

dt
= I − (1− r) · k · C1 − rkC1 ·

(
1− C2

Cm

)
+ kdC2,

dC2

dt
= r · k · C1 · (1−

C2

Cm
)− kd · C2,

(10)

where C1 is carbon in the free (unprotected) SOM pool; C2 is carbon in the protected SOM

pool; Cm is the maximum amount of organic carbon that can be protected in soil (the soils

protective capacity); I is the input of organic carbon to the soil; r is the fraction of carbon

transferred to the protected pool during decomposition of C1; (1 − r) are respiration losses;

k is the decomposition-rate coefficient for C1; and kd is the rate coefficient for the transition of

carbon from C2 to C1 due to desorption and aggregate breakdown.

3.2. RothC Model

In CCMC, the soil component of the RothC model is implemented, with the prescribed rate

of plant litter input to the soil. The evolution of carbon stocks is described by the following

differential equations [3]:

dCDPM

dt
= fdpm · Flit −RDPM,

dCRPM

dt
= (1− fdpm) · Flit −RRPM,

dCBIO

dt
= fbio · βRRS −RBIO,

dCHUM

dt
= fhum · βRRS −RHUM,

(11)

where βR is the clay fraction (particles < 0.002 mm) in the soil; Flit is the input of organic matter

to the soil from vegetation, crop residues, and organic fertilizers, RS is the total respiration rate

over the four pools (RS =
∑

iRi, where i ∈ {DPM,RPM,BIO,HUM}); RBIO, RHUM, RRPM,

and RDPM are the respiration rates of the microbial biomass (BIO), long lived humified (HUM),

resistant plant material (RPM), and decomposable plant material (DPM) pools, respectively;

fdpm is the litter-quality function; and fbio and fhum are partitioning coefficients that allocate

incoming organic matter to the BIO and HUM pools during mineralization.

The inert organic matter (IOM) pool is calculated from the total soil carbon at the initial

time and kept constant during the simulation:

CIOM = aq1C
aq2

tot , (12)

where Ctot is the total soil carbon content (the sum of all pools), aq1 = 0.049, aq2 = 1.139 –

empirical dimensionless constants.

The terms Ri are computed as

Ri = ksiFT (Tsoil)Fs(s)Fv(v)Ci, (13)

where i ∈ {DPM,RPM,BIO,HUM}, ksi is the respiration rate per unit mass of pool i under

standard conditions [1/s]; FT (Tsoil) is the soil-temperature factor; Fs(s) is the soil-moisture

factor; and Fv(v) accounts for vegetation cover. The standard respiration rates ksi used in this
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study are

ks,DPM = 3.22, ks,RPM = 9.65, ks,BIO = 2.12, ks,HUM = 6.43.

The IOM pool has no respiration term (ks,IOM = 0).

The soil temperature function reflects temperature variations in the upper active soil layer

(0–30 cm) and is defined as

FT (Tsoil) =
b1

1 + eb2/(Tsoil−b3) , (14)

where Tsoil is the mean monthly soil temperature [K]; b1 = 47.9 (dimensionless), b2 = 106 K,

and b3 = 254.85 K are empirical parameters.

The soil moisture factor is parameterized as

Fs(s) =





1− d1 · (s− so), for s > so,

d2 + d1 ·
(
s−smin

so−smin

)
, for smin < s ≤ so,

d2, for s ≤ smin,

(15)

where s is the moisture of the upper (unfrozen) soil layer; so is the optimal soil moisture at

which Fs(s) attains its maximum (i.e., equals one); and d1 = 0.8, d2 = 0.2 are dimensionless

empirical coefficients, chosen so that d1 + d2 = 1, a condition ensuring continuity of Fs. The

wilting moisture is determined experimentally:

so = 1
2 · (1 + sw),

smin = c · sw,
(16)

where sw is the wilting moisture, and c = 1.7 is a dimensionless empirical coefficient.

The vegetation-cover factor is given by

Fv(v) = e1 + e2 · (1− v), (17)

where v ∈ [0, 1] indicates the presence of vegetation cover. The dimensionless empirical coeffi-

cients e1 and e2 are 0.6 and 0.4, respectively.

3.3. Results and Discussion

For validation of the variational data assimilation algorithm embedded into CCMC, we used

experimental time series of soil carbon content from long-term fertilization field experiments [1]

conducted at the Donskoy Federal Agrarian Research Center (Rostov Oblast) and at DAOS-3,

the Dolgoprudny Agrochemical Experimental Station (Moscow Oblast). The external forcing

time series used in the SOCS and RothC models were compiled from the above-mentioned

field stations (soil temperature, soil moisture, organic carbon inputs, mean vegetation cover)

together with ERA5 reanalysis data (clay content and wilting-point soil moisture). Both models

were integrated with the time step of one month. Their parameter values were set as follows:

r = 0.45, Cm = 12, kd = 0.007, k = 7.5 for SOCS and βR = 0.2, sw = 0.75, v = 0.8 for RothC.

The observation operator is H = (1, 1, . . . , 1) ∈ Rn, since the measured soil carbon content

is the sum of all model pools. The observation-error covariance matrix R is diagonal. Since

the observations are of order 10 kg m−2, we assume an absolute measurement uncertainty of

0.1 kg m−2, and therefore set R−1 = 1/0.1. The background covariance matrix B is also diagonal.
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Its diagonal entries are taken as 10% of the characteristic magnitude of each pool, assuming that

pool errors are uncorrelated and that no detailed prior covariance information is available. The

initial guess for the pool vector C0 in each model was constructed using expert-based estimates

of the typical distribution of soil carbon among pools for the corresponding soil type.

The optimization employs the Adagrad algorithm with learning rate α = 1 which was chosen

empirically as a compromise between convergence speed and stability. A total of 20 iterations

were performed for both models. The convergence of the cost function J(C0) for the SOCS and

RothC models is shown in Fig. 2. Figure 2 demonstrates that, for both SOCS and RothC, the

VDA scheme systematically reduces the cost function over the course of the Adagrad iterations

and approaches a nearly stationary value by the end of the optimization.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration number

100

101

102

J(C
0)

Cost function J(C0) over iterations (log scale)

(a) SOCS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration number

100

101

102

J(C
0)

Cost function J(C0) over iterations (log scale)

(b) RothC

Figure 2. Cost function J(C0) over Adagrad iterations

for the SOCS (a) and RothC (b) models

Figures 3 and 4 show the simulated soil carbon stock dynamics obtained with the prior initial

conditions and with those estimated via data assimilation for the Rostov Oblast site. Blue dots

indicate observations. Tables 1 and 2 compare the prior and optimal initial conditions and report

the root-mean-square error (RMSE) of the simulated total soil carbon stocks with respect to the

observed time series at the site. In both cases the reference values are the measurements, while the

“prior” RMSE is computed from the forward model run started from the background initial state

Cb
0 and the “posterior” RMSE from the run started from the optimized state Ca

0 . Quantitatively,

the VDA-based initialization leads to a strong reduction of the model–data misfit. For SOCS, the

RMSE decreases from 1.864 to 0.096 kg m−2 and for RothC, the RMSE decreases from 1.88 to

0.152 kg m−2. In Figs. 3 and 4 the prior simulations systematically underestimate the measured

soil carbon stocks, whereas the trajectories obtained with VDA-based initial conditions closely

track the observed levels and reproduce the temporal evolution of the carbon stocks.

The established way of initializing the pools in carbon cycle models is to run the forward

model under statistically stationary external forcing (litter input) for a sufficiently long time

period until a quasi-steady-state of the pools is reached [21, 24]. This approach relies on long-

term reconstructions of climate, carbon inputs, and land-use history, although such records are

typically uncertain. It also presumes that soil carbon is close to equilibrium at the beginning of

the simulation, which is often not the case [6, 24]. In our method, the initial pool vector C0 is

treated as an unknown control variable and is estimated directly from the observed soil carbon

time series using VDA. This removes the need for uncertain multi-decadal forcing and does not
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Figure 3. Soil carbon stocks at the Rostov Oblast site simulated by the SOCS model using

the prior initial conditions (blue) and initial conditions estimated via data assimilation. Blue

dots indicate observations
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Figure 4. Same as Fig. 3, but simulations are performed with RothC model

Table 1. The prior and optimal initial conditions for SOCS model, and corresponding

root-mean-square errors (RMSE)

Pool
Background

(prior)
Analysis

(posterior)

C1(0) 0. 0.09

C2(0) 6 8.76

RMSE 1.864 0.096

rely on the equilibrium assumption. A limitation of the presented VDA-based initialization is

that it requires a time series of soil carbon observations, whereas spin-up can be applied when

only a single measurement is available.

The developed CCMC+VDA programming code is intended for implementation into TerM

land surface model. The VDA driver, adjoint solver, and Adagrad iterations are implemented in
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Table 2. Same as Tab. 1, but simulations are performed with RothC model

Pool
Background

(prior)
Analysis

(posterior)

CDPM (0) 0.01 0.2

CRPM (0) 0.1 0.32

CBIO(0) 0.05 0.24

CHUM (0) 5. 7.13

RMSE 1.88 0.152

the same Fortran code base as CCMC and TerM. The parallel implementation of TerM uses MPI

and OpenMP. The TerM computational domain is a rectangular latitude-longitude grid that is

decomposed across MPI processes with nested OpenMP threads; each process/node computes

all grid points in its subdomain independently of the others [19]. This decomposition is valid

because TerM solves a system of one-dimensional vertical equations in the longitude-latitude cells

with no horizontal coupling. CCMC+VDA module, including the Adagrad optimizer, follows

the same domain decomposition and performs all optimization steps locally within each grid

column, requiring no additional inter-process communication. As a result, the Adagrad-based

VDA algorithm is fully compatible with the existing MPI+OpenMP parallelization of TerM and

scales naturally from a single multicore node to multi-node supercomputers.

All numerical experiments reported in this paper were performed in a single-core mode on an

M3 Pro processor (ARM64 architecture). The code was compiled using the GNU Fortran com-

piler version 15.2.0. For this configuration, a single forward model run required approximately

0.004 s for the SOCS model and 0.006 s for the RothC model. A complete variational data

assimilation cycle, including 20 Adagrad iterations, required approximately 0.038 s for SOCS

and 0.097 s for RothC.

Conclusion

In this work, we have implemented automatic construction of an adjoint model to the model

specified in the carbon cycle model constructor (CCMC), and made the necessary modifications

to the constructor code. Based on that, we have also built a solution to the system of variational

data assimilation equations for restoring the initial conditions of the carbon model dynamics sys-

tem. Numerical experiments with data assimilation using the SOCS and RothC models showed

a substantial reduction in the model-observations misfit, confirming both the correctness of the

data assimilation implementation and the practical value of the variational approach for state

variables initialization.

The prospects of extending the variational assimilation method and its implementation

presented in this paper include the following:

• moving from initial state estimation to joint optimization of initial state and model pa-

rameters; this requires adding derivatives of the base functions not only with respect to

pools but also with respect to model parameters;

• adding quantification of uncertainty of the optimal solution via the posterior error-

covariance matrix;

• further integrating CCMC into the land surface model TerM and optimizing the memory

usage of variational data assimilation on modern supercomputers.
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Thus, we have established a reproducible and scalable foundation for variational assimilation in

CCMC – from automatic adjoint construction and gradient evaluation to practical validation on

real soil data.
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in Amorphous SiO2: Quantum Molecular Dynamics Simulations
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The formation of stoichiometric and oxygen-deficient amorphous states of a-SiO2 from a cor-

responding crystal was simulated using the melting-quenching procedure. To simulate the entire

process, quantum molecular dynamics implemented in the VASP program and supercells contain-

ing 64 Si atoms and 128 O atoms were used. This size allows modeling the formation of rings with

a small number of Si–O–Si bridges. At given heating and cooling rates of 0.5 K/fs, the transfor-

mation of the crystal’s atomic network into a disordered structure was studied depending on the

melt stabilization temperature. It is shown that despite the strong change in the topology of the

atomic network in a-SiO2 compared to the crystal, the bulk of the atoms constitute a continuous

network of SiO4 tetrahedra linked by oxygen vertices. Local disturbances of this arrangement of

atoms are intrinsic point defects of SiO2, which are given special attention. It has been shown that

most of the defects present in oxygen-deficient states are also present in stoichiometric states of

a-SiO2. Along with the known intrinsic defects of SiO2, new defects were also identified, including

those associated with oxygen deficiency. It is shown that for two generally accepted models of

oxygen-deficient centers (ODCs) in a-SiO2, the energy of formation of an oxygen vacancy is signif-

icantly lower than the energy of formation of a twofold coordinated silicon atom. The point defects

of a-SiO2 identified in this work create a foundation for the interpretation of experimental data

on the radiation resistance of optical fibers, the effects of high-power laser radiation on optical

coatings, and in microelectronics, where insulating layers based on a-SiO2 are used.

Keywords: quantum molecular dynamics, amorphous SiO2, point defects, oxygen deficiency,

oxygen vacancy, ODC.

Introduction

Amorphous silica or a-SiO2 and silica glass or quartz glass are names of disordered states of

silicon dioxide. This non-crystalline material has unique properties and is widely used in micro-

electronics for insulating layers in most of semiconductor devices, in high-speed communication

lines as a base component of optical fibers, in multilayer optical coating as low-refractive in-

dex thin films, and in many other applications. The structure of perfect a-SiO2 at the atomic

level is usually imagined as a disordered framework of SiO4-tetrahedra bound to each other

by common oxygen atoms in the tetrahedra vertexes. Many different silicon dioxide crystalline

polymorphs (quartz, cristobalite, tridymite, coesite) have such structure with different pack-

ing of SiO4-tetrahedra. Perfect silicon dioxide in its crystalline or amorphous form has one of

the widest transparency windows, the band gap, about 9 eV. Disruptions to the ideal network

of interatomic bonds in pure a-SiO2 are called intrinsic point defects, and some of them are

associated with electron states in the band gap. Existence of these states narrows the trans-

parency window and results in absorption of the light irradiation with photon energies below

9 eV. This absorption leads to additional losses in optical fibers and decreases the laser damage

threshold of optical coating. Band gap states of point defects play a role of hole or electron

traps creating radiation-induced color centers in silica-based fibers [1] and different phenomena

in semiconductor devices such as interface charge, leakage current, etc. [21].

1Research Computing Center of Lomonosov Moscow State University, Moscow, Russian Federation

DOI: 10.14529/jsfi250407

2025, Vol. 12, No. 4 101

https://orcid.org/0000-0002-7102-6107
https://orcid.org/0000-0002-4777-6522
https://orcid.org/0000-0002-8767-642X
https://orcid.org/0000-0001-6893-3008
https://orcid.org/0000-0003-4240-7709


Among silica intrinsic point defects, oxygen-deficient centers or ODCs are most widely

discussed as precursors of various radiation-induced color and/or ESR-active centers, ESR –

Electron Spin Resonance. ODCs also play a key role in the formation of the UV-written refractive

index gratings in Ge-doped silica-based fibers [23]. Authors of various publications use two ODC

models to interpret the phenomena observed in silicon dioxide: the oxygen vacancy, ODC(I),

and the twofold coordinated silicon atom, ODC(II) or =Si, where the symbol “=” denotes two

Si–O bonds that connect the silicon atom to the rest of the SiO4-tetrahedra network. Note that

the stoichiometry of the SiO2 supercell with an oxygen vacancy is equal to the stoichiometry

of the SiO2 supercell with a =Si defect. The oxygen vacancy model refers to a common defect

in crystals, but =Si originally relates to a defect at silica surface. Oxygen vacancies have been

discussed as models for various defects in quartz glass, including ODC models, and corresponding

calculations have been carried out for over 50 years, e.g. see [3, 25, 27] and references therein.

The model of ODC in the form of a twofold coordinated silicon atom =Si was introduced much

later [16, 19], but is currently being discussed for the interpretation of experimental data along

with the oxygen vacancy [6, 14].

Despite the more or less general acceptance of these two models, the existence of oxygen

vacancies and =Si atoms in a-SiO2 is based only on indirect experimental evidences, since the

atomistic structure of point defects can only be obtained by analyzing ESR spectra, but ODCs

do not manifest themselves in ESR. Therefore, we decided to obtain direct evidence for the

existence of these ODC models using atomistic computer simulations.

We recently performed quantum molecular dynamics simulations of amorphous silica using

the melting-quenching procedure [22, 24] and found that in most cases, the resulting amorphous

stoichiometric silicon dioxide does not contain oxygen vacancies or twofold coordinated silicon

atoms. In these works, we used spin-unpolarized quantum MD calculations, which in general do

not allow to describe adequately breaking and restoring interatomic bonds during the melting-

quenching procedure.

In the present work, carried out with the aim of searching for possible intrinsic defects

of a-SiO2, the results of modeling stoichiometric and oxygen-deficient a-SiO2 are described.

Modeling was carried out using the same melting-quenching procedure as in [22, 24], but with

spin-polarized calculations for a more adequate description of the breaking and restoring of

Si–O bonds. We investigated more thoroughly than in works [22, 24] the transformation from

the atomic lattice topology of the crystal to the more disordered atomic network topology of

a-SiO2. Oxygen deficiency was created in the initial crystal or a-SiO2 by removing one or two

oxygen atoms, creating single oxygen vacancies or divacancies. In this process, several dozen

models of amorphous states of stoichiometric and oxygen-deficient a-SiO2 were obtained, and

the intrinsic point defects formed in them were identified, including 12 defects that can be

attributed to oxygen deficiency. The obtained results allow us to take a different look at the

models of oxygen-deficient centers in amorphous silicon dioxide and the mechanisms of their

participation in various processes under ionizing or laser irradiation.

The article is organized as follows. Section 1 is devoted to the short description of the

methods used for modeling amorphous states of silicon dioxide. In Section 2, we present results

of modeling stoichiometric and oxygen-deficient amorphous states of SiO2 and analysis of their

point defects. Section 3 summarizes the results of the study, discusses the intrinsic point defects

identified, particularly those related to oxygen deficiency, and highlightes some of the problems
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encountered. Conclusion contains a brief summary of the results of the work, final conclusions

and points the directions for further work.

1. Models and Methods

The method for obtaining amorphous states of SiO2 involves modeling the melting-quenching

process of a crystal using quantum molecular dynamics, MD. The VASP program [10] was used

for modeling. β-cristobalite was used as the starting crystal, and the simulations were performed

with its supercell containing 192 atoms (64 Si atoms and 128 O atoms) with periodic boundary

conditions. The system was heated and cooled at a rate of 0.5 K/fs; the melt was stabilized at a

given Tmelt within 6 ps in most cases, which was sufficient to achieve temperature stabilization

at Tmelt. In some cases, the stabilization time at Tmelt was significantly increased to compare the

properties of the obtained amorphous states. After cooling the system to 300 K, it was stabilized

for 12 ps, after which the supercell energy was optimized. In all cases of melting-quenching, the

time of 12 ps was sufficient to stabilize energy of the system at 300 K. Molecular dynamics

simulations were performed in the NPT ensemble when the number of atoms N, pressure P and

temperature T were constant. In this modeling, the volume of the system was not fixed and could

change in accordance with strong temperature changes during the melting-quenching process,

which made it possible to avoid strong internal stresses in the system. During MD simulation

and during energy optimization of the supercell, its volume and shape, and the positions of all

atoms could change. The modeling methodology is described in more detail in the works [22, 24].

2. Results

Our previous studies using spin-unpolarized quantum MD calculations have shown that

there is a narrow range of melt stabilization temperature Tmelt above which amorphization of

silicon dioxide crystals occurs during the melting-quenching procedure [22, 24]. Amorphization

here refers to a change in the topology of the atomic network of silicon dioxide from a regular

crystalline topology to a less ordered amorphous topology. One of the characteristic features of

amorphous topology is the presence of low-membered rings built from Si–O–Si bridges formed

by SiO4-tetrahedra connected to each other by their oxygen vertices. For example, the high

temperature β-cristobalite crystal contains only 6-membered rings, α-quartz contains 6- and 8-

membered rings, but in amorphous silica there are also 3-, 4- and 5-membered rings [13, 31]. In

our spin-unpolarized simulation, amorphization of an initial stoichiometric β-cristobalite crystal

happens above Tmelt = 4700 K. Therefore, we investigated non-stoichiometric compositions for

several values of Tmelt near 4700 K, but first we briefly present new results on amorphization of

stoichiometric SiO2, modelled by the melting-quenching procedure using spin-polarized quantum

MD calculations (keyword ISPIN = 2 in VASP version 5.4.4 compiled for GPU).

2.1. Stoichiometric Amorphous States

Amorphous states of SiO2 were obtained from β-cristobalite crystal using the melting-

quenching procedure at different melt stabilization temperatures. The results are presented in

Tab. 1, where for a-SiO2-4800, the Eg value given in brackets corresponds to the transition of an

electron with the second spin direction, and the designations of point defects are explained in

the text below. For brevity, we will further denote, for example, as a-SiO2-4700 the amorphous
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state of silicon dioxide obtained by the melting-quenching procedure with stabilization of the

melt at 4700 K for 6 ps.

Table 1. Stoichiometric SiO2. Stabilization of the melt was 6 ps for all Tmelt

Structure Crystal
Amorphous SiO2, Tmelt,

◦K

4500 4600 4700 4800 4900

Eopt, eV −1516.53 −1513.90 −1519.55 −1519.51 −1482.89 −1495.00

Defects –
2BO3C,

≡Si–O
– –

=Si, OV, Si5,

2BOC, 2BO3C, O2

Si5, O3,

2BOC

R(Si–Si), Å 3.10 2.47 3.16 3.10 3.00 3.19

ρ, g/cm3 1.92 2.17 2.119 2.126 2.056 2.256

Eg, eV 5.35 2.31 5.56 5.55 3.42 (2.07) 3.41

In Tab. 1, Eopt represents the energy of the stoichiometric supercell after energy optimization

from the crystal geometry or from the disordered state at the end of the melting-quenching

procedure, R(Si–Si) is the distance between Si atoms adjacent to the oxygen atom that will

be eliminated when creating an oxygen vacancy (see Section 2.2), ρ is the mass density of the

system, Eg = E(LUMO) – E(HOMO), where E(LUMO) and E(HOMO) are energies of the lowest

unoccupied and highest occupied molecular orbitals, respectively. The value of Eg estimates the

lowest energy of electron excitations, for example, this is the width of the forbidden energy gap

of the oxide crystal. However, if a supercell, crystalline or amorphous, contains several point

defects with energies of electron states in the forbidden energy gap of the defect-free system,

then the value of Eg, strictly speaking, cannot provide an estimate of the lowest excitation energy

of the system, since the HOMO and LUMO states can belong to different point defects, widely

separated in space, and the oscillator strength of the HOMO-to-LUMO transition in this case

will be negligibly small. These considerations should be kept in mind when reading this article,

in which, for the sake of completeness, we provide the values of Eg for all the cases considered.

Visual analysis of the position of atoms in the obtained amorphous supercells shows that

at all melt stabilization temperatures Tmelt up to and including 4400 K, the topology of the

arrangement of atoms is the same as in the initial crystal with relatively small deviations of

Si–O–Si angles from their values in the crystal. At Tmelt = 4500 K, the first point defects appear.

These are three following point defects. Two of them, are painted green and gray in Fig. 1. These

defects are a 2-Bridging Oxygen Center (2BOC), which is two adjacent SiO4-tetrahedra linked

to each other by two oxygen vertices [22, 24], and associated with it a threefold coordinated

oxygen atom O3, respectively. The third defect is designated as ≡Si–O, where the symbol “≡”

stands for three ordinary Si–O bonds with the remaining SiO2 atomic network, and the oxygen

atom has only one Si–O bond. This is a non-bridging oxygen atom.

One of the two oxygen atoms of 2BOC forms a third bond to a Si atom from another

SiO4-tetrahedron; hereinafter such a combination of 2BOC and O3 is designated as 2BO3C,

where the index “3” denotes the presence of a threefold coordinated oxygen atom O3. In Tab. 1,

for a-SiO2-4500, the value of R(Si-Si) corresponds to the distance between two Si atoms that

make up the 2BO3C defect. The topology of the atomic network of other supercell regions of

a-SiO2-4500 is close to the crystal structure with some variations of Si–O–Si angles. Obviously,
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Figure 1. The 2BO3C defect in a-SiO2-4500; green balls are silicon atoms of the 2BOC defect,

a grey ball is a threefold coordinated oxygen atom O3

the 2BOC defect does not violate stoichiometry of the SiO2 system. Also, two defects, 2BO3C

and ≡Si–O, do not violate stoichiometry of a-SiO2-4500, which is expected, since the number of

atoms in the supercell is constant in the MD simulations because we use the NPT ensemble, see

Section 1. Indeed, the 2BO3C center can be represented as a combination of the 2BOC center

and a threefold coordinated silicon atom ≡Si. The latter in a combination with the ≡Si–O defect

restore stoichiometry of SiO2. The ≡Si–O defect has long been considered as a model for non-

bridging oxygen hole center, the so-called NBOHC, which explains some optical absorption and

luminescence bands in SiO2 [15, 17, 18].

When the melt is stabilized at 4600 or 4700 K, then in the corresponding amorphous states,

a-SiO2-4600 and a-SiO2-4700, the topology of the arrangement of atoms is again as in a defect-

free crystal with small deviations of Si–O–Si angles from their crystalline values.

An increase in the duration of melt stabilization at T = 4700 K from 6 ps to 19 ps leads

to a strong rearrangement of the topology of the atomic network, an increase in the energy of

corresponding a-SiO2-4700 19ps by more than 20 eV and the appearance of point defects: 2BOC,

fivefold coordinated Si5 and threefold coordinated ≡Si silicon atoms, which results in a sharp

decrease of Eg to 2.02 eV due to the electron states of defects in the forbidden energy gap of SiO2.

The subscript “5” shows that the silicon atom has five Si–O bonds with five oxygen neighbors.

The atomic network contains several four- and five-membered rings built from Si–O–Si bridges,

which are absent in the crystal network. The ≡Si defect is a well known model of one of the

most studied ESR active E′-centers in pure SiO2 [5, 28].

The five Si–O bonds of Si5 atoms are noticeably elongated to 1.68–1.85 Å compared to the

length of the Si–O bonds of regular fourfold coordinated Si atoms 1.62–1.63 Å in the defect-free

regions of the supercell; three adjacent oxygen atoms are located in the vertices of a triangle, in

the center of which is the Si atom, and the other two adjacent oxygen atoms are at opposite ends

of a straight line passing through the silicon atom perpendicular to the plane of the triangle. Note

that from the stoichiometry point of view, the Si5 defect is equivalent to one regular fourfold

coordinated silicon atom forming a SiO4-tetrahedron, and a ≡Si–O defect with a non-bridging

oxygen atom.

At higher melt stabilization temperatures, a greater number of 2BOC defects and small

rings built from three, four or five Si–O–Si bridges appear. Besides, some additional point
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defects can be identified in a-SiO2-4900 and a-SiO2-4800. In a-SiO2-4900, Si5 and O3 defects

are found. Three Si–O bonds of length 1.77–1.89 Å of the O3 defect are somewhat elongated

comparing to a regular Si–O bond of 1.62 Å. Note that from the stoichiometry point of view, the

threefold coordinated oxygen atom O3 is equivalent to the threefold coordinated silicon atom

≡Si, therefore, the O3 defect can be classified as an oxygen deficient center (ODC) in the same

way as the ≡Si. Also, a pair of defects Si5 and O3 corresponds to the stoichiometry of defect-free

SiO2.

The a-SiO2-4800 supercell has two unpaired electrons from the triplet state of the interstitial

oxygen molecule O2, which appears during the melting-quenching process, and this amorphous

state is significantly higher in energy than the other amorphous states we obtained, which

do not have unpaired electrons. Also, there are a twofold coordinated silicon atom =Si, an

oxygen vacancy in the form of ≡Si–Si≡ bond between two adjacent to the oxygen vacant site

Si atoms with the Si–Si bond length 2.30 Å, two Si5 defects and two 2BO3C defects. The

presence of all these defects does not disturb the correct stoichiometry of SiO2. Indeed, from the

O2 molecule, one oxygen atom binds to an oxygen vacancy and restores a regular oxygen bridge.

Two Si5 defects together with the =Si defect restore the stoichiometry of SiO2, and two 2BO3C

centers give two ≡Si defects, which, together with the remaining oxygen atom, also restore the

stoichiometry.

The Si–O bonds of the twofold coordinated silicon atom =Si are equal to 1.66 and 1.69 Å,

they are only slightly larger than the length of the regular Si–O bond in defect free regions. The

angle O–Si–O is equal to 106.4◦. An oxygen vacancy has the form of a ≡Si–Si≡ bond, which for

brevity we will simply call the Si–Si bond.

An independent run of the melting-quenching procedure to obtain a-SiO2-4800 again leads

to a high energy state with two unpaired electrons. This amorphous state has an energy 3.86 eV

lower and its mass density ρ = 2.141 g/cm3 is slightly higher than the corresponding values of

the a-SiO2-4800 state presented in Tab. 1. However, in the new a-SiO2-4800 state, there are no

the =Si defect, oxygen vacancy, 2BO3C and Si5 defects, as well as the interstitial O2 molecule,

that were present in the previous a-SiO2-4800 state. Instead, there are several 2BOC defects,

several 3-, 4- and 5-membered rings, the ≡Si–O defect, and three threefold coordinated Si atoms:

two Si atoms of the type ≡Si and one Si atom of the type =Si–O, the latter being a threefold

coordinated Si atom, the third Si–O bond of which is linked to a non-bridging oxygen atom. One

≡Si atom has a pyramidal conformation with somewhat elongated Si–O bonds (1.63–1.68 Å)

and the other ≡Si atom has a planar conformation, in which the Si atom is in the plane of

three adjacent oxygen atoms, with slightly shortened bond lengths (1.56–1.58 Å). One unpaired

electron is on the ≡Si atom with a pyramidal conformation and the second unpaired electron

is on the non-bridging oxygen atom of the defect =Si–O. The Si–O bond of the non-bridging

oxygen atom is noticeably shorter, 1.52 Å, than other two bonds of this Si atom, the lengths

of which are close to the length of regular Si–O bonds in silicon dioxide 1.62 Å. In the latter

a-SiO2-4800 state, Eg = 1.94 and 1.51 eV for the excitation of electrons with different spins.

As can be seen from Tab. 1, the density of most of the obtained stoichiometric amorphous

states, with the exception of the a-SiO2-4900 state, is in the range of 2.10–2.17 g/cm3, which

corresponds to the results of our previously conducted spin-unpolarized calculations [22, 24].

The obtained values of the density of amorphous states are slightly lower than the experimental

density of quartz glass 2.20 g/cm3, and this small difference is within the errors of the PBE

functional [8] and the PAW method [11].
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As we can see in Tab. 1, the energy gap Eg of the crystal and of the defect free amorphous

states a-SiO2-4600 and a-SiO2-4700 is about 5.4–5.6 eV. These values are much less than ex-

perimentally measured band gap of silicon dioxide, which is about 9 eV [2, 30]. This is a well

know drawback of the PBE [8] functional and these values can be improved using PBE0 func-

tional [12]. The formation of point defects leads to the appearance of electron states of defects

in the SiO2 forbidden gap and, as a consequence, to a significant decrease in the Eg values (see

Tab. 1 for a-SiO2-4800 and a-SiO2-4900).

The conducted spin-polarized MD simulations resulted in practically the same amorphous

states and their point defects as those obtained by spin-unpolarized quantum MD simula-

tions [22, 24] using the melting-quenching procedure with the same parameters: melting and

quenching rate, melt stabilization time, and stabilization time of the final amorphous state

at 300 K. In addition, a new point defect =Si–O was discovered, which was not detected in the

spin-unpolarized simulation. States with unpaired electrons, i.e., ESR-active states, were also

obtained, which, however, are significantly higher in energy than the ESR-inactive states. With

the same melting-quenching parameters, the use of spin-polarized calculations leads to amor-

phous states with a richer set of intrinsic defects than similar spin-unpolarized calculations, the

results of which are presented in [22, 24].

Properties of amorphous states obtained from quartz crystal are close to the properties of

amorphous states obtained from cristobalite crystal. In contrast to this, amorphization from

stishovite crystal occurs at much lower temperatures due to instability of stishovite at normal

pressure. Using the same melting-quenching procedure, we found that radical restructuring of

the stishovite atomic network topology occurred at Tmelt = 3000 K, when sixfold coordinated

Si atoms and threefold coordinated oxygen atoms in the stishovite atomic network are trans-

formed into a quartz glass network with fourfold and twofold coordinated Si and O atoms,

respectively. Topology of atomic network of amorphous states obtained with Tmelt ≥ 3000 K

from stishovite is, in general, the same as one of amorphous states obtained from cristobalite

with the same set of possible point defects.

In the following research, we will carry out modeling of oxygen-deficient centers based on

amorphous structures obtained from the cristobalite crystal. Three types of oxygen deficient

centers ODCs are considered: a single oxygen vacancy OV, two spatially separated oxygen

vacancies OV+OV, and an oxygen divacancy. Three methods of modeling are used: (A) ODC is

created in a cristobalite crystal or in one of the above-obtained models of stoichiometric a-SiO2,

and then the energy of the corresponding supercell is optimized by changing its shape and

volume, as well as the position of all its atoms; (B) ODC is created in the cristobalite crystal and

then the melting-quenching procedure is carried out for different melt stabilization temperatures

Tmelt; (C) a supercell of a-SiO2 created by the (A) approach with the corresponding ODC is

subjected to the melting-quenching procedure with the same melt stabilization temperature that

has been used in the preparation of the initial amorphous stoichiometric state.

2.2. Single Oxygen Vacancy, OV

A. Oxygen vacancy is created in existing stoichiometric states. The oxygen vacancy

(OV) is created in the corresponding structure, cristobalite or amorphous (see Tab. 1), and then

the energy of the supercell is optimized, and as a result of this, two adjacent to the vacant site

silicon atoms relax to each other forming the Si–Si bond. Characteristics of the supercell with

the oxygen vacancy are presented in Tab. 2. In a-SiO2-4500, two types of oxygen vacancy were
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created by removing one of the two oxygen atoms included in the 2BO3C defect (Fig. 1). In

Tab. 2, the 4500 2BOC column corresponds to the removal of the threefold coordinated oxygen

atom, and the 4500 2BOC-1 column corresponds to the removal of the twofold coordinated

oxygen atom from the 2BO3C defect. In the table Eopt(OV) is the energy of the supercell with

an oxygen vacancy after optimization, R(Si–Si) is the distance between Si atoms adjacent to

the vacant oxygen site, Eg = E(LUMO) – E(HOMO), Eform(OV) is the formation energy of the

oxygen vacancy calculated as follows: Eform(OV) = Eopt(OV) + E(O) – Eopt, where Eopt is the

optimized energy of the supercell without oxygen vacancy (see Tab. 1), and E(O)= −1.897 eV is

the energy of a single O atom obtained using spin-polarized calculations with the VASP program,

ISPIN = 2, with the same PBE functionals and the same value of the ENCUT parameter that

were used for the crystal and amorphous calculations presented in this report. If the oxygen

vacancy is created in the defect free region of a-SiO2-4500, then its properties are practically

the same as those in defect free states a-SiO2-4600 and a SiO2-4700. Thus, for a-SiO2-4500, an

oxygen vacancy was created by removing an oxygen atom from the 2BO3C defect that exists in

the stoichiometric system.

Table 2. Main characteristics of oxygen vacancy created in crystalline or amorphous silicon

dioxide supercell

Structure

Oxygen vacancy

Crystal
Amorphous SiO2, Tmelt,

◦K

4500 2BOC 4500 2BOC-1 4600 4700 4800 4900

Eopt(OV),

eV
−1506.42 −1502.73 −1504.07 −1509.52 −1509.44 −1476.94 −1484.59

R(Si–Si), Å 2.48 2.49 2.21 2.42 2.42 2.38 2.52

ρ, g/cm3 1.92 2.18 2.16 2.12 2.12 2.14 2.27

Eform(OV),

eV
8.22 9.27 7.93 8.13 8.18 7.92 8.51

Eg, eV 5.34 0.46 2.29 5.27 5.32 2.00 3.39

In cristobalite and all amorphous states, except those indicated in Tab. 2 as 4500 2BOC

and 4500 2BOC-1, oxygen vacancies have the form of the Si–Si bond. The distances between

silicon atoms adjacent to vacant oxygen sites vary in the range from 2.38 to 2.52 Å and are

significantly smaller than distances between silicon atoms in regular Si–O–Si bridges of the

defect-free region of silicon dioxide, indicating the formation of a strong Si–Si covalent bond.

The variations of lengths of Si–Si bonds are apparently associated with some scattering of the

positions of atoms in the immediate vicinity of the vacancies, caused by the structure of the

amorphous state. The formation energy of the oxygen vacancy in the form of the Si–Si bond is in

the range from 7.92 to 8.51 eV, and this scatter is also apparently due to some difference in the

positions of the atoms in the vacancy environment. The formation energy of an oxygen vacancy

created by removing an oxygen atom from the 2BO3C defect is close to the above values for

other amorphous states and the crystal, when a twofold coordinated oxygen atom is removed,

but is slightly higher (9.27 eV) in the case of removing a threefold coordinated oxygen atom due

to the breaking of three Si–O bonds.
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The energy Eg for the cristobalite crystal and amorphous defect-free states a-SiO2-4600 and

a-SiO2-4700 in the presence of an oxygen vacancy is only slightly less than the corresponding

energy gap of defect-free supercells of stoichiometric compositions (see Tab. 1). This qualitatively

corresponds to the excitation energy of the oxygen vacancy in quartz crystal 7.6 eV, calculated

by an ab initio method [27]; this energy is in the vacuum UV region and is slightly less than the

silicon dioxide forbidden energy gap [2, 30].

The structure of amorphous a-SiO2-4700 19ps (the melt stabilized during 19 ps) contains a

hand-created oxygen vacancy and the same defects that existed in this amorphous state before

the creation of the oxygen vacancy. Comparing the values of Eg = 5.32 eV for a-SiO2-4700 in

Tab. 2 (here, apart from the vacancy, there are no other defects) and Eg = 2.06 eV for a-SiO2-

4700 19ps, it is clear that such a strong decrease in Eg in the latter can be attributed to the

presence of the electron states of the 2BOC, Si5 and ≡Si defects in the SiO2 energy gap, since

four-membered rings create only electron states near the top of the valence band, which leads

to only a very small decrease in Eg [26]. In the a-SiO2-4800 and a-SiO2-4900 structures with

an oxygen vacancy, the Eg values are also determined by the presence of corresponding point

defects with electron states in the band gap of silicon dioxide in these amorphous structures

even before the creation of an oxygen vacancy.

The conformations of two types of oxygen vacancies created by removing one of two oxygen

atoms from the 2BO3C defect existing in the stoichiometric a-SiO2-4500 state are different

from the simple Si–Si bond. When the threefold coordinated oxygen atom is removed from

2BO3C (this state is denoted as 4500 2BOC in Tab. 2), the ≡Si defect is formed in a pyramidal

conformation near the vacancy, and the 2BOC defect retains its original geometry but without

one removed bridging oxygen atom; in particular, the R(Si–Si) distance of 2.49 Å is almost the

same as in the original stoichiometric a-SiO2-4500 in the 2BO3C defect. The resulting oxygen-

deficient center can be interpreted either as two adjacent threefold coordinated silicon atoms

with a common oxygen atom, or as two twofold coordinated silicon atoms linked to each other by

an oxygen bridge =Si–O–Si=, where symbol “=” designates two Si–O bonds with a regular part

of SiO2 atomic network. When the twofold coordinated oxygen atom is removed from 2BO3C

(this state is denoted as 4500 2BOC-1 in Tab. 2), after energy optimization, two Si atoms of

the 2BO3C defect remain to be linked by the threefold coordinated oxygen atom, the distance

between these silicon atoms decreases to 2.21 Å indicating strengthening of Si–Si bond between

these atoms. This oxygen-deficient center can be interpreted as two twofold coordinated silicon

atoms linked to each other by a threefold coordinated oxygen atom.

B. Oxygen vacancy in initial cristobalite + the melting-quenching procedure.

An oxygen vacancy is created near the center of the supercell of the initial cristobalite crys-

tal, followed by the melting-quenching procedure to obtain amorphous states at different melt

stabilization temperatures Tmelt. Main characteristics of these amorphous supercells with the

initially created oxygen vacancy are presented in Tab. 3.

In a-SiO2-4600, the atomic network topology is almost the same as in the initial crystal with

some deviations of Si–O–Si angles from their crystalline values. However, besides the oxygen

vacancy there are three five-membered and one four-membered strained ring. The presence

of these rings increases the supercell energy by 4.8 eV (compare Eopt(OV) in Tabs. 2 and 3,

columns 4600), since stoichiometric a-SiO2-4600 has only six-membered rings as in the initial

crystal. The oxygen vacancy created in the initial crystal keeps its form as a Si–Si bond with

R(Si–Si) = 2.32 Å after the melting-quenching procedure, but its two Si neighbors have changed
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Table 3. Characteristics of the amorphous supercell with an oxygen vacancy

after the melting-quenching procedure from the initial crystalline supercell

Structure

Oxygen vacancy

Amorphous SiO2, Tmelt,
◦K

4600 4600-1 4700 4800 4900

Eopt(OV), eV −1504.73 −1488.54 −1506.81 −1473.52 −1486.28

Defects OV
2BOC, 2BO3C,

Si5, ≡Si, –Si–O

OV,

2BOC

2BOC, =Si,

≡Si–O, ≡Si, Si5

2BOC, =Si–O,

≡Si

R(Si–Si), Å 2.32 – 2.37 – –

ρ, g/cm3 2.196 2.172 2.147 2.012 2.058

Eg, eV 4.98 1.99 3.24 5.08 1.87 1.91

their numbers – each atom in the supercell has its own unique number in the list of all atoms in

the supercell, which is preserved during MD simulations. This means that the oxygen vacancy

changes its position in the supercell during the melting-quenching procedure due to the hopping

diffusion of oxygen atoms through the nodes of the SiO4-network. Two Si atoms adjacent to the

vacant site form Si–O bonds with six neighboring oxygen atoms, which are somewhat elongated

to 1.64–1.65 Å compared to the Si–O bonds of 1.62–1.63 Å in defect-free regions.

An independent run of the melting-quenching procedure gives a new configuration of the

amorphous state a-SiO2-4600-1 with two unpaired electrons. The energy of this state is 16 eV

higher than the energy of the a-SiO2-4600 state obtained during the first run of melting-

quenching and having no unpaired electrons, see the 4600 column in Tab. 3. The topology

of the atomic network in the amorphous state of a-SiO2-4600-1 differs significantly from the

topology of the weakly disordered arrangement of atoms in a-SiO2-4600, which is close to topol-

ogy of cristobalite. In the a-SiO2-4600-1 state, there are two 2BOC centers, one 2BO3C, two

fivefold coordinated silicon atoms Si5, two threefold coordinated silicon atoms ≡Si, and also a

twofold coordinated silicon atom, in which one of the neighboring oxygen atoms is non-bridging,

and this defect can be designated for brevity as –Si–O. The Si–O bond of the non-bridging atom

(1.54 Å) is much shorter than the Si–O bond of a regular bridging oxygen atom (1.62 Å). In

the a-SiO2-4600-1 state, there are also 3-, 4- and 5-membered rings. It is easy to make sure that

stoichiometry of this amorphous state is equal to one oxygen vacancy in the supercell. Really,

the 2BOC defects do not violate the stoichiometry of SiO2, two Si5 defects being combined with

two ≡Si defects restore stoichiometry of SiO2, the 2BO3C is transformed to 2BOC and ≡Si, and

the latter being combined with the –Si–O defect gives the twofold coordinated silicon atom =Si,

which corresponds to the stoichiometry of one oxygen vacancy in the supercell.

One of the two fivefold coordinated silicon atoms is included into one of the two 2BOC

defects. One of the two threefold coordinated silicon atoms ≡Si has a pyramidal conformation.

This silicon atom is linked by two Si–O bonds to regular fourfold coordinated silicon atoms, and

the oxygen atom of the third Si–O bond is included in the 2BOC defect. The second threefold

coordinated atom ≡Si has a planar conformation; it is linked by two Si–O bonds to regular

fourfold coordinated silicon atoms and the third Si–O bond forms a bridge with the fivefold

coordinated atom Si, which is a part of a 2BOC defect.
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Two unpaired electrons are located at two separated defects: at ≡Si with pyramidal con-

formation and at non-bridging oxygen atom of the –Si–O defect. The former is the so-called

paramagnetic E′-center and the latter is a new type of modified Non-Bridging Oxygen Hole

Center (NBOHC), both of them are in the list of most common radiation-induced centers in

silica glass and in silica-based fibers [5, 15, 17, 18, 28].

In a-SiO2-4600-1, the values of Eg for excitation of electron with opposite directions of spins

are 1.99 and 3.24 eV. The mass density of the a-SiO2-4600-1 state is 0.024 g/cm3 lower than

density of a-SiO2-4600.

In a-SiO2-4700, the a-SiO2 structure contains one oxygen vacancy, one 2BOC defect, three

five-membered and one three-membered strained rings. There are no unpaired electrons in this

state. Otherwise, this structure has not lost the ordered crystal topology with some angular

disorder. The stoichiometric a-SiO2-4700 has the SiO4-network topology as in the initial crystal

without the 2BOC defect and 5- and 3-membered rings, with only six-membered rings. The

oxygen vacancy keeps its form as a Si–Si bond, but its two Si neighbors have changed again –

a pair of other Si atoms have become adjacent to the vacant oxygen site. The distance between

Si atoms neighboring to the vacant oxygen site R(Si-Si) is equal to 2.37 Å.

An increase in the duration of melt stabilization at Tmelt = 4700 K from 6 ps to 14 ps leads

to a strong rearrangement of the topology of the atomic network, appearance of 3-, 4-, and

5-membered rings, an increase in the energy of corresponding a-SiO2 by more than 26 eV, and

the appearance of point defects: five 2BOC defects and two defects =Si–O. The oxygen vacancy

has a form of Si–Si bond with R(Si-Si) = 2.31 Å. The silicon atoms that are neighbors of the

oxygen vacancy have changed again – a pair of other Si atoms now appear next to the oxygen

vacancy. This is a different pair of atoms comparing with neighbors of the vacancy in the initial

crystal and in the amorphous state obtained from the melt stabilized during 6 ps. Values of

R(Si-Si) for the oxygen vacancies in a-SiO2 obtained for Tmelt = 4600 and 4700 K correspond

well to the R(Si-Si) = 2.36 Å for the oxygen vacancy in the quartz crystal calculated with a

full long-range atomic relaxation by the ab initio method [27]. The significantly larger distance

R(Si-Si) = 2.48 Å obtained for the oxygen vacancy in the initial β-cristobalite crystal after its

energy optimization (see Tab. 2) demonstrates the importance of long-range atomic relaxation

and disorder for the properties of this defect.

In the =Si–O defect, Si atom is in the plane of its three oxygen neighbors, the lengths of two

Si–O bonds are close to those in the defect-free region, and the Si–O bond with the non-bridging

oxygen atom is noticeably shorter and is 1.53 Å. Since there are no unpaired electrons in the

system, it can be assumed that one of the valence electrons of the Si atom in such a defect

passes to the non-bridging oxygen atom. Due to this, the defect acquires a noticeable dipole

moment, and the additional Coulomb attraction of these opposite charges leads to an additional

strengthening of the Si–O bond between the silicon atom and the non-bridging oxygen atom

and to its shortening. In the obtained amorphous supercell, two =Si–O defects are located far

from each other: the distance between corresponding Si atoms equals 6.63 Å. The pair of =Si–O

defects does not violate stoichiometry. Each defect in this pair complements the other, and they

both form one 2BOC. Therefore, this pair of =Si–O defects does not relate to oxygen deficiency

of the sample, as well as 2BOCs, and the oxygen vacancy is the only ODC in this sample.

At higher melt stabilization temperatures Tmelt = 4800 and 4900 K, the SiO4-network with

the initial oxygen vacancy loses the ordered topology of the initial crystal, and the oxygen

vacancy in the form of a Si–Si bond disappears, possibly due to the mobility of Si atoms in the
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melt. In both cases, there are no unpaired electrons, and many small-membered rings, 2BOC

defects and pores appear. Besides, several additional point defects can be observed.

In a-SiO2-4800, there is no oxygen vacancy, and instead the following defects are found: one

twofold coordinated silicon atom =Si, two threefold coordinated silicon atoms ≡Si, a fivefold

coordinated silicon atom Si5 and the ≡Si–O defect with a non-bridging oxygen atom. The Si5

defect is simultaneously a part of the 2BOC center and a part of the strained three-membered

ring. One of the threefold coordinated Si atoms is also a part of another 2BOC defect. So, in

this amorphous state, only the twofold coordinated silicon atom =Si can be definitely attributed

to the oxygen deficiency, because remaining pairs of defects, Si5 and ≡Si, as well as ≡Si–O and

≡Si, are combined to the perfect stoichiometry of silicon dioxide. In fact, stoichiometry of =Si

is the same as an oxygen vacancy. The energy of this supercell is more than 33 eV higher than

the energy of the supercell obtained from the melt stabilized at 4700 K for 6 ps (see Tab. 3).

In the a-SiO2-4900 diamagnetic state, the =Si–O defect with a non-bridging oxygen atom

and two threefold coordinated silicon atoms ≡Si can be identified. The ≡Si defects have a

pyramidal structure, are separated from each other by a distance of 12.6 Å and are apparently

associated with oxygen deficiency, since they represent two parts of an oxygen vacancy. Note

that the presence of defect =Si–O does not violate the stoichiometry of this supercell, since the

addition of this defect through its non-bridging oxygen atom to defect ≡Si again yields a defect

of the same type, that is, the ≡Si defect. The supercell energy is about 20 eV higher than the

energy of the supercell obtained from the melt stabilized at 4700 K for 6 ps.

C. Melting-quenching procedure applied to amorphous supercells with an oxy-

gen vacancy. The optimized oxygen vacancy created in stoichiometric amorphous SiO2 (see

Tab. 2) is subjected to the melting-quenching procedure at the same melt stabilization temper-

ature Tmelt, that was used in the preparation of the original amorphous stoichiometric state.

All obtained states of amorphous supercells are diamagnetic – there are no unpaired elec-

trons. After the melting-quenching procedure, oxygen vacancies with exotic conformations, cre-

ated in the 2BO3C defect in the amorphous state a-SiO2-4500, are transformed into the usual

type of oxygen vacancies in the form of a Si–Si bond. In addition to oxygen vacancies, either

2BOC or =Si–O are formed. In the 4500 2BOC-1 state, 5- and 3-membered rings also appear.

In the case of a-SiO2-4600, there are one 2BOC defect, an oxygen vacancy in the form of

Si–Si bond, and 3- and 5-membered rings. In the case of a-SiO2-4700, there are three 2BOC

defect, an oxygen vacancy in the form of Si–Si bond, and three 3- and one 5-membered rings.

After applying the melting-quenching procedure with melt stabilization for 6 ps to the

amorphous state of a-SiO2-4700 19ps obtained by stabilizing the melt at 4700 K for 19 ps with

an oxygen vacancy, an amorphous state is obtained containing 2BO3C, Si5 and =Si defects

in addition to 2BOC centers and a large number of 3- and 4-membered rings, but without

an oxygen vacancy. Here, only twofold coordinated silicon atom =Si can be considered as an

oxygen deficient center (ODC). Indeed, the combination of 2BO3C and Si5 defects can obviously

be converted into stoichiometry of defect-free SiO2: 2BO3C + Si5 → 2BOC + ≡Si + Si5 → SiO2

+ ≡Si–O + ≡Si, where a combination of ≡Si and ≡Si–O gives again stoichiometry of defect-free

SiO2.

The main results obtained for the oxygen vacancy are as follows:

1. Despite the dramatic change in some cases of the topology of the atomic network after the

melting-quenching procedure, the bulk of silicon dioxide atoms form a network of SiO4-
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tetrahedra connected to each other by their vertices – one common vertex for two adjacent

tetrahedra, as in silica glass.

2. An oxygen vacancy is a relatively stable point defect of silicon dioxide. When created in a

cristobalite crystal, it retains the Si–Si bond form up to the melt stabilization temperature

of 4700 K (for 6 and for 14 ps of melt stabilization). The formation energy of such a vacancy

is about 8 eV.

3. At higher melt stabilization temperatures, the vacancy loses its form as a Si–Si bond and is

transformed into two threefold coordinated Si atoms located far from each other. This may

be due to the diffusion of silicon atoms.

4. The presence of an oxygen vacancy in the original crystal can even lead to a strong rear-

rangement of the topology of the atomic network after the melting-quenching procedure even

at such a low melt stabilization temperature as 4600 K when a corresponding stoichiometric

supercell retains the atomic network topology of the initial crystal.

5. The presence of an oxygen vacancy in the original crystal promotes formation of other defects

as a result of obtaining an amorphous state using the melting-quenching procedure compared

to the amorphous state of the stoichiometric supercell. These are the same defects that are

presented in stoichiometric samples of amorphous silicon dioxide: 2BOC defects, threefold

and fivefold coordinated silicon atoms, ≡Si and Si5, =Si–O defects with a non-bridging

oxygen atom, threefold coordinated oxygen atom O3, as well as 3-, 4- and 5-membered

strained rings.

6. Due to stochastic nature of the MD simulation, independent runs of the melting-quenching

procedure can lead to amorphous states with different atomic network topology and different

set of point defects.

7. ESR-active states with unpaired electrons have significantly higher energies than diamag-

netic states in the studied amorphous states of SiO2.

2.3. Two Separated in Space Oxygen Vacancies, OV+OV

A. Two separated in space oxygen vacancies are created in existing stoichiomet-

ric states. By creating two such oxygen vacancies in either crystalline or amorphous supercells

and then optimizing the supercell energy, it is easy to show that in all cases the formation energy

of two vacancies is approximately twice the formation energy 8 eV of one vacancy found above.

The lowest excitation energy of electrons for supercells without other defects corresponds to

the excitation energy of one oxygen vacancy obtained above. By creating two oxygen vacancies

by removing two oxygen atoms from the 2BO3C center present in a-SiO2-4500, the following

new defect is obtained. This defect consists of two adjacent oxygen vacancies sharing a silicon

atom, which is linked to the rest of the atomic network by two Si–O bonds. Of the two other

silicon atoms adjacent to the vacancies, one is also linked to the rest of the atomic network by

two Si–O bonds and the second one is linked to the atomic network by three Si–O bonds and

corresponding distances R(Si–Si) are equal to 2.36 and 2.46 Å, respectively. A characteristic

feature of this defect is the very low excitation energy of electrons, 0.22 eV.

B. Two separated oxygen vacancies in initial cristobalite + the melting-

quenching procedure. The separated oxygen vacancies OV+OV are created near the center

of the supercell of the initial cristobalite crystal, followed by the melting-quenching procedure to

obtain amorphous states at different melt stabilization temperatures Tmelt from 4600 to 4900 K.

At Tmelt = 4600 K, in the oxygen-deficient amorphous state, two separate oxygen vacancies of
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the Si–Si bond type are retained. At higher Tmelt, higher energy amorphous states of the su-

percell (more than 16 eV) are obtained, in which there are either no oxygen vacancies at all, or

there is only one oxygen vacancy, but there is a twofold coordinated silicon atom =Si and other

defects that we have already considered. For example, the energy of the amorphous supercell

obtained at Tmelt = 4700 K, which contains one =Si defect, two ≡Si defects, and one 2BOC

center, is 16 eV higher than the energy of the amorphous supercell obtained at Tmelt = 4600 K,

which contains only two oxygen vacancies. Comparing the energies of these amorphous super-

cells, we can conclude that the energy of formation of the =Si defect is significantly greater

(by 10–12 eV) than the energy of formation of an oxygen vacancy.

It should be noted that independent runs of the melting-quenching procedure with the same

parameters can result in amorphous states that differ greatly in energy and in the composition

of point defects. For example, with one run of melting-quenching at Tmelt = 4700 K of the initial

crystal with two oxygen vacancies, a-SiO2-4700 is obtained with the following point defects: one

=Si, two ≡Si and one 2BOC. When re-starting the melting-quenching with the same Tmelt, we

obtain the amorphous state of a-SiO2-4700-1 with a supercell energy exceeding the supercell

energy of the state of a-SiO2-4700 by 9.3 eV and containing a different set of defects: three

≡Si, one Si5, one 2BOC, one 2BO3C and one oxygen vacancy of a special type OV′, and in

both amorphous states there are no unpaired electrons. The oxygen vacancy OV′ of the Si–Si

bond type present here has a peculiarity: one of the silicon atoms adjacent to the vacant site

has three bonds with neighboring oxygen atoms, and the second silicon atom has four Si–O

bonds. Despite this feature, the Si–Si bond length in this vacancy is 2.44 Å, which is close to the

values of ordinary oxygen vacancies with two threefold coordinated neighboring silicon atoms.

It is easy to verify that in the a-SiO2-4700-1 state, the oxygen deficiency of two initial oxygen

vacancies is maintained. Indeed, 2BO3C → 2BOC + ≡Si, where the 2BOC center does not

violate the stoichiometry of SiO2, and the ≡Si defect together with Si5 also does not violate the

stoichiometry of SiO2; two ≡Si defects correspond to the stoichiometry of one oxygen vacancy,

and the oxygen vacancy OV′ can be decomposed into an ordinary oxygen vacancy OV and a

≡Si–O defect, which together with the remaining third ≡Si defect gives the stoichiometry of

defect-free SiO2.

In both amorphous states of a-SiO2-4700 and a-SiO2-4700-1, 3-, 4- and 5-membered rings

are present, which, like the 2-membered rings of 2BOC, do not violate the stoichiometry of SiO2.

At Tmelt = 4800 and 4900 K, even higher-energy amorphous oxygen-deficient states are

obtained, in which various sets of the SiO2 defects already described above are present.

C. Melting-quenching procedure applied to amorphous supercells with two sep-

arated oxygen vacancies. Let us see, what happens if supercells of some amorphous states

(see Tab. 1) with a created two oxygen vacancies are again subjected to the melting-quenching

procedure. For this purpose, four states with two oxygen vacancies were chosen: three of them

are a-SiO2-4600, a-SiO2-4700 and a-SiO2-4800 with two oxygen vacancies separated in space, and

the fourth state is a-SiO2-4500 with two vacancies created by removing two oxygen atoms from

the 2BO3C defect, which we designated as a-SiO2-4500 2BOC. Here, in the melting-quenching

procedure, all melts were stabilized within 6 ps. The energies of the supercells of all the obtained

amorphous states are significantly higher than the energies of most of the amorphous states with

a deficit of two oxygen atoms that we have previously considered, and basically they contain

only the defects that we have already considered, but in two cases new defects were encountered.
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After melting-quenching, the a-SiO2-4500 2BOC system with two oxygen vacancies initially

created in the 2BO3C defect has no unpaired electrons, and it contains two twofold coordinated

silicon atoms =Si, one =Si–O defect with a non-bridging oxygen atom, one Si5, several 2BOC

centers, 3-, 4- and 5-membered rings, and a center that we designate as Di-2BO3C – a double

2BO3C center (Fig. 2).

Figure 2. Defect Di-2BO3C found in a-SiO2-4500; light blue and yellow balls are Si and O

atoms, respectively, which make up the Di-2BO3C defect

The Di-2BO3C defect involves three silicon atoms and three oxygen atoms connecting them,

and one of these three oxygen atoms, common to two 2BO3C defects, forms three Si–O bonds

with the neighboring Si atoms included in this defect. Note that the stoichiometry of the

Di-2BO3C defect is equivalent to the stoichiometry of the threefold coordinated silicon atom

≡Si, which together with Si5 does not violate the stoichiometry of SiO2. The defect =Si–O does

not violate the stoichiometry of defect-free SiO2, since it can be broken down into an oxygen

atom and a twofold coordinated silicon atom =Si, the stoichiometry of which is equivalent to

the stoichiometry of an oxygen vacancy, adding to which the remaining oxygen atom, we obtain

the stoichiometry of defect-free SiO2. Thus, the stoichiometry of the considered amorphous state

with two oxygen vacancies and after melting-quenching with a melt stabilization temperature

of Tmelt = 4500 K corresponds to two oxygen vacancies in the supercell, since the stoichiometry

of two defects =Si is equivalent to the stoichiometry of two oxygen vacancies.

An independent run of melting-quenching at Tmelt = 4500 K led to a new, slightly lower in

energy (by 3.3 eV), amorphous state with a different set of intrinsic defects, among which there

is again the Di-2BO3C defect, shown in Fig. 2.

Another previously unseen defect, designated by us as the 2BOC′ center, was obtained by

applying the melting-quenching procedure to a-SiO2-4800, in which two oxygen vacancies were

created, separated apart in space. The 2BOC′ center is a 2BOC center in which one of the silicon

atoms has not two Si–O bonds with the rest of the atomic network, but only one, i.e., it is a

threefold coordinated silicon atom atom embedded in a 2BOC center. In this relatively high-

energy amorphous state with two unpaired electrons, in addition to the two 2BOC′ centers, the

following defects already discovered are also present: one oxygen vacancy OV, a =Si–O defect

with a non-bridging oxygen atom, two Si5 defects, two 2BO3C defects, several 2BOC defects,

and 3-, 4-, and 5-membered rings.
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2.4. Oxygen di-Vacancy, OdV

The OdV defect can be created in a regular SiO2-network, crystal or amorphous, by elimi-

nating two oxygen atoms bound to the same Si atom. The oxygen deficiency is the same in both

cases, OdV and two separated oxygen vacancies VO+VO: each supercell is missing two oxygen

atoms.

A. The OdV defect is created in existing stoichiometric states. OdV is created in

the cristobalite crystal and in a-SiO2 prepared from this crystal using several melt stabilization

temperatures Tmelt (4600–4900 K): two oxygen atoms bonded to the same silicon atom are

removed, and the energy of the supercell is optimized by varying positions of all atoms, form

and volume of the supercell. Eform(OdV) is the formation energy of the OdV defect calculated

as follows: Eform(OdV) = Eopt(OdV) + 2×E(O) – Eopt, where Eopt is the optimized energy of

the stoichiometric supercell (see Tab. 1), and E(O) = −1.897 eV is determined above just before

Tab. 2.

In cristobalite, the OdV defect is in the configuration of two oxygen vacancies in the form

of Si–Si bonds of the length 2.61 Å with a common Si atom, which is linked to the rest of the

atomic network by only two Si–O bonds (Fig. 3).

Figure 3. The OdV defect in cristobalite after the energy optimization

In Fig. 3, the light blue ball is a Si atom with two Si-O bonds; green balls are Si atoms with

three Si-O bonds each, yellow balls are oxygen atoms bonded to blue and green Si atoms.

In addition to the restrictions imposed on the relaxation of the atoms of this defect by the

atoms of its crystalline environment, each of the two neighboring threefold coordinated silicon

atoms ≡Si restricts the relaxation of the third Si atom to the second neighboring threefold

coordinated silicon atom. This is the reason why Si–Si distances in these two vacancies are

noticeably larger than the R(Si–Si) = 2.48 Å in the single oxygen vacancy in cristobalite (see

Tab. 2). In amorphous states, the Si–Si distances in the two adjacent oxygen vacancies are

in the range 2.4–2.6 Å. The formation energy of the OdV defect is close to twice the formation

energy of a single oxygen vacancy (see Tab. 2).

Having created OdV in cristobalite and in defect-free a-SiO2-4600 and a-SiO2-4700 amor-

phous states, we determine the lowest energy of electronic excitations for these states Eg, equal

to 4.20, 4.46 and 4.47 eV, respectively. These values are considerably lower Eg of a single oxy-

gen vacancy and of defect-free amorphous systems, see Tab. 2 and Tab. 1, respectively. This
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indicates that the optical excitation energy of the OdV defect is significantly less than the exci-

tation energy of a single oxygen vacancy. Taking into account the known underestimation of the

Eg values in the PBE calculations [8], we can assume that our results qualitatively correspond

to the assignment of the experimentally observed absorption bands in quartz glass at 7.6 eV

and 5.0 eV to a single oxygen vacancy and to an oxygen divacancy OdV.

B. The OdV defect in initial cristobalite + the melting-quenching procedure.

Let us consider what happens to the oxygen divacancy created in cristobalite after the melting-

quenching amorphization procedure at different melt stabilization temperatures Tmelt.

The initially created in the crystal oxygen divacancy OdV is not preserved as a result of

the melting-quenching procedure at Tmelt = 4600 K, and other defects arise in its place. Two

fivefold coordinated silicon atoms Si5 and a new diamagnetic defect OdV′ shown in Fig. 4 are

formed.

Figure 4. The OdV′ center appeared in a-SiO2-4600 after the melting-quenching procedure

from the initial β-cristobalite with OdV

In Fig. 4, the green balls are silicon atoms neighbors of oxygen vacancies which bound the

vacancies by a Si–O–Si bridge; the light blue balls are silicon atoms that link oxygen vacancies

to the rest of a-SiO2 network; blue and red balls are fourfold and twofold coordinated Si and O

atoms, respectively, forming the a-SiO2 network.

The OdV′ defect consists of two adjacent oxygen vacancies linked to each other by a Si–O–Si

bridge, in which each silicon atom, a part of Si–Si bond of OV, participates in only two Si–O

bonds. For brevity, we denote this defect as modified oxygen divacancy OdV′. Topology of the

atomic network has changed somewhat compared to the crystal – two three-membered rings

have appeared.

When melting-quenching is repeated at Tmelt = 4600 K, a state with two unpaired electrons

is obtained, and its energy is higher than the previous state of a-SiO2-4600 by approximately

15 eV. In this case, instead of two Si5 defects and an OdV′ defect, there is an oxygen vacancy

with R(Si-Si) = 2.39 Å, two ≡Si defects with a pyramidal conformation, a =Si–O defect with

a non-bridging oxygen atom, and two 2BOC centers. Of course, there are also 3-, 4- and 5-link

rings. It is easy to verify that these defects do not change the degree of oxygen deficiency, which

remains as it was before melting-quenching – one oxygen divacancy OdV per supercell. Indeed,

by breaking two Si–Si bonds, the OdV′ defect can be represented as two twofold coordinated
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silicon atoms =Si and two threefold coordinated silicon atoms ≡Si; the combination of two

≡Si with two Si5 gives a defect-free stoichiometry of SiO2, so that two =Si defects remain,

corresponding to an oxygen deficiency of two oxygen atoms per supercell.

In other amorphous states obtained at Tmelt = 4700, 4800 and 4900 K, different sets of point

defects described above are formed, but energies of these states are more than 13 eV greater

than the energy of a-SiO2-4600 with two Si5 and OdV′. There are neither OdV, nor OdV′ in

these high energy amorphous states, but other defects are presented. Most of these defects were

described above, but a new defect =Si–O–Si= is found in a-SiO2-4800, which is two threefold

coordinated silicon atoms linked to each other by a common oxygen atom (Fig. 5). In this defect,

silicon atoms are located so close to each other that a strong Si–Si bond is formed between them,

the length of which is 2.19 Å, and due to this approaching, the Si–O–Si angle of the oxygen

bridge between these atoms is close to a right angle.

Figure 5. Defect =Si–O–Si= found in a-SiO2-4800 with the oxygen deficiency of oxygen

divacancy

This new defect can be interpreted as a 2BOC center without one oxygen bridge, but with

the geometry of the remaining atoms almost like in the 2BOC center. In addition to the =Si–

O–Si= defect, there are also OV, =Si–O, several 2BOC and 3-, 4- and 5-membered rings in

such a-SiO2-4800. The =Si–O–Si= defect can be obviously named as Oxygen Deficient Center

(ODC) corresponding to the stoichiometry of an oxygen vacancy.

C. Melting-quenching procedure applied to amorphous supercells with OdV.

When supercells of some amorphous states with a hand created OdV defect are again subjected

to the melting-quenching procedure with Tmelt = 4600, 4700 and 4800 K, new amorphous states

are obtained with defects described above: =Si, OV, =Si–O, ≡Si–O, 2BO3C, Si5, ≡Si, and OdV.

The main results obtained for the oxygen divacancy OdV are as follows. The oxygen di-

vacancy OdV is unstable with respect to the melting-quenching procedure at all studied melt

stabilization temperatures and decomposes into other defects. The lowest-energy of these de-

fects is the OdV′ center, formed by two adjacent oxygen vacancies linked by a Si–O–Si bridge,

in which each Si atom participates in only two Si–O bonds (Fig. 4). This defect is formed

at Tmelt = 4600 K. At higher melt stabilization temperatures, spatially separated oxygen va-

cancies, threefold coordinated silicon atoms ≡Si, and twofold coordinated silicon atoms =Si

appear.
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3. Discussion

Based on the conducted studies of numerous (more than 35) amorphous states of silicon

dioxide obtained by the melting-quenching procedure from a crystal, the following main results

can be summarized and discussed. The density of the obtained a-SiO2 samples is close to the

experimentally measured value of 2.2 g/cm3 and is in the range 1.91–2.26 g/cm3. Among all

possible intrinsic point defects, the first to appear at the lowest melt stabilization temperatures

Tmelt are the 2BOC or 2BO3C centers. This means that the formation energy of such defects is

the lowest compared to other intrinsic defects in silica. The 2BOC defect is two SiO4-tetrahedra

linked by two oxygen vertices, and the 2BO3C defect is a modification of it. This was first

shown in stoichiometric a-SiO2 using spin-unpolarized quantum molecular dynamics simulations

in [22, 24] and confirmed in stoichiometric and oxygen-deficient a-SiO2 using spin-polarized

simulations in the present work. The number of such defects increases with increasing Tmelt, but

does not exceed several defects per supercell containing 192 atoms. The 2BOC centers do not

violate stoichiometry of SiO2.

For cristobalite and quartz crystals, the point defects and amorphization occur at Tmelt be-

tween 4500 and 4700 K with the parameters of the melting-quenching procedure used: heating

and cooling rates of 0.5 K/fs and melt stabilization of several picoseconds. The term “amor-

phization” refers to a change in the topology of the atomic network of crystalline SiO2 with

fourfold coordinated Si atoms and twofold coordinated oxygen atoms, which results in the for-

mation of rings consisting of a small number (3, 4, 5) of Si–O–Si bridges. For a stishovite crystal

with sixfold coordinated Si atoms and threefold coordinated oxygen atoms, amorphization oc-

curs at significantly lower melt stabilization temperatures Tmelt of about 3000 K, with the same

parameters of the melting-quenching procedure. In general, the topology of atomic network of

amorphous silica obtained from stishovite is similar to the topology of a-SiO2 obtained from

cristobalite or quartz.

With increasing time of the melting-quenching procedure, for example, with increasing time

of melt stabilization, the critical value Tmelt, above which amorphization occurs, decreases. The

presence of vacancies or divacancies in the original crystal promotes the formation of point defects

in the amorphous silicon dioxide obtained by melting-quenching and causes a change in the

topology of the atomic network compared to the crystal at lower melt stabilization temperatures.

Despite the radical change in the topology of the atomic network during amorphization using

melting-quenching, the bulk of the silicon dioxide atoms form a network of SiO4-tetrahedra,

connected to each other by their vertices - one common vertex for two adjacent tetrahedra,

as in quartz glass. Most of the point defects - the local disruption of this network - found in

the stoichiometric a-SiO2 models are also present in oxygen-deficient a-SiO2. The use of spin-

polarized calculations in the melting-quenching procedure leads to the discovery of new point

defects that are not obtained in spin-unpolarized calculations, in particular, ESR-active point

defects with unpaired electrons. The energy of the diamagnetic states of a-SiO2 is significantly

lower than the energy of ESR-active states containing defects with unpaired electrons.

The following intrinsic point defects are found in stoichiometric a-SiO2: 2BOC, 2BO3C in

which one oxygen atom of the 2BOC defect has a third Si–O bond linking it to the rest of the

atomic network, the ≡Si–O and =Si–O defects with non-bridging oxygen atoms, a threefold

coordinated silicon atom ≡Si, a fivefold coordinated silicon atom Si5, a twofold coordinated

silicon atom =Si, an oxygen vacancy OV and a threefold coordinated oxygen atom O3. All these

defects are also found in oxygen-deficient a-SiO2.
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In the present work, oxygen deficient a-SiO2 was prepared by removing one or two oxygen

atoms from a supercell containing 64 Si and 128 O atoms, combined with a melting-quenching

procedure. In oxygen-deficient a-SiO2, apart from defects of stoichiometric a-SiO2, the following

additional point defects were obtained: a 2BOC′ defect, in which one silicon atom has only three

Si–O bonds, a Di-2BO3C defect, which is two combined 2BOC defects with one common silicon

atom and one common oxygen atom, the latter forms three Si–O bonds with three silicon atoms

that make up this defect, a =Si–O–Si= defect, which is two threefold coordinated silicon atoms

linked to each other by a common oxygen atom, a modified oxygen vacancy OV′, in which one

of the Si atoms adjacent to the vacant site has three bonds with neighboring oxygen atoms,

and the second Si atom has four Si–O bonds, an oxygen divacancy OdV, a modified oxygen

divacancy OdV′, and a –Si–O defect, which is a silicon atom with two Si–O bonds, one bond

links this atom to the rest of atomic network and another bond links this silicon atom with a

non-bridging oxygen atom. For clarity, we have presented all the defects we discovered in Tab. 4.

Table 4. Intrinsic defects discovered in various amorphous states of SiO2 in our simulation

Silicon dioxide amorphous

states
Point defects

Stoichiometric a-SiO2
2BO3C, ≡Si–O, Si5, ≡Si, O3, 2BOC,

=Si, OV, =Si–O

Oxygen-deficient a-SiO2,

Single oxygen vacancy

OV, Si5, ≡Si, O3, 2BOC, 2BO3C, =Si,

=Si–O, –Si–O

Oxygen-deficient a-SiO2,

Two spatially separated

oxygen vacancies

OV, Si5, ≡Si, 2BOC, 2BO3C, =Si,

=Si–O, O3, Di-2BO3C, 2BOC′, OV′

Oxygen-deficient a-SiO2,

Single oxygen divacancy

OV, OdV, Si5, ≡Si, 2BOC, 2BO3C, =Si,

=Si–O, ≡Si–O, OdV′, =Si–O–Si=

Comparing the sets of defects in different rows of Tab. 4, we can conclude that the following

16 point defects are found in oxygen-deficient a-SiO2: nine defects 2BOC, 2BO3C, ≡Si–O, =Si–

O, ≡Si, =Si, Si5, OV, O3, which are also found in stoichiometric a-SiO2, and seven defects

–Si–O, Di-2BO3C, 2BOC′, =Si–O–Si=, OV′, OdV, and OdV′, which are found only in oxygen-

deficient a-SiO2. Not all of these sixteen defects are associated with local oxygen deficiency.

The Si5, 2BOC, and ≡Si–O defects present in our models of stoichiometric and oxygen-deficient

a-SiO2 are obviously not oxygen-deficient centers. The =Si–O defect is also not an oxygen-

deficient center. Indeed, the =Si–O defect can be decomposed into the twofold coordinated

silicon atom =Si and an oxygen atom, the stoichiometry of =Si is equal to the stoichiometry

of an oxygen vacancy, which in turn combines with an oxygen atom, resulting in the formation

of stoichiometric silicon dioxide. Consequently, we can conclude that we have discovered the

following 12 intrinsic point defects in a-SiO2 associated with oxygen deficiency: OV, OV′, =Si,

≡Si, OdV, OdV′, =Si–O–Si=, 2BO3C, Di-2BO3C, 2BOC′, O3 and –Si–O. Note that the latter,

together with the ≡Si defect, produces a twofold coordinated silicon atom =Si, which also

represents an oxygen-deficient center, corresponding in stoichiometry to the oxygen vacancy

OV. Also, the stoichiometry of the O3 defect coincides with the stoichiometry of the ≡Si defect,

and therefore the O3 defect can be considered to be associated with oxygen deficiency, just like
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the ≡Si defect. To avoid confusion, we emphasize that in existing publications, oxygen-deficient

centers (ODCs) are non-paramagnetic defects with specific optical characteristics, and until now,

either an oxygen vacancy OV or a twofold coordinated silicon atom =Si have been considered

as models of these centers. In this paper, we take a broader approach and refer to any defects

caused by local oxygen deficiency as oxygen-deficient centers.

In this study, we did not detect the so-called peroxy bridge (linkage) in any amorphous state.

This defect has long been discussed in the scientific literature as a precursor to the radiation-

induced paramagnetic peroxy radical [4, 7, 9, 20]. In [24], this defect was discovered in the

amorphous state of a-SiO2-5000, obtained by simulating the melting-quenching of an alpha-

quartz crystal using spin-unpolarized calculations. Clarification of the reasons for its absence in

the amorphous states obtained in this work requires further research.

An estimate of the formation energy of a twofold coordinated silicon atom =Si is given,

according to which the formation energy of this defect is significantly greater, by 10–12 eV,

than the formation energy of an oxygen vacancy, equal to 8 eV. Moreover, a comparison of the

supercell energies of all the amorphous states we studied showed that twofold coordinated silicon

atoms =Si are present only in high-energy states along with other defects.

The total CPU time for the entire melting-quenching procedure at Tmelt = 4700 K is

11.22 days on the Lomonosov-2 supercomputer. In total, more than 35 melting-quenching pro-

cedures were carried out during the present research, which took more than 1 year CPU time

on Lomonosov-2.

Conclusion

The conducted modeling revealed the configurations of possible intrinsic point defects in

amorphous silicon dioxide, and along with the known ones, oxygen vacancies, twofold coordi-

nated silicon atoms =Si, E′-centers and NBOHC, new defects were also identified, including

defects associated with oxygen deficiency. A total of twelve defects associated with local oxygen

deficiency were identified. Many of the defects found have electronic states in the band gap of sil-

icon dioxide, which can lead to absorption bands in the transparency window of defect-free SiO2,

including the visible and near-IR ranges. Such defects can significantly affect the laser damage

threshold of optical coatings using amorphous silicon dioxide layers, as well as radiation-induced

absorption in silica-based optical fibers and leakage currents in various semiconductor devices

using silicon dioxide as insulating layers. The defects found can become a broad basis for in-

terpreting experimental data from optical and ESR measurements. Many new defects described

in the present work for the first time are found due to using quantum molecular dynamics

through the whole melting-quenching procedure in the spin-polarized approach. A more accu-

rate description of the optical characteristics of the detected defects requires separate studies,

including other more accurate methods for calculating electron excitations. The simulation tech-

nique used in this work can also be applied to model a wide range of impurity defects in silicon

dioxide, which play an important role in both fiber optics and multilayer optical coatings.
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By modeling of predominant conformations of mobile loops in previously unresolved regions

of 2-hydroxybiphenyl 3-monooxygenase structure (PDB ID: 5BRT) using GPU-accelerated

metadynamics simulations integrated with artificial intelligence and high-performance computing

the full-length protein model was built. Combined with bioinformatic analysis of the

flavin-dependent monooxygenases it allowed to propose the functional role of amino acid

residues in the 2-hydroxybiphenyl 3-monooxygenase catalysis. Three subfamily-specific residues

Glu359, Lys339, Arg360 and the Asp332 residue, conservative throughout the entire family of

flavin-dependent monooxygenases, form salt bridges Glu359-Lys339 and Arg360-Asp332, which

stabilize alpha helices preserving the integrity of the Rossmann fold of the FAD-binding domain;

subfamily-specific residues Trp338 and Glu359 provide the correct positioning of alpha-helices by

interacting with two conservative residues Asp557 and Arg555 from the hydroxylase domain.

NAD binding pocket is formed by a number of subfamily-specific residues Trp38, Ser40,

Ser42, Arg46, Ser47, Ala180, Asn205, Ser291, Trp293 located in an elongated pocket adjacent to

the FAD binding site. The Asp313 residue, conservative in the entire family of flavin-dependent

monooxygenases, directly interacts with FAD through hydrogen bonding with 2’-OH-ribitol,

contributing to the binding and orientation of the cofactor. The Arg46, Ser47, Gly202, Ser203,

Asn205, Arg242, Val253, Trp293, Met321, and Pro320, conservative for the entire family,

play a crucial role forming the substrate binding site. The binding of cofactors and substrate

in a quaternary complex and their orientation due to interactions with subfamily-specific

positions Arg46, Ala180, His181 and Trp293 allows to perform the hydride transfer to the

substrate stereospecifically. The triple stacking interaction between the FAD isoalloxazine ring,

NADH nicotinamide ring and the subfamily-specific residue Trp293 leads to the formation of

a highly stable charge-transfer complex and preferential Pro-S position in 2-hydroxybiphenyl

3-monooxygenase catalysis.

Keywords: flavin-dependent monooxygenases, 2-hydroxybiphenyl 3-monooxygenase from

Pseudomonas azelaica, mobile loop structure prediction, full-length protein modeling,

bioinformatics analysis, functional amino acid residues.

Introduction

Establishing the relationship between the structure and function of proteins, and enzymes

in particular, is one of the most important tasks of modern biology. Despite the development of

experimental techniques in structural biology (e.g., X-ray crystallography, NMR and cryo-EM),

currently the PDB database [https://rcsb.org, https://wwpdb.org [3]] contains information

on experimentally determined structures of 246,005 proteins (1,068,557 structures are presented

in a separate section of Calculated Structure Models), although Uniprot [https://uniprot.

org [1]] contains 199,006,239 amino acid sequences (mainly with unknown function, whereas
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annotated are 573,661), and effective approaches need to be developed to bridge the gap between

these information arrays.

Expectations of a breakthrough in this area are associated with the use of computer modeling

and artificial intelligence. Indeed, the development of methods for predicting protein structure

based on a known amino acid sequence has allowed to propose multiple spatial models (more

than 200 million structures in the AlphaFold Protein Structure Database [https://alphafold.

ebi.ac.uk/, [46]]), but the success of prediction is largely due to the presence of homologues of

the protein under study and similar structures in training sets. The complexity of the problem

also lies in the fact that many experimentally determined protein structures contain unresolved

regions. Therefore, one of the not yet solved difficult problems is the prediction of the state of

mobile elements, including loops, in the protein structure. The presence of such “blank spots” in

the available information greatly complicates the search for the relationship between a full-length

structure and a function. The mobile elements of the structure play an important role in the

functioning of the protein/enzyme, ensuring its conformational plasticity and controlling access

of the regulatory ligand or substrate to the complementary binding site, on the one hand, as

well as their retention in a bound state, isolation of the formed complex from the environment

and ensuring the specific microenvironment in the complex.

Since among the experimentally determined structures accumulated in the Protein Data

Bank (PDB) over half contain unresolved segments (that often represent loops [38, 48]), accurate

modeling of their structure is of high importance for preparing full-length protein models. Even in

the post-AlphaFold era loop positioning remains one of the most challenging yet indispensable

tasks in full-length protein modeling. Loops are often located on the protein surface, exhibit

dynamic movement and adopt multiple distinct conformations that are not represented in PDB

structures or adequately predicted [2, 30]. Accounting for loop dynamics has been recognized to

be a key issue studying protein-ligand as well as protein-protein or antigen-antibody interaction

and allosteric regulation, protein design, etc. [14, 16, 24, 29, 32]. Loop dynamics in enzyme

structure has been recognized as an extremely important factor for catalytic activity, specificity

as well as stability, evolution and design of improved enzyme variants [5, 7, 8, 25–28, 31, 49].

Flexible loop modeling using computational approaches in combination with artificial intelligence

can provide an essential progress studying loop structural organization and their flexibility

(appear to be open direction for exploration). Separate publications on the use of machine

learning methods on this topic began to appear starting in the mid-80s, but a noticeable increase

in research activity has been observed over the past 20 years (Fig. 1). These approaches allow

to solve a number of problems and indicate the promise of supercomputer molecular modeling

methods combined with the use of artificial intelligence approaches [21, 45].

Flavin-dependent monooxygenases are involved in a wide range of biological processes often

playing a key role in the catabolism of natural and anthropogenic compounds or participating

in the biosynthesis of numerous physiologically active compounds like hormones, vitamins and

antibiotics [33]. Enzymes of this superfamily can be used as catalysts for large scale practical

applications starting from lignin degradation or detoxification of xenobiotic compounds to the

biocatalytic synthesis of key intermediates in pharmaceutical industry [9, 15]. The detailed

mechanistic and structural studies of the FMO family enzymes are therefore of fundamental and

practical interest. In this work the role of key amino acid residues in the catalytic mechanism of

2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica was analyzed
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Figure 1. Publications on the topics of machine learning / artificial intelligence / neural
networks and protein unresolved/non resolved/unstructured/non structured region modelling

(PubMed)

based on the bioinformatics analysis of flavin-dependent monooxygenase family enzymes as well

as supercomputer molecular modeling applying methods of artificial intelligence.

1. Materials and Methods

1.1. Bioinformatic Analysis

Bioinformatic analysis of a large representative set of flavin-dependent monooxygenases was

used to study their structural and sequence variability by implementing a combination of protein

sequence and structure comparison algorithms to account for structural and functional variability

within this superfamily. The multiple structure-guided sequence alignment was constructed

using the Mustguseal web-server (https://biokinet.belozersky.msu.ru/mustguseal) [42].

The server sequentially utilizes several bioinformatics algorithms: structural similarity search is

used to find evolutionarily distant related proteins that have acquired functional/regulatory

diversity due to significant changes in amino acid sequences and structures during natural

selection (step 1); structural alignment to superpose the identified evolutionarily distant proteins

that represent different families within a large superfamily (step 2); amino acid sequence

similarity search to find evolutionarily close proteins, representatives of the selected families,

and subsequent amino acid sequence alignment to superpose the sequences of evolutionarily

close proteins (representatives of the same family, step 3). In the final step, the alignment

of available structures of evolutionarily distant homologs is used as a framework for aligning

the amino acid sequences of all collected representatives of the superfamily (step 4). Thus

the selected PDB structures and their corresponding complete amino acid sequences were

used to perform a structural alignment. The obtained structural core alignment was further

used by the Mustguseal web-server to construct a larger alignment by incorporating all

available sequences of related proteins. Each representative protein was used as a query for

a sequence similarity search in Swiss-Prot and TrEMBL databases to collect its evolutionary

close relatives. The obtained sequence sets were further filtered using the default parameters

to remove redundant entries (at the 95% pairwise sequence identity threshold) within each

family and superimposed using the core structural alignment of the representative proteins as a

guide. The final structure-guided sequence alignment contained 4417 sequences and structures

of monooxygenases with high structural, but low sequence similarity to 2-hydroxybiphenyl
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3-monooxygenase from Pseudomonas azelaica. This representative set of homologs was

automatically clustered into groups by maximizing sequence conservation within the groups

and sequence variability between the groups using the Zebra2 web-server (https://biokinet.

belozersky.msu.ru/zebra2) [40]. The predicted clusters corresponded to different subfamilies

of flavin-dependent monooxygenases that can be further analyzed according to the available

functional annotation of members in each predicted group. Web-servers pocketZebra (http://

biokinet.cmm.msu.ru/index.php/pocketzebra) and visualCMAT (http://biokinet.cmm.

msu.ru/visualcmat) were used to find the NADH binding site and evaluate the function of

residues in this site [39, 42].

1.2. Molecular Modeling

Neural network models with the architecture of hyperspherical variational autoencoders

(S-VAE) were used as a component in modelling of the position of mobile loops. A critical

choice in VAE design is the structure of the latent space, which significantly affects the model’s

capacity to represent underlying data properties [19]. For systems described by dihedral or

torsional angles, such as molecular structures, a hyperspherical latent space offers an elegant

solution [10]. The autoencoder was trained on the set of dihedral angles of unresolved loops,

obtained by molecular dynamics. Dihedral spaces represent angular relationships between atoms

in a molecular system. These angles, ranging from [0, 2π), are inherently periodic. The periodicity

implies that a dihedral space is better represented as a flat torus. The mathematical relationship

between flat tori and hyperspheres further substantiates this choice. Embedding a flat torus

in a hypersphere allows the model to naturally preserve properties such as smoothness and

periodicity, ensuring that adjacent angular values in the data space (e.g., 2π − ε and 0 + ε)

remain adjacent in the latent representation [20]. The hypersphere inherently respects the

periodic boundary conditions of these angles. This feature contrasts with Euclidean latent spaces,

which are not naturally suited to handle periodicity or modular arithmetic, often leading to

discontinuities or distortions in the latent representation.

The autoencoder is based on multiple narrowing convolutional layers and uses

reparameterization of the three-dimensional von Mises-Fisher distribution. A weighted sum of

the cumulative data reconstruction function (cosine distance) and Kullback–Leibler divergence

is used as a metric for the error function. KL divergence assumes the hyperspherical nature of

the latent space being calculated between the determined three-dimensional von Mises–Fisher

distribution and a two-dimensional uniform hyperspherical distribution. The coefficient for

accounting for KL divergence in the error function is 1.2, and the learning rate is 1 · 10−2.

The AdamW optimizer was used to train the model during 500 epochs. To find the optimal

structure of protein sites, GPU accelerated metadynamics simulations were performed, using the

Amber 20 molecular dynamics package [35] in conjunction with the Plumed 2.9 metadynamics

package [12, 43]. The collective variable was defined using the PYTORCH MODEL function [4], which

consisted of compiled JIT PyTorch model (encoding part of the S-VAE) and the corresponding

set of dihedral angles. Metadynamics was performed on three outputs of the model using a

“well-tempered” scheme. The initial height of the Gaussian was set to 6.0 kJ/mol, the width

to 0.06 for each measurement. A new potential was added every 400 steps. The bias factor

was set to 10.0 and the simulation temperature to 300 K. For one computational experiment,

10 tasks (“walkers”) were run simultaneously with a common metadynamics potential. All

classical parameters for molecular dynamics modeling were as described above.

Characterization of the Role of Amino Acid Residues in the 2-Hydroxybiphenyl...

128 Supercomputing Frontiers and Innovations

https://biokinet.belozersky.msu.ru/zebra2
https://biokinet.belozersky.msu.ru/zebra2
http://biokinet.cmm.msu.ru/index.php/pocketzebra
http://biokinet.cmm.msu.ru/index.php/pocketzebra
http://biokinet.cmm.msu.ru/visualcmat
http://biokinet.cmm.msu.ru/visualcmat


1.3. Mobile Loop Structure Prediction

The AlphaFold 2 model [17] was used to predict the structure of missing sites. An enzyme

sequence from the UniProt database with the identifier O06647 was provided to the model. The

model was run with standard settings in the “monomer” mode, producing 5 predicted structures

using 5 different models from AlphaFold.

Rosetta [37] and MODELLER [13] were used as well for modeling of the missing sections in

the 5BRT [18] structure. Using the MODELLER software, a Gln195-Ser201 segment from the

6EM0 [6] crystal structure was inserted into the original structure. Using Rosetta Remodel, a

fully atomic model with the starting positions of the loops from the monomer of the protonated

original structure was created. All protein atoms that were not included in the modeled regions

were fixed in their positions, and the method of preserving the initial protein’s protonation state

was used. In the next step, 100 models of the 2-hydroxybiphenyl 3-monooxygenase monomer

with alternative loop positions were generated using the Rosetta LoopModel. The coordinates of

FAD and 2-hydroxybiphenyl were added to the model as user-defined residues. Next Generation

KIC method was used to model 10000 loop conformations. The top 10 structures were selected

based on Rosetta energy score and conformational reasonableness.

2. Results and Discussion

2.1. Bioinformatic Analysis

A search for homologous enzymes was performed using the CATH superfamily database [11].

The 2-hydroxybiphenyl 3-monooxygenase belongs to the CATH 3.50.50.60 superfamily. Since

the CATH database is updated with a delay, a structural similarity search in the PDB database

was additionally used to search for new homologues of the 2-hydroxybiphenyl 3-monooxygenase

enzyme using the superpose algorithm (PDBeFOLD service) [23]. For comparative analysis

of specific proteins, pairwise structural alignments were constructed using the Combinatorial

Extension method [36]. The PDB structure 5BRT of 2-hydroxybiphenyl 3-monooxygenase,

a flavoprotein from Pseudomonas azelaica, was used as a query for a structure similarity

search in the PDB database to collect a nonredundant set of 16 proteins which shared 20%

pairwise sequence similarity with 5BRT and represented different families within the superfamily

(8FHJ,2R0G,3IHG,4K2X,2DKH,6UI5,4ICY,7YJ0,1PN0,6AIN,8JQP,3GMB,5EOW,6SW2,5TUI).

Bioinformatic analysis revealed six distinct subfamilies of enzymes within the flavin-dependent

monooxygenase family. The number of identified subfamilies corresponds well to the classification

of external flavoprotein monooxygenases developed two decades ago on the basis of amino acid

sequence, tertiary structure and cofactor preference when the 309 annotated bacterial genomes

available at that time in the NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) were screened for

the presence of monooxygenase homologs using the prototype protein sequence and the BLAST

tool. Review by Van Berkel W.J., Kamerbeek N.M. and Fraaije M.W. provided an inventory of

known flavoprotein monooxygenases belonging to these different subclasses and highlighted the

biocatalytic potential of this family of enzymes [44].

Currently, thanks to the accumulation of vast amounts of structural data, including even

unannotated protein sequences, it has become possible to investigate distant evolutionary

relationships within protein superfamilies and identify key amino acid residues critical to

the entire family, as well as variable residues responsible for functional divergence and being

specific to subfamilies of homologous enzymes. Thus, using bioinformatics analysis of protein
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families, it is possible to identify amino acid residues conserved across the entire family or only

within individual subfamilies (subfamily-specific positions in multiple structure-based sequence

alignments) [40]. As a result, 21 amino acid residues were identified as conservative ones for

the entire family (eight Gly residues in positions 13, 15, 18, 62, 176, 179, 312, 325, three Leu

residues in positions 25, 336, 340, three Asp residues in positions 178, 313, 332, two Ala185 and

Ala314, one residue of Ser182, Arg307, His316, Pro320 and Tyr356) (Fig. 2). These residues are

located in the most structurally conservative FAD/NAD binding domain D1.

Figure 2. Conservative positions in the FAD-binding domain

2.2. Functional Role of Amino Acid Residues Identified by Bioinformatics

Analysis. Binding of Substrates and Cofactors

Since the focus of this article is on the role of amino acid residues in the structure and

catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica, we

will discuss the information obtained from bioinformatic analysis in relation to this protein

(Fig. 3).

Bioinformatic analysis takes into account the evolutionary relationships in protein families,

and amino acid residues conservative in subfamilies may indicate functionally important, but

variable positions in the protein structure.

The most typical for the entire family is a FAD binding subsite. On the one side, this area is

bounded by two alpha-helices. Three subfamily-specific positions (Glu359, Lys339, Arg360) and

the Asp332 residue, conservative throughout the entire family, form two structurally important

salt bridges Glu359-Lys339 and Arg360-Asp332, which stabilize alpha helices in the dynamic
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Figure 3. The subfamily-specific positions shown in 2-hydroxybiphenyl 3-monooxygenase
from Pseudomonas azelaica

protein structure, preserving the integrity of the Rossmann fold of the FAD-binding domain D1

(Fig. 4). Such salt bridges are present in most subfamilies, however, in some cases Arg360 is

replaced by Cys or Met, Lys339 by Cys, Ala or Glu, and Glu359 by Asn or Thr. One more

subfamily-specific position, Trp338, participates in the correct positioning of these alpha-helices

by interacting with the Asp557 along with the additional interaction of Glu359 with the Arg555

residue, i.e., two conservative residues from the hydroxylase domain.

Figure 4. Salt bridges formed by subfamily-specific and correlating amino acid residues
in 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica
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On the other side, in the conformationally flexible region limiting the FAD binding site,

there are two glycine residues: Gly325, a conservative position for the entire family, and Gly323,

a specific position for the 2-hydroxybiphenyl-3-monooxygenase subfamily. Molecular dynamics

simulations indicate that their role is to provide conformational flexibility for the transfer of

the isoalloxazine ring of FAD occurring in the catalytic mechanism. Only the Asp313 residue,

which is conservative in the entire family, is directly interacting with the FAD molecule through

hydrogen bonding with 2’-OH-ribitol, thereby contributing to the binding and orientation of the

cofactor both in the static structure and in molecular dynamics simulations.

Earlier identified NAD binding pocket located next to the FAD binding subsite [22] is also

formed by a number of subfamily-specific residues (Trp38, Ser40, Ser42, Arg46, Ser47, Ala180,

Asn205, Ser291, Trp293). These residues are located in an elongated pocket adjacent to the FAD

binding site, some of them are also involved in the formation of the substrate delivery tunnel

(Fig. 5). Subfamily-specific positions Arg46, Ser47, Gly202, Ser203, Asn205, Arg242, Val253,

Trp293, Met321, and Pro320, conservative for the entire family, play a crucial role forming the

substrate binding site in 2-hydroxybiphenyl 3-monooxygenase structure. Functional role of some

of them (Arg46, Arg242, Trp293) was earlier described [18, 22], the others (Ser201, Met223,

Trp225, Val236, Val238, Ala240, Trp 254, Leu 375, Leu428) have not been observed in the

course of bioinformatic analysis.

Figure 5. A tunnel for the entrance of the substrate to the active site of 2-hydroxybiphenyl
3-monooxygenase from Pseudomonas azelaica. The sticks highlight functionally important

residues. The green color shows the substrate 2-hydroxybiphenyl

2.3. Subfamily-specific Amino Acid Residues in a Catalytic Mechanism

2-Hydroxybiphenyl 3-monooxygenase is capable to carry out stereospecific transformations

because two hydrogen atoms at the C4 carbon of the dihydropyridine ring of NADH or

NADPH as well as the sides of FAD isoalloxazine ring are not equivalent; the binding of

cofactors and substrate in a quaternary complex and their orientation due to interactions with

subfamily-specific positions Arg46, Ala180, His181 and Trp293 allows to perform the hydride
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transfer to the substrate stereospecifically. In particular, the triple stacking interaction between

the FAD isoalloxazine ring, NADH nicotinamide ring and the subfamily-specific residue Trp293

leads to the formation of a highly stable charge-transfer complex and preferential Pro-S position

in 2-hydroxybiphenyl 3-monooxygenase catalysis. As in the course of catalytic conversion the

Trp293 residue is pushed aside, forming a cavity for the NADH nicotinamide ring, it is important

to control dynamic changes in the active site. The efficiency of the stacking interaction is

regulated by the Arg46 and Trp293 residues, and their relationship with the catalytic His48

residue located in the substrate binding site controls the interaction between the centers of the

oxidative and reduction stages of the reaction mechanism [22].

2.4. Flexible Elements of the Structure

Along with the structure of the binding sites of cofactors and substrates, mobile structural

elements play an important role in the catalytic mechanism, ensuring enzymes conformational

plasticity thus controlling entrance to the channels and delivery of substrates and cofactors to

the active site, as well as their retention in a bound state, isolation from the environment

and ensuring the unique microheterogenicity of the medium for the effective catalytic

transformations. In most cases, when constructing a full-scale structural model of an enzyme, it

is necessary to determine the state of the mobile loops so that molecular modeling of the catalytic

stages of the enzymatic reaction can be carried out adequately. There are four mobile regions in

the structure of the substrate binding domain of 2-hydroxybiphenyl 3-monooxygenase formed

by the polypeptide chain fragments Gln195-Ser201, Arg219, Tyr256-Ile265, and Arg228-Val236.

Three loops, Gln195-Ser201, Tyr256-Ile265, and Arg228-Val236, are located in close proximity

to the active site (Fig. 6).

Figure 6. Unresolved structural fragments in the structure (PDB ID 5BRT)
of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica: the blue color shows
the Gln195-Ser201 region, green – Arg219, pink – Tyr256-Ile265, yellow – Arg228-Val236.
The FAD cofactor is shown in orange, the 2-hydroxybiphenyl substrate is shown in green

Full-length 2-hydroxybiphenyl 3-monooxygenase models with different positions of the

loops predicted using different methods: LoopModel module of the Rosetta package, Modeller

software, Alphafold v2.3.0 [13, 17, 34] are presented below (Fig. 7). Obviously, there is a
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remarkable discrepancy in the predicted positions of flexible loops. Subfamily-specific residues

are not present in these regions, however Gly194 and Gly202 as well as Gly255 and Thr266

are located next to flexible loops and can make a remarkable impact on conformational

dynamics of 2-hydroxybiphenyl 3-monooxygenase structure. We suggested to apply an integrated

approach combining metadynamics simulations in latent space using variational autoencoders

on supercomputers to explore initial approximations of these flexible region structures derived

from modeling tools such as AlphaFold, RosettaFold, Modeller, SwissModel, etc. [21]. The

predominant conformations of previously unresolved mobile regions in the active site of

flavin-dependent 2-hydroxybiphenyl 3-monooxygenase identified using this approach are shown

in Fig. 7.

Figure 7. The positions of the loops in the active site of 2-hydroxybiphenyl 3-monooxygenase
from Pseudomonas azelaica, predicted by Alphafold and Rosetta and optimized using

molecular dynamics with hyperspherical variational autoencoder (S-VAE)

The coevolutionary relationship between the subfamily-specific residues Arg46 and Trp293,

which regulate the efficiency of the stacking interaction between FAD and NADH was established

using the visualCMAT server [41], as well as their relationship with the catalytic His48 residue

located in the substrate binding site, which controls the interaction between the centers of

the oxidation and reduction stages of the reaction mechanism. The important role of amino

acid residues of the active site in the stabilization of the transition state should be noted:

Trp293 forms a stacking interaction with the NADH nicotinamide ring, and His318 in the

protonated form participates in stabilization due to the hydrogen bond formed between the

backbone carbonyl oxygen and the NADH amide group. However, the catalytic mechanism of

2-hydroxybiphenyl 3-monooxygenase has not been fully understood yet. From two parts of the

catalytic cycle, the reduction and oxidation half-reaction, only the first one was characterized on

a molecular level: the reduction of FAD with NADH leading to the formation of FADH− anion,
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i.e., the step when hydrogen atoms are transferred between the coenzymes and the substrate.

Stabilization of the transition state in 2-hydroxybiphenyl 3-monooxygenase catalysis occurs due

to the induced fit formation of a specific pocket for binding the nicotinamide ring of NADH, which

is connected to the active site by interacting subfamily-specific residues Arg46 and Trp293 [22].

Thus, bioinformatic analysis has helped to elucidate or suggest previously unknown roles for some

amino acid residues, as well as to identify a list of residues that appear to play an important role

in the evolution of this enzyme family, although the influence of these positions on the structural

and functional properties is still unknown and should be investigated.

Conclusion

The bioinformatic analysis of the flavin-dependent monooxygenases used together with

the modeling of predominant conformations of mobile loops in previously unresolved

regions of 2-hydroxybiphenyl 3-monooxygenase structure using GPU-accelerated metadynamics

simulations integrated with artificial intelligence and high-performance computing allowed to

elucidate previously unknown functional roles for some amino acid residues in the reduction

half-reaction. Three subfamily-specific residues Glu359, Lys339, Arg360 and the Asp332 residue,

conservative throughout the entire enzyme family, were shown to form structurally important

salt bridges Glu359-Lys339 and Arg360-Asp332, which stabilize alpha helices preserving the

integrity of the Rossmann fold of the FAD-binding domain; subfamily-specific residues Trp338

and Glu359 were shown to provide the correct positioning of alpha-helices by interacting with

two conservative residues Asp557 and Arg555 from the hydroxylase domain. Subfamily-specific

residues Trp38, Ser40, Ser42, Arg46, Ser47,Ala180, Asn205, Ser291, Trp293 form the elongated

NAD binding pocket adjacent to the FAD binding site. The conservative Asp313 residue makes

important contribution to the binding and orientation of the cofactor through hydrogen bonding

with 2’-OH-ribitol of FAD. The Arg46, Ser47, Gly202, Ser203, Asn205, Arg242, Val253, Trp293,

Met321, and conservative Pro320 residue play a crucial role forming substrate binding site.

The binding of cofactors and substrate in a quaternary complex and their orientation due to

interactions with subfamily-specific residues Arg46, Ala180, His181 and Trp293 allows to perform

the hydride transfer to the substrate stereospecifically. The triple stacking interaction between

the FAD isoalloxazine ring, NADH nicotinamide ring and the subfamily-specific residue Trp293

leads to the formation of a highly stable charge-transfer complex and preferential Pro-S position

in 2-hydroxybiphenyl 3-monooxygenase catalysis. A primary challenge for the future remains

the role of amino acid residues in the mechanism of the oxidation half-reaction of the complete

catalytic cycle of 2-hydroxybiphenyl 3-monooxygenase.
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21. Kopylov, K., Kirilin, E., Voevodin, V., Švedas, V.: Characterization of conformational

flexibility in protein structures by applying artificial intelligence to molecular modeling.

Journal of Structural Biology 217(2), 108204 (Jun 2025). https://doi.org/10.1016/j.

jsb.2025.108204
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49. Zinovjev, K., Guénon, P., Ramos-Guzmán, C.A., et al.: Activation and friction in enzymatic

loop opening and closing dynamics. Nat Commun 15(1), 2490 (Mar 2024). https://doi.

org/10.1038/s41467-024-46723-9

K.E. Kopylov, M.A. Shchepetov, V.K. Švedas

2025, Vol. 12, No. 4 139

https://doi.org/10.1093/nar/gku448
https://doi.org/10.1093/nar/gku448
https://doi.org/10.1093/nar/gkaa276
https://doi.org/10.1093/nar/gkaa276
https://doi.org/10.1142/S021972001840005X
https://doi.org/10.1142/S021972001840005X
https://doi.org/10.1093/bioinformatics/btx831
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1016/j.jbiotec.2006.03.044
https://doi.org/10.1093/nar/gkad1084
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1093/bib/bbad486
https://doi.org/10.1038/s41467-024-46723-9
https://doi.org/10.1038/s41467-024-46723-9

	G.P. Kovalev, M.M. Tikhomirov
	A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko
	A.S. Belyaev, A.V. Goncharsky, S.Y. Romanov, Vad.V. Voevodin
	R.M. Tretiakova, A.V. Setukha, I.A. Mass
	E.V. Mortikov, E.M. Gashchuk, A.V. Debolskiy
	S.K. Shangareeva, V.M. Stepanenko, G.M. Faykin, A.I. Medvedev, I.M. Ryzhova, V.A. Romanenkov
	V.B. Sulimov, D.C. Kutov, A.V. Sulimov, F.V. Grigoriev, A.A. Tikhonravov
	K.E. Kopylov, M.A. Shchepetov, V.K. Švedas

