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Special Issue on
“Sustainable Ultrascale Computing Systems”

The ever-increasing presence of digital data and computers requires pushing for new levels

of scalability and sustainability of computing systems in order to address the huge data and

processing requirements of the near future. Systems need are expected to be two to three orders

of magnitude larger than todays systems, including systems with unprecedented amounts of het-

erogeneous hardware, lines of source code, numbers of users, and volumes of data, sustainability

is critical to ensure the feasibility of those systems.

Achieving that scale is a major problem today, given the existing limitations in scale,

software, power, etc. Exascale systems, massive parallel systems that will execute 1 Ex-

aFLOP/second, were announced by 2020, but the different programs in USA and Japan are

now delaying that goal to well advanced the 20s. However, even if Exascale systems are de-

veloped in a near future, they may not be valid for all kind of problems. Due to those needs,

currently there is an emerging cross-domain interaction between high-performance in clouds and

the adoption of distributed programming paradigms, in scientific applications.

Ultrascale computing systems (UCS), can be a solution. Envisioned as large-scale complex

systems joining parallel and distributed computing systems, which can be located at multiple

sites and cooperate to provide the required resources and performance to the users, they could

extend individual systems to provide the resources needed. However, the cooperation between

HPC and distributed system communities still poses many challenges towards building the Ultra-

scale systems of the future, especially in unifying the services to deploy sustainable applications

portable to HPC systems, multi-clouds, data centers, and big data.

The scope of this special issue is to present important aspects towards making more sustain-

able Ultrascale systems following the topics addressed in the COST Action IC 1305 Network for

Sustainable Ultrascale Computing (NESUS), which main goal is to establish an open European

research network targeting realistic and sustainable solutions for ultrascale computing. Six pa-

pers have been selected from submissions received, which were reviewed by qualified anonymous

referees according to the practices of this Journal.

In the paper Exascale machines require new programming paradigms and runtimes, the

authors study the need of providing new programming paradigms that can allow the applica-

tions programmers to express the complexity and models of Ultrascale applications. They also

study the need of creating new runtimes able to cope with scale and heterogeneity foreseen in

future systems. In Acceleration of MPI mechanisms for sustainable HPC applications, several

optimizations for the MPI runtime are proposed to enhance it with aspects like hierarchical

programming, malleability, energy savings, dynamic data management, etc.

The paper Resilience within Ultrascale Computing System: Challenges and Opportunities

from Nesus Project, presents challenges and opportunities for ultrascale systems based on current

activities of the European COST Action Nesus (IC1305), which has a working group devoted to

resiliency aspects.

The last three papers of the special issue are related to energy efficiency issues, including

two surveys and a position paper from the NESUS project. In the paper Energy Measurement

Tools for Ultrascale Computing: A Survey, the authors discuss the problem of measuring energy

in a very large scale system and make a survey of existing techniques that can be used to cope

with this problem. The paper Energy-efficient Algorithms for Ultrascale Systems is a survey

of the current research efforts and results related to energy efficiency in the diverse areas of
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software, discussing open problems and questions concerning energy-related techniques with

an emphasis on the application algorithmic side. Finally, in the paper, Energy Efficiency for

Ultrascale Systems: Challenges and Trends from Nesus presents challenges and trends associated

with energy efficiency for ultrascale systems based on current activities of the working group on

Energy Efficiency in the European COST Action Nesus IC1305. The analysis contains major

areas that are related to studies of energy efficiency in ultrascale systems: heterogeneous and

low power hardware architectures, power monitoring at large scale, modeling and simulation

of ultrascale systems, energy-aware scheduling and resource management, and energy-efficient

application design.

We would like to thank all authors who submitted papers, including those whose papers

were not selected for this Special Issue. A special note of thanks goes to all of the reviewers for

their cooperation. Without them, this issue would not be possible.

Guest editor:

Jesus Carretero

J. Carretero
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Exascale Machines Require New Programming Paradigms and

Runtimes

Georges Da Costa1, Thomas Fahringer2, Juan-Antonio Rico-Gallego3, Ivan

Grasso2, Atanas Hristov4, Helen D. Karatza5, Alexey Lastovetsky6,

Fabrizio Marozzo8, Dana Petcu7, Georgios L. Stavrinides5, Domenico

Talia8, Paolo Trunfio8, Hrachya Astsatryan9

c© The Authors 2017. This paper is published with open access at SuperFri.org

Extreme scale parallel computing systems will have tens of thousands of optionally

accelerator-equipped nodes with hundreds of cores each, as well as deep memory hierarchies and

complex interconnect topologies. Such exascale systems will provide hardware parallelism at multi-

ple levels and will be energy constrained. Their extreme scale and the rapidly deteriorating reliabil-

ity of their hardware components means that exascale systems will exhibit low mean-time-between-

failure values. Furthermore, existing programming models already require heroic programming and

optimization efforts to achieve high efficiency on current supercomputers. Invariably, these efforts

are platform-specific and non-portable. In this article, we explore the shortcomings of existing

programming models and runtimes for large-scale computing systems. We propose and discuss

important features of programming paradigms and runtimes to deal with exascale computing sys-

tems with a special focus on data-intensive applications and resilience. Finally, we discuss code

sustainability issues and propose several software metrics that are of paramount importance for

code development for ultrascale computing systems.

Keywords: programming models, ultrascale, runtimes, extreme scale.

Introduction

Ultrascale systems are envisioned as large-scale complex systems joining parallel and dis-

tributed computing systems that will be two to three orders of magnitude larger than today’s

systems reaching millions to billions elements. New programming models and runtimes will be

necessary to use efficiently these new infrastructures. To achieve results on this front, the Eu-

ropean Union funded the COST Action Nesus IC1305 [72]. Its goal is to establish an open

European research network targeting sustainable solutions for ultrascale computing, aiming at

cross fertilization among HPC, large-scale distributed systems and big data management. The

network contributes to gluing together disparate researchers working across different areas and

provides them with a meeting ground to exchange ideas, identify synergies and pursue common

activities in research topics, such as sustainable software solutions (applications and system

software stack), data management, energy efficiency and resilience.

One key element on the ultrascale front is the necessity of new sustainable programming

and execution models in the context of rapid underlying computing architecture changing. There

is a need to explore synergies among emerging programming models and runtimes from HPC,

distributed systems and big data management communities. To improve the programmability of
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future systems, the main changing factor will be the substantially higher levels of concurrency,

asynchrony, failures and heterogeneous architectures.

At different levels, teams of scientists are tackling this challenge. The goal of the European

Cost Action Nesus is to establish an open European research network. One of the key elements

this action will target is the proposal and implementation of novel programming paradigms

and runtimes in order to make the ultrascale a reality. On the other hand, the main objective

of the European Exascale Software Initiative [73] is to provide recommendations on strategic

European actions with a particular focus on software key issues improvement, cross cutting

issues advances and gap analysis. The common goal of these two different actions, is to provide

a coherent agenda for research, but also establish a code and regulation at a European level, in

order to reach ultrascale computing.

At the international level, the goal of the International Exascale Software Project [74] is

also to provide an international common vision for cooperation in order to reach ultrascale:

“The guiding purpose of the IESP is to empower ultra-high resolution and data-intensive sci-

ence and engineering research through the year 2020, by developing a plan for: (a) a common,

high-quality computational environment for petascale/exascale systems and (b) catalyzing, co-

ordinating and sustaining the effort of the international open source software community to

create that environment as quickly as possible”.

This article explores programming models and runtimes required to facilitate the task of

scaling and extracting performance on continuously evolving platforms, while providing resilience

and fault-tolerant mechanisms to tackle the increasing probability of failures throughout the

whole software stack. However, currently no programming solution exists that satisfies all these

requirements. Therefore, new programming models and languages are required towards this

direction. The whole point of view on application will have to change. As we will show, the current

wall between runtime and application models leads to most of these problem. Programmers will

need new tools but also new way to assess their programs. As we will see, data will be a key

concept around which failure-tolerant high number of micro-threads will be generated using

high-level information by adaptive runtime.

This article is structured as follows: the next section describes the requirements from the

programmability point of view for extra large-scale systems such as ultrascale systems. The

second section describes how data shift the paradigm of processor-centric management toward

a data-centric one in next generation systems. The third section describes how resilience will

be of critical importance, since faults and reconfiguration will be a recurring element in such a

large-scale infrastructure. The fourth section presents the elements required to reach sustainable

software development, whereas the final section concludes this article.

1. Improved programmability for extra large-scale systems

Supercomputers have become an essential tool in numerous research areas. Enabling future

advances in science requires the development of efficient parallel applications, which are able to

meet the computational demands. The modern high-performance computing systems (HPCS)

are composed of hundreds of thousand computational nodes. Due to the rapidly increasing scale

of those systems, programmers cannot have a complete view of the system. The programmability

strongly determines the overall performance of a high performance computing system. It is a

substrate over which processors, memory and I/O devices are exchanging data and instructions.

It should have high scalability, which will support the development of the next generation exas-
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cale supercomputers. Programmers also need to have an abstraction that allows them to manage

hundreds of millions to billions of concurrent threads. Abstraction allows organizing programs

into comprehensible fragments, which is very important for clarity, maintenance and scalability

of the system. It also allows increasing of programmability by defining new languages on top

of the existing language and, by defining completely new parallel programming languages. This

makes abstraction an important part of most parallel paradigms and runtimes. Formerly, com-

puter architectures were designed primarily for improved performance or for energy efficiency.

In future exascale architectures, one of the top challenges will be enabling a programmable en-

vironment for the next generation architectures. In reality, programmability is a metric, which

is really difficult to define and measure. The next generation architectures should minimize the

chances of parallel computational errors while relieving the programmer from managing low-level

tasks.

In order to explore this situation more precisely, one aim of this research is to investigate

the limitations of current programming models along-with evaluations of promises of hybrid

programming model to solve these scaling-related difficulties.

1.1. Limitations of the current programming models

Reaching exascale in terms of computing nodes requires the transition from current control

of thousands of threads to billions of threads as well as the adaptation of the performance models

to cope with an increased level of failures. One simple model that is used to program at any

scale is a utopian idea as proved in the last twenty years of ’standardized’ parallel computing.

Unfortunately the exascale has become the reason for improving programming systems, as exist-

ing programming models implementations, more than a reason for a change in the programming

models. This approach was classified by Gropp and Snir in [2] as evolutionary. According to

their view, the five most important characteristics of the programming models that are affected

by the exascale transition are: the thread scheduling, the communications, the synchronization,

the data distribution and the control views.

1.1.1. Limitations of message passing programming model

The current vision on exascale system is at the moment to exploit distributed memory par-

allelism, and therefore the message passing model is likely to be used at least partially. Moreover

the most popular system implementation of the model, MPI, has been shown to run with mil-

lions of cores for particular problems. MPI is based upon standard sequential programming

languages, augmented with low-level message passing constructs, forcing users to deal with all

aspects of parallelization, including the distribution of data and work to cores, communication

and synchronization. MPI primarily favors static data distribution and is consequently not well

suited to deal with dynamic load balancing.

However, it has been shown that the all-to-all communication algorithms used in the message

passing models are not scalable (most commonly used implementations often assume a fully

connected network and have dense communication patterns) while all-to-some, one-sided or

sparse communication patterns are more reliable.

Furthermore, parallel I/O is a limiting factor in the MPI systems, showing that the current

MPI-IO model should be reconsidered. In particular the limitations are related to the collective

access to the I/O request and the data partitioning.

Exascale Machines Require New Programming Paradigms and Runtimes
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1.1.2. Limitations of shared-memory programming models

The exascale system is expected to handle hundreds of cores in the one CPU or GPU. Using

shared-memory systems is a feasible alternative to message passing in the case of medium size

parallel systems in order to reduce the programming overhead as is moving the parallelization

burden from the programmer to the compiler.

The most popular shared-memory system, OpenMP, is following a parallelism control model

that does not allow the control of data distribution and uses non-scalable synchronization mech-

anism like locks or atomic sections. Moreover, the global view of data leads easily to non-efficient

programming as encouraging synchronization joins of all threads’ remote data accesses similar

to the local ones.

The emerging Partitioned Global Address Space model (PGAS) is trying to overcome the

scalability problems of the global shared-memory model [3]. The PGAS model is likely to have

benefit where non-global communication patterns can be implemented with minimal synchro-

nization and overlap of computation and communication. Moreover, the scalability of I/O mech-

anisms in PGAS depends only on the scalability of the underlying I/O infrastructure and is not

limited by the model. However, the scalability is limited to thousands of cores (with the excep-

tion of X10 which is implementing an asynchronous PGAS model). The load balancing is still

an open issue for the systems that implement the model. Furthermore, it is not possible yet to

sub-structure threads into subgroups.

1.1.3. Limitations of heterogeneous programming

Clusters of heterogeneous nodes composed of multi-core CPUs and GPUs are increasingly

being used for High Performance Computing due to the benefit in peak performance and

energy efficiency. In order to fully harvest the computational capabilities of such architectures,

application developers often employ a combination of different parallel programming paradigms

(e.g. OpenCL, CUDA, MPI and OpenMP). However, heterogeneous computing also poses

the new challenge of how to handle the diversity of execution environment and programming

models. The Open Computing Language [60] introduces an open standard for general-purpose

parallel programming of heterogeneous systems. An OpenCL program may target any OpenCL-

compliant device and today many vendors provide an implementation of the OpenCL standard.

An OpenCL program comprises a host program and a set of kernels intended to run on a

compute device. It also includes a language for kernel programming, and an API for transferring

data between host and device memory and for executing kernels.

Single node hardware design is shifting to a heterogeneous nature. At the same time many

of today’s largest HPC systems are clusters that combine heterogeneous compute device archi-

tectures. Although OpenCL has been designed to work with multiple devices, it only considers

local devices available on a single machine. However, the host-device semantics can be po-

tentially applied to remote, distributed devices accessible on different compute nodes. Porting

single-node multi-device applications to clusters that combine heterogeneous compute device

architectures is not straightforward and in addition it requires the use of a communication layer

for data exchange between nodes. Writing programs for such platforms is error prone and te-

dious. Therefore, new abstractions, programming models and tools are required to deal with

these problems.

G.D. Costa, T. Fahringer, J. Rico-Gallego, I. Grasso, A. Hristov, H.D. Karatza...

2015, Vol. 2, No. 2 9



1.2. Exascale promise of the hybrid programming model

Using a message passing model for the inter-node parallelism and a shared-memory pro-

gramming model for intra-node parallelism is nowadays seen as a promising path to reach the

exascale. The hybrid model is referred as MPI+X, where X represents the programming model

that supports threads. The most common X is OpenMP, while there are options for X, like

OpenACC.

However, restrictions on the MPI+X model are still in place, for example how MPI can be

used in a multi-threaded process. In particular, threads cannot be individually identified as the

source or target of MPI messages, or an MPI barrier synchronize the execution of the processes

but does not guarantee their synchronization in terms of memory views. The proposal to use

MPI Endpoints in all-to-all communications from [4] is a step forward in order to facilitate high

performance communication between multi-threaded processes.

Furthermore, combining different programming styles like message passing with shared mem-

ory programming lends itself to information hiding between different layers that may be impor-

tant for optimization. Different runtime systems involved with these programming models lack

a global view that can have a severe impact on the overall performance.

However, the biggest problem of MPI+X is the competition for the resources like bandwidth

(accessing memory via the inter-node interconnect) [2]. Furthermore, an important obstacle is

the memory-footprint and efficient memory usage, as the available memory per core or node is

not expected to scale linearly with the number of cores and nodes, and the MPI+X functionality

must cope with the expected decrease of space per core or node.

Multitasking is a mean to increase the ability to deal with fluctuations in execution of

the threads due to the fault handling or power management strategies. PGAS+multitasking is

providing a programming model analogous with MPI+X.

In exascale system storage and communication hierarchies will be deeper than the current

ones. Therefore it is expected that the hierarchical programming models should replace the

current two level ones [1].

The one-side communication model enables programming in a shared-memory-like program-

ming style. In MPI it is based on the concept of a communication window to which the MPI

processes in a communicator statically attach contiguous segments of their local memory for

exposure to other processes; the access to the window is granted by synchronization operations.

The model separates the communication operations and synchronization for data consistency,

allowing the programmer to delay and schedule the actual communications. However the model

is criticized for being difficult to be used efficiently.

1.2.1. Innovative programming for heterogeneous computing systems

In recent years, heterogeneous systems have received a great amount of attention from

the research community. Although several projects have been recently proposed to facilitate

the programming of clusters with heterogeneous nodes [54–59, 68, 69], none of them combines

support for high performance inter-node data transfer, support for a wide number of different

devices and a simplified programming model.

Kim et al. [56] proposed the SnuCL framework that extends the original OpenCL seman-

tics to heterogeneous cluster environments. SnuCL relies on the OpenCL language with few

extensions to directly support collective patterns of MPI. Indeed, in SnuCL the programmer is

Exascale Machines Require New Programming Paradigms and Runtimes
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responsible to take care of the efficient data transfers between nodes. In that sense, end users of

the SnuCL platform need to have an understanding of MPI collective calls semantics in order

to be able to write scalable programs.

Also other works have investigated the problem of extending the OpenCL semantics to

access a cluster of nodes. The Many GPUs Package (MGP) [69] is a library and runtime system

that using the MOSIX VCL layer enables unmodified OpenCL applications to be executed on

clusters. Hybrid OpenCL [68] is based on the FOXC OpenCL runtime and extends it with a

network layer that allows the access to devices in a distributed system. The clOpenCL [59]

platform comprises a wrapper library and a set of user-level daemons. Every call to an OpenCL

primitive is intercepted by the wrapper which redirects its execution to a specific daemon at

a cluster node or to the local runtime. dOpenCL [55] extends the OpenCL standard, such

that arbitrary compute devices installed on any node of a distributed system can be used

together within a single application. Distributed OpenCL [54] is a framework that allows the

distribution of computing processes to many resources connected via network using JSON

RPC as a communication layer. OpenCL Remote [58] is a framework which extends both

OpenCL’s platform model and memory model with a network client-server paradigm. Virtual

OpenCL [57], based on the OpenCL programming model, exposes physical GPUs as decoupled

virtual resources that can be transparently managed independent of the application execution.

An innovative approach to program clusters of nodes composed of multi-core CPUs and

GPUs has been introduced through libWater [71], a library-based extension of the OpenCL

programming paradigm that simplifies the development of applications for distributed hetero-

geneous architectures.

libWater aims to improve both productivity and implementation efficiency when paral-

lelizing an application targeting a heterogeneous platform by achieving two design goals: (i)

transparent abstraction of the underlying distributed architecture, such that devices belonging

to a remote node are accessible like a local device; (ii) access to performance-related details

since it supports the OpenCL kernel logic. The libWater programming model extends the

OpenCL standard by replacing the host code with a simplified interface. libWater also comes

with a novel device query language (DQL) for OpenCL device management and discovery. A

lightweight distributed runtime environment has been developed which dispatches the work

between remote devices, based on asynchronous execution of both communications and OpenCL

commands. libWater runtime also collects and arranges dependencies between commands in

the form of a powerful representation called command DAG. The command DAG can be

effectively exploited to improve the scalability. For this purpose a collective communication

pattern recognition analysis and optimization has been introduced that matches multiple single

point-to-point data transfers and dynamically replaces them with a more efficient collective

operation (e.g. scatter, gather and broadcast) supported by MPI.

Besides OpenCL-based approaches, also CUDA solutions have been proposed to simplify

distributed systems programming. CUDASA [66] is an extension of the CUDA programming

language which extends parallelism to multi-GPU systems and GPU-cluster environments.

rCUDA [61] is a distributed implementation of the CUDA API that enables shared remote

GPGPU in HPC clusters. cudaMPI [62] is a message passing library for distributed-memory

GPU clusters that extends the MPI interface to work with data stored on the GPU using

G.D. Costa, T. Fahringer, J. Rico-Gallego, I. Grasso, A. Hristov, H.D. Karatza...
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the CUDA programming interface. All of these approaches are limited to devices that support

CUDA, i.e. NVidia GPU accelerators, and therefore they cannot be used to address heteroge-

neous systems which combines CPUs and accelerators from different vendors.

Other projects have investigated how to simplify the OpenCL programming interface. Sun

et. al [65], proposed a task queuing extension for OpenCL that provides a high-level API based on

the concepts of work pools and work units. Intel CLU [75], OCL-MLA [53] and SimpleOpencl [70]

are lightweight API designed to help programmers to rapidly prototype heterogeneous programs.

A more sophisticated approach was proposed in [67]. OmpSs relies on compiler technologies

to generate host and kernel code from a sequential program annotated with pragmas. The

runtime of OmpSs internally uses a DAG with the scope of scheduling. However, the DAG is

not dynamically optimized as done by libWater.

2. Data-intensive programming and runtimes

The data intensity of scientific and engineering applications forces the expansion of exascale

system. It puts a focus on architectures, programming models, runtime systems improvement

on data intensive computing. A major challenge is to utilize the available technologies and

large-scale computing resources effectively to tackle the scientific and societal challenges. This

section describes the runtime requirements and scalable programming models for data-intensive

applications, as well as new data access, communication, and processing operations for data-

intensive applications.

2.1. Next generation MPI

MPI is the most widely used standard [10] in the current petascale systems, supporting

among others the message passing model. It has proven high performance portability and scal-

ability [9, 17], as well as stability over the last 20 years. MPI provides a (nearly) fixed number

of statically scheduled processes with a local view of the data distributed across the system.

Nevertheless, ultrascale systems are not going to be built scaling incrementally from current

systems, which probably will have a high impact on all levels of the software stack [2, 18]. The

international community agrees that changes need to be done in current software at all levels.

Future parallel and distributed applications push to explore alternative scalable and reliable

programming models [13].

Current HPC systems need to scale up by three orders of magnitude to meet exascale. While

a sharp rise in the number of nodes of this magnitude is not expected, the critical growth will

come from the intra-node capacities. Fat nodes with a large number of lightweight heterogeneous

processing elements, including accelerators, will be common in the ultrascale platforms, mixing

parallel and distributed systems. In addition, memory per core ratio is expected to decrease,

while the number of NUMA nodes will grow to alleviate the problem of memory coherence

between hundreds of cores [16]. On the software side, weak scaling of applications running on such

platforms will demand more computation resources to manage huge volumes of data. Nowadays

MPI applications, most of which are built using the bulk-synchronous synchronization model [11]

as a sequence of communication and computation over the interchanged data stages, will continue

to be important, but multi-physics and adaptive meshing applications, with multiple components

implemented using different programming models, and with dynamic starting and finalization of
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such components, will become common in ultrascale. Apart from the most regular applications,

this synchronization model is already a strangle point.

In this scenario, programming models need to face multiple challenges to efficiently exploit

resources with a high level of programmability [14]: scalability and parallelism increase, energy

efficient resource management and data movement, and I/O and resilience in applications among

others.

MPI has successfully faced the scalability challenge at petascale with the so-called hybrid

model, represented as MPI+X, meaning MPI to communicate between nodes and a shared

memory programming model (e.g. OpenMP for shared memory and OpenACC for accelerators)

inside a node. This scheme provides with load balancing and reduces the memory footprint

and data copies in shared memory, and it is likely to continue in the future. Notwithstanding,

increase in node scale, heterogeneity and complexity of integration of processing elements will

demand improved techniques for balancing the computational load between potentially large

number of processes running kernels composing the application [24].

Increasing imbalances in large-scale applications, aggravated by hardware power manage-

ment, localized failures or system noise, require synchronization-avoiding algorithms, adaptable

to dynamic changes in the hardware and the applications. An example is the collective algo-

rithms based on a non-deterministic point-to-point communication pattern, and able to capture

and deal with relevant network properties related to heterogeneity [23]. The MPI specification

provides support to mitigate load imbalance issues through the one-sided communication model,

non-blocking collectives, or the scalable neighbor collectives for communication along the virtual

user defined topology. In the meanwhile, specification and implementation scalability issues have

been detected [17]. They need to be either avoided, as the use of all to all inherently non-scalable

collectives, or improved, as initialization or communicator creation, in exascale applications.

To support the hybrid programming model, MPI defines levels of thread-safety. Lower lev-

els are suitable for bulk-synchronous applications, while higher levels require synchronization

mechanisms, which lead current MPI libraries to a significant performance degradation. Com-

munication endpoints [19] mechanism is a proposal to extend the MPI standard for reducing

contention inside a single process by allowing to attach threads to different endpoints for sending

and receiving messages.

Big data volumes and the power consumed in moving data across the system makes data

management one of the main concerns in future systems. In the distributed view, the common

methodology of reading data from a centralized filesystem, spreading it over the processing

elements and writing the results is energy and performance inefficient, and failure prone. Data

will be distributed across the system, and the placement of MPI processes in a virtual topology

needs to adapt to the data layout to improve the performance, which will require better mapping

algorithms. MPI addresses these challenges in shared memory by a programming model based

on shared data windows accessible by processes in the same node, hence avoiding horizontal data

movement inside the node. However, lack of data locality awareness leads to vertical movement of

data across the memory hierarchy, which degrades performance. For instance, the communication

buffers received by MPI processes and the access by the local OpenMP threads for computing

on them will need smarter scheduling policies. Data-centric approaches are needed for describing

data in the system and apply the computation where such data resides [12, 15].

Another critical challenge for MPI to support exascale systems is the resilience, a cross-

cutting issue affecting the whole software stack. Current checkpointing/restart methods are

G.D. Costa, T. Fahringer, J. Rico-Gallego, I. Grasso, A. Hristov, H.D. Karatza...

2015, Vol. 2, No. 2 13



insufficient for future systems under a failure ratio of a few hours and in the presence of silent

errors, and traditional triple modular redundancy (TMR) is not affordable in an energy efficient

manner. New techniques of resilient computing have been proposed and developed, also in the

MPI context [5, 6]. One proposal for increasing resilience to node failures is to implement mal-

leable applications, able to adapt their execution to the available resources in the presence of

hardware errors, and avoiding the restart of the application [7].

Alternatives to MPI come from the Partitioned Global Address languages (PGAs) and High

Productivity Computing Systems (HPCS) programming languages. PGAs programming models

provide a global view of data with explicit communication as CAF [38] (Co-Array Fortran), or

implicit communication as UPC [40] (Unified Parallel C). However, static scheduling and poor

performance issues make them currently far from replacing the well established and successful

MPI+X hybrid model. Moreover, OpenMP presents problems with nested parallelism and ver-

tical locality, so the possibility of MPI+PGAs has been, and continues to be evaluated [8, 22]

to provide a programming environment better suited to the future platforms. HPCS languages,

such as a Chapel [63] and X10 [64], provide a global view of data and control. For instance,

Chapel provides programming constructions at different levels of abstraction. It includes fea-

tures for computation-centric parallelism based on tasks, as well as data-centric programming

capabilities. For instance, the locale construction describes the compute nodes in the target

architecture and allows to reasoning about locality and affinity, and to manage global views of

distributed arrays.

2.2. Runtime requirements for data-intensive applications

Developing data-intensive applications over exascale platforms requires the availability of

effective runtime systems. This subsection discusses which functional and non-functional require-

ments should be fulfilled by future runtime systems to support users in designing and executing

complex data-intensive applications over large-scale parallel and distributed platforms in an

effective and scalable way.

The functional requirements can be grouped into four areas: data management, tool man-

agement, design management, and execution management [39].

Data management. Data to be processed can be stored in different formats, such as relational

databases, NoSQL databases, binary files, plain files, or semi-structured documents. The runtime

system should provide mechanisms to store and access such data independently from their

specific format. In addition, metadata formalisms should be provided to describe the relevant

information associated with data (e.g., location, format, availability, available views), in order

to enable their effective access, manipulation and processing.

Tool management. Data processing tools include programs and libraries for data selection,

transformation, visualization, mining and evaluation. The runtime system should provide mech-

anisms to access and use such tools independently from their specific implementation. Also in

this case metadata should be provided to describe the most important features of such tools

(e.g., their function, location, usage).

Design management. From a design perspective, three main classes of data-intensive appli-

cations can be identified: single-task applications, in which a single sequential or parallel process

task is performed on a given data set; parameter sweeping applications, in which data are ana-

lyzed using multiple instances of a data processing tool with different parameters; workflow-based

applications, in which data-intensive applications are specified as possibly complex workflows.
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A runtime system should provide an environment to effectively design all the above-mentioned

classes of applications.

Execution management. The system should provide a parallel/distributed execution envi-

ronment to support the efficient execution of data-intensive applications designed by the users.

Since applications range from single tasks to complex workflows, the runtime system should

cope with such a variety of applications. In particular, the execution environment should provide

the following functionalities, which are related to the different phases of application execution:

accessing the data to be processed; allocating the needed compute resources; running the appli-

cation based on the user specifications, which may be expressed as a workflow; allowing users

to monitor an applications execution.

The non-functional requirements can be defined at three levels: user, architecture, and

infrastructure.

From a user point of view, non-functional requirements to be satisfied include:

• Data protection. The system should protect data from both unauthorized access and in-

tentional/incidental losses.

• Usability. The system should be easy to use by users, without the need of undertaking any

specialized training.

From an architecture perspective, the following principles should inspire system design:

• Openness and extensibility. The architecture should be open to the integration of new

data processing tools and libraries; moreover, existing tools and libraries should be open

for extension and modifications.

• Independence from infrastructure. The architecture should be designed to be as indepen-

dent as possible from the underlying infrastructure; in other terms, the system services

should be able to exploit the basic functionalities provided by different infrastructures.

Finally, from an infrastructure perspective, non-functional requirements include:

• Heterogeneous/Distributed data support. The infrastructure should be able to cope with

very large and high dimensional data sets, stored in different formats in a single site, or

geographically distributed across many sites.

• Availability. The infrastructure should be in a functioning condition even in the presence

of failures that affect a subset of the hardware/software resources. Thus, effective mecha-

nisms (e.g., redundancy) should be implemented to ensure dependable access to sensitive

resources such as user data.

• Scalability. The infrastructure should be able to handle a growing workload (deriving from

larger data to process or heavier algorithms to execute) in an efficient and effective way, by

dynamically allocating the needed resources (processors, storage, network). Moreover, as

soon as the workload decreases, the infrastructure should release the unneeded resources.

• Efficiency. The infrastructure should minimize resource consumption for a given task to

execute. In the case of parallel/distributed tasks, efficient allocation of processing nodes

should be guaranteed. Additionally, the infrastructure should be highly utilized so to

provide efficient services.

Even though several research systems fulfilling most of these requirements have been devel-

oped, such as Pegasus [25], Taverna [26], Kepler [27], ClowdFlows [28], E-Science Central [29],

and COMPSs [30], they are designed to work on conventional HPC platforms, such as clusters,

Grids, and - in some cases - Clouds. Therefore, it is necessary to study novel architectures,
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environments and mechanisms to fulfill the requirements discussed above, so as to effectively

support design and execution of data-intensive applications in future exascale systems.

2.3. Scalable programming models for data-intensive applications

Data-intensive applications often involve a large number of data processing tools that must

be executed in a coordinated way to analyze huge amount of data. This section discusses the need

for scalable programming models to support the effective design and execution of data-intensive

applications on a massive number of processors.

Implementing efficient data-intensive applications is not trivial and requires skills of parallel

and distributed programming. For instance, it is necessary to express the task dependencies and

their parallelism, to use mechanisms of synchronization and load balancing, and to properly

manage the memory and the communication among tasks. Moreover, the computing infrastruc-

tures are heterogeneous and require different libraries and tools to interact with them. To cope

with all these problems, different scalable programming models have been proposed for writing

data-intensive applications [31].

Scalable programming models may be categorized based on their level of abstraction (i.e.,

high-level and low-level scalable models) and based on how they allow programmers to create

applications (i.e., visual or code-based formalisms).

Using high-level scalable models, the programmers define only the high-level logic of applica-

tions while hiding the low-level details that are not fundamental for application design, including

infrastructure-dependent execution details. The programmer is helped in application definition

and the application performance depends on the compiler that analyzes the application code and

optimizes its execution on the underlying infrastructure. Instead, low-level scalable models allow

the programmers to interact directly with computing and storage elements of the underlying

infrastructure and thus to define the applications parallelism directly. Defining an application

requires more skills and the application performance strongly depends on the quality of the code

written by the programmer.

Data-intensive applications can be designed through visual programming formalism, which

is a convenient design approach for high-level users, e.g. domain-expert analysts having a limited

understanding of programming. In addition, a graphical representation of workflows intrinsically

captures parallelism at the task level, without the need to make parallelism explicit through

control structures [32]. Code-based formalism allows users to program complex applications

more rapidly, in a more concise way, and with higher flexibility [33]. The code-base applications

can be defined in different ways: i) with a language or an extension of language that allows to

express parallel applications; ii) with some annotations in the application code that permits the

compiler to understand which instructions will be executed in parallel; and iii) using a library

in the application code that adds parallelism to application.

Given the variety of data-intensive applications (from single-task to workflow-based) and

types of users (from end users to skilled programmers) that can be envisioned in future exascale

systems, there will be a need for scalable programming models with different levels of abstractions

(high-level and low-level) and different design formalisms (visual and code-based), according to

the classification outlined above. Thus, the programming models should adapt to user needs by

ensuring a good trade-off between ease in defining applications and efficiency of executing them

on exascale architectures composed by a massive number of processors.
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2.4. New data access, communication, and processing operations for

data-intensive applications

This subsection discusses the need for new operations supporting data access, data ex-

change and data processing to enable scalable data-intensive applications on a large number of

processing elements.

Data-intensive applications are software programs that have a significant need to process

large volumes of data [21]. Such applications devote most of their processing time to run I/O

operations and to exchange and move data among the processing elements of a parallel comput-

ing infrastructure. Parallel processing of data-intensive applications typically involves accessing,

pre-processing, partitioning, aggregating, querying, and visualizing data which can be processed

independently. These operations are executed using application programs running in parallel on

a scalable computing platform that can be a large Cloud system or a massively parallel machine

composed of many thousand processors. In particular, the main challenges for programming

data-intensive applications on exascale computing systems come from the potential scalability

and resilience of mechanisms and operations made available to developers for accessing and man-

aging data. Indeed, processing very large data volumes requires operations and new algorithms

able to scale in loading, storing, and processing massive amounts of data that generally must

be partitioned in very small data grains on which analysis is done by thousands to millions of

simple parallel operations.

Evolutionary models have been recently proposed that extend or adapt traditional parallel

programming models like MPI, OpenMP, MapReduce (e.g., Pig Latin) to limit the communica-

tion overhead (in the case of message-passing models) or to limit the synchronization control (in

the case of shared-models languages) [2]. On the other hand, new models, languages and APIs

based on a revolutionary approach, such as X10, ECL, GA, SHMEM, UPC, and Chapel have

been developed. In this case, novel parallel paradigms are devised to address the requirements

of massive parallelism.

Languages such as X10, UPC, GA and Chapel are based on a partitioned global address

space (PGAS) memory model that can be suited to implement data-intensive exascale applica-

tions because it uses private data structures and limits the amount of shared data among parallel

threads. Together with different approaches (e.g., Pig Latin and ECL) those models must be

further investigated and adapted for providing data-centered scalable programming models use-

ful to support the efficient implementation of exascale data analysis applications composed of

up to millions of computing units that process small data elements and exchange them with a

very limited set of processing elements. A scalable programming model based on basic opera-

tions for data intensive/data-driven applications must include operations for parallel data access,

data-driven local communication, data processing on limited groups of cores, near-data synchro-

nization, in-memory querying, group-level data aggregation, and locality-based data selection

and classification.

Supporting efficient data-intensive applications on exascale systems will require an accurate

modeling of basic operations and of the programming languages/APIs that will include them.

At the same time, a significant programming effort of developers will be needed to implement

complex algorithms and data-driven applications such that used, for example, in big data analysis

and distributed data mining. Programmers must be able to design and implement scalable

algorithms by using the operations sketched above. To reach this goal, a coordinated effort

between the operation/language designers and the application developers would be very fruitful.
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3. Resilience

As exascale systems grow in computational power and scale, failure rates inevitably increase.

Therefore, one of the major challenges in these systems is to effectively and efficiently maintain

the system reliability. This requires to handle failures efficiently, so that the system can continue

to operate with satisfactory performance. The timing constraints of the workload, as well as the

heterogeneity of the system resources, constitute another critical issue that must be addressed

by the scheduling strategy that is employed in such systems. Therefore, the next generation

code will need to be resistant to failures. Advanced modeling and simulation techniques are the

basic means of investigating fault tolerance in exascale systems, before performing the costly

prototyping actions required for resilient code generation.

3.1. Modeling and simulation of failures in large-scale systems

Exascale computing provides a large-scale, heterogeneous distributed computing environ-

ment for the processing of demanding jobs. Resilience is one of the most important aspects of

exascale systems. Due to the complexity of such systems, their performance is usually examined

by simulation rather than by analytical techniques. Analytical modeling of complex systems is

difficult and often requires several simplifying assumptions. Such assumptions might have an

unpredictable impact on the results. For this reason, there have been many research efforts in

developing tractable simulation models of large-scale systems.

In [34], simulation models are used to investigate performance issues in distributed systems

where the processors are subject to failures. In this research, the author considers that failures

are a Poisson process with a rate that reflects the failure probability of processors. Processor

repair time has been considered as an exponentially distributed random variable with a mean

value that reflects the average time required for the distributed processors to recover. The

failure/ repair model of this paper can be used in combination with other models in the case of

large-scale distributed processors.

3.2. Checkpointing in exascale systems

Application resilience is an important issue that must be addressed in order to realize the

benefits of future systems. If a failure occurs, recovery can be handled by checkpoint-restart

(CPR), that is, by terminating the job and restarting it from its last stored checkpoint. There

are views that this approach is not expected to scale efficiently to exascale, so different mecha-

nisms are explored in the literature. Gamell et al. in [35] have implemented Fenix, a framework

for enabling recovery from failures for MPI-based parallel applications in an online manner (i.e.

without disrupting the job). This framework relies on application-driven, diskless, implicitly-

coordinated checkpointing. Selective checkpoints are created at specific points within the appli-

cation, guaranteeing global consistency without requiring a coordination protocol.

Zhao et al. in [36] investigate the suitability of a checkpointing mechanism for exascale

computers, across both parallel and distributed filesystems. It is shown that a checkpointing

mechanism on parallel filesystems is not suitable for exascale systems. However, the simulation

results reveal that a distributed filesystem with local persistent storage could enable efficient

checkpointing at exascale.

In [37], the authors define a model for future systems that faces the problem of latent

errors, i.e. errors that go undetected for some time. They use their proposed model to derive
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optimal checkpoint intervals for systems with latent errors. The importance of a multi-version

checkpointing system is explored. They conclude that a multi-version model outperforms a single

checkpointing scheme in all cases, while for exascale scenarios, the multi-version model increases

efficiency significantly.

Many applications in large-scale systems have an inherent need for fault tolerance and

high-quality results within strict timing constraints. The scheduling algorithm employed in such

cases must guarantee that every job will meet its deadline, while providing at the same time

high-quality (i.e. precise) results. In [41], the authors study the scheduling of parallel jobs in a

distributed real-time system with possible software faults. They model the system with a queu-

ing network model and evaluate the performance of the scheduling algorithms with simulation

techniques. For each scheduling policy they provide an alternative version which allows impre-

cise computations. They propose a performance metric which takes into account not only the

number of jobs guaranteed, but also the precision of the results of each guaranteed job. Their

simulation results reveal that the alternative versions of the algorithms outperform their respec-

tive counterparts. The authors employ the technique of imprecise computations, combined with

checkpointing, in order to enhance fault tolerance in real-time systems. They consider mono-

tone jobs that consist of a mandatory part, followed by an optional part. In order for a job to

produce an acceptable result, it is required that at least the mandatory part of the job must be

completed. The precision of the results is further increased, if the optional part is allowed to be

executed longer. The aim is to guarantee that all jobs will complete at least their mandatory

part before their deadline.

The authors employ application-directed checkpointing. When a software failure occurs dur-

ing the execution of a job that has completed its mandatory part, there is no need to rollback

and re-execute the job. In this case, the system accepts as its result the one produced by its

mandatory part, assuming that a checkpoint takes place when a job completes its mandatory

part. According to the research findings in [41], in large-scale systems where many software fail-

ures can occur, scheduling algorithms based on the technique of imprecise computations could

be effectively employed for the fault-tolerant execution of parallel real-time jobs.

3.3. Alternative programming models for fault tolerance in exascale systems

However, programming models that enable more appropriate recovery strategies than CPR

are required in exascale systems. Towards this direction, Heroux in [42] presents the following

four programming models for developing new algorithms:

• Skeptical Programming (SkP): SkP requires that algorithm developers should expect

that silent data corruption is possible, so that they can develop validation tests.

• Relaxed Bulk-synchronous Programming (RBSP): RBSP is possible with the in-

troduction of MPI 3.0.

• Local Failure, Local Recovery (LFLR): LFLR provides programmers with the ability

to recover locally and continue application execution when a process is lost. This model

requires more support from the underlying system layers.

• Selective Reliability Programming (SRP): SRP provides the programmer with the

ability to selectively declare the reliability of specific data and compute regions.

The User Level Failure Mitigation (ULFM) interface has been proposed to provide fault-

tolerant semantics in MPI. In [43], the authors present their experiences on using ULFM in a

case study to exploit the advantages and difficulties of this interface to program fault-tolerant
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MPI applications. They found that ULFM is suitable for specific types of applications, but it

provides few benefits for general MPI applications.

The issue of fault-tolerant MPI is also considered in [44]. Due to the fact that the system

kills all the remaining processes and restarts the application from the last saved checkpoint when

an MPI process is lost, it is expected that this approach will not work for future extreme scale

systems. The authors address this scaling issue through the LFLR programming model. In order

to achieve this model, they design and implement a software framework using a prototype MPI

with ULFM (MPI-ULFM).

4. Code sustainability and other metrics

Software designers for supercomputers face new challenges. Their code must be efficient

whatever the underlying platform is while not wasting computing time for crossing abstraction

layers. Several tools presented in the previous sections provide designers and programmers with

tools to abstract from the underlying hardware while achieving the maximum performance.

The clear goal to achieve is to increase the raw performance of supercomputers, but it is not

anymore the simple the faster, the better. Two reasons show that taking care of raw performance

is no more sufficient:

• Life of code is way longer than hardware life;

• Other metrics (energy, plasticity, scalability) become more and more important.

4.1. Life cycle of codes

HPC world is comprised of a few widely used codes that serve as base library and a majority

of ad-hoc codes often mainly designed and programmed by non-computer scientists.

As an example for the first category, in the scientific computing domain, which aims at

constructing mathematical models and numerical solution techniques for solving problems arising

in science and engineering, Scalapack [51] is a largely used library of high-performance linear

algebra routines for parallel distributed memory machines. It is a base of large-scale scientific

codes and can run on nearly every classical supercomputers. It encompasses BLAS (Basic Linear

Algebra Subprograms) and pBLAS (parallel BLAS) libraries. This package is comprised of old

C and Fortran codes and was first released in 1979 from NASA [52] for BLAS and 1996 for

Scalapack [51]. In the last version (version 2.0.2, May 2012) large parts of code are still dating

from the first version of 1996, being raw computing code in Fortran or higher level code in C.

This version also contains code from nearly every year from 1996 to 2012. This code was able

to evolve up to present days due to the community of users behind it. Most other less used

libraries or software did not have this chance. But even this library has several sustainability

problems such as new hardware architectures: Several supercomputer projects are planning to

use GPU [50] or ARM [49] processors instead of classical standard x86 ones.

Concerning the second category the difficulties are even higher, as a large number of codes

has been tested and evaluated only on a handful of supercomputers. Their scalability is un-

known on different networks or memory topologies for example. In this case, these codes are not

sustainable as they require a major rewrite to run on new architecture.

Hence new programming paradigms such as skeletons [47], or YML [48] are needed to reach

sustainable codes that run efficiently on the latest generation of supercomputers. Concerning
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exascale computing the situation is even more dire as the exact detail of these architectures is

still cloudy.

4.2. New metrics

Further away from sustainability of the code itself, other metrics are important for designers

and programmers. Power consumption of supercomputers is reaching thresholds that prevent

them from continuing to grow like before [46]. The main three metrics that programmers have

to confront are:

• Raw power consumption: Depending on the particular instructions, library, memory and

network access patterns, application will consume different power consumption at partic-

ular time and different overall energy for the same work;

• Scalability : The capability of scaling up is key as future exascale systems will be composed

of hundreds of thousands of cores;

• Plasticity : It is the capability of the software to adapt to the underlying hardware archi-

tecture (ARM/x86/GPU, network topology, memory hierarchy,. . . ) but also to reconfigure

itself by changing the number of allocated resources or migrating between architectures at

runtime.

At the moment most tools to provide insight on the code to programmers are aiming toward

raw computing performance or memory and network usage. Only a few tools exist to provide

feedback to programmers on such needed metrics. Valgreen [45] offers to give insight on the

power consumption of codes for example. But at the moment manual evaluation is needed in

order to evaluate these metrics for any code.

Conclusion

In this article we explored and discussed programming models and runtimes required for

scalable high performance computing systems that comprise a very large number of processors

and threads. Currently no programming solutions exist that satisfy all the main requirements

of such systems. Therefore, new programming models are required that support data local-

ity, minimize data exchange and synchronization, while providing resilience and fault-tolerant

mechanisms in order to tackle the increasing probability of failures in such large and complex

systems.

New programming models and languages will be a key component of exascale systems. Their

design and implementation is one of the pillars of the future exascale strategy that is based on

the development of massively parallel hardware, small-grain parallel algorithms and scalable

programming tools. All those components must be developed to make that strategy effective

and useful. Furthermore, in order to reach actual sustainability, code must reinvent itself and

be more independent of the underlying hardware.

One main element will be to create new communication channels between runtime software

and development environment. Indeed the latter have all relevant high-level information con-

cerning application structure and adaptation capabilities but they are usually lost when the

time to actually run the application comes.

As exascale systems grow in computational power and scale, their resilience becomes in-

creasingly important. Due to the complexity of such systems, fault tolerance must be achieved

by employing more effective approaches than the traditional checkpointing scheme. Even though
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many alternative approaches have been proposed in the literature, further research is required

towards this direction.

Finally, a way to provide higher abstraction from design time to execution time that will

be investigated is to extend MPI standards to support this abstraction and to provide higher

scalability support.

The work presented in this article has been partially supported by EU under the COST

program Action IC1305, “Network for Sustainable Ultrascale Computing (NESUS)”.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela, Mara

J. Garzarn, David Padua, and Christoph von Praun, Programming for parallelism and

locality with hierarchically tiled arrays. In Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming (PPoPP ’06). ACM, 48-57,

2006. DOI: 10.1145/1122971.1122981.

2. William Gropp, Marc Snir. Programming for exascale computers. Computing in Science and

Engineering, 15(6):27–35, 2013. DOI: 10.1109/mcse.2013.96.

3. John Jenkins, James Dinan, Pavan Balaji, Nagiza F. Samatova, and Rajeev Thakur. En-

abling fast, noncontiguous GPU data movement in hybrid MPI+GPU environments. In

IEEE International Conference on Cluster Computing (CLUSTER), pages 468–476, 2012.

DOI: 10.1109/cluster.2012.72.

4. Jesper Larsson Träff, Antoine Rougier, and Sascha Hunold. Implementing a classic: Zero-

copy all-to-all communication with MPI datatypes. In 28th ACM International Conference

on Supercomputing (ICS), pages 135–144, 2014. DOI: 10.1145/2597652.2597662.

5. G. Bosilca, A. Bouteiller, and F. Cappello. MPICH-V: Toward a scalable fault tolerant MPI

for volatile nodes. In ACM/IEEE Supercomputing Conference, page 29. IEEE, 2002. DOI:

10.1109/sc.2002.10048.

6. G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI. Parallel

Computing, 27(11):1479–1495, October 2001. DOI: 10.1016/s0167-8191(01)00100-4.

7. C. George and S. S. Vadhiyar. ADFT: An adaptive framework for fault tolerance on large

scale systems using application malleability. Procedia Computer Science, 9:166–175, 2012.

DOI: 10.1016/j.procs.2012.04.018.

8. J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur. Hybrid parallel programming

with MPI and unified parallel C. in Proceedings of the 7th ACM international conference

on Computing frontiers, CF ’10, 2010. DOI: 10.1145/1787275.1787323.

9. P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur,
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Ultrascale computing systems are meant to reach a growth of two or three orders of mag-

nitude of today computing systems. However, to achieve the performances required, we will need

to design and implement more sustainable solutions for ultra-scale computing systems, under-

standing sustainability in a holistic manner to address challenges as economy-of-scale, agile elastic

scalability, heterogeneity, programmability, fault resilience, energy efficiency, and scalable storage.

Some of those solutions could be provided into MPI, but other should be devised as higher level

concepts, less generalists, but adapted to applicative domains, possibly as programming patterns

or or libraries. In this paper, we show some proposals to extend MPI trying to cover major do-

mains that are relevant towards sustainability: MPI programming optimizations and programming

models, resilience, data management, and their usage from applications.

Keywords: MPI, MPI sustainability, programming models, resilience, data management, MPI

applications.

Introduction

The interest of governments, industry, and researchers in very large scale computing systems

has significantly increased in recent years, and steady growth of computing infrastructures is

expected to continue in data centers and supercomputers due to the ever-increasing data and

processing requirements of various domain applications, which are constantly pushing the com-

putational limits of current computing resources. However, it seems that we have reached a point

where system growth can no longer be addressed in an incremental way, due to the huge chal-

lenges lying ahead. In particular scalability, energy barrier, data management, programmability,

and reliability all pose serious threats to tomorrow’s cyberinfrastructure.

The idea of an Ultrascale Computing Systems (UCS), envisioned as a large-scale complex

system joining parallel and distributed computing systems that cooperate to provide solutions

to the users might be one solution to these growing problems at scale. As all the above models

rely on distributed memory systems, the Message-Passing Interface (MPI) remains a promising

paradigm to develop and deploy parallel applications, and it is already proven at larger scale —

with machines running 100K+ processes. However, can we be sure that MPI will be sustainable

in Ultrascale systems? If we understand sustainability as the probability that today’s MPI func-

tionality will be useful, available, and improved in the future, the answer is “yes”. MPI behaves

as a portability layer between the application developer and the hardware resources, hiding

most architectural details from application developers. The independence from the computing

platform has allowed new versions of MPI to include features that, when carefully combined
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with other libraries and integrated into dynamic high-level programming paradigms, permit the

development of adaptable applications and novel programming paradigms, molding themselves

to the scale of the underlying execution platform.

However, we will need to design and implement more sustainable solutions for Ultrascale

computing systems, understanding sustainability in a holistic manner to address challenges like

economy-of-scale, agile elastic scalability, heterogeneity, programmability, fault resilience, energy

efficiency, and scalable storage. Some of those solutions could be integrated and provided by MPI,

but others should be devised as higher level concepts, less general, but adapted to applicative

domains, possibly as programming patterns or libraries. In this paper, we layout some proposals

to extend MPI to cover major relevant domains in a move towards sustainability, including:

MPI programming optimizations and programming models, resilience, data management, and

their usage for applications.

The remainder of this paper is organized as follows. Section 1 covers communication opti-

mizations, while Section 2 addresses the area of resilience. Section 3 talks about storage and I/O

techniques, Section 4 deals with energy constraints, and Section 5 presents some application and

algorithm optimizations. The final section concludes the paper.

1. Enhancing MPI runtime and programming models

As the scale and complexity of systems increases, it is becoming more important to provide

MPI users with optimizations and programming models to hide this complexity, while providing

a mechanism to expose part of this information for application developers seeking knowledge of

low-level functions. One possible way to achieve automatic application optimization is to pro-

vide a layered API and allow a compiler tool to convert between MPI and this layered API, as

necessary. Another potential approach would involve more efficiently integrating new program-

ming models (e.g., OpenMP or PGAS) for cooperatively sharing not only a common high-level

goal—such as a view of the application’s time-to-completion—but all resources of the targeted

platform. In this section, we focus on some optimizations shown to enhance MPI’s scalability and

performance. These optimizations provide minimum APIs to transparently enhance portability

and sustainability of application software, thus minimizing the adaptation effort.

1.1. Distributed Region-based memory Allocation and Synchronization

Even though the existing distributed global address memory models, such as PGAS, support

global pointers, their potential efficiency is hindered by the expensive and unnecessary messages

generated by global memory accesses. In order to transfer their data among nodes, they must

either marshal and un-marshal their data during the communication, or be represented in a

non-intuitive manner.

DRASync [23] is a region-based allocator that implements a global address space abstraction

for MPI programs with pointer-based data structures. Regions are a collection of contiguous

memory spaces used for storing data. They offer great locality since similar data can be placed

together and can be easily transmitted in bulk. DRASync offers an API for creating, deleting,

and transferring such regions. It enables MPI processes to operate on a region’s data by acquiring

the containing region and releasing it at the end of computation for other processes to acquire.

Each region is combined with ownership semantics, allowing the process that created it, or one

that acquired it, to have exclusive write permissions to its data. DRASync, however, does not
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Figure 1. Scatterv and Gatherv operations on geographically distributed clusters from

Grid5000

restrain other MPI processes, that are not owners, from acquiring read-only copies of the region.

Thus, acquire/release operations are akin to reader-writer locks and enable DRASync to provide

an intuitive synchronization tool that simplifies the design of MPI applications.

DRASync has been evaluated over the Myrmics [17] allocator using two application-level

benchmarks, the Barnes-Hut N-body simulation and the Delaunay triangulation with variant

datasets. The encouraging outcome highlighted the fact that DRASync produces comparable

performance results while providing a more intuitive synchronization abstraction for program-

mers.

1.2. Optimization of MPI collectives

Algorithms for MPI collective communication operations typically translate the collective

communication pattern as a combination of point-to-point operations in an overlay topology,

mostly a tree-like structure. The traditional targets for such an algorithmic deployment are

homogeneous platforms with identical processors and communication layers. When applied to

heterogeneous platforms, these implementations may be far from optimal, mainly due to the

uneven communication capabilities of the different links in the underlying network. In [10], we

proposed to use heterogeneous communication performance models and their prediction to find

more efficient, almost optimal, communication trees for collective algorithms on heterogeneous

networks. The models take into account the heterogeneous capabilities of the underlying net-

work of computers when constructing communication trees. Model predictions are used during

the dynamic construction of communication trees either by changing the mapping of the ap-

plication processes or changing the tree structure altogether. Experiments on Grid5000 using

39 nodes geographically distributed over 5 clusters stretched over 2 sites, demonstrate that

the proposed model-based algorithms clearly outperform their non-model-based counterparts

on heterogeneous networks (see fig. 1).

1.3. MPI communication with adaptive compression

Adaptive-CoMPI [11] is an MPI extension which performs the adaptive message compres-

sion of MPI-based applications to reduce communication volume, and thus time, and enhances

application performance. It is implemented as a library connected through the Abstract Device
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Interface of MPICH so that it can be used with any MPI-based application in a transparent

manner, as the user does not need to modify the source code. Adaptive-CoMPI addresses all

types of communications, and includes different compression techniques (LZO [26] , RLE [16],

HUFFMAN [8], RICE [5] and FPC [19]) that can be used transparently to users (by means

of MPI hints).

The architecture of MPICH consists of 3 layers: Application Programmer Interface (API),

Abstract Device Interface (ADI) and Channel Interface (CI). The ADI layer is a portable layer,

while the Channel layer is not. Therefore, we have modified the ADI layer in order to include

the Runtime Compression strategy, independently of the channel and protocol used. Therefore,

applying Runtime Compression strategy on point-to-point routines, not only compresses these

communications, but also the collective ones. The same is true for blocking and non-blocking

communication.

Algorithm 1 Blocking message send

len-buffer = contig-size count

if(len > 2048)

algorithm-compress ← Read-Hint-User()

len-compress ← Compression-Message(buff, len, algorithm-compress, buff-compress)

Send-Message-contiguous(buff-compress, len-compress, src-rank, dest-rank)

end if

Algorithm 2 Blocking message reception

Check if data is compressed

if(check-request == 1)

flag-head = Study-Head-of-Buffer(request.buf)

if(flag-head == yes-compression)

Decompress the buffer

buf ← Decompression-Message(request.buf)

else

Copy(request.buf → buf)

end if

end if

For all messages sent, a header is included to inform the receiver process if it has to decom-

press the message or not, and which algorithm must be used.

Adaptive-CoMPI includes two possible compression strategies. The first one, called Run-

time Adaptive Strategy (RAS) analyzes the performance of the communication network and the

efficiency of different compression algorithms before the application execution. Based on this

information, during the application execution, it decides if it is worth it to compress a message

or not, and if so, it chooses the most appropriate compression algorithm. This feature allows

the Runtime Adaptive Strategy to offer adaptive compression capabilities without any previous

knowledge of the application characteristics. RAS decision process consists of the following steps:

1. Selecting the best compression algorithm at the beginning of the application and everytime

the data type changes.

2. Finding the minimum size of the message from which the performance improves.
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3. Sending the message (compressed or not).

4. For subsequent messages with the same datatype, the process compares the message size

with length − yes − compression. If the size of the message is higher, then the message is

sent compressed, and uncompressed otherwise.

5. Once the message is sent, and if the decision is to compress, the process checks if the

compression-ratio is less than one. In the number of mistakes is higher than a certain thresh-

old within a time interval, the compression is disabled (see fig. 2a).

6. In the other case, if the decision was uncompressed, the process updates the number of

messages that have been sent uncompressed. When the number is higher than a reevaluation

threshold, then the evaluation is restarted (see fig. 2b).
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Figure 2. Adaptive-CoMPI with RAS strategy. Learning from errors.

One of the main characteristics of RAS is that it can adapt itself to the applications behavior

at runtime. This strategy learns from previous messages which is the compression algorithm to

be used and the size from which it obtains a benefit by compressing data.

The second approach, called Guided Strategy, provides an application-tailored solution based

on the prior application analysis using the application profiling. With this approach along the

first execution of the MPI application all the messages are stored in a log file. Upon completion,

the best compression algorithm is determined off-line for each message and it is registered in a

decision rules file. When the application is executed again with the same input parameters and

in the same environment, Adaptive-CoMPI extracts the information from the decision rules file

and applies the most appropriate compression technique for each message.

Adaptive-CoMPI has been evaluated using real applications (BIPS3D, PSRG, and STEM),

as well as using the NAS benchmarks. Fig. 3 shows the speedup achieved by BIPS3D when

Adaptive-CoMPI techniques are applied. The benchmark has been executed running up to 256

processes in a cluster with dual-core nodes. As may be seen, using Adaptive-CoMPI provides

always a performance increase, to a maximum of 1.8 speedup with the same resources.

Fig. 4 shows the speedup achieved for each strategy compared to the execution of the

application without compression. Note that the Guided Strategy finds the best compression

technique (including no compressing) for each message, providing the optimal compression rate

for each independent message. We can observe that the Runtime Adaptive Strategy obtains a

performance similar to the guided one which means that, globally speaking, it is able to efficiently

compress the messages with no previous knowledge of the application.
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Figure 3. Speedup of Adaptive-CoMPI for the

BIPS3D application
Figure 4. Comparing RAS and

Guided-Strategy

2. Resilience

Should the number of components in supercomputers continue to increase, the mean time

between failures (MTBF) is expected to decrease to a handful of hours, preventing any capacity

application from succesfully delivering its scientific outcome. As a result, deploying fault tolerant

strategies within HPC software stack will not only become critically important, but it will have

a direct and lasting impact: a massive improvement in application runtime and efficient resource

usage compared to currently deployed techniques used to alleviate the consequence of failures

(that is, resubmission of failed jobs, and simplistic periodic checkpointing to disk). However,

system level checkpoint/restart is unable, in its current state, to cope with very adversarial future

failure patterns. This presents a clear need to improve checkpointing strategies by simultaneously

addressing several issues: 1) optimizing the checkpoint procedure by minimizing the storage

requirements and by diverging from centralized I/O strategies; and 2) allowing independent

restart of failed processes without rollback of all processes [4]. One should understand that

adopting such a solution allows the application to complete under a reasonable time interval,

but in exchange requires significant investment in reliable hardware (more memory or NVRAM,

increased reliable storage and so on). Thus, the relief is only temporary, as the increase in the

number of components in the checkpoint restart chain will, by definition, have an impact on

the MTBF. Moreover, the total ownership cost of the application will increase, as all these

hardware additions will increase the energy requirements for large platforms, a requirement

extremely difficult to satisfy at the Exascale level.

Thus, the first potential solution is to simultaneously address two of the major drawbacks of

the system-level coordinated checkpoint, by decreasing not only the checkpoint size by also it’s

frequency. Such solutions have been thriving recently, proposing different interface to address

this problem. As an example, in Fault Tolerant Messaging Interface (FMI) [22] employs a surviv-

able communication runtime coupled with a fast, in-memory C/R and dynamic host allocation

to enable low-latency recovery. The application developer highlights the critical data for the

correct execution of the application, as well as windows of opportunity for a correct checkpoint,

allowing the FMI runtime to decide the frequency and the amount of data to be checkpointed.

On a somehow similar approach, Fault Tolerance Interface (FTI) [1] proposes to address these

challenges by proposing a low-overhead high-frequency multi-level checkpoint approach, in which

a highly-reliable topology-aware Reed-Salomon encoding is integrated deep inside the checkpoint

scheme. A more data centric approach, named Containment Domain (CD) [7] proposes a pro-

gramming construct that enable applications to express resilience needs and to interact with
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the system to tune and specialize error detection, state preservation and restoration. They be-

have as weak transactional primitives and can be nested to take advantage of the machine and

application hierarchies allowing hierarchical state preservation, restoration and recovery.

Faithful to their coordinated checkpoint/restart roots, these approaches inherit from a for-

mer programming period, where synchronous SPMD and BSD application were ruling the par-

allel application world. They are based on synchronous concepts, forcing a strict coordination

not only during the checkpoint, but also during the restart (in addition to requiring a complete

restart and a full data recovery). They provide little flexibility to the application to implement

specialized fault management approaches, or to take advantage of algorithmic properties in order

to code with the faults. Moreover, they do not provide support in the programming paradigm

for fault detection without a drastic restart, nor to any kind of support from the message passing

substrate.

However, over the last years, algorithm based fault tolerant techniques have proven to be

capable to forgo checkpointing completely by employing a tailored, scalable protective strategy

to maintain sufficient algorithm-specific redundancy to restore lost data pieces due to failures

without a global need for restart. Moreover, a large number of application can cope with a lesser

support for fault management from the runtime. Domain decomposition, naturally fault tolerant

applications, and master-worker, in which the partial loss of the dataset is not a catastrophic

event that commands interrupting progress toward the solution, are just a few examples of

such resilient applications. All of these recovery patterns hit one of the historic roadblocks that

have hindered the deployment of fault tolerant software: the lack of proper support from the

popular communication libraries, MPI and PGAS, which thereby limits recovery options to

full-job restart upon failure.

Resiliency should refer not only to the ability of the MPI application to be restarted after

a failure, but also to the ability to survive failures and to recover to a consistent state from

which the execution can be resumed. In recent developments, the MPI Forum has proposed an

extension of the MPI standard that permits restoring the capability of MPI to communicate

after failures strike [2]. One of the most strenuous challenges is to ensure that no MPI operation

stalls from the consequences of failures, as fault tolerance is impossible if the application cannot

regain full control of the execution. In the proposed standard, an error is returned when a failure

prevents a communication from completing. However, it indicates only the local status of the

operation, and does not permit assuming if, nor how, the associated failure has impacted MPI

operations at other ranks. This design choice avoids expensive consensus synchronizations from

obtruding into MPI routines, but leaves open the danger of some processes proceeding unaware

of the failure. This novel proposal is a low level layer, basically the most basic portability layer,

that can be exposed at the communication infrastructure level, to allow for flexible and portable

higher level concepts, but adapted to specific applicative domains. Thus, these additions propose

to put the resolution of such situations under the control of the application programmer, by

providing supplementary interfaces that reconstruct a consistent global view of the application

state (typical case for applications with collective communications). Aside from applications,

these new interfaces can be used by high-level abstractions, such as FMI, FTI, CS, transactional

fault tolerance, uncoordinated checkpoint-restart, and programming languages, to implement

their own needs and to provide seamless support for advanced fault tolerance models that are

thereby portable between MPI implementations.
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3. Data and Input/Output

Data storage and management is a major concern for Ultrascale systems, as the increased

scale of the systems and the data demand from the applications lead to major I/O overheads

that are actually hampering the performance of the applications themselves. MPI has proposed

asynchronous I/O operations to allow overlapping I/O and computation, but this feature does

not reduce the latency of the system, which is inherent in the length of the I/O path. To this

end, there is a major trend towards increasing data locality to avoid data movements: the

data-centric paradigm.

In this sense, AHPIOS (Ad-Hoc Parallel I/O system for MPI applications) [14] proposes a

scalable parallel I/O system completely implemented in MPI. AHPIOS allows MPI applications

to dynamically manage and scale distributed partitions in a convenient way. The configuration

of both MPI-IO and the storage management system is unified and allows for a tight integration

of the optimizations of all layers. AHPIOS partitions are elastic as they conveniently scale up

and down with the number of resources. AHPIOS proposes two collective I/O strategies, which

leverage a two-tiered cooperative cache in order to exploit the spatial locality of data-intensive

parallel applications. The file access latency is hidden from the applications through an asyn-

chronous data staging strategy. The two-tiered cooperative cache scales with both the number of

processors and storage resources. The first cooperative cache tier runs along with the application

processes and hence scales with the number of application processes. The second cooperative

cache tier runs at the I/O servers and, therefore, scales with the number of global storage de-

vices. Finally, AHPIOS takes advantage of view-based I/O [3] is a file-system independent I/O

optimization based on file views. View-based I/O avoids the necessity of transferring large lists

of offset-length pairs at file access time as the present implementation of two-phase I/O.

Given an MPI application accessing files through the MPI-IO interface and a set of dis-

tributed storage resources, AHPIOS constructs a distributed partition on demand, which can be

accessed transparently and efficiently. Files stored in one AHPIOS partition are transparently

striped over storage resources, each partition being managed by a set of storage servers run-

ning together as an independent MPI application. Access to an AHPIOS partition is performed

through an MPI-IO interface, allowing it to scale up and down on demand during run-time.
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Figure 5. AHPIOS. BTIO class C measurements. ROMIO two-phase I/O over PVFS2, Lustre,

AHPIOS and the two AHPIOS-based solutions: server-directed I/O and client-directed I/O

The performance and scalability of AHPIOS for an MPI application that writes and reads in

parallel, disjoint, contiguous regions of a file, stored over an AHPIOS system for different num-

bers of AHPIOS servers, has been demonstrated on both commodity clusters and BlueGene/P
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supercomputers. We have evaluated the performance of file writes of the BTIO benchmark

for four different setups: two-phase I/O over the IBM solution (CIOD), AHPIOS without cache

and view-based I/O as collectives (VBIO), AHPIOS and view-based I/O with client-side caching

(VBIO-CS), and AHPIOS with view-based I/O with both client-side and I/O node-side caching

(VBIO-CS-IONS). Fig. 5 shows the total time breakdown into compute time, file write time, and

close time, for BTIO class B and C. The close time is relevant because all data is flushed to the

file system when the file is closed. We notice that in all solutions the compute time is roughly the

same. VBIO reduces the file write time without any asynchronous transfers. VBIO-CS reduces

both the write time and close time, as data is asynchronously written from compute node to

I/O node. For VBIO-CS-IONS, the network and I/O activity are almost entirely overlapped

with computation. We conclude that the performance of file writes gradually improves with the

increasing degree of asynchrony in the system.

4. Energy

Energy has become a major concern for the sustainability of future computer architectures.

Providing MPI applications with malleable and energy-aware capabilities allows executing them

more efficiently and with less energy requirements, as shown in this section.

Intel SandyBridge chips include the Running Average Power Limit (RAPL) interface that

provides an energy estimation based on hardware monitoring. Other manufacturers like AMD,

IBM and NVIDIA include similar interfaces in their products. We access to this information

(via PAPI [24]) to evaluate the application power consumption. Fig. 6 shows the aggregated

processor power of Jacobi and Conjugate Gradient running on a compute node consisting of two

6-core Intel Xeon E5-2620 processors. We can observe that the energy consumption is different

for each application given that they have different compute and memory intensity levels. There

is a sharp increase of power until 12 processes because the available resources (cores) in the

system. From 12 to 24 processes the power (and performance) still slightly increase leveraging

the processor hyper-threading capabilities.
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Figure 6. Aggregated CPU energy for Conjugate Gradient and Jacobi executed on a node

with two Intel Xeon E5-2620 processors

Acceleration of MPI Mechanisms for Sustainable HPC Applications

36 Supercomputing Frontiers and Innovations



FLEX-MPI [18] is an MPI extension which provides performance-aware dynamic reconfig-

uration capabilities to MPI applications. In addition, FLEX-MPI considers two different con-

straints: cost and energy. The cost constraint consists of reaching a given level of application

performance (in FLOPs) at the smallest operational cost (measured in $ per CPU time). In the

case of the energy constraint, we aim to reach the performance level with the smallest aggre-

gated energy cost (in Joules) among all the processors involved in the application execution.

Note that there are important differences between both constraints. For instance, the opera-

tional cost is usually constant for a given processor class, but the energy cost is strongly related

to the processor load (as fig. 6 shows).

FlexMPI addresses heterogeneous architectures where each class of nodes has different en-

ergy, cost and performance specifications. Finding a solution to the aforementioned problems is

usually non trivial given the existing trade-offs between performance and costs (both economic

and energetic). For reaching these objectives, we employ a computational prediction model that

takes into account both the application and platform characteristics. This model uses hardware

counters to characterize the processor power for the considered program under different load

scenarios. Later, during the program execution FLEX-MPI uses the PAPI library to survey

hardware events (like energy and FLOPS) of each MPI process, and of the MPI interface, to

collect the performance of the MPI communications. Based on the collected data, it decides to

spawn or remove processes in order to achieve the user-defined performance objectives. In case

of a spawn operation, Flex-MPI decides which compute nodes are the most appropriate to run

the new created processes. In addition, when the number of processes changes, Flex-MPI also

includes functionalities for performing the data redistribution, thereby guaranteeing appropriate

load balance among the processes.
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Figure 7. Number of processes and type of processors scheduled by Flex-MPI for a

performance improvement objective of 30% and Jacobi benchmark with 20K input matrix

The results are encouraging, as was demonstrated by executing Jacobi method with two

different matrix sizes (10K and 20K rows and columns) and performance improvement objective

of 30%. We consider two scenarios for FlexMPI: the first one tries to reach the performance

objective without any constraint. The second scenario combines the performance objective with

the energy constraint. In our experiments we used a heterogeneous platform with four classes

of Intel Xeon nodes: E52620, E5645, E74807 and E5405. The average GFLOP/Watt ratio per

core values are respectively 0.13, 0.16, 0.24, and 0.32. Note that the last node is the most

J. Carretero, J. Garcia-Blas, D.E. Singh, F. Isaila, A. Lastovetsky, T. Fahringer...

2015, Vol. 2, No. 2 37



energy-efficient one. Unfortunately, some compute nodes are not Sandy Bridge and it is not

possible to measure the energy by hardware counters. For them, we indirectly obtained the

energy under different loads by means of an empirical model based on Intel Xeon E5410 [21]

and the extrapolation of the values obtained for E5-2620 node.

In our experiments, all the executions with Flex-MPI reached the performance improve-

ment objectives. The reference version (without Flex-MPI) runs two application processes in

each compute node type (summarizing 8 processes). For the 10K and 20K matrices the ref-

erence version produced an accumulated energy of 30.3 and 120.3 KJoules, respectively. For

the efficiency objective (without constraints), the energy values are respectively 31.1 and 124.8

KJoules. For the efficiency objective with energy constraint the energy values are respectively

28.5 and 109.3 KJoules. As fig. 7 shows with an energy efficiency goal, Flex-MPI schedules more

dynamic processes on the nodes which have a better performance/energy ratio. In this method,

the overall operational energy cost is minimized keeping the performance objectives. This result

demonstrates that the combined use of low-level monitoring and malleability at runtime would

be a good option for achieving energy efficiency in MPI systems.

5. Applications and algorithms optimizations

As a library, MPI lacks knowledge about the expected behavior of the whole application, the

so called“global-view programming model,” which prevents certain optimizations that would be

possible otherwise. In this section, we show some optimizations that are effective at the global

level, and are thus proposed for the application level.

5.1. Hierarchical SUMMA

Figure 8. Communication time of SUMMA, block-cyclic SUMMA and HSUMMA on BG/P.

p =16K, n = 65,536.

MPI collectives are very important building blocks for many scientific applications. In partic-

ular, MPI broadcast is used in many parallel linear algebra kernels such as matrix multiplication,

LU factorization, and so on. The state-of-the-art broadcast algorithms used in the most popu-

lar MPI implementations were designed in mid 1990s with relatively small parallel systems in

mind. Since then, the number of cores in high-end HPC systems has increased by three orders

of magnitude and is going to further increase as the systems approach Ultrascale. While some
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platform-specific algorithms were proposed later on, they do not address the issue of scale, as

they try to optimize the traditional general-purpose algorithms for different specific network ar-

chitectures and topologies. The first attempt to address the issue of scale is made in [13], where

the authors challenge the traditional “flat” design of collective communication patterns in the

context of SUMMA, the state-of-the-art parallel matrix multiplication algorithm. They trans-

form SUMMA by introducing a two-level virtual hierarchy into the two-dimensional arrangement

of processors. They theoretically prove that the transformed Hierarchical SUMMA (HSUMMA)

can significantly outperform SUMMA on large-scale platforms. Their experiments on 16K cores

have demonstrated almost a 6x improvement in communication cost, which translated into more

than 2-fold speedup of HSUMMA over SUMMA (see fig. 8). Moreover, the optimization tech-

nique developed is not architecture or topology specific. While the authors aim to minimize the

total communication cost of this application rather than the cost of the individual broadcasts,

it has become evident that, despite being developed in the context of a particular application,

the resulting technique is not application-bound, ensuring sustainability.

5.2. Application-level optimization of MPI applications with Compiler

Support

Programming in MPI requires the programmer to write code from the point-of-view of a

single processor/thread, an approach known as fragmented programming. One limiting factor

for optimizing MPI is the fact that it is a pure library approach and thus only effective during

the execution of the application. A lot of effort has been put into improving the performance

of individual functions offered by MPI implementations in order to speed up the execution of

MPI applications. These optimizations cannot be performed at the application level because

the structure of the underlying program cannot be analyzed or changed by the MPI library in

any way. On the other hand, normal compilers have no knowledge about the semantics of MPI

function calls either, and thus have to treat them like black boxes—just like all library calls.

A compiler which is aware of the semantics of MPI function semantics could (at least to some

extent) analyze the behavior of a program along with its communication pattern, in order to

optimize both.

We intend to optimize MPI applications by integrating MPI support in the Insieme compiler

project [15]. The Insieme compiler framework enables the analysis of a given parallel application

and applies source-to-source transformations to improve the overall performance. The output

code of the compiler is intended to run within the Insieme runtime system, which provides

basic communication primitives optimized for performance. The combination of a compiler and

runtime system enables us to transform the program at compile time and also pass information

about the program structure to the runtime system for further optimizations during program

execution.

Optimizing message passing programs using specialized compilers has already been done long

before MPI even existed. Moving communication calls within the code and replacing blocking

with non-blocking communication can improve the communication/computation overlap and

thus reduce the program execution time. Our approach should go one step further than previous

MPI-aware compilers by analyzing high level patterns to find further optimization potential. An

example illustrating such a pattern is depicted in the code of Algorithm 3.

An MPI-aware compiler could change the second call from MPI Bcast to MPI Ibcast, and

thus send B asynchronously while the application is processing the data transmitted during
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Algorithm 3 Example pattern for MPI Bcast

MPI Bcast(A, count, MPI INT, 0, MPI COMM WORLD);

for (int i = 0; i < count; i++) {
// process A

}
MPI Bcast(B, count, MPI INT, 0, MPI COMM WORLD);

// process B similarly

the first broadcast, A. Additionally, our compiler can detect that, under some constraints, it

would be beneficial to combine both broadcast operations into a single operation to reduce the

communication overhead for small messages. Similarly, for larger messages it might decide to

break down the message transfers into smaller chunks which will then be processed individually,

creating a pipelined broadcast at the application level, as shown below. Transformations like

these require program analysis in a compiler and simply cannot be done with a pure library

approach.

Algorithm 4 Example pattern for optimized MPI Bcast

for (offset = 0; offset < count; offset += tile size) {
MPI Bcast(&A[offset], tile size, MPI INT, 0, MPI COMM WORLD);

for (i = offset; i < offset + tile size; i++) {
// process tile of A

}
}
//process remainder of A and do the same for B

5.3. Hybrid MPI-OpenMP Implementations

A hybrid programming solution might be implemented using OpenMP and MPI. Such ap-

proaches become more important on modern multi-core parallel systems, decreasing unnecessary

communications between processes running on the same node, as well as, decreasing the mem-

ory consumption, and improving the load balance. With this implementation, both levels of

parallelism, distributed and shared-memory, can be exploited. On one hand, the block-level

parallelism is matched by the parallelism between nodes in the cluster (the data is distributed

by using MPI). We mention below some of the most representative and efficient Hybrid MPI-

OpenMP Implementations.

Molecular Dynamics using DL POLY : DL POLY, a large scale Molecular Dynamics (MD)

application programmed using MPI was modified to add a layer of shared memory threading [6],

and the code was tested on two multi-core clusters. At smaller core numbers on both systems

the pure MPI code outperformed the hybrid message passing and shared memory code. The

slower performance of the hybrid code at low core numbers was due to the extra overheads

from the shared memory implementation, and the lack of any significant benefit from a reduced

communication profile. For more cores on both systems, the hybrid code delivered better per-

formance. In general the hybrid code spent less time carrying out communication than the pure

MPI code, performing better at point to point communication at all core counts, and collec-
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tive communication at higher core counts. This reduced communication was the main driver for

performance improvements in the hybrid code. At low core counts the added overheads from

OpenMP parallelization reduced the hybrid code performance, but the effects of these overheads

decreased as the number of cores increased. The choice of system interconnect had an effect on

the performance of the hybrid code when compared to the pure MPI code. Using a fast Infini-

band interconnect the pure MPI code outperformed the hybrid up to a larger number of cores

than when using a slower 10 GigE interconnect.

Molecular Dynamics using LAMMPS : Pal et al. [20] developed a computational scheme for

MD simulations that exploited thread-parallelism as well as message passing techniques and

implemented it on a cluster of 6 dual-quad-core blade servers (SMP nodes), connected using

Infiniband and were the challenges and issues of such schemes were discussed in detail. They

showed that such a coupled scheme could work nearly twice as fast as a pure message-passing

based implementation for certain system sizes, owing to the additional overheads in the latter

being circumvented by the former scheme. When using unthreaded MPI processes with this al-

gorithm, the speed-up obtained saturated quickly on the cluster, well before the total number of

available cores were utilized. A set of hybrid schemes were compared and were found to be com-

petitive. The authors state that certain code-optimizations and computational loads may favor

one particular scheme over the other and hence it is unwise to treat a particular scheme as the

best processorthread configuration. However, they found that using unthreaded MPI processes

was likely to be inefficient as compared to threaded processes. LAMMPS, which does not spawn

threads for parallelization, was found to achieve a speed-up that was significantly inferior to that

obtained by their hybrid algorithm. However, the algorithm used for the parallelization was not

optimal, and its performance can be enhanced further. There is room for further improvements

in the serial algorithm as well.

Adaptive Integral Method : Wei et al [25] presented a hybrid MPI/OpenMP parallelization

technique for improving the scalability of classical adaptive integral method (AIM) accelerated

classical iterative method of moments (MOM) solvers on multi-core clusters. The schemes they

used were based on nested decompositions; a nested column-row decomposition was used for the

classical MOM computations and a nested 1-D slab decomposition of the 3-D auxiliary regular

grid was used for the AIM acceleration. The scalability of the resulting methods matrix fill time,

memory requirement, and matrix solve time were examined theoretically and contrasted to that

of a pure MPI parallelization. It was shown that when pure MPI parallelization was used on

multi-core clusters, the scalability of both classical and AIM accelerated MOM were limited by

two factors: (i) the memory needed for storing replicated geometry/basis function data, and (ii)

the communications during the iterative matrix solution. The hybrid MPI/OpenMP paralleliza-

tion was shown to be useful for both limitations because it did not replicate non-parallelized data

structures among different cores of a processor making the memory requirement independent of

the number of active cores and because it used fewer messages to communicate larger chunks

of data among processors and reduced the impact of latency. For classical MOM, for which

the matrix solution can be latency or bandwidth limited, hybrid MPI/OpenMP parallelization

always alleviated both of the limiting factors effectively. For AIM accelerated MOM, for which

the matrix solution can be grid or latency limited, hybrid MPI/OpenMP parallelization always

alleviated the memory limitation but could alleviate the communication limitation only when

the matrix solution was latency limited. They concluded that as the performance improvements

are a function of the number of active cores in a processor, hybrid parallelization methods are
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expected to become more important as the general trend of increasing number of cores in multi-

and many-core processors continues.

Drug Discovery : Guerrero et al [12] developed a hybrid optimized version for Virtual Screen-

ing calculations in Drug Discovery, that reached up to a 229x speed-up factor, versus its sequen-

tial counterpart. On their implementation, threads cooperated in parallel to perform the calcu-

lations within each node in a vectorized fashion. Once the data had been distributed using MPI,

the calculation of the energy was performed on each node with OpenMP, using its own memory

and executing as many threads as the number of cores per node. Moreover, the communication

and computation could be overlapped by asynchronous send/receive instructions. Next, MPI

was used to move molecule related data between nodes, instead of sending all the information to

each core. The communication was reduced by a ratio of number of cores per node, with respect

to the MPI implementation. This hybrid distributed memory system exhibited good scalability

with the number of processors, which is explained by the low number of communications re-

quired by the simulations in their hybrid MPI-OpenMP implementation. These hybrid solutions

are adequate when the Virtual Screening kernels are computationally intensive and massively

parallel in nature, and thus they are well suited to be accelerated on parallel architectures. A

natural evolution can also be made with many-core systems located on each node.

Topological Analysis: Cui et al [9] discussed a hybrid MPI/OpenMP approach to implement

a parallel processing of topological operations. They showed that implementing an OpenMP

application is simpler and quicker than implementing an MPI application. In order to obtain

speedup curves for the parallel scheme, they conducted within and overlap operations on a PC

cluster. In the first experiment, China County-level Point Data and China County-level Polygon

Data were used. In the second experiment, soil type map and land use map in Heilongjiang and

Jilin province were used. Experimental performance results demonstrated that a mixed mode

code, with the MPI parallelization occurring across the nodes and OpenMP parallelization within

the nodes, was more efficient on a cluster as the mode matches the architecture more closely

than a pure MPI model.

Conclusions

The MPI design and its different implementations have proven to be a critical piece of the

roadmap to faster and more scalable parallel applications. Based on it’s past successes, MPI will

probably remain a major paradigm for programming distributed memory systems. However, in

order to maintain a consistent degree of performance and portability, the revolutionary changes

we witness at the hardware level must be mirrored at the software level. Thus, the MPI standard

must be in a continuous state of re-examination and re-factoring, to better bridge high-level

software constructs with the low-level hardware capability. As software researchers, we need to

highlight and explore innovative and even potentially disruptive concepts and match them to

alternative, faster, and more scalable algorithms.

In this paper, we have called attention to some MPI-level optimizations that are amenable

to providing sustainable support to parallel applications. Hybrid programming models allow

developers to use MPI as the upper level distribution mechanism, thus reducing the volume of

communication and the memory needed. Adaptive compression allows developers to reduce MPI

communications and storage overhead, while AHPIOS is aimed at increasing data locality and

reducing I/O latency. Most of the proposals made are transparent to applications or can be made

transparent through compiler support. Many more optimizations are possible for applications

Acceleration of MPI Mechanisms for Sustainable HPC Applications

42 Supercomputing Frontiers and Innovations



that rely on MPI to evolve better programming models, resilience, data management, and energy

efficiency mechanisms to reduce overhead, while creating evolving applications. Some of these

mechanisms, like RMA, non-blocking, and neighborhood collectives, are introduced in the new

MPI 3.0 standard, but the road to Ultrascale is still unpaved.

The work presented in this paper was partially supported by EU under the COST programme

Action IC1305, ’Network for Sustainable Ultrascale Computing (NESUS)’.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Although resilience is already an established field in system science and many methodologies
and approaches are available to deal with it, the unprecedented scales of computing, of the massive
data to be managed, new network technologies, and drastically new forms of massive scale appli-
cations bring new challenges that need to be addressed. This paper reviews the challenges and
approaches of resilience in ultrascale computing systems from multiple perspectives involving and
addressing the resilience aspects of hardware-software co-design for ultrascale systems, resilience
against (security) attacks, new approaches and methodologies to resilience in ultrascale systems,
applications and case studies.

Keywords: high performance computing, fault tolerance, algorithm-based fault tolerance, ex-
treme data, evolutionary algorithm, ultrascale computing system.

Introduction

Ultrascale computing is a new computing paradigm that comes naturally from the necessity
of computing systems that should be able to handle massive data in possibly very large scale
distributed systems, enabling new forms of applications that can serve a very large amount of
users and in a timely manner that we have never experienced before.

Ultrascale Computing Systems (UCSs) are envisioned as large-scale complex systems joining
parallel and distributed computing systems that will be two to three orders of magnitude larger
than today’s systems (considering the number of Central Processing Unit (CPU) cores). It is very
challenging to find sustainable solutions for UCSs due to their scale and a wide range of possible
applications and involved technologies. For example, we need to deal with cross fertilization
among HPC, large-scale distributed systems, and big data management. One of the challenges
regarding sustainable UCSs is resilience. Traditionally, it has been an important aspect in the area
of critical infrastructure protection (e.g. traditional electrical grid and smart grids). Furthermore,
it has also become popular in the area of information and communication technology (ICT),
ICT systems, computing and large-scale distributed systems. In essence, resilience is an ability
of a system to efficiently deliver and maintain (in a timely manner) a correct service despite
failures and changes. It is important to emphasize this term in comparison with a closely related
"fault tolerance". The latter indicates only a well-defined behaviour of a system once an error
occurs. For example, a system is resilient to an effect on an error (in one of its components) if it
continues correct operation and service delivery (possibly degraded in some way). Whereas, it is
fault tolerant to the error when it is able to detect and notify about the existence of the problem
with possible recovery to the correct state.
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The existing practices of dependable design deal reasonably well with achieving and pre-
dicting dependability in systems that are relatively closed and unchanging. Yet, the tendency
to make all kinds of large-scale systems more interconnected, open, and able to change without
new intervention by designers, makes existing techniques inadequate to deliver the same levels
of dependability. For instance, evolution of the system itself and its uses impairs dependabil-
ity: new components "create" system design faults or vulnerabilities by feature interaction or
by triggering pre-existing bugs in existing components; likewise, new patterns of use arise, new
interconnections open the system to attack by new potential adversaries, and so on.

Many new services and applications will be able to get advantage of ultrascale platforms
such as big data analytics, life science genomics and HPC sequencing, high energy physics (such
as QCD), scalable robust multiscale and multi-physics methods and diverse applications for
analysing large and heterogeneous data sets related to social, financial, and industrial contexts.
These applications have a need for Ultrascale Computing Systems (UCSs) due to scientific goals
to simulate larger problems within a reasonable time period. However, it is generally agreed that
applications will require substantial rewriting in order to scale and benefit from UCSs.

In this paper, we aim at providing an overview of Ultrascale Computing Systems (UCSs)
and highlighting open problems. This includes:
• Exploring and reviewing the state-of-the-art approaches of continuous execution in the

presence of failures in UCSs.
• Techniques to deal with hardware and system software failures or intentional changes within

the complex system environment.
• Resilient, reactive schedulers that can survive errors at the node and/or the cluster-level,

cluster-level monitoring and assessment of failures with pro-active actions to remedy failures
before they actually occur (like migrating processes [13, 58], virtual machines [49], etc.),
and malleable applications that can adapt their resource usage at run-time.

In particular, we approach the problem from different angles including fundamental issues such
as reproducibility, repeatability and resiliency against security attacks; application-specific chal-
lenges such as hardware and software issues with big data, cloud-based cyber physical sys-
tems.The paper then also discusses new opportunities in providing and supporting resilience in
ultrascale systems.

This paper is organized as follows: the section 1 reviews the basic notions of faults, Fault
Tolerance and robustness. Then, several key issues need to be tackled to ensure a robust execution
on top of an UCS system. The section 2 focuses on recent trends as regards the resilience of large
scale computing systems, focusing on hardware failures (see §2.1) and on Algorithm-Based Fault
Tolerance (ABFT) techniques where the fault tolerance scheme is tailored to the algorithm
i.e. the application run. We will see that at this level, Evolutionary Algorithms (EAs) present
all the characteristics to handle natively faulty executions, even at the scale foreseen in UCSs
systems. Then, the section 3 will review the challenges linked to the notion of repeatibility
and reproducibility in UCSs. The final section concludes the paper and provides some future
directions and perspectives opened by this study.

1. Faults, Fault Tolerance and Robustness

Due to their inherent scale, UCSs are naturally prone to errors and failures which are no
longer rare events [11, 12, 50, 52]. There are many sources of faults in distributed computing
and they are inevitable due to the defects introduced into the system at the stages of its design,
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construction or through its exploitation (e.g. software bugs, hardware faults, problems with data
transfer) [4, 11, 12, 52]. A fault may occur by a deviation of a system from the required operation
leading to an error (for instance a software bug becomes apparent after a subroutine call). This
transition is called a fault activation, i.e. a dormant fault (not producing any errors) becomes
active. An error is detected if its presence is indicated by a message or a signal, whereas not
detected, present errors are called latent. Errors in the system may cause a (service) failure and
depending on its type, successive faults and errors may be introduced (error/failure propaga-
tion). The distinction between faults, errors and failures is important because these terms create
boundaries allowing analysis and coping with different threats. In essence, faults are the cause
of errors (reflected in the state) which without proper handling may lead to failures (wrong and
unexpected outcome). Following these definitions, fault tolerance is an ability of a system to
behave in a well-defined manner once an error occurs.

1.1. Fault models for distributed computing

There are five specific fault models relevant in distributed computing: omission, duplication,
timing, crash, and byzantine failures [53].

Omission and duplication failures are linked with problems in communication. Send-omission
corresponds to a situation, when a message is not sent; receive-omission — when a message is
not received. Duplication failures occur in the opposite situation — a message is sent or received
more than once.

Timing failures occur when time constraints concerning the service execution or data delivery
are not met. This type is not limited to delays only, since too early delivery of a service may also
be undesirable.

The crash failure occurs in four variants, each additionally associated with its persistence.
Transient crash failures correspond to the service restart: amnesia-crash (the system is restored
to a predefined initial state, independent on the previous inputs), partial-amnesia-crash (a part
of the system stays in the state before the crash, where the rest is reset to the initial conditions),
and pause-crash (the system is restored to the state it had before the crash). Halt-crash is a
permanent failure encountered when the system or the service is not restarted and remains
unresponsive.

The last model — byzantine failure (also called arbitrary) — covers any (very often un-
expected and inconsistent) responses of a service or a system at arbitrary times. In this case,
failures may emerge periodically with varying results, scope, effects, etc. This is the most general
and serious type of failure [53].

1.2. Dependable computing

Faults, errors and failures are threats to system’s dependability. A system is described as
dependable, when it is able to fulfil a contract for the delivery of its services avoiding frequent
downtimes caused by failures.

Identification of threats does not automatically guarantee dependable computing. For this
purpose, four main groups of appropriate methods have been defined [4]: fault prevention, fault
tolerance, fault removal, and fault forecasting. As visible in fig. 1, all of them can be analysed
from two points of view — either as means of avoidance/acceptance of faults or as approaches to
support/assess dependability. Fault tolerance techniques aim to reduce (or even eliminate) the
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amount of service failures in the presence of faults. The main goal of fault prevention methods
is to minimize the number of faults occurred or introduced through usage and enforcement of
various policies (concerning usage, access, development etc.) The next group — fault removal
techniques — is concentrated around testing and verification (including formal methods). Finally,
fault forecasting consists of means to estimate occurrences and consequences of faults (at a given
time and later).

1.3. Fault tolerance

Fault tolerance techniques may be divided into two main, complementary categories [4]:
error detection, and recovery. Error detection may be performed during normal service operation
or while it is suspended. The first approach in this category — concurrent detection — is based
on various tests carried out by components (software and/or hardware) involved in the particular
activity or by elements specially designated for this function. For example, a component may
calculate and verify checksums for the data which is processed by it. On the other hand, a firewall
is a good illustration of a designated piece of hardware (or software) oriented on detection of
intrusions and other malicious activities. Preemptive detection is associated with the maintenance
and diagnostics of a system or a service. The focus in this approach is laid on identification of
latent faults and dormant errors. It may be carried out at a system startup, at a service bootstrap,
or during special maintenance sessions.

After an error of a fault is detected, recovery methods are applied. Depending on the problem
type, error or fault handling techniques are used. The first group is focused on elimination of
errors from the system state, while the second are designed to prevent activation of faults. In [4],
the specific methods are separated from each other, where in practice this boundary is fuzzy and
depends on the specific service and system types.

Generally, error handling is solved through:
1. Rollback [22] — the system is restored to the last known, error-free state. The approach

here depends on a method used to track the changes of the state. A well known technique is
checkpointing — the state of a system is saved periodically (e.g. the snapshot of a process is
stored on a disk) as a potential recovery point in the future. Obviously, this solution is not
straightforward in the case of distributed systems and there are many factors to consider. In
such environment, checkpointing can be coordinated or not — with differences in reliability
and the cost of synchronisation of the distributed components (for details see: [18, 31, 53]).
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Rollback can be also implemented through the message logging. In this case, the communi-
cation between the components is tracked rather than their state. In case of an error, the
system is restored by replaying the historical messages, allowing it to reach global consis-
tency [53]. Sometimes both techniques are treated as one, as usually they complement each
other.

2. Rollforward — the current, erroneous system state is discarded and replaced with a one
newly created and initialised.

3. Compensation — solutions based on components’ redundancy and replication, sometimes
referred to as fault masking. In the first case, additional components (usually hardware) are
kept in reserve [31]. If failures or errors occur, they are used to compensate the losses. For
example, a connection to the Internet of a cloud platform should be based on solutions from
at least two different Internet Service Providers (ISPs).
Replication is based on the dispersion of multiple copies of the service components. A schema
with replicas used only for the purpose of fault tolerance is called a passive (primary-backup)
replication [31]. On the other hand, an active replication is when the replicas participate
in providing the service, leading to increased performance and applicability of load bal-
ancing techniques [31]. Coherence is the major challenge here, and various approaches are
used to support it. For instance, read-write protocols are crucial in active replication, as all
replicas have to have the same state. Another worth to note example is clearly visible in
volunteer-based platforms. An appropriate selection policy of the correct service response is
needed when replicas return different answers, i.e. a method to reach quorum consensus is
required [31].
These techniques are not exclusive and can be used together. If the system can not be

restored to a correct state thanks to the compensation, rollback may be attempted. If this fails,
then rollforward may be used.

The above mentioned methods may be referred to as general-purpose techniques. These solu-
tions are relatively generic, which aid their implementation for almost any distributed computa-
tion. It is also possible to delegate responsibility for fault tolerance to the service (or application)
itself, allowing tailoring the solution for specific needs — therefore forming an application-specific
approach. A perfect example in this context is ABFT, originally applied to distributed matrix
operations [14], where original matrices are extended with checksums before being scattered
among the processing resources. This allows detection, location and correction of certain mis-
calculations, creating a disk-less checkpointing method. Similarly, in certain cases it is possible
to continue the computation or the service operation despite the occurring errors. For instance,
unavailable resource resulting from a crash-stop failure can be excluded from further use. In this
work, the idea will be further analysed and extended to the context of byzantine errors and the
nature-inspired distributed algorithms.

Fault handling techniques are applied after the system is restored to an error-free state (us-
ing the methods described above). As the aim now is to prevent future activation of detected
faults, four subgroups according to the intention of the operation may be created. These are [4]:
diagnosis (the error(s) are identified and their source(s) are located), isolation (faulty compo-
nents are logically or physically separated and excluded from the service), reconfiguration (the
service/platform is reconfigured to substitute or bypass the faulty elements), and reinitialization
(the configuration of the system is adapted to the new conditions).
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1.4. Robustness

When a given system is resilient to a given type of fault, one generally claims that this system
is robust. Yet defining rigorously robustness is not an easy task and many contributions come
with their own interpretation of what robustness is. Actually, there exists a systematic framework
that permits to define a robust system unambiguously. In fact, this should be probably applied
to any system or approach claiming to propose a fault-tolerance mechanism. This framework,
formalized in [57], answers the following three questions:
1. What behavior of the system makes it robust?
2. What uncertainties is the system robust against?
3. Quantitatively, exactly how robust is the system?

The first question is generally linked to the technique or the algorithm applied. The second
— explicitly lists the type of faults or disturbing elements targeted by the system. Answering it
is critical to delimit the application range of the designed system and avoid counter examples
selected in a context not addressed by the robust mechanism. The third question is probably
the most difficult to answer, and at the same time the most vital to characterize the limits of
the system. Indeed, there is nearly always a threshold on the error/fault rate above which the
proposed infrastructure fails to remain robust and breaks (in some sense).

2. Resiliency within UCSs: From Hardware to ABFT Trends

2.1. Lessons Learned from Big Data Hardware

One of the direct consequences of the treatment of big data is, clearly, the requirement for
extremely high processing power. And whereas research in the big data domain does not tra-
ditionally include research in processor and computer architecture, there is a clear correlation
between the advances in the two domains. While it is obviously difficult to predict future de-
velopments in processing architectures with high accuracy, we have identified two major trends
that are likely to affect big data processing: the development of many-core devices and hard-
ware/software codesign.

The many-core approach represents a step-change in the number of processing units available
either in single devices or in tightly-coupled arrays. Exploiting techniques and solutions derived
from the Network-on-Chip (NoC) [32] and Graphical Processing Units (GPU) areas, many-core
systems are likely to have a considerable impact on application development, pushing towards
distributed memory and data-flow computational models. At the same time, the standard as-
sumption of "more tasks than processors" will be loosened (or indeed inverted), reducing to some
extent the complexity of processes such as task mapping and load balancing.

Hardware/software co-design implies that applications will move towards a co-synthesis of
hardware and software: the compilation process will change to generate at the same time the
code to be executed by a processor and one or more hardware co-processing units to accelerate
computation. Intel and ARM have already announced alliances with Altera and Xilinx7, respec-
tively, to offer tight coupling between their processors and reconfigurable logic, while Microsoft
recently introduced the reconfigurable Catapult system to accelerate its Bing servers [47].

These trends, coupled with the evolution of VLSI fabrication processes (the sensitivity of a
device to faults increases as feature size decreases), introduce new challenges to the application

7http://www.eejournal.com/archives/articles/20140624-intel.
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of fault tolerance in the hardware domain. In addition to increasing the probability of fabrication
defects (not directly relevant to this article), the heterogeneous nature of these systems and their
extreme density represent major challenges to reliability. Indeed, the notion of hardware fault
itself is being affected and extended to include a wider variety of effects, such as variability and
power/heat dissipation.

This section does not in any way claim to represent an exhaustive survey of this very complex
area, nor even a thorough discussion of the topic, but rather wants to provide a brief "snapshot"
of a few interesting approaches to achieve fault tolerance in hardware, starting with a brief outline
of some key concepts and fundamental techniques.

2.2. Fault tolerance in digital hardware

One of the traditional classification methods subdivides online faults in hardware systems
(i.e. faults that occur during the lifetime of a circuit, rather than at fabrication) into two cat-
egories: permanent and transient (a third category, intermittent faults, is outside the scope of
this discussion).

Permanent faults are normally introduced by irreversible physical damage to a circuit (for
example, short circuits). Rather common in fabrication, they are rare in the lifetime of a circuit,
but become increasingly less so as circuits age. Once a permanent fault appears, it will continue
to affect the operation of the circuit forever.

Transient faults have limited duration and will disappear with time. By far the most common
example of transient faults is Single-Event Upsets (SEU), where radiation causes a change of state
within a memory element in a circuit.

This distinction is highly relevant in the context of fault tolerance, defined as the ability of
a system to operate correctly in the presence of faults. Generally, the design of a fault tolerant
hardware system involves four successive steps [1]:

1. Fault detection: can the system detect the presence of a fault?
2. Fault diagnosis or localization: can the system identify (as precisely as needed) the exact

nature and location of a fault?
3. Fault limitation or containment : can the impact of the fault on the operation of the system

be circumscribed so that no irreversible damage (to the circuit or to the data) results?
4. Fault repair : can the functionality of the system be recovered?

While there is usually no significant difference between transient and permanent faults in
the first three steps, the same does not apply to the last step: transient faults can allow the
full recovery of the circuit functionality, whereas graceful degradation (e.g., [15]) is normally the
objective in the case of permanent faults in the system.

2.3. Fundamental techniques

Any implementation of fault tolerance (or indeed of fault detection) in hardware implies,
directly or indirectly, the use of redundancy. Specific applications of redundancy, however, vary
significantly depending on the features of the hardware system. In general, three "families" of
redundant techniques can be identified. Once again, the examples presented in this section are
not meant to be exhaustive, but simply to illustrate the different ways in which redundancy can
be applied in the context of fault tolerance in hardware systems.
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2.3.1. Data or information redundancy

This type of techniques relies on the use of non-minimal coding to represent the data in a
system. By far the most common implementation of data redundancy implies the use of error
detecting codes (EDC), when the objective is fault detection, and of error correcting codes (ECC),
when the objective is fault tolerance [1].

It is worth highlighting that, even though these techniques rely on information redundancy,
they also imply considerable hardware overhead, not only due to the requirement for additional
storage (due to the non-minimal encoding), but also because the computation of the additional
redundant bits implies the presence of (sometimes significant) additional logic.

2.3.2. Hardware redundancy

Hardware redundancy techniques exploit additional resources more directly to achieve fault
detection or tolerance. In the general case, the best-known hardware redundancy approaches
exploit duplication (Double Modular Redundancy, or DMR) for fault detection or triplication
(Triple Modular Redundancy, or TMR) for fault tolerance.

TMR in particular is a widely used technique for safety critical systems: three identical
systems operate on identical data, and a 2-out-of-3 voter is used to detect faults in one system
and recover the correct result from the others. In its most common implementations (for example,
in space missions), TMR is usually applied to complete systems, but the technique can operate
at all levels of granularity (for example, it would be possible, if terribly inefficient, to design
TMR systems for single logic gates).

2.3.3. Time redundancy

This type of approaches relies, generally speaking, on the repetition of computation and the
comparison of the results between the different runs. In the simplest case, the same computation
is repeated twice to generate identical results, allowing the detection of SEU. More sophisti-
cated (but less generally applicable) approaches introduce differences in two executions (e.g. by
inverting input data or shifting operands) in order to be able to detect permanent faults as well.

It is worth noting that time redundancy techniques are rarely used when fault tolerance is
sought (being essentially limited to detection) but in theory can be extended to allow it in case
of transient faults.

2.4. Fault tolerant design

In the introduction to this section, we highlighted how the heterogeneity and density of a
type of devices that are likely to become relevant in big data treatment complicates considerably
the task of achieving fault tolerant behaviour in hardware.

In particular, the heterogeneity introduced by the presence of programmable logic and the
complexity of many-core devices implies that the notion of a single approach to fault tolerance
applicable to every component of a system will have to be replaced by ad-hoc techniques. What
follows is a short list of the main components of a complete system, followed by a brief analysis
of their fault tolerance requirements and a few examples of approaches developed to achieve this
goal, in order to illustrate some of the issues and difficulties that will have to be met.
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2.4.1. Memories

Memory elements are probably the hardware components that require the highest degree of
fault tolerance: their extremely regular structure implies that transistor density in memories is
substantially greater than in any other device (the largest memory device commercial available
in 2015 reaches a transistor count of almost 140 billion, compared for example to 4.3 billion
of the largest processor). This level of density has resulted in the introduction of fault tolerant
features even in commonly available commercial memories.

Reliability in memories takes essentially two forms: to protect against SEUs, the use or
redundant ECC bits associated with each memory word is common and well-advertised [39], while
marginally less known is the use of spare memory locations to replace permanently damaged ones.
The latter technique, used extensively at fabrication for laser-based permanent reconfiguration,
has also been applied in an on-line self-repair setting [16].

2.4.2. Programmable logic

Programmable logic devices (generally referred to as Field Programmable Gate Arrays) are
regular circuits that can reach extremely high transistor counts. In 2015, the largest commer-
cial FPGA device (the Virtex-Ultrascale XCVU440 by Xilinx) contains more than 20 billion
transistors.

The regularity of FPGAs has sparked a significant amount of research into self-testing and
self-repairing programmable devices since the late 1990s [2, 34, 37], but to the best of our knowl-
edge this research has yet to impact consumer products (even considering potential fabrication-
time improvement measures similar to those described in the previous section for memories),
with the exception of radiation-hardening for space applications.

In reality, the relationship between programmable logic and fault tolerance would merit
a more complete analysis, since the interplay between the fabric of the FPGA itself and the
circuit that is implemented within the fabric can lead to complex interactions. Such an analysis
is however beyond the scope of this article. Interestingly in this context, even though its FPGA
fabric itself does not appear to contain explicit features for fault-tolerance, Xilinx supports a
design tool to allow a degree of fault-tolerance in implemented designs through its Isolation
Design Flow, specifically aimed at fault containment.

2.4.3. Single processing cores

The main driving force in the development of high-performance processors has been, until
recently at least, sheer computational speed. In the last few years, power consumption has
become an additional strong design consideration, particularly since the pace of improvements
in performance has started to slow. Since fault tolerance, with its redundancy requirements, has
negative implications both for performance and for power consumption, relatively little research
into fault tolerant cores has reached the consumer market.

The situation is somewhat different outside of the high-performance end of the spectrum,
where examples of processors specifically designed for fault tolerance exist (for example, the
NGMP processor developed on behalf of the European Space Agency [3] or the Cortex-R series
by ARM), demonstrating at least the feasibility of such implementations.

Resilience within Ultrascale Computing System: Challenges and Opportunities...

54 Supercomputing Frontiers and Innovations



More recently, the RAZOR approach [23] represents a fault tolerance technique aimed specif-
ically at detecting (and possibly correcting) timing errors within processor pipelines using a
particular kind of time redundancy approach that exploits delays in the clock distribution lines.

2.4.4. On-chip networks

Networks are a crucial element of any system where processors have to share information, and
therefore represent a fundamental aspect not only of many-core devices, but also of any multi-
processor system. Often rivalling in size and complexity with the processing units themselves,
networks and their routers have traditionally been a fertile ground for research on fault tolerance.

Indeed, even when limiting the scope of the investigation to on-chip networks, numerous
books and surveys exist that classify, describe, and analyse the most significant approaches to
fault tolerance (for example, [7, 45, 48]). Very broadly, most of the fundamental redundancy tech-
niques have been applied, in one form or another, to the problem of implementing fault-tolerant
on-chip networks, ranging from data redundancy (e.g. parity or ECC encoding of transmitted
packets), through hardware redundancy (e.g. additional routing logic), to time redundancy (e.g.
repeated data transmission).

2.4.5. Many-Core arrays

An accurate analysis of fault tolerance in many-core devices is of course hampered by the lack
of commercially-available devices (the Intel MIC Architecture, based on Xeon Phi co-processors,
is a step in this direction but at the moment is limited to a maximum of 61 cores and relies on
conventional programming models within a coarse-grained architecture). Using transistor density
as a rough indicator of the fault sensitivity of a device (keeping in mind that issue related to heat
dissipation can be included in the definition), it is no surprise that fault tolerance is generally
considered as one of the key enabling technologies for this type of device: once again, the regular
structure of many-core architecture is likely to have a significant impact on transistor count.
Today, for example, transistor count in GPUs (the commercial devices that, arguably, bear the
closest resemblance to many-core systems, both for the number of cores and for the programming
model) is roughly twice that of Intel processors using similar fabrication processes, and even in
the case of Intel this type of density was achieved only in multi-core (and hence regular) devices.

The lack of generally accessible many-core platforms implies that most of the existing ap-
proaches to fault-tolerance in this kind of systems remain at a somewhat higher abstraction layer
and typically rely on mechanisms of task remapping through OS routines or dedicated middle-
ware [9, 10, 33, 59]. Specific hardware-level approaches, on the other hand, have been applied to
GPUs (e.g., [55]) and could have an impact on many-core systems. Indeed, one of the few proto-
type many-core platforms with a degree of accessibility (ClearSpeed’s CSX700 processor) boasts
a number of dedicated hardware error-correction mechanisms, hinting at least to the importance
of fault tolerance in this type of devices, whereas no information is available on fault-tolerance
mechanisms in the Intel MIC architecture.

2.5. Toward Inherent Software Resilience: ABFT nature of EAs

Evolutionary Algorithms (EAs) are a class of solving techniques based on the Darwinian
theory of evolution [19] which involves the search of a population of solutions.
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A set of recent studies [20, 26, 30, 35, 42, 43] illustrate what seems to be a natural resilience of
EAs against a model of destructive failures (crash failures). With a properly designed execution,
the system experiences a graceful degradation [35]. This means, that up to some threshold and
despite the failures, the results are still delivered. However, it either requires more time for the
execution or the returned values are further from the optimum being searched.

3. Repeatibility and Reproducibility Challenges in UCSs

Repeatibility and reproducibility are important aspects of sound scientific research in all
disciplines – yet more difficult to achieve than might be expected [5, 54]. Repeatability of the
experiments denotes the ability to repeat the same experiment and achieve the same result, by
the original investigator [56]. On the other hand, reproducibility enables the verification of the
validity of the conclusions and claims drawn from scientific experiments by other researchers,
independent from the original investigator.

Repeatibility is essential for all evidence-based sciences, as counterpart to formal proofs used
in theoretical sciences or discourse used widely in e.g. the humanities. It is a key requirement
for all sciences and studies relying on computational processes. The challenge of achieving re-
peatability, however, increases drastically with the complexity of the underlying computational
processes, making the characteristics of the processes less intuitive to grasp and interpret and
verify. It thus becomes an enormous challenge in the area of ultrascale computing given the
enormous complexity of the massive amount of computing steps involved, and the numerous
dependencies of an algorithm performing on a stack of software and hardware of considerable
complexity.

While many disciplines have, over sometimes long-time periods, established a set of good
practices for repeating and verifying their experiments (e.g. by using experiment logbooks in
disciplines such as chemistry or physics, where the researchers record their experiments), compu-
tational science lags behind, and many investigations are hard to repeat or reproduce [17]. This
can be attributed to the lower maturity of computer science methods and practices in general,
the fast-moving pace of changing technology that is utilised to perform the experiments, or the
multitude of different software components needed to interact to perform the experiments. Small
variations in, for example, the version of a specific software can have a great impact on the final
result which might deviate significantly from the expected outcome, as has promoinently been
shown e.g. for the analysis of CT scans in the medical domain [27]. More severely, the source of
such changes might not even be in the software that is specifically used for a certain task, but
somewhere further down the stack of software the application depends on, including for example
the operating system, system libraries or the very specific hardware environment being used.
Recognizing these needs, steps are being taken to assist research in ensuring their results are
more easily reproducible [24, 25]. The significant overhead in providing enough documentation
to allow an exact reproduction of the experiment setup further adds to these difficulties.

Technical solutions to increase reproducibility in eScience research cover several branches.
One type of solutions is aimed at recreating the technical environments where experiments are
executed in. Simple approaches towards this goal include virtualising the complete environment
the experiment is conducted in, e.g. by making a clone which can subsequently be redistributed
and executed in Virtual Machines. Such approaches only partially allow reproducibility, as the
cloned system is potentially containing many more applications than are actually needed, and
no identification of which components are actually required is provided. Thus, a more favourable
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approach is to recreate only the needed parts of the system. Code, Data, and Environment
(CDE) [28] is such an approach, as it detects the required components during the runtime of a
process. CDE works on Linux operating system environments and requires the user to prepend
his commands to scripts or binaries by the cde command. CDE will then intercept system calls
and gather all the files and binaries that were used in the execution. A packaged created thereof
can then be transferred to a new environment.

CDE has a few shortcomings especially in distributed system set-ups. External systems may
be utilised, e.g. by calling Web Services, taking over part of the computational tasks. CDE does not
aim at detecting these calls. This challenge is exacerbated in more complex distributed set-ups
such as may be encountered in ultra-scale computational environments.

Not only external, but also calls to local service applications are an issue. These are normally
running in the background and started before the program execution, and thus not all the sources
that are necessary to run them are detected. It is more problematic, though, that there is no
explicit detection of such a service being a background or remote service. Thus, the fact that the
capturing of the environment is incomplete remains unnoticed to users who are not familiar with
all the details of the implementation. The Process Migration Framework [8] (PMF) is a solution
similar to CDE, but takes specifically the distributed aspect into account.

Another approach to enable better repeatibility and reproducibility is in using standardised
methods and techniques to author experiments, such as the use of workflows. Workflows allow
a precise definition of the involved steps, the required environment, and the data flow between
components. The modelling of workflows can be seen as an abstraction layer, as they describe
the computational ecosystem of the software used during a process. Additionally, they provide an
execution environment that integrates the required components to perform a process and execute
all defined subtasks. Different scientific workflow management systems exist that allow scientists
to combine services and infrastructure for their research. The most prominent examples of such
systems are Taverna [41] and Kepler [36]. Vistrails [51] also adds versioning and provenance of the
creation of the workflow itself. The Pegasus workflow engine [21] specifically aims at scalability,
and allows executing workflows in cluster, grid and cloud infrastructures.

Building on top of workflows, the concept of workflow-centric Research Objects [6] (ROs)
tries to describe research workflows in the wider eco-system they are embedded in. ROs are a
means to aggregate or bundle resources used in a scientific investigation, such as a workflow,
provenance from results of its execution, and other digital resources such as publications or data-
sets. In addition, annotations are used to describe these objects further. A digital library exists
for Workflows and Research Objects to be shared, such as the platform my experiment.8

Workflows facilitate many aspects of reproducibility. However, unless experiments are de-
signed from the beginning to be implemented as a workflow, there is a significant overhead
to migrate an existing solution to a workflow. Furthermore, workflows are normally limited in
features they support, most prominently in the type of programming languages. Thus, not all
experiments can be easily implemented in such a manner.

A model to describe a scientific process or experiment is presented in [38]. It allows the
researcher to describe their experiments in a manner similar to the approach of Research Objects;
however, this model is independent of a specific workflow engine, and provides a more refined
set of concepts to specifiy the software and hardware setup utilised.

8http://www.myexperiment.org/
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Another important aspect of reproducibility is the verification of the results obtained. The
verification and validation of experiments aims to prove whether the replicated or repeated ex-
periment has the same characteristics and performs in the same way as the original experiment
– even if the original implementation is faulty. Simple approaches just comparing a final exper-
iment outcome, e.g. a performance measure of a machine learning experiment, doesn’t provide
sufficient evidence on this task, especially in settings where probabilisitic learning is utilised, and
also a close approximation of the original result would be accepted. Furthermore, a comparison
on final outcomes provides no means to trace where potential deviations originated in the ex-
periment. It is therefore required to analyze the characteristics of an experimental process wrt.
to its significant properties, its determinism, and levels where significant states of a process can
be compared. On further needs to define a set of measurements to be taken during an experi-
ment, and identify approapriate metrics to compare values obtained from different experiment
executions, beyond simple similarity [44]. A framework to formalise such a verification has been
introduced as the VFramework [40], which is specifically tailored to process verification. It de-
scribes what conditions must be met and what actions need to be taken in order to compare the
executions of two processes.

In the context of ultrascale computing, the distributed nature of large experiments poses chal-
lenges for repeating the results, as there are many potential sources for errors, and an increased
demand for documentation. Also, approaches such as virtualisation or recreation of computing
environments hit the boundaries of feasibility especially in larger distributed settings based on
grid our cloud infrastructure, where the number of nodes to be stored becomes difficult to man-
age. Another challenge in ultrascale computing is in the nature of computing hardware utilised,
which is often highly specialised towards certain tasks, and much more difficult to be captured
and recreated in other settings.

Last, but not least, ultrascale computing is usually also tightly linked with massive volumes
of data that need to be kept available and identifiable in sometimes highly dynamic environments.
Proper data management and preservation have been prominently called for [29]. A key aspect
in ultra-scale computing in this context are means to persistently identify the precise versions
and subsets of data having been used in an experiment. The Working Group on Dynamic Data
Citation of the Research Data Alliance9 has been developing recommendations how to achieve
such a machine-actionable citation mechanism for dynamic data that is currently being evaluated
in a number of pilots [46].

Conclusion

In this paper, we first proposed an overview of resilient computing in Ultrascale Computing
Systems, i.e., cross-layered techniques dealing with hardware and software failures or attacks,
but also the necessary services including security and repeatability. We also described how new
application needs such as big data and cyber-physical systems challenge existing computing
paradigms and solutions.

New opportunities have been highlighted but they certainly require further investigations and
in particular large-scale experiments and validations. What emerges is the need for the appari-
tion of additional disruptive paradigms and solutions at all levels: from hardware, languages,
compilers, operating systems, middleware, services, and application-level solutions. Offering a

9https://rd-alliance.org/groups/data-citation-wg.html
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global view on the reliability/resilience issues will allow to define the right level of information
exchange between all layers and components in order to have global (cross-layer/component)
solution. Additional objectives such as performance, energy-efficiency and cost also need to be
taken into account. We intend in the context of the COST NESUS project to have several focus
groups aimed at defining more precisely the problems and approaches for such challenges.

This work is partially supported by EU under the COST Program Action IC1305: Network
for Sustainable Ultrascale Computing (NESUS).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.
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With energy efficiency one of the main challenges on the way towards ultrascale systems,

there is a great need for access to high-quality energy consumption data. Such data would enable

researchers and designers to pinpoint energy inefficiencies at all levels of the computing stack,

from whole nodes down to critical regions of code. However, measurement capabilities are often

missing, and significantly differ between platforms where they exist. A standard is yet to be

established. To that end, this paper attempts an extensive survey of energy measurement tools

currently available at both the hardware and software level, comparing their features with respect

to energy monitoring.

Keywords: energy measurement, power measurement, data acquisition tools, infrastructure

management, ultrascale computing.

Introduction

Energy sustainability is a significant concern for high-performance computing, with cost

of operation due to power draw being one of the main limiting factors for the design of new

systems. This need to improve the energy efficiency of computation is compounded by the growth

to ultrascale infrastructure.

To enable energy optimization across the whole stack, it is desirable to gain insight into the

consumption of existing systems at all levels possible. Ideally, system designers and operators, as

well as application developers, should be able to easily access precise power data ranging from

whole systems to individual components inside a computation node. It should also be easily

attributable to the code being executed, again ranging from entire processes to parts of specific

threads.

However, the power monitoring capabilities of current high-performance computing and ul-

trascale systems are often more limited. In many cases, only aggregate and approximate data

are available. A low level of precision and temporal resolution can be sufficient for administra-

tion and maintenance purposes, but many interesting applications, such as application energy

efficiency analysis or energy-aware dynamic scheduling, require finer-grained measurements.

The issue of acquisition portability also remains open. Existing built-in component power

sensors have to be read using as many different interfaces as vendors are involved. Current

data center management standards (such as the Intelligent Platform Management Interface

(IPMI) [21] or the Data Center Manageability Interface (DCMI) [20]) cannot leverage most

sensors, providing instead low-resolution data from supported motherboards.

For these reasons, we believe there is a justification for standardization of energy data

acquisition techniques. Such a unification attempt would benefit from an understanding of the

current state of the art. To that end, we will survey a wide range of measurement hardware and

software tools, providing a classification and a review of all capabilities identified as relevant to

the analysis of energy consumption.

The remainder of this work is structured as follows: section 1 defines the scope of our survey,

referencing related work. Section 2 reports available power and energy measurement devices,

grouping them by physical location on the compute node. Section 3 presents a taxonomy and
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2Instituto Tecnológico y de Enerǵıas Renovables, Santa Cruz de Tenerife, Spain

DOI: 10.14529/jsfi150204

64 Supercomputing Frontiers and Innovations



a review of software tools and libraries involved in the measurement process. The final section

concludes the paper and outlines future work.

1. Related work

This survey covers hardware and software systems reporting direct energy and power mea-

surements, with particular focus on current high-resolution approaches, where consumption data

for each component is updated at a high frequency. As such, energy consumption estimation

techniques, analytical modelling tools and power-aware management systems fall outside our

scope.

Previous surveys have mapped the landscape of energy measurement tools. A broad picture

is presented in [6], which defines a taxonomy encompassing methods based on measurement,

estimation and analytical modelling. However, coverage of hardware based methods is not com-

prehensive. The state of the art has also significantly changed since its publication.

In [33], both energy modeling and energy measurement techniques are covered. Here, the

main focus is not on data acquisition, and many existing hardware and software tools are not

included.

A more measurement-oriented survey of methods is found in [19]. However, at sub-node

granularity, only two custom instrumentation systems are presented. It also does not cover later

developments in integrated power sensors.

An in-depth exploration on some hardware methods can be found on [16], providing detailed

insights into the quality of a few chosen power meters and sensors. It covers a subset of the devices

considered in this survey.

2. Measurement hardware

Energy consumption data is acquired through hardware sensors. There are a number of

implementations, which are typically grouped in three categories by physical location (fig. 1):

• Integrated, where specific hardware components (such as a GPU or CPU) already contain

measurement circuitry,

• intra-node, instrumentation devices placed inside the node that can perform probing at

component or power lane level, and

• external power meters, measuring total load outside the node’s power supply.

Each of these approaches presents their own tradeoff between precision of measurement,

temporal resolution, cost of deployment and intrusiveness. The interfaces involved in data ac-

quisition are also different between them. A comparison of interfaces and sampling frequencies

among some of the current systems is provided in tab. 1.

2.1. Integrated sensors

2.1.1. CPUs

CPUs typically allow access to a number of performance counters, such as instruction or

cache miss counts, that are useful in profiling applications. In modern units, it is also possible

to query energy consumption estimates directly provided from the processor.

Intel processors from Sandy Bridge onwards implement the Running Average Power Limit

(RAPL) interface [24], which provides running counters of total energy consumed per package
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Figure 1. Diagram of hardware measurement tools

(and also, on some models, a total for the DRAM). This interface provides updates roughly

every millisecond. However, these counters may overflow: it is up to the interface user to take

this fact into consideration. This means constantly polling the registers, in turn increasing the

load on a CPU core and adds overhead to the measurements.

AMD processors starting from the Bulldozer (family 15h) microarchitecture also export an

estimation of average power over a certain interval through the Application Power Management

(APM) [1] capability. Unfortunately, the actual implementation for the Bulldozer family has

been shown [16] to provide an inaccurate estimate, particularly during processor sleep states.

2.1.2. GPUs and accelerator cards

Hybrid systems, containing some sort of accelerator units such as GPUs, have been on

the rise in recent years [18]. It is thus also desirable to have these components provide energy

consumption data from the hardware level.

Many current GPUs provide support for power limiting, which implies the capability to ei-

ther measure or perform a meaningful estimate of power usage. Nvidia Tesla and Quadro GPUs

(from the Fermi GF11x family onwards) additionally make this data available to the user as

instant power draw values with nominal accuracy up to ±5% through the Nvidia Management

Library [34] C API. Update frequency is not documented, and many potential complications,

such as significant sensor lag or sampling interval variability, have been experimentally identi-

fied [9].

Another accelerator, the Intel Xeon Phi, exposes a greater number of power sensors: con-

nector inputs, voltage regulator ouputs, and readings for both instant and averaged power draw

of the entire card through its System Management Controller chip [23]. Temporal resolution and

precision are of 50ms and 1W, respectively. Two methods are provided to query this data [22]:

in-band, which involves the Symmetric Comunications Interface and both accelerator and host

software support, and out-of-band (without waking up the coprocessor card), via the standard

Intelligent Platform Management Bus protocol over the System Management Bus. Multiple

software interfaces are provided for both of these methods.
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2.1.3. Mainboard

The Advanced Configuration and Power Interface (ACPI) open specification [47] defines

power management and device configuration interfaces between an operating system and the

BIOS or UEFI. Some power-related information is accessible through ACPI, such as supported

processor power states and their expected consumption. As for measuring actual power usage,

however, the usefulness of ACPI is limited to rough system-wide estimations in battery-powered

systems.

A more advanced form of power usage monitoring can be performed on some motherboards

supporting the Intelligent Platform Management Interface (IPMI) [21] (and thus equipped with

a Baseboard Management Controller (BMC) monitoring chip). There exist a number of vendor-

specific extensions (as implemented by the Dell Remote Access Controller, HP Integrated Lights-

Out or Intel Node Manager technologies) which specifically relate to power usage. A more recent

standard, the Data Center Manageability Interface (DCMI) [20], builds on top of IPMI 2.0

and introduces power monitoring sensor requirements. However, both standards are devised for

administration rather than research purposes, and offer power sampling rates on the order of

seconds in the best case.

Other vendors provide entirely proprietary measurement interfaces. This is the case of the

IBM Blue Gene/Q, where every node board is fitted with a FPGA which polls voltage and

current of all different power domains every 560ms [55]. This information can then be retrieved

through IBM’s Environmental Monitoring (EMON) API.

2.2. Intra-node instrumentation

For the purposes of dynamic application power profiling, the integrated sensors typically

available often do not provide the necessary level of measurement accuracy and subsystem cover-

age. In these cases, researchers typically employ more sophisticated, and often custom-designed,

hardware tooling. For example, the Linux Energy Attribution and Accounting Platform [37]

instruments a system’s main board to provide power readings using a data acquisition board,

which are then exposed to the user via the Linux /proc filesystem.

PowerPack [14] was one of the first frameworks aimed towards high-fidelity power-

performance profiling. It is comprised of a collection of hardware sensors, meters and data

acquisition devices and a software stack providing device drivers and user acquisition interfaces.

The PowerMon line of devices [4], developed by the Renaissance Computing Institute, is

inserted between a system’s power supply and motherboard, monitoring voltage and current on

DC rails to components. Its latest iteration (PowerMon2) can measure up to 8 channels, reaching

measurement frequencies up to 1 kSa/s (samples per second) per channel (3 kSa/s aggregate)

with low voltage and current measurement error.

A later development in node instrumentation is the PowerInsight [28] from Sandia National

Laboratories. Based on the BeagleBone single-board computer plus a custom carrier-board and

software layer, PowerInsight allows for instrumentation of up to 15 rails using both special cabling

and PCI riser devices fitted with Hall effect sensors. Measurement frequencies are claimed to

reach 1 kSa/s counting user-space overhead, down from the 4 kSa/s supported by hardware.

Voltage and current accuracies are reported to be higher than those of PowerMon2 [28].

The High Definition Energy Efficiency Monitoring (HDEEM) project [17] implements a

similar approach to PowerInsight, claiming a high quality of results due to work on noise filtering
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and sensor calibration, potential for high temporal resolution thanks to the speed afforded by the

PCIe bus and greater interoperability through integration with the IPMI specification. Hardware

cost is also said to be reduced [17], as their hardware implementation builds on top of an already

present Baseboard Management Controller chip instead of completely relying on a custom board.

Other devices that may be used for instrumentation include the ARM Energy Probe [3], used

with the ARM DS-5 toolchain for energy optimization of software on ARM boards; National

Instruments data acquisition equipment [32], which is also available in PCI/PCIe form factors

suitable for node instrumentation; and many current measurement integrated circuits based on

current-shunt or Hall effect.

2.3. External meters

Measurement from outside the node’s power supply is a fairly straightforward method, with

little intrusiveness and lower cost than node instrumentation. However, it produces the least

useful results: power draw values cannot be attributed to specific components or processes

within the node, and the time granularity is typically coarse.

Dedicated power meters available can be inserted between a system and wall outlet. Exam-

ples of consumer-grade products are the Kill A Watt [35] and Watt’s Up [50] devices, with a

time granularity of 1 Sa/s. For the purposes of application power analysis, more high-end devices

such as ZES ZIMMER [57] or Yokogawa [54] products can provide far more precise data.

Many power distribution units (PDUs) [10, 40] and power supply units (PSUs) used in

data centers also include monitoring capabilities through a variety of interfaces (SNMP, IPMI,

Modbus...).

Finally, external custom designs have also been developed for previous work such as Power-

Scope [13], which used a digital multimeter with a trigger input connected to profiling software,

or the Energy Endoscope [43], where an application-specific integrated circuit (ASIC) dedicated

to real-time energy monitoring was built.

2.4. Assessment

It is always desirable that power sensors be integrated in hardware components. Some current

CPUs and GPUs include reasonably useful measurement capabilities, but there is a room for

improvement in accuracy and latency. Other important targets, such as ARM-based processors,

as well as subsystems such as disks, memory or network cards, usually offer none of these features.

In all cases, energy data is only available at the component level, with no reliable mechanism to

attribute energy consumption to a particular software task within a multicore system.

Hardware vendors should aim to provide accurate energy and power data with as fine spa-

tial and temporal granularity as possible. This would enable efficiency gains backed by precise

accounting of the power consumption of any specific subsystem down to the process level. Im-

plementation of out-of-band channels would also help minimize the intrusiveness of readings.

In the long term, built-in sensors should phase out any custom-tailored intranode instrumen-

tation on datacenters and HPC deployments. A hardware interface standard for these sensors is

also necessary, covering both in-band and out-of-band collection of high-resolution performance

data from all components and all external meters present in a computing system. Design insight

can be drawn from both vendor-specific and custom implementations seen in this section.

Energy Measurement Tools for Ultrascale Computing: A Survey

68 Supercomputing Frontiers and Innovations



Table 1. Comparison of hardware power measurement systems

Hardware Vendor/group Acquisition interfaces Temporal resolution

Integrated sensors

Intel CPUs

(Sandy Bridge+)

Intel RAPL 1 kSa/s [17]

AMD CPUs

(Bulldozer+)

AMD APM 100 Sa/s [17]

Tesla, Quadro

GPUs

Nvidia NVML >60 Sa/s [9, 25]

Xeon Phi Intel Custom, IPMI+SMBus 20 Sa/s [23]

Node instrumentation

PowerPack Virginia Tech NI DAQs, Watt’s Up [14] Unknown

PowerMon2 RENCI Serial port 1 kSa/s (per channel) [5]

PowerInsight Sandia National

Labs, Penguin

Computing

SPI bus >1 kSa/s [28]

HDEEM TU Dresden, Bull PCIe and IPMI 1 kSa/s planned [17]

External meters

Watt’s Up Pro Watt’s Up Meters USB, Ethernet (.Net) 1 Sa/s [49]

Schleifenbauer

PDU

Schleifenbauer Network-based (SNMP,

custom...)

1 Sa/s [39]

ZES LMG450 ZES ZIMMER Serial, Parallel 20 Sa/s [56]

3. Software tools

Many different software tools can be used for power and energy analysis, from low-level soft-

ware interfaces to full-fledged analysis frameworks, including profilers, tracing and visualization

systems, and estimation and modeling tools.

In this section, we will cover those related to the acquisition of power data from hardware

sensors. In particular, a comparison of software acquisition interfaces by supported hardware is

provided in tab. 2.

3.1. Power-aware low-level profiling interfaces

The Performance API (PAPI) [8], from the University of Tennessee, is well-established as a

library interface for hardware performance counters. In recent years, it has included support for

many energy measurement sources, such as RAPL, NVML, Xeon Phi or IBM EMON [29, 51, 52].

This allows for easy extraction of power data for projects and researchers which are already users

of PAPI. However, PAPI remains focused on in-band measurement, and data from external

meters must be collected with some other tool.
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Some profiling frameworks focused on CPU performance counters support CPU-based en-

ergy metrics. For example, the likwid [46] profiler, as well as the perf events [26] Linux kernel

subsystem (a tool designed for profiling CPU performance counters) both directly implement

measurement through the RAPL interface.

3.2. Power-aware profiling frameworks

Larger profiling frameworks, with tracing and visualization systems, are usually built on top

of PAPI and other libraries, using them as data providers for larger analysis and visualization

frameworks. Because of this, many of them are capable of working with in-band power consump-

tion measurement to some extent. These include Paraver [36], Vampir [31], HPCView [30], the

Tuning and Analysis Utilities (TAU) [42], Open—Speedshop [41]. Scalasca [15] or Periscope [7].

Some attempts exist to offer interoperability between these systems. In particular, the Score-

P [27] measurement infrastructure is compatible with Vampir [31] (replacing the older Vampir-

Trace open source library), Scalasca, Periscope and TAU tools. Additional support for energy

metrics is currently being worked on within the follow-up Score-E [48] project.

Other profiling solutions also rely on specific hardware systems. The Multiple Metrics Mod-

eling Infrastructure (MuMMI) [53] is one such case, building upon PAPI, PowerPack and the

Prophesy [45] performance modeling and prediction framework.

3.3. Power-specific software interfaces

PowerAPI [38] is a recent attempt from Sandia National Laboratories to standardize access

to power measurement data and power control at all levels of a given HPC facility, down to hard-

ware components. It is comprised of a specification defining a model of a computation system,

user roles and the reference API. A prototype implementation is provided that already imple-

ments native support for some energy data sources including RAPL, Cray products supporting

power management, the WattsUp meter and PowerInsight.

The Energy Measurement Library (EML) [12] is an open source C library developed at Uni-

versidad de La Laguna providing a simple interface for acquisition of hardware energy consump-

tion data through code instrumentation. The API is designed around the concept of inserting

asynchronous instrumentation calls around relevant sections of code. Within these sections, the

library polls the underlying interfaces, gathering energy data and managing all needed threads

and memory [11]. Hardware support is provided for RAPL, NVML, Xeon Phi and Schleifenbauer

PDUs.

pmlib [2] is a software package developed at Universitat Jaume I to research the power-

performance of parallel scientific code. The framework uses a client/server model for out-of-band

power tracing of a target node instrumented with power meter devices. Supported meters include

APC PDU units, Watt’s Up Pro devices, a data acquisition system from National Instruments,

and custom transducer-based designs.

SchedMon [44], from the Signal Processing Group at INESC-ID, reports hardware power

consumption by coupling a Linux kernel module for access to hardware counters, a library pro-

viding the measurements to userspace, and a reference commandline user interface. It currently

obtains power data from the RAPL interface.
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Table 2. Comparison of low-level software power measurement interfaces

Name Author License Power measurement support

Power-aware profilers and interfaces

PAPI University of Tennessee BSD Intel RAPL, Intel Xeon Phi, Nvidia

NVML, IBM EMON

likwid Jan Treibig et al. [46] GPLv3 Intel RAPL

perf events Community GPLv2 Intel RAPL

Power-specific software interfaces

PowerAPI

(prototype)

Sandia National Labora-

tories

BSD Intel RAPL, Cray XTPM, PowerIn-

sight, Watt’s Up

EML Universidad de La Laguna GPLv2 Intel RAPL, Nvidia NVML, Intel

Xeon Phi, Schleifenbauer PDU

pmlib Universitat Jaume I Unknown Intel RAPL, APC PDU, Watt’s Up,

National Instrument DAQs, custom

SchedMon INESC-ID MIT Intel RAPL

3.4. Assessment

Both HPC tools and research code benefit from a set of standard capabilities for energy

data acquisition. Thus, they should be built upon low-level software abstraction layers which

give a simple interface to performance data sources, including energy. In the absence of hardware

standards to leverage, it would fall upon this layer to encapsulate the complexity of dealing with

different sensor types. Currently, PAPI is in a good position to also fill this role for energy and

power, although it is hindered by a lack of out-of-band measurement support.

Further abstraction layers should define standard data trace formats and utilities for easy

interoperability between tools. This format must take into account the scalability concerns in-

volved in dealing with high-resolution data in large-scale deployment. In the HPC analysis tooling

front, some important standardization work is already underway in the form of projects such as

Score-P. These standards should continue to mature and be adopted by more HPC frameworks.

Lastly, many high-level tools could be extended through these libraries to consider available

energy data. Datacenter operators and researchers alike should have analysis and visualization

tools with the ability to “zoom in” on the energy consumption incurred for a given program, user,

or even piece of code, both offline and online, looking at any level of hardware granularity: from

a whole system, to a specific core within one processor. Many other practical applications where

this data could drive energy efficiency gains can be imagined, such as energy-aware scheduling

and load balancing, or compiler-assisted energy optimization of program code.

Conclusions

This survey has attempted to outline the current state of direct energy and power measure-

ment techniques. In doing so, we aim to help future researchers choose an appropriate solution
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for their analysis needs, as well as help guide future developments in hardware and software

tools.

As we have shown, there is a great amount of diversity in energy and power measurement

approaches, with many coexisting implementations and interfaces. Most of the current power

measurement solutions were originally designed for administration and management purposes,

typically measuring at the whole node level, and with a temporal resolution of 1 Sa/s. This

accuracy can be unsuitable for fine-grained application consumption analysis. However, recent

designs from both HPC vendors and research groups have achieved significantly higher tem-

poral resolution (up to the order of 1 kSa/s) and better spatial granularity (with separate

per-component measurement channels).

A number of challenges still stand in the way of ubiquitous high-fidelity consumption mon-

itoring. The community depends on hardware vendors to embed accurate, fine-grained sensors

into hardware components, relieving the need to design and install custom-tailored instrumen-

tation hardware into their systems.

Additionally, to ensure the portability of instrumentation software, a greater degree of stan-

dardization of capabilities and interfaces is desirable. This would entail cooperation between

vendors to ensure hardware interoperability of energy data acquisition techniques, much like

what has already been done in the data center administration front with the IPMI and DCMI

standards.

Another important consideration for future developments is scalability of both the instru-

mentation and acquisition processes. Instrumentation scalability would benefit from integration

of reliable power measurement sensors exposing standard interfaces within hardware compo-

nents: custom instrumentation systems can incur significant development and installation dif-

ficulty. Acquisition scalability will depend on the development of advanced collection and data

processing systems, given that handling of fine-grained measurements at large scale will likely

prove not to be an easy task in itself.
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Mohr. The scalasca performance toolset architecture. Concurrency and Computation: Prac-

tice and Experience, 22(6):702–719, 2010. DOI: 10.1002/cpe.1556.

16. D. Hackenberg, T. Ilsche, R. Schone, D. Molka, M. Schmidt, and W.E. Nagel. Power

measurement techniques on standard compute nodes: A quantitative comparison. In Per-

formance Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium

on, pages 194–204, April 2013. DOI: 10.1109/ISPASS.2013.6557170.

17. Daniel Hackenberg, Thomas Ilsche, Joseph Schuchart, Robert chöne, Wolfgang E. Nagel,
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The chances to reach Exascale or Ultrascale Computing are strongly connected with the prob-

lem of the energy consumption for processing applications. For physical and economical reasons,

the energy consumption has to be reduced significantly to make Ultrascale Computing possi-

ble. The research efforts towards energy-saving mechanisms of the hardware have already made

energy-aware hardware systems available. However, to achieve a strong energy reduction, hardware

mechanisms must be complemented with new energy-efficient software that can exploit them so

that the foreseen energy savings actually result. In the software area, there also exist a multitude

of research approaches towards energy saving, often concentrating either on the system software

level or the application organization level, reflecting the expertise of the corresponding research

group. The challenge of reducing the energy consumption dramatically to make Ultrascale Com-

puting possible is so ambitious that a concerted action combining research efforts through all the

software levels seems reasonable. In this article, we discuss the current research efforts and results

related to energy efficiency in the diverse areas of software. We conclude with open problems and

questions concerning energy-related techniques with an emphasis on the application or algorithmic

side.

Keywords: energy-awareness, energy-efficient algorithms, ultrascale computing.

Introduction

The performance of high-end HPC systems has been increased roughly by a factor of 1000

in each of the last two decades. With the world’s most powerful systems already well past

the Petaflop/s level in 2014, a projection of this trend leads to the prediction that by 2022,

Exascale computing will be possible. However, progress towards this goal is threatened by energy

issues because, based on the current technology, systems with Exascale performance would use

excessive amounts of energy (e.g. Tianhe-2, a 33 PFlops system, needs about 18 MW). Moreover,

due to physical constraints, the performance of processing elements can no longer be assumed

to follow Moore’s Law. Accordingly, because of physical constraints and environmental issues,

power and energy consumption are considered to be one of the largest challenges for Exascale

systems. The US DOE Exascale Initiative has set a target of 20 MW for the power consumption

of an Exascale system. To achieve 1 ExaFLOP using 20 MW, the average energy cost per flop

must be limited to 20 picojoules (20 pJs/FLOP), including all costs for memory accesses and

communication [108]. However, the supercomputers on the current Top500 list need between

300 and 8000 pJs/flop6.

Consequently, reducing the energy consumption for computing has become an increasingly

important research topic in recent years, with the research community following two main re-

search directions: The first direction is concerned with power-aware and thermal-aware hardware

design, including low-power techniques on all levels, i.e. the circuit and logic level, the processor,

the memory and the interconnects. The second research direction is based on the development
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3West University of Timisoara, Timisoara, Romania
4University Bayreut, Bayreut, Germany
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of power-aware software for the entire software stack, including operating systems, compilers,

applications and algorithms. This second direction is the topic of this survey article, in which

we summarize important contributions towards energy reduction that can be provided by the

system software or the programming model and discuss how these contributions can be used

for the construction of energy-efficient algorithms and applications. An important step towards

a systematic development of energy-efficient algorithms is the energy-oriented investigation of

benchmark programs. As an example, the energy characteristics of benchmark programs such as

SPEC CPU and PARSEC are investigated and algorithmic techniques for energy saving are con-

sidered. The emphasis of our investigation is on large-scale complex computing systems, which

will be referred to as Ultrascale or Exascale systems in the following.

The rest of the article is structured as follows: Section 1 gives a brief overview of the hard-

ware mechanisms that can be used to reduce energy consumption. Section 2 deals with system

support for energy efficiency and presents some energy metrics as well as novel energy measure-

ment and power management techniques. Section 3 studies how the programming model and the

software development process can support the construction of energy-efficient algorithms and

applications. Section 4 considers the energy consumption of algorithms and discusses algorithmic

techniques to enhance energy awareness at the programming level. The final section concludes

the article with a discussion of important research directions that are crucial for reaching energy

efficiency in algorithms.

1. Hardware mechanisms for energy saving

Nowadays, computers include different power management techniques which support the

reduction of energy consumption. Examples are dynamic voltage frequency scaling (DVFS),

clock gating, and power gating. Moreover, the usage of special instructions and specialized

coprocessors can also help to reduce energy consumption.

DVFS [4] can reduce the clock frequency and voltage level of different components of the

compute node (processors, DRAM memories, etc.) at the expense of some performance degra-

dation. Currently, DVFS is broadly supported by low-power and high performance processors

provided by different manufacturers under different names (e.g. SpeedStep in Intel processors

and PowerNow or Cool ‘n’ Quiet in AMD processors). There are three factors that need to be

considered when DVFS is applied: (a) the dynamic power, which has a quadratic relationship

with frequency-voltage scaling; (b) the static power, which increases exponentially with the volt-

age; and (c) the performance, which has a linear relationship with the frequency. Because of its

negative performance impact, DVFS may only be effective for non CPU-bounded applications,

see Section 4.1 for more details.

Clock Gating [97] reduces the power consumption by disabling the clock in those parts of the

circuit that are idle or, like in the case of flip-flops, maintain a steady state that does not need

to be refreshed. The power used to drive the clock signal can represent more than a half of the

overall power consumption. Therefore, clock gating can potentially achieve a significant energy

reduction. This technique can be controlled both at hardware and software level. Hardware-level

approaches typically provide a finer granularity, allowing also to disable components inside a

functional block. Software-level approaches are usually applied at entire functional blocks, but

they allow more elaborated energy-saving policies.

Power gating [96] is a more aggressive approach in which a functional block is disconnected

from the power supply, powering off all its components. Nowadays, existing processors contain

Energy-efficient Algorithms for Ultrascale Systems

78 Supercomputing Frontiers and Innovations



clock gating logic managed by a power reduction policy for almost every functional block. For

some components clock gating is used in combination with power gating features. Given that

the entire functional unit is disconnected, power gating achieves a better power reduction than

clock gating. However, given that the functional unit state is erased, it is necessary to provide

mechanisms for saving and restoring the states of the functional units, which increases the com-

plexity and complicates resource utilization when applying power gating to active components

that need to preserve their state.

The use of special instructions can also help to reduce the energy consumption for compute-

intensive applications. Examples are the SIMD vector instructions provided by the AVX (ad-

vanced vector extensions) instructions for the x86 architecture or the AES (advanced encryp-

tion standard) instructions to support encryption and decryption. Those instructions lead to

an effective use of the corresponding transistors, thus reducing the energy consumption per

operation [71].

Similarly, the use of specialized coprocessors or accelerators, such as GPU (Graphics Pro-

cessing Unit), MIC (Many Integrated Cores) or FPGA (Field Programmable Gate Array), can

also lead to a smaller energy consumption compared to general purpose CPUs. As an example,

the NVIDIA ”Fermi” generation of GPUs requires about 200 picojoules of energy to execute

one instruction, which is 10x less than for the most efficient x86 CPU.

2. System support for energy efficiency

In order to obtain the benefits offered by an Ultrascale or Exascale system, it will be increas-

ingly important to provide system services for an effective management of the system resources

on behalf of the applications. Those services can be offered to the applications through the pro-

gramming environment or through specialized libraries, but they should be as transparent to

the user as possible to support application porting and sustainability. As energy is a cross-layer

issue, several aspects of the system software and the operating system should be involved in en-

ergy efficiency resource management, but it is also paramount to provide metrics and facilities

to monitor and express energy at the processor and system level.

2.1. Resource management

Currently, power requirements are driving the co-design of HPC systems, which in turn sets

the course for a radical change in how to express the need for increasingly scarce resources, as

well as how to manage them. Knowing that Ultrascale and Exascale systems will inevitably rely

on a high-level heterogeneity of resources and new HPC usage challenges (such as providing per-

formance hand-in-hand with energy efficiency), they need to become more and more self-aware

with respect to performance, energy and resilience [36]. New usages, like many-task computing

paradigms, will force the system to host, schedule, and load balance millions of heterogeneous

tasks. Existing research provides analytical studies quantifying and comparing expected perfor-

mance of new solutions proposed.

Another approach is to use layered solutions, such as the use of algorithm-specific check-

pointing combined with system-level checkpointing [19], or to use imperfect fault predictors [10].

Following this trend, decentralized approaches for a multi-objective, energy-aware resource man-

agement will be a likely replacement for centralized approaches when these do not scale up.

Gossip-based [65] and hierarchical approaches [124] are examples that have been proposed for
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load balancing. However, the scale to which they have been evaluated and the complexity of

their balancing requirements is far from what is expected for Exascale.

2.2. Energy metrics

In order to properly evaluate a specific system property, it is necessary to define correspond-

ing metrics. With regard to energy, the main basic metric is usually the unit of work or amount

of heat transferred, measured in Joule (J), while the power, i.e. the amount of transferred energy

in time, is measured in Watt (W ).

In the computing system context, several initiatives related to energy measurement and man-

agement have been started, mostly grouped under the umbrella of Green IT. Some of them focus

on distributed systems, aiming at identifying specific metrics for assessing energy efficiency in

these systems. A good example is GreenGrid, which is ”an association of IT professionals seeking

to dramatically raise the energy efficiency of datacenters through a series of short-term and long-

term proposals” [104]. They propose to use two main metrics for evaluating energy efficiency in

datacenters: Power Usage Effectiveness (PUE), and Datacenter Infrastructure Efficiency (DCiE)

[11, 16]. PUE is defined as follows:

PUE =
TotalFacilityEnergy

ITEquipmentEnergy

while DCiE is specified as its reciprocal:

DCiE =
1

PUE
=
ITEquipmentEnergy

TotalFacilityEnergy
× 100% .

The energy for the total facility is the overall amount of energy consumed by the whole data

center, including IT systems and facilities. The IT systems energy is the energy consumed by just

the IT equipment such as processing, storage, and network components for data management

and processing. The facilities include all other subsystems, such as UPS and power management

systems, cooling systems, lighting systems, etc.

Other interesting initiatives in the direction towards widely used metrics and, possibly,

standards, are Energy Star [110] and SPECpower [64]. Energy Star specifies specific rules, pro-

vides a rating for energy efficiency, called the Energy Star score, and is based on SPECpower.

SPECpower is mainly a benchmark for evaluating the energy efficiency of server-class compute

equipments. Several Performance-per-Power metrics have been proposed which report the ra-

tio between a given performance metric (such as response time, throughput, utilization, delay,

bandwidth, etc.) and the energy consumed for obtaining such a performance. An example is

the metric transactions per second per Watt (TPS/Watt), using the throughput as performance

metrics.

For the particular characteristics of Exascale platforms, specific energy efficiency metrics

are not yet specified and a metric that is able to take performance, scalability, as well as energy

efficiency into account still needs to be introduced.

2.3. Energy measurement techniques

A major challenge for energy measurement and monitoring is their use on heterogeneous

platforms through a standard access monitoring interface. Standardized monitoring interfaces

for energy and resource utilization are necessary to support local and global control decisions and
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should be able to handle the diversity of hardware devices, such as GPUs, embedded CPUs, and

nonvolatile low-power memory and storage. An example for a standardized access to performance

counters is the PAPI interface, which currently can be used on a large number of platforms

including the Intel Core i7 architecture, NVIDIA GPUs, the Intel Xeon Phi and IBM Blue

Gene/Q systems [78].

For CPU power monitoring, one approach consists in finding the relationship between the

power consumption and the utilization level. The utilization level is computed from different

workloads that stress different components of the system (CPU, memory, I/O, etc.). In the

literature [31, 81] it has been shown that the power consumption and the utilization level are

related linearly, regardless of the type of workload and the configuration of the processor, e.g.

in terms of operational frequency or the number of active cores.

As an alternative, the CPU performance can be indirectly modeled by means of hardware

counters that capture different hardware events, such as the number of cache accesses or the

number of instructions issued [98]. Performance monitoring counters do not require program

modifications or an intrusion into the hardware structure and they can accurately reflect the

activity levels of the processor or the memory subsystem. An example of this modeling technique

is given in [66], where the event-based power prediction is enhanced by using the correlation

of the power consumption with the change in core die temperature and the ambient tempera-

ture. Recent Intel CPU architectures include the Running Average Power Limit (RAPL) energy

sensors to measure the power consumption of different components, including the CPU and the

memory controller. The use of these counters is an efficient and low overhead alternative to mea-

sure the power of a system using specialized power meters [45]. Energy modeling approaches

and a comparison with measured energy values are discussed in [88].

2.4. Power management techniques

The Advanced Configuration and Power Interface (ACPI) [26] is an open standard for device

power management co-developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba.

It specifies different global and device energy states, which range from fully operational to

completely powered off, and provides an interface to manage and monitor the power of the in-

frastructure components. ACPI can be accessed by the user with the aid of user-defined policies,

such as specifying an application power level, or by the operating system, which applies power

policies based on the platform load, such as switching the components to a low power state after

a time of inactivity.

There are also advanced tools that provide support for a real-time power management

of the infrastructure components, including servers, storage, network, and cooling equipment.

Examples are the Intel Datacenter Manager [28], the IBM Systems Director Active Energy

Manager [27], and the HP Power Advisor [50]. They provide a single cross-platform view, can be

used at multiple hierarchy levels, and support different energy policies, such as power capping,

power saving and generation, and the analysis of power history data logs. In addition, most of

these tools are fully integrated in the infrastructure management software, allowing it to perform

energy-aware tasks, such as workload scheduling.

Several approaches address the improvement of the system energy efficiency. An example is

given in [44], where DVFS is used to control the CPU power based on different policies which are

applied considering the number of executed instructions, the memory traffic, and the consumer

power of the processor. Memscale [33] applies dynamic frequency scaling to the complete out-
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of-chip memory subsystem (memory controller, memory channel, and DRAM device), as well as

dynamic voltage scaling to the memory controller. It includes a control algorithm that minimizes

the overall system energy based on performance counter monitoring. This work was extended [32]

to multiple memory devices and controllers. [62] presents an energy model for the execution of a

parallel conjugate gradient method split between the CPU and the GPU. The approach considers

the CPU, GPU, and RAM energy consumption and uses the information to perform an energy-

aware workload distribution minimizing the execution time. A more global approach is followed

in [24], where a runtime optimization technique is presented for improving energy efficiency in

processors, disks, and networks.

The effectiveness of DVFS is restricted by the range of the minimum and the maximum volt-

ages at which the transistors can operate. Moreover, DVFS is difficult to apply when workloads

of different characteristics are executed. To overcome these problems, the idea of complementing

DVFS with power gating has been proposed. [75] introduces PGCapping, a system that inte-

grates power gating with DVFS for chip multiprocessors. [1] presents a gating-aware scheduler

and a power gating scheme for GPGPU execution units that achieve significant energy saving

in simulations.

When considering large computing infrastructures, the power proportionality arises, besides

the energy efficiency, as a crucial concept. Power-proportionality means that the system’s energy

usage is proportional to its workload. In this way, the machine would consume no power in the

idle state and would gradually increase the power consumption as the workload increases. An

Exascale architecture should be both energy efficient and power proportional. However, existing

systems are far from fulfilling this requirement. Consequently, it is necessary to develop new

hardware and software tools that help to achieve it [38]. Examples for such tools are described

in [105] and [6]. The first one shows a power-proportional distributed storage system for data

centers that powers down servers according to the load level and considering the performance

degradation, availability and data consistency. The second one presents a distributed filesystem

based on the Hadoop DFS. It provides power proportionality minimizing the number of active

nodes, including power-proportional capabilities for failures such as minimizing the number of

nodes that need to be restored when there is a failure of the filesystem. [47] describes a solution

to provide energy proportionality for networks by dynamically adapting the energy consumption

of a network through traffic patterns analysis and by finding minimum power network subsets.

A survey of techniques that aim to improve the energy efficiency of computing and network

resources is given in [80], covering techniques that operate both on parallel and distributed

system levels.

2.5. Monitoring and Benchmarking

With specific regard to Exascale platforms, there are three main challenges for energy ef-

ficiency metrics and monitoring: (1) scalability, (2) standard access monitoring methods, and

(3) its application on heterogeneous platforms [53]. Monitoring everything produces extremely

large trace files making their analysis prohibitive. Alternatives are statistical models [83], time

series approaches [67], and data filtering with a distributed analysis that produces small trace

files with a small runtime overhead [60, 84].

At node level, it is crucial to find the relationship between the power consumption and the

utilization level computed, which seems to be linear [31, 81]. As discussed above, one possibility

is to use hardware counters to model the CPU performance [98] and Intel RAPL to measure the
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CPU and memory controller power consumption [45, 66]. At the whole compute infrastructure

level, power proportionality arises as a crucial concept [39, 70]. Even if the current hardware

components are not power-proportional, we can see in the literature examples of system wide

[47, 105] and system specific models to achieve power-proportionality. In any case, standardized

monitoring interfaces for energy and resource utilization are needed to handle the diversity of

hardware and support local and global control decisions based on well-known and accepted

metrics, see Section 2.3.

The energy metrics collected at node and system level must be provided to the operating

system and the system software to optimize important energy-consuming operations in extreme-

scale systems. One of these operations is data movement, as it is recognized that today data

movement and storage uses more power than computation in many HPC usages. As an example,

[37] indicates explicitly that managing data movement may be an energy-efficiency technique.

Coupled to monitoring frameworks, benchmarking provides useful and complete tools for

the proper evaluation of distributed systems. Many stable benchmarking suites are available for

HPC systems, such as the NAS Parallel Benchmarks (NPB) [13] and LINPACK [35], which for

example is used for the performance evaluation and comparison of the Top500 list entries, see

www.top500.org. There are also some interesting attempts towards standards in benchmarking.

The most authoritative ones are the Standard Performance Evaluation Corp (SPEC) [101]

and TPC [109]. The Standard Performance Evaluation Corp (SPEC) has developed solutions

that can be adopted in distributed and cloud environments, such as SPECvirt, SPEC SOA,

and SPECweb. With specific regard to energy, SPEC define the SPECpower ssj2008 benchmark

[64], considering performance and energy efficiency altogether. TPC is a non-profit corporation

defining transaction processing and database benchmarks through verifiable TPC performance

data to the industry. The TPC benchmarks can be considered as application-level benchmarks

in distributed environments and they are a basis for the evaluation of the actual performance

offered by standard transactional software on the top of (physical or virtual) machines.

3. Programming models and software development

An important aspect for the development of energy-aware applications is the use of suitable

programming models. This is the main topic of this section, along with a coverage of energy-

aware scheduling algorithms and software development approaches.

3.1. Hierarchical programming models

Applications for Exascale computing are expected to incorporate multiple programming

models. For example, a single application might incorporate components that are based on MPI

and other components that are based on other paradigms. The particular combination of pro-

gramming models may differ over time (different execution phases of the application) or space

(e.g. some of the nodes run MPI, and others run shared-memory libraries). It is widely be-

lieved that to cope with these models, Exascale systems will require support for hierarchical

programming models, which include more than two levels of today’s models (such as MPI +

OpenMP) [42]. The particular combination of programming models may differ over time (e.g.

different execution phases of the application) or space (e.g. some of the nodes run MPI, and

others run shared-memory libraries). It is widely believed that to cope with these models, Ex-

ascale systems will require support for hierarchical programming models, which may include
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more than two levels of today’s models (such as MPI + OpenMP) [42]. In Exascale systems,

hierarchies with a higher number of levels and a larger degree of parallelism will coexist with

more heterogeneous hardware, making load balancing and communication reduction a critical

task. Those features can be addressed through functional portability and performance portabil-

ity. Even through functional portability can be achieved due to standardized environments such

as MPI or OpenCL, performance portability, however, is often a crucial issue, as the required

abstractions are still not present in the current HPC code generation tools. Performance porta-

bility for future systems might require a durable abstraction expressed in programming models

that do not exist for HPC code generation so far [58].

Examples for existing hierarchical programming models are the TwoL [85] and the Tlib [86]

approaches, which are both defined on top of MPI and allow a flexible and hierarchical grouping

of processes into groups each of which can execute multi-processor tasks (M-tasks). The M-

tasks are the basic execution units and each M-task can be executed by an arbitrary number

of processing cores. In the TwoL approach, the M-tasks can be combined using a coordination

language, which allows the specification of input-output and control dependences between M-

tasks. M-tasks without a dependence between them can be executed in parallel on disjoint

groups of processors. The runtime system can select a suitable number of processing cores for

each M-task and can decide which of the M-tasks are executed in parallel. If the internal M-task

communication is based on collective MPI operations, it is often advantageous to execute M-tasks

in parallel as this reduces the communication overhead. This approach can also be used to enable

an energy-efficient execution of M-task programs [87], since the runtime system can perform

the mapping of M-tasks to cores based on an energy minimization instead of a performance

maximization goal. It is also possible to provide different implementations for M-tasks, such as

a standard MPI implementation, a GPU implementation and a specialized implementation for

MIC processors, and select the most energy-efficient implementation at runtime, depending on

the hardware resources available. To support such an energy-efficient mapping, it is important

that the runtime system has access to suitable monitoring facilities (see Section 2.5) or can use

suitable energy metrics (see Section 2.2).

The M-task model can also be used to support performance portability, since the same

M-task program can be executed on different hardware platforms and the runtime system is

responsible for the appropriate mapping to the hardware resources. For different hardware plat-

forms, the runtime system can select different mappings and different M-tasks could be executed

in parallel, if this results in a faster or more energy-efficient execution.

3.2. Many task approaches

The ever-increasing performance of supercomputer systems is enabling the emergence of

new problem-solving methods that require an efficient execution of many concurrent and inter-

acting tasks, usually integrating data analysis and visualization, to maximise the productivity

on Exascale systems [37]. Hence, Exascale systems will need new problem-solving approaches

beyond hierarchical models.

One of the most promising candidate approaches is the many-task programming model,

with the workflow model currently being the most widely used many task-like technique. An

example of these tools is Swift/T, a description language and runtime system that supports the

dynamic creation and execution of workflows with varying granularity on high-component-count

platforms. The Swift/T system [117] provides an asynchronous dynamic load balancer (ADLB),
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which dynamically distributes the tasks among the nodes [119]. The problem is that communica-

tion and synchronization for shared global resources (as files) could degrade performance in case

of the absence of data locality. Current research has shown that emerging high-speed networks

outperform physical disk solutions, which reduces the relevance of disk locality [7]. Thus, most

solutions provided for ultrascale will be based on the intensive usage of RAM and NVRAM

memory near the processors. However, existing software engineering methods and models do

not provide a mechanism to express energy aspects in applications and they still rely on system

services that are not energy-aware.

3.3. Energy-aware scheduling algorithms

In order to cope with energy saving while considering the particularities of Exascale systems,

i.e. various levels of heterogeneity, fault tolerance, strong energy consumption constraints, it is

mandatory to move towards an energy-aware resource management [22], including scheduling

algorithms that are able to handle various levels of heterogeneity and the diversity of available

resources [73].

Power-aware scheduling algorithms for homogeneous systems are already available for more

than one decade [46, 51, 72]. Popular approaches commonly use DVFS to reduce the power

consumption of processing elements during idle times and during slack times of non-critical jobs

[115]. Other approaches even power off the entire computing node with only a small impact on

the resulting makespan [76].

In many HPC usage scenarios, data movements consume more power than computations do,

so that reducing data movement can be considered an energy-efficiency technique [37]. Therefore,

energy-aware scheduling algorithms should guide the system to schedule computation jobs to

the nodes containing the required data, thus avoiding costly data movement and considering the

trade-offs between data locality and load balance. While traditional task clustering algorithms

reduce the makespan by zeroing edges of high communication costs, a Power Aware Task Clus-

tering (PATC) algorithm has recently been proposed [115] that guides the edge zeroing process

with the objective of reducing the power consumption. The initial experiments were performed

on homogeneous small clusters (100 PEs), where promising results have been obtained, specif-

ically yielding up to 39% energy saving, which is more than double compared to 16% obtained

on EADUS and TEBUS algorithms [122] that do not use DVFS. Energy-aware algorithms have

also been developed and tested against heterogeneous clusters. The EETCS (Efficient-Energy

based Task Clustering Scheduling) algorithm [69] significantly reduces the power consumption

by shrinking the communication energy consumption when allocating parallel tasks to hetero-

geneous computing nodes. Another example is RADS (Resource-Aware Scheduling Algorithm

with Duplication) [79], which saves up to 15% resource power consumption compared to similar

algorithms.

Current scheduling and load balancing mechanisms are using meta-heuristics to solve the

multi-criteria optimization problem taking into account the overload of the system and the in-

coming task requirements. Traditional multi-objective optimization algorithms, including pop-

ulation based metaheuristics aiming to estimate Pareto optimal sets, require an adaptation in

order to be effective in the case of ultrascale dynamic optimization. In [22] a two-stage ap-

proach is proposed: First, a list of preliminary schedules resulting from a static multi-criteria

optimization method is computed at design time. Then the schedules are adapted, using low

cost operations, according to the particular requirements of the running applications and the
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characteristics of the available resources. However, the approach has not been tested in the con-

text of large scale dynamic scheduling. Another aspect to be considered is the exploration of

the relationship between tasks and computing resources and the proper usage of data location

[14]. Existing scheduling techniques for Exascale rely on various combinatorial optimization al-

gorithms. For example, in [103] a new approach is proposed for simultaneously reducing the

energy consumption while maximizing system performance. The method consists in comput-

ing the Pareto front of optimal solutions to the bi-objective problem of minimizing energy and

makespan for a bag of tasks allocated to a set of heterogeneous compute resources.

The ultrascale dimension, the heterogeneous architecture of current parallel systems, and the

need to re-schedule due to system faults have not been taken into consideration yet, especially

not together with energy awareness. The task scheduler needs to support locality-awareness and

be capable of supporting function shipping and data shipping as interchangeable alternatives.

For this purpose, all data movement operations need to be abstracted as asynchronous tasks

whose completion can trigger additional computation tasks and data movements. Moreover, the

current slow meta-heuristic based mechanism should be redesigned to ensure a real-time reaction

especially in the case of re-scheduling. A set of strategies, such as minimal energy consumption

with deadline matching in scheduling mechanism assuming no faults, or energy aware reschedul-

ing in the case of faults without time limits, should be defined as working conditions for the

resource management system.

3.4. Energy-aware software development process

In a complex and highly distributed context, energy awareness should be applied at any level,

both hardware and software, and within them. It needs to be addressed at different layers and

services adopting a holistic approach. With regard to software, energy efficiency and optimization

could be implemented and enforced at several levels: (a) at low level, through specific schedul-

ing algorithms; (b) at code level, by optimizing programs and compilers and also by adopting

specific, e.g. hierarchical, programming models and design patterns; and (c) at higher levels, in

the software development process. In the latter case, the goal is to design the overall software

architecture taking into account energy aspects and metrics, thus also considering a possible

deployment in an Ultrascale infrastructure for the overall software. This approach comes from

software performance engineering [99, 100], which is a systematic, quantitative technique to con-

struct software systems that meet performance objectives. It includes performance requirements

and goals into a software development process, a technique also known as performance-driven

development [68, 74, 77]. As in the test-driven development [15], the performance-driven devel-

opment is an iterative process composed of development and performance evaluation phases at

each cycle.

The idea of an energy-aware software development process, which aims at enabling and

taking into account energy efficiency and other important deployment properties and require-

ments at the early stages of the software lifecycle, is not new in literature but quite unexplored,

especially in large scale parallel and distributed contexts. The first attempt in such a direction

is green software engineering [21, 61] and development [2, 95]. All of those approaches mainly

suggest adopting a green, sustainable software development process taking into account energy

properties, but so far just provide some suggestions and guidelines for this purpose, mainly

at lower levels, e.g. code, programming models, or design patterns. A slightly more concrete

solution is discussed in [106] where a reference model for sustainable software development,
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called GreenRM, is defined according to the ISO/IEC 14001 environmental requirements. But

also in this case a model mainly containing only some guidelines is defined. Therefore, address-

ing energy, green and sustainability issues in the software development process is still an open

problem.

4. Energy-efficient algorithms

As stated in the introduction, a huge reduction in the average energy cost per flop is re-

quired for Exascale systems [108]. There have been large efforts on the hardware side which

aim at a reduction of the energy consumption, including new memory systems and new proces-

sor technologies with power management, see Section 1. However, while these techniques can

help to significantly reduce the energy consumption of unloaded systems, their contribution to

the energy consumption of loaded systems is quite limited. Most of the efforts for reducing the

energy consumption of loaded systems are directed towards an efficient control of the power

management techniques according to the system load, but the contribution of these techniques

may not be sufficient to reach the 20 MW target for Exascale systems.

A major problem in current approaches is that the algorithms or the applications being

executed have no direct interaction with the hardware system to express or control energy

needs. Such an interaction is needed to bring energy-awareness to the application level and to

support a goal-directed use of algorithmic changes or transformations of the application code.

In this section, we give an overview of the most important aspects for the energy awareness of

algorithms, including the energy characteristics of algorithms, the effect of algorithmic changes

and transformations on the resulting energy consumption, as well as adaptivity approaches used

to cope with the increasing heterogeneity of HPC systems resulting from the integration of

accelerators such as GPU, MIC or FPGAs. Finally, we show some specific examples for energy-

efficient algorithms from different areas.

4.1. Energy characteristics of algorithms

Hardware mechanisms introduced during the last years to reduce the overall energy con-

sumption of processors (see Section 1) will also play an important role for future Ultrascale

systems. Thus, it is important to study the influence of these techniques on algorithms and

applications. In particular, it has to be investigated whether these techniques can be employed

to reduce the energy consumption of algorithms and which specific characteristics of algorithms

have an effect on the resulting energy consumption. If the influencing factors are known and can

be captured quantitatively, this information can be used to tune applications towards a smaller

energy consumption by applying suitable algorithmic transformation techniques.

The energy consumption E of an algorithm can be described by the power consumption

P of the execution resources employed and by integrating P over the execution time of the

algorithm: E =
∫ tmax

t=t0
P (t)dt. Typically, the power consumption varies during the execution

time of the application, depending on the specific execution situation of the application and the

resulting usage of the different execution resources. The variations of the power consumption

during the execution time can be measured in detail with specialized power meters and power

acquisition systems [90] (see Section 2.2), but hardware counters can be used as well (e.g. Intel

RAPL interface). However, the specific interaction of computation and power consumption is
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Figure 1. SPEC CPU2006 floating-point benchmarks on an Intel Core i7 Haswell processor: energy

consumption (left), and power consumption (right) for varying frequencies [90]

complex and it is challenging to predict which algorithmic properties lead to which amount of

power consumption at a specific point in the execution time.

The power consumption of processors comprises a dynamic and a static power consumption

part [56]. The dynamic power consumption Pdyn is related to the switching activity of the

processor during execution and it can be expected that it is smaller during processor idle periods.

The static power consumption Pstat captures the leakage power, which becomes more important

for processors with smaller transistor size, and it is present even if there is no switching activity

of the transistors. It has been stated that in 2014 25%–40% of the total power consumption

in server chips was caused by leakage power [48]. For DVFS processors, the dynamic power

consumption increases significantly with the operational frequency f , and often, a dependence

Pdyn(f) = γ · fα with 2.5 ≤ α ≤ 3 is assumed, where γ is a suitable parameter. The dependence

of the static power consumption Pstat on f is typically quite small and is often neglected and

assumed to be constant [56].

The average power consumption of algorithms increases with the operational frequency.

Fig. 1 shows the dependence of the energy and the power consumption on the frequency for

the SPEC CPU2006 floating-point benchmarks, which consist of real (sequential) programs

from different application areas, (see [48] and [90] for more details). It can be observed that

for most of the programs a frequency between 2.0 and 2.5 GHz leads to the smallest energy

consumption. It can also be observed that different SPEC programs lead to different amounts of

power consumption, which shows that there is a dependence of the power consumption on the

features of the application. This effect is even larger for parallel applications, as those included

in the PARSEC benchmarks that contain parallel programs from different application areas,

see [17]. Fig. 2 shows the average energy and power consumption of the PARSEC benchmarks

for different frequencies. As shown, the variation of the power consumption is much larger than

for the SPEC benchmarks. Fig. 2 also shows that the difference between the largest and the

smallest average power consumption for the different applications is more than 100% (see [89]

for details). It can be concluded that parallel execution adds significant variations to the power

consumptions observed.

The observation that the power consumption may be quite different for different algorithms

and applications leads to the question which algorithmic properties have an influence on the

resulting power consumption. For parallel applications, the speedup obtained plays a role and
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Figure 2. PARSEC benchmarks executed with eight threads on an Intel Core i7 Haswell processor: energy

consumption (left), and power consumption (right) for varying frequencies [89]

it can be observed that applications with a larger speedup tend to have a larger power con-

sumption than applications with a smaller speedup [90]. This can be explained by the fact that

applications with a smaller speedup typically include more idle times during which some parts

of the processing cores can be powered down, thus reducing the average power consumption.

However, there are other influences that will be discussed in more detail in the next subsection.

4.2. Algorithmic techniques towards energy awareness

There are some efforts to explore the energy effects of specific programming techniques for

selected algorithms, mainly from the area of linear algebra [5], with the goal of advancing

towards an energy optimization of algorithms. Seminal articles in the literature demonstrate

that a huge number of technical applications can be decomposed into up to 7 or 13 ”Dwarfs”

[9], which are a small set of common kernels with a tremendous impact on a huge number of

computing-intensive applications and libraries. Thus, it seems advisable to concentrate on those

kernels.

Systematic approaches that investigate the energy effects of algorithmic changes and trans-

formations are very rare. Some recent results show that standard techniques used for perfor-

mance optimization, such as tiling, have only a minor effect on the energy consumption [41],

since loading and storing data to the on-chip caches constitute the largest contribution to the

dynamic energy consumption. Therefore, alternative techniques, such as register tiling [91], seem

to be more promising for the energy optimization of algorithms than standard techniques used

for performance optimization. Currently, it is not feasible to think of a single solution for the

energy optimization of algorithms, as the energy behavior of the algorithms is closely related to

specific architectures.

Several approaches model the energy consumption of application programs on CPUs or

GPUs [23]. These models usually distinguish between the dynamic and the static power con-

sumption, but they do not take algorithmic properties of the application into consideration.

There are also some approaches that model the energy consumption of individual algorithms by

considering the operations performed [59], however these approaches are difficult to transfer to

other algorithms and they require a significant effort for the analysis at the algorithmic level.

Another attempt in finding a relation between properties of the algorithms and the resulting

energy consumption and execution time is described in [25], but the results are only presented
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at the level of micro-benchmarks. So far, there is no broad investigation that determines which

algorithmic properties have which effect on the energy consumption for a specific architecture.

Thus, there is a need to develop algorithm-specific energy models and mechanisms to express the

energy behavior of the algorithms on the underlying system. A survey of power and efficiency

issues for numerical linear algebra methods [102] identifies several major techniques for energy

savings, e.g. profiling, trading off performance, static and dynamic saving, and concludes that

the current techniques are application-specific and difficult to generalize. The impact of different

CPU workloads on power consumption and energy efficiency is studied in [111], showing that

different workloads can lead to significant differences in energy efficiency.

In addition, the architecture of different HPC and Exascale systems is expected to be quite

heterogeneous and rapidly developing [37], as they might include specialized niche market de-

vices, such as GPUs, MIC and FPGA accelerators. This perspective constitutes a major challenge

for the system software, comprising the operating system, runtime system, I/O system, and in-

terfaces to the external environment, since the system software is responsible for an effective

use of the hardware resources. However, algorithmic properties of an application also play an

increasingly important role and it is required that the programmer uses the right programming

techniques for the specific architecture of a given HPC system. This places a large burden on

the programmer to tune her or his applications towards a better performance. Since this is often

quite time-consuming, autotuning approaches [114] and efforts towards Self-Adapting Numer-

ical Software (SANS) [34] have been proposed. Those aspects will be considered in more detail

in the next subsection.

4.3. Autotuning approaches towards energy efficiency

Autotuning software is able to optimize its own execution parameters with respect to a

specific objective function, which was usually the execution time, but might as well be the en-

ergy consumption. The methods for autotuning are diverse, including model-based parameter

optimization, or an optimization based on candidate sets generated by the autotuning software.

Autotuning based on a set of equivalent candidate implementations for an algorithm considers

different candidate implementations using different programming techniques for the formula-

tions of the algorithm, which, for example, may differ in their loop structure by applying loop

transformations such as loop fusion, loop interchange, loop tiling, or loop unrolling. Moreover,

different parameters for the loop transformation, such as block sizes for tiling or unrolling fac-

tors, can be used. The idea of the autotuning approaches is to automatically select one of the

candidate implementations for a specific HPC architecture to reach a given optimization goal,

such as minimal execution time or minimal energy consumption. The selection can be made

both offline or online.

Offline autotuning performs the autotuning procedure at software installation time. In this

scenario, the installation of the autotuning software or library can take a significant amount of

time due to an extensive evaluation of the different candidate implementations using runtime

tests or energy measurements. However, at runtime, the best implementation variant selected

during the installation is directly used, with little or no overhead. Offline autotuning can be

applied if there is no significant dependence of the runtime of the implementation variants on

characteristics of the specific input. A number of offline autotuning libraries aiming at perfor-

mance optimization already exist for decades: ATLAS [116] and PHiPAC [18] for dense matrix

computations; OSKI [113] and SPARSITY [52] for sparse matrix computations; or FFTW [40]
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for fast Fourier transformations. Offline frameworks, such as PERI [118], SPIRAL [82] and

Green [12], allow the programmer to setup an application to be autotuned for a given micro-

architecture. If supported by a model-based approach [121], the installation time overhead can

be reduced. Model-based approaches use an analytical model of the execution platform and the

algorithm to be executed, and select a set of implementation variants and parameter values

which are then tested at installation time, which may reduce the number of variants to be tested

significantly.

Besides the overall execution time of a specific algorithm, additional optimization goals,

such as energy consumption or computing costs, need to be considered by auto-tuners. There-

fore, more sophisticated methods capable of exploiting and identifying the trade-offs among these

goals are required, like those presented in [43] where the authors present and discuss results of

applying a multi-objective search-based auto-tuner to optimize for three conflicting criteria: ex-

ecution time, energy consumption, and resource usage. Offline autotuning approaches for energy

usage vs. performance degradation in scientific applications are discussed in [107], where the

authors conduct several experiments in which the tuning is performed with respect to software

level performance-related tunables, such as cache tiling factors and loop un-rolling factors, as

well as for the processor clock frequency. [63] presents an energy-oriented autotuning for the

ATLAS library.

If the execution time of the implementation variants depends on characteristics of the specific

input, offline autotuning has to be replaced by online autotuning, where applications are able to

monitor and automatically tune themselves to optimize a particular objective (execution time,

energy consumption, etc.), as in the case shown for ordinary differential equations in [55]. Online

autotuning can especially be used successfully for time-stepping methods. In this case, the time

steps can be performed with different implementation variants and parameter values until the

best implementation variant is found. Then this implementation variant is used for the remaining

time steps, as shown in [62]. A model-based pre-selection phase can be used to reduce the number

of implementation variants that need to be tested at runtime. For ordinary differential equations,

this approach has been applied successfully [55], and it has been shown that the autotuning

overhead at runtime is not too large. An automated online performance tuning approach for

general applications is provided by the Active Harmony automated runtime system [29], which

allows runtime switching of algorithms and tuning of libraries and application parameters to

improve the resulting performance on a given hardware platform. The system uses a server

which uses a Nelder-Mead method to search through a potentially large parameter space. The

server sends a parameter selection to a client, which then measures the resulting performance

and sends the corresponding information back to the server. This procedure is repeated until a

good parameter selection has been found.

Another example for online autotuning is PowerDial [49], which converts static configuration

parameters that already exist in a program into dynamic knobs that can be tuned at runtime,

with the goal of trading QoS guarantees for meeting performance and power usage goals. The

system uses an online learning stage to construct a linear model of the choice configuration

space which can be subsequently tuned using a linear control system. In the SiblingRivalry [8]

model, requests are processed by dividing the available cores in half, and processing two identical

requests in parallel on each half. Half of the cores are devoted to a known program configuration,

while the other half of the cores are used for an experimental program configuration chosen

using a self-adapting evolutionary algorithm. The faster configuration (either the known or
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the experimental one) is always kept and the other one is terminated. The authors show that

over time, this model allows programs to adapt to changing dynamic environments and often

outperform the original algorithm that uses the entire system.

As mentioned before, most of existing autotuning models consider the execution time as

main objective function. However, the resulting energy consumption can also be directly used

as an optimization goal of an autotuning approach. This can be based on energy measurements

using hardware counters as they are, for example, provided by the Intel RAPL interface (see

Section 2.5) or on a model for the energy consumption of the algorithm (see [62] for more

information).

4.4. Examples of energy-efficient algorithms

Examples of energy-efficient algorithms can be found in the graph theory area. In [20],

the authors propose a new algorithm which solves the min cut/max flow problem on a graph.

It is based on augmenting paths and building two search trees, one from the source and the

other from the sink, which are reused to avoid rebuilding them from scratch. Experimental

comparisons show that the algorithm is faster and minimizes the energy usage for functions

in vision. Another example is [94], in which a large-scale energy-efficient graph traversal is

proposed. More recently, the initiative “EDGAR: Energy-efficient Data and Graph Algorithms

Research” of the Berkeley Labs has been started to design new parallel algorithms to reduce

communication costs of data and graph analysis algorithms in Exascale, aiming at a reduction

of the execution time and the energy consumption. An important observation in this context is

that the power required to transmit data in a network also depends on the length of the wire

in traditional cooper networks, i.e., data exchanges between neighboring nodes in a network

require less energy than exchanges between non-neighboring nodes. The energy consumption of

different MPI collective communication operations has been investigated in [112], showing that

the size of the execution platform plays an important role. A quantitative analysis of the energy

costs of data movements between different levels of a memory hierarchy (main memory, L3, L2

and L1 cache) has been reported in [57]. The analysis is based on a set of micro-benchmarks

that continuously access data stored in a given level of the memory hierarchy and measure

the resulting energy consumption. An experimental evaluation captures several benchmarks,

including the NAS parallel benchmarks suite and applications from the Exascale Co-Design

centers. The results show that, in current systems, scientific applications spend between 18%

and 40% of their total dynamic energy in moving data and between 19% and 36% in stalled

cycles. The energy consumption of different data access patterns in PGAS (Partitioned Global

Address Space) models has been investigated in [54].

Sorting algorithms are among the most important fundamental algorithms in computer sci-

ence and many applications depend on efficient sorting techniques. Energy efficiency also plays

an important role here and using an energy-efficient sorting could help in reducing the overall

energy consumption significantly. The energy consumption of different basic sorting algorithms

such as odd-even sort, shellsort, or quicksort has been investigated in [123], showing that quick-

sort leads to the smallest energy consumption and that the choice of a suitable recursion depth

for quicksort may have a large influence on the energy consumption. An external sort bench-

mark JouleSort for evaluating the energy efficiency of a wide range of computer systems from

clusters to handhelds is described in [92]. The energy consumption of vector and matrix oper-

ations as well as sorting and graph algorithms is investigated in [93], showing that the energy
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consumption depends on the memory parallelism that the algorithms exhibit for a given data

layout.

Other examples of energy-efficient algorithms can be found in thread scheduling [30], finan-

cial applications [3], and big data applications [120]. All these research efforts use memorization

as a techniques to avoid repeating computation by caching previous results, thus achieving a

better energy efficiency in application execution.

5. Discussion

The summarizing state-of-the-art analysis of energy-aware programming has shown that

there already exists a multitude of research directions and results in many areas of computing.

From this current research situation, we can derive a number of open problems to be solved for

a successful energy-aware programming. As energy is a cross-layer issue, we argue that a holis-

tic energy-aware approach is needed, which requires the development of interacting interfaces

between the different software and hardware layers. Such an approach will allow researchers to

investigate different directions of the ETP4HPC agenda. Three of these directions are addressed

below: new energy-aware algorithms for Exascale, software engineering for extreme parallelism

and energy-aware systems support for managing extreme scale systems.

New energy-aware algorithms for Exascale: Advancing the state-of-the-art at an algorith-

mic level needs to include energy-awareness into the algorithm/application level. One way of

achieving this is the introduction of interacting interfaces between the different hardware and

software layers, combined with algorithm-specific mathematical energy models. We argue that

this will enable a dynamic adjustment of the computation and communication characteristics of

algorithms/applications with the goal to achieve a perceivable reduction of the overall energy

consumption. Such a new layered approach with its interacting interfaces will also allow a di-

rect interaction between the control of the power management and the algorithm or application

being executed. With the aid of annotations, applications may provide a parameterized energy

model which can be exploited to articulate a policy for managing trade-offs on different system

architectures. A general goal is that future energy-aware algorithms should not only be evaluated

based on FLOPs but also based on energy cost of operations.

Software engineering for extreme parallelism: To hide the complexity of the development

process of algorithms and applications for Exascale systems, we propose to develop a high

level language environment supporting an energy-aware software development. This language

environment should be intuitive and easy to handle for application programmers from diverse

application areas. This can be achieved by using a human-like language or a descriptive or

graphic annotation approach. For an increase of the acceptance and usability, it is important

that such a language environment allows a seamless integration of different programming mod-

els, accompanied by support for a hierarchical development of all necessary Exascale system

coordination, control and monitoring functions in a reasonably human-understandable way. It

necessarily should provide energy consumption indicators which system designers and develop-

ers can rely on during software development so that they can achieve a reduction of the energy

footprint of the resulting program code. Considering the heterogeneity of Exascale systems, a

high-level software development process is needed in order to allow a seamless integration of

multiple energy-aware programming models beyond the state-of-the-art. We propose a research

agenda in this field targeted towards abstract hierarchical programming models and optimized

many-task programming models. The first direction will allow the annotation of power and en-
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ergy consumption information by defining energy patterns and constraints in the hierarchical

programming model. Based on this abstract model, one can build a general hierarchical opti-

mization technique for collective communication algorithms, such as MPI operations, which will

not be platform specific but will address the scale of the HPC platform. The second direction

should evolve existing programming models to enable locality-based optimizations through the

intensive usage of RAM and NVRAM memory near the processors, thus avoiding data move-

ments, along with an energy aware scheduling that will guide the system to schedule computation

jobs in the nodes containing the required data taking also into account the trade-offs between

data locality and load balance.

Energy-aware system support for managing extreme scale systems: Expressing the cross-

layered nature of energy can be achieved by providing system mechanisms that support energy

efficiency in extreme scale systems. The first research topic is the design of metrics and tools for

exporting energy features, at node and system level, to the applications through (approximate)

energy monitoring and management services. These services will be provided to the upper levels

of the hierarchy to allow optimizations in runtime resources, libraries and applications. The sec-

ond topic should investigate the elaboration of energy-efficient data access and communication

models relaying on a better exploitation of data locality and layout, and supporting the devel-

opment of cross-layer locality-aware I/O software. Equally promising and complementary to the

previous topics, researchers should look into energy profiling at component and application level

in order to dynamically redirect the workload to those components that can yield the maximum

amount of throughput. Ultimately, it should be possible to predict the energy consumption of

particular code segments. This information can be used to enable a dynamic provisioning of

resources, to provide the ability to manage new important resources, such as power and data

motion, through an energy aware scheduler and dispatcher, and an energy-aware load balancer

that is conscious of the system energy, node energy, and data-locality needs. Last but not least,

we need to elaborate novel energy-aware models, APIs and tools to automatically map applica-

tions onto heterogeneous architectures trying to optimize performance over energy ratio.

The work presented in this paper has been partially supported by EU under the COST pro-

gramme Action IC1305,“Network for Sustainable Ultrascale Computing (NESUS)”.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Energy consumption is one of the main limiting factors for designing and deploying ultrascale

systems. Therefore, this paper presents challenges and trends associated with energy efficiency for

ultrascale systems based on current activities of the working group on ”Energy Efficiency” in

the European COST Action Nesus IC1305. The analysis contains major areas that are related to

studies of energy efficiency in ultrascale systems: heterogeneous and low power hardware architec-

tures, power monitoring at large scale, modeling and simulation of ultrascale systems, energy-aware

scheduling and resource management, and energy-efficient application design.

Keywords: energy and power measurement, data acquisition tools, energy modeling, scheduling,

applications, heterogeneous infrastructures, ultrascale computing.

Introduction

Energy consumption is one of the main limiting factors for designing and deploying Ultra-

scale systems. While energy monitoring and reporting combined with energy efficient design of

applications and frameworks is currently explored and can be reachable at small scale, dealing

with such concepts at ultra large scale is an open issue. Extracted from activities in working

group on ”Energy Efficiency” in the European COST Action Nesus IC130510, this article will

present current activities, challenges and trends associated with energy efficiency for ultra scale

systems.

Reaching levels of efficiency that are sufficient for ultrascale systems requires advances in

several relevant areas as illustrated in fig. 1. First of all the reduction of power usage need to

reach ultra scales is not possible without disruptive innovations in hardware. In particular, the

use of new low power Systems on Chips (SoCs) and exploiting heterogeneity on various levels

are promising trends. However, changes in hardware alone are not enough without proper as-

signment of applications to hardware and without optimising applications to take full advantage

of hardware architectures. For instance, the use of hardware accelerators while improving effi-

ciency usually requires specific implementation. Another important aspect needed to improve

energy efficiency is accurate and real time power monitoring which can be a challenge in ultra

scale systems per se. Monitoring and knowledge about hardware architecture and application

characteristics must be applied by scheduling and resource-management techniques that are
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moving from pure performance goals to energy consumption and thermal issues. For all these

areas modeling and simulation techniques are needed to analyse energy efficiency of hardware,

applications and whole computing systems at ultrascale level. On top of these areas the gen-

eral challenge is to integrate advances from all of them and to take a holistic approach to the

energy-efficiency analysis and management of ultrascale systems. For example this approach

should study software-hardware co-design or dependencies between IT systems components and

infrastructure (including thermal management, cooling, and appropriate metrics for assessment

of energy-efficiency). Other emerging areas of research include multi data centre management,

taking into consideration energy availability and price, and environmental issues.

Figure 1. Major areas that affect the analysis of energy efficiency in ultrascale systems

This paper concentrates on activities related to energy efficiency of ultrascale systems being

conducted within the Nesus project. Other surveys that deal with energy-efficiency in certain

areas of data centres include energy efficiency in cloud computing [60], large scale distributed

systems [63], and data centres [24].

Section 1 describes recent innovations at infrastructure level. Section 2 presents power and

energy monitoring devices and frameworks for distributed systems and associated challenges

on ultrascale. Section 3 addresses energy modeling and simulation while section 4 focuses on

resource management and scheduling. Section 5 explores challenges in designing energy efficient

large scale applications. The final section concludes this article.

1. Heterogeneous infrastructures : a key for energy efficiency

at ultrascale level

Up to now, most HPC systems are built on general purpose multi-core processors that

use the x86 and Power instruction sets (both to ensure backward productivity and enhance

programmers productivity). They are mainly provided by three vendors: Intel (around 85.8%

of the systems listed in the latest Top500 list11) and AMD (5.6%) for x86-64 bits CPUs and

IBM (7.8%) for the RISC Power Architecture used by IBM POWER microprocessors. While

initially designed to target the workstation and laptop market, these processors admittedly offer

very good single-thread performance (for instance 16 double-precision Floating-Point Operations

11Top500 List of November 2014 – http://top500.org
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per seconds (FLOPs) per cycle for Intel Nehalem), yet at the price of a relative low energy

efficiency. For instance, tab. 1 details the Thermal Design Power (TDP) of the top four processors

technologies present in the latest Top500 list.

Table 1. TDP of the main processors technologies present in the Top500 List (Nov. 2014)

Processor Technology Top500 Count Model Example max. TDP

Intel Sandybridge 231 (46.2%) Xeon E5-2680 8C 2.7GHz 130W 16.25W/core

IBM Power BQC 25 (5%) Power BQC 16C 1.6GHz 65W 4.1W/core

AMD x86 64 12 (2.4%) Opteron 6200 16C ”Interlagos” 115W 7.2W/core

In parallel, the main challenge opened to the HPC community remains the building an Ex-

ascale HPC system by 2020 while staying within a power budget of around 20 MW. As current

measures within a typical blade server estimate that 32.5% of its supplied power are distributed

to the processor, some simple arithmetic permit to estimate the average consumption per core in

such an EFlops system: around 6.4 MW would be dedicated to the computing elements, and we

can quantify their number by dividing the target computing capacity (1 EFlops) by the one of

the current computing cores (16 GFlops) thus leading to approximately 62.5×106 cores within

an Exascale system. Consequently, such a platform requires a maximal power consumption of

0.1W per core. In order to achieve this ambitious goal, alternative low power processor ar-

chitectures are required. In this context, two main directions are currently explored: (1) relying

on accelerators and co-processors (either General-Purpose Graphics Processing Unit (GPGPU)

such as the Nvidia Tesla cards, or Many Integrated Coress (MICs) e.g. Intel Xeon Phi) or

(2) using the low-power processors (ARM, Intel Atom etc.) primarily designed for the mobile

and embedded devices market. In parallel, the Cloud Computing (CC) paradigm has emerged

as a promising approach to consolidate in a cost-effective way existing computing platforms

so that many companies and researchers are engaged in efforts of scaling system software to

meet the requirements of diversifying on-line cloud applications and services. Therefore future

Ultrascale Computing Systems (UCSs) are envisioned as hybrid systems composed of heteroge-

neous resources and platforms ranging from ”traditional” High Performance Computing (HPC)

systems, CC infrastructures and ultra low-power computing systems. Another reason for this

tendency toward an heterogeneous design is that there is no single approach which is optimal for

all computing needs. Heterogeneous computing has become a necessity as it embodies the use of

multiple approaches to computational processing (CPUs, GPUs, FPGAs, etc.) to achieve supe-

rior throughput for each big data workload. Of course, assuming the applications run on top of

the platform are able to adapt to such heterogeneity, major power savings can be performed. In

the next paragraphs, we will detail the reason behind these hardware and virtualization trends

justifying there integration within an energy-efficient UCS platform.

Low-power processors. This growing market is nowadays considered as a credible basis to

build HPC components. For instance, the aim of the Mont-Blanc project [3], launched October

1st 2011, is to design supercomputers from ARM processors, using 15 to 30 times less energy

than conventional HPC platforms. The first part of the project (for the time period 2011-2013)

lead to a proof-of-concept 120 MFlops/W cluster named Tibidabo based on NVidia Tegra2

Server-on-Chip (SoC) (128 nodes featuring ARM Cortex A9 processors having 2 cores at 1

GHz frequency). It is worth mentioning that the Viridis ARM cluster of the University of
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Luxembourg (UL) HPC platform12, released at approximately the same moment, outperforms

Tibidabo since it has achieved a measured performance of 572 MFlops/W [49]. In all cases, the

Mont-Blanc project in currently in its second phase (until 2016) to continue on these efforts using

a total budget of 11,4Me. Similarly, the EuroCloud [2] project was focused on building ARM-

based Server-on-Chip, integrating 3D DRAM to provide a very dense low-power server. The

target was reaching a 10 times improvement in cost and energy-efficiency compared to state-of-

the-art servers. Generally, the trend of utilizing large number of low-power processors to replace

high-end CPUs is becoming more and more popular. Indeed, many different studies [46, 64, 66]

prove that such embedded processors provide significant power savings when compared to regular

hardware architecture.

More recently in [49], a comparative study has been performed as regards the performance

and energy efficiency of cutting-edge high-density HPC platform enclosures featuring either

very high-performing processors (such as Intel Core i7 or E7) yet having low power-efficiency,

or the reverse i.e. energy efficient processors (such as Intel Atom, AMD Fusion or ARM Cortex

A9) yet with limited computing capacity. The performed analysis confirms that when running

time-critical applications, it is still better to choose performance-efficient CPUs, such as Intel

Xeon E7 or Intel Core i7, as executions on these processors were considerably shorter compared

to low-power devices. On the other hand, their power draw was very high. The competition

between power-efficient devices is fierce and there is no single winner in the field of computational

performance. The results are dependent on the executed benchmark. However, when considering

the Performance per Watt (PpW) metric the ARM Cortex A9 always achieves the best results,

sometimes even better than Intel when power-greedy processors are considered. Moreover, out

of the three mentioned low-power CPUs, it executes applications in the shortest period of time

and its total energy consumption is the least, in some cases up to 12 times lower than the energy

usage of the rest of the CPUs.

Accelerators and co-processors. If the idea of benefiting from hardware heterogeneity (be-

tween Intel, AMD or ARM processors) is hopefully justified with the above-mentioned study,

it becomes even more prominent due to the advent of General-Purpose Graphics Processing

Unit (GPGPU) accelerators. Graphics Processing Units (GPUs) offer a greater performance per

watts than conventional CPUs – for instance the Nvidia Tesla M2090 cards present in the HPC

platform of the UL feature 512 cores for a TDP of 225W thus leading to 0.44W/core. Also,

several application are inherently ready to take benefit from the optimized vector instructions

featured by these decives. For instance, real-world Molecular Dynamics and Bio-informatics ap-

plications such as AMBER, mpiBLAST or MrBAYES can obtain great speedup when running

on GPU-enabled systems. Data and graphics presented in selected NVIDIA benchmarks13 show

respectively a 2.9X and 7.4X acceleration for NAMD and AMBER applications compared to

single CPU node execution when using one additional NVIDIA K20X GPU accelerator. More-

over, GPU accelerators were proven of relevance (together with ARM-based architectures) over a

series of 5 Map-Reduce benchmarking applications in [34]. Since GPGPU systems are also quite

energy-efficient, it definitively makes sense to try whenever possible to rely on such platforms,

with the caveat that the programming cost is far from negligible, and end users are generally

12http://hpc.uni.lu
132013 NVIDIA Computational Chemistry & Biology benchmarks – http://www.nvidia.com/docs/IO/122634/

computational-chemistry-benchmarks.pdf
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reluctant to spend the necessary time to adapt their workflow to use accelerators (whether GPU

or co-processor based).

Finally, UCS systems could also benefit from recent advances in the domain of Field-

Programmable Gate Arrays (FPGAs) since such systems have been gaining momentum through-

out genomics and life sciences. Programmable ”on the fly”, FPGAs are a way of achieving

hardware-based, application-specific performance without the time and cost of developing spe-

cific applications. FPGAs work well on many bioinformatics applications, for example those that

do searching and alignment which are highly parallelisable14.

Virtualization and Cloud Computing (CC). At an intermediate level (between software

and hardware), virtualization is emerging as the prominent approach to mutualize the energy

consumed by a single server running multiple Virtual Machines (VMs) instances. This approach,

commonly designated as Cloud Computing (CC) [17, 87] is increasingly advertised as THE

solution to most IT problems. In this paradigm, shared IT resources are dynamically allocated to

customer tasks and environments. It allows users to run applications or even complete systems

on demand by deploying them on the Cloud that acts like a gigantic computing facility. In

an HPC context, it is thus clear that the integration of the CC paradigm should be studied

since there is a strong wish, at least from commercial entities (e.g. Google, Apple, Microsoft or

Amazon), to serve HPC needs through Infrastructure-as-a-Service (IaaS) platforms to eventually

replace in-house HPC platforms. However, little understanding has been obtained about the

potential overhead in energy consumption and the throughput reduction for virtualized servers

and/or computing resources, nor if it simply suits an environment as high-demanding as a HPC

platform.

Our previous studies [44, 88] demonstrate that the overhead induced by the Cloud hy-

pervisors cannot be neglected for a pure HPC workload – namely the High Performance Lin-

pack (HPL) benchmark. Results show the fast degradation in the computing efficiency when the

number for computing nodes is artificially increased through virtualization. Nevertheless, it is

true that the above mentioned studies focus on a pure HPC workload (i.e. heavy computing and

communication intensive) whereas we witness in general a large variety of job types in our clus-

ters. For instance, sequential, mono-process or bag-of-tasks applications executed on a cluster

in a embarrassingly parallel way will not be penalized as much by running in a VM instance.

As a conclusion, the heterogeneity in computing resources is a necessity for UCSs systems

to ensure both a flexible adaptation to HPC workloads and significant power-savings. Yet taking

advantage of these heterogeneous resources assumes the possibility of measuring with a reason-

ably good accuracy the performance and the energy-efficiency of the system. The next section

details this aspect.

2. Power monitoring and profiling of ultrascale context

To enable energy optimization across the whole stack of an ultrascale high performance

computing system, it is desirable to gain insight into the consumption of existing systems at

all possible levels. Ideally, system designers and operators, as well as application developers,

should be able to easily access precise power data ranging from whole systems to individual

14http://www.scientific-computing.com/news/news_story.php?news_id=2245
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components inside a computation node. It should also be easily attributable to the code being

executed, again ranging from entire processes to parts of specific threads.

Currently, only some of this data are usually available, which is provided through as many

different interfaces as measurement devices and vendors are involved. There are grounds for

a standardization of energy data acquisition. Several software and hardware tools are being

used to analyze energy consumption in computing systems and data centers. Different levels

of measurement are provided, with each tool offering its own tradeoff between precision and

intrusiveness.

We can classify the set of existing tools according to the position within the target system

where they are integrated.

2.1. External devices

These are energy measurement systems that have been used to measure energy consump-

tion and efficiency outside the experimental nodes. Measurements can be performed without

interfering with an experiment, but they may be infeasible for experiments that demand high

precision measures. Examples of this kind of devices are dedicated power-meters such as the Kill-

A-Watt [65] and Watt’s Up Pro [91]; power distribution units (PDUs) with metering capabilities;

PowerPack [43], which performs out-of-band measurements from various sources; vendor-specific

external systems such as IBM Power Executive; PowerScope [40], which uses a digital multime-

ter controlled using customized system calls; and Energy Endoscope [77], that offers detailed

real time measurements.

2.2. Intranode devices

The intranode group is composed of highly customized hardware instrumentation tools, such

as the PowerMon line of devices [22], placed between a node’s power supply and mainboard;

or the PowerInsight device [57], designed for component-level instrumentation of commodity

hardware; the ARM Energy Probe [15], integrated with the ARM development toolchain; and

the Linux Energy Attribution and Accounting Platform (LEA2P) [73].

2.3. Hardware sensors

Many recent components offer a number of built-in sensors able to directly report consump-

tion data at runtime. These may be exposed as performance counters or through a vendor-

provided API. For example, the Intel Running Average Power Limit (RAPL) interface reports

per-package estimates of total energy consumed on Intel Sandy Bridge CPUs and later; the

Nvidia Management Library (NVML) interface can query instant power draw values from re-

cent Nvidia Tesla GPUs; some motherboards report power draw value through extensions to the

Intelligent Platform Management Interface (IPMI)

2.4. Software interfaces

The Performance API (PAPI) [28] recently added a number of components which can access

a system’s integrated energy and power consumption. Being a mature library, it is a compelling

choice for hardware counter data acquisition. However, we feel that there is a place for a higher-

level abstraction with narrower scope and support for devices other than hardware counters
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(as in external devices), which may build upon any hardware counter interfaces (in fact, work

integrating PAPI as a low-level provider to our library is underway).

PowerAPI, from Sandia National Laboratories [74], is a recent attempt to standardize access

to power measurement data and power control. It is comprised of an API specification and a

reference implementation which already implements tightly coupled support for some energy

data sources. The platform and user role models defined in this specification, however, are

aimed towards HPC rather than cloud systems.

The Energy Measurement Library (EML) [29, 30] is a software library created to simplify

analysis of energy consumption in heterogeneous systems. It provides a very simple interface

for energy data acquisition and automatic run-time detection of available vendor interfaces and

supported devices. These features abstract platform-specific details away from instrumentation

code, greatly speeding up the measurement and experimentation process.

Other software interfaces which provide directly measured energy or power related infor-

mation are: the perf events [53] subsystem of the Linux kernel, which exports a variety of

hardware counters to Linux userspace applications, the power measurement library pmlib [18],

which implements a client/server architecture for out-of-band data collection from instrumented

code; LIKWID, a performance-oriented library that accesses performance counters in x86 archi-

tectures [84].

Finally, a number of software interfaces provide similar energy information which is not

directly measured, but estimated from runtime metrics and a certain analytical consumption

model instead. These include the PowerAPI from Spirals research group [27] or the Energy

Consumption Library [71].

2.5. Deploy to ultrascale level

Both physical wattmeters (either external, intranode or hardware sensors) and software-

based interfaces present advantages and drawbacks which are amplified at the ultrascale level,

while both solutions are desirable to monitor and to save energy.

Indeed, physical external wattmeters are the only solution to obtain a global view of the

energy consumption of an ultrascale system: including the air conditionning system and the

power units, which are non-negligible energy consumers. Such a global view is useful for the

system administrator, to size the emergency power supply systems for instance, or to have an

accurate trace in time of the electricity bill. It is also necessary for the system’s task scheduler

in order to avoid hot spots and balance the load energy-efficiently.

From the users’ and applications’ point of view, a much more detailed view is required,

since their goal and scale are different. Indeed, users need a higher measurement frequency

(which may go below the second) and a more focused view: at a node, core or even thread level.

Software-based tools are more suitable for such a fine- grained view in spite of their intrusive

behavior.

The challenge at ultrascale level consists in being able to combine both views and make them

available through a usable API. For instance, energy monitoring information for a 150 nodes plat-

form equipped with external wattmeters providing one measurement per second corresponds to

approximately 70 GB of data annually [35]. At ultrascale level, the amount of energy monitoring

data becomes rapidly unmanageable, even with scalable monitoring tools such as Ganglia [42].

In this context, an energy monitoring system may consist in an hybrid solution offering

fine-grained views for short time periods based on software interfaces, and aggregated metrics
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based on physical wattmeters for the higher views over longer time ranges. This system could

rely on round-robin databases for scalability purposes. It could even be tunable by the user in

order to avoid collecting, storing and processing useless energy monitoring data.

3. Energy modeling and simulation in ultrascale systems

As ultrascale systems gain momentum, their power provisioning has become a key concern.

A significant amount of the energy consumed by the system’s components is transformed into

heat, which may harm the reliability and the overall performance of the system. The higher

the energy consumption of an ultrascale system, the higher its operating and cooling cost is.

Therefore, energy efficiency has become a critical aspect of ultrascale systems that attracts

significant attention from the research community.

The ever increasing size and scale of such systems, inevitably leads to higher energy con-

sumption. This has forced scientists to re-examine the full spectrum of scheduling and resource

allocation algorithms. Accurate measurement at extreme scale is not an easy task. On the con-

trary, modeling and simulation techniques can be used to evaluate the performance of such

systems, regardless of their scale. They provide tools for easy and safe experimentation, in order

to investigate ways to reduce the energy consumption of such systems, assuring at the same time

satisfactory system performance and quality of service. For example, modeling and simulation

approaches can be utilized in case of energy efficient real-time scheduling in ultrascale systems,

where applications must meet their deadline and therefore a multi-criteria scheduling policy is

required to be employed.

A simulation model is preferred over analytical techniques, due to the fact that complex

systems would require much simplification in order to be studied analytically. With simulation,

we can evaluate the system for various workloads with different characteristics and for different

system configurations, by replacing, adding and removing system components easily. By control-

ling the simulation parameters of the performed experiments, useful conclusions can be drawn

about the impact of correlating factors [78].

3.1. Simulating multi-criteria scheduling techniques

In [83], two metrics are used which describe the computational power and energy efficiency

of the system. Based on these metrics, the authors propose scheduling policies for hard real-

time tasks that are executed on a heterogeneous cluster with power-aware dynamic voltage

and frequency scaling (DVFS) processors. Clusters are often part of ultrascale systems, used as

an underlying infrastructure in computational grids and clouds. Therefore, the findings of this

research are also useful for ultrascale systems. In this study, the authors propose multi-criteria

scheduling policies, in order to reduce the energy consumption of a power-aware heterogeneous

cluster, meeting at the same time the task deadlines. The cluster consists of DVFS processors

that can adjust their clock frequency, based on the performance requirements of the system.

Furthermore, since hardware failures often occur in large-scale systems, the impact of replacing

high-performance processors with high-efficiency processors is studied. The main reason that

simulation experiments were performed instead of tests in a real system, is that it is practically

impossible to isolate the energy consumption of the processors in a real system, as other factors

may affect its energy consumption.
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The service capacity of a system is determined by the number and service rate of its proces-

sors. In a simulation experiment, this information is required in order to adjust the arrival rate

of the tasks, so that the system is balanced. The ratio between the arrival rate and the overall

system service rate represents the load of the system. While setting the parameters for a small

system is relatively an easy task, particular attention is needed in case of complex large-scale

systems, so that the system stability is guaranteed. By increasing or decreasing the number of

processors in the system model and by adjusting the arrival rate of the tasks, the performance

of the system can be examined at different scales via simulation.

There have been several other research papers that examine by simulation energy efficient

scheduling techniques in large-scale systems. For example, in [90], the authors propose a power-

aware scheduling algorithm for clusters where virtual machines (VMs) are dynamically provided

for executing tasks. Their algorithm is implemented in a simulator and in an experimental

two-node multi-core cluster. In [81], the authors study the energy savings that can be gained

from the application of DVFS and dynamic power management (DPM), in a real-time 2-level

heterogeneous grid system. DPM puts the idle components of the system into low-power sleep

states whenever this is possible. Simulation results reveal that under certain conditions, these

techniques can work together and achieve significant energy savings.

3.2. Modeling complex workloads

A large percentage of the workload submitted to large-scale systems is bag-of-tasks (BoT)

applications. Each BoT is a collection of independent tasks that do not need to communicate with

each other and they can run on any processor and in any order. BoT scheduling is extensively

studied in the literature. In [82], Terzopoulos and Karatza view BoT scheduling from an energy

efficiency perspective. They apply a DVFS mechanism to a heterogeneous cluster environment

where BoTs are submitted dynamically. They also consider high-priority tasks in the workload.

As tasks are distributed to the most appropriate computing nodes, faster processors could be

congested with tasks while slower ones could remain idle for longer periods. Furthermore, when

scheduling BoT applications, some tasks may finish sooner than other sibling tasks when they

are executed by fast processors. This can result in large synchronization delays. In this case, by

exploiting DVFS, these tasks could be executed at lower speeds and consume minimum amounts

of energy. Simulation experiments show that by applying the proposed DVFS mechanism when

BoTs are executed, energy savings can be achieved without affecting the execution of high-

priority tasks.

In [54] users submit and run their tasks on the provider’s resources with Service Level Agree-

ments (SLAs). In SLAs, consumers and providers agree upon resource usage, pricing and quality

of service commitments. Tasks are considered to be BoT applications with deadline constraints.

The proposed power-aware scheduling algorithms are tested through simulation. In [26], the

authors propose a Power Aware Job Scheduler (PAJS) for high performance computing clusters,

where energy efficiency is achieved and response time is minimized by scaling the supply volt-

age. The proposed scheduler targets the optimization of both, power and performance. The key

novelty in this research is the utilization of a dynamic threshold-voltage scaling (DTVS) tech-

nique for the reduction of cumulative power utilized by each node in the cluster. Furthermore,

independent tasks within a job are scheduled to the most suitable computing nodes. Simulation

results show the effectiveness of DTVS.
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3.3. Energy efficient cloud computing

Cloud computing offers many benefits to users. However, large-scale virtualized data centers

require large amounts of electrical power, resulting in high operating costs. Due to the variability

of the workload, the VM placement in the servers should be optimized continuously in an online

manner. In [23] Beloglazov and Buyya conduct competitive analysis and prove competitive

ratios of optimal online deterministic algorithms for the single VM migration and dynamic

VM consolidation problems. Additionally, based on an analysis of historical data, they propose

adaptive heuristics for dynamic consolidation of VMs. With simulation experiments using real-

world workload traces the authors show the effectiveness of the proposed algorithms, as energy

savings are gained and a high level of adherence to the SLAs is achieved.

3.4. Modeling and simulation of thermal processes

In a view of higher densities and scale of computing systems one of big challenges is to

combine the simulation of power distribution with thermodynamic ones that gives the overview

of the overall system energy-efficiency at the desired level of details.

In order to characterize the thermal distribution, there are several approaches that are

differentiated by their accuracy and required model size. Fig. 2 gives the general overview [51].

Figure 2. Existing approaches complexity [51]

For now, Computation Fluid Dynamics (CFD) simulations are considered as the most accu-

rate approach. However, they require lots of effort, while preparing model and even more time

to obtain rewarding results, which makes it expensive to use in terms of big systems simula-

tions. As an alternative, Potential Flow Model (PFM) has been proposed [45], that benefits

from the reduction of the model. Another approach follows proper orthogonal decomposition

methodology [51] and corresponds to Reduced Order Models entity in fig. 2.

As the complexity of computing systems is increasing together with the growing importance

of their energy efficiency, the processes of their evaluation has become difficult and complex to

perform not only in real environments but also by the means of simulation tools. Thus, effort is

being put to find a tradeoff between the simulation accuracy and required time complexity. As a

results models based on the law of energy conservation and the basic heat transfer equation has

been applied as the starting point of the work done by [62], [80], [76], where the heat recirculation

idea was introduced and expanded into the concept of heat distribution matrix. Thermodynamics
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models have also been introduced, together with the models for power consumption of cooling

infrastructure for the whole data center in [70].

3.5. Energy-aware modeling and simulation tools

The growing importance of efficient computing systems and emergence of new computing

paradigms caused gaining importance of modeling and simulation of various computing archi-

tectures and corresponding algorithms. In the recent years several simulation tools have been

developed in order to address these issues. Among them, one should mention CloudSim [31],

GreenCloud [55], BigSim [95] and DCworms [56]. CloudSim enables modeling and simulation of

Cloud computing data centers and focuses on evaluating different approaches for provisioning

host resources to virtual machines. It provides basic means to model power consumption and

network traffic. GreenCloud pays more attention to networks aspects of cloud environments

with a fine-grained modeling of the energy consumed by the elements of the data center, such

as servers, switches, and links. However, a main focus is devoted to the packet-level simulation

of communications in the data center networks. On the other hand, BigSim is a tool allowing

simulation and performance prediction of machines with a very large number of processors. It

provides the ability to evaluate the performance of specific applications on very large computer

clusters. Finally, DCworms enables simulation of computing infrastructures to estimate their

performance, energy consumption, and energy-efficiency metrics for diverse workloads and man-

agement policies. Compared to other tools, DCworms allows simulating a wide scope of physical

and logical architectural patterns. In particular, it enables simulations of complex distributed

architectures containing models of the whole data centers, containers, racks, nodes, etc. with a

detailed energy and thermal modeling of each component. Moreover, DCworms provides means

for modeling application performance both in HPC and cloud environments. These tools ben-

efit from the models that are widely present in the literature. A direction of such studies span

from network systems [89] through storage systems [13] up to servers systems [72]. Additionally,

researchers considered also virtualized environments [68]. In [20] authors propose models that

present data center power usage in a comprehensive way.

3.6. Summary

As a conclusion, energy efficiency and performance prediction of ultrascale systems is a

difficult task that can greatly benefit from modeling and simulation techniques. However, full

system simulation, as opposed to simulating individual system components, is still a difficult

task. As stated in [61], full system simulation at an abstraction level that includes a sufficient

level of detail is infeasible without resorting to parallel simulation. The main obstacles are the

simulation execution time and the memory footprint. Therefore, by running parallel simulation

models on large-scale systems, the performance of complex ultrascale systems can be predicted

and enhanced. Although several approaches and tools have been developed, the emerging het-

erogeneous and low power hardware architectures as well as attempts to build ultrascale systems

bring new challenges for simulations models. In particular, appropriate modeling of applications

execution on heterogeneous computing nodes is needed. Simulations also should reflect energy

consumption of all additional infrastructure needed by ultrascale systems. One of such essential

element is cooling, which requires accurate (but sufficiently fast) simulation of thermal processes
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in a computing center. The big challenge is also efficient simulation of large-scale systems, which

may require simplified models and statistical/machine learning methods.

4. Resource management and scheduling in extra large scale

systems

Research and development in large-scale systems over the last years had been mostly driven

by performance, whereas rises in energy consumption were generally ignored. The result was

a steadily growing in the performance, driven by more efficient system design and increasing

density of the components according to Moore’s law [37]. As the power wall was reached there

was the need to increase performance by introducing parallel computing elements. Extra large

scale systems will be characterized by the heterogeneity in hardware resources where a single

node may be composed by a set of very different computing elements, such as a multicore CPU,

manycore CPUs and GPUs, FPGAs, among others. The resource management for a system

with such diversity of components needs to allow resource sharing at a finer level of granularity

so that the performance per Watt of an active node is maximized. Future schedulers have to

consider power limitations and energy usage optimization when making scheduling decisions [19],

as power consumption is actually one of the main factors to achieve sustainability of extra large

scale systems.

The concept of virtualization [86] has been successfully introduced in modern data centers,

to achieve the necessary isolation among applications, and to increase resources usage rate.

Virtualization was first introduced with the IBM mainframe systems in the 1960s, to refer to

a virtual machine (VM) [10]. Although virtualization is a well developed technology it intro-

duces additional overhead, that for scientific workload on an extra scale system may represent

a significant loss of energy.

Resource sharing with the purpose of reducing the energy costs of a data center has been

studied first for web loads [32], where workloads are of similar type. For scientific applications,

the expected workloads are heterogeneous with different requirements in terms of computing

power, storage, I/O and type of computing elements, thus imposing additional requirements on

resource management and scheduling systems.

4.1. Workload characteristics

Scientific loads result from a variety of applications being the most common the following

ones: a) bag-of-tasks (BoT), where each job is composed by a set of independent tasks that

can run in any resource [82]; b) workflow applications, which represent many relevant real

world problems [52], such as the Montage and Epigenomics workflows, among others. The first,

created by NASA/IPAC, to stitch together multiple input images to create custom mosaics

of the sky and, the second, is a workflow used for genome sequence processing; c) specific

frameworks for data mining, such as the MapReduce model [33], and d) MPI jobs used in

many processing intensive simulation problems. The diversity of workloads imposes challenges on

resource management systems in order to deal simultaneously with such variety of applications.
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4.2. Virtualization

A scheduler in a virtualized system has the purpose of deploying resources in a way to fulfill

customer requests. More recently scheduling in virtualized systems has another goal, namely to

deploy resources in order to minimize energy consumption.

Virtualization technology provides an additional infrastructure layer on top of which multiple

VMs can be deployed. Virtualization technology can improve resource utilization, but it also

consumes resources and thus creates an energy consumption overhead [59] - mostly through a

hypervisor. As reported in [50], a hypervisor based on full virtualization, i.e., KVM , creates

much higher overhead (11.6%) than one based on paravirtualization (0,47%), such as Xen, as

opposed to using physical machines. Additionally, too big VM images are sources of additional

losses, e.g. too large memory allocation and storage size.

While scheduling Cloud resources there are several causes of energy inefficiency [60]. For

example rescheduling VMs every couple of minutes would perhaps give optimal deployment at

the moment, however re-scheduling itself would probably consume more energy than it saves.

Heavy VM migrations can lead to a performance overhead, as well as the energy overhead. While

a performance loss can be avoided by using live migrations of VMs [58], the resulting energy

overhead is often overlooked. When migrating a VM from one node to another, both nodes

must be powered on until the migration is complete [69]. This includes both time and energy

overheads for the migration, which is only rarely considered in the literature in the context of

job placement.

Adaptation of more lightweight architectures for hypervisors, such as those based on micro-

kernel [16], have still not take its full swing, and are mostly used in embedded systems, rather

than Cloud Computing. However, most recently a technology based on Linux containers (e.g.,

Docker [85]) has shown some worthwhile benefits due to its lightweight design, fast deployment

and low resource consumption footprint [39]. Furthermore, its performance is almost identical to

bare-metal deployment as the applications running inside a container directly utilize hardware

resources. On the one hand, due to its still relative immaturity the container technology offers

a limited set of features, where adding more features could easily eliminate its benefits based

on the lightweight design. On the other hand, hypervisor technology started with a heavyweight

design, and due to optimization efforts it significantly increased its efficiency without losing its

basic features.

4.3. Resource management and scheduling

Resource managers and schedulers for large systems are, in general, monolithic [38]. They

are implemented as a single, centralized scheduling algorithm that controls the execution of all

jobs. Examples are the widely used systems like PBS [67], Maui [48] and Moab [11] that are

characterized by isolating the jobs in a static allocation of resources to each job. The central-

ized control becomes a scalability bottleneck for extra large systems and do not guarantee the

simultaneous execution of different types of loads. To alleviate this control restraint, a two level

control approach is applied that implements a high-level control scheduler, which offers sets of

resources to other frameworks. An example is Mesos [36] that provides so-called resource offers

to frameworks such as Hadoop/Yarn [41] and MPI jobs, which accept or reject these offers

for scheduling their own jobs. The disadvantage of the two-level approach is that it leads to

suboptimal resource usage as it isolates applications by assigning a specific set of resources to
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each framework. Such approach represents a pessimistic sharing policy since it locks resources

that can potentially be idle as they are taken by a frame- work that commonly exhibits uneven

workload, which eventually results in a waste of energy. To improve the resource sharing among

several frameworks and to overcome the centralized control constraint, Schwarzkopf et al. [38]

proposed a flexible and scalable scheduler based on a shared-state approach. Full access to

all nodes is granted to each framework that compete in a free-for-all manner, and uses an

optimistic concurrency to resolve conflicts when updating the system state. In this approach all

framework schedulers run in parallel, while having the constraint to observe the system state

when committing the schedule decisions. If the scheduler fails a commit operation, it has to

obtain a new schedule for its jobs.

Workflow applications represent a relevant class of scientific workloads and workflow schedul-

ing has been addressed primarily for single workflow scheduling, i.e., a schedule is generated for

a workflow and a specific number of processors, used exclusively throughout the workflow exe-

cution. When several workflows are submitted, they are considered as independent applications

that are executed on independent subsets of processors. However, because of task precedence,

not all processors are fully used when executing a workflow, thus leading to low efficiency. The

efficient usage of any computing system depends on how well the workload is mapped to the

processing units. One way to improve system efficiency is to consider concurrent workflows, i.e.,

sharing processors among applications, so that throughout its execution, the workflow can use

any processor available in the system. Although the processors are not used exclusively by one

workflow, only one task runs on a processor at any one time. Resource sharing among workflow

applications with the aim of improving resource usage rate and dealing with the dynamic nature

of a large system, where jobs are submitted at any time, have been studied in [14, 47, 93]. This

approach may be used to specify a workflow scheduling framework to compete for resources in

an extra large scale system.

The scheduling of BoT applications, also called, divisible load applications, have been ex-

tensively studied in a static and a dynamic approach. In [25] it was proposed a framework

for running concurrent BoT applications in heterogeneous systems, where jobs are submitted

and schedule dynamically without prior knowledge of the workload. Similarly with workflow

concurrent execution, the aim is to reduce the maximum ratio between the processing time an

application takes to complete concurrently with the time it would require to complete if executed

alone.

From the previous discussion, we can see that there are frameworks available to manage the

concurrent execution of the most typical scientific workloads, being a relevant middleware to be

consider in order to obtain efficient resource management for extra large systems.

4.4. Summary

The diversity of workloads will require that a diversity of frameworks need to be considered

in the same system, which interoperability may not exist or may not be desirable, to keep

the system manageable. Additionally, with the large number of nodes that will constitute an

extra large system, only a distributed concurrent deployment of sets of resources by framework

schedulers, such as one proposed in [38], will have conditions to achieve scalability. However,

this approach may not generate optimal energy efficient job scheduling as it only tackles an

architectural design of the scheduler. Therefore, applying machine learning techniques to predict
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workloads, such as [92] or the one introduced for Cloud environments in [12], may be developed

to obtain long-term stability and improved energy eficient resource management.

5. Towards an Energy Efficient Design of Ultrascale

Applications

To satisfy requirements and constraints in terms of computing and energy consumption,

strong potential in energy savings can be achieved by the consolidation on physical servers of

numerous virtualized services.

Moreover, Green 500 [5], the world contest of the most efficient HPC systems, shows that re-

cent years trends offer real potential of energy saving and performances thanks to CPUs+GPUs

heterogeneous systems. Nevertheless, both technologies are not yet fully compatible: the stan-

dardization of contexts of virtual machines does not accommodate the specific hardware of

graphics accelerators and hybridization performance of these two technologies are still less than

expected.

However, we think that the most efficient and easily deployed computing nodes can bring to

ultrascale systems some energy solutions. We mainly focus our work on two points. Firstly, by

kick up bottlenecks of interoperability between virtualized contexts and hardware accelerators

and secondly, in boosting a widely used component that can easily optimize a number of current

applications.

In the first section, we present the trends of the most efficient hardware architectures in a

scientific context. In the second section we present two software mechanisms to reduce latencies

of data transmissions between virtual machines and so provide unleashed access to graphics

accelerators from virtualized applications.

Beyond scientific applications, where GPUs are widely appreciated, we will show that us-

age of accelerators can also bring strong potential performance and energy cutback. With this

point of view, the third section focuses on a parallelized implementation of a DBMS engine, a

fundamental computing component of many applications, from small embedded devices to Big

Data applications.

The last section is finally interested in new perspectives for the use of SoC (system on Chip

- SoC) and their potential in both computing performance and power consumption.

5.1. Green 500 and Hybrid Architectures

From several years, Green 500 top list, devoted for the most efficient supercomputing sys-

tems, shows that a trend is mainly driven by heterogeneous architectures, combining multi-core

CPU and GPU (see tab. 2). The system performance must be at least as high as the 500th of

the Top List of the world fastest computer [6].

Computing characteristics of current Green500 top machines indicate that most of them

are build upon Intel IvyBridge CPU and Nvidia or AMD GPU. A new Japanese competitor,

PEZY-SC [9] stands up at the second position with a proprietary accelerator embedding 1024

cores. It claims peak a performance of 50GFlops/W in single precision.

Globally, systems in Green500 show a predominance of Intel CPU (429), AMD (29) and

IBM (38) high end processor. For accelerator, Nvidia GPU is also predominant (50), before

Intel Xeon Phi (20), followed by AMD GPU (4). The couple Intel CPU and Nvidia GPU is
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Table 2. Top 10 of Green500, November 2014

Gflops/
Watt

Year Site Manufacturer Processor Accelerator /
Co-Processor

5,27 2014
GSI Helmholtz Center,

Germany
AMD, ASUS,
FIAS, GSI

Xeon E5-2690v2
10C 3GHz

AMD FirePro
S9150

4,95 2014
High Energy Accelerator
Research Organization /

KEK, Japan

PEZY Computing /
Exascaler Inc.

Xeon E5-2660v2
10C 2.2GHz

PEZY-SC

4,45 2013
GSIC Center,

Tokyo Institute
of Technology, Japan

NEC Xeon E5-2620v2
6C 2.1GHz

Nvidia K20x

3,97 2014 Cray Inc., United States Cray Inc. Xeon E5-2660v2
10C 2.2GHz

Nvidia K40m

3,63 2013
Cambridge University,

United Kingdom
Dell Xeon E5-2630v2

6C 2.6GHz
Nvidia K20

3,54 2013 Financial Institution,
United States

IBM Xeon E5-2680v2
10C 2.8GHz

Nvidia K20x

3,52 2013
Center for

Computational Sciences,
University of Tsukuba

Cray Inc. Xeon E5-2680v2
10C 2.8GHz

Nvidia K20x

3,46 2014 SURFsara Bull SA Xeon E5-2450v2
8C 2.5GHz

Nvidia K40m

3,19 2012
Swiss National

Supercomputing Centre
(CSCS)

Cray Inc. Xeon E5-2670
8C 2.6GHz

Nvidia K20x

3,13 2013
ROMEO HPC Center -
Champagne-Ardenne

Bull SA Xeon E5-2650v2
8C 2.6GHz

Nvidia K20x

largely dominant in top 10. GPU is now well established as an efficient accelerator, either on

computing performance or energy consumption.

Green 500 and Top 500 are mainly relevant in computation-intensive domain but these

performance criteria could not be sufficiently suitable for many real world applications. [79]

focused on an alternative efficiency benchmarking for large-scale graph algorithms class, more

relevant to data-intensive problems.

The problem here is to minimize energy resources dedicated to large graph exploration. The

authors of this work propose two reference parallel kernels (replicated-csr and replicated-csc)

and different scales of free graph problems (from 220 up to 242 numbers of vertices). Benchmark

uses the elapsed times for both kernels, but the rankings for Graph 500 [4] are determined by

problem size and the throughput in numbers of edges traversed per second, TEPS (Traversed

Edges Per Second).

Analysis of Graph 500 list [7] shows that best efficiency, 445 GTEPJ (109 Traversed Nodes

Per Joule) was reached on a small scale graph problems (220 vertices) solved on hybrid ma-

chine, with Intel CPU and NVIDIA K20 GPU. The second competitor score, 230 GTEPJ, was

reached by an Android Smartphone. On large scale problem (238 and 241 vertices), only two

competitors provide machine power consumption in order to estimate energy efficiency. Those

are BlueGene/Q (Power BQC 16C, 1.6GHz) with only 5.40 and 3.71 METPJ (106 Traversed

Nodes Per Joule).

5.2. Sharing Hardware Accelerators Between Virtual Machines

Accelerators like GPU or MIC devices can dramatically improve computation performance.

Therefore, it is interesting to exploit them in virtualized contexts, either with ”on the shelf”

libraries (e.g. cuFFT, cuSparse) or through custom code (OpenCL, CUDA). However, these

accelerators are considered as specific hardware and do not match legacy requirements to enable
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virtualized drivers. Nvidia Grid [8] announces a network GPU grid allowing several users to

share GPU resources, but not in the framework of usual virtualization.

Nevertheless, there exist some tools that can be used to access and share GPUs in virtual

environments. GVirtuS [21] is one of them. It acts as a bridge between the unique privileged

virtual machine (VM) and unprivileged VM. To use hardware accelerator from one virtualized

context, an application has to transfer operation requests and their data to the privileged VM,

which has direct hardware access to accelerators. When the device terminates its job, results

have to be returned back to unprivileged VM. Data transfer between VM is performed thanks to

network links (TCP/UDP stack) which are implemented as ring buffers. This mechanism allows

an overlapping of write and read operation; however, it leads to four data copies. This weakness

can break down the performance in terms of time, energy and memory usage, although each

copy of data is positioned in the unique and physical system memory.

In order to overcome it and boost performance, we developed two original techniques to

optimize data transfers between a privileged and an unprivileged VMs, hosted on the same

physical machine using Xen virtualization solution.

The first transfer mechanism transfers data already located in memory. Instead of copying

data between virtual machines, we grant the privileged VM to access data pages of an unprivi-

leged VM. In order to achieve this, we developed a kernel module, GNTADDR, which retrieves

page identifiers of target memory zones. Identifiers are then transferred to the privileged VM

which uses them to map pages and then access data. With a 4096 byte page size and 8 bytes per

identifier, the transferred data volume is reduced by 512. The accelerator device managed by the

privileged VM has therefore a direct access to data produced in an unprivileged VM without

any expensive duplication. Shared pages are always owned by the unprivileged VM and still

exist after the transfer. However, this mechanism cannot avoid the four duplications inherent of

a ring buffer pages when identifiers need to be transferred. That is why we developed a second

scheme.

The second scheme improves transfer of ”short time lived” data. In order to avoid any dupli-

cation, we designed a ring buffer instantiated inside a shared memory block, named GNTRING.

Shared memory spaces are managed (allocation, mapping, sharing) and owned by the ring buffer,

but data can be placed and pulled out by processes either in privileged or unprivileged VM. Here

again, the VM has a direct access to data hosted in the ring buffer without any duplication.

An asynchronous mode is also implemented in order to be more flexible. This mode saves some

internal signal interactions and is therefore more efficient.

With these two original mechanisms, data transfers between VM machines and hardware

devices can be performed with a reduced delay. Performances of these tools are depicted at fig. 3.

We compared our tools with the native Xen TCP socket transfer mechanism and the ring buffer

implementation of XenSocket [94].

GNTRING is used to transfer page identifiers retrieved by GNTADDR. The resulting tool

is named RINGADDR. These tools were evaluated with raw ping-pong data transfers, sending

datasets of different sizes and waiting for the acknowledgment signal. For each size, we ran

hundred transfers and we computed averages. Ring buffers have a size of 1 MB (256 pages).

These tests were conducted on a hexacore CPU (AMD Phenom II X6 1090T 3.2 GHz) with 8

GB of RAM. We used Xen v4.3 hypervisor. The virtual machine has 2 GB of RAM and two

CPU cores. Ubuntu v3.2 is the operating system for all domains.
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Figure 3. Performance comparison of Xen transfer mechanisms

We consider TCP transfer mechanism as our reference as it is the standard communication

mechanism between machines. Firstly, we observe that XenSocket is more efficient than TCP,

thanks to its internal ring buffer which overlaps read and write operations. Secondly, we see that

RINGADDR is more efficient than XenSocket for data size smaller than 500 MB, with speedups

between 2 and 5. Above 500 MB, performances are similar. Finally, we notice that both modes of

GNTRING yield the best performances. Compared to XenSocket, speedups are between 5 and 30

in synchronous mode and between 6 and 390 in asynchronous mode. Peak measured bandwidth

is about 500GB/s, and latency becomes quite transparent for data exchange between virtualized

domains.

For future works, these tools will be extended to inter VM communications to perform more

efficient data transfers without requiring hardware, e.g. MPI jobs or web services. Also, those

tools will be integrated inside GVirtuS in order to improve hardware accelerator handling.

5.3. Low Power SoC

New embedded platforms, where CPU and GPU are shipped together on the same die (SoC)

and share the same memory space, offer two main new perspectives. The first one is a capability

to only transfer data owner grant between CPU and GPU, avoiding costly data duplication.

The second one is to perform the same amount of workload on a low-power platform, expect-

ing comparable performances with much less energy: new TegraK1 SoC’s platform, which have

equivalent computation capability (4 ARM cores + 192 GPU cores), but needs only 11W com-

pared to test-platform (50W for CPU + 188W for GPU). In embedded systems (smartphones,

tablets), the low power processors market is mainly dominated by ARM SoC. ARM architecture

is RISC, so executable code is little bigger (20%) but core hardware architecture is less complex

than x86 counterparts. Globally ARM cores need less energy than x86 core equivalents. ARM

Cortex CPUs, and MALI GPU companion, are distributed as system on chip (SoC) design in

order to be implemented by external founders but they are free to mix different kind of CPU

and GPU cores on chips.

SoC technologies enable CPU and GPU but also memory and network blocks to be closely

coupled on one chip. This technology could throw away two main hardware bottlenecks:

• Memory space becomes shared between CPUs and GPU. This improvement can eliminate

time consuming data duplication between processor and accelerator.
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• Hardware interfaces (PCI/PCIe) are replaced by direct links (routed lines), more efficient

and less power consuming than external chipset (north or south bridge).

Anyway, this technology imposes some limitation, essentially about the lack of flexibility:

• Memory space is not expandable: current accelerators embed no more than 12 GB. This

drawback could impose rewrite or redesign algorithms in a distributed approach.

• Lack of I/O: HDD, networking, etc.

Nvidia has developed in 2013 such technology on its TegraK1 processor which joins together

four 32 bit CPU cores or two 64bit CPU cores with 192 Kepler GPU cores.GPU architecture in

Tegra K1 is virtually identical to the Kepler GPU architecture used in high-end systems (Tesla

K20), but also includes a number of optimizations for mobile system usage to preserve power

and deliver industry-leading mobile GPU performance. While the highest-end Kepler GPUs in

desktop, workstation, and supercomputers include up to 2880 single-precision floating point

CUDA cores and consume around 200 W, the Kepler GPU in Tegra K1 consists of 192 CUDA,

cores and consumes a couple of watts. Its peak performance is announced around 300 GFLOPS

at 6 W total power draw [1] or 50 GFLOPS/W. This is over 10 times more power-efficient than

the world most power-efficient oil-cooled supercomputer. This type of architecture has more

cores than many entry-level to mainstream desktop GPUs of just few years ago.

At the end of 2014, Nvidia announces the next generation, including four 64 bit, four 32 bit

CPU cores and 256 Maxwell GPU cores for its new TegraX1. Performance grows up to 1000/500

GFlops on FP16/FP32 with 2 times less energy.

5.4. Discussion

According to [55], we estimate that processing servers represent around 70% of total data-

center energy consumption, while connection links and switches account for 30%. It means that

efforts to reduce energy consumption must focus on computing servers and the same trend should

be followed for data-center servers. Cooling is also a major energy consumer, but is not taken

into account here. Its impact can be considered as a ratio penalty, linearly correlated with power

of computing and networking components.

Green 500 and Green Graph 500 are mainly relevant in the domain of scientific computing,

but what about most of data centers? One fact is that GPU accelerators can be now considered

as valuable accelerators but they still need a larger adoption, especially in industrial and business

applications. One of the most common usages of data centers is hosting enterprise information

(ERP, CRM, mail or web servers, cloud, etc.) and commercial applications (e-business, finance

and telecoms). Virtualization and services consolidation in these data centers become a common

trend to reduce energy consumption by focusing workloads on fewer physical servers often save

40 to 80% [75]. In this matter, we point the lack of a solution which combines advantages of

virtualized architectures and hardware accelerators.

GPUs benefit from much more computation power at the same order of energy consumption

than classical CPUs. Except in some application fields like video games, graphical editing or

HPC, GPUs are currently under exploited. There is indeed a considerable amount of scientific

publications about exploitation of GPUs, either in computing power and in energy efficiency, for

scientific simulations. Works are however relatively limited to other fields of applications, like

those of data centers.

In the context of exascale applications, and specially in BigData or IoT elastics applications,

virtualization flexibility is a major advantage for dynamically redeploying resources according
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to user needs. Bringing this flexibility level to GPU accelerator could combine the advantages

of power and energy efficiency to that kind of applications.

Conclusions

This article reports the various activities explored in the working group ”Energy Efficiency”

from the Nesus European COST IC1305 action. The identified trends and challenges studied by

the group concentrate on the use of efficient hardware, especially exploiting heterogenity and

low power chips, effective and lightweight monitoring for large scale systems, enabling analysis

of future ultrascale systems by modeling and simulation, including detailed models of workloads

as well as thermal and cooling aspects, specific resource management approaches, and proper

design of applications with power and efficiency in mind.

Based on this analysis some specific observations were made that that led to identification

of challenges to be studied further by the energy-efficiency group within the Nesus action.

First of all, the heterogeneity in computing resources is a necessity for ultrascale systems to

ensure both a flexible adaptation to HPC workloads and significant power-savings. Yet taking

advantage of these heterogeneous resources assumes the possibility of measuring with a reason-

ably good accuracy the performance and the energy-efficiency of the system. Another challenge

apart from the energy-efficiency itself is the ease of programming, which can be a blocker. Hence,

an important point to explore is a trade-off between energy-efficiency gains and programming

effort (including a selection of a hardware platform, application design and optimization).

The challenge related to monitoring at ultrascale level, to make it manageable, is to be able

to combine both fine-grained measurements for short time periods based on software interfaces,

and aggregated metrics based on physical wattmeters for the higher views over longer time

ranges.

As ultrascale systems are future goal rather than commonly available, energy efficiency and

performance prediction of ultrascale systems is a difficult task that can greatly benefit from

modeling and simulation techniques. However, full system simulation, as opposed to simulating

individual system components, is still a difficult task. The main obstacles are the simulation

execution time and the memory footprint. The possible solutions to this problem to be studied

include running parallel simulation models on large-scale systems as well as simplified models and

statistical/machine learning methods. Another challenges needed to tackle to obtain accurate

full system simulation are appropriate modeling of applications execution on heterogeneous

and low power hardware architectures, and simulation of cooling, which requires accurate (but

sufficiently fast) simulation of thermal processes in a computing center.

Similarly to modeling and simulation the scheduling and resource management techniques

will be constrained in their accuracy and scalability by a complexity and size of ultrascale

systems. Thus, they will have to take advantage of distributed concurrent allocation of sets of

resources and the use of machine learning techniques to enable improvements in energy efficiency.

The important challenge will be to deal with a variety of workloads and adaptation of scheduling

and resource management methods to their specifics.

Finally, the crucial aspect in obtaining energy-efficiency will be appropriate application

design. To achieve it applications will have to take advantage of new heterogeneous and low

power architectures. The use of these architectures will increase needs for interdisciplinary op-

timizations such as software-hardware co-design or exploiting detailed models of application by

schedulers managing heterogeneous resources.
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