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• Daniel Mallmann, Jülich Supercomputing Centre, Germany
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and Heat Transfer Anomalous Enhancement in a Single Inclined

Groove on a Plate
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A validation test is presented based on the study of the phenomenon of separated turbulent

air flow and anomalous enhancement of heat transfer in an inclined groove on a heated plate.

The groove is made up of two halves of a spherical dimple with a spot diameter of 0.25, and it

is connected by a trench insert that is 5 long. The generation of tornadoes in grooves associated

with extraordinary static pressure differences contributes to the formation of fields of ultra-high

velocities, high gradients of relative friction, and heat transfer coefficients inside the inclined

groove. Databases of heat flux measurements in a groove on the isothermal section of the plate

when varying the inclination angle from 0◦ to 90◦ were obtained on the SPbPU thermophysical

setup. Parametric numerical and physical studies of heat transfer on a plate with a single groove

were performed at Re = 3×104. Using the parallelized package VP2/3 has resulted in a satisfactory

agreement between experimental data and numerical predictions made within the RANS-SST

framework. Abnormal heat transfer enhancement in grooves occurs at angles of inclination from

30◦ to 75◦, which correlates with conclusions on analysis of pressure distributions in grooves

on the plate. The vortex structure in the groove on the plate at an inclination angle of 45◦ is

illustrated. It is shown that the focused pressure difference between the adjacent stagnation zone

on the windward slope and the reduced pressure region at the entrance to the groove initiates a

tornado-like vortex and the developing intense swirling flow.

Keywords: heat transfer enhancement, tornado-like vortex, inclined groove, plate, turbulence,

parallelized VP2/3 package.

Introduction

Validation tests, which are considered as analogues of experimental problems, serve to con-

figure and verify mathematical models of control processes, in particular, turbulent transport [1],

as well as assess the accuracy and efficiency of developed program codes [3]. Recently [7], original

validation tests have been proposed based on a study of separated flow enhancement in inclined

grooves on structured surfaces of a plate and channel wall. The grooves are two halves of a spher-

ical dimple connected by a long trench cylindrical insert [5]. The entrance spherical segments

that are oriented towards the free-stream flow create tornado-like structures that developed into

high-intensity flows in separation zones inside the groove and create zones of decreased pressure.

Ultra-high velocities of reverse-direction and secondary flow in the grooves turn out to be on

the order of the characteristic velocity of the free-stream flow and sometimes exceed it. As a

consequence, the generated intense vortex flows inside the grooves form zones of parameter gra-

dients that are anomalously high for separated flows. These zones are characterized by multiple

superiorities of the absolute values of negative friction and heat transfer coefficient compared
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to the flat walls. A connection has been established between the separated flow and anoma-

lous enhancement of the heat transfer in inclined grooves with extraordinary pressure drops

between the regions of deceleration of flow entering the grooves and rarefaction in places where

tornado-like vortices are generated [6]. This paper examines tests concerning the anomalous en-

hancement of heat transfer in the separation zone in the inlet part of an inclined groove on an

isothermal heated section in a thermally insulated plate. The experiments were carried out using

gradient heatmetry at the thermophysical setup of Peter the Great St. Petersburg Polytechnic

University. [14]. Parametric calculations are carried out by multi-block computing technology

parallelized code VP2/3 (Velocity-Pressure, 2D/3D) [8] using 24-core Xeon Gold 6562 processor.

The article is organized as follows. Section 1 is devoted to methods of numerical simulation

and physical study. The research results and their detailed description are presented in Section 2.

Conclusion summarizes the study.

1. Methodology. Calculations and Experimental Justification

In a thermophysical setup, a thermally insulated plate with an inclined groove in a heated

isothermal region is placed in the subsonic wind tunnel test section (Fig. 1a). The closed-circuit

wind tunnel is equipped with a cooling system for the air-flow connected to a cold water supply

system, which makes it possible to maintain the temperature of air almost constant (±0.2 K)

during long-term experiments.

(a)
(b)

(c)

Figure 1. Thermophysical setup with a heated plate and an inclined groove (a), a setup

digital twin (b) and a multi-block wall with a Cartesian x, y, z coordinate system (c)
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To align the flow, guide vanes are installed in the turns of the tunnel, and a honeycomb is

installed in front of the confuser. The experimental models are made in the form of a rotating

round plate with a diameter of 0.3 m with a groove under study. The groove consists of two

halves of a spherical dimple connected by a trench cylindrical insert. Its width is D = 0.04 m,

depth is h = 0.25D and the length of the trench insert is L = 5D.

The groove is made of a copper sheet 0.002 m thick and soldered into a steel plate 0.001 m

thick. From below, a cylindrical box is attached to the plate with groove. The box is equipped

with connecting legs for supplying steam and draining condensate. The model is heated using

saturated steam supplied from an electric steam generator. The excess pressure in the steam

generator does not exceed 200 mm of water and the temperature at the heat transfer surface is

kept constant and close to 100 ◦C. The cylindrical box is installed in a heated rectangular part

(with dimensions of 0.475× 0.415 m), located on a thermal insulated flat plate with dimensions

of 0.71 × 0.6 m. The temperature of the heated surface Tw was monitored using a testo-875

thermal imager. The heated isothermal section is 0.25 m away from the leading edge of the

plate, and the center of the groove is located in its middle longitudinal section at a distance of

0.5075 m from its beginning. This approach enabled the stabilization of the hydrodynamic and

thermal boundary layers in front of the groove.

A cylindrical box-shaped structure with a groove can be rotated around an axis passing

through the center of the groove, which made it possible to change the inclination angle θ

from 0 to 90◦ to the free-stream velocity vector U . The experiments were carried out for the

Reynolds number Re = UD/ν = 3 × 104, where ν is coefficient of kinematic viscosity of air. In

studies [6, 7], the Reynolds number is twice as high, but in a separate series of PIV-experiments

it was shown that a turbulent flow develops in front of the groove. To determine the relative local

heat transfer coefficient in characteristic cross-sections of the groove gradient heat flux sensors

(GHFS) were installed [14]. In this study, we used battery-type GHFSs based on ATE made of

single-crystal bismuth with a purity of 0.9999. In the experiments, the dimensions of the sensors

were (2.5 × 2.5 × 0.2)×10−3 m, and the volt-watt sensitivity was 5 mV/W. GHFSs signals were

recorded and archived using an NI 9216 ADC by National Instruments. The GHFSs are installed

uniformly in the middle longitudinal cross-section and in the character section of the transition

from the input spherical segment to the cylindrical trench. The measurement uncertainty was

examined and it was determined that the total standard relative measurement uncertainty of

the local heat transfer coefficient is less than 10%.

For the digital twin of the experimental setup, convective heat transfer is considered during

stationary turbulent air-flow around a single groove at an inclination angle θ from 0◦ to 90◦ on

a heated section of the plate (shown in solid color in Fig. 1b). The heated isothermal section

is mounted in a thermally insulated plate, at the entrance to which a uniform flow is set. The

turbulence number is set close to the experimental one (1%), and the turbulence scale is taken

to be of the order of the characteristic dimensionless size D. The relative radius of the edge

rounding is 0.025. The Prandtl number Pr is taken to be 0.71.

The computer solution of the stationary Reynolds-averaged Navier–Stokes (RANS) equa-

tions for describing turbulent flow around a plate, as well as the energy equation for predicting

heat transfer characteristics, is based on the concept of splitting into physical processes [8] using

the consistent pressure correction procedure SIMPLEC [15] and multi-block structured grids

with their partial overlap. The semi-empirical shear stress transport (SST) model proposed by

Menter [10] is utilized to solve the equations of motion. The generalized transport equation

Validation Test of Parallelized Codes in the Study of Flow and Heat Transfer Anomalous...
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is written in increments of dependent variables. In the explicit part of the equation, the dis-

cretization of the convective terms of the equations is carried out using a hybrid scheme of

variable order of approximation for the equations of momentum and the TVD scheme [9] for the

equations of turbulence characteristics. The central finite-difference scheme is used to represent

the diffusion terms. The implicit part of the generalized equation uses an upwind scheme with

one-sided differences. The hybrid HS scheme combines a second-order approximation upstream

scheme with Leonard quadratic interpolation [16] with a blending factor R and a first-order

approximation upwind scheme with one-way differences with a weight number (1-R).

By using centered computational grids, where dependent variables are determined at the

cell centers, the pressure field needs to be monotonized by introducing the Rhee-Chow correc-

tion [11, 12]. The algebraic equations solution is carried out by the preconditioned BiCGSTAB

method [13] with an algebraic multigrid accelerator from the Demidov library (amgcl) [2] for pres-

sure correction and ILU0 factorization algorithm for other variables. The original VP2/3 pack

(Velocity-Pressure, 2D/3D) was developed on the basis of multi-block computing technologies

(MCT) described in [8]. MCT is based on a set of multi-scale, multi-tiered, and intersecting

structured grids, consistent with the multi-scale structural elements of a physical problem [4].

In two rows of boundary cells of each of the intersecting or overlapping grids, the parameters

are found using linear interpolation [8].

A rectangular section of a flat plate with a length of 19.625 and a width of 15.675 is being

used to evaluate the flow and heat transfer. The center of the groove is located at a distance of

12.688 from the inlet section, in which a uniform flow is formed. The computational domain is

built on a rectangular section of the plate and has a vertical size of 8.8. The wall flow region is

displayed on the external Cartesian grid MG, condensing towards the wall (Fig. 1c; the numbers

indicate: 1 – Cartesian grid for describing the flow along the plate; 2 – small-scale Cartesian grid

in the near-wall layer of the heated section of the plate; 3 – curvilinear O-type grid, consistent

with the groove surface; 4 – curvilinear grid “patch” in the groove central area). Inside the

computational region, a rectangular zone adjacent to the wall is distinguished in the vicinity of

an inclined groove with a length of 11.875, a width of 10.375 and a height of 0.7. The temperature

of the wall of the selected zone is fixed at 373 K, as in the experiment. The remaining surface of

the plate is assumed to be thermally insulated. In the selected rectangular area, an oblique MR

mesh is constructed. In the vicinity of the groove for the basic version of mesh A, the cells of

the MG and MR meshes are specified as square with a pitch of 0.07 and 0.05 in the longitudinal

and transverse directions. In the direction of the inlet, outlet and lateral boundaries, the sizes

of the MG grid cells increase. Curvilinear elliptical meshes Ring and Rec are introduced to

represent the spatially separated flow inside the groove. The central zone is served by Rec as a

patch for Ring, which is an O-type mesh. Thus, the calculation of flow and heat transfer in the

computational domain is carried out on a multi-block grid of four fragmentary multi-scale grids

with partial overlap. The size of the wall-mesh step is 10−5.

To examine mesh independence numerical predictions of the integral characteristics of flow

and heat transfer on grids with different number of computational cells are compared. Basic

grid A contains 8.8 million cells, grid B – 6.25 million cells, grid C – 4.18 million cells, grid D –

3 million cells.

The center of the Cartesian coordinate system (x, y, z) is located in the middle cross-section

of the channel at a distance of 6.25 from the inlet. The lateral and upper boundaries of the

computational domain have sliding conditions set. In the outlet section, “soft” boundary condi-
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tions are specified – conditions for the continuation of the solution to the boundary, and no-slip

conditions are set on the plates wetted surface. In the groove, a coordinated system of s, y, t is

put in place that is aligned in the middle longitudinal section, vertical direction, and transverse

characteristic section of the transition from the input spherical segment to the cylindrical trench.

Temperature Tref represents the nondimensionalization scale (293 K) for the isothermal

upper boundary. At the inlet the temperature T is set constant and equal to Tref , and at the

outlet from the computational domain, soft boundary conditions are set for temperature T . The

dimensionless temperature at the isothermal section of the wall is taken to be 1.273.

The solving a problem is iterative. At each iteration step, the pressure correction equation

is solved and the fields of the Cartesian components of velocity, pressure, and turbulence char-

acteristics are calculated. The computational process ends when the maximum errors of the

dependent variables reach the level of 10−5 and stabilize the extreme local and integral param-

eters, including the drag force and the total heat transfer coefficient in the test area with an

inclined groove. In this paper, the local flow and heat transfer characteristics of a grooved plate

are presented. These include longitudinal and transverse distributions of the static pressure drop

P − Ppl, relative heat transfer coefficient Nu/Nupl in characteristic cross-sections of a flowing

around plate with a groove. The index pl refers to the parameters on the flat (smooth) plate.

Table 1. Justification of mesh independence

N , mln Numm 102 × Cx Nummd 102 × Cxd

8.8 28.32 0.6978 27.64 1.596

6.25 28.35 0.6980 27.71 1.597

4.18 28.34 0.6985 27.74 1.603

3 28.36 0.6961 27.81 1.606

Table 1 compares numerical predictions of heat transfer coefficient Numm and drag coeffi-

cient Cx for a test area with an inclined groove of size 7 × 7, and Nummd and Cxd for an area

limiting the groove contour with a size of 6×1, on multi-block meshes of the same topology and

different number of the computational cells N at Re = 104.

The mesh independence of the results obtained when using the convective terms of the

Leonard scheme (R = 1) for discretization is demonstrated, and the integral indicators change

little within the range of varying the number of cells from 3 to 9 million.

2. Results Analysis

Figures 2, 3 and 4, show comparisons between numerical predictions and experimental

data [7] and this study. Parametric calculations of heat transfer on a plate with a single groove

are made at Re = 3 × 104. The turbulent boundary layer on the plate before the groove was

analyzed by PIV.

The extraordinary pressure drops measured on the setup of the Institute of Mechanics of

Lomonosov Moscow State University [7] in the characteristic cross-section of the inlet part of

a groove on the plate with a similar configuration, obtained at Re = 6.7 × 104, are in good

agreement with the RANS numerical solutions closed using the SST turbulence model (Fig. 2a;

numbers indicate: 2 – forecasts based on the Fluent and 1, 4. . .7 – forecasts obtained using the

VP2/3 package; 4 – R = 0.5; 5 – R = 0.7; 6 – R = 0.8; 7 – R = 0.9. 1, 3 – [7]; 2, 8 – this study).

Validation Test of Parallelized Codes in the Study of Flow and Heat Transfer Anomalous...
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(a) (b) (c)

Figure 2. Comparison of calculated (1, 2, 4–7) and experimental (3, 8) distributions

of P − Ppl(t) (a) and Nu/Nupl(t) (b) in the transverse inlet section of a groove inclined at

an angle of 45◦ passing through the center of the transition of the spherical segment and the

trench, and the distributions of Nu/Nupl(s) in the longitudinal middle section of the groove (c)
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Figure 3. Comparison of calculated curves and experimental Nu/Nupl points in the middle

longitudinal cross-section of a groove on a heated plate with varying inclination angle θ
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On the windward slope, in the braking zone of the external flow entering the groove inclined

at an angle θ of 45◦, a pressure level of about 0.2 is reached, related to the double dynamic

pressure (ρU2). An extraordinary pressure difference between the stagnation zone and the rar-

efaction region at the bottom of the groove is created by the development of a tornado-like

structure generated in the spherical segment of the groove. Without the formation of a tornado

and a swirling high-intensity flow, a zone of reduced pressure would not have arisen at the

bottom of the groove with a minimum pressure of the order of −0.1. The velocities of return

flows and secondary swirling flow in the inlet part of the groove are close to the free-stream flow

velocity [6].

The influence of the coefficient R in the hybrid scheme for approximating the convective

terms of the momentum equations on the distributions Nu/Nupl in the characteristic transverse

and longitudinal cross-sections of the groove is considered in Fig. 2 b, c, and a comparison is

made with GHFS-measurement data.
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Figure 4. Comparison of calculated curves and experimental Nu/Nupl points

in the in grooves cross-section passing through the center of the transition

of the inlet spherical segment and the trench insert with varying inclination angle θ
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It is obvious that an increase in numerical diffusion with a decrease in R “ smooths” out

the Nu/Nupl distributions and has a slight effect on the maximum relative thermal loads. The

R coefficient in the parametric study is chosen to be 0.9. A good agreement has been achieved

between the calculated Nu/Nupl distributions and the experimental data, and a twofold increase

in the relative heat transfer at the bottom of the groove in the zone of formation of intense return

flow has been established.

Figures 3 and 4 present comparisons of the Nu/Nupl databases obtained during experi-

ments in the longitudinal and transverse characteristic sections of the groove when varying the

inclination angle θ from 0◦ to 90◦ and numerical predictions based on RANS solutions using

parallelized VP2/3 codes.

Overall, there is a satisfactory agreement between numerical simulation and experiment

taking into account the turbulence modeling approach. However, the results obtained for θ = 15◦

require further study. It should be noted that an anomalous heat transfer enhancement in the

grooves occurs at angles θ from 30◦ to 75◦, which correlates with the conclusions from the

analysis of pressure distributions in the grooves on the plate [6].

Figure 5. Pressure field (a), isosurface Q2 = −1.12 (b) and trajectories of liquid particles,

passing through a point with coordinates x = 4.4; z = −1.5 (c), with printed patterns air

spreading over the surface of the groove on the plate at an inclination angle of 45◦.
1 – y = −0.24; 2 – y = −0.2; 3 – y = −0.15; 4 – y = −0.1; 5 – y = −0.05; 6 – y = 0

Figure 5 illustrates the vortex structure in a groove on the plate at an angle θ = 45◦. Air

spreading over the wall is shown superimposed on the pictures distribution of surface pressure

related to twice the velocity pressure, isosurface of criterion Q2 equal to −1.12, and trajectories

of liquid particles passing through a fixed point in the center of the joining section of the input

spherical segment and a cylindrical trench. Focused pressure difference between adjacent zones

braking on a windward slope and an area of reduced pressure at the entrance to the groove is

initiated by a tornado-like vortex and a developing intense swirling flow, shown by isosurfaces

of Q2. The flow in the groove carries complex nature, demonstrated in Fig. 5.

Conclusion

To test software for parallel computing systems, a validation test is presented, based on a

study of the phenomenon of separated turbulent air flow and heat transfer anomalous enhance-

ment in an inclined groove on a heated plate. Its peculiarity is the generation of tornadoes in

grooves, associated with extraordinary differences in static pressure, the formation of fields of

ultra-high velocities, high gradients of relative friction and heat transfer coefficient inside the
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inclined groove. Databases of heat flux measurements in a groove on the isothermal section of

the plate were created when the inclination angle varied from 0◦ to 90◦, obtained at the SPbPU

thermophysical stetup using gradient heatmetry. There is quite a satisfactory agreement between

experimental data and numerical predictions made within the framework of RANS-SST using

the parallelized package VP2/3.
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Computational Fluid Dynamics demands substantial computational resources and advanced
numerical algorithms for accurate simulation of fundamental and industrial problems. This paper
presents an experience in assessing several numerical algorithms implemented recently into the
in-house finite-volume code SINF/Flag-S developed at the Peter the Great St. Petersburg Poly-
technic University for supercomputer simulation. Three topics are covered: (i) implementation
and testing of an original geometric multigrid method for solving linear algebraic equations; (ii)
application of a fractional step method for solving unsteady incompressible fluid motion equa-
tions; and (iii) description and testing of a density-based solver for compressible gas viscous flow
simulation across a wide Mach number range. For each of the topics considered, the results of the
calculations of some testing problems are presented, namely: a model problem of heat transfer in a
cubic domain, turbulent Rayleigh–Bénard convection in a slightly tilted cylindrical container, free
convective flow around a subsea cooler model, high-speed gas flow with strong effects of viscous-
inviscid interaction. The parallel efficiency of the implemented algorithms is demonstrated, and
their significance for large-scale simulations on supercomputers is highlighted.

Keywords: CFD, multigrid method, incompressible fluid, fractional step method, compressible
gas, density-based solver.

Introduction

Computational Fluid Dynamics (CFD) is one of the most resource-consuming domains in
the scientific field, which requires a large amount of computational power to perform accurate nu-
merical simulations for various physical problems and tasks. In particular, huge computing power
is necessary to perform high-precision numerical simulation of turbulent flows and complex 3D
high-speed flows of viscous gas. Therefore, it is of great interest to both improve the techni-
cal characteristics of supercomputers and introduce increasingly efficient and reliable numerical
methods into codes.

In this paper, we represent our recent experience in assessing some advanced numerical
techniques implemented in the in-house finite-volume code SINF/Flag-S, developed at the SPbPU
(Peter the Great St. Petersburg Polytechnic University). A brief description of the code is given in
Section 1. In the following sections, three topics are considered: (i) implementation and testing
of the original geometric multigrid method for solving systems of linear algebraic equations,
(ii) approbation of the original fractional step method for solving unsteady equations of the
incompressible fluid motion and (iii) description and testing of an effective density-based solver for
the compressible gas viscous flows in a wide range of Mach number (sub-, trans- and supersonic).
Some data are also provided to illustrate the parallel efficiency of the implemented algorithms.

Multigrid methods are very effective for numerically solving large-size systems of equations.
Although the basic idea was proposed back in 1961 [12], the development of effective multigrid
methods is still the subject of up-to-date scientific studies [13, 14, 29]. In particular, multigrid
methods demonstrate high efficiency at numerically solving systems of linear algebraic equations
1Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
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obtained by discretizing a Poisson-like equation. Typical problems, in which the Poisson-like
equation arises, are as follows: steady heat transfer in solids, a pressure equation in SIMPLE-
like algorithms for pressure-velocity coupling [36] and in fractional-step methods. It is known
that the time required to solve the pressure equation in a SIMPLE-like algorithm can reach 90%
of the total calculation. It is also known that the complexity of the multigrid algorithm increases
as O(N), where N is the number of grid cells, while the complexity of the Krylov sub-space
methods (like Conjugated Gradients method, see [41]) increases at best as O(N3/2). Thus, the
necessity of implementing multigrid method in the numerical codes is essential when dealing
with large grids and calculations on supercomputers. In Section 2 of the paper, we present our
experience in developing and approbating an original parallelized Geometric Multigrid Method
for solving systems of linear algebraic equations that arise when solving elliptical-type governing
equations using the Finite Volume Method.

For faster simulation of unsteady incompressible fluid flows, especially in case of turbulent
motion, effective and robust numerical methods are needed. Traditional SIMPLE-like algorithms
require a number of iterations at each current time layer while advancing in physical time.
In the so called non-iterative methods, intermediate iterations between time-layers are almost
absent (except the iterations due to the grid “non-orthogonality” issues). In the class of the
non-iterative methods, fractional-step methods are very widespread [3, 10, 21]. Usually, these
methods are partially or fully implicit; in the latter case, relatively large time steps can be
achieved. Section 3 covers a brief description of the implicit fractional-step method implemented
in the SINF/Flag-S code for solving unsteady equations of incompressible fluid motion and two
examples of its application for performing Direct Numerical Simulation of free convective flows.

In industry and aero-engineering, problems often arise, where compressible flows are present
in a wide range of velocities. Up-to-date numerical methods for calculating compressible flows
provide the ability to accurately resolve different gas-dynamic discontinuities. There are many
different schemes for calculating convective fluxes in case of trans- and supersonic motion, which
are currently being actively developed [31, 45]. On the other hand, there are many applications
where the role of viscous motion in subsonic regions are also very significant, for example, the
flow of gas or vapor in a turbine vane cascade [30] or the flow around a helicopter blade [1]. For
these applications, simulation should be performed with a reliable and robust numerical method
that allows a smooth transition from subsonic to supersonic flow, taking into account viscous
effects. Section 4 briefly describes our experience in implementing robust numerical techniques
for calculating viscous compressible gas flows in a wide range of the Mach number followed by
an example of using these techniques for accurate test computations of a high-speed 3D problem
with complex effects of viscous-inviscid interaction.

1. General Description of the SINF/Flag-S Code

The finite-volume “unstructured” code SINF/Flag-S operates on unstructured meshes with
cells of arbitrary topology (tetrahedrons, hexahedrons, prisms, polyhedra). The code is written
primarily in the Fortran 90 programming language, with some functions written in C program-
ming language. The SINF/Flag-S program is a console application; all information is read from
control text files. The ANSYS Fluent format is used for mesh files and results files; to allow
restarting from saved fields, a special file format is used.

The SINF/Flag-S code is intended for simulation the following classes of problems:
• steady and unsteady flows of viscous fluid;
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• compressible viscous gas flows in a wide range of the Mach number;
• conjugate or non-conjugate heat transfer in liquids, gases and solids;
• simulation of turbulent flows using different approaches, such as: (U)RANS, LES, IDDES,

DNS;
• heat buoyancy in the mass force fields of different kinds: gravitational, centrifugal, Coriolis;
• flows in the porous medium with accounting for phase interchange (evaporation and con-

densation);
• multiphase flow simulation using the Volume of Fluid approach;
• two phase filtration flow simulation using the “black oil” model;
• calculation of flows in domains with moving boundaries.

In the case of incompressible or low-Mach flows, different methods of solving governing equa-
tions can be used, in particular: the SIMPLEC method [48], the Rogers–Kwak scheme [40], the
coupled method based on the Rhie–Chow interpolation [9]. To calculate unsteady flows, iterative
algorithms based on the above-mentioned methods or the “nominally” non-iteration fractional
step method (see Section 3.1) can be used. For simulation of the compressible viscous gas flows
in a wide range of the Mach number (from sub- to supersonic), the coupled density-based solver
is used (see Section 4.1).

Discretization of spatial operators is performed using the Finite Volume Method on collocated
grids. For the approximation of viscous (diffusion) terms, the hybrid central scheme of 2nd order
with non-orthogonality correction is used. Different interpolation schemes can be used for the
approximation of the convective terms in governing equations. For the incompressible or low-
Mach flows there are following interpolation schemes: central (linear, 2nd or 4th order using
gradients), second order upwind, QUICK, weigthed schemes, bounded schemes with Jameson or
scalar limiters. In the density-based solver, different schemes for inviscid fluxes calculation have
been implemented, which are briefly described in Section 4.

For solving systems of linear algebraic equations, in the SINF/Flag-S code there are different
linear solvers, in particular: CG, BiCG, GMRES, Geometrical Multigrid (see description in Sec-
tion 2.1), which can be preconditioned, in particular, by Symmetric Gauss–Seidel preconditioner,
Incomplete Cholesky or LU factorization.

To ensure the ability to solve the problem in parallel mode, the domain decomposition ap-
proach based on task parallelism using the MPI (Message Passing Interface) library of the MPI 2.0
standard is used [15]. The division of the problem into separate subtasks is carried out based
on blocks of a multi-block computational mesh, for which the code contains an auxiliary utility
Par4Flag; the latter uses the ParMetis library [27] to decompose the computational mesh. To
exchange information between processes, an additional row of “halo” cells is used, geometrically
duplicating the border cells of the adjacent block.

2. Geometric Multigrid Method and Evaluation
of Its Performance

2.1. Description of Implemented Geometric Multigrid Method

As it was shown by the practice of hydrodynamic calculations, the most resource-intensive
part of the SIMPLE-like algorithms is solving the Poisson equation for pressure correction. The
Poisson equation also describes thermal conductivity in solid structural elements and the filtra-
tion movement of the working fluid in a porous wick. Thus, using a specialized algorithm in a
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linear solver that speeds up obtaining a Poisson equation solution can significantly reduce the
time spent on solving the problem and, accordingly, significantly increase the efficiency of us-
ing available computing resources. When solving linear systems of large size, multigrid methods
demonstrate the greatest efficiency, since their use allows achieving a linear increase in the time
required to solve a problem as its size increases. The main difficulty in applying multigrid meth-
ods on unstructured meshes is in constructing grids for coarse levels. One of the most promising
is the agglomeration method [34], in which the cells of coarse computational grids are obtained
by agglomeration (combining) the cells of the original grid. The question of the most effective
method of cell agglomeration still remains open and is the subject of a number of modern studies,
for example [32, 35].

An original agglomeration multigrid method was implemented in the SINF/Flag-S code.
The agglomeration method is based on the algorithm proposed in [37]. At the same time, it
includes several original modifications, which significantly improve the quality of the resulting
agglomerates and, accordingly, increase the stability and speed of convergence of the multigrid
method. The modified agglomeration algorithm consists of the following steps, repeated cyclically
after the initial creation of a queue of border cells:
1. Construction of the basis. A cell from the queue is merged with two (2D case) or three

(3D case) neighboring cells that have a common node, and the distance to which does not
exceed the distance to the nearest cell by more than 4 times. If there are several options
for merging, then the one that contains the largest number of cells already in the queue is
selected (if there are still several options, then the first one is taken). If a suitable set of cells
is not found and the distance to at least one of the neighboring cells exceeds the distance to
the nearest cell by more than 4 times, then the first step of the algorithm is repeated, with
an attempt to construct a basis containing one less cell. If it is possible to form a basis in
the end, then proceed to step 2; otherwise – to consider the next cell from the queue.

2. Addition of cells. The cells adjacent to the resulting agglomerate are examined. If among
them there is a cell adjacent to at least two cells from the agglomerate, and the addition of
this cell reduces the value of the parameter Ar (aspect ratio, defined as the ratio of linear
dimensions characterizing the surface area and volume of the agglomerate), then this cell
is added to the agglomerate; otherwise, the transition to the next step is carried out. If
there are several suitable cells, then the one whose addition leads to a smaller value of the
Ar parameter is selected. If the number of cells included in the agglomerate is less than 4
(2D case) or 8 (3D case), then the step is repeated.

3. Queue replenishment. Cells that are adjacent to the resulting agglomerate and have not yet
been combined with other cells are added to the queue (if they have not already been added
to it). Then the next cell from the queue is processed (step 1).

4. Holes patching. All unmerged cells are marked. The selected unmerged cell is merged with one
of the neighboring agglomerates. It is forbidden to add an unmerged cell to the agglomerate
if all the neighbors of this cell included in the agglomerate were marked (i.e., they were
also unmerged cells). Among the agglomerates allowed for combining, the one for which
the addition of this cell will most strongly decrease (or least increase) the value of the
Ar parameter is selected. Then proceed to the next unmerged cell.

The number of grid levels is selected automatically, and the construction of new grids continues
until one cell remains in each calculation block. The difference operator on coarse grids is formed
by summing the equations with scaling coefficients [26], however, instead of the global scaling
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proposed in [26] (by the number of grid cells), local scaling is used (based on the ratio of the
distances between the centers of the cells of the fine and coarse grids), which increases efficiency
of the method in the case of grids with highly elongated cells. The Symmetric Gauss–Seidel
method (SGS) is used as a smoother. Various types of multigrid cycles (V-, W-, F-cycle) with a
fixed number of iterations have been implemented. The developed multigrid method can be used
both as an independent solver and as a preconditioner for the GMRES method.

2.2. Evaluation of Method Performance and Parallelization Efficiency

The effectiveness of the developed multigrid method was evaluated on a model problem of
heat transfer in a cubic domain with constant thermal conductivity (see Fig. 1). Almost all the
boundaries of the region were considered adiabatic, except two small regions adjacent to the
opposite vertices, in one of which the temperature value was specified, and in the second the
heat flux was specified. The dimensionless formulation of the problem is illustrated in Fig. 1.

Figure 1. Model problem of conductivity heat transfer in a cube

Comparative calculations were performed using the SINF/Flag-S code and the ANSYS Flu-
ent 23R1 code on uniform (isotropic) hexahedral and tetrahedral computational grids of different
spatial resolutions, as well as on polyhedral grids obtained from the tetrahedral one using the
ANSYS Fluent package. When using the SINF/Flag-S code, the two different methods were used
as linear solvers: the developed multigrid method (with W-cycle) and the GMRES method (with
a SGS preconditioner). Of the options available in the Fluent code, the BCGSTAB linear solver
method with the multigrid preconditioner using a W-cycle has been selected as the most effective
one for solving the formulated task (based on the results of preliminary tests). Calculations were
performed in single-threaded mode. The time required to solve the problem with a prescribed
accuracy was being determined (the problem was considered solved when the value of the relative
integral imbalance of the heat flux became less than 10−4). Figure 2 shows the dependencies of
the problem computational time on the number of computational grid cells obtained with various
codes and numerical methods.

Here, the data obtained in calculations with polyhedral grids are presented; calculations
with hexahedral and tetrahedral grids gave similar results. It can be seen that when using the
GMRES method (code SINF/Flag-S), the time to solve the problem increases proportionally
to the number of cells to the power of 1.5. The use of both multigrid algorithms provides, as
expected, a linear increase in computational time as the number of grid cells increases. The
multigrid method developed and implemented in the SINF/FlagS code made it possible to solve
this problem about 2 times faster than using the Fluent code.
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Figure 2. Efficiency of different solvers with increasing the grid size

The scalability of the developed multigrid method was evaluated as well. The considered
model problem was solved using 7 to 1792 cores while maintaining the number of cells per
computing core; accordingly, the grid size varied from four million to a one billion cells. The
calculations were carried out on the SPbPU Polytechnic RSC Tornado supercomputer. Figure 3
shows the dependencies of the problem-solving time and the scaling efficiency on the number of
cores involved when using the SINF/Flag-S and ANSYS Fluent 23R1 codes. In calculations with
the SINF/Flag-S code, the developed multigrid method was used both independently (MG) and
as a preconditioner for the GMRES method (in the latter case, a more economical V-cycle was
used instead of the W-cycle). When using the Fluent code, as before, the BCGSTAB method
with a multigrid preconditioner turned out to be the most effective. From Fig. 3 one can see that
when using a relatively small number of cores (up to 500), the MG+GMRES combination in
the SINF/Flag-S code works up to one and a half times slower than the pure multigrid method,
but the scalability of such combination is better. One can conclude also that for the considered
model problem, the Fluent code is significantly inferior to the SINF/Flag-S code both in terms
of problem solving time and scalability.

(a) (b)

Figure 3. “Weak” parallel scalability: computational time (a) and scaling efficiency (b)
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3. Fractional Step Method and Its Testing

3.1. Description of Method

As it was mentioned in Introduction, in some cases, when solving unsteady equations of
incompressible fluid dynamics, the use of iterative time advancement methods (the SIMPLE
method and similar) can be very resource-consuming. In particular, simulation of turbulent flows
using eddy-resolving approaches such as LES, DES, etc., requires small time steps to adequately
resolve the dynamics of turbulent eddy structures. To speed up the solution, it is reasonable to use
faster numerical approaches based on a non-iterative transition from one time layer to another.
One such approach is the so-called projection method or fractional step method [8, 10, 21, 33].

The fundamental principle of the fractional step method (FSM) lies in the separation of the
spatial operators in the momentum equation. The pressure gradient is interpreted as a projection
operator that transforms an arbitrary velocity field into a solenoidal one. The momentum balance
equation is thus split into two equations. The first one is solved either without the pressure
gradient at all or with the pressure gradient taken from the previous time layer and serves
to determine the predictor value of the velocity. This predictor velocity, of course, does not
necessarily satisfy the continuity equation. The second equation, which is written for the corrector
velocity vector, relates the pressure gradient at the new time layer to the velocity vector at the
new time layer. The combination of the second equation and the continuity equation leads to the
Poisson equation for the pressure at the new time layer. It is important to emphasize that, unlike
SIMPLE-like algorithms, where a Poisson-like equation also arises (it is written for pressure
correction), the resulting equation for pressure at the new time layer is physically justified and
should be solved with good accuracy to ensure the mass balance equation at the new time layer is
satisfied. So, the use of advanced numerical techniques like multigrid methods is rather essential
for the FSM.

Another important aspect that affects the effectiveness of the FSM is the evaluation of the
convective terms in the predictor velocity equation. The convective term can be calculated by
different methods. The most common approach includes the extrapolation of the convective term
from the two preceding time levels using the Adams–Bashforth scheme. For the better stability
of the numerical algorithm, implicit schemes for calculating the convective term are preferable;
they can be introduced in different ways, for example, as in [6, 19]. The SINF/Flag-S code uses
an original scheme for computing the convective terms, which combines extrapolation from two
preceding time levels with introducing implicitness. Namely, the mass flux through the face of
the finite volume is extrapolated from previous time layers using the Adams–Bashforth scheme
(at the intermediate time layer in the case of the Crank-Nicolson scheme or at a new time
layer in the case of the backward 2nd order scheme for time derivative approximation), while the
transported quantity (velocity vector) is written implicitly at the desired time layer (intermediate
or new). Our experience in using the proposed algorithm in the SINF/Flag-S code shows that the
introduced implicitness can essentially increase the FSM stability in the case of highly skewed
and non-orthogonal cells. For more details concerning the realized FSM see [44].

Below, the performance of the fractional step method implemented in the SINF/Flag-S
code is illustrated by two examples: turbulent Rayleigh–Bénard convection in a slightly tilted
cylindrical container and free convective transitional flow near a subsea cooler model.
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3.2. Turbulent Rayleigh–Bénard Convection in a Slightly Tilted Cylindrical
Container

Rayleigh–Bénard convection of fluid in a vertical cylindrical container is one of the canoni-
cal model problems in the investigations of natural convection [2]. Experimental and numerical
studies show that large-scale circulation (e.g. in the form of large-scale vortex covering the entire
region of convective flow) is a characteristic feature of such flow. Using the SINF/Flag-S code,
Direct Numerical Simulation of water turbulent convection in a slightly tilted cylindrical con-
tainer heated from below was performed recently [43] at the Rayleigh number Ra = 108 and the
Prandtl number Pr = 6.4 (the container height was equal to its diameter). As shown in [42],
tilting of a cylinder leads to “locking” of the large-scale vortex in a certain azimuthal position. In
Fig. 4, the computational domain as well as large-scale vortex vizualization are presented. The
simulation was carried out based on the Navier–Stokes equations written with the Boussinesq
approximation for including the buoyancy effects.

(a) (b)

Figure 4. Geometry of computational domain for tilted container (a) and visualization
of large-scale vortex by isosurfaces of positive (red) and negative (blue) instantaneous vertical

velocity component (b)

The fractional step method with the Crank–Nicolson scheme was used for advancing in
time. A central difference scheme was used to approximate the convection terms in the governing
equations. The computational grid consisted of approximately 1.5× 107 cells. The time step was
chosen so that the local values of the Courant number were less than unity; characteristic time of
the buoyancy process (buoyancy time) was estimated as about 25000 time steps. The computed
fields were averaged over time starting after a transient process; the sample for averaging was
about 150 buoyancy times.

The calculations were performed using resources of the Polytechnic Supercomputer Center,
real time of the calculation of 150 buoyancy time (about 4 × 106 time steps) using 12 nodes
(28 cores on each node) of the supercomputer took about two months. More details about the
study and results can be found elsewhere [43]. Testing of the parallelization efficiency was per-
formed as well. The results on the calculated speedup and scaling efficiency are presented in
Fig. 5. It can be seen that a strong degradation in scalability is observed in the interval from
168 to 224 cores. Nevertheless, the scaling efficiency in case of a large number of cores remains
about 0.5 that is a relatively good level.
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(a) (b)

Figure 5. Parallel scalability: speed-up (a) and scaling efficiency (b)

3.3. Free Convective Flow Around a Subsea Cooler Model

The problem of free convective flow around a subsea cooler arises from the practical need to
have reliable data on the heat transfer efficiency of a heat exchanger located on the seabed and
intended to cool natural gas produced from the shelf [16]. Such passive heat exchangers consist of
a bank of pipes that use the surrounding cold water as a coolant (see Fig. 6). The heating of the
surrounding water induces a buoyancy-driven draft flow, resulting in mixed convection conditions
for the inner-rows tubes; this convection is characterized by relatively low Reynolds numbers,
regarding the flow around the pipes. When the heat exchanger design relies primarily on the data
for natural convection, the heat transfer coefficient at the external surface of the pipe becomes
a critical uncertainty. Up-to-date CFD methods can provide valuable data on external heat
transfer for the low-Reynolds-number regimes commonly encountered in buoyancy-dominated
coolers. More details about the conditions typical for subsea cooler simulation can be found
elsewhere [17, 18].

Here we present some results of the 3D simulation of water flow near a subsea cooler consisting
of ten and twenty-two pipes with inlet and outlet manifolds (Fig. 6). No-slip conditions and a
constant temperature were set on the surface of heated pipes and collectors. It was assumed that
the exchanger was located in a boundless water basin, the outer boundaries of the computational
region were moved away from the cooler to a large distance, and conditions for the free flow of
water were imposed on them.

The simulation was carried out based on the direct solution of the unsteady Navier–Stokes
equations; buoyancy effects were taken into account in the Boussinesq approximation; typical val-
ues of the Grashof number evaluated for a pipe was about 105. The calculations were performed
using the SINF/Flag-S code with the fractional step method. Resources of the Polytechnic Super-
computer Center were used. For the bank of ten pipes, the grid consisted of more than 75 million
cells, and to obtain a representative sample, the calculations using 448 cores were being car-
ried out in two weeks. For the bundle of 22 pipes, the grid size was about 150 mln cells. Using
896 cores, a representative sample was also obtained in two weeks.

Visualization of the flow is shown in Fig. 7, where streamlines colored by temperature as well
as temperature distributions in cross sections are presented. It can be seen that in the center of
the tube bank, the flow is nearly stationary. Contrary to that, the flow in the upper pipes region
is highly unsteady, with almost turbulent behavior.

Assessment of Several Advanced Numerical Algorithms Implemented in the CFD Code...

22 Supercomputing Frontiers and Innovations



Figure 6. The computational geometry of subsea cooler consisting of 10 (left) and 22 (right)
pipes

(a) (b) (c)

Figure 7. Flow visualization: a – streamlines colored by temperature for the bank of 10 pipes;
b and c – temperature in cross section for two geometries

(red lines show the position of 3rd and 8th row)

4. Coupled Density-based Solver for Viscous Compressible Gas
Flows in a Wide Range of Mach Number

4.1. General Remarks for Developed Density-based Solver

Compressible gas flows are characterized by the presence of discontinuities of various kinds,
which especially manifest themselves at high flow velocities (when Mach number greater than
unity) in the form of shock waves. In numerical simulation of such flows, the method of approxi-
mating convective flux is especially important, and the scheme used must in one way or another
take into account the characteristic properties of the systems of equations. In the SINF/Flag-S
code, the following schemes are available for convective flux evaluation: Godunov, Roe, HLL,
HLLC, and schemes of the AUSM family.
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High order of accuracy is achieved using the MUSCL slope-limiting approach, according
to which piecewise-linear reconstruction of the solution is built for each control volume. In the
SINF/Flag-s code, there are two approaches for constructing a high-order accuracy scheme for
the case of unstructured grids: a scalar approach with second-order limiters [5], and a quasi-one-
dimensional approach, consisting in applying quasi-one-dimensional computations for locally se-
lected directions (i.e., for each face). The proposed in [4, 28] version of the quasi-one-dimensional
approach, where additional virtual points are reconstructed, is implemented in the SINF/Flag-S
code. To preserve monotonicity of the solution near discontinuities, second-order TVD schemes
are used. Thanks to the reconstruction, refined values of the variables to the left and right of
the control volume face are calculated, which are then used to calculate the inviscid fluxes when
selecting one of the above-mentioned schemes.

In the case of very high Mach numbers, the so-called “carbuncle” instability may appear in
the numerical solution [38], which leads to a strong distortion of the shock wave front in the
numerical solution. In the SINF/Flag-S code, additional artificial viscosity, introduced according
to [39], is used to suppress this instability.

On the other hand, the main difficulty in modeling low-speed compressible flows lies in the
“acoustic stiffness” (a strong difference in the magnitude of the eigenvalues) of the system of
equations for the dynamics of a compressible gas, which arises at substantially subsonic flow
velocities [7, 11, 20, 46]. This is due to the very different characteristic times of convective
transport and propagation of acoustic disturbances and leads to the fact that in the system of
equations the matrix for time derivatives becomes degenerate as the Mach number tends to zero.
Under these conditions, the stability and speed of convergence of traditional methods of numerical
integration of the full Navier–Stokes equations, many of which were originally developed to
calculate supersonic flows, sharply deteriorate, and in the limiting case of the Mach number
approaching zero, these methods generally lose their functionality. To overcome this difficulty,
regularization based on the Turkel preconditioning is implemented into the SINF/Flag-S code,
according to [49].

The implemented in the code SINF/Flag-S density-based solver was successfully approved
on the series of different problems, including the problem of the sub- or supersonic flow past
the blunt-fin body mounted on a plate. The detailed description of the problem and numerical
results both for incompressible fluid flows with different Prandtl numbers and the compressible
gas flow with the Mach number ranging from 0.01 to 0.5 are presented in [24], with the focus on
the effect of compressibility on heat transfer intensification in the region occupied by horseshoe-
shaped vortex structures. In the next section, we present the results of numerical simulations
and parallel efficiency testing for a representative three-dimensional problem of high-speed gas
flow with strong effects of viscous-inviscid interaction.

4.2. Test Problem

The problem formulation is based on the data of the computational and experimental
study [47], which investigated the structure of laminar supersonic air flow (Mach number
M∞ = 6.7, Prandtl number Pr = 0.71, and ratio of specific heats γ = 1.4) past a fin mounted
on a plate (Fig. 8). Following [47], the flow is assumed to be laminar throughout the domain.
The Reynolds number, calculated from the bluntness diameter (D = 2.5 mm), corresponds to
the minimum value considered in [47]: ReD = 1.25 × 104. The free-stream total temperature is
T0 = 630 K. The computational domain is shown in Fig. 8. The fin is positioned at a distance
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of Lplate = 145 mm from the plate’s leading edge. The other dimensions of the computational
domain are taken from [47] as follows: R = 76.5 mm, Lf = 60 mm, and H = 25 mm.

Figure 8. Test problem definition

The full three-dimensional Navier–Stokes equations were solved treating air as a perfect gas.
The temperature dependence of the viscosity coefficient was evaluated using Sutherland’s law.
An uniform flow was specified at the inlet boundary of the computational domain, and the no-slip
condition was applied on the body surface and the plate. Non-reflecting boundary conditions were
specified on the lateral and upper boundaries, and the zero-gradient condition was specified at the
outlet. The body surface and the plate were maintained at a constant temperature, Tw = 300 K,
corresponding to a temperature ratio of Tw/T∞ = 4.76.

The convective fluxes on the faces of control volumes were evaluated using the second-
order AUSM scheme with the van Albada TVD limiter. A nominally second-order scheme was
used for evaluating viscous fluxes. The simulation was performed based on the time-dependent
formulation, using an implicit time-advancing scheme of second-order accuracy (the backward
three-layer scheme). Under considered conditions, the transient process converged to a steady-
state solution. The basic simulation was performed using a quasi-structured grid with 20 million
cells. The grid had approximately 70 cells across the incoming boundary layer, which had a
thickness of about 1.2D before separation. The first near-wall cell is approximately 0.01 mm in
the normal direction. For testing grid sensitivity, the simulation was also performed on a finer
grid, which consisted of 50 mln cells.

Figure 9 provides a general overview of the flow structure. The figure shows the volume
streamlines and the relative heat flux distribution over the body and plate surfaces (qw0 is the
heat flux calculated for a plate without an obstacle). The flow’s primary characteristics include
the formation of a separation region with a system of horseshoe vortices that extend around the
fin’s side, and a pronounced non-monotonicity in the heat flux distribution within the junction
region.

Figure 10 presents the calculated distributions of the plate-surface nondimensional heat
flux (normalized by the heat flux local values qwp, which were calculated for the smooth plate
without an obstacle at the corresponding points) along the symmetry line (a) and along a cross
line x/D = 1 (b). Additionally, experimental and numerical data from [47] are included. The
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Figure 9. Visualization of the three-dimensional flow structure

primary specificity in the calculated heat flux distributions along the symmetry line is that the
distributions exhibit two local maxima, in addition to the global one (it is outside the field of
the Fig. 10). Our computational results align well with the computational data reported in [47].
Let us note that the cited paper authors believed that good agreement of their numerical data
with the experimental results had been achieved. Also, there is negligible difference between
the results obtained using the base grid and the refined grid for both solutions, confirming the
adequacy of the grid resolution.

Figure 10. Relative heat flux distribution: (left) along the line of symmetry on the plate
Y/D = 0; (right) along line X/D = 1

Testing the efficiency of code parallelization was carried out by running simulation using a
different number of cores of the Polytechnic Supercomputer Center cluster. The time for 100
iterations was calculated. The results are presented in Fig. 11.

Concluding this section, one should note that the problems of non-uniqueness of the solution
can occur when studying this or a related class of gas flow (see [22, 23, 25]). Since, additionally
to geometry, there are many other parameters determining such tasks (Reynolds number, Mach
number, temperature factor, relative thickness of incoming boundary layer), getting knowledge
on the challenging problem of the non-uniqueness of the solution assumes running a huge amount
of parametric refined calculations on power supercomputers.
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(a) (b)

Figure 11. Parallel scalability: calculation time (a) and speed-up (b)

Conclusion

In the paper, we have presented our recent experience in assessing several advanced numerical
techniques implemented in the in-house SINF/Flag-S code.

To improve the efficiency for solving systems of linear algebraic equations, which appears
as a result of the Poisson equation discretization, an original parallelized geometric multigrid
method was implemented in the SINF/Flag-S code. Dealing with a model problem of conduction
heat transfer in a cubic domain, it was shown that the implemented multigrid method, used
both as a separate linear solver and as a preconditioner to the GMRES method, demonstrates
very good performance and scalability both in single-threaded and in parallel mode. It was also
established that the multigrid method implemented in the last versions of the ANSYS Fluent code
is significantly inferior to the one implemented in the SINF/Flag-S, both in terms of problem-
solving time and scalability.

To improve the efficiency of solving essentially non-stationary problems (in particular, in
turbulent flow simulation using eddy-resolved approaches), an original fully-implicit fractional
step method was implemented in the SINF/Flag-S. The algorithm approbation was illustrated
by two examples of unsteady flows. The first one is the DNS of turbulent Rayleigh–Bénard con-
vection in a slightly tilted cylindrical container. Here, the computational domain has a relatively
simple geometry, but the flow is characterized by intense turbulent motion with strongly different
turbulent scales: a large-scale circulation has the form of a vortex covering the entire volume,
while the size of the vortices responsible for dissipation is several orders of magnitude smaller.
Accurate simulation of all turbulent scales requires very small time steps, so the non-iterative
solver is preferable, especially when a large enough sample is needed for reliable statistics. Re-
sults of testing of the implemented fraction step method in parallel mode showed relatively good
scaling efficiency, even in the case of numerous cores: although at first it degrades with increas-
ing numbers of cores, it later goes to a level of about 0.5, which is quite acceptable. The second
example is related to simulation of unsteady free convective flow around a subsea cooler model.
This industrial problem is characterized by a numerous heated elements (pipes) interacting with
the surrounding water, so grids of very large size should be used for simulation. On the other
hand, the flow in such configurations may be simultaneously laminar in some regions of the whole
flow and transient or even turbulent in other regions. The use of the fractional step method also
gives a significant increase in computational performance here.
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A reliable tool for numerical simulation of compressible gas flows in a wide range of the
Mach numbers is important for various practical applications, including turbomachinery and
aeronautics. With considering a complex 3D model problem of the viscous-inviscid interaction
of supersonic flow past a blunt fin mounted on a plate, we have demonstrated the ability of the
coupled density-based solver implemented in the SINF/Flag-S code to accurately resolve both
the shock wave structure and the regions of substantially subsonic flow, where viscous effects
play a significant role (in the boundary layer and within horseshoe vortices). The performed
investigation of parallel scalability showed fairly good speed-up of the calculations when using
up to several hundred computational cores.
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A new asynchronous modification of the CABARET method is proposed for the solution of

Navier–Stokes equations in the Large Eddy Simulation regime. The modification is based on im-

provement of the asynchronous extrapolation step both for Euler and Navier–Stokes CABARET

solver. The algorithm is implemented as a parallel code for NVIDIA GPU using multiple CUDA-

cores with MPI multi-CPU support. The algorithm accelerated on Graphics Processing Units

(GPUs) is applied for the jet flow simulations in the Wall Model Large Eddy Simulation frame-

work. The efficiency of code parallelization is discussed. The suggested asynchronous CABARET

algorithm provides an almost 5000 times acceleration of calculations compared to a single CPU

core, and allows us to calculate 300 convective times of jet development per day on a grid of

16 million cells. The flow solutions are analysed and compared with TsAGI anechoic chamber

experimental data. It is shown that the structure of the jet flow is reproduced correctly, capturing

low-amplitude instability waves in the jet potential core and fine-scale turbulent fluctuations in

the near-field. Far-field noise predictions in the Ffowcs Williams–Hawking formulation with the az-

imuthal decomposition of the far-field radiation reproduce the nontrivial spectra and directivities

of individual far-field acoustic modes.

Keywords: CABARET, asynchronous, GPU, parallel computing, jet noise.

Introduction

Unsteady computational methods play an increasingly important role in jet noise modelling

and design optimization studies of current propulsion system [2–4, 14, 17, 23, 24]. For simula-

tions of noise generated by aerodynamic flows, high-resolution numerical methods are typically

used. Specifically, these methods should not only have small numerical dissipation, but also

accurately preserve dispersion properties of the governing gas dynamics equations. One exam-

ple of such high-resolution methods is CABARET (Compact Accurately Boundary-Adjusting

high-REsolution Technique) [10, 13] which was previously applied for modelling of high-speed

jets [7, 11, 18, 21] and aerofoil flows [1, 19] using the Monotonically Integrated Large Eddy Sim-

ulation (MILES) framework for turbulence modelling. CABARET Navier–Stokes solver method

was extended in previous work [27] to multi-zonal meshes including rotating meshes typical of

propeller applications.

While the linear wave properties of the CABARET scheme are exceptionally good for

Courant–Friedrichs–Lewy (CFL) numbers around 0.5, for small CFL numbers its accuracy

deteriorates [10]. However, small CFL numbers are unavoidable is some cases, e.g. during time

marching at a constant global time step on non-uniform meshes. The asynchronous time-stepping

technique with an optimal cell-local CFL to avoid accuracy deterioration was implemented for

the CABARET Euler solver in [25] and extended to Navier–Stokes equations [20]. This tech-

nique is improved in the current work by modification of the asynchronous extrapolation step

making it even more computationally efficient.

The article is organised as follows: In Section 1, the governing equations in the form of

hyperbolic conservation laws with a heterogeneous right-hand-side are outlined. In Section 2,
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the baseline CABARET algorithm for gas dynamics is briefly introduced. In Section 3, the

new asynchronous time-stepping technique is presented. In Section 4, the efficiency of parallel

asynchronous GPU code is discussed. Numerical results and comparison with TsAGI anechoic

chamber experimental data are presented in Section 5.

1. Hyperbolic Form of Governing Equations

Following [27], the governing Navier–Stokes equations can be formulated using hyperbolic

equations with an inhomogeneous right-hand side, which in Cartesian coordinates have the form:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= Q, (1)

where the conservative variables U and the conservation fluxes F,G and H are

U = (ρ, ρu, ρv, ρw, ρe)T,

F = (ρu, ρuu+ p, ρuv, ρuw, ρue+ up)T,

G = (ρv, ρvu, ρvv + p, ρvw, ρve+ vp)T,

H = (ρw, ρwu, ρwv, ρww + p, ρwe+ wp)T.

Here u, v, w are the velocity components in the x-, y-, and z-direction in the relative frame,

ρ, e, p are density, total energy, and pressure. The ideal gas equation of state is assumed, where

pressure and density are related to internal energy via the specific heat ratio, γ.

The right-hand-side source in (1) includes contributions of viscous terms defined by compo-

nents of the viscous stress tensor σij , where i, j = x, y, z

Q = (0, ∂∂xσxx + ∂
∂yσxy + ∂

∂zσxz,
∂
∂xσyx + ∂

∂yσyy + ∂
∂zσyz,

∂
∂xσzx + ∂

∂yσzy + ∂
∂zσzz,[

∂
∂x(uσxx + vσxy + wσxz) + ∂

∂y (uσyx + vσyy + wσyz) + ∂
∂z (uσzx + vσzy + wσzz)

]
)T.

(2)

The hyperbolic part of the governing equations (1) comprises 5 characteristics corresponding

to the local Riemann invariants – one entropy wave, two pressure waves, and two contact waves in

each spatial coordinate direction. The entropy and contact waves propagate at the characteristic

speed λ1 = ukx + vky + wkz, and the pressure waves propagate at λ2,3 = ukx + vky + wkz ± a,

where a =
√
γp/ρ is the local sound speed and (kx, ky, kz)

T is a propagation direction.

2. 3-steps CABARET Algorithm

Following [7, 13], the Compact Accurately Boundary-Adjusting high-REsolution Technique

(CABARET) algorithm for solving hyperbolic equations with an inhomogeneous right-hand-

side (1) is presented as a three step procedure. Let us consider a hexagonal spatial grid, where

each centre of the control volume (cell-centre point), c, is surrounded by three pairs of opposite

grid faces (face-centre points), c− and c+, corresponding to a certain grid direction within

the cell. By applying the Gauss–Ostrogradski theorem to integrate the governing system of

conservation laws (1) in space and time, the conservative predictor and corrector steps of the

CABARET algorithm are given by

U
n+ 1

2
c −Un

c

τn/2
+

(sxF
n
c+ − sxFnc−) + (syG

n
c+ − syGn

c−) + (szH
n
c+ − szHn

c−)

Ωc
= Q(Un

c ), (3)
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Un+1
c −U

n+ 1

2
c

τn/2
+

(sxF
n+1
c+ − sxFn+1

c− ) + (syG
n+1
c+ − syGn+1

c− ) + (szH
n+1
c+ − szHn+1

c− )

Ωc
= Q(U

n+ 1

2
c ),

(4)

where Uc is the vector of conservation variables referred to the cell centre, Fc+,Fc−, Gc+,Gc−
and Hc+,Hc− denote the pairs of conservation fluxes in the x-, y- and z- directions computed

at the face centres, Ωc and sx, sy, sz are the cell volume and the face normal areas respectively,

τn is a time step, and the sub-index and super-index n, n + 1/2, n + 1 denote the space and

time discretisation. For both the predictor and corrector steps, the right-hand-side terms Q

are computed by substituting the most recently updated conservation variable in the source

equation (2).

It can be noted that the corrector step (4) involves the unknown flux functions from the new

time step, n+ 1. These functions are updated at the intermediate characteristic decomposition

and extrapolation step, which follows right after the predictor step (3). In the characteristic

decomposition and extrapolation step, we determine flux variables in the centers of faces on a

new layer n + 1 so that the characteristic invariants are computed at the center of each cell

R
n+1/2
c and at the centers of the faces

R =

(
r

q

)
, q = $ −Gpµ, r = $ +Gpµ, s = ln (p/ργ) ,

where µ = γ−1
2γ , G = 2γ

γ−1 exp( s
2γ ), and $ corresponds to the speed u, v or w for each direction

x, y and z.

The computation of the local Riemann invariants at the current and mid-time level, n,

n+ 1/2, is followed by extrapolation of the cell-face variables to the new time step n+ 1 in each

grid cell, c,

R̃n+1
c+ = 2R

n+1/2
c −Rn

c− and R̃n+1
c− = 2R

n+1/2
c −Rn

c+.

For each face that is an interface of two adjacent cells L and R the extrapolated values from

each side of the contact R̃n+1
L+ , R̃n+1

R− are adjusted using the maximum principle. Two sets of

corrected invariants on the cell contact surface are then used and the signs of the characteristic

wave speeds are accounted for to select a unique set of invariants for each cell face. Having

defined the complete set of characteristic variables, the (5× 5) linear system solved to obtain a

solution of the Riemann problem, and the values of the variables and fluxes Fn+1
c+ , Fn+1

c− , Gn+1
c+ ,

Gn+1
c− , Hn+1

c+ , Hn+1
c− are computed at the new time level n+1 for each cell face c+, c−. The results

are then substituted in the conservation flux functions for the conservative corrector step (4).

3. Asynchronous Time-stepping

Asynchronous time stepping, i.e., when the solution in cells of different sizes is updated

at different rates and adjusted to the cell-local CFL number rather than to a global one, is

an effective way of improving the efficiency of explicit methods with highly non-uniform grids

without any loss of accurate linear waves propagation properties. In particular, the asynchronous

time-stepping technique was implemented for the CABARET Euler [25] and the Navier–Stokes

solver [20] keeping the following important properties: (i) simplicity and compactness of the

original computational stencil, (ii) strict conservation property and (iii) a built-in recipe for the
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treatment of inactive flow regions. This technique is improved in the current work by modification

of the asynchronous extrapolation step both for the Euler and for the Navier–Stokes solver.

To illustrate the main concepts, let us consider a one-dimensional flow on a non-uniform

grid along the X axis with a variable cell size hc at time tn. We will assume that the upper and

lower indices correspond to evolving space and time. Let us determine the value of the optimal

time step in each of the cells from the relation τnc = CFL · hc/(|unc |+ a), here u is the local flow

speed, and a is the local speed of sound, assuming CFL = 0.5. The next active time step of the

asynchronous algorithm, τn is determined by the step from the current moment tn to the next

state tn+1, determined by the minimum value for all grid cells.

To increase computational efficiency, the optimal local time step in each of the cells are

replaced by closest values from a pre-defined set of acceptable values with a certain minimum

step. Following [20, 25], the update is not performed for all cells, but only for cells with a

minimum next temporal state tn+1. We will denote such cells as active cells. The calculation of

conservative variables at asynchronous predictor and corrector steps is performed according to

the standard algorithm, but for different moments in time tnc + τ̄nc /2 and tnc + τ̄nc , determined

by the local step in each of the cells. Equations (3),(4) for 1D take the form

U
n+1/2
c −Un

c

τ̄nc /2
+

(Fnc+ − Fnc−)

hc
= Q(Un

c ),

Un+1
c −U

n+1/2
c

τ̄nc /2
+

(Fn+1
c+ − Fn+1

c− )

hc
= Q(Un+1/2

c ).

The main novelty of the suggested algorithm in the current work is due to the change

made at the characteristic extrapolation step. Here, to calculate the fluxes through faces of

an active cell, it is necessary to perform extrapolation inside the cell while obtaining external

values extrapolated to faces from neighboring cells. Extrapolation within a cell is performed in

a standard manner. However, the standard extrapolation in neighboring cells with large time

steps leads to extrapolated values not for the required time point tn+1, but for some future time

points.

To obtain the required values, [20, 25] use inverse interpolation of extrapolated values

(Fig. 1a). Instead, here we use a characteristic extrapolation algorithm based on the modi-

fied values of conservative variables in neighboring cells. Rather than using the intermediate

values obtained in neighboring cells at the predictor step, the values obtained by their linear

interpolation in time to the required point in time t̃n+1
c are used, ensuring the construction of the

correct extrapolation stencil (Fig. 1b). For example, for extrapolation to the edge of an active

cell c, this moment in time for the neighboring cell cN is defined as t̃
n+1/2
cN = (tn+1

c − tncN )/2,

and the intermediate values of conservative variables in the neighboring cell are interpolated to

the desired time point as

Ũ
n+1/2
cN = Un

cN + (U
n+1/2
cN −Un

cN )(t̃
n+1/2
cN − tncN )/τ̄ncN .

This modification allows us to avoid the additional calculation and storage of large arrays

of flow invariants at the centers of cells and the centers of faces, which increases the computa-

tional efficiency of the final algorithm. The extrapolation step is now performed in asynchronous

mode according to the basic algorithm described in Section 2, replacing intermediate values of

conservative variables in neighboring cells U
n+1/2
cN with their interpolated values Ũ

n+1/2
cN .
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(a) (b)

Figure 1. The baseline characteristic extrapolation (a) and extrapolation with the new

suggested pre-interpolated conservative variables at mid-time levels (b)

In Fig. 1, solid horizontal lines correspond to different points in time, depending on the

update history of each cell. The dashed horizontal lines indicate the optimal next time steps for

each of the cells. Arrows indicate extrapolation (solid arrows) and interpolation (dotted arrows),

stars indicate interpolated values of the new algorithm.

The discrepancy between the time steps of contacting cells leads to the fact that one large

time step in a certain cell may correspond to several small steps in a neighboring cell. To keep

fluxes conservative in an asynchronous scheme, we apply fluxes synchronization proposed in

the previous works [20, 25]: fluxes in a cell with a large step are adjusted according to the

total values in cells with a smaller step. Algorithm 1 depicts a pseudocode of the resulting

asynchronous algorithm.

4. Parallelization of Asynchronous Code

The asynchronous CABARET algorithm is implemented as a parallel code using the CUDA

parallel computing architecture for NVIDIA GPU devices and the MPI message passing in-

terface between parallel CPU host processes. Using these tools allows you to use two different

parallelization approaches to speed up calculations on grids of several million cells and more.

To speed up calculations of the CABARET algorithm on multi-core CPUs, the MPI interface

allows parallel calculations for individual parts of the decomposed mesh. In this case, the grid

cells in each decomposition zone are processed by the corresponding CPU core sequentially

one after another. The maximum ideal value for speeding up calculations is determined by the

number of CPU cores. However, the need to exchange data between cells at the boundaries

of decomposition zones by calling MPI-synchronization routines reduces the efficiency of MPI-

parallelization.

The CUDA parallel computing architecture and modern NVIDIA GPU graphics accelerators

allow a more efficient approach for grids with a moderate number of grid cells. If the mesh

fits completely into the memory of the graphics accelerator, then mesh decomposition is not

required. Grid cells are processed in parallel in groups which size is determined by the number

of CUDA cores. Modern GPU card such as A100 and H100 have about 7000 and 15000 CUDA

cores respectively and 80GB onboard memory. The current code implementation with modified

asynchronous step requires 1GB of memory for 1 million grid cells in single precision mode.

This allows maximum computational efficiency of the code for grids of up to 80 million cells.

Combination of CUDA and MPI approaches will increase this limit for multi-GPU computers

and clusters.

To assess the actual efficiency of MPI code parallelization for a CPU, a series of calculations

of the jet flow from a test nozzle was performed on grids with different numbers of nodes, 2 million
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Algorithm 1 Asynchronous Time-stepping

// Initialize the initial states at t = t0 for conservative variables in the centers of cells U0
c

and for primitive variables and fluxes F0
c−, F0

c+, initialize the initial values of the list of

active/updated cells Activenc = .false.

1: Set n = 0, t = t0

2: For all cells: initialize U0
c

3: For all faces: initialize F0
c−, F0

c+

4: For all cells: initialize Activenc = .false.

// Initialize the optimal and quantized values of time steps τnc and τ̄nc
5: For all cells: initialize τnc , initialize τ̄nc

// Initialize the initial values of conservative variables on the local intermediate time layer

U
0+1/2
c

6: For all cells: initialize U
0+1/2
c

// Start of cycle by time

7: do

// Determine the next active step

8: Define τ̄n

// Predictor for active cells – define conservative variables in the intermediate time

layer

9: For all Active cells: define U
n+1/2
c

// Updating the list of active cells

10: For all cells with τ̄nc = τ̄n define Activenc = .true.

// Extrapolation for active cells: interpolation of conservative variables on the interme-

diate layer in neighboring cells Ũ
n+1/2
c and calculation of fluxes on the faces and with

asynchronous correction Fn+1
c− and Fn+1

c+

11: For all Active cells: interpolate neighbour cells Ũ
n+1/2
c

12: For all Active cells: define face fluxes with asynchronous correction

Fn+1
c− and Fn+1

c+

// Corrector for active cells – define conservative variables on a new layer Un+1
c

13: For all Active cells: define Un+1
c

// Check the current time

14: If tn ≥ tEND then exit

15: Set tn+1 = tn + τ̄n, set n = n+ 1

// Determining new optimal and quantized values of time steps τnc and τ̄nc
16: For all Active cells: define τnc , define τ̄nc
17: end do

and 16 million, using from 1 to 64 cores of an AMD EPYC 7742 CPU. Figure 2 shows MPI

efficiency parameters for the solver with the suggested modification of the asynchronous step:

Speedup = T1/TNcpu, which correspond to the acceleration compared to calculations on a single

CPU core. When using the maximum number of cores, the efficiency of parallelization decreases

due to an increase in the share of losses for synchronizing the cores with each other. However,

when the grid size increases (weak stability test) the developed code provides good scalability

with increasing the number of MPI processes. In this case, the acceleration of calculations with

increasing grid sizes approaches maximum theoretical values.
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Figure 2. MPI CPU parallelization speedup for 2M and 16M grids

The efficiency of the modified asynchronous algorithm and its parallelization using graphics

accelerators was assessed in test calculations of the jet flow from a test nozzle on a non-uniform

grid of 16 million cells. For reliable modeling of noise generation by an outflowing jet, the

mesh was significantly refined in the area of the nozzle edge (see Section 5). The ratio of the

linear size of the maximum cell to the size of the minimum cell was 20000. The use of the

asynchronous step ensured acceleration of asynchronous calculations by 8–12 times compared to

the global time step, both when using the CPU and when calculating on the GPU. Notably, the

modified asynchronous step reduces the required memory by 25% and increases performance by

approximately 1.2 times. In turn, parallelization using the CUDA architecture on the NVIDIA

A100 graphics card provides a 600 times acceleration of calculations compared to calculations

on a single CPU core. In total, this provides almost a 5000 times acceleration of calculations

compared to a single CPU core, allowing to calculate 300 convective times of jet development

per day on a grid of 16 million cells on a single GPU card.

Figure 3 compares calculation times for 500 convective times using CPU and GPU, and the

achieved acceleration of the modified asynchronous mode compared to a single CPU in a global

mode.

(a) (b)

Figure 3. Efficiency of the modified asynchronous algorithm on a heterogeneous grid

of 16 million cells for a CPU (AMD EPYC 7742, 1 core) and GPU (NVIDIA A100):

calculation time (a) and calculation acceleration (b) on a logarithmic scale
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5. Numerical Results and Validation

To verify the accuracy of the developed CABARET method, a single-stream axisymmetric

static jet was simulated and its results were compared with experimental data. Experiments

were carried out in the TsAGI anechoic chamber AC–2 designed for acoustic and aerodynamic

measurements of isolated subsonic and supersonic jets. A round profiled nozzle of diameter

D = 40 mm was used. An unheated jet with acoustic jet Mach number Mj = 0.7 was considered

(jet exit velocity Uj ≈ 240 m/s). The two types of experimental data were gathered. First, jet

flow parameters were measured by a hot wire. Second, far-field acoustic pressure was measured

by an azimuthal microphone array. The detailed description of the corresponding measurement

procedures in AC–2 can be found in [5, 6, 16].

For the jet velocity measurements, Dantec probe 55R01 was used. The sensor of the probe

had a fiber of diameter 70 µm and length of 1.25 mm. The probe was mounted on a Dantec 3D

hot-wire traverse mechanism (model 41T33) so that the sensor was perpendicular to the mean

flow (Fig. 4a). The traverse system was used to obtain the distribution of the mean velocity and

velocity fluctuation spectra along the jet axis and along the lipline. The measurements on each

of the lines were conducted in 31 points uniformly distributed along the jet axis from x/D = 0

to x/D = 15 with 0.5D increment.

(a) (b)

Figure 4. Experimental setup: (a) hot-wire measurements; (b) far-field noise measurements

by the azimuthal array (microphones are highlighted by the circles)

Far-field measurements were carried out by the standard microphone array of radius

R = 0.8 m typically used in AC–2 for jet noise measurements. The array is equipped by six
1
2 Bruel&Kjaer microphones (type 4189) with B&K preamplifiers (type 2669, frequency range

40–25600 Hz, sensitivity 50 mV/Pa). The microphones are uniformly distributed over the az-

imuthal angle θ around the jet axis [6, 16] (Fig. 4b). The microphone array can be moved along

its axis in the range −31.25 ≤ x/D ≤ 62.5, the origin x = 0 corresponding to the nozzle exit

plane. The array is capable of measuring the first three azimuthal modes of jet noise at each jet

cross-section x and giving an assessment of the fourth cosine mode. Thus, if acoustic pressure

fluctuations p(x,R, θ, t) can be represented with acceptable accuracy by a superposition of the

first three azimuthal modes

p(x,R, θ, t) ≈ A0(x,R, t) +

2∑

n=1

(An(x,R, t) cosnθ +Bn(x,R, t) sinnθ), (5)
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Figure 5. Mesh structure (every 4th node is shown) and instantaneous pressure field

with Q-criteria iso-surfaces (Q = 25000) in the jet symmetry plane

then the amplitudes An(x,R, t) and Bn(x,R, t) can be measured by the array. It is well-known

[6, 12, 16] that for a subsonic jet issuing from a round nozzle A2
n = B2

n (n ≥ 1), where the overbars

stand for the time averaging, due to the axial symmetry of the statistical characteristics of the

jet noise. Moreover, each azimuthal mode n has specific directivity, and higher order modes

n ≥ 3 are negligibly small for low and moderate frequencies. Thus, the azimuthal content of jet

noise serves as a good basis for validation of numerical simulation results [8, 15].

For the numerical simulation with turbulence modelling, the Wall Modelled Large Eddy

Simulation framework was utilised, where the wall shear stress is computed from an iterative

procedure using an algebraic wall function of the velocity profile and the streamwise velocity

solution computed in the first-off-the-wall cell face [18]. For the upstream nozzle inlet boundary,

the standard total pressure and total temperature boundary conditions are imposed. For the

open lateral and outlet boundaries, non-reflecting characteristic boundary conditions are used.

A cylindrical-conical computational solution domain is considered, which is aligned with the

evolving jet flow downstream of the nozzle exit. The domain size in the streamwise flow direction

is 227D, where 32.5D corresponds to the cylindrical domain part upstream of the nozzle exit.

The radius of the computational domain upstream of the nozzle exit is 50D, linearly expanding

to 125D in the outlet section.

A zoom in to the mesh structure (every 4th node) and a snapshot of the instantaneous pres-

sure field with Q-criteria iso-surfaces (Q = 25000) in the jet symmetry plane in the near nozzle

region are shown in Fig. 5. Near the nozzle exit (at x/D ∼ 0.5), somewhat delayed numerical

transition to turbulent shear layer can be observed: quasi-regular vortical structures transform

to stochastic ones. This is typical effect for LES solutions [7, 26], which correspond to the ini-

tially laminar inflow condition, like in the present case. In the future, it can be improved by

further refinement of the initial shear region as well as using a synthetic turbulent inflow condi-

tion upstream of the nozzle exit. Pressure fluctuation pattern reveals near-field wave-packet-like

structures, acoustic waves generated by the shear layer and spurious high-frequency noise related

to the mesh stretching influence on the CABARET solution. Spurious noise can be reduced by

utilizing a better quality Cartesian mesh in the shear region based on octree-type grid gener-

ation strategy [25]. Nevertheless, since the main goal of the current paper is to demonstrate

adequate operation of the developed parallel code, mesh sensitivity study analogous to [25] was

not performed.
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Figure 6. Mean (blue) and RMS (red) of the axial velocity fluctuations at the jet axis

and at the lipline. Symbols – experiment (2 – axis, © – lipline), lines – simulation

(solid – axis, dashed – lipline)

The main characteristics demonstrating general quality of physical modeling are related to

the velocity field in the jet plume. Mean and RMS velocity distributions give general information

on the jet development, while power density spectra of the velocity fluctuations indicate what

turbulent scales are resolved in the simulation. To compare the results of the simulation with the

experimental data, axial velocity component time histories were stored at the jet axis and the

lipline during ∼1500 convective time units D/Uj . The results of the comparison are shown in

Fig. 6. Velocity is scaled by the jet exit velocity Uj and axial coordinate is scaled by the length

of the jet potential core L. Absolute values of L was 4.5D and 5.5D for the simulation and

experiment, respectively, so that the simulated jet is a bit shorter compared to the physical one,

which is typical for relatively coarse meshes [7, 25]. In dimensionless coordinates (x/L, U/Uj),

the results of the new parallel code are in good agreement with the experimental data.

A more subtle characteristic of the turbulent jet flow is its velocity spectra. It is known

that, for a well developed mixing layer, high-frequency spectral tail should roll-off in accordance

with the −5/3 slope of the Kolmogorov law for isotropic turbulence. Typical velocity spectra for

several distances from the nozzle exit are shown in Fig. 7. Spectral density is scaled by the jet

velocity Uj , and Strouhal number St = fD/Uj represents dimensionless frequency. One can see

that, for the points located in the turbulent region (all points at the jet lipline and axial points

beyond the potential core of the jet), simulated and measured spectra are in good agreement

with a slight overprediction in the numerical solution. A distinct −5/3 slope region can be

observed with the highest resolved frequencies up to St = 1...3 depending on the point location.

The resolution of the fine-scale fluctuations degrades for larger distances from the nozzle exit,

because of the grid coarsening in the downstream direction. It is interesting to note that for

a point located on the jet axis inside the potential core (Fig. 7a), the solution captures rather

weak fluctuations related to the instability waves [5] (spectral hump around St = 0.1...1). Visible

overestimation of the numerical solution in this point is partially related to the fact that the

measured signal was masked by the self-noise of the probe and thus the resultant levels of the

denoised experimental spectrum may be not precise enough.
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(a) (b)

(c) (d)

Figure 7. Centerline (red) and lipline (blue) velocity spectra. Symbols – experiment,

lines – simulation. (a) x/L = 0.5, (b) x/L = 1.1, (c) x/L = 1.6, (d) x/L = 2.0.

Black dashed lines correspond to the −5/3 slope

Figure 8. FWH surfaces for far-field noise calculation

For the far-field noise calculation, the Ffowcs Williams–Hawkings (FWH) integral method [9]

in the permeable surface formulation given in [22] was used. It is known that closed FWH-

surfaces with multiple closing discs [7, 26] may be preferable to improve low-frequency noise

components simulation. However, for the purpose of the current study, we used a simplified

approach with open control FWH-surfaces of an increased length to capture the main portion

of jet noise without the disc-averaging technique. This allowed us to obtain adequate spectra in

the frequency range of interest. Three conical FWH-surfaces of different radii were considered

(Fig. 8).

The far-field observer points were distributed in axial (−62.5 ≤ x/D ≤ 62.5) and azimuthal

directions over the cylindrical surface, of radius R = 20D, surrounding the jet. This allowed us
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Figure 9. Sensitivity of the far-field spectra to the FWH surfaces.

Red – observation angle 32◦ (x/D ≈ 38), blue – observation angle 90◦ (x/D ≈ 6).

Solid lines – FWH1, dotted lines – FWH2, dashed lines – FWH3

to compare the simulation results with the experimental data obtained by the azimuthal array

(Fig. 4b). Sensitivity of the results to the location of FWH-surface is shown in Fig. 9 for the

sideline direction and for the direction of most intense radiation (observation angle is counted

from the end of the potential core). It is seen that using FWH-surface of larger radius leads to

reducing the resolution at high frequencies, but the spectral peak is reproduced identically by

all FWH-surfaces. Further results are given for the acoustic control surface denoted as FWH1.

Figures 10 and 11 demonstrate the comparison of the simulation results with the experi-

mental data, both in terms of the total noise and its azimuthal components. From Fig. 10, one

can see that the simulation adequately reproduces the total jet noise spectra and the subtle

structure of its modal content. There is some overprediction of absolute levels in the sideline

direction, which can be improved by increasing the grid resolution of the initial shear layers, as

mentioned previously.

(a) (b)

Figure 10. Far-field jet noise total and modal spectra. (a) sideline direction (x/D ≈ 6),

(b) direction of maximum radiation (x/D ≈ 38). Symbols – experiment, lines – simulation.

Black – total noise, blue – axisymmetric mode n = 0, green – mode n = 1, red – mode n = 2,

grey – mode n = 3

Figure 11 presents the distribution of the total jet noise and its azimuthal modes on the

cylindrical surface surrounding the jet for the spectral peak St = 0.2. Again, accurate simulation

of the main features of jet noise is observed: the total directivity, the directivities of individual

harmonics, the equivalence of the corresponding sine and cosine modes, and the domination of

low-order modes n = 0, 1, 2 are all correctly captured. Thus, we have demonstrated acceptable

I.A. Solntsev, S.A. Karabasov, G.A. Faranosov, O.P. Bychkov

2024, Vol. 11, No. 2 43



accuracy of the developed parallel solver on the acoustically sensitive calculations. Even on the

rather coarse mesh, encouraging simulation quality, capturing the main physical features of real

turbulent jet, was obtained, both in terms of turbulent properties of the jet flow and its acoustic

radiation, including rather subtle characteristics of individual azimuthal modes.

(a) (b)

Figure 11. Far-field distribution of jet noise and its azimuthal modes on the cylindrical

surface surrounding the jet for the peak frequency St = 0.2. (a) experiment, (b) simulation.

Black – total noise, blue – axisymmetric mode n = 0, green – mode n = 1, red – mode n = 2,

grey – mode n = 3. Solid lines – cosine modes, dashed lines – sine modes

Conclusion

A new asynchronous modification of the CABARET method is proposed for the solu-

tion of Navier–Stokes equations in the Large Eddy Simulation regime. A new asynchronous

characteristic-extrapolation step is implemented increasing computational efficiency of the pre-

viously suggested asynchronous algorithm. It is shown that GPU parallelization with an asyn-

chronous time step is an extremely effective tool for increasing the computational performance

of the Navier–Stokes CABARET solver for performing acoustically sensitive calculations. The

computational efficiency and encouraging accuracy of the developed parallel solver was demon-

strated on the acoustics sensitive simulation of a single-stream Mach 0.7 round turbulent jet

for a moderate grid resolution. Modified asynchronous CABARET algorithm provides an al-

most 5000 times acceleration of calculations compared to a single CPU core, thereby enabling

the calculation of 300 convective times of jet development on a grid of 16 million cells per

day. Comparison with the TsAGI experimental data is performed the mean velocity, turbulence

intensity, and turbulent velocity spectra. It is shown that the structure of the jet flow is repro-

duced correctly, including reasonable resolution of fine-scale turbulent fluctuations in the inertial

subrange of the energy spectra and capturing low-amplitude instability waves footprint in the

jet potential core. Far-field noise predictions are performed using the permeable surface Ffowcs

Williams–Hawking formulation. The conventional aeroacoustic postprocessing is supplemented

by the azimuthal decomposition of the far-field noise. It is shown that the method correctly

reproduces the nontrivial spectra and directivities of individual far-field acoustic modes. Thus,

the developed parallel GPU CABARET solver is demonstrated to correctly capture the main

physical features of a natural turbulent jet even on rather coarse meshes. Future work will in-

clude increasing the jet LES grid resolution utilising the significant acceleration offered by the

developed in-house GPU CABARET solver.
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The Kelvin–Helmholtz instability developing in the mixing layer between two supersonic
streams is simulated with the Direct Simulation Monte Carlo (DSMC) method using the SMILE-
GPU software. No initial perturbations are introduced into the flow so that the disturbances are
excited by and develop from the statistical fluctuations inherent in the DSMC method because
of its stochastic nature. Multiple graphics processing units (GPUs) are employed for numerical
simulations and efficient parallelization strategies for DSMC implementation on GPU clusters are
presented. Between 0.4 and 1.6 billion of test particles are used to reproduce the development of the
flow instability. The influence of the number of particles on mean flow properties and pulsation
characteristics is investigated and discussed. It is shown that the pulsation characteristics are
substantially affected by the number of particles because of a delay in the instability onset and
vortex formation at a lower level of statistical fluctuations. A new algorithm for identification and
analysis of vortex motion in noisy flow data is considered and applied to flowfields resulted from
the unsteady DSMC simulations.

Keywords: rarefied gas flows, free shear flow instabilities, particle-based methods for kinetic
equations, parallelization strategies, GPGPU computations with CUDA.

Introduction

The Direct Simulation Monte Carlo (DSMC) method proposed by G.A. Bird in 1963 is a
particle-based method for solving the Boltzmann transport equation using probabilistic Monte
Carlo techniques [1]. The gas in the DSMC method is modeled by a large number of test particles,
the motion of which, at each time step, is divided into two stages: moving by inertia and collisions
with other particles, selected in a stochastic way from the same grid cell.

For many years, the DSMC method has been intensively used to simulate rarefied gas flows,
in particular, in applications to high-altitude aerodynamics and microfluid dynamics. In general,
the DSMC method is applicable not only to rarefied flows, but also to those in the near-continuum
and fully continuum regimes, though such simulations are possible only with a huge number of
test particles. Nevertheless, the flows with Knudsen numbers Kn = `/L ∼ 10−4 ÷ 10−5, where
` is the molecular mean free path and L is the macroscopic flow characteristic length, can be
routinely performed with modern day computers.

The DSMC method is most often used to simulate steady flows because, in this case, time
averaging can be efficiently employed to decrease statistical fluctuations which are an inherent
feature of this approach. In recent years, however, there has been a significant increase in simulat-
ing unsteady fluid dynamic phenomena, such as hydrodynamic instabilities, using this numerical
approach. So, the Richtmeyer–Meshkov and Rayleigh–Taylor instabilities caused by inertial and
gravitational body forces, respectively, were simulated in [2, 3] while the first results of DSMC
simulations of a shear flow instability were presented in [4] where the Kelvin–Helmholtz (KH)
instability developing in a compressible mixing layer between two parallel supersonic streams
was reproduced and in [5] where an unstable plane supersonic jet was considered.

Moreover, the DSMC method was even used for simulating fully developed turbulence. In [6]
the Taylor–Green vortex flow was simulated and the famous Kolmogorov −5/3 spectrum law
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was reproduced. Later, DSMC simulations of the Couette flow between two plane walls were
performed and it was shown that the law of the wall and other features of wall-bounded turbulence
can also be successfully reproduced using this approach [7]. Further, when simulating near-
continuum turbulent flows [8, 9], it was revealed that the continuum approach is not able to
describe correctly the dissipation range of turbulence spectrum because it does not take into
account thermal fluctuations [9] while they are properly represented in DSMC simulations.

In [2, 3] the authors tried to reduce the statistical fluctuations by using in 2D simulations
of flow instabilities up to 1011 test particles, which required tens hours of computer time on
1.57 × 106 processors of Sequoia, an IBM Blue Gene/Q supercomputer. Our approach in [4, 5]
was different: we used a large but reasonable number of particles so that the computations could
be performed on a conventional hybrid CPU/GPU cluster available in many laboratories.

It means that the level of statistical noise in the computed flowfields was rather noticeable
though it could be reduced by averaging over time intervals short in comparison with the hydro-
dynamic characteristic time scales. In some aspects, the statistical fluctuations inherent in the
DSMC method can be even useful because their presence allows us to initiate the development of
hydrodynamic instabilities in a “natural” way, without exciting the flow with any artificial initial
disturbances. However, the influence of the statistical noise with an amplitude much higher than
the level of real-world thermal fluctuations on the results of numerical simulations is rather a
delicate question. Also, there is a problem of analyzing the noisy computational flowfields and
extracting from them the flow instability characteristics such as the frequencies of the most
perceived and the most amplified disturbances, their growth rates, as well as identifying the
locations, motion and merging of the vortices developing in the unstable shear flow. Both these
subjects are addressed in the current paper.

The rest of the paper is organized as follows. In Section 1 a brief description of the DSMC
method and the SMILE-GPU numerical code are given along with the specifics of the GPU-
based computations and other features of the numerical algorithm, Section 2 contains the problem
formulation and computation results. Section 3 deals with a special procedure for detailed analysis
of the obtained numerical results. Brief summary is given in the Conclusion section.

1. Code Implementation of Parallel Computations in DSMC
Method

As was mentioned in Introduction, the DSMC method is a particle-based kinetic approach
to numerical simulation of gas flows, in which model particles are moving and colliding with
each other in a manner quite similar to real gas molecules. This method allows one to obtain a
solution satisfying the Boltzmann kinetic equation. Kinetic methods are usually used to study
the rarefied flows when the continuum approach based on the Euler or Navier–Stokes equations
is inapplicable. The process of numerical simulation is split into consecutive time steps, which, in
turn, consist of two main stages: free-molecular movement of particles and binary collisions. The
computational domain is divided into cells with sizes comparable to a local mean free path. In
the simulated collision process randomly selected particles located in the same cell collide with
one another. This algorithm requires the so-called particle index that indicates which cell the
particle is located in. This index list is updated on each computational step. Also, on each step
the particles and their velocities are sampled in cells and this statistical data is used to calculate
the mean number density, velocity, temperature and other macroscopic parameters in each cell.
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The number of particles used in a DSMC simulation is limited only by the magenta CPU
computational power. Usually, the number of model particles is fewer than the number of real
molecules by a factor of 1010–1020. Thus, the DSMC method is typically employed for the nu-
merical simulation of steady flows, where statistical fluctuations can be reduced averaging the
solution over a sufficiently large time interval. When simulating unsteady flows, the information
is averaged over a relatively small number of time steps, usually not exceeding few hundreds.
This leads to large statistical fluctuations and makes the data analysis quite difficult. The fluc-
tuations can be reduced by increasing the number of model particles, but since the fluctuations
magnitude decrease proportionally to the inverse square root of samples, the sampling size has
to be increased by orders of magnitude. Thus, DSMC simulations of unsteady flows, in particular
of shear flow instabilities, inevitably require a large number of test particles used and can be
performed only with efficiently parallelized software.

The SMILE-GPU software used in the current study is a highly efficient numerical solver
designed to run on graphical processor units (GPUs). The amount of memory available on a
GPU is quite limited, so computations were carried out on several GPUs using OpenMP and
MPI technologies combined with domain decomposition technique.

1.1. Computations on GPU

A GPU is a device containing many multicore processors originally designed for manipula-
tions with 3D graphical images. However, over time, their computational performance increased
to levels where they became comparable with conventional CPUs. On the basic level, a modern
GPU consists of a large number multicore processors and a specialized scheduler managing their
workloads. Other specific feature of GPUs are as follows.

• A single core of GPU is considerably slower than a single core of CPU. However, the total
number of GPU cores is an order of magnitudes higher than on a CPU. So, in theory, GPUs
could performs computations faster.
• All computations on GPU are performed in the so-called SIMD (Single Instruction Multiple

Data) regime, when all cores execute the same instruction in the code applied to a different
set of data on each core. As a result, each statement in “if-else” operator is executed
regardless of condition match. However, results of non-matching branch execution are not
used. This specific manner of computation require appropriate numerical algorithms.
• GPU cores can only access the memory of their GPU and cannot use CPU memory. All

memory exchange in initiated via CPU and is very slow. So, the best scenario for compu-
tation is to upload all the data to GPU, perform all required computations and download
results into CPU memory.

SMILE-GPU uses CUDA (Compute Unified Device Architecture) application programming
interface (API), developed by Nvidia for their GPU devices. This interface allows one to use
any GPU as some abstract device that has some number of computational threads grouped into
blocks. Computations are performed in so-called kernels, specific function executing on all cores
of a device. Built-in global variables allow each thread to identify its index number and the index
of its block, and the indices of thread and block can then be used to assign specific portion
of data to process. The total number of computational threads can be larger than the number
of physical cores on the device and CUDA scheduler manages their execution order to provide
maximum efficiency (at least, in theory). This allows a programmer to focus on the numerical
algorithm and not on details of hardware architecture.
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Considering these features, the approach of parallelization by data, when all threads can
simultaneously perform the same operation on different data sets, seems to be optimal for pro-
grams running on GPUs. Main entities in the DSMC method are particles and cells, so at any
given time all computational threads should process either particle or cell. However, because of
the SIMD approach number of operations for each thread would be the same. As a result, if
the size of data is different on each thread, the efficiency would drop, because there would be
threads performing basically useless computations. This can happen, for example, when there is
a different number of particles in cells, because of different gas density.

Unfortunately, it is hard to make a theoretical estimate for the algorithm efficiency when
using GPU, because it depends not only on the data size, but also on the data structures in
program implementation, and their location in memory. So, usually, the most computationally
efficient implementation is a result of trial and error. For example, during the SMILE-GPU
development, 7 variants of collision algorithms and 4 algorithm of sampling were tested.

In binary collisions any pair of molecules can engage in chemical reaction resulting in pair of
particles of different species. Chemical reactions occur relatively infrequently, requiring additional
computations and subsequent rebuild of particle-cell index. The straightforward implementation
of the algorithm leads to a dramatic order of magnitude drop in efficiency. So, in SMILE-GPU
chemical reactions are “delayed”, meaning that in collision procedure the pair of reacting particles
is flagged and added to a list of dissociating/exchanging particles, and reaction itself is realized
in separate kernel afterwards. This approach allows to even out the computations on different
threads and the particles index will not be needed until next iteration of collisions, so it is rebuilt
only on the next time step. But, unfortunately, this trick is not free because the preliminary
flagging of particles makes them unavailable for other reactions in this cell, so the time step
needs to be reduced to match the number of collisions in cell. Tests show that when the number
of collisions is 10–20% of total number of particles delayed reactions have negligible effect on
the efficiency. However, for the processes of internal energy exchange it leads to an unacceptably
small time step, so these process are realized during main collision procedure despite the certain
amount of useless computation.

1.2. Workload Distribution between GPUs

Domain decomposition is used for computations on multiple GPUs. The domain is split
into subdomains and each is assigned to a GPU. If some particle moves outside of the domain,
it is transferred to the respective GPU during the exchange stage of the algorithm. This is a
conventional approach to the parallelization of a DSMC code, but there are some differences
stemming from the GPU architecture.

Because the CPU-GPU transfers are usually very slow, the domain decomposition should
minimize inter-partition exchange. This is achieved using the wind reference frame, when the
velocity vector is oriented along the X axis. The subdomains are formed by grouping cells along
the inflow velocity vector. So, the particles following straight streamlines will fly through the
domain without crossing partition boundaries. In this case, only particles with relatively large
transversal thermal velocity can move to neighboring partitions. In real problems of practical
interest with complex geometries, shock waves, mixing and boundary layers this simple assump-
tion about velocity direction does not always hold, however, it allows to considerably increase
efficiency of the computation.

A.V. Kashkovsky, A.N. Kudryavtsev, A.A. Shershnev

2024, Vol. 11, No. 2 51



Another important aspect of the computation is the balanced workload on all computational
devices. This problem applies to both CPU and GPU codes. It is virtually impossible to obtain
a perfectly balanced data distribution in a DSMC run because of the statistical nature of the
method and fluctuations in instant flowfields. This also leads to fluctuation in a single step execu-
tion time. A popular approach used in CPU DSMC codes is to distribute cells randomly among
the threads to ensure that on each thread there are cells with both high and low computational
loads. This allows for balanced computation with acceptable efficiency achieved via more exten-
sive exchange. This technique cannot be used in GPU computations because the exchange is
slower, and the wall time for each step is considerably lower, so any slow thread would drop total
efficiency and performance drastically.

DSMC computations of steady flows usually start from uniform flowfield which evolves dur-
ing the simulation to a resulting flowfield with some distribution of gasdynamic parameters. The
dynamic balancing is required for this unsteady stage of computations. For unsteady flows bal-
ancing is iteratively carried out throughout the whole computation. The main idea behind the
balancing process is similar to the greedy algorithm approach: transfer (i.e. reassign) cells from
GPUs with high workload to GPUs with low workload. We call this algorithm Direct Timer Load
Balance (DTLB). Each GPU has a correction factor Ci which is proportional to Ni, the number
of cells assigned to ith GPU. If Nc is the total number of cells in the domain and Ng is the total
number of GPUs, then Ni is calculated as

Ni = CiNc/Ng. (1)

The coefficients Ci are recalculated using measurement of timers Tc,i. At the start of com-
putation Ci = 1 for all GPUs. We calculate the maximum Tc,max of all Tc,i, and then the value
of Ci is updated according to formula

C
(n)
i = C

(n−1)
i ·

(
1 +

Tc,max − Tc,i
Tc,max

)
, (2)

where (n) is the recalculation iterator, Tc,max − Tc,i is the ith GPU time of wait and should be
equal to zero for a perfectly balanced distribution. As can be seen, Ci for the GPU with maximum
workload (Ti ≡ Tmax) will remain unchanged, and for the rest of GPUs it will increase. Finally,
the factors are renormalized

Ci = C
(n)
i /

Ng∑

k

C
(n)
k . (3)

Tests show that after 10–20 iteration this approach yields approximately 95–99% efficiency.

2. Numerical Simulation of the KH Instability in Compressible
Mixing Layer

2.1. Problem Formulation and Numerical Setup

It is well known that a mixing layer between two parallel streams is unstable even at low
Reynolds numbers [11]. The linear instability of a compressible mixing layers was investigated
in detail in [12–14]. The linear stability analysis shows that the instability characteristics of the
compressible mixing layers are strongly affected by the so-called convective Mach number

Mc =
U1 − U2

a1 + a2
, (4)
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where U1 and U2 are the velocities of two streams and a1 and a2 are the sound speeds in them.
At subsonic Mc the KH instability dominates in the mixing layer while at Mc > 1 two new, the
so-called supersonic instability, modes emerge whose disturbances radiate from the mixing layer
as acoustic waves. Moreover, at Mc ≤ 0.6, 2D disturbances are the most unstable and grow faster
than the 3D ones.

The mixing layer is a canonical example of a highly-unstable free shear flow and its instability
occurs even at low Reynolds numbers, so that the instability should manifest itself in rarefied
flows. Nevertheless, it seems that until recently the mixing layer instability was simulated using a
kinetic approach only in one work [15] where the simulation was performed by solving the model
kinetic equations with a deterministic finite difference method. Lately, for this purpose, DSMC
simulations were also used [4] as well as the simulations based on the model kinetic equations
and the Boltzmann transport equation [16].

In the current study, we simulate a plane mixing layer between two streams of monatomic
gas (argon, Ar) with the temperature T1 = T2 = 300 K and the pressure p1 = p2 = 2.5 Pa. These
conditions correspond to the mean free path λ1 = λ2 = 0.0029 m. The flow velocities of two
streams are equal to U1 = 805 m/s and U2 = 483 m/s so that their Mach numbers are M = 2.5

and M = 1.5, respectively. Thus, the convective Mach number Mc = 0.5 and the most unstable
mode is the 2D KH disturbances.

The numerical simulations are performed in a rectangular domain 40 × 16 meters. The
two streams start mixing on the inflow boundary where model particles are introduced with
the corresponding Maxwellian distributions. No artificial disturbances are imposed on the flow
and instability emerges in a natural manner from statistical fluctuations inherent to the DSMC
approach. However, the number of model particles is many order of magnitude smaller than the
number of real molecules so that the amplitude of fluctuations is considerably larger than in
nature. To investigate the effects of fluctuations on the instability emergence and development
three simulations with Np = 0.4, 0.8 and 1.6 billion (109, bln) of model particles, respectively,
are carried out.

The computations are performed using a two-level grid. The first level grid consists of
1000 × 400 cells, while the second level grid used for particle collisions is constructed auto-
matically according to local flow gradients to ensure there are 5 or more model particles in a
collision cell. The time step is set to ∆t = 10−6 s. From 6 up to 12 Nvidia V100 GPUs are used
in computations.

All obtained flow parameters are averaged over a relatively small interval equal to 100 time
steps (or 10−4 s). During first 100,000 time steps no data are gathered because this period
corresponds to a transient starting process. The averaged flowfields will be referred below as
frames. The number of frames nf obtained in the three simulations are 2000, 2358 and 5254,
respectively.

Reducing the averaging period will increase the fluctuations in flowfields, while its increasing
will smooth out some of the features and disturbances in the flow. Moreover, from the gener-
alization of the Kotelnikov [17] theorems for restoring a continuous multi-frequency signal from
discrete samples, it follows that the maximum correctly restored frequency is 2 times higher than
the polling frequency. For the case considered, the maximum frequency equals 5 kHz, but in fact
most frequencies of interest in our study are lower than 1 kHz.

A typical frame of the transversal velocity flowfield uy(x, y) is shown in Fig. 1. It is seen that
the flow is unstable and there are well known KH “billows” inside the mixing layer. The vortices
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emerge close to the left (inflow) boundary, grow as they travel downstream and merge into larger
vortices. The statistical noise is also clearly visible in Fig. 1.

Figure 1. Flowfield of transversal velocity v(x, y) averaged over 100 time steps for Np = 0.4 bln

2.2. Mean Flowfields

The mean flowfield Q(x, y) and the root mean square (RMS) pulsation flowfield q′rms(x, y)

of an arbitrary flow quantity q(x, y, t) are calculated by averaging over n frames:

Q =

∑n
i=1 qi
n

, q′rms =

√∑n
i=1(qi −Q)2

n
. (5)

In Fig. 2 flowfielfds of mean longitudinal U(x, y) and transversal V (x, y) velocities are pre-
sented for Np = 0.4 bln. It is seen that the mixing layer thickness gradually grows downstream.
The weak shock waves (Mach waves) originating from the meeting point of two streams at the
left boundary are clearly visible in the transversal velocity flowfield V (x, y). The inclination an-
gles of the weak shock waves in the upper and lower streams equal 23.6◦ and 41.8◦, respectively.
They match perfectly with the Mach angles αM = sin−1(1/M) for these streams. The oblique
intersecting straight lines behind the shock waves are acoustic characteristic lines of two families.
They are visible due to weak velocity perturbations propagating from the mixing layer as well
as from the upper and lower boundaries. The same oblique intersecting Mach lines can be seen
in many experimental schlieren visualizations of supersonic flows.

The mean profiles of longitudinal velocity U(y) close to the outflow boundary, at x = 39 m,
are shown in Fig. 3. The profiles obtained in the simulations with different numbers of test
particles are compared in Fig. 3a. It is evident that they coincide almost perfectly.

In Fig. 3b the computed velocity profile at the same cross-section x = 39 m is compared
with the analytical expression

U(x, y) = Uc +
∆U

2
erf

[√
π(y − yc)
δω(x)

]
, Uc =

U1 + U2

2
, ∆U = U1 − U2 (6)
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(a)

(b)

Figure 2. Mean longitudinal U(x, y) (a) and transversal V (x, y) (b) velocity flowfields
for Np = 0.4 bln

obtained in [18] as an approximate solution of the boundary layer equations. Here δω is the
so-called vorticity thickness defined as

δω =
∆U

(∂U/∂y)max
(7)

and yc is the coordinate of the point where U = Uc.
One can see that the numerical and analytical solutions are in close agreement and the values

of δω and yc for this cross-section equal 0.79 m and 0.085 m, respectively. It is worth noting than
another analytical profile U(x, y) = Uc + (∆U/2) tanh(2y/δω), which is also frequently used
to approximate the mixing layer profile, does not yield so good agreement with our numerical
results.

The Görtler approximate solution [18] predicts that yc = 0, i. e. the mixing layer centerline
coincides with the axis y = 0. However, as was shown in [19], the next order approximation implies
a centerline deflection. The DSMC simulation reproduces this peculiar feature. The centerline
location as a function of the longitudinal coordinate yc(x) is shown in Fig. 4a. As can be seen,
it slightly deflects from the line y = 0 toward the lower (slower) stream and the deflection grows
downstream.

The mixing layer thickness increases with the longitudinal coordinate. It is well known that
initially the mixing layer spreads similar to a laminar boundary layer on a flat plate so that its
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Figure 3. Mean velocity profiles U(y) at x = 39 m, comparison of the profiles for different
numbers of test particles (a) and comparison with an analytical expression (b)

thickness grows proportional to
√
x. However, after the emergence of large-scale vortices, their

pairing becomes the main mechanism of thickness growth [20]. It seems that this mechanism
continues to dominate even in the turbulent regime when the large-scale vortices persist on the
background of small-scale 3D pulsations [21]. As a result of successive vortex pairings, the mixing
layer thickness grows linearly with the x coordinate.

To determine the character of this dependency in the numerical simulations performed, a
fitting curve has been calculated using a built-in function of the open source visualization software
Gnuplot [22]. The result is shown in Fig. 4b. It can be seen that at x ≤ 15 m the square root
fit reproduces closely the behavior of the numerical curves. Farther downstream they are well-
fitted by linear functions, however, the slopes are slightly different with the maximum slope for
Np = 0.4 bln and the minimum one for Np = 1.6 bln. It can be explained by a smaller statistical
noise level at a large particle number. As a result, the mixing layer is later excites and the growth
of disturbances delays (see below). Thus, this characteristic reveals a dependence on the number
of test particles.
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Figure 4. Centerline deflection (a) and growth of vorticity thickness (b) for mixing layer

2.3. Growth of Disturbances

Figure 5 shows the flowfields of u′rms and v′rms, RMS pulsations of two velocity components,
for Np = 0.4 bln. One can see their fast growth starting approximately from the streamwise
location where the layer thickness begins grows linearly. A specific feature of the u′rms flowfield
that, closer to the outflow boundary, its distribution across the mixing layers has three maxima.
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(a)

(b)

Figure 5. Flowfields of u′rms and v′rms, RMS pulsations of longitudinal (a)
and transversal (b) velocity components, for Np = 0.4 bln

The profiles of RMS pulsations of u′rms in the cross-section x = 39 m for the same case
Np = 0.4 bln can be seen in Fig. 6.

Figure 6a shows that the profiles for the different number of particles are similar on qualita-
tive level but differ quantitatively. This difference is resulted from the different level of statistical
noise. It is well known that an increase in the number of samples by a factor of N reduces the
standard deviation of a quantity by a factor of

√
N . So, the RMS pulsation profiles are multiplied

by the factor
√
Np/N0

p where Np = 0.4 bln and the normalized RMS pulsations
√
Np/N0

p u
′
rms

are presented in Fig. 6b. As can be seen, after that the pulsations in the free stream regions
coincide but in the mixing layer itself they differ substantially.

Thus, the characteristics of pulsations depend substantially on the number of particles used
in a simulation Np. The free stream values of fluctuations are simply proportional to

√
Np. Thus,

they will decrease with an increase in Np and vanish as Np →∞. For the number of test particles
equal to the number of real molecules, the magnitude of the free stream pulsations would be equal
to that of thermal fluctuations in real gas.

However, the amplitude of disturbances in the mixing layer does not follow this normaliza-
tion because they are resulted from the physical process of disturbances amplification due to
the flow instability. The disturbances in the mixing layer are instability waves (with superim-
posed statistical fluctuations). They are originated from statistical fluctuations but then they
are selectively amplified due to pumping of the energy by the Reynolds stresses from the mean
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Figure 6. Original u′rms (a) and normalized
√
Np/N0

p u
′
rms (b) profiles of RMS pulsations

of longitudinal velocity in the cross-section x = 39 m

shear flow. At early stages of the hydrodynamics instability they grow exponentially, later their
growth saturates because of nonlinear effects. With an increase in the number of particles, the
magnitude of statistical fluctuations decreases so that the initial amplitude of instability waves
decreases too. As a result, they will grow and reach approximately the same amplitude, however
it will happen farther downstream from the meeting point of two mixing streams.

It is interesting to compare the RMS profiles with the results of the linear stability theory
(LST). The linearized compressible Navier–Stokes equations along with the disturbance bound-
edness conditions at y → ±∞ comprise a LST eigenvalue problem, see [11]. The eigenvalue
problem is solved using the VMLS3D code developed by one of the authors. The LST compu-
tations are performed for the analytical profile (6). In Fig. 7 the profile v′rms at x = 39 m is
compared with the LST eigenfuction of a spatially growing disturbance for the frequency corre-
sponding to the maximum growth rate. The distributions are different in the freestreams where
the LST eigenfunction exponentially decays while the flow disturbance in the DSMC simulation
approaches a nearly constant value equal to the freestream level of statistical noise. At the same
time, the two distributions are in close agreement inside the mixing layer.
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Figure 7. Comparison of the DSMC profile of v′rms at x = 39 m (Np = 0.4 bln)
with a LST eigenfunction

The statistical noise introduced by the DSMC method has a broadband spectrum. However,
the flow instability amplifies its harmonic components selectively. As a result, the most unstable
disturbance predicted by the linear theory starts dominating at some distance downstream. Even
farther downstream nonlinear interactions between the harmonics result in an amplification of
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the subharmonic waves and the vortex pairing. A few successive pairings occur within the compu-
tational domain, however, as can be seen, even near the outflow boundary the transverse velocity
fluctuation profile v′rms within the mixing layer keeps resemblance with the LST eigenfuction.

3. Identification of Vortices and Analysis of Vortex Motion

This section deals with a specialized procedure developed specifically for an analysis of
instabilities in the presence of statistical fluctuations. Calculation of vorticity, Q-criterion and
other techniques based on the spatial derivatives of flow quantities do not work in the case of
statistically noisy data, so another approach, based on some integral quantities, was proposed.

For any frame, for each cell i we calculate the quantity

Li =
1

N
∑

j∈Nei(i,δ)

[
u′j(yj − yi)− v′j(xj − xi)

]
, u′j ≡ uj − Uj , v′j ≡ vj − Vj , (8)

where xi, yi and xj , yj are the coordinates of cell centers i and j, respectively, Nei(i, δ) is the
list of cells in the δ-vicinity of the cell i, i.e. |rj − ri| ≡

√
(xj − xi)2 + (yj − yi)2 < δ, N is the

number of cells in the list, uj , vj and u′j , v
′
j are the velocity components and their perturbations

in the center of the cell j for this frame, Uj , Vj are the velocity components at the same cell
averaged over all frames. Thus, the velocity disturbance flowfield imposed on the mean flow is
analyzed. It is easy to see that Eq. (8) is the z-component of a vector product including the
vectors of perturbed velocity and relative position of the cell centers i and j; for a 2D flow only
this z-component is of importance. The parameter δ can be varied, in the present paper it is
taken equal to 1 m.

The sign of L determines if the vortex rotates in the clockwise, or counterclockwise direction.
The definition ensures that in the center of a vortex the value of L will reach a local maximum.
Another feature of this quantity that it grows as the velocity of fluid rotating around the point
xi, yi increases.

The resulting flowfields of L along with the original vector fields of the perturbed velocity
u′ ≡ (u′, v′) in the region x > 36 m near the outflow boundary are shown in Fig. 8 for 4 different
time moments. The color palette Vox shows the vortex intensity L, while the vector length
and their color in accordance with the scale vm show the magnitude of the perturbed velocity
|u′|. The frames presented are chosen in such a way that they demonstrate different dynamic
events and phases of vortex motion. It is evident that they enable us to identify and recognize
characteristic flow features despite the background statistical fluctuations.

The obtained flowfields of L are further post-processed. For each frame k the cells with
maximum and minimum values of L are found. They are considered centers of vortices rotating
in the clockwise and counterclockwise direction, respectively, because, in our case, the maximum
value is always positive while the minimum value is negative. After that, the mean values of
y-coordinates of vortex centers for both these types of vortices are deduced by averaging over nf
frames: Y =

∑nf

k=1 Y
(k)/nf where Y (k is the y-coordinate of the vortex center. The respective

standard deviations σY =
√∑nf

k=1 (Y (k) − Y )2/nf . The results are shown in Tab. 1. As one
can see, on the average, the centers of counterclockwise vortices are located lower than those of
clockwise vortices. Taking into account that the mixing layer centerline is somewhere between
y = −0.078 m and y = −0.085 m, the intuitive description of the process would be that the
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(a) Two vortices
(b) One vortex

(c) Onset of vortex pairing (d) Two weak vortices

Figure 8. Vortices identified with the new criterion. Flowfields of L (color scale Vox)
with imposed perturbed velocity vectors (arrows, their length and color, in accordance

with color scale vm, correspond to the magnitude of perturbed velocity)

counterclockwise vortices move along the flow centerline with clockwise vortices slight above
them.

The range 36 m < x < 40 m (see Fig. 8) is chosen in such a way that for each frame it
contains two vortices, one rotating clockwise and another – counterclockwise. The distribution of
λx, the distances along x between vortex centers, is shown for all frames in Fig. 9a. The distances
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Table 1. Averaged positions of clockwise and counterclockwise vortices

Np, 109 Clockwise Counterclockwise
Y , m σY , m Y , m σY , m

0.4 −0.086 0.29 −0.042 0.31
0.8 −0.076 0.31 −0.044 0.33
1.6 −0.077 0.27 −0.029 0.29

of 1.6–1.8 m dominate. The results of numerical simulations with different numbers of particles
are quite similar. In all simulations there is a suspicious peak at λx = 0.9 m; it is possible that
the peak is connected with an unknown numerical artifact. If one supposes that the vortices
convect downstream with the average velocity Uc = (U1 + U2)/2 = 644 m/s, then the frequency
of occurrence of vortices rotating in the same direction is f = Uc/(2λx). The percentage of
vortices as a function of the frequency is shown in Fig. 9b. The most probable frequencies are
170–200 Hz.
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Figure 9. Distribution of distances along x between vortex centers (a)
and distribution of frequency of vortex occurrence (b)

It can be concluded that the number of test particles and, therefore, the level of statistical
noise have no impact on such characteristics of vortices as the distance between them and the
frequency of their occurrence. It looks reasonable because these quantities are connected with
parameters of the KH instability. They are determined by the wavelength of the most unsta-
ble disturbance and its frequency, respectively, i. e. by quantities that depend on mean flow
properties but not on the initial amplitude of disturbances. At the same time, the initial am-
plitude of disturbances should have impact on their amplitudes in successive cross-sections and,
consequently, on the intensity of vortex motion.

The vortex intensity can be measured for each frame as a difference between the maxi-
mum and minimum values of L. Time evolution of this parameter calculated over the range
36 m < x < 40 m in three simulations with different numbers of particles is shown in Fig. 10.
As can be seen, most of the time the vortex intensity is the largest in the simulation with
Np = 0.4 bln, and the smallest – at Np = 1.6 bln. The time averaged vortex intensity in this
cross-section is equal to 21.5, 17.4 and 13.95 for Np = 0.4 bln, 0.8 bln and 1.6 bln, respectively.
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Figure 10. Time evolution of vortex intensity for different numbers of model particles

Conclusion

A numerical study of the instability developing in a supersonic mixing layer of monatomic gas
(argon) is performed using the DSMCmethod, a particle-based method for solving the Boltzmann
transport equation. The computations are carried out with the SMILE-GPU software system
implemented on a hybrid multiple GPU/CPU computational cluster. No other flow excitation
except statistical noise resulted from the stochastic DSMC method is used. A new algorithm for
postprocessing and analyzing noisy computational flowfields is proposed and applied to extract
data on vortex motion in the unstable mixing layer.

The main features of the Kelvin–Helmholtz instability such as vortex formation and succes-
sive vortex pairings are reproduced in the DSMC simulations. It is shown that the number of
test particles used has no impact on instability parameters independent on the initial amplitudes
of flow disturbances but can substantially change the pulsation characteristics and the intensity
of vortex motion at a fixed distance from the mixing layer starting point.
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18. Görtler, H.: Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen
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The results of numerical investigations of hydrodynamic instabilities in rarefied flows ob-
tained using the kinetic approach are presented and discussed. The rarefied flow instabilities are
simulated using both statistical and deterministic methods to solve kinetic equations for the veloc-
ity distribution function. The Direct Simulation Monte Carlo method is employed for statistical
modeling of rarefied flows while the deterministic methods used are high-order finite-difference
schemes for solving the Boltzmann transport equation and model kinetic equations in a mul-
tidimensional phase space. Numerical solvers used for the simulations are run on multiple-GPU
clusters using CUDA platform and MPI communication interface. The development of instabilities
in compressible free shear flows such as a mixing layer between two parallel streams and a plane
jet in a coflow is considered. The Rayleigh–Taylor and Richtmyer–Meshkov instabilities induced
by external body forces are also simulated. The results of kinetic simulations are compared with
data from the linear stability theory and Navier–Stokes computations and it is shown that good
agreement is observed between kinetic and continuum approaches.

Keywords: DSMC method, the Boltzmann transport equation, model kinetic equations, mixing
layer, plane jet, the Rayleigh–Taylor instability, the Richtmyer–Meshkov instability.

Introduction

Fluid flow instabilities are a common physical phenomenon important for many problems in
science and engineering. They are usually considered on the basis of the continuum approach since
they happen at high Reynolds numbers and, therefore, low Knudsen numbers. However, in several
important cases, flow instabilities may emerge in conditions when the effects of flow rarefaction
are pronounced. Those cases include, for example, instabilities associated with the action of mass
forces (gravity force in the Rayleigh–Taylor instability and Rayleigh–Benard convection, inertial
force in the Richtmeyer–Meshkov instability). Flow instabilities may also emerge at low Reynolds
numbers in free shear flows (mixing layers, jets and wakes), flows with curved streamlines (such
as the Taylor–Couette flow) and, as an extreme case, in a collisionless medium with long-range
forces. Rarefaction effects may become noticeable at instability of high-speed flows. Numerical
simulation of such phenomena demands a step beyond the standard continuum approach based
on the Navier–Stokes equations and should be based on the molecular-kinetic description taking
into account atomistic structure of matter.

There is a number of kinetic approaches that can be used for this purpose: the Molecular
Dynamics (MD), the Direct Monte Carlo Simulation (DSMC), finite-difference methods that
solve the Boltzmann transport equation or its simplified versions, the so-called model kinetic
equations, on a grid in a multidimensional phase space. Since 1980s the MD and the DSMC were
applied to the simulation of the “stability switch” in problems of convection in the planar layer of
gas [1–4], and formation of the Taylor vortices in the cylindrical Couette flow [5–7]. The stability
switch means that, as a result of an instability, one steady flow is replaced by another but also
steady flow (“secondary flow”). Slightly later the stationary Taylor–Görtler longitudinal vortices
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in the curved mixing layer of a supersonic underexpanded jet were simulated by directly solving
the Boltzmann equation in the 6D phase space [8, 9].

However, in general, the instability development is connected with time dependent distur-
bances. Even if a steady secondary flow forms, unsteady processes will dominate in later stages
of the instability leading finally to transition to turbulence. Kinetic simulations of such compli-
cated unsteady phenomena require a huge amount of computer resources. It seems that the first
time-accurate kinetic simulation of a flow instability was performed in [10] where early stages of
the Kelvin–Helmholtz instability were simulated by solving the model kinetic equations.

In recent years, with increasing computer power, numerical investigation of flow instabilities
on the kinetic level has become an actively developing research field. Rarefied flow instabilities
were simulated using the MD [11, 12], the DMSC method [13–19] and deterministic solution of
model kinetic equations or, even, the Boltzmann transport equation [20–22].

In the current paper, we overview and discuss the results of numerical investigations of hydro-
dynamic instabilities in rarefied flows obtained in recent years in Laboratory of Computational
Aerodynamics at Khristianovich Institute of Theoretical and Applied Mechanics, Novosibirsk
(ITAM SB RAS). The numerical simulations have been performed with a number of numerical
kinetic techniques including both the statistical DSMC method and deterministic approaches for
solving kinetic equations in the multidimensional phase space. Navier–Stokes computations have
been undertaken for comparison and, sometimes, for parametric investigation.

All numerical codes used for these simulations are developed in the Laboratory and designed
for massive parallel computations on hybrid (GPU/CPU) computational clusters employing, for
parallelization, NVIDIA CUDA platform and MPI communication interface.

The problems simulated include instabilities of high-speed free shear flows – the Kelvin–
Helmholtz instability of a supersonic mixing layer, the instabilities developing in supersonic plane
jets with co-flow, the instabilities driven by body forces – the Rayleigh–Taylor instability of the
interface between heavier and lighter gases in a gravitational field, the Richtmyer–Meshkov insta-
bility developing on a contact surface after passing a shock wave. The instabilities in gravitating
collisionless media such as those presented in [23] are out of scope of this paper.

The remainder of the paper is organized as follows. In Section 1 the numerical solvers and
parallelization techniques used are reviewed. The results of numerical simulations of rarefied
flow instabilities are presented and discussed in Section 2. The study is briefly summarized in
Conclusion.

1. Solvers and Parallelization Techniques

In this section a brief description of the solvers used for the numerical simulations is pre-
sented. Although each solver is based on the different set of equations, they all are developed
using the same paradigm. The codes are written in C++ and use CUDA API to perform compu-
tations on GPUs. The domain decomposition technique is employed for parallelization and data
exchange between processors is performed via MPI library. Some details on code implementation
are given below.

1.1. Direct Simulation Monte Carlo Solver

Software systems of the SMILE family, namely SMILE++ and SMILE-GPU, are used in the
DSMC simulations. The former is a well-established numerical code which takes most of the ad-
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vantages of object-oriented programming including inheritance and encapsulation, and contains
a large variety of physical models [24]. It is based on the efficient majorant frequency scheme
for collisions and uses a nested octree-like Cartesian computational grid. Since the DSMC is a
particle-based method, the computational load depends directly on the number of model particles
in the simulation, conventional domain decomposition does not allow to divide the computational
load evenly. In the case of the SMILE++ code this problem is treated by distributing compu-
tational cells randomly across the CPUs, which yields relatively balanced computational times
and a good parallelization efficiency.

The SMILE-GPU code [25] is a high-performance version of the DSMC solver specifically for
hybrid architectures and is designed for large 3D computations. Computations on multiple GPUs
are performed using the domain decomposition approach along with adaptive load balancing. In
accordance with Direct Timing Load Balance algorithm [25], computational cells are periodically
(usually every 1000 time steps) redistributed between GPUs depending on the average wall clock
time spent by each GPU on the one iteration. The smaller the time of computation on a certain
GPU the more additional cells will be assigned to it at the next load balance correction. Usually
after 10–20 iterations of balance corrections it yields approximately 95–99% efficiency. It should
be noted that this algorithm works quite well even for unsteady flows.

1.2. Solver for Boltzmann and Model Kinetic Equations

Another computational code used for numerical simulation of rarefied flow instabilities is
based on finite-difference methods for kinetic equations governing the evolution of the particle
velocity distribution function. The code employs the method of discrete ordinates in the velocity
space and high-order TVD andWENO schemes for the spatial approximation. Intermolecular col-
lisions are taken into account using either the full multidimensional Boltzmann collision integral
or a simplified relaxation-type term. In the former case, the collision integral is evaluated using
the numerical techniques described in [26, 27]. In the latter case, the relaxation-type term can be
taken in the form corresponding to the BGK equation [28], the statistical ellipsoidal model [29]
or the Shakhov model [30]. The composite Simpson rule or the Gauss–Hermite quadratures are
used to evaluate integrals in the velocity space [31]).

The code is written in C++ programming language and implements CUDA API and MPI
library to run simulations on multiple GPUs. Decomposition of the computational domain in the
physical space is used to distribute the load between processor units [27].

1.3. Navier–Stokes Solver

To compare results of kinetic and continuum simulations, some Navier–Stokes computations
have also been performed. In these cases, the HyCFS-R solver for compressible flows of gas
mixtures [32] is used. The Navier–Stokes equations in general curvilinear coordinates are solved
on a multiblock structured grid using TVD and WENO shock-capturing schemes for spatial
discretization and Runge–Kutta TVD schemes for time advancement. The code is primarily
designed for hybrid CPU/GPU computational environments and its multilevel parallelization is
based on the domain decomposition used with CUDA API, OpenMP API and MPI protocol.
The domain is divided into separate partitions, each partition is assigned to a specific GPU and
then inter-partition exchange is carried out using either OpenMP if both blocks are located on
the same computational node, or using MPI library otherwise.
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2. Results of Numerical Simulations

2.1. Kelvin–Helmholtz Instability in a Mixing Layer

A mixing later between two parallel streams can be considered as a prototype of all free
shear flows such as jets and wakes. The Kelvin–Helmholtz (KH) instability [33] is the dominant
instability mechanism in the mixing layer at low convective Mach numbersMc = (U1−U2)/(a1+

a2), where U1, U2 are the velocities of two streams and a1, a2 are speeds of sounds in them. The
mixing layer is subject to the KH instability even at low Reynolds numbers.

The KH instability can be simulated as developing either in time or in space. In the former
case the flow in assumed to be periodic along the streamwise coordinate so that the mean flow
and disturbances evolve in time. In the latter case they develop spatially; this formulation is
closer to practice but more difficult to simulate numerically because it requires a much longer
computational domain.

Numerical simulations based on the kinetic approach are performed in both formulations.
DSMC simulations of the mixing layer are considered in the companion paper [34].

When the flow is simulated by solving the model kinetic equations, a computational grid in
4D (2 physical coordinate and 2 velocity components) phase space is used. It has been shown [31]
that for low-speed flows the Gauss–Hermite quadratures are particularly efficient for evaluation
of integrals in the velocity space. Numerical tests showed that the grid of 11 × 11 points in
the velocity space ensures integration of the initial flowfield with machine accuracy when the
temporal mixing layer is simulated at the convective Mach number Mc = 0.2 by solving the
BGK equation.

In these simulations, the mean flow velocity is taken as U(y) = tanh(y), the temperatures
of two streams are assumed to be equal, T1 = T2. An initial perturbation imposed on the mean
flow is a superposition of the fundamental harmonic (most unstable disturbance in accordance
with the linear stability theory) and its first and second subharmonics. The initial amplitudes of
the subharmonics are much smaller than that of the fundamental harmonic.

The main stages of the instability development include the initial growth and saturation
of the most unstable disturbance, the growth of the first subharmonic via the subharmonic
resonance mechanism, then the growth of the second subharmonic. The fast growth of two
subharmonics looks in the physical space as two successive vortex pairings. The process of vortex
pairing reproduced on the grid of 200 × 200 points in the coordinate space is shown in Fig. 1.

Figure 1. Vortex pairing in numerical simulation of the KH instability using the BGK kinetic
equation. Vorticity flowfields in three time moments. Mc = 0.2, T2/T1 = 1
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Figure 2a shows the time evolution of energies of the fundamental harmonic and two sub-
harmonics with the wave numbers α, α/2 and α/4, respectively. As a result of the subharmonic
resonance [35], the energy is pumped, first, from the fundamental harmonics to its subharmonic
and, then, from the first subharmonics to the second one. In the physical space it looks like
successive vortex pairings.

(a) Energy of harmonics as a function of time (b) Vorticity thickness as a function of time

Figure 2. Time evolution of the supersonic mixing layer

Figure 2b shows the so-called vorticity thickness δω = (U1 − U1)/(∂U/∂y)max as a function
of time. The peaks at t ≈ 290, 590 and 750 correspond to the time moments when interacting
pairs of neighboring vortices roll up around one another. Immediately after the vortex mergings
the vorticity thickness abruptly drops.

The kinetic simulation successfully reproduces all stages of the KH instability development
preceding the onset of 3D instability and transition to turbulence.

2.2. Instability of Supersonic Plane Jets in Coflow

A plane jet is another free shear flow unstable even at low Reynolds numbers. The linear
theory predicts [36] that, at subsonic convective Mach numbers, there are two unstable modes of
disturbances, the varicose (symmetric) mode and the sinuous (antisymmetric) mode. At higher
supersonic Mc there appear multiple new unstable modes connected with resonant reflection of
disturbances from the mixing layers bounding the jet. As a rule, the sinuous mode is the most
unstable one.

Two different cases are considered with the jet Mach numbers Mj = 2.5 and 4.5. In both
cases there is a parallel external coflow with the Mach number Ma = 1.5. The jet and coflow
temperatures are the same, so that the convective Mach numbers are equal to 0.5 and 1.5,
respectively. The Knudsen number based on the jet width at the inflow and the mean free path
in the coflow is 0.0058 in both cases.

The numerical simulations presented here are performed using the DSMC method. No initial
perturbations are imposed on the mean flow because it can be expected that flow disturbances
will develop from statistical fluctuations always present in DSMC simulations.

The SMILE-GPU code running on a computational cluster equipped with Nvidia Tesla V100
GPUs is employed for these simulations. For Mj = 2.5 the total number of test particles is 2 ·109
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and the computation is performed on 12 GPUs. The wall-clock time per iteration is equal to
0.7 seconds. The corresponding figures for the Mj = 4.5 case are 109 test particles, 8 GPUs and
0.5 seconds.

The computed flowfields sampled on the grid of 1000 × 400 cells and averaged over a small
time interval (equal to 200 time steps) are virtually indistinguishable from the results of Navier–
Stokes simulations. As predicted by the linear stability theory, the sinuous mode of instability
develops quite rapidly at the subsonic convective Mach number Mc = 0.5, see Fig. 3. Vortex
interactions and pairings are observed at early stages of the instability development. The mean
velocity profiles show that the jet mixing layers spread and meet one another, after that the
centerline velocity starts to decrease while the jet width grows. Near the outflow boundary,
the velocity on the jet axis reduces by about 1.5 times, and the mean velocity profile takes a
characteristic “bell-like” shape, typical for a developed jet flow.

Figure 3. Plane jet instability. Flowfield of concentration of particles issuing from the nozzle.
Mj = 2.5, Ma = 1.5

The antisymmetric mode also dominates at the supersonic convective Mach number
Mc = 1.5, see Fig. 4. The vortex structures forming in this case are larger in size, and the
breakdown of the jet column occurs at shorter distances from the nozzle exit. Weak oblique
shock waves radiated from the jet are generated by the vortex structures moving with a super-
sonic speed relative to the external coflow.

Due to inherently stochastic excitation the flow instability develops more naturally in DSMC
simulations than in computations with imposed artificial disturbances based on the determinis-
tic approach. Thus, locations of successive vortex pairings are not fixed but scatter over some
interval, so that the time-average jet width monotonically increases with the distance and does
not include such abrupt peaks and drops as in Fig. 2b.

2.3. Rayleigh–Taylor Instability

The Rayleigh–Taylor (RT) instability occurs when a heavier fluid in a gravitational field is
located above a lighter fluid. It is observed in a wide variety of natural phenomena and technical
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Figure 4. Plane jet instability. Density flowfield. Mj = 4.5, Ma = 1.5

applications, from supernova explosions and accretion of matter on black holes to inertial fusion,
the formation of oddly shaped clouds and the flow of liquid from an inverted glass. The RT
instability has been investigated in many theoretical, experimental, and numerical studies, see,
for example, recent comprehensive reviews [37, 38].

Figure 5. Rayleigh–Taylor instability. General scheme and computational domain geometry

We simulated numerically the RT instability developing in a rarefied Ar/He mixture in 2D
and 3D formulations using the SMILE++ and HyCFS-R codes to assess the effects of rarefaction
and non-equilibrium. A sketch of domain and general problem setup are shown in Fig. 5. A two-
layer system consisting of argon layer over a helium layer in a gravitational field is simulated.
The interface between gases at the initial moment of time is parallel to the X axis. Densities and
pressures on both sides of the interface are distributed at the initial moment in accordance with
barometric formulas.

The size of the computational domain is 100 × 100 m, the mean free paths in gases at the
interface are λHe = 2.8 × 10−2 and λAr = 8.8 × 10−3 m, and the densities are ρHe = 10−6 and
ρAr = 10−5 kg/m3, respectively. The pressure at the interface is p = 0.62 Pa. If the wavelength

A.A. Shershnev, A.N. Kudryavtsev, A.V. Kashkovsky, S.P. Borisov, S.O. Poleshkin

2024, Vol. 11, No. 2 71



of emerging disturbances (see below) is taken as a flow characteristic scale, then the Knudsen
number is Kn = 3.6 · 10−3.

In order to reduce the difference between the characteristic time of instability development
and the characteristic molecular times, the acceleration of gravity g is increased to 1000 m/s2.
The Atwood number At = (ρ1 − ρ2)/(ρ1 + ρ2) of the problem is equal to 9/11.

The DSMC computations are carried out using up to 60 million model particles, time step
is equal to 4 × 10−6 s, the flow macroparameters are averaged over 1000 time steps for total of
2 million time steps. The continuum computations are performed on a grid consisting of up to
8 million cells using 2nd order TVD scheme and 2nd order explicit RK TVD time integration
scheme.

Figure 6. Comparison of He molar fraction in DSMC and NS computations

Because of different types of disturbances used for initial flow forcing in kinetic and con-
tinuum computations, the instabilities emerge in slightly different ways and at different rates.
However, qualitative analysis shows that at the early stage of the instability development both
approaches predict similar wavelengths of emerging disturbances although at different time in-
stants. In Fig. 6 the molar fraction of helium is presented for both simulations. The white dashed
line indicates the original position of the Ar/He interface, and the black dashed line shows the
maximum amplitude of the spikes. As can be seen, the numbers of spikes are similar and their
shapes are roughly the same. So it seems that in both cases, instability waves corresponding to
the same fastest growing frequency develop from a wide spectrum of superposed disturbances.
In the DSMC computation, the spikes are considerably less uniform than in the continuum sim-
ulation because the DSMC method induces a high level of the macroparameters fluctuations as
mentioned above.

2.4. Richtmyer–Meshkov Instability

The Richtmyer–Meshkov (RM) instability develops when lighter and heavier fluids separated
by a contact surface are impulsively accelerated by a passing shock wave. It can be considered as
a Rayleigh–Taylor instability with the gravity force replaced by an inertial force acting during a
small time interval. This instability is important in astrophysics, controlled thermonuclear fusion,
supersonic combustion and many other areas [39].
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Numerical simulations of the RM instability are performed by solving the BGK model kinetic
equation, by using the DSMC method and on the basis of the Navier–Stokes equations. The Mach
number of the incident shock Ms is varied from 1.5 to 8, the density ratio across the contact
surface ρ2/ρ1 – from 2 to 10. The rarefaction degree is determined by the value of the Reynolds
number Re based on the wavelength of a sinusoidal perturbation imposed on the contact surface
at the initial moment or by the corresponding value of the Knudsen number Kn. The Reynolds
number is varied from 50 to infinity (in an inviscid continuum computation).

A typical pattern of the RM instability development is shown in Fig. 7 where the results of a
BGK simulation performed for a monatomic gas are presented. The computational grid contains
1200 × 300 points in the physical space and 33 × 33 points in the velocity space.

Figure 7. Richtmyer–Meshkov instability development in kinetic simulation at Ms = 1.5,
ρ2/ρ1 = 2, Re = 400, Kn = 0.041. Density gradient flowfields

As a result of the interaction with the passing shock wave, the contact surface begins to
move in the same direction. Simultaneously, the amplitude of the contact surface perturbation,
which is measured as a distance ∆xc between developing “bubbles” and “spikes”, starts growing.
At high Reynolds numbers, the secondary KH instability arises on the distorted contact surface
and the lighter and heavier gases are effectively mixed by emerging small-scale pulsations.

The results of kinetic simulations are in close agreement with each other. It can be seen in
Fig. 8 where numerical flowfields at the same time moment are compared. The largest deviation
of the molecular distribution function in the kinetic simulations from the equilibrium function is
predictably observed inside the shock wave.

The instability grows significantly faster at higher Mach numbers of the incident shock
wave. A higher density ratio across the contact surface also promotes the development of the
RM instability. As can be expected, the growth of perturbations is suppressed by rarefaction
effects. At lower Reynolds numbers (larger Knudsen numbers) the interface between two gases is
smeared and the secondary instability does not develop. Moreover, at the lowest of the Reynolds
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(a) Continuum simulation (b) Kinetic simulation

Figure 8. Density gradient flowfields in continuum (a) and kinetic (b) simulations
at Ms = 1.5, ρ2/ρ1 = 2, Re = 400, Kn = 0.041

numbers studied, Re = 50, the distance between spikes and bubbles stops growing after some
time, see Fig. 9.

Figure 9. Growth of amplitude of contact surface perturbation at various Reynolds numbers.
Ms = 1.5, ρ2/ρ1 = 10

Conclusion

Statistical and deterministic numerical methods for solving the kinetic equations currently
reached a level, at which it is possible to use them for numerical simulation of complex unsteady
flows associated with the emergence of hydrodynamic instabilities. The numerical simulations
can be performed now using a typical laboratory-level computational cluster, especially if it
is equipped with modern GPU hardware. In the presented results of computations based on
the kinetic approach the development of instabilities emerging in free shear flows or induced
by external body forces has been successfully reproduced. Good agreement is observed between
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kinetic and continuum approaches when continuum simulations are also performed. The most
interesting results are obtained using the DSMC method, because the statistical fluctuations
inherent to the method lead to scenarios of the instability development similar to the one observed
in experiments.
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The paper presents an overview of the CFD/CAA code NOISEtte. The code development

began in the 2000s. At first it was a research code intended for elaboration of new methods and

techniques in CFD and CAA. Nowadays NOISEtte is actively used as a means for solving numer-

ically various applied problems in aviation industry, turbomachinery, helicopter manufacturing,

and space rocket engineering. The code operates on mixed-element unstructured meshes, its nu-

merical algorithm is built on higher-accuracy finite-volume methods using quasi-one-dimensional

edge-based reconstruction of flow variables. It is well suited for simulating complex turbulent flows,

and especially for high-fidelity scale-resolving simulation of non-stationary turbulent flows using

novel RANS-LES methods. A remarkable feature of NOISEtte is its original parallel model, which

allows computing with high efficiency on modern supercomputers with arbitrary architectures

including CPU cores and GPU accelerators.

Keywords: CFD code, computational fluid dynamics, aeroacoustics, turbulent flows, scale-

resolving simulation, hybrid RANS-LES approach, mixed-element mesh, higher-accuracy method,

CPU+GPU, MPI+OpenMP+OpenCL.

Introduction

The last decade in Russia was characterized by rapid development of software as a means of

solving a wide range of applied problems in various industries. In particular, this trend is clearly

visible in industries related to high-speed gas-dynamic flows. Among the currently actively devel-

oping Computational Fluid Dynamics (CFD) codes we can note LOGOS [36], FlowVision [9, 35],

CADFlo [75], SigmaFlow [34], SINF/Flag-S [48], Platform INMOST [45], HyCFS-R [66], Ger-

bera [76], FlowModellium [55] and some others. These codes have different features and different

levels of universality.

The NOISEtte code development began in the 2000s. At first it was a research code used for

elaboration of new methods and techniques in CFD and computational aeroacoustics (CAA).

The code operates on mixed-element unstructured meshes, its numerical algorithm is built on

higher-accuracy finite-volume methods using quasi-one-dimensional edge-based reconstruction

of flow variables. It is intended for simulating complex turbulent flows and acoustic fields, both

near and far, associated with them.

From the beginning of its creation, the development of NOISEtte was focused on the ability

to work efficiently on various computing systems, which, in turn, were also actively developing.

The initial version of the code was written in FORTRAN and was intended for computations in

single-processor mode. Since then the NOISEtte has changed revolutionary. Its current version

is written in C++ using MPI, OpenMP and OpenCL frameworks for parallel implementation

on modern CPU-based, GPU-based and hybrid computing systems.

While remaining a research code, nowadays the NOISEtte is actively used for solving numer-

ically various applied problems in aviation industry, turbomachinery, helicopter manufacturing,

space rocket engineering, etc. Its specialization is high-fidelity scale-resolving simulations of
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complex non-stationary turbulent flows using novel hybrid RANS-LES methods. In the field of

simulating turbulent flows and aeroacoustics, the closest analogue of the NOISEtte within the

world of CFD/CAA software is ANSYS [11].

This paper presents for the first time an almost complete overview of mathematical mod-

els, numerical methods and computational technologies implemented in the NOISEtte. It also

provides representative examples of its use in solving applied problems involving simulations

of turbulent flows and assessment of the acoustic fields generated by turbulent flows including

when interacting with nearby solid bodies. Special attention is paid to the modular architecture

of the code and its efficient heterogeneous parallel model on the basis of which the NOISEtte is

being developed.

The paper is organized as follows. Section 1 presents mathematical models and numerical

methods implemented in the NOISEtte. Section 2 describes the code architecture and parallel

implementation. The simulation techniques the code is equipped with are outlined in Section 3.

The last Section 4 presents the simulation results of various validation and industrial-oriented

problems. Conclusion summarizes the results of the work.

1. Mathematical Models and Numerical Methods

1.1. Governing Equations

The basic mathematical model used in the NOISEtte package for calculating the flow of

viscous compressible heat-conducting gas is the system of Navier–Stokes equations, written in

the form of the laws of mass, momentum and total energy conservation.

To take into account the flow around rotating solid non-deformable bodies, the system of

Navier–Stokes equations is considered in a non-inertial rotating frame of reference. The rotation

of the axes of this reference frame occurs around a selected fixed axis with a time-independent

angular velocity vector ω with the magnitude equal to the rotation speed of the solid body.

With this description, the streamlined solid body remains motionless, and the direction of the

external flow changes in time depending on the azimuthal angle ψ = |ω|t.
We introduce the vector of conservative variables to write the system of Navier–Stokes

equations in the conservation laws form

Q = (ρ, ρu, E)T ,

where u = (u1, u2, u3)
T is the velocity vector in absolute frame of reference, ρ is the density,

E = ρu2/2+ρε is the total energy, ε is the specific internal energy, p = ρε (γ − 1) is the pressure

defined by the ideal perfect gas state of equation, the constant γ is the specific ratio.

Let us also introduce the linear tangential velocity vector V = (V1, V2, V3)
T = ω × r where

r is the position vector. Then the system of Navier–Stokes equations in a non-inertial rotating

frame of reference can be written in the following vector form [4]:

∂Q

∂t
+∇ ·

(
FC (Q)−FR (Q)−FD (Q,∇Q)

)
= S (Q,∇Q) . (1)

System (1) includes composite vectors FC , FR and FD, each component of which FC
i , FR

i

and FD
i in coordinate direction xi (i = 1, 2, 3) represents the convective transport, the rotation

transport and diffusion flux vectors, respectively. Operator (∇·) is the divergence operator.
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The convective transport and the rotation flux vectors are given as a function of the physical

variables ρ, u, p:

FC
i (Q) = (ρui, ρuui + pei, (E + p)ui)

T ,

FR
i (Q) = (ρVi, ρuVi, EVi)

T ,

(2)

where ei = (δi1, δi2, δi3)
T is the row-vector of the identity matrix and δij is the Kronecker symbol.

The diffusion flux vector is defined as a function of physical variables and their gradients as

FD
i (Q,∇Q) = (0, τi1, τi2, τi3, τijuj + qi)

T , (3)

where the components of the viscous stress tensor τij and the heat flux vector qi can be written

as follows:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, qi =

µ

Pr

∂ε

∂xi
, (4)

where µ is the molecular viscosity coefficient, Pr the molecular Prandtl number.

Vector S (Q,∇Q) is a source term describing the influence of the external forces that are

not related to the transfer processes of the target variables Q:

S (Q,∇Q) = (0 ,−ρ (ω × u) , 0)T . (5)

It should be noted that, from the standpoint of an observer in the stationary frame of

reference, the system of equations (1)–(5) describes the evolution of conservative variables due

to their transport in the rotating (with velocity V ) media, the pressure gradient and the velocity

vector turn to the angle equal to |ω| t (implemented by the term −ρ (ω × u) in the momentum

equation). Note that in the numerical implementation of this system, the rotation velocity can

be interpreted as the velocity of moving mesh.

1.2. Turbulence Modeling

The numerical algorithm in the NOISEtte code includes both time-averaged and scale-

resolving approaches based on the system of Navier–Stokes equations for simulation of turbulent

flows. The former considers the Reynolds-Averaged Navier–Stokes (RANS) equations with the

Boussinesq eddy viscosity assumption as a closure. Several semi-empirical differential turbulence

models introducing up to four additional equations are implemented. They include the Spalart–

Allmaras [72] (SA) and the Menter SST [52] (two equations) models. Also, a few SST-based

laminar-turbulent (LT) transition models, both differential (the four equations Langtry–Menter

γ − R̃eθ,t [49] and one-equation γ [54]) and algebraic (LCTM [53] and KD-SST [74]) models are

realized [51].

The set of sub-grid scale (SGS) models for Large Eddy Simulation (LES) implemented in

the NOISEtte includes the Smagorinsky [71] and several modern enhanced LES models: WALE,

σ models [58]; S3PQR models [78].

We mostly use hybrid RANS-LES methods (HRLM) for scale resolving simulations in prac-

tice, thanks to optimal combination of accuracy and reduced computational cost [39]. Recent

versions [43, 69], along with the original ones, of the Detached Eddy Simulation (DES) are real-

ized. They are equipped by grey-area mitigation (GAM) [56] techniques for accelerating RANS-

to-LES transition in shear layers. The GAM techniques are based on combinations of dynamic

NOISEtte CFD&CAA Supercomputer Code for Research and Applications

80 Supercomputing Frontiers and Innovations



adapting sub-grid scales and/or alternative LES models (e.g., σ [58] or a S3PQR model [78]). A

few enhanced dynamic sub-grid scale models are implemented: ∆̃ω, ∆SLA [56, 69]; ∆lsq [62, 79].

All sub-grid scale models, both static and dynamic, are realized [29] in accordance with the edge-

based methodology utilized in the NOISEtte . Also, a DES version with enhanced boundary layer

protection, namely, ZDES mode 2 EP [23], is implemented and being used for scale-resolving

simulation of turbulent flows.

Scale-resolving simulation often demands plausible turbulent pulsations upstream sensitive

regions of configurations under investigation, especially when attached or mildly separated flows

are considered. We impose artificial turbulence pulsations for these cases using the synthetic

turbulence generator (STG) [68] either on inlet boundaries or in a form of a distributed volume

source [67] (VSTG).

1.3. Higher-Accuracy Reconstruction-Based Methods

NOISEtte is a vertex-centered code on unstructured meshes. A 2D mesh may consist of

triangles and quadrilaterals. In 3D, tetrahedra, quadrilateral pyramids, triangular prisms, and

hexahedra mesh elements are allowed. A quadrilateral face of a 3D element is not assumed to

be planar.

A numerical solution is prescribed by the set of conservative variables at mesh nodes. For

the discretization of the convective terms, the family of edge-based reconstruction (EBR) finite-

volume schemes is used. Initially developed for smooth problems [2], they were generalized to

shock-capturing methods [13] and adapted for high-Reynolds number flows [14].

Like in other high-accuracy finite-volume schemes, the numerical fluxes are defined by a Rie-

mann solver applied to reconstructed values. The main feature of EBR schemes is the quasi-one-

dimensional reconstruction. Its computational costs are much lower compared to finite-volume

methods with the polynomial reconstruction. On unstructured meshes, the EBR schemes are at

most 1-exact. However, on uniform grid-like meshes (both hexahedral, prismatic, and tetrahe-

dral) they reduce to high-order finite-difference methods. For problems involving discontinuities

or shocks, WENO approach is adapted to the EBR paradigm, as well as many classical slope lim-

iters. The following numerical fluxes are implemented: Local Lax–Friedrichs (or Rusanov) [50],

HLLE, HLLC [77], Roe [64], Roe with a low-Mach preconditioner [42].

Scale-resolving simulation of turbulent flows using HRLM methods (e.g., DES) is effective

and resilient when a hybrid scheme for convective fluxes is applied. It is needed to maintain

both stability of the solution and low level of numerical dissipation in LES regions. The hybrid

scheme uses the adapting blend of the central-difference (CD) and upwind schemes based on

an extended numerical stencil with the special hybridizing function [44]. The hybrid version

of EBR scheme [28], along with CD and upwind, can involve local flow-dependent WENO-

reconstructions when subsonic and supersonic flows with shocks are considered.

For the discretization of the diffusion terms, the standard P1-Galerkin method and the

method of averaged element splittings (AES) are used [15]. On simplicial meshes, they coincide.

On Cartesian hexahedral meshes, AES yields the 7-point approximation of the Laplace opera-

tor (the P1-Galerkin method yields the 27-point approximation). On non-Cartesian hexahedral

meshes, both methods yield the 27-point approximation. However, the difference between them

is revealed when using implicit time integration for high-Reynolds number flows. For AES, we

keep only edge-connected nodes in the portrait of the flux Jacobian. This significantly reduces

the memory storage and the computational costs with marginal effects on the timestep size and
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on the stability of the computation. Our numerical experiments show that this is not possible

for the P1-Galerkin method [15].

For the time integration, backward differentiation formulas BDF1 and BDF2 are used. To

solve nonlinear algebraic systems, a simplified Newton method is used, and the linear systems

are solved using the BiCGStab solver [65]. Explicit Runge–Kutta schemes (up to 4th order) are

implemented as well.

2. Software Architecture and Parallel Computing

The code is written in C++ using MPI, OpenMP and OpenCL frameworks for parallel

implementation. It consists of a core computational library and connectable functional modules

that are linked to console applications for preprocessing, running simulations, and postprocessing

results (Fig. 1). The code is designed for maximum portability and can be used on Windows

and Linux, on a wide range of computing systems from workstations to hybrid supercomputers.

It has been tested on various computing architectures, including multicore CPUs (Intel, AMD,

IBM, ARM, Elbrus), manycore accelerators (Intel Xeon Phi KNC, KNL), GPUs (Intel, AMD,

NVIDIA), systems on a chip combining central and graphics processors.

NOISEtte-Core – main library with basic simulation functionality

Core Numerics

Numerical methods, simulation algorithm

Simulation

Flow

Solver

Executable

Plug-in Modules

MPI parallel module OpenCL parallel module

Mixing Plane

Linear Acoustics

Base 

infrastructure

Lineal Solvers

Preprocess

CommScheme

MPI preprocess
Mesh

processing

Postprocess

Averaging

Spectral Mesh Functions

FWH

Sliding mesh Incompressible Flows

Gas Eq. of State

NLH module

Wall Functions

Cell-Centered Schemes

Sponge Layer

Mesh Motion

IBC module Mesh Adaptation

Turbulence

DES LES SGSRANS STG

Interpolation

Multigrid

Figure 1. Code structure diagram

In order for the code to be used as a research platform for development of new numerical

methods and models, it is important that new functionality can be easily added. Therefore,

most components of numerical technology such as reconstruction of variables, Riemann solvers,

viscous terms, turbulence models, source terms, etc., allow extending the set of implemented

options or replacement with an external implementation. On the other hand, with such a modular

architecture, redundant functionality can be easily removed from the assembly, which allows us

to obtain configurable problem-specific solutions.

Since the NOISEtte code is designed primarily for high-fidelity, resource-intensive super-

computer simulations, the efficient use of modern hybrid high-performance computing systems
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is crucial. For this purpose, the computational algorithm is based on hierarchical multilevel par-

allelization. At the top level, the MPI standard is used to couple multiple nodes of a cluster

system. Then, second-level mesh partitioning is used to further distribute the workload among

computing devices of hybrid cluster nodes, such as CPUs and GPUs. MPI parallelization uses

asynchronous, non-blocking exchanges and allows communications to be hidden behind com-

putations to improve parallel efficiency, which is especially important for GPU computing. To

reduce the data transfer overhead, multi-threaded message processing is used as well.

At the next level, the OpenMP standard is used for multi-core central processors and many-

core accelerators. OpenMP parallelization is also based on multi-level mesh partitioning: subdo-

mains of computing devices are further decomposed among parallel threads. To eliminate race

conditions between threads, the interface zones between threads’ subdomains are separated and

moved to the next level, where a similar partitioning is applied.

Finally, the OpenCL open standard is used for massively parallel accelerators such as GPUs

(and can be used for CPUs as well). The implementation supports an automatic testing proce-

dure that ensures consistency of each kernel in use for a particular case, overlapping exchanges

and computations, and flexible configuration for different types of devices.

More information about our parallel technology can be found in [39]. The heterogeneous

parallel algorithm and its implementation are described in detail in [38], where the parallel

efficiency and performance on various supercomputers is presented.

The parallel capabilities can be summarized as follows. On CPU-based supercomputers,

at least several tens of thousands of cores can be efficiently used, provided that there are no

less than about 5–10 thousand mesh nodes per core. On GPU-based supercomputers, at least

dozens of GPUs can be used (perhaps, hundreds, but we have never tested that much), provided

that there are at least 0.5–1 million mesh nodes per device, depending on a model. The practical

equivalent of performance obtained from a modern GPU compared to a modern server processor

is around 100–200 cores. For a large number of devices, this can be around 300 CPU cores per

GPU device due to better parallel efficiency at the MPI level. For instance, 36 NVIDIA V100

GPUs perform as fast as about 10 thousand CPU cores (dual-CPU nodes with 24-core Intel

Xeon Platinum) on a mesh of about 80 million nodes.

3. Simulation Technologies

3.1. Multigrid Convergence Accelerator

Although the NOISEtte code is focused on time-accurate high-fidelity simulations, it can

also be used in stationary RANS simulations in industrial applications. For this purpose, the code

is equipped with a full approximation scheme multigrid (FAS MG) convergence accelerator [40].

The FAS MG speeds up RANS simulations by an order of magnitude by using 2–3 mesh levels

created by uniformly refining the coarse mesh and smoothing the refined ones [41]. In Fig. 2,

an example of RANS simulation acceleration is shown. It shows comparison of runtime on a

single mesh of about 20 million cells with a multigrid-accelerated simulation with 3 mesh levels.

The test case is a multistage axial compressor, the simulation is running on a single 32-core

CPU AMD EPYC 7542. The resulting acceleration is about 15 times. It should be noted that

in this case the NOISEtte code has outperformed the Numeca FINE/Turbo problem-oriented

commercial code (used as a reference) by a factor of ×1.7.
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Figure 2. Multigrid convergence acceleration example: input and output fluxes

(in relative values compared to the reference value) of a multistage axial compressor

on a mesh of about 20 million nodes

3.2. Dedicated Turbomachinery Techniques

Turbomachines (compressors and turbines) are characterized by the presence of many closely

located blade rows which rotate relative to each other. So, the flow in turbomachines is fun-

damentally unsteady in nature and characterized by many interacting harmonics. The distance

between adjacent rows is usually very low (about 5–50% of the blade chord), so their interac-

tion can be significant. However, the main aerodynamic characteristics of turbomachine units

(mass flow rate, total pressure ratio, efficiency) can be obtained considering only the steady

component of the rows interaction. The Mixing Plane (MP) technology [24] for matching the

flows on (rotor-stator) interfaces between rows was designed to meet these objectives. It as-

sumes the absence of circumferential flow non-uniformity in one of the matching rows when

determining characteristics in the other, and vice versa. The use of the MP significantly reduces

computational cost of turbomachines’ simulations since it allows using only one vane channel

(the vane wheel periodicity sector) per row for computation. The MP technique is implemented

in the NOISEtte and successfully validated [26] on a set of relevant turbomachinery problems.

It ensures conservation and low-reflection properties. The MP approach is realized within the

parallel framework of the NOISEtte supercomputer simulation code.

3.3. Sliding Meshes

The sliding meshes approach is used for the direct simulation of the governing equations

when two or more mesh parts move relative to each other.

In our implementation [5], each interface between these parts is either a planar solid of

revolution (“base”) or a lateral surface of a finite circular cylinder (“side”). These interfaces

appear naturally for axial and centrifugal fans, correspondingly. In the first case, an unstructured

triangular mesh should be used on the interface. In the latter case, the interface should be meshes

by a Cartesian (in cylindrical coordinates) generally non-uniform mesh.

The interfaces split the computational domain into several parts, and they do not change

in time. Each part is represented as a union of control volumes, which do not deform. In case

of the “side” interface, a control volume near a circular cylinder is no longer a polyhedron but

a curvilinear object. Control volumes never overlap and their shape is well-defined.
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A sliding interface introduces a strong irregularity to the mesh, so a linear reconstruction is

a good trade-off between the accuracy and robustness. The use of a slope limiter is recommended

even for shock-free problems.

3.4. Wall Functions

Although RANS, hybrid RANS-LES, and DES approaches significantly reduce the near-wall

mesh resolution requirements as compared with the direct numerical simulation, the cell size re-

strictions remain severe. Mesh resolution restrictions in the near-wall region can be considerably

reduced by applying wall function methods. To provide near wall accuracy a few types of wall

function methods are realized in the NOISEtte code.

The first one is a traditional approach, where the no-slip boundary conditions on the wall

is replaced by a matching condition between the outer turbulent boundary layer and the wall

function solutions at the exchange locations at the mesh points nearest to the wall. In this case,

the exchange location, expressed in terms of normalized coordinate, varies from node to node

and depends on a first near wall cell size [25]. It demonstrates high efficiency in a case of zero

pressure gradient flows and also is applicable for flows with the adverse pressure gradients but

with some restrictions.

An alternative wall function formulation in terms of a differential wall-stress boundary

condition admitting transfer of shear stress from the outer region of the boundary layer to the

wall has been recently proposed and implemented in the code. The developed penalized wall

function (PWF) method completely eliminates the need to explicitly determine the position

of the exchange location, as well as to interpolate the solution to this location [80, 84]. A

characteristic-based volume penalization method is used to transfer the friction velocity to the

wall, and the exchange location is specified implicitly by a localized source term in the boundary

layer equation that is written as a function of the normalized distance to the wall. The wall shear

stress, in turn, is determined by solving an auxiliary equation for the wall stress imposing the

analytical wall function solution through the characteristic-based volume penalization method.

This approach reduces the system of differential equations with nonlinear algebraic constraints

for the matching condition to a system of equations with a differential feedback loop provided

by characteristic penalization functions. The PWF method is successfully generalized to flows

with separation [81].

The provided methods are applicable with Spalart–Allmaras and k − ω RANS turbulence

models.

3.5. Immersed Boundary Method

The immersed boundary method (IBM) makes it possible to avoid the cost and difficulties

related to the construction of meshes and set boundary conditions on the surface of solid bodies

without positioning mesh nodes on the boundary of the obstacles, which greatly simplifies the

construction of the computational mesh, which is then solved in the entire domain of the problem

definition, including the rigid body. In the NOISEtte code the influence of an obstacle on the flow

could be mimicked by the Brinkman volume penalization (BP) method [8, 83] or Characteristic-

Based Volume Penalization (CBVP) method [3, 7]. These methods correspond to a separate

subclass of IBM, in which the effect of the presence of an obstacle is modelled by introducing

additional terms in differential equations that describe the evolution of a liquid or gas flow, after
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which the modified equations are discretized and solved using an appropriate computational

method.

In the BP method the obstacle is modelled as a porous medium with low permeability [10].

The formulation utilizes Brinkman-type penalization terms applied to the momentum and energy

equations inside of the obstacle. One of advantages of the BP method is the ability to control

the error through the penalization parameter with the proven convergence of the solution of

the penalized Navier–Stokes equations to the exact solution in the limit when the penalization

parameter tends to zero. The BP method, despite its ability to rigorously control the error of

the solution, is limited to problems with Dirichlet boundary conditions.

The CBVP method [20] exploits the hyperbolicity of characteristic-based forcing terms to

impose general homogeneous and inhomogeneous Neumann and Robin boundary conditions.

The penalized Navier–Stokes equations are solved to simulate flow around obstacles. In the

solid region the hyperbolic penalization equations are solved to propagate the solution from the

surface along the inward-pointing characteristics that enforce the desired value of derivative with

an a priori defined accuracy. The CBVP method maintains rigorous control of the error through

a priori chosen parameters for all type of boundary conditions.

The aforementioned methods could be used for modeling of flow in the presence of obstacles

moving under influence of external or induced forces [83].

3.6. Far Field Acoustics

We use the Lighthill acoustic analogy in the form of a modified version of the integral

Ffowcs Williams and Hawkings (FWH) method [33] in terms of retarded times based on formu-

lation 1A as proposed by Farassat [31] to predict far-field acoustics. The technology considers

accumulation of the data for further acoustical postprocessing on control surfaces excluding the

“quadrupole” volume terms. Control surfaces could either coincide with solid boundaries (solid

control surfaces) or be located in the flow (permeable control surfaces). The latter is mostly

used in practice. We apply additional techniques which enhance the results, e.g., reduce spuri-

ous non-physical noise. They involve usage of multiple nested permeable control surfaces with

consequent averaging the results over closing surfaces located downstream [70] and/or lateral

surfaces [46]. Also, the density-by-pressure substitution assuming the isentropic relations [73]

may be applied. The program implementation of the acoustical postprocessor has combined

MPI+OpenMP parallelization.

The case of a permeable control surface near a rotor requires a special treatment. If the

control surface is moving with the rotor, then the velocity of its points may approach or exceed

the sound speed, especially if the background flow is present. In this case the formulation 1A

fails, and a much more complex formulation (for instance, the emission-surface formulation [19])

is required. In order to avoid these difficulties, to predict the rotor noise, we use axial symmetric

control surfaces. Then the motion of the control surface reduces to a straight movement, which

is usually subsonic. The rotation of the control surface is replaced by a simple 1D interpolation

in the angular variable [12].

3.7. Arbitrary Lagrangian-Eulerian Approach

The NOISEtte package implements the Arbitrary-Lagrangian-Eulerian approach (ALE) to

constructing schemes for the moving hybrid [16]. The movement of the mesh involves recomput-
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ing the new position of all the nodes and rebuilding the finite (control) volumes at each time

step.

The basic equation defining the finite-volume ALE scheme was obtained by integrating the

equation (1) over a moving arbitrary control volume C(t) using the Gauss theorem for the

integral of the divergence of the transport fluxes and then applying the Reynolds transport

theorem to the integral from the partial derivative with respect to time.

Let C(t) be a computational cell on a given mesh with volume |Ci(t)| and Q̄i the integral

average of Q(t) over this cell. Then

d

dt

∫

Ci(t)

Q dV =
dQ̄i|Ci(t)|

dt
, |Ci(t)| =

∫

Ci(t)

dV, Q̄i =
1

|Ci(t)|

∫

Ci(t)

Q dV

and the basic equation of the ALE method can be expressed as follows

dQ̄i|Ci(t)|
dt

+

∫

∂Ci(t)

FC (Q) · n dS −
∫

∂Ci(t)

Q (V + V c) · n dS =

=

∫

Ci(t)

FD (Q,∇Q) dV +

∫

Ci(t)

S (Q,∇Q) dV,

where ∂Ci(t) is the boundary of cell, n is the unit external normal to the boundary ∂Ci(t), V c is

velocity of the boundary of the moving cell.

An important requirement for an ALE scheme is the fulfillment of the geometric conservation

law (GCL). The article [16] provides conditions for executing GCL for the explicit Runge–Kutta

methods and for the implicit schemes of the first and second order. The condition for the GCL

property to hold for an implicit first-order scheme is similar to the condition from the article [59],

where it is provided only for a simplicial mesh.

3.8. Elastic Mesh for Cyclic Pitch Control and Other Small Displacements

In the NOISEtte code the method of deformation of an unstructured hybrid mesh for sim-

ulating the flow near solid bodies performing small movements (according to external laws or

under the action of aerodynamic forces) is implemented. The proposed method is based on the

use of an auxiliary strand mesh, “tied” to a limited area of the computational mesh. Along

each strand, a one-dimensional compression-tension problem is solved to ensure smooth resizing

of mesh elements. Within the approach the computational mesh is divided into three disjoint

subdomains Ω1, Ω2, and Ω3 (Fig. 3a).

Domain Ω1 contains a moving object, the mesh nodes included in Ω1 move with this solid

body, and the mesh elements do not deform. Domain Ω1, as a rule, contains a boundary layer

resolution zone, the deformation of which can affect the quality of the mesh and, accordingly,

the calculation as a whole. Domain Ω3 contains all nodes located far from the surface of the

body that must remain motionless. Domain Ω2 lying between them is the deformation region,

in which the nodes of the computational mesh of an arbitrary structure are redistributed in

accordance with the law of the bodys motion so that at small displacements the mesh retains

its original topology and the quality of the elements and ensures a smooth change in the size of

the cells between regions Ω1 and Ω3.
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(a)

(b)

Figure 3. Deformation method: deformation zones (a) and mesh deformation example (b)

The efficiency of the method is demonstrated by solving two-dimensional and three-

dimensional problems of simulating the flow around isolated moving bodies of simple config-

uration [17].

The proposed method allows to simulate turbulent flow near moving solid bodies and appli-

cable for modelling a wide range of problems such as oscillating airfoils and wings, hinged rotor

blades movement with pitch control, etc.

4. Applications

4.1. Jet Flows

The NOISEtte scale-resolving algorithm has been successfully applied for simulations of

turbulent jets. Both near-field aerodynamics and far-field aeroacoustics were evaluated during

the investigations. The latter is strongly sensitive to resolving and dissipative features of a

numerical algorithm in use.

The subsonic (Mjet = 0.9) immersed round jet was considered in [28, 29, 62], where different

sides of scale-resolving simulation of jets were evaluated, including numerical schemes and GAM

properties of the HRLM approaches in use. The scale-resolving algorithm realized in NOISEtte

has demonstrated a possibility to provide sufficient accuracy on rather coarse meshes. The grid

convergence was demonstrated in [29] for the set of meshes containing from 1.5 to 33 million

nodes. Figure 4 demonstrates the results obtained using DDES+∆SLA.
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Figure 4. Subsonic turbulent jet: flow visualization (a) and mesh convergence results

for the DDES+∆SLA, both aerodynamics (b) and aeroacoustics (c)
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Turbulent round jets with shocks were also simulated using the NOISEtte. The underex-

panded hot round jet was considered in [28]. The far-field noise results obtained on a rather

coarse mesh (about 4.5M nodes) are in a good agreement with the reference data (experimental

measurements and the computation using a structured research code). The paper [27] presents

the results of near-field characteristics of the dual-stream jet (slightly underexpanded supersonic

at the bypass duct and subsonic at the main duct). They are close to the experimental values

as well.

4.2. Transonic Flows

The NOISEtte scale-resolving algorithm has been successfully applied for simulations of

transonic turbulent flows. They include simple scientific configurations and complex industry-

oriented turbulent flows. Simulations of the M219 cavity were used [22] for analysis of self-

oscillation processes in open cavities. The supersonic flow over the inclined back-facing step

(BFS45) [27] was successfully simulated using the NOISEtte scale-resolving algorithm. Figure 5

demonstrates the results of computations validated using the experimental data available for

this benchmark test case. The meshes containing 15M and 108M (denoted as “refined”) were

used for simulations.

(a)
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(b)

Figure 5. BFS45: the instantaneous field of density gradient magnitude

(“numerical” shchlieren) superimposed on the experimental photo (a)

and averaged static pressure distribution over the surface (b)

The NOISEtte was used to solve industry-oriented problems considering simulation of tran-

sonic turbulent flows. Among variety of studied flow characteristics, pressure loads on solid

surfaces of a space rocket under different flow regimes were investigated (see Fig. 6).

Figure 6. Space rocket: flow visualizations

(isosurfaces of Q criterion colored by Mach number levels)
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4.3. Airframe Flows

To assess the ability of the NOISEtte code to reproduce aerodynamics of an airframe during

landing, we use the test case of the 4-th AIAA CFD High-Lift Prediction Workshop (HLPW4) [1].

This test case is based on the experimental data obtained in QinetiQ Low-Speed Wind Tunnel

for the 10%-scale NASA Common Research Model in High-Lift configuration (CRM-HL) [30].

Surface distributions of pressure coefficient obtained by RANS SA simulations on common work-

shop meshes demonstrate decent agreement with the corresponding experimental values (Fig. 7).

(a) Location of pressure tap

rows
(b) Row A (c) Row F

Figure 7. HLPW4 test case: simulation results (M = 0.2, Re = 5.49× 106, αcorr = 7.05◦)

We use the well-known 30P30N validation case [57, 60, 61] to test our code on solving

airframe noise problems [37]. The considered geometry is unswept wing segment based on the

three-element 30P30N airfoil in high-lift configuration (Fig. 8). We perform scale-resolving sim-

ulation using IDDES method and accumulate history of pressure pulsations in the points defined

by experiment setup. Comparison between corresponding numerical and experimental spectra

shows their reasonable agreement.

(a) Instantaneous flow field (b) Spectra at Point 6 (red arrow)

Figure 8. 30P30N test case: simulation results (M = 0.17, Re = 1.7× 106, α = 5.5◦)

After testing the NOISEtte code on validation cases related to aerodynamics and aeroa-

coustics of an airframe, we apply it for numerical assessment of noise generated by the wing

of supersonic business jet (SSBJ) during landing. Example of analogous study can be found

in [32, 47, 63]. We modelled the flow around half of full-scale SSBJ airframe prototype in high-

lift configuration using DDES method on hybrid unstructured mesh contained 62 million nodes

and 220 million cells with the zone of increased mesh resolution above the wing surface (Fig. 9).

During computation data is stored on FWH surface and at some near-field points to monitor

simulation state and to localize preliminarily the most prominent noise sources. When required

amount of data is accumulated, the FWH method is applied to obtain noise properties in the
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far-field. To perform this simulation (including data accumulation stage), 24 GPUs were used

for 3–4 days of pure computational time.

(a) Instantaneous flow field

(iso-surfaces of Q-criterion = 5000 [1/s2])

(b) Far-field noise spectra on

circle with radius of 150 m

Figure 9. SSBJ case: simulation results (M = 0.2, Re1m = 4.6× 106, α = 10◦)

4.4. Helicopter and Drone Rotors

The methods described above were applied for simulating the turbulent flow around rotor-

craft rotors and calculating its aerodynamic and acoustic characteristics.

Validation of the developed technique is carried out by simulating the turbulent flow around

the Caradonna-Tung rotor, the KNRTU-KAI four-blade model rotor in hover mode, tail rotor

in duct, rigid main rotor in forward flight regime, and the turbulent flow and far-field acoustics

of unmanned aerial vehicle (UAV) rotor. The numerical results are compared with the available

experimental data.

The first case was modelling of flow near the two-bladed Caradonna-Tung rotor [21]. The

RANS simulation results are in good agreement with experiment: the overall flow field (Fig. 10a),

the pressure coefficient distribution (Fig. 10b) and tip vortex evolution (Fig. 10c) are in good

agreement with the experiment.

In the second case the experiment performed in the Kazan Aviation Institute (KAI) was

reproduced in the numerical experiment. The near flow around scaled model of the four-bladed

rotor was modelled where the acoustics in near field was measured in the set of probes (Fig. 11a).

The pressure pulsation predicted in the numerical simulation fits in the experimental one taking

into account their scatter (Fig. 11b, 11c).

The third case was devoted to the numerical simulation of flow around the rigid helicopter

main rotor in forward flight [6]. The numerically obtained aerodynamic characteristics of the

main rotor were compared with the data of physical experiment. The locations of the cores of the

tip vortices repeat the trajectories of the blade tip motions with account for rotor rotation and

the oncoming flow. Such tip vortices behavior was successfully reproduced within the numerical

experiment. In Fig. 12a the trajectories of the tip vortices visualized by iso-surfaces of Q-criterion.
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Figure 10. Caradonna-Tung rotor simulation results
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Figure 11. KAI rotor near-field acoustics simulation results

The normal force coefficient profile along the blade span for azimuth 90◦ is shown in Fig. 12b.

It fits well both with experiment data and numerical simulation performed using commercial

CFD package.

The comparison of the pressure difference measured at two characteristic points on the

leading edge of the blade were considered. It shows that the values predicted in the numerical

experiment are rather accurate (see Fig. 12c).

(a) Tip vortices trajectories
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Figure 12. Rotor in forward flight numerical simulation results
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The fourth case represents simulations of turbulent flow around a two-bladed rotor of a

small-scale UAV [18]. Rotor aerodynamics and near-field acoustics were modeled using both

RANS and scale-resolving hybrid RANS-LES approaches (see Sec. 1.2). The far-field acoustics

were evaluated using the integral Ffowcs-Williams and Hawkings method described in Sec. 3.6.

The numerical results were compared with the available experimental data.
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Figure 13. Small-scaled UAV rotor simulation results

The simulations were carried out using hybrid supercomputer using several dozen GPUs with

techniques described in Sec. 2 . The performed computational experiments using the RANS and

IDDES methods confirmed that both approaches are capable to predict aerodynamics and tonal

noise of an isolated UAV propeller in hover with acceptable accuracy. The good agreement for

propeller thrust is well seen in Fig. 13a. Both RANS and IDDES gives good accuracy for first and

second tones of blade passing frequency (BPF) (Fig. 13b). At the same time the scale-resolving

approach is more accurate in prediction of first BPF tone amplitude for the whole azimuthal

directions range (Fig. 13c).

4.5. Turbomachinery

The turbomachinery cases considered while testing the realization of the MP technology [26]

include single rotor (e.g., Rotor67), axial turbines, axial and centrifugal compressors. The results

of simulations are well-compared both with reference data (mostly integral characteristics) and

the results obtained using commercial turbomachinery-oriented CFD software packages, such as

Cadence (former Numeca) FINE/Turbo.

Figures 14a and 14b demonstrate the results of computation of the Rotor67 test case. Head-

capacity characteristics (dependence of efficiency η on mass flow rate G) for this configuration are

presented in Fig. 14b. It is seen that the results with usage of the MP (upstream and downstream

the rotor) correlate well with the experimental data, results of simulations using the Cadence

FINE/Turbo commercial CFD software, as well as with the results obtained without rotor-stator

interfaces.

Figure 14c presents the relative Mach number field for 1.5 stage of the axial compressor case.

The NOISEtte results are well compared with those provided using the Cadence Fine/Turbo

(see [26] for details).
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Figure 14. Turbomachinery test cases: Rotor67 flow visualization (a) and head-capacity

characteristics (b); visualization of flow in an axial compressor (c)

Conclusion

The paper presents quite a complete overview of the CFD/CAA supercomputer code

NOISEtte. It provides a brief description of the mathematical models, numerical methods and

computational technologies implemented in the code. Notable qualities of the code include the

use of lower-cost higher-accuracy numerical methods on unstructured meshes (i), a focus on high-

fidelity simulations of complex non-stationary turbulent flows (ii), the developed techniques to

retrieve and analyze far acoustic fields (iii), and an effective heterogeneous parallel model that

allows to run computations with high efficiency on modern high-performance computing systems

with different architectures (iv). The paper specially contains many references to the authors’

publications, which provide an opportunity to get a deeper insight into the implemented algo-

rithms.
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