
Supercomputing
Frontiers

and Innovations
2023, Vol. 10, No. 2

Scope

• Future generation supercomputer architectures

• Exascale computing

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Novel approaches to computing targeted to solve intractable problems

• Convergence of high performance computing, machine learning and big data technologies

• Distributed operating systems and virtualization for highly scalable computing

• Management, administration, and monitoring of supercomputer systems

• Mass storage systems, protocols, and allocation

• Power consumption minimization for supercomputing systems

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Scientific visualization in supercomputing environments

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA
• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany

• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Andrei Tchernykh, CICESE Research Center, Mexico
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Andrey Goglachev, South Ural State University, Chelyabinsk, Russia

• Yana Kraeva, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

Contents

November 2022 Top500 List Overview
N.S. Abramov, S.M. Abramov . 4

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer
Systems
A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok . 18

The Semantic Model Features of the Statically Typed Language of Functional-dataflow
Parallel Programming
A.I. Legalov, N.K. Chuykin . 32

Multipurpose Reconfigurable Supercomputer with Immersion Cooling
I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin . 46

Elements of a Digital Photonic Computer
D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora . 62

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current
State and Perspectives
A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov,
O.A. Telminov, V.B. Kazantsev . 77

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler
and Machine Learning Methods
V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin . 104

The High Performance Interconnect Architecture for Supercomputers
A.S. Simonov, A.S. Semenov, A.N. Shcherbak, I.A. Zhabin . 127

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.

November 2022 Top500 List Overview

Nikolay S. Abramov1 , Sergei M. Abramov1

c© The Authors 2023. This paper is published with open access at SuperFri.org

The article is devoted to the analysis of the current state of the supercomputer industry and

the prospects for its development. In terms of methodological approach and tools, the work is

a continuation of a series of similar analytical reviews by the authors. The main source of infor-

mation for analysis is the archive of editions (releases) of the world ranking of the five hundred

most productive supercomputers in the world. The novelty of this work lies not only in updating

the information, taking into account the latest editions of the Top500 list, but also in focusing on

the following circumstance: the global supercomputer industry is undergoing a radical restructur-

ing – transition from the “petascale era” to the “exascale era”. Technological trends and features

of solutions for the most productive systems in the world in recent years are given. The pace

of development of supercomputer technologies, development trends are discussed: hybrid archi-

tectures, interconnect technologies and changes in the positions of supercomputer manufacturing

companies. Based on the results of the analysis, reliable forecasts were made for the coming years

about the general appearance of exascale systems.

Keywords: Top500, HPC, supercomputers, hybrid architectures, interconnect.

Introduction

In leading countries, supercomputer technologies (SCT) have been considered by govern-

ment and society as the only means of ensuring competitive advantages for quite some time [1].

Today, in the era of the digital economy, the roles of the supercomputer industry and the super-

computer cyberinfrastructure (SC infrastructure) in leading countries are becoming increasingly

important. It is currently important to have an accurate assessment of the current state of the SC

infrastructure in these countries, a reliable comparison of their positions in the supercomputer

industry, and a clear understanding of modern trends in SCT development.

This article is a continuation of a series of similar analytical reviews by the authors, which

use the same methodological approach and toolkit [2, 3]. The novelty of the material presented

in this work lies not only in the updating of information based on the latest revisions to the

Top500 list, but also in the focus on the following circumstance.

The global supercomputer industry is currently undergoing a radical restructuring, transi-

tioning from the “petaflops era” to the “exascale era”. This is not simply about increasing the

performance of supercomputers by 1,000 times. In the process of this transition, solutions had

to be found to a large number of problems in both hardware and software [4].

Understanding of recent technological trends will make it possible to identify established

solutions that have enabled the transition to exascale systems and apply this knowledge in

current and future supercomputer solutions.

The article is organized as follows. Section 1 is devoted to Top500 list. In Section 2 we look

at pace of supercomputing technology development. Section 3 contains most powerful public

supercomputers from June 2011 to November 2022. Trends in the development of hybrid archi-

tectures are considered in Section 4. Section 5 is devoted to trends in interconnect technologies.

Conclusion summarizes the study.

1Ailamazyan Program Systems Institute of Russian Academy of Sciences, Pereslavl-Zalessky, Russian Federation

DOI: 10.14529/jsfi230201

4 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-1612-3879
https://orcid.org/0000-0001-6603-7971

Figure 1. Relative performance of the 500 systems that entered the Top500 ranking in November

2022. The performance of Top1 system is taken as 100%

1. Top500 List

The main source of information for the analysis in this article is the worldwide ranking of

the top 500 most powerful supercomputers in the world, known as the Top500 list [5]. The list

is updated twice a year, in June and November. Thus, from June 1993 (the first edition) to

November 2022, there have been 60 revisions of the list. In the Top500 list, systems are ranked

by real performance measured on the Linpack benchmark test – Linpack performance. From now

on, we will understand performance only as Linpack – performance, even if it is not specifically

emphasized. In the Top500 list, it is denoted as Rmax.

Given the fact that some systems are not included in the list for various reasons, the term

supercomputer here will be defined as follows: a supercomputer is a computing system that has

the performance corresponding to the performance of the machines listed in the corresponding

revision of the Top500 list.

With this definition, the data available on the Top500 website is reliable and multi-

dimensional and provides a retrospective description of the state of the supercomputer industry.

Moreover, it is detailed, covering all 60 revisions of the list at intervals of six months. Each

edition is a table of 500 records. The key aspects of the methodology used to analyze this data

set are as follows:

• Supercomputers listed in the Top500 list have a great variety of performance and, as

a result, differ significantly in the technical solutions used, price, consumer properties,

and so on. The extremely strong “layering” of supercomputers on the example of the

November 2022 edition of the Top500 list are illustrated in Fig. 1.

• As a result, it is incorrect to consider supercomputers as “units”. It is essential to rely on

their key characteristic – their performance. For example, when comparing the equipment

of different countries with supercomputer technology, it is necessary to pay more attention

to the total performance of the available supercomputers in the country rather than their

number.

N.S. Abramov, S.M. Abramov

2023, Vol. 10, No. 2 5

93
100 Mflops

1 Gflops

10 Gflops

100 Gflops

1 Tflops

10 Tflops

100 Tflops

1 Pflops

10 Pflops

100 Pflops

1 Eflops

10 Eflops

95 97 99 01 03 05 07 09 11 13 15 17 19 21 23

Performance: #1

dashed-lines — forecasted performance.

#10 #100
#200 #300 #400 #500

Horizontal grid lines: solid lines — main values,
dashed lines — ×2 and ×5 of main values
Vertical grid lines — edition of Top500:
solid lines — June, dashed lines — November

Figure 2. Performance of supercomputers included in various editions of the Top500 ranking

2. Pace of Supercomputing Technology Development

A general assessment of the pace of SCT development can be obtained by analyzing the

achieved performance of supercomputers at various points in time. Figure 2 provides the relevant

information.

Some explanations are necessary for Fig. 2:

• The X axis shows the times (month and year) of the Top500 editions, and the Y axis

shows the performance on a semilogarithmic scale.

• Solid color lines represent performance of systems occupying different positions in the rank-

ing: the top red graph shows the performance of the system in the first place, and the

graphs of systems occupying the 10th (lavender), 100th (blue), 200th (light turquoise),

300th (light green), 400th (light grassy), and 500th (dark green) places follow in descend-

ing order.

• From June 2012 to November 2024, dotted lines indicate a forecast of the performance

of systems occupying the 1st, 10th, 100th, 200th, 300th, 400th, and 500th places in the

ranking. The average value of the projection and a 90% confidence interval are indicated.

The forecast was calculated using group linear regression (discussed in Section 2.1) over

the interval of the last 10 years, from November 2012 to November 2022.

• Colored dots on the graph indicate systems installed in Russia and included in the rele-

vant Top500 edition. Blue dots represent supercomputers purchased abroad, and red dots

represent domestic supercomputers.

Graphs similar to those shown in Fig. 2 are often published and serve as an illustration of the

exponential pace of development in the SCT industry. Indeed, at first glance, the color lines in

Fig. 2 are close to straight lines, which with the logarithmic scale corresponds to an exponential

dependence... However, a more careful analysis shows that the graphs are most similar to a

broken line consisting of at least two straight segments: before 2008, the linear regression has

one slope, and after 2008, another, less steep one.

November 2022 Top500 List Overview

6 Supercomputing Frontiers and Innovations

2.1. Group Linear Regression

Let us describe the methodology of the above-mentioned analysis. Let us number all releases

of the Top500 rating by numbers i ∈ [1, 60]. We denote the performance of the system that took

a certain place j ∈ [1, 500] in the Top500 release with number i as ri,j . Let us choose a set of

places in the Top500 rating J ⊆ [1, 500] and a rating number k ∈ [8, 53] – here we deviate by

7 releases of the rating to the left and right in the interval [1, 60].

Then by the method of group linear regression for the given k, J , the trend of the perfor-

mance is determined by finding such a set of parameters a and bj , where j ∈ J , that the data

series sj = { (i, ln ri,j) | i ∈ [k − 7, k + 7] } for j ∈ J is best approximated by the linear functions

fj(i) = a · i+ bj of the variable i. Specifically, the sum of squares is minimized:

∑

i∈[k−7,k+7],j∈J
(a · i+ bj − ln ri,j)

2 → min.

The minimization problem is solved by the method of least squares (LS) and, in essence, this

is a simple modification of the standard linear regression algorithm: the regression is carried

out for a group of data sets sj given by the indices j ∈ J , assuming that the slope of all

approximating straight lines (the parameter a) is the same, and the offsets along the Y axis (the

parameters bj) are different.

By the meaning of the solved problem, we can say that at the time of the Top500 release

number k, in half a year the performance of systems occupying places j ∈ J , in average, increased

ea times. Thus, this performance will increase on average a thousand times during y(k, J) =
ln 1000
2·a years.

2.2. Over How Many Years Did the Performance of Supercomputers

Increase by a Factor of 1000?

The quantity y(k, J) was calculated for several sets of J and for all k ∈ [8, 52]. Figure 3

shows the results of the calculations. The calendar date of the release of the Top500 rating with

number k is labeled on the X axis instead of the quantity k. The value of y(k, J) (in years) is

indicated on the Y axis.

It can be seen that on the interval from 1998 to 2008, it was indeed possible to say that

Rmax increased by a factor of 1000 in approximately 11 years. This was true for both the

leading positions in the supercomputing rating (red and purple lines on the graph) and for the

entire ranking as a whole (green line). Later (2009–2016), we observe signs of clear technical

difficulties that restrained the growth of technologies in the industry. Recently, the situation

has been improving for the higher-ranked systems in the ranking, and the negative trends have

persisted for the ranking as a whole, i.e., the gap is widening between the higher-ranked systems

and all others.

2.3. Main Conclusions from the Analysis of Supercomputing Technology

Development Rates

We can state that at the turn of 2008, while maintaining the exponential nature of perfor-

mance growth, the rate of growth decreased – the base of this very exponent decreased. Until

2008, the following was precisely maintained: the performance of the most powerful system in the

world doubled every 18 months; its performance increased by a factor of 1000 in 11 years. Thus,

N.S. Abramov, S.M. Abramov

2023, Vol. 10, No. 2 7

Figure 3. The average forecast for supercomputers occupying positions J is: how long will it

take for Rmax to increase by 1,000 times?

the performance milestones were overcome: 1 Mflops (106 flops) in 1975, 1 Gflops (109 flops) in

1986, 1 Tflops (1012 flops) in 1997, and 1 Pflops (1015 flops) in 2008. If this trend had persisted, a

performance of 1 Eflops (1018 flops) would have been achieved in 2019. However, it was achieved

in June 2022, see Fig. 2.

Starting from 2008, the rate of growth of achieved maximum performance has clearly

changed: instead of an increase of “1000 times in 11 years”, we now have an increase of

“1000 times in 13–17 years”.

Undoubtedly, at the turn of 2008 the world supercomputing industry faced scientific and

technical difficulties on the path of SCT development. This led to a review of future perfor-

mance milestones: 1 Eflops (1018 flops) was achieved in June 2022, and one can expect 1 Zflops

(1021 flops) to be achieved in 2035–2039.

3. Most Powerful Public Supercomputers from June 2011

to November 2022

Table 1 provides brief information about the most powerful supercomputers in the world

from June 2011 to November 2022.

Analysis of Tab. 1 reveals obvious trends and allows for reliable (for the next few years)

assumptions regarding the general features of exascale systems:

• Number of nodes ranges from 10,000 to 50,000, with 5 to 10 million cores.

• Power consumption ranges from 15 to 30 megawatts.

• Interconnect is, in most cases (87%) of proprietary or customized solutions, or a top

standard interconnect with modifications from the manufacturer (13%).

• Cooling systems are closed-water or, in the future, more advanced immersion or boiling.

November 2022 Top500 List Overview

8 Supercomputing Frontiers and Innovations

Table 1. Brief information about the most powerful supercomputers in the world from June

2011 to November 2022

Top500 release, system,

. computing subsystem

Rmax,

power con-

sumption

Interconnect.

Cooling technology

6/2011, K computer, Japan, Fujitsu, RIKEN

AICS [6] . ≈0.7M cores, 88,128 CPU SPARC64

VIIIfx 8C 2.00 GHz 8-cores, 4 processors per node

10.5 Pflops,

12.6 MW

Custom interconnect.

Water cooling

06/2012, Sequoia, USA, BlueGene/Q, IBM [7]

. ≈1.6M cores, ≈99K CPU Power BQC 16C, 64-bit

RISC, 1.6 GHz 16 cores

16.3 Pflops,

7.9 MW

Custom interconnect.

Water cooling

11/2012, Titan, USA, Cray XK7 [8]

. ≈0.56M cores, AMDOpteron – ≈300K cores,

NVIDIA K20x – ≈260K cores

17.6 Pflops,

8.2 MW

Custom interconnect.

Water cooling

06/2013, Tianhe-2, China, UDT, Inspur [9]

. ≈3.1M cores, 32K Intel Ivy Bridge + 48K Intel

Xeon Phi MIC

33.9 Pflops,

24 MW

Custom interconnect.

Water cooling

11/2016, Sunway TaihuLight, China, National

Supercomputing Center in Wuxi, NRCPC, Inspur [10]

. ≈10.65M cores, CPU Sunway SW26010 260C

1.45 GHz, 40,960×(4+256 cores)

93.0 Pflops,

15.4 MW

Custom interconnect.

Water cooling

06/2019, Summit, USA, IBM/NVIDIA [11]

. ≈2.4M cores, IBM POWER9 22C 3.07 GHz –

≈203K cores, NVIDIA Volta GV100 – ≈2.2M cores

148 Pflops,

9.8 MW

Interconnect:

Dual-Rail EDR

Infiniband.

Water cooling

6/2020, Fugaku, Japan, Fujitsu, RIKEN [12]

. ≈7.63M cores, 158,976 CPUs Fujitsu ARM

A64FX 48C 2.2GHz 48 cores

442 Pflops,

29.9 MW

Custom interconnect.

Water cooling

6/2022, Frontier (OLCF-5, HPE Cray EX235a),

USA, DoE, SC/ORNL, HPE [13] . ≈8.7M cores,

9,248 CPUs AMD Optimized 3rd Generation EPYC

64C 2GHz 64 cores, 36,992 GPUs AMD Instinct

MI250X 220 cores

1,102 Pflops,

21.1 MW

Custom interconnect

Slingshot-11.

Water cooling

• Computer might be homogeneous (50%) or hybrid (50%), depending on the purpose.

• Processors and accelerators are either proprietary (44%) or top standard (56%) and hard

available.

4. Trends in Development of Hybrid Architectures

Hybrid supercomputers are systems in which computing nodes are equipped with specialized

processors, called accelerators, in addition to standard processors. The idea of accelerators in the

N.S. Abramov, S.M. Abramov

2023, Vol. 10, No. 2 9

supercomputing field has been around for a long time, but hybrid architectures have only become

widely adopted in the last decade. Fields detailing the use of accelerators in supercomputers

(Accelerator and Accelerator Cores) started appearing in the Top500 list beginning in June 2011.

Since then, we have been analyzing hybrid architectures and categorizing each supercomputer

into the following classes:

• NONE: accelerators are not used in the supercomputer – homogeneous (non-hybrid) ar-

chitecture.

• IBM: special-purpose IBM PowerXCell 8i processors are used as accelerators.

• AMD: various specialized processors from AMD are used as accelerators.

• NVIDIA: various specialized processors from Nvidia are used as accelerators.

• Intel: various specialized processors from Intel are used as accelerators – families of Intel

MIC / Intel Xeon Phi.

• MIX: various specialized processors from both Nvidia and Intel are used as accelerators.

• PEZY: various specialized processors from PEZY Computing are used as accelerators.

• Other: specialized processors not mentioned above are used as accelerators. Currently, the

only accelerators in this category are those developed in China: Matrix/2000 and Deep

Computing Processor.

We examined 24 versions of the Top500 ranking from June 2011 to November 2022. Figure 4

shows the proportions of different classes of hybrid supercomputers in the Top500 list for these

24 versions. The labels on the X axis represent years, and the two bar graphs in each year

correspond to the two bi-annual versions of Top500 in that year. In the left part of the figure,

the proportions are shown in the number of systems (SCs), with each system representing 0.2%

of the 500 systems, while in the right part, the proportions are shown in terms of performance

(RMax), with the total performance of the entire Top500 list (i.e., ΣRmax) taken as 100%.

The following trends can be observed:

• While the number of hybrid supercomputers increased by 12.8% ↗ 35.6% from 2014 to

2022, their contribution to the total Top500 list performance ΣRmax, which is the true

industry share, increased by 34.4% ↗ 63.8% over this period.

• IBM’s accelerators practically disappeared by 2013.

• Intel’s accelerator share has fallen by 18.8% ↘ 0.1% ΣRmax from 2013 to 2022.

• NVIDIA’s share has increased by 16.4% ↗ 30.9% ΣRmax from 2014 to 2022.

• AMD’s accelerators have practically disappeared by 2017, but then increased by 0.1 ↗
31.4% ΣRmax.

• Interesting new solutions that deserve attention have emerged (5.4% ΣRmax in the best,

2018) – short and successful projects to create fully proprietary accelerators:

– PEZY – 2015, PEZY Computing, Japan;

– Matrix/2000 – 2017, NUDT, China;

– Deep Computing Processor – 2017, Sugon, China.

4.1. Quintiles of Supercomputers in the Top500 List

It is very important to understand the applicability and suitability of each technology in

supercomputers of various performance levels. For example, it is important to understand in

which systems a particular interconnect technology or accelerator class is applicable and in

demand today. To do this, we will divide the entire Top500 list (which is sorted by supercomputer

performance) into five groups: quintile A – several of the most powerful supercomputers in

November 2022 Top500 List Overview

10 Supercomputing Frontiers and Innovations

Figure 4. Proportions of different classes of hybrid supercomputers in the Top500 ranking,

editions from June 2011 to June 2022

the list, followed by quintiles B, C, D, E. The size of the quintiles will be chosen so that the

sum of the performance of all supercomputers in one quintile is as close as possible to 20% of

the total performance ΣRmax of the entire Top500 list. That is, quintiles A, B, C, D, and E have

(approximately) equal performance, but of course contain different numbers of supercomputers.

For each release of the Top500 ranking, the composition of quintiles A, B, C, D, and E (the

number of supercomputers in them) is recalculated, based on the requirement of approximating

the total performance of each quintile to 20% ΣRmax as accurately as possible.

For the November 2022 edition of the Top500 ranking, the quintile breakdown was as follows:

• A: 1 system, Top1, 22.7% ΣRmax;

• B: 3 systems, Top2–4, 19.0% ΣRmax;

• C: 22 systems, Top5–26, 19.9% ΣRmax;

• D: 111 systems, Top27–137, 20.0% ΣRmax;

• E: 363 systems, Top138–500, 18.4% ΣRmax.

4.2. Distribution of Different Classes of Hybrid Architectures

across Quintiles

For each quintile – A, B, C, D, E – let us look at the shares of the None, Other, IBM, AMD,

NVIDIA, MIX, Intel, PEZY classes in it (Fig. 5).

By paying attention to the shape and center of gravity of the figures with the corresponding

fill color, we can make the following judgments for the November 2022 trends:

• AMD accelerators are predominantly used in the most powerful systems – the entire quin-

tile A and a significant fraction in B;

• NVIDIA accelerators and non-hybrid systems (class NONE) are more or less evenly rep-

resented in quintiles B, C, D, E (30%–50% in B, C, D, E);

• other class systems (Chinese accelerators) are mostly represented in quintile C (7%);

N.S. Abramov, S.M. Abramov

2023, Vol. 10, No. 2 11

Figure 5. Shares of various classes of hybrid supercomputers in the total performance of quintiles

A, B, C, D and E of the Top500 rating November 2022 edition

• MIX, Intel, PEZY accelerators are weakly represented in quintile E – leaving the rating

and industry;

• IBM class accelerators have left the industry.

5. Trends in Interconnect Technologies

The interconnect connects all nodes in a supercomputer into a single system. The network

technologies used in the interconnect are often different from those used in local, regional,

and global computer networks, due to the specific requirements placed on the interconnect:

not only high bandwidth, but also minimal latency and maximum message rate, as well as

several other specific requirements. In the supercomputing industry, this plays a significant role

in determining the interconnect technologies. In the list of 10 critical technological challenges

that the industry is facing on the way to exascale systems [14], the development of advanced

interconnect technologies occupies a very high (second) place.

Fields that detail the use of various interconnect technologies in supercomputers are present

in all editions of the Top500 list. Based on the data in these fields, each supercomputer in all

editions of the Top500 list can be classified into the following categories:

• Infiniband: if the supercomputer uses Infiniband technology to implement the intercon-

nect. Such supercomputers have been present in the Top500 list since June 2003 and are

still present with several versions of Infiniband having different technical characteristics:

Infiniband SDR (8 Gbit/s), Infiniband DDR (16 Gbit/s), Infiniband QDR (32 Gbit/s),

Infiniband FDR (54 Gbit/s), Infiniband EDR (100 Gbit/s), Infiniband HDR (200 Gbit/s).

• Ethernet: if the supercomputer uses Ethernet technology to implement the interconnect.

Such supercomputers have been present in the Top500 list since June 1996 and with several

versions of Ethernet having different technical characteristics ranging from FastEthernet

(100 Mbit/s) to 100G Ethernet (100 Gbit/s).

November 2022 Top500 List Overview

12 Supercomputing Frontiers and Innovations

• Myrinet: if the supercomputer uses the Myrinet technology to implement the interconnect.

Such supercomputers have been present in the Top500 list since November 1998 until

November 2020.

• Quadrics: if the supercomputer uses the Quadrics technology to implement the intercon-

nect. Such supercomputers have been present in the Top500 list since June 1999 until

November 2011.

• SCI: if the supercomputer uses the SCI technology to implement the interconnect. Such

supercomputers have been present in the Top500 list since June 2002 until November 2004.

• OpTsIntel: if the supercomputer uses the Intel Omni-Path/TrueScale family of solutions

to implement the interconnect. Such supercomputers have been present in the Top500 list

since November 2013 and are still present.

• Custom: if the supercomputer uses proprietary network solutions or solutions that are not

available as a separate commercial product – only available as part of a complete system.

It is important to note the difference between the categories:

• Infiniband, Ethernet, Myrinet, Quadrics, SCI – these interconnect technologies are avail-

able as separate commercial products. Any developer of their own supercomputer (for

example, with their own architecture of computing nodes, with certain processors) can

buy and apply any of these solutions.

• Custom – these interconnect technologies are not available as separate commercial prod-

ucts. They are either unavailable or only available as part of a complete system from

a single supplier.

• OpTsIntel – Intel’s Omni-Path / TrueScale technologies occupy an intermediate position.

On the one hand, these interconnect technologies are available as commercial products. On

the other hand, these solutions cannot be applied in a supercomputer if the computing node

does not have the appropriate architecture and processor from Intel. And this situation is

very close to the situation where the interconnect is only available as part of a complete

system from a single supplier – close in terms of the rigidity of technological dependence

on a single developer and supplier, and dependence on Intel.

Intel’s Omni-Path / TrueScale technology had very high technical characteristics at the time

of its appearance, which allowed it to successfully enter the industry and gain a share of 11.0% of

the ΣRmax in November 2019. The weak point of the OpTsIntel solution is the rigid technological

dependence of the entire system on Intel. And today, this technology is leaving the industry.

Figure 6 shows the performance shares of supercomputers with different interconnects in the

total performance of the Top500 ranking ΣRmax for 60 editions from June 1993 to November

2022.

Captions on the X axis represent the years, with two bar graphs corresponding to two

editions of the list in a particular year.

Analyzing the figure, the following trends of the past 10 years can be noted:

• In recent years, technologies corresponding to classes Myrinet, Quadrics, and SCI are not

used in the industry. The figure clearly shows the years of introduction, peak popular-

ity, and decline of these technologies. Today, only 4 classes remain relevant: Infiniband,

Ethernet, OpTsIntel, and Custom.

• Since 2012, the highest share of the total performance of the Top500 belongs to supercom-

puters with Custom interconnects. The dynamics for 2012–2017–2022 are as follows:

– Custom 54.7% ↘ 42.4% ↗ 53.4%.

N.S. Abramov, S.M. Abramov

2023, Vol. 10, No. 2 13

Figure 6. Shares of supercomputers with various interconnects in the total performance of the

Top500 ranking, from June 1993 to November 2022

• Next most significant share belongs to Infiniband. The dynamics for 2012–2017–2022 are

as follows:

– Infiniband 32.5% ↘ 26.1% ↗ 33.6%.

• This is followed by Ethernet. The dynamics for 2012–2017–2022 are as follows:

– Ethernet 13.2% ↗ 21.9% ↘ 10.0%.

• OpTsIntel technologies are leaving the Top500 and the industry. The dynamics for 2012–

2017–2022 are as follows:

– OpTsIntel 0.0% ↗ 9.6% ↘ 3.2%.

5.1. Distribution of Different Interconnect Classes by Quintiles

It is very important to understand the areas of applicability of each interconnect class. To

do this, let us look at the distribution of the shares of different interconnect classes by quintiles.

The definition of quintiles is given in Section 4.1.

For each quintile – A, B, C, D, E – let us look at the shares of Infiniband, Ethernet,

OpTsIntel and Custom interconnect classes – Fig. 7.

It can be seen that:

• Most powerful and mighty supercomputers (quintiles A and B) predominantly use Custom

interconnect. The red color fills the triangle, which expands towards the most powerful

systems;

• Infiniband technology is predominantly used for medium and lower-level systems – with

the largest shares in quintiles C and D. The blue triangle has its center of gravity in this

zone;

• Ethernet technology is more often used in the weakest systems (D, E). The grey triangle

significantly expands towards the weakest systems;

• OpTsIntel solutions are leaving the list and the industry.

November 2022 Top500 List Overview

14 Supercomputing Frontiers and Innovations

Figure 7. Shares of supercomputers with different interconnect classes in the total performance

of quintiles A, B, C, D and E of the Top500 ranking for November 2022 edition

Conclusion

At the turn of 2008 the world supercomputing industry undoubtedly faced scientific and

technical difficulties in the development of HPC. Since 2008, the rate of growth of the achieved

maximum performance has changed: instead of an increase “1000 times in 11 years”, we have

an increase “1000 times in 13–17 years”. This led to a revision of future forecasts for achieving

new performance milestones: 1 Eflops (1018 flops) was achieved in June 2022, and 1 Zflops

(1021 flops) is expected to be achieved in 2035–2039.

Analysis of the most powerful supercomputers of the last decade allows us to make the

following generally reliable (for the next few years) assumptions about the overall appearance

of exascale-level systems:

• number of nodes – 10–50 thousand, number of cores – 5–10 million;

• power consumption – 15–30 MW;

• interconnect – most likely (7/8 = 87% of cases) Custom (proprietary network, specific

solutions or not available as a separate commercial solution), or top (difficult to access)

standard interconnect, but with modifications by the manufacturer (1/8 = 13%);

• cooling – either closed water-based or more advanced immersion, boiling, etc.;

• computational subsystem – depending on the purpose – either homogeneous (50%), or

hybrid (50% of cases);

• processors and accelerators – either proprietary (44%), or top (limited availability) stan-

dard (56% of cases).

Analysis of hybrid architectures in the Top500 rankings indicates that the contribution

of hybrid architectures to the overall performance of the Top500 has grown and reached

63.8% ΣRmax. Among the current solutions for hybrid systems, notable accelerators include

AMD (31.4% ΣRmax) and NVIDIA (30.9% ΣRmax). Interesting new solutions also deserve

attention (5.4% ΣRmax in 2018) – short and successful projects for creating fully proprietary

accelerators: PEZY (2015, PEZY Computing, Japan), DeepComputingProcessor (2017, Sugon,

China), Matrix-2000 (2017, NUDT, China).

N.S. Abramov, S.M. Abramov

2023, Vol. 10, No. 2 15

Various interconnect technologies continue to intensively develop in the world. They play

an exceptionally important role for the entire HPC complex. Currently, commercially available

technologies include Custom (53.4% ΣRmax), Infiniband (33.6% ΣRmax), and Ethernet (10.0%

ΣRmax). Since 2012, the largest share of the total performance of Top500 supercomputers is for

the interconnects that are not available as individual commercial solutions (Custom class).

For building high-performance systems, top-end (and therefore limited availability) models

of the most successful commercial developments such as AMD processors are advanced, as well

as proprietary processors based on one of the available architectures, such as ARM (which has

proven to be promising for this use in supercomputers) and possibly RISC-V.

Significant changes have taken place among computer manufacturers in recent years. Chinese

manufacturers have made a serious intervention in the industry, they accounted for 63.0% of the

number of deals and 43.4% of volumes (in terms of ΣRmax) in November 2019. China has the

largest share of the entry-level systems.

The following fact is important for building high-performance computing systems:

• they are always used for research and development; for generating new knowledge, tech-

nologies, materials; for scientific calculations;

• they are never used directly for real-world economic tasks, such as engineering calculations,

financial applications, communication services, internet services, etc.

This has an impact on the class of problems solved: on the cutting edge of scientific research

during the lifespan of the record installation (about 5–7 years), special problems may arise that

require special mathematical and algorithmic tools for their solution. This should be taken into

account when developing architectural solutions, both in terms of hardware and software for

such systems.

Currently, the US, China, Japan, and the EU have built a solid HPC infrastructure as a

basis for the transition to a digital economy and have significant shares of their countries’ overall

global supercomputer performance. These shares are greater than their shares in the global GDP

(with the exception of China, which hides its achievements in HPC). This ratio illustrates the

real progress of countries towards a digital economy.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Ezell, S.J., Atkinson, R.D.: The Vital Importance of High-Performance Computing to U.S.

Competitiveness. The Information Technology and Innovation Foundation (2016). 58 p.

2. Abramov, S.M.: Facts that distort reality. How to analyze Top500? Bulletin of South Ural

State University: Series Computational Mathematics and Software Engineering 2(3), 5–31

(2013). https://doi.org/10.14529/cmse130301 (in Russian)

3. Abramov, S.M.: June 2019: analysis of the development of the supercomputer industry

in Russia and in the world. Program Systems: Theory and Applications 42, 3–40 (2019).

https://doi.org/10.25209/2079-3316-2019-10-3-3-40 (in Russian)

4. United States Department of Energy. Top Ten Exascale Research Challenges. Department of

Energy ASCAC Subcommittee Report (2014). 86 p.

November 2022 Top500 List Overview

16 Supercomputing Frontiers and Innovations

https://doi.org/10.14529/cmse130301
https://doi.org/10.25209/2079-3316-2019-10-3-3-40

5. Top500 Official cite. https://www.top500.org/, accessed: 2023-06-06

6. Supercomputer “K computer” Takes First Place in World. https://www.fujitsu.com/

global/about/resources/news/press-releases/2011/0620-02.html, accessed: 2023-06-

06

7. With 16 petaflops and 1.6M cores, DOE supercomputer is worlds

fastest. https://arstechnica.com/information-technology/2012/06/

with-16-petaflops-and-1-6m-cores-doe-supercomputer-is-worlds-fastest/, ac-

cessed: 2023-06-06

8. ORNL Debuts Titan Supercomputer. https://www.olcf.ornl.gov/wp-content/themes/

olcf/titan/Titan_Debuts.pdf, accessed: 2023-06-06

9. Chinas Tianhe-2 Caps Top 10 Supercomputers. https://spectrum.ieee.org/

tianhe2-caps-top-10-supercomputers, accessed: 2023-06-06

10. Dongarra, J.: Sunway TaihuLight supercomputer makes its appearance. National Science

Review 3(3), 265–266 (2016). https://doi.org/10.1093/nsr/nww044

11. Oak Ridge National Laboratory, IBM, NVIDIA: Introducing the Summit Supercomputer

(2020). 24 p.

12. Dongarra, J.: Report on the Fujitsu Fugaku system. University of Tennessee-Knoxville

Innovative Computing Laboratory, Tech Report ICLUT-20-06 (2020). 18 p. https://www.

icl.utk.edu/files/publications/2020/icl-utk-1379-2020.pdf, accessed: 2023-06-06

13. Frontier spec sheet. https://www.olcf.ornl.gov/wp-content/uploads/2019/05/

frontier_specsheet.pdf, accessed: 2023-06-06

14. Coghlan, S.: Argonnes Aurora Exascale Computer. Smoky Mountain Computational

Sciences And Engineering Conference (2019). 17 p. https://smc.ornl.gov/wp-content/

uploads/2019/09/Coghlan-presentation-2019.pdf, accessed: 2023-06-06

N.S. Abramov, S.M. Abramov

2023, Vol. 10, No. 2 17

https://www.top500.org/
https://www.fujitsu.com/global/about/resources/news/press-releases/2011/0620-02.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2011/0620-02.html
https://arstechnica.com/information-technology/2012/06/with-16-petaflops-and-1-6m-cores-doe-supercomputer-is-worlds-fastest/
https://arstechnica.com/information-technology/2012/06/with-16-petaflops-and-1-6m-cores-doe-supercomputer-is-worlds-fastest/
https://www.olcf.ornl.gov/wp-content/themes/olcf/titan/Titan_Debuts.pdf
https://www.olcf.ornl.gov/wp-content/themes/olcf/titan/Titan_Debuts.pdf
https://spectrum.ieee.org/tianhe2-caps-top-10-supercomputers
https://spectrum.ieee.org/tianhe2-caps-top-10-supercomputers
https://doi.org/10.1093/nsr/nww044
https://www.icl.utk.edu/files/publications/2020/icl-utk-1379-2020.pdf
https://www.icl.utk.edu/files/publications/2020/icl-utk-1379-2020.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/05/frontier_specsheet.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/05/frontier_specsheet.pdf
https://smc.ornl.gov/wp-content/uploads/2019/09/Coghlan-presentation-2019.pdf
https://smc.ornl.gov/wp-content/uploads/2019/09/Coghlan-presentation-2019.pdf

High-Level Synthesis Toolchain “Theseus” for Multichip

Reconfigurable Computer Systems

Aleksey I. Dordopulo1, Ilya I. Levin2, Vyacheslav A. Gudkov1,2,

Andrey A. Gulenok1

c© The Authors 2023. This paper is published with open access at SuperFri.org

In the paper we consider the high-level synthesis toolchain for transformation of programs

written in C (the standard ISO/IEC 9899:1999) into configuration files of field programmable

gate arrays (FPGAs) used in multichip reconfigurable computer systems. Unlike most academic

(DWARV, BAMBU, LEGUP) and commercial (CatapultC, Vivado HLS, Vivado Vitis) high-level

synthesis tools, “Theseus” uses the original methodology of transformation (porting) sequential

calculations into a parallel-pipeline configuration of FPGA hardware. For a sequential program, an

information graph is created and transformed into the maximally parallel structure, which is then

ported to a specified configuration of the reconfigurable computer system using formal methods

of reduction of performance and hardware costs without marking the source text with auxiliary

parallelization directives. The distinctive feature of the approach is a significantly smaller number

of analyzed variants in comparison to parallelizing compilers. Due to this, it is possible to reduce

the porting time of sequential programs in the synthesis of solutions for reconfigurable computer

systems with a set of FPGA chips interconnected by a spatial communication system. In the

paper we show the results of porting a number of application tasks to the architecture of various

reconfigurable computer systems using the proposed “Theseus” toolchain.

Keywords: high-level synthesis, HLS, program translation, C language, performance reduction,

reconfigurable computer system, programming of multiprocessor computer systems.

Introduction

Reconfigurable computer systems (RCS) containing field programmable gate arrays

(FPGAs) provide adaptation of the system’s architecture to the task’s structure and reduction

of the additional charges for organization of calculations. This provides a significant gain in task

solution time in comparison to multiprocessor systems [1] even with a 10-fold difference in oper-

ating frequencies. RCSs that contain many FPGA chips connected by a switching system [2, 3],

significantly exceed the cluster computer systems in real performance of applications and power

effectiveness on many real-life tasks, but their programming and debugging require extensive

and deep knowledge of the FPGA circuitry and architecture from programmers. Simplification

of RCS programming is possible with the development of high-level synthesis software [4, 5],

which converts sequential programs, written in high-level languages, into FPGA configuration

files.

In this paper we consider the description of methods, used for automatic transformation of

a sequential program by “Theseus” tools for high-level synthesis of multichip RCS configuration

files. Section 1 of this paper provides a brief overview of high-level synthesis tools and assess-

ment of their applicability for multichip RCSs. Section 2 describes the structure of the Theseus

toolchain and intercomponent communication during synthesis of the multichip solution from

the initial program. Section 3 presents methods of transformations of sequential programs for

automatic adaptation of tasks to the available RCS hardware resource for each component of

the toolchain. Section 4 presents “Theseus” porting results for a number of tasks compared with

Vivado HLS results. In conclusion, we analyse the obtained results.

1Supercomputers and Neurocomputers Research Center, Taganrog, Russian Federation
2Southern Federal University, Taganrog, Russian Federation

DOI: 10.14529/jsfi230202

18 Supercomputing Frontiers and Innovations

1. Overview of High-Level Synthesis Tools

Currently, high-level synthesis tools or HLS compilers [4, 5] are widely used for program-

ming FPGAs. Such tools convert a high-level program into configuration files of special-purpose

hardware, using HDL hardware description languages. Depending on the language of the input

program, HLS compilers refer to translators of either problem-oriented(for a certain problem

area) or general-purpose languages.

The classification of high-level synthesis tools according to these criteria is shown in Fig. 1.

Here, . means that currently an HLS compiler is developed and supported, ‖ means that a

project is suspended and there is no information concerning future development plans, 2 means

that a project is finished and not supported anymore.

Figure 1. Classification of high-level synthesis tools

The most well-known academic (DWARV [6], BAMBU [7], LEGUP [8]) and commercial

(CatapultC, Vivado HLS [9], Vivado Vitis [10]) HLS compilers convert written in C (or its

dialect) program into a VHDL program of digital devices. Xilinx Vivado HLS and Vitis computer-

aided design systems have become generally accepted standards of high-level synthesis tools.

Vivado HLS [9] is a tool for fast project design. It contains a number of optimization tools,

typical for both compilers and digital circuit design systems [11]. Xilinx Vitis [10] is a develop-

ment environment that combines graphical tools, compilers, analyzers and debuggers to speed

up the execution of code fragments of sequential programs implemented in the FPGA archi-

tecture. Vitis is focused on Xilinx FPGA-based accelerators for server and cloud applications

and/or Alveo accelerators for embedded devices.

The use of HLS compilers does not guarantee [11] an effective implementation of calculations

in RCS for any program written in the C language. For a synthesized IP core, the gain in

the speed of calculations compared to a general-purpose microprocessor is provided by the

properties of the FPGA architecture. Computer-aided design of an IP core simplifies the porting

of calculations to the FPGA architecture, and the programmer must scale IP cores according

to the available hardware resource. There are no computer-aided tools of scaling IP cores and

organizing data flows (at least within one chip), and this task is assigned to the user. For

multichip RCS [2, 3], where many FPGAs are connected by a spatial switching system, the

complexity of scaling and matching of IP cores for an efficient solution is rising significantly [12].

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 19

Unlike the HLS tools mentioned in [4, 5], the developed toolchain “Theseus” converts a

sequential C program into the most parallel form, which is adapted to a specified hardware com-

puting resource and translated into FPGA configuration files of multichip RCS. The toolchain

converts the input program without users #pragma directives or other manual code marking

and provides automatic synchronization of data and control signals for synthesizing multichip

solutions. The basis for automatic adaptation of an application to the architecture and configu-

ration of a specified RCS is the original porting methodology, which provides the search for an

efficient solution for a priori unknown hardware resource of the computer system.

2. Structure of the “Theseus” Toolchain

The “Theseus” toolchain (Fig. 2) consists of four programs called Angel, Centaur, Procrustes

and Sinis, each of which performs a functionally completed transformation:

– Angel converts the input C program into the maximally parallel structure, and then trans-

lates it with an implicit description of parallelism into the syntax of the COLAMO pro-

gramming language;

– Centaur converts the maximally parallel structure into a resource-independent parallel-

pipeline COLAMO-program;

– Procrustes automatically, with no users code, selects the parameters of the structure for

its efficient implementation in the RCS architecture;

– if the hardware resource is insufficient for structural implementation of the main fragment

of the task, then Sinis reduces the parallelism of the structure, increasing the task solution

time, but making it possible to execute on the available hardware resource.

The input sequential C program (ISO/IEC 9899:1999) is translated by Angel into the max-

imally parallel structure, which is then converted into a scalable form and ported by Procrustes

to the available RCS hardware resource. The result of the “Theseus” toolchain is a program writ-

ten in the high-level language COLAMO with the parameters that match the limitations of the

resource and real performance rate. The COLAMO [2] translator and the multichip solution syn-

thesizer Fire!Constructor [2] translate the COLAMO program into configuration files for FPGAs

of the multichip RCS. Then, the Xilinx Vivado synthesizer generates bitstream configuration

files (* .bit) for each chip.

3. Transformation of a Sequential Program by the “Theseus”

Toolchain to Available RCS Resource

3.1. Angel: Transformation of an Input Sequential Program into Maximally

Parallel Structure

The sequential written in C program is transformed by the Angel translator into the maxi-

mally parallel form – the task information graph, which is then transformed into the COLAMO

program with an implicit description of parallelism. The task information graph (TIG) is a fi-

nite oriented acyclic graph whose vertices correspond to operations on data, and arcs reflect the

data dependencies between them. All vertices of the TIG are distributed in layers and itera-

tions [2]. Layers, like the layers of the algorithm graph [13], contain data-independent vertices

(subgraphs), and iterations describe the data dependence among vertices (subgraphs) of differ-

ent layers. Unlike other graph forms used for the representation of calculations [13], layers and

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

20 Supercomputing Frontiers and Innovations

Figure 2. Structure of the “Theseus” toolchain

iterations of the TIG describe not only arithmetic and logical operations, but also subgraphs

corresponding, for example, to a loop body in sequential programs. It is rather easy to generate

a TIG from a sequential program by cycles unrolling. The TIG describes the maximum, theo-

retically possible, parallel form of the tasks calculations with the subgraphs that are distributed

across layers and iterations.

Owing to the distribution of vertices and/or subgraphs by layers and iterations, it is possible

to represent data dependencies among the task’s fragments at different levels of the hierarchy.

The variants of the sequential program, differing in the execution order of the cycle’s iterations

(subgraphs), differ in the TIG only in the topology of data-independent subgraphs in the layer,

and are considered data-indistinguishable or equivalent. Therefore, sequential programs describ-

ing the same task with the same data dependencies, which are different in syntax and form, will

correspond to the TIGs that are equivalent in the results of calculations, but differ only in the

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 21

topology of subgraphs in the layer. Due to the invariance of the representation of topologically

different parallel calculations in the TIG, we can, unlike a parallelizing compiler, reduce the

number of possible variants for their representation. C program which solves a system of linear

algebraic equations (SLAE) by the method of Gaussian elimination is shown in Fig. 3a and its

TIG is shown in Fig. 3b.

Figure 3. Solution of a SLAE using the method of Gaussian elimination

The subgraphs gijk in Fig. 3b contain 3 operation vertices: division, multiplication, and

subtraction, corresponding to the operations of the loop bodies on j and k in lines 3 and 5 in

program Fig. 3a. The data-independent subgraphs gijk belong to the layers, and dependence

among subgraphs of different layers is specified by connections among subgraphs: the output

m1[1, 1] of the subgraph g01,1 of the zero iteration is the input of the subgraphs g1(2..N,1..N) of the

first iteration, the output m2[3, 2] of the subgraph g13,2 is the input of g2(3..N,2..N) of the second

iteration, etc.). The specificity of the SLAE solution by the method of Gaussian elimination is

reducing the processed data by one line at each iteration of the loop on j, so each next layer of

the TIG contains fewer subgraphs gijk.

The TIG is transformed by the Angel translator into a cadr structure [2]. Cadr structure

is an indivisible unity of computational structure and rules for organizing input and output

data flows, for which a reduction of the computational structure leads to an increase in data

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

22 Supercomputing Frontiers and Innovations

streams. So, for the same task a variety of cadr structures differing in computational structures

and data flows is possible. The Angel translator transforms TIG into a maximally parallel cadr

structure: the operation vertices are replaced by computing devices, and the arcs are replaced

by the connections of the switching system. The maximally parallel structure contains not the

vertices of the graph, but computing devices with latency, frequency and performance, data

processing interval, etc. Due to this, it is possible to calculate the performance characteristics

and the execution time on the RCS. The maximally parallel structure, obtained as a result of

transformation of a sequential program by the Angel translator, is described according to the

rules of the COLAMO programming language with an implicit description of parallelism.

3.2. Centaur: Transformation of the Maximally Parallel Structure

into the Resource-Independent Parallel-Pipeline Form

Maximally parallel structure performs all task operations with the minimum latency and

maximum performance. This requires the hardware implementation of all operations and si-

multaneous supply of all input data, which is usually unattainable for real computer systems.

For implementation in a computer system, the maximally parallel structure can be transformed

into cadr structures that are more rational in terms of the occupied hardware resource and

provide data equivalence of the calculation results. For example, the maximally parallel struc-

ture (Fig. 3b) can be transformed to a cadr structure with all hardware-implemented iterations

(Fig. 4a) by defining the order of execution of its subgraphs (ordering by layers). With further

ordering of the subgraphs (by iterations), the cadr structure with the implemented iterations

(Fig. 4a) can be transformed to a minimum cadr structure (Fig. 4b) with a single hardware-

implemented (basic) subgraph.

Figure 4. Cadr structures of the SLAE solution by the Gaussian method

For convertion of the maximally parallel structure into one of many possible cadr struc-

tures, it is transformed by the Centaur tool into a resource-independent parallel-pipeline form,

which makes possible to change the number of hardware-implemented subgraphs using several

parallelism parameters. Centaur identifies basic subgraphs for large fragments of calculations,

analyzes the data dependencies in these fragments and among them, ensuring the implementa-

tion of the rules of single substitution and single assignment. Arbitrary access to the memory of

a sequential program is transformed to data flow processing. All arrays and loops, used in the

descriptions of the cadr structures in the COLAMO program, are automatically split into par-

allel (vector) and sequential (stream) components. As a result, Centaur generates a COLAMO

program containing a cadr structure with parallelism parameters. Variation of these parameters

transforms the cadr structure.

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 23

3.3. Procrustes: Transformation of Resource-Independent Cadr Structure

to Available RCS Hardware Resource

Cadr structures (see Fig. 3b, 4a and 4b) differ in their hardware resource and the task

solution times. Parallelism, solution time and hardware resource occupied by the cadr struc-

tures are specified by the following parameters: the number of layers (information-independent

subgraphs), the number of iterations (information-dependent subgraphs), the number of instruc-

tions (devices) in the basic subgraph, the capacity and interval of data processing. Therefore,

each cadr structure can be represented by a point (or vector) in the 5D space of possible cadr

structures (Fig. 5).

Figure 5. Space of implementations of cadr structure calculations

Space points correspond to cadr structures with various parameters of parallelism (perfor-

mance) and occupied hardware resource. Variation of the performance parameters (shown by

colour arrows in Fig. 5) changes the hardware resource occupied by the cadr structure, which

is graphically represented as a segment between two points of space. So, porting is the varia-

tion of the performance parameters and the occupied hardware resource performed to achieve

the available hardware resource. Porting is a continuous movement from the maximally parallel

structure to a cadr structure located in the area of the available resource of the computer system.

Porting can be defined as the sequential approaching to local and global goals. The local goal

is to reach the area of available resource, and the global goal is to find a rational cadr structure

that provides a specified performance rate. The search for the performance parameters of the

cadr structure that satisfy both the limitations of the available RCS hardware resource and the

specified performance rate is provided by Procrustes with the help of the following methodology.

According to the methodology, a cadr structure CS with hardware costs

ACS = (aCS
1 , aCS

2 , . . . , aCS
n) and performance parameters PCS = (p1, p2, . . . , pn) is trans-

formed to the hardware resource AHCS = (aHCS
1 , aHCS

2 , . . . , aHCS
n) of a reconfigurable or

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

24 Supercomputing Frontiers and Innovations

hybrid computer system. It should be noted that the hardware costs ACS of the cadr structure

non-linearly depend on the performance parameters PCS : ACS = Ψ(PCS), and one performance

parameter pi may simultaneously influence several parameters of the hardware resource.

The purpose of porting is to detect the performance parameters P ′CS , which are the

solution of 


A′CS = Ψ(P ′CS) ≤ AHCS ,

P erf(P ′CS) ≥ Perf3,

where Perf(P ′CS) is the performance of the cadr structure, and Perf3 is the specified real

performance rate.

To achieve the purpose, the following actions are required.

1. Calculation of reduction parameters

1.1. Determine the critical resource and the reduction coefficient of hardware costs

Kcr = max
(

aCS
i

aHCS
i

)
> 1.

1.2. Determine the reduction coefficient R = dKcre.
1.3. Arrange the performance parameters pi in the tuple < PCS > according to the degree

of influence on the critical resource.

1.4. If <an unreduced parameter exists in < PCS >>, then

– select the performance parameter with the maximum impact on the critical resource:

pi : ψ(pi) = maxKcr.

else: go to item 7 to select a card structure with the maximum performance.

2. Determination of the effective reduction step R∗.
2.1. For the selected performance parameter pi, determine one of the possible options for

the effective reduction step R:

1) R∗ = R;

2) R∗ = f(R, pi), R
∗ < R;

3) R∗ = ‖pi‖, R∗ > R.

3. Reduction (decreasing of the performance parameters) of the cadr structure

3.1. Reduce the parameter pi with the effective step R∗: p′i = Θ(pi, R
∗) and save it to a

tuple: < P ′CS >=< PCS >← p′i.
4. Evaluation of the current cadr structure and selection of alternatives

4.1. Calculate hardware costs and performance of the cadr structure

A′CS = Ψ(P ′CS , P erf(P ′CS)).

4.2. Evaluate the achievement of porting purpose from the conditions

A′CS = Ψ(P ′CS) ≤ AHCS and Perf(P ′CS) ≥ Perf3.
4.3. If both conditions are fulfilled, then

– go to item 6 to save the current parameters of the cadr structure

else: {Analysis of alternatives for further reduction:}
If A′CS > AHCS {the hardware costs exceed the available RCS resource}, then:

If R∗ = R, then

– increase the reduction coefficient R := R+ ∆, where ∆ =
⌈

A′
CS

AHCS
− 1
⌉
;

– restore the original value of the performance parameter < P ′CS >=< PCS >← p′i;
– go to item 1.3 for reduction with the increased coefficient R.

Else

– go to item 1 to decrease the critical resource using the next performance parameter

pi+1.

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 25

{if A′CS ≤ AHCS and Perf(P ′CS) < Perf3, then we go naturally to induction}
5. Induction (increasing of the previously reduced performance parameters) of the

cadr structure

5.1. Form a tuple of the previously reduced parameters < pi−1, . . . , p1 >.

5.2. Select the next item of the tuple pk, determine its scaling coefficient according to the

hardware resource KM = min
(

A′
CS

AHCS

)
and the induction coefficient Ind = bKMc.

5.3. For the selected performance parameter pk, determine one of the possible effective in-

duction steps:

1) Ind∗ = Ind;

2) Ind∗ = φ(Ind, Pk) < Ind;

3) Ind∗ = ‖pk‖.
5.4. Increase pk by the selected step Ind∗: p′k = Θ−1(pk, Ind∗) and save it into the tuple:

< P ′CS >=< P ′CS >← p′k.

5.5. Go to item 4.

6. Save the cadr structure

6.1. Add the current parameters of the cadr structure to the list, ordered by the minimum

performance.

6.2. If Perf(P ′CS) < Perf3 and <there were other critical resources>, then

– select the next critical resource and go to item 1.1.

7. Select a reasonable variant for reduction of the cadr structure

7.1. Issue the first item of the list of cadr structures with the highest performance.

Unlike most HLS compilers [4, 5], the proposed methodology changes the parameters of the

cadr structure in order to provide the rational use of available hardware resource and to achieve

a specified rate of real performance. If the specified performance rate Perf3 is not achievable, the

result of the porting will be the cadr structure with the highest performance among all analyzed

cadr structures. Unlike the methods of structural and procedural organization of calculations,

which provided a rational cadr structure for a priori known and fixed resource, the transforma-

tion, according to the Procrustes’ methodology, is a continuous function which depends on the

architecture and configuration of the computer system. This fact ensures movement in the space

of cadr structures not only “down”, towards reducing parallelism (reduction), but also towards

its increase (induction), if the hardware resource allows. Due to combination of reduction and

induction, it is possible to find rational performance parameters of cadr structures even if the

hardware resource is insufficient for the hardware implementation of the basic subgraph.

The total number of analyzed variants depends on the number of the performance parame-

ters of the cadr structure that effect hardware costs. For the FPGA architecture, the number of

memory channels, the number of Look-Up Table cells in FPGA chips, the number of Block RAM

internal memory blocks, the number of High Bandwidth Memory blocks, the number of Digital

Signal Processor blocks, and the number of Flip-Flop registers may vary in the cadr structure.

Therefore, for FPGAs, the total number of analyzed variants of rational cadr structures with

different parameters is small and does not exceed 6! = 720.

Procrustes generates a parallel-pipeline COLAMO program, which contains the cadr struc-

ture with the performance parameters calculated for the available resource of the specified RCS.

This program is transformed by the COLAMO translator and the Fire!Constructor synthesizer

into configuration files for FPGAs of multichip RCSs. Then, these files are translated by Xilinx

Vivado into bitstream configuration files (*.bit).

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

26 Supercomputing Frontiers and Innovations

3.4. Sinis: Transformation of the Minimum Cadr Structure When the RCS

Hardware Resource is Insufficient

In some cases, the available RCS hardware resource may be insufficient for hardware imple-

mentation even of the basic subgraph. Previously, the only way to organize calculations in this

case was a sequential implementation on a processor. Due to the methodology, presented in the

previous section, it is possible to continuously reduce the parallelism of the cadr structure, using

the performance reduction by devices and by capacity, and micro-cadrs – a new form of organi-

zation of calculations. The main difference between a micro-cadr (m-cadr) MCSOp
2 (Fig. 6c) and

a cadr structure CS (Fig. 6a) is the combination of several operations in one computing device,

which leads to increase of the data processing interval, but provides one and the same balanced

data processing rate. There is no need to use additional memory to store intermediate results

of the input data flow processing when the cadr structure CS is implemented structurally and

procedurally as two reduced cadr structures CS/2 (Fig. 6b).

Figure 6. Methods of implementation of the cadr structure CS

Variants of generation of m-cadrs depend both on the problem area and on the solving task.

The possible strategies for their creation are discussed in [14], where several m-cadrs are proposed

for the task of digital signal processing. These transformations are performed by the Sinis tool,

which, if necessary, is called by the Procrustes tool. Sinis obtains the results and returns them

to Procrustes that uses them to find a rational version of the cadr structure according to the

methodology from Section 3.3.

4. Results of Task Porting Performed by the “Theseus”

Toolchain

The research of the efficiency of the Theseus high-level synthesis toolchain was carried out

by porting a number of model tasks to various RCS architectures. The real performance rate of

the ported solution for the Theseus toolchain, as well as for circuit engineers, was specified at

least 0.6 from the peak one. Operability of the solutions obtained with the help of the Theseus

toolchain was checked by running them on the corresponding RCS, and the characteristics of

each task were compared with the results of FPGA designers. Transformation and porting was

performed on a PC with Intel (R) Core (TM) i7-8750H @ 2.2 GHz processor, 16 GB of RAM, and

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 27

Windows 10 Pro operating system. Automatic porting was carried out for five model tasks: the

symmetric-key block cipher DES, the MD5 and SHA-1 hash functions, and the Gaussian method

and Jacobi method for 3-diagonal matrices. Each task was ported by FPGA designers and the

toolchain to three different RCS hardware platforms (Fig. 7): Taygeta [3, 15], Tertius [15] and

Tertius-3 [15].

The Taygeta RCS with the performance of 2.66 Tflops contains 4 20-layer printed cir-

cuit boards with double-sided mounting of 8V7-200 elements. Each circuit board contains

8 XC7VX485T-1FFG1761 FPGAs with 48.5 million equivalent gates, 16 SDRAM DDR2 dis-

tributed memory chips with a total volume of 2 GB, LVDS and Ethernet interfaces and other

components.

The FPGA field of the desktop reconfigurable computers Tertius and Tertius-3 is not a

separate board. It is integrated with a motherboard with an Intel Core I5 6300U processor.

Tertius has the performance of 2.5 Tflops and contains 4 Xilinx Kintex UltraScale XCKU095

FPGAs with the capacity of 100 million equivalent logic gates each, interconnected in a ring

by LVDS and GTY/GTH channels. Two dynamic memory modules with a capacity of 1 GB

are connected to each FPGA, so the total memory size is 8 GB. Tertius-3 has the performance

of 5.6 Tflops and contains twice as many chips of another FPGA type – 8 Virtex XCVU095-

1FFVB1760C FPGAs.

Figure 7. RCS hardware platforms for task porting

For each task, we measured the transformation time of its cadr structure, the task porting

time, and the achieved performance. The cadr structure transformation time was defined as the

working time of Procrustes. The porting time was considered as the sum of the cadr structure

transformation time and the synthesis time of the FPGA bitstream configuration file, which

depends on the logical capacity and the utilisation of the FPGA chip. With 90% utilisation of

FPGA chips, it is at least 3 hours (10.800 seconds) for Taygeta and 7 hours (25.200 seconds) for

Tertius and Tertius-3. According to experience of solving the same tasks by FPGA designers,

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

28 Supercomputing Frontiers and Innovations

the cadr structure transformation time for all hardware platforms was taken equal to two 8-hour

working days or 57.600 seconds. The achieved real performance rate was defined as the ratio of

the number of subgraphs in solutions obtained by the toolchain and FPGA designer (Tab. 1).

The transformation of the cadr structure by the Procrustes tool is performed significantly,

by 1–3 decimal orders, faster than by FPGA designers, which is the expected effect of automa-

tion. Since the project synthesis time for FPGAs is significantly longer than the cadr structure

transformation time, the total gain in the porting time of model tasks with the synthesis of

bitstream configuration files for the selected RCS hardware platforms in Tab. 1 is equal to 3–

6.3 times. The real performance rate achieved by the toolchain in porting model tasks does not

drop below the specified level of 0.6 and varies slightly for different RCS hardware platforms,

which is explained by the architectural features of different FPGA crystals.

Table 1. Results of porting model problems

Problems DES MD5 SHA-1 Jacobi Gauss

RCS Taygeta

Porting time in seconds 10836.62 10938.86 10841.66 13429.90 12316.38

Gain 6.31 6.25 6.31 5.09 5.55

Real performance rate 0.63 0.63 0.86 0.86 0.86

RCS Tertius

Porting time in seconds 25238.58 25345.13 25241.09 25912.87 26989.25

Gain 3.28 3.27 3.28 3.20 3.07

Real performance rate 0.65 0.67 1.00 0.85 0.80

RCS Tertius-3

Porting time in seconds 25239.02 25344.79 25241.76 25914.02 26991.12

Gain 3.28 3.27 3.28 3.20 3.07

Real performance rate 0.65 0.67 1.0 0.85 0.80

The results of porting the model tasks DES and SLAE solution with the help of the Gaussian

method, performed by the toolchain, were compared with the solution obtained by the Vivado

HLS compiler for the Taygeta RCS. The solution of the DES model task obtained by Vivado

HLS with one pipelined IP-core, which was scaled by FPGA designer to the available hardware

resource of the Taygeta RCS, while its real performance rate was 5 times lower than that of

the solution obtained by the toolchain. The solution, obtained by Vivado HLS as a result of

porting the Gauss model task, contains one iterative stage versus 720 stages when translating

the task by the toolchain. Using manual code marking with #pragma directives in Vivado HLS,

we could get a solution for two iterative steps of the Gaussian elimination algorithm. According

to the comparison of the results of porting model tasks by the toolchain, FPGA designers and

Vivado HLS, we claim that the proposed methodology for the cadr structure transformation

gets advantages over Vivado HLS.

Conclusion

The “Theseus” high-level synthesis toolchain, described in the paper, provides scalable so-

lutions for multichip reconfigurable computer systems unlike the academic (DWARV, BAMBU,

LEGUP) and commercial (CatapultC, Vivado HLS, Vivado Vitis) HLS tools. Automatic trans-

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 29

formation of the input sequential written in C program with no specialized code marking is

performed by presenting the task in the form of a cadr structure, and by the original method

of its porting to the available RCS hardware resource using formal methods of reduction of

performance and hardware costs. The application of the developed methodology of cadr struc-

ture porting to the available hardware resource of the RCS significantly reduces the number

of analyzed variants of parallel calculations and the porting time. Due to the use of the “The-

seus” toolchain in porting a number of model tasks, it is possible to find rational solutions for

multichip RCSs (with the effectiveness not less than 60% from the results of FPGA designers)

for a significantly lower (in comparison with parallelizing compilers) number of transformations.

Unlike well-known HLS compilers, the input C program is transformed automatically, without

manual code marking or other user instructions. As a result, we get multichip configuration files

with automatic synchronization of information and control signals.

Acknowledgements

The research is partially funded by the Ministry of Science and Higher Education of the Rus-

sian Federation as part of state assignments “Development of a Multi-Agent Resource Manager

for a Heterogeneous Supercomputer Platform Using Machine Learning and Artificial Intelli-

gence” (topic FSEG-2022-0001).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Antonov, A.S., Afanasyev, I.V., Voevodin, Vl.V.: High-performance computing plat-

forms: current status and development trends. Num. Meth. Prog. 22(2), 135–177 (2021).

https://doi.org/10.26089/NumMet.v22r210

2. Guzik, V.F., Kalyaev, I.A., Levin, I.I.: Reconfigurable computer systems. SFedU Publishing,

Taganrog (2016). 472 p.

3. Levin, I., Dordopulo, A., Fedorov, A., Kalyaev, I.: Reconfigurable computer systems: from

the first FPGAs towards liquid cooling systems. Supercomputing Frontiers and Innovations

3(1), 22–40 (2016). https://doi.org/10.14529/jsfi160102

4. Nane, R., Sima, V., Pilato, C. et al.: A Survey and Evaluation of FPGA High-Level Synthesis

Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

35(10), 1591–1604 (2016). https://doi.org/10.1109/TCAD.2015.2513673

5. Numan, M.W., Phillips, B.J., Puddy, G.S., Falkner, K.: Towards Automatic High-Level

Code Deployment on Reconfigurable Platforms: A Survey of High-Level Synthesis Tools and

Toolchains. IEEE Access 8, 174692–174722 (2020). https://doi.org/10.1109/ACCESS.

2020.3024098

6. Nane, R., Sima, V.-M., Olivier, B., et al.: DWARV 2.0: A CoSy-based C-to-VHDL Hardware

Compiler. In: 22nd International Conference on Field Programmable Logic and Applications

High-Level Synthesis Toolchain “Theseus” for Multichip Reconfigurable Computer...

30 Supercomputing Frontiers and Innovations

https://doi.org/10.26089/NumMet.v22r210
https://doi.org/10.14529/jsfi160102
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/ACCESS.2020.3024098
https://doi.org/10.1109/ACCESS.2020.3024098

(FPL), Oslo, Norway, August 29-31, 2012. pp. 619–622. IEEE (2012). https://doi.org/

10.1109/FPL.2012.6339221

7. Pilato, C., Ferrandi, F.: Bambu: A Modular Framework for the High Level Synthesis

of Memory-intensive Applications. In: 2013 23rd International Conference on Field pro-

grammable Logic and Applications, Porto, Portugal, September 2-4, 2013. pp. 1–4. IEEE

(2013). https://doi.org/10.1109/FPL.2013.6645550

8. Canis, A., Choi, J., Aldham, M., et al.: LegUp: High-Level Synthesis for FPGA-based Pro-

cessor/Accelerator Systems. In: Proceedings of the ACM/SIGDA 19th International Sympo-

sium on Field Programmable Gate Arrays, FPGA 2011, Monterey, California, USA, Febru-

ary 27 – March 1, 2011. pp. 33–36. ACM (2011). https://doi.org/10.1145/1950413.

1950423

9. Make Slow Software Run Fast with Vivado HLS. https://www.xilinx.com/publications/

xcellonline/run-fast-with-Vivado-HLS.pdf, accessed: 2023-03-23

10. Vitis Unified Software Platform Documentation. Application Acceleration Develop-

ment. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/

ug1393-vitis-application-acceleration.pdf (2019), accessed: 2023-03-23

11. Tarasov, I.: Designing for Xilinx FPGAs using high-level languages in Vivado HLS environ-

ment. Components and Technologies 12 (2013), https://kit-e.ru/fpga/vivado-hls/

12. Kolganov, A.S. An experience of applying the parallelization regions for the step-by-step

parallelization of software packages using the SAPFOR system. Num. Meth. Prog. 21(66),

388–404 (2020). https://doi.org/10.26089/NumMet.v21r432

13. Voevodin, V.V., Voevodin, Vl.V.: Parallel computing. BHV-Petersburg, Saint-Petersburg

(2002). 608 p.

14. Dordopulo, A.I., Levin, I.I.: Performance Reduction For Automatic Development of Par-

allel Applications For Reconfigurable Computer Systems. Supercomputing Frontiers and

Innovations 7(2), 4–23 (2020). https://doi.org/10.14529/jsfi200201

15. Computational blocks of SRC of supercomputers and neurocomputers.

http://superevm.ru/index.php?page=modern-developments, accessed: 2023-04-11

A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok

2023, Vol. 10, No. 2 31

https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://www.xilinx.com/publications/xcellonline/run-fast-with-Vivado-HLS.pdf
https://www.xilinx.com/publications/xcellonline/run-fast-with-Vivado-HLS.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2019_2/ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2019_2/ug1393-vitis-application-acceleration.pdf
https://kit-e.ru/fpga/vivado-hls/
https://doi.org/10.26089/NumMet.v21r432
https://doi.org/10.14529/jsfi200201
http://superevm.ru/index.php?page=modern-developments

The Semantic Model Features of the Statically Typed Language

of Functional-dataflow Parallel Programming∗

Alexander I. Legalov1 , Nickolay K. Chuykin1

c© The Authors 2023. This paper is published with open access at SuperFri.org

The features of a statically typed functional-dataflow model of parallel computation and its

mapping to the statically typed language of functional-dataflow parallel programming Smile are

considered. To provide support for architecture-independent parallel programming, we used: a

functional style, an implicit managing of calculations on data readiness, structured data objects

that provide representation of various types of parallelism. A distinctive feature of the approach is

the inclusion in the model of special asynchronous data objects that can generate events on partial

filling. These data objects are stream and swarm. Each of these data objects has its own specifics

to control by parallel calculations. A stream is used to process data of the same type that arrives

sequentially and asynchronously at random intervals. A swarm is used to describe independent data

of the same type or different types, on which it is possible to perform massive parallel operations.

The use of streams and swarms in various situations as well as their mapping into each other

and other program objects are shown. An analysis is made of the possibilities of transforming

the formed language constructs into programming languages used in writing programs for modern

parallel architectures.

Keywords: parallelism, parallel computation model, architecture-independent parallel program-

ming, functional-dataflow parallel programming, transformation of parallel programs.

Introduction

The modern development of parallel programs is focused on the use of methods that take

into account the specific architectures of target computing systems. This is due to the desire to

improve the performance of parallel computing. Research in the field of architecture-independent

parallel programming has not yet formed to the final practical solutions and is carried in the

following areas:

• automatic or semi-automatic parallelization of sequential programs with their subsequent

transformation to the target architecture [1];

• development of programs or algorithms that has unlimited parallelism, determined by the

problem being solved, with the subsequent “compression” of this parallelism in accordance

with the restrictions determined by the target architecture [2].

There is a semantic gap between the written program and the real parallel computing system

(PCS) with using any of these approaches. There is a loss of efficiency and balance, when program

is transformed into machine code, since the characteristics of the “architecture-independent”

serial or parallel algorithm conflict with the organization of calculations in specific PVS. That is

why unlimited parallelism is often manually “compressed” when fine-tuning the program to suit

the features of the computer, that defines an approach opposite to parallelization of sequential

programs. Manual transformation leads to a loss of efficiency in the process of developing parallel

software and do not allow to write a program once and for different architectures. In this regard,

the problem is actual of searching for models of parallel computing and building on their basis

programming languages and tools that provide effective transformation of the parallelism of a

once written program for various computing resources.

∗The paper is recommended for publication by the Program Committee of the International Scientific Conference

“Parallel computational technologies (PCT) 2023”.
1Higher School of Economics, National Research University, Moscow, Russian Federation

DOI: 10.14529/jsfi230203

32 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-5487-0699
https://orcid.org/0000-0001-9645-5525

One of the ways that determines a more efficient transformation of architecture-independent

programs to programs for real architectures is the use of static data typing, which provides

efficient compilation into a typeless representation at the level of the command system archi-

tecture [3]. This approach is widely used in both sequential and parallel programming. However

for writing architecture-independent parallel programs only static typing is not enough. It is

also necessary to take into account the features of the constructions that describe parallelism,

because their dynamic characteristics can make it difficult to transform into machine code for

existing parallel computers.

The article is organized as follows. Section 1 is devoted to the analysis of the factors that

determine the architectural independence of parallel programs. Section 2 discusses the features

of a statically typed functional-dataflow parallel computing model. In Section 3 we present the

semantics of interpretation statements for various relationships between data and functions. The

conclusion summarizes the results of the study and indicates directions for further work.

1. Determining Factors of the Architectural Independence

of Parallel Programs

Support for architectural independence from real computing resources in the description of

parallel processes is generally provided both by the peculiarities of the representation of data

storage methods and by the use of appropriate strategies for controlling of calculations [4].

The independence of data storage from memory is supported by a functional paradigm fo-

cused on representing programs as interacting functions. In contrast to the imperative approach,

the data memory is presented in an implicit form. Using recursions instead of iterations allows

you to get rid of the reuse of variables at the level of describing algorithms. These solutions

largely ensure the architectural independence of programs and are implemented in various func-

tional programming languages (FPL) [5]. However, most of these languages have limitations

for the implicit representation of parallelism. That is due to the peculiarities of data structure

organization as lists with sequential access to their elements. The presence in the list of access

only to the head and tail does not allow to organize parallel computing directly in many modern

functional programming languges. Therefore, to present concurrency in programming languages,

explicit control of computations is usually used, on the basis of which threads or processes are

created [6]. This leads to directive impact on concurrency of the programmer and is a factor

that makes it difficult to port programs to other parallel architectures.

Dataflow control strategies allow to describe parallelism implicitly. One of the first such

computational models is the Dennis model [7]. It formed the basis of a number of specialized data

flow processors with different architectures. There are languages that use dataflow control and

are released for various architectures. For example: Sisal [8], Colamo [9], LuNA [10]. A number

of these programming systems combine data flow management with a functional style. However,

for many computational models it is problematic to talk about architectural independence,

which is often associated with the orientation of programming languages and methods for their

transformation to certain architectural solutions. Most of them have not fully developed the

concept of unlimited parallelism. Also, dataflow control is often combined with the use of explicit

management or with the need to manage limited resources.

Along with the functional approach and dataflow control, some problems linked with an

architecture-independent representation of parallelism can be solved using special data struc-

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 33

tures that not only contain data, but also support their various parallel behavior. The differences

in the behavior of these data structures determine the approaches to the different organization

of parallelism. Encapsulation of the behavior of these data structures inside of specialized dy-

namically generated and synchronized objects allows you to remove from programs the explicit

control of calculations, which is usually used in imperative programming languages, replacing

it by interaction with functions and other data structures with dataflow control. The use of

parallel recursion allows us to consider the program as a description of activities performed in

unlimited computing resources, formed implicitly as needed. Such an approach at the program-

ming language level allows using it as an architecture-independent language. At the same time,

this imposes special requirements on the transformation of programs from such languages into

architecture-dependent programs.

The use of special data structures was implemented in the Pifagor functional-dataflow par-

allel programming language, which is based on the functional-dataflow parallel computing model

(FDPCM) [11, 12]. These structures are represented as data lists, parallel lists, delayed lists,

asynchronous lists. Each type of list defines its own methods for grouping data and dataflow

control. The disadvantages of the proposed constructions and the language, include the dynamic

typing of atomic types, as well as the dynamic formation of lists in the calculations process. It

does not allow an effective output representation to be formed during program compilation.

The need to use static typing was confirmed during the implementation of a number of

projects on the transformation of functional-dataflow parallel programs into real architectures:

• when converting to FPGA topology [13];

• when transforming into a statically typed imperative programming language [14].

To obtain the required solutions, it was necessary to use additional descriptions into the in-

termediate representation generated by the Pifagor compiler that define the types of processed

data, and to limit the semantics of lists representing parallel structures.

Thus, to solve the problem of efficient transformation of an architecture-independent parallel

program into a program for a real target architecture, it is necessary to jointly use approaches

that do not solve the problem separately:

1. dataflow control;

2. functional programming paradigm;

3. special data structures designed to represent different types of parallelism;

4. static data typing.

Their joint application will be reflected both in the parallel computing model and in the tools

created on its basis. Orientation towards architectural independence leads to the formation

of a domain-specific parallel computing model and a domain-specific architecture-independent

parallel programming language with a specific set of data structures and their semantics.

2. Statically Typed Functionally-dataflow Parallel Computing

Model

The application of the considered approaches makes it possible to form a statically typed

functionally-dataflow parallel computing model (STFDPCM). Borrowing many of the ideas from

the previously proposed FDPCM [11, 12], the STFDPCM is oriented towards the use of a static

type system and fixed dimensions of data objects. This, in turn, leads to a change in the semantics

of program-forming operators. The axioms of the model and its transformation algebra are also

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

34 Supercomputing Frontiers and Innovations

changed. They get oriented to a more efficient transformation at compile time. At the same

time, the main characteristics of the model that determine the specifics of functional-dataflow

parallel programming remain unchanged:

• calculations take place inside unlimited resources, which allows you to implicitly describe

parallelism without resource conflicts;

• calculations are managed using dataflow control;

• the choice of operations and axioms that define the basic set of functions is focused on a

visual textual representation of the information graph of the program during its subsequent

description using a programming language;

• the computational model defines the general structure of a functional-dataflow parallel

program without reference to operational semantics, which can be additionally defined,

thereby defining the specifics of a particular language of functional-dataflow parallel pro-

gramming.

The model is given by the triple:

M = (G,P,S0),

where G is an acyclic oriented graph that defines the information structure of the program (its

informational graph), P is a set of rules that determine the dynamics of the model’s operation

(the mechanism for generating markup), S0 – initial labeling of informational graph arcs, on

which data has already been generated that determines the execution dynamics.

Informational graph of the program:

G = (V,A),

where V is a set of vertices that define operators, and A is a set of arcs that define ways of

information transfer from data source operators to receiver operators. Each source operator

can be associated with one or more receiver operators. The receiver operator can have multiple

inputs, each of which can be associated with the output of only one arc. The information

transmitted along the arcs can be of any acceptable type, determined by the characteristics of

the data objects used in the STFDPCM.

The vertices of the graph corresponding to the operators provide information transforma-

tions of data and their structuring in various ways. There are the following types of vertices:

• interpretation operators (interpreters);

• copy operators (denotations);

• operators for grouping to data structures (data objects);

• delaying computations operator (delay).

The use in model of static typing instead of dynamic typing imposes its own limitations, but,

on the other hand, it provides additional opportunities for transforming functionally streaming

parallel programs into programs for real architectures.

2.1. Interpreters

Interpreters are designed to perform functional transformations. Each such operator has

two inputs, one of which receives a value perceived as a function of F (functional input), and the

other (data input) receives a value that is an argument of X. The focus of model on compile-time

analysis has led to two varieties of interpreters: single-argument operator and group-argument

operator.

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 35

A single-argument interpretation operator, denoted in textual representation, as in FD-

PCM [11], by “:” (postfix form) or “^” (prefix form), is designed to define ordinary functions

that take an argument as a whole. The group-argument interpretation operator is used to set cal-

culations on each element of a group data object, generating at the output a similar data object

with elements whose type corresponds to the type of the result of the function being executed.

Denoted by the double character “::” for postfix or “^^” for prefix forms, respectively.

Using different interpreters allows to unambiguously apply a function with the same name

depending on the context. For example, the subtraction function “-” on the argument (10,-3),

perceived it as a vector consisting of two integers, generates the following results:

• (10,−3) : − ⇒ 13 – subtraction function of second number from first number;

• (10,−3) :: − ⇒ (−10,3) – sign change group function.

The division of the interpretation operator into single-argument and group-argument al-

lows you to introduce a flexible set of additional functions for lists of various structures, while

providing more diverse processing of asynchronously incoming data.

2.2. Copy Operator

Each vertex of the graph G admits the presence of several output arcs, along which the

same value is transmitted to other vertices. This set of arcs can also be thought of as a single

copy operator that transfers data from its single input to multiple outputs. In general, a copy

operator can be combined with the preceding operator from which its output arc emerges. A

chain of copy statements is also possible, which can be thought of as a single statement. In

textual form, it is determined by naming the value that determines the output of the vertex,

and further using the introduced designation at the required points of the informational graph.

Both postfix naming of the propagated object in the form: “value >> name” and its prefix

equivalent, which looks like: “name << value” are used. For example:

y << F^x;

(x,y):+ >> c;

The type of the denotation is the same as the type of the result of the preceding computations

and is determined at compile time.

2.3. Data Objects

Data objects are designed to represent various options for grouping data into structures

that have certain properties and behavior. It is them that define various options for representing

parallelism and ways to determine the dataflow control during calculations. Data objects include:

• a constant operator (constant) that ensures the use of immutable values;

• synchronous grouping operator or join operator, designed to collect all incoming data

together before their subsequent issuance as a result;

• operator of asynchronous grouping or swarm, performing ordering by input number, but

not synchronizing data coming to different inputs;

• an asynchronous sequence operator or stream, that arranges data according to the time

it arrived and produces as result the first arrived value.

Each kind of objects has its own behavior in the course of the formation of incoming data,

exposing the result obtained to its output, transmitted along the arcs to the vertexes that

receive information.

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

36 Supercomputing Frontiers and Innovations

2.3.1. Constant

Constant operator or constant defines a node that stores a constant value and is always

ready to execute. This operator has no input. The output is initially set to markup that defines

the prescribed value. The set of constant operators of the informational graph form the internal

initial markup of the computation model. In textual representation, a constant operator is given

by a value of the corresponding type. The type of the constant is assumed to be known at

compile time. Constants include data of various basic types, for example: integers, booleans,

signals, atomic functions, as well as functions that are formed when writing a program. Functions

are referred to as constants because their descriptions are fixed and are constructions that are

immediately ready for execution. Constant examples:

• 10 – integer constant;

• true – boolean constant;

• ! – signal constant (denoted by symbol “!”);

• + – atomic function plus;

• min – the function name which developed for finding the minimum of two elements.

2.3.2. Join

Join has multiple inputs and one output. It provides structuring, ordering and synchroniza-

tion of data coming from various sources along input arcs. The types of incoming elements must

be known at compile time. The order of elements is determined by the numbers of inputs, each

of which corresponds to a natural number in the range from 0 to N− 1, where N is the length

of the generated data set. A connector signals ready when it receives all input. In text form, the

operator is specified by delimiting the list elements with parentheses “(” and “)”. For example:

(x0, x1, x2, x3)

The numbering of elements starts from zero and is set implicitly in accordance with their order

from left to right. The element type of the join must be known at compile time and determines

one of the possible interpretations: a vector or a tuple.

A join as vector is intended for grouping elements of the same type. This allows you to

access its elements by index, as well as perform bulk operations on all elements.

The join as tuple also has multiple inputs and one output. It provides structuring, ordering

and synchronization of heterogeneous data coming along arcs from various sources. The types of

incoming data must be known at compile time. Elements are accessed by an index specified by

a constant, which allows the type of the output value to be determined at compile time. In text

form, similarly to a vector, it is specified by limiting the elements of the list with parentheses

“(” and “)”. Tuples can be used as arguments to functions, each of which, in its description,

uniquely maps the element type to its location in the tuple.

2.3.3. Stream

The concept of stream extends the idea of the previously proposed asynchronous list [12].

The basic idea associated with asynchronous data arrival is preserved. However, all elements are

assumed to be of the same type, which in turn cannot be a stream or a swarm. This is quite

consistent with the concepts of universal statically typed languages. A stream can be considered

as an object (Fig. 1), the main characteristics of which are:

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 37

Figure 1. General scheme of a stream

• when at least one ready data element appears in the stream, it generates a signal informing

about its readiness;

• the ready element can be read from the stream for processing;

• if, during processing of an element selected from the stream, new data items enter it, they

can also be asynchronously selected from the stream in order of arrival and processed in

parallel;

• parallel processed elements of the stream may arrive after processing in another stream,

the type of which is determined by the type of the result of the function (in this case, the

order of their arrival may differ from the initial one, depending on the processing time);

• we can check the stream for end of data in it and terminate the work if it is true.

In text form, grouping into a stream is specified by delimiting its elements with the symbols

“<[” on the left and the closing square bracket “]” on the right. For example:

<[x0, x1, x2, x3]

The same type of stream elements is explained by the fact that if they appear randomly in time,

it is impossible to determine the type of the current value at compile time.

2.3.4. Swarm

Swarm, unlike join, groups independent data. The arrival of each element in the swarm is

accompanied by the issuance of a ready signal, informing the nodes of the informational graph

about this event, receiving information from it. This allows you to quickly and asynchronously

respond to changes in the state of the swarm.

In text form, grouping into a swarm is specified by limiting its elements with square brackets

“[” and “]”. For example:

[x0, x1, x2, x3]

Each element of the swarm is formed independently and is ready for execution when it appears.

Like the connector, swarm elements can be of the same type, forming a vector, or of different

types, forming a tuple.

A swarm, like a stream, allows you to process incoming data one element at a time (Fig. 2).

This is possible due to the fact that the arrival of elements in the swarm can occur non-

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

38 Supercomputing Frontiers and Innovations

Figure 2. General scheme of a swarm and its reference

simultaneously and asynchronously. Therefore, the indexes of the elements can line up in the

internal stream in the order in which they were received. Sequential selection of indices from

this stream allows accessing swarm elements at the moment they arrive.

2.4. Delay

Delay operator or delay is specified by a vertex containing a valid informational subgraph

that includes several input arcs and one output arc. The input arcs determine the arrival of

arguments, and the output specifies the result issued from the subgraph. A specific feature of this

grouping is that vertices bound by the delay operator cannot be executed, even if all arguments

are present at their inputs. Their activation is possible only when the delay is removed (opening

the contour), when the limited subgraph becomes part of the entire computed graph.

Initially, the delayed subgraph creates on its only output a constant markup, which is the

image (“icon”) of this subgraph. This markup propagates along the arcs of the graph from one

operator to another, multiplying, entering various data objects and getting out of them until it

arrives at one of the inputs of the interpretation operator. As soon as the delay operator becomes

one of the arguments of the interpretation operator, instead of the “icon” the delayed subgraph

is substituted with the input connections preserved. The contour of the delay operator encircling

the subgraph is “removed” in this case, and the activated operators are executed. As a result,

the resulting labeling is again formed on the output arc of the expanded subgraph, which is

one of the arguments of the interpretation operator that expanded the delayed subgraph. This

procedure is called delayed subgraph expansion.

In text form, the delay operator is specified by enclosing other operators with curly braces

“{” and “}”. For example:

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 39

{(a,b):+}

If it is necessary to form several independent arguments within the delay, then they are grouped

into a swarm, which is initiated upon revelation:

{[x0, x1, x2, x3]}

The presence of a delay allows you to postpone the start of some calculations or not start them

at all. It is necessary when organizing selective data processing. In addition, this operator, if

necessary, can be used as brackets that change the priority of operator execution. To do this, it

can be directly provided as one of the arguments to the interpretation operator.

3. Relationship between Grouping and Interpretation

Operators

Calculations are formed when data arrives at interpretation operators. In this case, a cal-

culation result is formed, the type of which depends both on the types of the argument and

function, and on the type of the interpretation operation. Various combinations of these three

components form the operational semantics of the computational model, and also determine

options for equivalent transformations in accordance with the algebra of the model.

3.1. Using a Single-argument Interpretation Operator

A single-argument interpretation operator in most cases defines the traditional functional

transformations of its arguments into a result. The following combinations of relationships be-

tween arguments are allowed:

• scalar – scalar;

• join – scalar;

• swarm – scalar;

• stream – scalar;

• scalar – join;

• join – join;

• swarm – join;

• stream – join;

• scalar – swarm;

• join – swarm;

• swarm – swarm;

• stream – swarm.

In these relations the first argument acts as the data to be processed, and the second defines

the function that processes this data. Note that stream cannot act as a function. An argument

is a scalar if it has a predefined base (atomic) type or is a constant of one of the base types.

3.1.1. Relation “scalar – scalar”

This relation is perceived by a single-argument interpretation operator as a traditional

function of one argument. That is, the data being processed are constants or computed values of

the underlying type. The generated result is determined by the semantics of the data interpreted

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

40 Supercomputing Frontiers and Innovations

as a function. The function can be either predefined or developed by the programmer. For

example:

x : − ≡ −x

x : sin ≡ sin(x)

3.1.2. Relation “join – scalar”

The relation is almost the same as executing a function from several arguments, the values

of which are defined as elements of the join:

(x,y) : + ≡ +(x,y) ≡ x + y

(x,y) : min ≡min(x,y)

3.1.3. Relation “swarm – scalar”

The relationship allows to form an asynchronous flow of arguments to the function that

displays them. It is assumed that when any element appears in the swarm, the interpretation

operator will launch a function that processes the swarm, which will perform a partial calculation.

That is, in this case, there is no preliminary synchronization of arguments before calling the

function. The situation is similar in many ways to using of the inline-function. It is assumed

that such calculations are possible when input parameter of function is described as a swarm.

Example:

[x,y] : min

3.1.4. Relation “stream – scalar”

The relation determines the transfer to the input of a function the stream, the readiness of

which is determined by the appearance of any first element. The analysis of data readiness for

subsequent elements of the incoming stream is formed within the function that processes this

stream.

It should also be noted that, in the general case, the number of incoming elements is not

defined for streams. Therefore, along with the value generated in the stream, a ready flag is also

generated, which is a boolean value. As a result, a join of the following format is formed at the

output of the stream:

(value,flag)

Therefore, before using the value at the beginning, it is necessary to check the truth of the flag,

indicating that the required values from the stream are still coming. The last value that signals

the end of data is the false flag. However, the data itself is no longer defined.

3.1.5. Relation “data – join”

The data can be: scalar, join, swarm, stream. The join as a functional argument specifies

the simultaneous execution of all the functions over the processed argument. In this case, par-

allelism is implemented with many independent command streams over one data set. For any

input data X and a list of functions F = (F0,F1, ...,Fn−1) during interpretation, an equivalent

transformation into a set of parallel executable statements is performed:

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 41

X : (F0,F1, ...,Fn−1) ≡ (X : F0,X : F1, ...,X : Fn−1)

The output join is formed as result. For example, the simultaneous execution of addition, sub-

traction, multiplication, and division operations on a single data argument can be described as

follows:

(x,y):(+, -, *, /) ⇒ ((x,y):+, (x,y):-, (x,y):*, (x,y):/)

3.1.6. Relation “data – swarm”

The options for using a swarm as a set of functions are similar in many ways to using a

join in that role. The difference is that its elements can process the input argument without

common synchronization. Therefore, the appearance of results of the interpretation operator

that implements this relation can be arbitrary with the formation of a new swarm as result.

The input data X and the list of functions F = [F0,F1, ...,Fn−1] are transformed into a set of

parallel operators:

X : [F0,F1, ...,Fn−1] ≡ [X : F0,X : F1, ...,X : Fn−1]

As result a swarm is formed. Performing addition, subtraction, multiplication, and division

above the same data argument at parallel would look like this:

(x,y):[+, -, *, /] ⇒ [(x,y):+, (x,y):-, (x,y):*, (x,y):/]

3.2. Using the Group-argument Interpretation Operator

The group-argument interpretation operator is focused on the processing of group data ob-

jects by one function. Its main task is the simultaneous processing of elements located in data

objects. In this case, the final calculations are formed through single-argument interpretation op-

erators, reduction to which is carried out by applying equivalent transformations. The following

combinations of relations are allowed for the interpretation group operator:

• join – scalar;

• swarm – scalar;

• stream – scalar.

More complex combinations of various data objects lead to the formation of multidimensional

structures and are not yet considered at the level of the computation model.

3.2.1. Relation “join – scalar”

In this relation, the join is considered as a vector of elements of the same type, each of

which is applied to the same function, acting as a scalar. Let X ≡ (x0,x1, ...,xn−1) be a join

data object that defines the vector of processed data, f be a function. Then, taking into account

the subsequent equivalent transformations, the group interpretation operator for this relation

can be represented as follows:

X :: f ≡ (x0,x1, ...,xn−1) :: f ≡ (x0 : f ,x1 : f , ...,xn−1 : f)

3.2.2. Relation “swarm – scalar”

This relationship is largely similar to the previous one. The difference lies in the fact that the

execution of functions on individual elements begins immediately upon receipt of these elements.

A swarm is also asynchronously formed as a result of the execution of functions.

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

42 Supercomputing Frontiers and Innovations

The swarm is defined as follows: X ≡ [x0,x1, ...,xn−1]. A group operation on a swarm using

the f function is defined by the following equivalent transformation:

X :: f ≡ [x0,x1, ...,xn−1] :: f ≡ [x0 : f ,x1 : f , ...,xn−1 : f]

3.2.3. Relation “stream – scalar”

Group interpretation of the relationship is carried out by analogy with the previous ones.

That is, the function is executed on each element of the stream as long as the stream receives

elements from various sources. As a result, a new stream is formed at the output. It should be

noted that the order of the results in the new stream may not match the order of the original

data. This is because even when the same function is executed, the calculation time may differ for

various reasons. The specificity of the stream is also that the number of processed elements may

be unknown in advance, and the completion of the arrival of elements is determined automatically

by reading the end-of-stream marker.

X :: f ≡< [x0,x1, ...,xn−1] :: f ≡ < [x0 : f ,x1 : f , ...,xn−1 : f]

Conclusion

The key idea of the approach is the initial attempt to abandon traditional architectural

solutions and consider parallel computing as an architecture-independent domain specific area.

This idea largely coincides with the views of J. Backus on whether programming can be liberated

from von Neuman style [15]. The main difference from the previously presented works [2, 11–14]

on the functional-dataflow model of parallel computing is the explicit separation of data objects

from its program-forming operators and the adaptation of their semantics to a more complete

analysis at the compilation stage. This should ensure efficient transformation into programs for

various architectures of real parallel computing systems.

The presented base features of the statically typed model of functional-dataflow parallel

computing formed the basis of the developed statically typed language of functionally-dataflow

parallel programming Smile [16]. The proposed constructions make it possible to describe not

only static data structures, but also to form various options for the dynamics of their behavior,

which provides various additional possibilities for representing parallelism in programs. Options

for representing dynamically changing parallelism appear, what depends on the relationship

between the intensity of data arrival and the time of their processing. At the same time, along

with data parallelism, their dynamic pipelining is possible through the use of streams [17].

Accounting for the use of static typing at the level of the computational model makes it possible

to build a more efficient basis for subsequent transformations of architecture-independent parallel

programs.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Steinberg, B.Ya., Steinberg, O.B.: Program transformations as the base for optimizing par-

allelizing compilers. Program Systems: Theory and Applications 12:1(48), 21–113 (2021).

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 43

https://doi.org/10.25209/2079-3316-2021-12-1-21-113 (in Russian)

2. Legalov, A.I., Vasilyev, V.S., Matkovskii, I.V., Ushakova, M.S.: A Toolkit for the Develop-

ment of Data-Driven Functional Parallel Programmes. In: Sokolinsky, L., Zymbler, M. (eds)

Parallel Computational Technologies. PCT 2018. Communications in Computer and Infor-

mation Science, vol. 910, pp. 16–30. Springer, Cham (2018). https://doi.org/10.1007/

978-3-319-99673-8_2

3. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)

4. Legalov, A.I.: On the control of computations in parallel systems and programming languages.

Scientific Bulletin of NSTU 3(18), 63–72 (2004) (in Russian)

5. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press (1998)

6. Charpentier, M.: Functional and Concurrent Programming: Core Concepts and Features.

Addison-Wesley (2022). 528 p.

7. Dennis, J.B., Fosseen, J.B., Linderman, J.P.: Data flow schemas. In: Ershov, A., Nepom-

niaschy, V. (eds) International Symposium on Theoretical Programming. Lecture Notes in

Computer Science, vol. 5. Springer (1974). https://doi.org/10.1007/3-540-06720-5_15

8. Kasyanov, V.: Sisal 3.2: functional language for scientific parallel programming. Enterp. Inf.

Syst. 7(2), 227–236 (2013). https://doi.org/10.1080/17517575.2012.744854

9. Levin, I., Dordopulo, A., Gudkov, V., et al.: Software Development Tools for FPGA-Based

Reconfigurable Systems Programming. In: Voevodin, Vl., Sobolev, S. (eds) Supercomputing.

RuSCDays 2019. Communications in Computer and Information Science, vol. 1129. Springer,

Cham (2019). https://doi.org/10.1007/978-3-030-36592-9_51

10. Malyshkin, V., Perepelkin, V.: The PIC Implementation in LuNA System of Fragmented

Programming. The Journal of Supercomputing 69(1), 89–97 (2014). https://doi.org/10.

1007/s11227-014-1216-8

11. Legalov, A.I.: Functional language for creating architecturally independent parallel pro-

grams. Vychislit. Tekhnol. 10(1), 71–89 (2005) (in Russian)

12. Legalov, A.I., Redkin, A.V., Matkovsky, I.V.: Functional-dataflow parallel programming

with asynchronously incoming data. In: Parallel computing technologies (PaVT’2009): Pro-

ceedings of the International Scientific Conference, Nizhny Novgorod, March 30 – April 3,

2009, pp. 573–578. Chelyabinsk, Ed. SUSU (2009) (in Russian)

13. Romanova, D.S., Nepomnyashchiy, O.V., Ryzhenko, I.N., et al.: Parallelism reduction

method in the high-level VLSI synthesis implementation. Trudy ISP RAN/Proc. ISP RAS

34(1), 59–72 (2022). https://doi.org/10.15514/ISPRAS-2022-34(1)-5

14. Vasilev, V.S., Legalov, A.I., Zykov, S.V.: Transformation of Functional Dataflow Parallel

Programs into Imperative Programs / Automatic Control and Computer Sciences 56(7), 815–

827 (2021). https://doi.org/10.3103/S0146411622070239

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

44 Supercomputing Frontiers and Innovations

https://doi.org/10.25209/2079-3316-2021-12-1-21-113
https://doi.org/10.1007/978-3-319-99673-8_2
https://doi.org/10.1007/978-3-319-99673-8_2
https://doi.org/10.1007/3-540-06720-5_15
https://doi.org/10.1080/17517575.2012.744854
https://doi.org/10.1007/978-3-030-36592-9_51
https://doi.org/10.1007/s11227-014-1216-8
https://doi.org/10.1007/s11227-014-1216-8
https://doi.org/10.15514/ISPRAS-2022-34(1)-5
https://doi.org/10.3103/S0146411622070239

15. Backus, J.: Can programming be liberated from von Neuman style? A functional stile and

its algebra of programs. CACM 21(8), 613–641 (1978). https://doi.org/10.1145/359576.

359579

16. Legalov, A.I., Legalov, I.A., Matkovskii, I.V.: Specifics of Semantics of a Statically Typed

Language of Functional and Dataflow Parallel Programming - Scientific Services & Inter-

net 2019. In: CEUR Workshop Proceedings, vol. 2543, pp. 274–284. https://doi.org/10.

20948/abrau-2019-08

17. Legalov, A.I., Matkovskii. I.V., Ushakova, M.S., Romanova, D.S.: Dynamically Changing

Parallelism with Asynchronous Sequential Data Flows. Automatic Control and Computer

Sciences 55(7), 636–646 (2021). https://doi.org/10.3103/S0146411621070105

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 45

https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.20948/abrau-2019-08
https://doi.org/10.20948/abrau-2019-08
https://doi.org/10.3103/S0146411621070105

Multipurpose Reconfigurable Supercomputer with Immersion

Cooling

Ilya I. Levin1, Aleksandr M. Fedorov1, Yuriy I. Doronchenko1,

Maksim K. Raskladkin1

c© The Authors 2023. This paper is published with open access at SuperFri.org

In the paper we consider a promising universal reconfigurable supercomputer, the computing

nodes of which are reconfigurable computing device Arcturus. It was developed at the Supercom-

puters and Neurocomputers Research Center (Taganrog) and based on modern Xilinx FPGAs of

UltraScale+ family of HBM-series. The purpose is to achieve the highest computational layout

density, to ensure balanced power supply and cooling, as well as the implementation of powerful

data exchange configuration. The supercomputer can have up to 1.5 thousand FPGAs of a single

computing field. It has extensive information exchange capabilities between FPGAs within the

device and between devices to solve tightly coupled problems. Differential lines with multi-gigabit

transceivers connected to them are used as the main connections between FPGAs. It provides

exchange at the velocity up to 25 Gbit/s. Information interaction between the RCD is performed

through optical channels with the capacity up to 4.5 Tbit/s. Immersion technology is used for

cooling components of computing system. It provides the removal of the total heat output up

to 20 kW. The developed power supply configuration is based on the input constant voltage of

380 V and provides stable power supply to the components. Owning to the implementation of

time-consuming algorithms for various scientific and technical problems with the high real per-

formance, it is possible to widespread use of the Arcturus supercomputer. Scaling of computing

nodes will allow designing an entire computing circuit of a supercomputer with the performance

up to several tens of Petaflops.

Keywords: supercomputers, reconfigurable computing systems, computing performance, im-

mersion cooling systems, computing energy efficiency, computational density, highly connected

problems.

Introduction

The solution of modern time-consuming scientific and technical problems of various subject

areas requires the design of computing systems not only with overall high chip performance, but

also with a variety of high-capacity channels for direct information exchange between computing

nodes. Solving such tightly coupled problems using calculators based on universal processors is

extremely inefficient. This is because traditional supercomputer architectures do not correspond

to the structure of implemented algorithms. Therefore, they provide the high computing perfor-

mance for very small class of problems. In addition, the processor performance growth has now

stopped due to the approach to the technological limit of production.

In this regard, it seems most appropriate to use reconfigurable computing systems (RCS) to

adapt their architecture for solving problem structure [1, 2]. The RCS concept is the maximum

structural implementation of the task information graph on the supercomputer hardware re-

source. Such implementation where the algorithm operation is assigned to each operating vertex

of the graph, arcs between vertices determine the data transfer between operations, and informa-

tion vertices of the graph are implemented by corresponding memory channels. The structural

implementation of calculations ensures the organization of pipelined, fastest data processing [3].

Field-programmable gate arrays (FPGAs) as the element base of reconfigurable systems,

in contrast to the element base of multiprocessor computing systems, continues to support the

1Supercomputers and Neurocomputers Research Center, Taganrog, Russia

DOI: 10.14529/jsfi230204

46 Supercomputing Frontiers and Innovations

RCS development by maintaining the growth rate of hardware resource and operating clock

frequency. The reconfiguration possibility allows the user to create virtual specialized comput-

ers within the same architecture, adequate to the structure of each solved application prob-

lem. However, the main problem is the organization of the commutation system, which should

provide a wide capacity, but not require large hardware costs and time delays. Existing recon-

figurable supercomputers are characterized by powerful information exchanges only within the

basic functionally complete nodes – calculating blades [4]. The bandwidth between the boards of

computing modules is significantly lower. This limits the possibilities of efficient parallelization

of calculations in application programs.

Currently, the employees of the Supercomputers and Neurocomputers Research Center are

designing the experimental sample of a prospective universal reconfigurable computing device

(RCD) Arcturus based on FPGA, which is a development of the commercially produced RCB

Neckar [4]. A number of breakthrough technical solutions have been implemented in the new

computer. Owning to them, it is possible to implement large graphs of complex problems in

an entire computing circuit and perform calculations without interruptions due to the powerful

information exchange system. At the same time, it has provided the necessary level of power

supply and cooling.

The current level of energy consumption of chips does not allow obtaining effective solutions

using the air cooling [5]. As a rule, the combined types of cooling, mainly liquid, are used at

the development of new computing complexes. The most effective approach is the immersion

technology with direct immersion of electronic components in a coolant [6]. It began to actively

develop and received its implementation in computer technology samples. This technology en-

sures the absence of complex structural elements. This determines the highest layout density, as

well as the use of low-cost coolants and guarantees the absence of critical leaks. However, con-

structs designed by various manufacturers [7, 8] for liquid cooling have a very low layout density

of computing elements. As a rule, they are intended only for devices based on CPU or GPU.

An original immersion cooling system has been developed.

The article is organized as follows. Section 1 presents the architecture of supercomputer,

allowing increasing the performance efficiency at solving widespread tasks. In Section 2, the

RCD Arcturus structure and its design features are described. Section 3 describes the organiza-

tion of information interaction between RCB, as well as the features of the use of multi-gigabit

transceiver technology implemented in them. Section 4 is devoted to the RCD Arcturus, which

provides to problem solutions with special memory requirements. Section 5 describes the com-

puting resources of the developed RCB. Section 6 is devoted to the description of the original

motherboard, designed and manufactured for loading FPGAs and controlling the computing

process in the RCB. Section 7 describes the design components of the RCB cooling system and

the features of implemented immersion liquid cooling system. In Section 8, the real performance

evaluation of the RCD Arcturus was performed using two floating-point tasks. In conclusion,

the achieved results of the development of the promising RCD Arcturus are listed.

1. Supercomputer Architecture

For solving modern problems, it is necessary not only to have a large number of computing

chips and memory, but also rapid data exchange between components of the computing system.

It is known that the real performance is rapidly falling in tightly coupled problems due to

the significant amount of transfers. For example, this class of problems includes the currently

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 47

widespread tasks of machine learning, simulation of complex physical processes and technological

devices, problems of the Earth remote sensing and digital signal processing. To increase the

efficiency of solving such problems, a supercomputer architecture is proposed to organize a

commutation system with up to 1.5 thousand chips combined in a single computing circuit

(Fig. 1). An architecture feature is the direct information communication between the chips in

the horizontal and vertical directions, as well as ring connections in each horizontal layer.

The implementation of this architecture on a single printed circuit board (PCB) is not pos-

sible. The overall dimensions are too large. The components’ installation is almost impossible.

The cost of one board is prohibitively high; the maintainability is low. It is necessary to decom-

pose into separate modules for implementation each row of chips on a separate PCB. The set of

blades obtained in this way are placed vertically and ensure the interaction using the cross-board

(Fig. 2). The horizontal placement of boards is impractical, as this will increase the depth, and

lead to the impossibility of chips’ cooling.

Besides the computing blades, the power blades and control module blade must be provided

for power supply, monitoring and control. The power module can provide the power to several cal-

culating blades (for example, four). Thus, it is possible to form an element of a regular structure –

a processing unit (Fig. 2). Processing units are scaled in a single construct – a computing device.

The number of such units in the computing device can be equaled to four. There can be one

control module blade.

Figure 1. Supercomputer architecture

The decomposition of the proposed architecture leads to the rupture of vertical connec-

tions. The connections can be restored using the high-speed optical channels. Using the optical

transceivers, a set of computing devices is combined with each other into a computing rack

(Fig. 3). Therefore, the supercomputer can consist of several computing racks, in which com-

puting devices jointly solve a problem.

The architecture shown in Fig. 1 corresponds to the “tor” architecture that does not contain

vertical circuit information connections. Their implementation in general is impossible. Since the

Multipurpose Reconfigurable Supercomputer with Immersion Cooling

48 Supercomputing Frontiers and Innovations

Figure 2. Blades placement

supercomputer is based on the modular expandability principle [9], and the number of processing

units and computing devices is not known in each case.

At implementation of 6 chips on calculating blades, 4 processing units in the computing

device will provide 96 chips. In the case of 16 computing devices in one computing rack, there

will be more than 1.5 thousand chips.

This architecture can be used with ASIC, eASIC chips. The use of FPGA is most effec-

tive. Reconfigurable FPGAs allow solving many problems, which ensures the supercomputer

versatility. In this case, the processing units combined in one construct called the RCD.

Figure 3. Computing rack

To solve time-consuming problems on the Arcturus supercomputer, it is necessary to use

the paradigm of structural organization of calculations with parallelization by iterations and

layers [10]. This approach provides the linear increasing of system performance at the linear

increasing in hardware resource. This is not available to any modern computing system, based

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 49

on processors and graphics accelerators. This is because the number of information exchanges is

often comparable to the number of performed operations in time-consuming problems. Accord-

ingly, the data exchange time between computing nodes has a greater impact on the problem

solution velocity with such connectivity in traditional systems. In some cases, when the number

of information exchanges in problems is close to the number of performed operations, the data

parallelization schemes used in traditional systems are critical to the RAM, the access speed and

the data transfer rate in interfaces between computing nodes. There is a “bottleneck problem”,

and the data exchange time turns out to be longer than the calculation time. Therefore, the

system performance is a significant decrease at increasing the number of computing nodes.

In contrast to traditional approaches, the communication is provided by a spatial commuta-

tion matrix at the structural organization of calculations with parallelization by iterations and

layers between the functional system nodes. The problem of memory access speed is solved by

using distributed memory technology and the independent multi-channel access.

The used approach has been repeatedly tested and has proven itself well at solving many

time-consuming, tightly coupled problems, such as problems in the field of bioinformatics, arti-

ficial intelligence, molecular modeling, simulation of complex physical processes, bit processing,

geophysics, the Earth remote sensing and many others.

2. RCD Arcturus Structure

The supercomputer is based on RCD. The main structure features of the developed

RCD Arcturus were considered. The RCD Arcturus design has the standard 3U 19” di-

mension and contains 16 calculating blades (CBs) vertically arranged on a cross-board with

6 Xilinx UltraScale+ XCVU37P FPGAs in each. The control module blade based on the

Intel Skylake processor is used for general management, configuration and control of computing

process.

The power blade DC/DC has been developed for power supply of the processing unit

(four calculating blades). It converted performing conversions from the input power supply of

380 V DC to 12 V. The maximum power consumption of the RCD Arcturus is 20 kW.

These electronic blades are placed on a single cross-board (Fig. 4), which provides inter-

module information and control interaction.

Figure 4. Cross-board

Cooling of the loaded electronic RCD components is provided by the immersion cooling

system based on a dielectric coolant [11, 12]. The coolant has high electrical strength and thermal

conductivity, as well as the highest possible heat capacity at low viscosity.

Multipurpose Reconfigurable Supercomputer with Immersion Cooling

50 Supercomputing Frontiers and Innovations

The construct consists of the main computing section with blades, filled by the coolant,

and an additional dry section in front, which located user interfaces, connectors and optical

modules. The heat exchanger for heat energy transferring from the first (coolant) to the second

(water) cooling circuit is located behind the main section. The unique cross-board provides

the high-frequency data transfer between blades. The components soldering is performed on an

automatic line. The PCB dimensions are large and equal 845×436 mm. Therefore, the assembly

of components and pressing of connectors is difficult at soldering paste application technology

and pressing. The cross-board provides the sealed transition between the environments (coolant –

air). The external dry-area of the cross-board implements the display output, control buttons,

as well as interfaces for connecting a keyboard, mouse, display, Ethernet and optical information

channels used for interdevice information exchange.

The 3D model of the RCD Arcturus is shown in Fig. 5. The RCD Arcturus with the open

lid is shown in Fig. 6.

Figure 5. 3D model of the RCD Arcturus

Figure 6. RCD Arcturus

3. Data Exchange Configuration

The most important feature of the promising reconfigurable supercomputer is the support

of unique computing power by the extensive capabilities of data exchange configuration. It

represents multiple communication channels between FPGAs within the CB, as well as between

FPGAs of neighboring CBs [13].The structure of information links has been clarified at operating

with the CB topology and designing technical solutions. Communication between FPGAs is

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 51

provided via differential lines using multi-gigabit transceivers (MGT), integrated into the FPGA.

Auxiliary connections are differential LVDS lines connected to the FPGA HP-banks (Fig. 7).

24 differential lines with data transfer rates up to 24 Gbit/s within the CB and 24 differential

lines with data transfer rates up to 16 Gbit/s between the CBs are implemented between the pair

of FPGAs. The total capacity of CB communication channels is 15.6 Tbit/s, including between

CBs is 9 Tbit/s. Therefore, the RCD implements a universal orthogonal high-speed information

communication system between computing FPGAs (Fig. 8).

At creation the computing complexes, the information interaction between RCD is per-

formed through optical channels. Amphenol multichannel optical transceivers are installed on

the cross-board and connected to the first calculating blade via the split connection, providing

the capacity up to 4.5 Tbit/s (Fig. 8, 9).

Figure 7. CB communication structure

Separately note the application features of the multi-gigabit transceiver technology. The

part of the XCVU37P FPGA architecture is 96 high-speed (up to 25.785 Gbit/s) transceivers.

For high data transfer rate, it is necessary to use special topological solutions at PCB designing:

the limit on the line length, on the amount and various versions of transition holes, rounding

corners, the use of a special PCB material that provides a low dielectric loss coefficient, etc.

However, the use of only topological solutions is not enough for high data transfer rates

close to the maximum possible. The Xilinx FPGA manufacturer provides a special procedure

for transceiver configuration to improve the transmitted data integrity. This setup of commu-

nication lines is a very difficult operation. It includes the searching procedure of transmitter

optimal parameters and the receiver operating modes, as well as the margin estimation using an

eye diagram and comparing the obtained value with a test mask. The setup procedure must be

repeated for each high-speed line. The complete search for one communication line of all possi-

ble combinations of receiver and transmitter parameter values is about 100 thousand options.

Obviously, manual configuration requires an unacceptably long time.

An original algorithm of progressive setup by the sequential approximation method have

been developed by specialists of the Supercomputers and Neurocomputers Research Center.

Multipurpose Reconfigurable Supercomputer with Immersion Cooling

52 Supercomputing Frontiers and Innovations

Figure 8. RCD communication structure

Figure 9. RCD interaction

Depending on the number of combinations, it is possible to reduce in 16 times for testing

by iteratively searching the best set of settings, with the gradual decreasing in the range of

considered parameters.

The algorithm consists of three iterations. At the first iteration, verification combinations

are formed by sampling the transceivers settings every five possible values. Reference values

are selected after receiving and measuring the eye diagrams of each combination – a set of

settings gives the best result. At the next iteration, the parameters are sampled in steps of 3;

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 53

the search range around the selected reference values is narrowing. The following combinations

are formed, the verification and adjustment of which gives a new set of reference values. The last

iteration is an exact setup with the selection of each parameter from the required neighborhood

of reference values. As a result, the number of checking combinations is significantly reduced

using the progressive tuning method.

The progressive setup algorithm, as well as the developed functions for quality evaluation

the of the eye diagram, logging the setup process and creating reports on the obtained results

are implemented as a set of Tcl scripts, executed in the Xilinx Vivado.

The use of developed scenarios makes it possible to implement a fully automatic process of

transceiver individual configuration. It does not require the participation of a highly qualified

specialist and ensures the highest possible quality and transmission speed for each communica-

tion channel between FPGAs.

4. Calculating Blade

The RCD Arcturus should provide the problem solutions with special memory requirements.

A typical technical solution used earlier was the placement of static or dynamic memory chips

connected with computing FPGAs on the calculating blade [4]. Xilinx, as part of the UltraScale+

family, has released a special HBM line (High Bandwidth Memory). It includes the FPGA with a

new hardware resource within the same package – the “HBM2” as integrated DDR. The HBM2

memory has a capacity up to 16 GB and can provide multi-channel access. This technology

will significantly expand the possibilities for rational memory use in applications for solving the

learning problems and mathematical physics.

The XCVU37P chip, used in the RCD calculating blade, has 8 GB HBM with the peak

capacity up to 460 GB/s. For connection to the HBM controller, 256-bit API interfaces are

used, the total number of which is 32. Each interface can either operate with its own dedicated

256 MB address space, or access any HBM address via the special switch (32× 32 AXI crossbar

switch). Experimental researches have shown the exchange possibility at the 12 GB/s speed on

each channel.

The dimensions of the UltraScale+ FPGA case are 5 mm larger than the dimensions of the

UltraScale FPGA case in previous RCD, for example, the RCD Skat [14], the RCD Neckar [4].

The dimensions of the PCB calculating blade are limited. Therefore, it is impossible to place,

as usual, 8 FPGAs. Here 6 FPGAs are implemented. To preserve the computational density of

the product, the number of processing units has been increased from 3 to 4.

Currently, the configuration work of the pilot calculating blade is being completed. The

photo of CB is shown in Fig. 10.

(a) top view (b) bottom view

Figure 10. Arcturus calculating blade

Multipurpose Reconfigurable Supercomputer with Immersion Cooling

54 Supercomputing Frontiers and Innovations

All 136 differential MGT communication lines between FPGAs have the capacity of

6.6 Tbit/s. 288 differential MGT lines for the cross-board communication have the capacity of

9 Tbit/s. They are configured and tested using the progressive setup algorithm.

Experimental researches have confirmed the possibility of achieving the required error-free

data transfer rates between FPGAs in different directions (Tab. 1).

Table 1. Error-free data transfer rates

Direction Data rate, Number of Test Transmitted Bit error

Gbit/sec MGT lines duration bits rate

FPGA – FPGA 25.6 192 96 1.7 · 1018 0.6 · 10−18

FPGA – Impel – FPGA 16 288 24 0.8 · 1018 1.2 · 10−18

FPGA – Impel –

Amphenol – Impel – FPGA 16 144 24 0.2 · 1018 5.0 · 10−18

5. Power Supply, Power Blade

The new UltraScale+ chips computing resource is approximately twice the FPGA resource

of the UltraScale previous generation. According to research, the maximum consumption of one

FPGA is 160–180 W taking into account the increase in energy efficiency. It has required a

radical redesign of the secondary power blade configuration of the calculating blade.

The contradictory requirements for the power supply system include: the high power; the

maximum efficiency to minimize parasitic heat generation; the minimal overall dimensions to

accommodate the required number of FPGAs on the PCB of the calculating blade. There are

no existing solutions that provide the required current and voltage and are placed in one chip

of the power blade. An original multiphase power blade system has been developed. Several

chips are combined to obtain the required power. The difficulties of synchronization during

parallel activation, interaction of radio-electronic components, PCB topological tracing, correct

allocation of power polygons, etc. have been overcome. It was necessary to define a certain

balance in the PCB between the number of FPGA power layers and the number of signal circuit

layers. In addition, the problems of uniform current distribution from each source near the

FPGA and ensuring no more than 80A current flows on each individual source FPGA section

were solved.

The RCD power configuration ensures the unit’s operability in the input voltage range from

350–400 V DC. The power blade is equipped with the soft start system, which ensures a smooth

increase in voltage at the converter input and eliminates commutation interference.

The power configuration is started stepwise. The control module blade (CMB) is first started

at the device beginning. In this, the primary converter generates the intermediate voltage of

12 V. Further, under the control of a microcontroller (MC), the following cascades are powered:

FPGA on CMB, INTEL, cooling system, soft start system, pump motor and others. Information

interaction between microcontrollers is implemented via the CAN bus.

To provide the power to the CBs FPGA, the primary conversion is performed on separate

boards power blades (PB). The CB power system consists of two identical nodes, each of which

receives 11–12.5 V from its converter located on the PB. Each node provides the power to three

FPGAs. The power blade is shown in Fig. 11.

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 55

Figure 11. Power blade

The monitoring of voltages, currents and temperatures is the important node of the power

blade configuration. A separate microcontroller is used to control and monitor the FPGA power.

Data from all FPGA power microcontrollers are fed into the leading CB power microcontroller.

Such distributed monitoring scheme makes it possible to increase the power configuration re-

sponse rate to possible crashes and failures, as well as automatically disable only the failed

FPGA, and not the entire calculating blade or RCD. At the same time, the communication

system allows to redistribute the monitoring data flow bypassing the disabled FPGA. Note that

in such cases it is possible to redistribute the user data flow bypassing the disabled FPGA, if

this is available in the FPGA configuration created by the user.

6. Control Module Blade

An original motherboard (control module blade, CMB) was developed and manufactured

to FPGA load and control the RCD computing process (Fig. 12). It is based on the Intel

SkylakeCore I5-6300U processor. The CMB ensures the RCB functional completeness. It is

realized as a separate board. An original basic input-output system (BIOS) has been developed

for CMB. It allows using all capabilities of the Intel Skylake processor and external peripheral

equipment. A radiator by the original design is used for heat removal from the processor.

Figure 12. Control module blade

The main CMB nodes are the Intel Core i5-6300U processor and the Kintex Ultrascale

FPGA. The FPGA CMB performs the controller function and provides interaction between

the processor and the first FPGA in the first calculating blade. Communication between the

CMB and CB is performed via the cross-board. The CMB also provides hardware monitoring

of sensors, pump parameters and other data with using a microcontroller.

7. Cooling System

The RCD case is a sealed container with a coolant, in which electronic modules are im-

mersed. The cooling system is functioning as follows. The pump circulates the coolant in the

RCD along the following closed circuit: the heated coolant enters the lamellar heat exchanger

and cools there. Then, the coolant re-enters the RCD case under the cross-board under the nec-

Multipurpose Reconfigurable Supercomputer with Immersion Cooling

56 Supercomputing Frontiers and Innovations

essary pressure, with the help of special flow direction setters flows through heatsinks of cooled

electronic components, which heats up itself and re-enters the heat exchanger (Fig. 13).

Figure 13. Heat exchanger

The heat exchanger is connected to the secondary cooling circuit through fittings. It was

designed for coolant usually with water (Fig. 14).

Figure 14. Cooling

The effectiveness of the immersion liquid cooling system is determined by the effectiveness

of technical solutions for implementation each component: the used coolant, the construction

and parameters of the used FPGA radiators, pumping equipment and heat exchangers.

The coolant must have the best electrical strength, high thermal conductivity, the highest

possible heat capacity at low viscosity. The radiator must provide the maximum heat removal

surface, the refrigerant circulation through the radiator, the refrigerant flow turbulence in the

radiator, manufacturability. The used thermal interface must not degrade and be washed out

by the refrigerant, have a consistently high thermal conductivity coefficient. The heat exchanger

must provide the high heat transfer coefficient between the main and secondary cooling circuit.

The pump with necessary performance is used for refrigerant circulation in the RCD volume.

This complex problem of RCD Arcturus cooling subsystem implementation provides the

removal of thermal power up to 20 kW. It has been successfully solved and tested on the number

of layouts. First, a new radiator construction was designed. Due to it, the effective heat exchange

surface area was increased 2.5 times, compared to the previous design, at slight increasing of

radiator dimensions. This became possible by reducing the thickness of ribs (thereby increasing

the number of channels by 1.8 times) and increasing the number of grooves in the channels from

252 to 792; the grooves increase the heat removal area and form a special flow pseudo-turbulence

(Fig. 15). Therefore, the heat removal capabilities have increased from 80 to 160 W.

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 57

The following important problems have been solved during the cooling system implementa-

tion:

– a submersible pump has been developed (Fig. 16) with the increased capacity up to

60 l/min, which makes it possible to abandon the cold air forced circulation in computing

racks. It significantly simplifies the maintenance, and increases the reliability by reducing

the number of open hydraulic connections;

– the cooling efficiency was improved using new heat exchanger (Fig. 12);

– a compensator of coolant volumetric expansion has been developed in the form of a cor-

rugated rubber sleeve. The contact of the coolant with atmospheric air is completely

excluded, and potential leaks are minimized;

– significant actions have been performed to change the RCD case and lid design. Due to it,

the construction rigidity was increased, the product manufacturability was ensured, the

assembly and product repair were simplified, the possibility of leaks was minimized, the

construction weight was reduced.

Figure 15. Heatsink Figure 16. Submersible pump

Note that the distinctive feature of the used FPGA is its lidless-design (without the lid). The

radiator installation technology directly on the FPGA crystal using the modern PSG graphite

thermal interface by Panasonic with the thickness of 0.1 mm was proposed. Researches have

confirmed the advantage of this technology in comparison with the radiator installation on the

FPGA lid.

Currently, preparations are underway to test the developed cooling system on the manu-

factured experimental RCD sample. According to preliminary estimates, the thermal resistance

of the “FPGA – coolant” transition is 0.27 C/W, then the temperature drop of the “FPGA –

coolant” will be 43C at the average load of 160 W. When the water temperature in the second

cooling circuit is 16C, the temperature on the FPGA will be 59C.

Therefore, the developed cooling system makes it possible to divert up to 20 kW of thermal

power in the 3U construction. The RCD curb weight is about 150 kg. For comparison, one of the

most effective modern solutions with the internal closed loop of liquid cooling is the specialized

for sparse computing Cerebras CS-2 system [15] with the similar power consumption of up to

23 kW with the weight of 300 kg and placed in the 15U construction.

8. Results of Problems Implementation

The real performance of the RCD Arcturus was evaluated using two floating-point problems.

The first problem is to estimate the achievable real performance, close to the RCD peak per-

formance. Its algorithm consists mainly of computational operations. Its implementation almost

completely involves the FPGA computing resource. For this, a conveyor computing structure

Multipurpose Reconfigurable Supercomputer with Immersion Cooling

58 Supercomputing Frontiers and Innovations

was used that implements the filter function with a finite impulse response (FIR) with symmetric

coefficients. The computational pipeline is a series of connected filtration cascades. The perfor-

mance of 150 Tflops (single precision) can be achieved at implementation of this test problem

of digital data processing. Therefore, the RCD construction of 16 RCD Arcturus will provide

performance of 2.4 Pflops (single precision) at solving this problem. This assessment confirms

the RCD application prospects to solve time-consuming problems.

The second problem is the algorithmic basis of the LINPACK computer performance test.

The SLAE solution was performed using the pipeline computing structure for implementation

of the LU-decomposition function with the matrix traversal by columns. The performance of 30

Tflops (double precision) can be achieved at implementation of this test problem. The perfor-

mance will be 480 Tflops (double precision) in RCD construction based on 16 RCD Arcturus

at solving the LU-decomposition problem. Obviously, this assessment cannot be a characteristic

for comparison with other computing architectures. However, it confirms the RCD feasibility of

test problems for traditional architectures and provides the performance level.

The advantage of the Arcturus supercomputer at solving deep machine learning problems is

the performance linear increase. It is fundamentally impossible for graphics accelerators (such

as Tesla A100). Analysis of the Nvidia official website data [16] shows that the increasing of

Tesla A100 accelerators leads to decreasing of their specific performance at the problem of

the ResNet-50 v1.5 neural network training. The Arcturus is 2-6 times faster than Tesla A100

at scaling. Besides, the analysis showed that the RCD Arcturus in terms of performance/power

consumption is twice as efficient as the most modern Nvidia DGX system for problems of training

neural networks of image classifiers and neural networks of natural language processing at the

same performance.

Compared to the Dell R7910 RACK [17], the Arcturus RCD provides acceleration more

than 610 times, and efficiency in terms of performance/power consumption is 31 times higher

at solving complex problems of mathematical physics.

Compared to the SuperServer 2028U-TR4T+ server [18] manufactured by Supermicro Com-

puter based on Intel Xeon CPU E5-2699A v4, the Arcturus RCD provides acceleration more

than 114 times, and efficiency in terms of performance/power consumption is 16 times higher

at solving the Earth remote sensing problems.

Conclusion

The promising RCD Arcturus, developed at the Supercomputers and Neurocomputers Re-

search Center, has 96 FPGAs of the high integration degree in its construction (3U 19”). It

includes a unique layout density of the computing resource – more than 270 million logic cells

in total.

At the same time, appropriate power supply and immersion cooling of the product elements

are provided at solving time-consuming problems. Ensuring the required RCD characteristics

in the given design required a significant complication of the PCB topology and manufacturing

technology of its components.

The RCD Arcturus production is scheduled to begin in 2024. Currently, the implementation

of model applied problems in the field of high-speed machine learning, the Earth remote sensing,

and mathematical physics problems are being prepared at the RCD.

Note that reconfigurable supercomputers require the appropriate engineering infrastructure.

Their operation requires connection by means of supply and return manifolds through fittings

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 59

(or balancing valves) and flexible pipelines to the secondary cooling circuit, as well as to the

power supply source and to the network hub.

The Arcturus RCD features are the wide possibilities of information exchange within the

device and between devices for solving highly related problems. The achieved characteristics

ensure the versatility of the RCD architecture for a wide class of problems and various fields of

application. Combining many devices into a single computing circuit will allow creating collective

use centers for solving time-consuming problems, world-class computing complexes with the

performance of up to several dozen Petaflops.

Acknowledgements

The research is partially funded by the Ministry of Science and Higher Education of the Rus-

sian Federation as part of state assignments “Development of a Multi-Agent Resource Manager

for a Heterogeneous Supercomputer Platform Using Machine Learning and Artificial Intelli-

gence” (topic FSEG-2022-0001).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Kalyaev, A.V., Levin, I.I.: Modular-stackable multiprocessor systems with structural and

procedural organization of calculations. Janus-K Publishing house, Moscow (2003). 380 p.

2. Kalyaev, I.A., Levin, I.I.: Reconfigurable computing systems based on FPGAs. SSC RAS

Publishing House, Rostov-on-Don (2022). 475 p.

3. Kalyaev, I.A., Levin, I.I.: Reconfigurable multiconveyor computing systems for solving

streaming problems. Information technologies and computing systems 2, 12–22 (2011)

4. Levin, I.I, Dordopulo, A.I., Fedorov, A.M., Doronchenko, Yu.I.: Development of technology

for constructing reconfigurable computing systems with liquid cooling. Supercomputer Tech-

nologies. 5th All-Russian Scientific and Technical Conference. Materials, vol. 1, pp. 184–187.

SFedU Publishing House, Taganrog (2018)

5. Kalyaev, I.A., Levin, I.I.: Reconfigurable computing systems with high real performance.

In: International Scientific Conference, Parallel Computational Technologies, PaCT-2009.

Proceedings, 186 p. SUSU Publishing House, Chelyabinsk (2009)

6. BiXBiT immersion cooling (2018). https://bixbit.io/assets/docs/ru/investment_

project.pdf, accessed: 2023-04-19

7. Abramov, S., Amelkin, S., Klyuev, L., Chichkovsky, A.: Liquid cooling of computing com-

plexes. Radioelectronic technologies 5, 79–82 (2017)

8. Klyuev, L., Hrebtovsky, I.: Experience in building HPC clusters of IMMERS using im-

mersion liquid cooling (2015). http://www2.sscc.ru/Seminars/paper/2015/2015-05-14_

IMMERS.pdf, accessed: 2023-04-19

Multipurpose Reconfigurable Supercomputer with Immersion Cooling

60 Supercomputing Frontiers and Innovations

https://bixbit.io/assets/docs/ru/investment_project.pdf
https://bixbit.io/assets/docs/ru/investment_project.pdf
http://www2.sscc.ru/Seminars/paper/2015/2015-05-14_IMMERS.pdf
http://www2.sscc.ru/Seminars/paper/2015/2015-05-14_IMMERS.pdf

9. Besedin, I.V., Dmitrenko, N.N., Kalyaev, I.A., et al.: A family of basic modules for building

reconfigurable computing systems with a structural and procedural organization of com-

puting. In: Scientific service on the Internet. Proceedings of the All-Russian Conference.

pp. 47–49. MSU, RSU, IVT RAS (2006).

10. Levin, I.I., Pelipets, A.V.: Effective implementation of the parallelization on

reconfigurable computer systems. Vestnik komp’iuternykh i informatsionnykh

tekhnologii (Herald of computer and information technologies), 11–16 (2018).

https://doi.org/10.14489/vkit.2018.08.pp.011-016

11. Levin, I.I., Dordopulo, A.I., Fedorov, A.M., Gulenok, A.A.: Reconfigurable computer based

on Virtex UltraScale+ FPGAs with immersion cooling system. In: International Scien-

tific Conference, Parallel Computational Technologies, PaCT-2017. Proceedings. pp. 27–41.

SUSU Publishing Center, Chelyabinsk (2017)

12. Kalyaev, I.A., Dordopulo, A.I., Levin, I.I., Fedorov, A.M.: Evolution domestic of multichip

reconfigurable computer systems: from air to liquid cooling: from air to liquid cooling.

Trudy SPIIRAN 1(50), 5–31 (2017). https://doi.org/10.15622/sp.50.1

13. Levin, I.I., Doronchenko, Yu.I., Dordopulo, A.I., Levina, M.G.: High-performance recon-

figurable computing system based on FPGA XILINX ULTRASCALE+. In: International

Conference, XXII Kharitonov thematic scientific readings. Collection of scientific papers.

pp. 284–296. FSUE “RFNC-VNIIEF”, Sarov (2022).

14. Levin, I., Dordopulo, A., Fedorov, A., Doronchenko, Yu.: High-Performance Re-

configurable Computer Systems with Immersion Cooling. In: Sokolinsky, L., Zym-

bler, M. (eds.) Parallel Computational Technologies. PCT 2018. Communications in

Computer and Information Science, vol. 910, pp. 62–76. Springer, Cham (2018).

https://doi.org/10.1007/978-3-319-99673-8_5

15. Cerebras. https://www.cerebras.net/product-system/, accessed: 2023-04-20

16. NVIDIA Data Center Deep Learning Product Performance (2023).

https://developer.nvidia.com/deep-learning-performance-training-inference,

accessed: 2023-04-20

17. Dell Precision Rack 7910 Owner’s Manual. https://www.karma-group.ru/upload/

iblock/d16/precision-r7910-manual.62BF24D6F1B748C9BB6DA43755132D49.pdf,

accessed: 2023-04-21

18. SPEC CPU2017 Floating Point Rate Results (2017).

https://spec.org/cpu2017/results/res2017q3/cpu2017-20170828-00069.pdf, ac-

cessed: 2023-04-21

I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin

2023, Vol. 10, No. 2 61

https://doi.org/10.14489/vkit.2018.08.pp.011-016
https://doi.org/10.15622/sp.50.1
https://doi.org/10.1007/978-3-319-99673-8_5
https://www.cerebras.net/product-system/
https://developer.nvidia.com/deep-learning-performance-training-inference
https://www.karma-group.ru/upload/iblock/d16/precision-r7910-manual.62BF24D6F1B748C9BB6DA43755132D49.pdf
https://www.karma-group.ru/upload/iblock/d16/precision-r7910-manual.62BF24D6F1B748C9BB6DA43755132D49.pdf
https://spec.org/cpu2017/results/res2017q3/cpu2017-20170828-00069.pdf

Elements of a Digital Photonic Computer

Dmitriy A. Sorokin1, Aleksey V. Kasarkin1, Aleksandr V. Podoprigora1

c© The Authors 2023. This paper is published with open access at SuperFri.org

The paper covers a variant of architecture development of digital photonic computers. Along

with quantum computers, they are one of the possible ways to overcome the crisis of comput-

ing performance. The data processing implementation in digital photonic computers at terahertz

frequencies potentially provides the performance exceeding by two or more decimal orders of mag-

nitude the performance of the most modern computing systems. The elements of digital photonic

computer architecture described in the paper are focused on solving a wide class of computation-

ally time-consuming problems in the paradigm of structural calculations. The problems of ensuring

the performance and accuracy at solving problems on the developed digital photonic computer,

as the processing rate should correspond to the data receipt rate, are considered. The synchro-

nization and switching subsystem was designed and analyzed by the authors. At the synthesis

(programming) stage, it forms a computational structure and provides both static and dynamic

coordination of data flows in calculations.

Keywords: digital photonic computer, architecture of DPC, data flow synchronization,

paradigm of structural calculations.

Introduction

The successful scientific researches and technical developments are closely related to the

availability of high-performance computing systems, as well as the possibility of timely increasing

the speed and quality of solving time-consuming problems. However, the development of high-

performance systems element base is slowing down [1]. In modern microelectronics, this is due to

the achievement of physical limits for increasing clock frequencies and the integration degree [2],

and in actively promoted quantum computing [3] – technological problems of system isolating

the from “white noise”, poor repeatability and accuracy of experiments [4, 5].

A possible way to overcome the crisis of computer technology performance may be digital

photonic computer (DPCs). These are devices, in which calculations are performed using a light

flux emitted by a laser. This is similar to the electric current generated by a generator in modern

microelectronics. At the same time, to ensure high performance and accuracy of calculations at

solving the problems, it is advisable to develop a fully digital photonic computer. In it, the data

processing is performed by photonic logic gates, such as NOT, AND, OR [6, 7], as well as triggers

and functional devices, based on it. In addition, it is important to choose such architecture

of DPC, which, in the absence of immediate prospects for creating photonic memory [8–11],

eliminates the traditional “bottleneck” problems, and will ensure the correspondence of data

transmission frequencies and the transformation speed.

This paper is devoted to the description of an architecture of DPC proposed by the au-

thors and one of its main components – the switching and synchronization subsystem between

functional devices, as well as communication system between DPCs and external data sources

and receivers. The first section contains a brief overview of modern achievements in photonic

calculators and an assessment of the possibility of their application at solving time-consuming

problems. The second section contains a brief description of the DPC proposed architecture with

the structural organization of calculations. The development principles of the synchronization

and data flows switching subsystem are described. The third section presents a detailed analysis

1Supercomputers and Neurocomputers Research Center, Taganrog, Russia

DOI: 10.14529/jsfi230205

62 Supercomputing Frontiers and Innovations

of the main component of the synchronization and data flows switching subsystem – the operand

block. Its structure, operation modes are considered. The fourth section gives the estimation of

the DPC expected efficiency at solving problems of mathematical physics. The obtained results

were analyzed in conclusion.

1. Review of Modern Researches on Photonic Calculators

Interest to the computing system design, in which the information is transmitted by a

light stream, originated in the late 50s and early 60s of the last century. The prospect of

solving complex problems with near-light speed caused significant progress at the creation an

appropriate element base. This led to the appearance of a separate class of devices – optical

correlators [12]. The operation principle of these calculators is based on the comparison of sig-

nals using the Fourier lens [13]. The data processing is performed in an analog format, which

has all the advantages and disadvantages of analog machines. Therefore, since the late 80s and

early 90s of the last century, it is necessary to integrate the correlators and digital comput-

ers. For example, the Bell Labs presented the first layout of an optical computer in 1990 [14].

The OptiComp introduced a DOC II 32-bit general purpose optical computer in 1991 [15].

In 2015, the ORNL laboratory conducted a number of researches to assess of the speed of solv-

ing the Fast Fourier Transform (FFT) problem on the EnLight Alpha computing system. It

was based on the EnLight 256 optical processor, compared to the computing system based on

2 Intel Xeon 2 GHZ processors. The conducted researches have shown more than 13,000 times

the acceleration in time at problem solution achieved on EnLight Alpha. However, as ORNL

researchers note, the calculation speed is inversely dependent on accuracy [16].

Such computers are hybrid systems. In it, an analog converter performs the main calcula-

tions, and the data preparation, transmission and storage functions are performed by traditional

microelectronic components. Currently, the development of optoelectronic hybrids continues in

two directions: by increasing the computational characteristics of optical correlators by grow-

ing the resolution and performance of modulation tools, or by using invariant correlators in

combination with data mining methods [12]. These technologies make it possible to process in-

formation with the bandwidth of tens of gigabits per second and obtain a satisfactory quality

solution of image analysis problems. However, the optical correlators and systems based on them

are not applicable for many modern time-consuming problems from such fields as gas dynamics

and molecular dynamics, plasma physics and inertial fusion, and many others. It is required to

perform processing in high-precision data representation formats. Only fully DPCs can provide

high-speed computing at solving specified problems with the accuracy of the IEEE 754 standard

level or similar.

Currently, the researches have being conducted largely on logic elements that perform oper-

ations on light pulses and provide a fully functional basis for a digital computer in Russia [17, 18]

and abroad [19–21]. At the same time, few papers have been devoted to the problem of choosing

the prospective DPC architecture and methods of organization of calculations [22, 23].

The structure and principles of the DPC implementation are considered in [22], which

correspond to the reduction calculation model. The reduction model forms a flow graph

of data processing by recursive analysis of the algorithm for problem solution. The se-

quence of graph operations is dynamically mapped to the system computing resource. There-

fore, data is constantly transmitted over the switching network from one functional device

(FD) of the system to another. RAM is not required to store intermediate calculations.

D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora

2023, Vol. 10, No. 2 63

In this case, one FD either performs the requested operation, or stores one valid data.

The search for exchange paths between FDs, implementing the graph operations, is performed

constantly.

However, conflicts and, accordingly, temporary losses are inevitable at exchanging between

FDs. This can only be eliminated by a fully connected switching system that requires large

equipment costs. If the switching system is not fully connected, then the most of the FD will

be occupied not with performing direct calculations, but with storing intermediate results and

transferring them to other FD for subsequent calculations at solving the real applied problem.

Computing equipment will be used inefficiently.

The paper [23] describes the architecture of DPC based on the paradigm of structural

calculations [24]. In structural calculations, the FDs perform only informationally significant

transformations, and pipeline data processing is performed at the rate of their entering at the

FD inputs. All informationally insignificant operations, such as the exchange or data source

selection, are implemented by spatial switching and synchronization. The processing results are

transferred through physical channels to the following FDs, according to the task information

graph [25], and are not buffered in memory. This allows minimizing the memory for storing

the results of intermediate calculations and reducing the bandwidth requirements for photonic-

electronic data exchange interfaces with external devices. The proposed solutions are aimed

at efficient use of the available computing resource and preserving the advantage of high data

processing frequency in the DPC over microelectronic devices.

2. Architecture of DPC with the Paradigm of Structural

Calculations

Within the framework of the paradigm of structural calculations, the high efficiency can be

achieved with the equality (consistency) of data exchange rate between all system components

at solving time-consuming problems: RAM and system computing nodes, the data processing

rate in the nodes and transmission between them.

The DPC data processing is assumed at the frequency about 1 THz [7]. Modern microelec-

tronics technologies provide exchange with RAM at the frequency about 1 GHz. Therefore, the

stream must be multiplexed for each channel bit between the RAM and DPC. Figure 1 shows

a possible variant of such structure.

Figure 1. The proposed structure of data flow formation for DPC

Elements of a Digital Photonic Computer

64 Supercomputing Frontiers and Innovations

RAM can be developed on SDRAM-type chips, for example. Their quantity is determined

by the ratio of the required bandwidth of the digital computer channel to the bandwidth of the

memory chip channel. Using DDR3 memory with 16-bit channels and the 1 GHz transmission

frequency, it is necessary to use 64 chips to provide the stream about 1 Tbit/s (RAM1–RAM64).

At connection to the DPC, the electronic channels ofRAM1–RAM64 chips must be converted

into photonic ones using the interface system with external memory. In general, such system is

a set of cascades of serializers S1–S64 by the MGT type, optical converters OC1–OC64 by the

SFP+ type and MXΦ multiplexer, based on photonic logic. The similar solution can be used

to develop data transmission channels of arbitrary digit capacity in DPC. The organization of

output channels from the DPC into RAM will require the construction of a similar system that

performs transformations in reverse order.

The transformed input data streams are processed in the DPC by a computational struc-

ture synthesized on a set of arithmetical and logical FD1–FDL (Fig. 2). The switching and

synchronization subsystem must ensure a uniform rate of data transfer between the FD involved

in processing, as well as between the DPC and external memory. Since it is proposed to solve

problems in the paradigm of structural calculations, the switching and synchronization subsys-

tem should have the high connectivity. However, the construction of the most efficient, fully

connected switches involves a factorial increase in hardware costs at linear increasing of FB.

This will lead to the use of most of the photonic logic for switching instead of calculations, i.e.,

to the violation of the basic principle of the paradigm of structural calculations: the use of most

of the system hardware resource directly for calculations and a smaller part for organization of

information-insignificant operations.

Figure 2. DPC architecture

D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora

2023, Vol. 10, No. 2 65

Therefore, the switching and synchronization subsystem has a hierarchical topology in the

proposed version of the DPC construction [23]. It provides more efficient use of hardware re-

sources at solving various problems that differ by the number of involved FD and the connectivity

between them. Figure 2 shows the proposed architecture of DPC.

The switching and synchronization subsystem consists of the SW static switches and blocks

of dynamic switching and synchronization of operand streams (hereinafter – operand blocks,

OB).

The SW static switches are devices of the “multiplexer/demultiplexer” type. Owning to

it, the computational structure is synthesized on the set of FD in accordance with the task

information graph at the DPC programming stage [26]. For this, the configuration parameters

formed at the stage of DPC program transmission must be submitted on the control inputs of

static switches. Configuration parameters cannot be changed at solving the problem.

Let us consider a variant of a computing structure, synthesized on a certain DPC

fragment (Fig. 3). It implements the calculation function of a random variable dispersion

D =

∑n
i=1 x

2
i

n
−
(∑n

i=1 x
2
i

n

)2

.

This function is used at statistical analysis of big data, training and execution of artificial

neural networks, forecasting the financial markets situation and others. Three adders, two mul-

tipliers and two dividers are necessary for construction of the pipeline computing structure that

fully corresponds to the information graph of calculation D.

Figure 3. Computational structure of the function D

Elements of a Digital Photonic Computer

66 Supercomputing Frontiers and Innovations

According to the Fig. 3, the selected DPC fragment contains three static switches

SW1.1–SW1.3 of the hierarchy first level, the static switch SW2 of the hierarchy second level,

operand blocks OB1–OB9 and an FD array divided into three groups: SUM1–SUM3 adders,

MUL1–MUL3 multipliers and DIV1–DIV3 dividers.

The information channels formed during the DPC programming in the static switches

SW1.1–SW1.3 and SW2 are shown by dotted lines.

The blocks OB1–OB3 are configured to operate in synchronization mode and operand

streams’ switching at inputs SUM1–SUM3. OB4 and OB5 are configured to operate in switching

mode of operand streams at inputs MUL1 and MUL2. The blocks OB7 and OB8 are configured

to operate in switching mode operand streams and the register variable n, which does not change

during calculations of the current dispersion value at the inputs DIV1 and DIV2.

Note that the latency of various arithmetic logic FD, as well as the out of sync between

different fragments of the computational structure may differ many times, in general. Therefore,

it is necessary to be able to synchronize threads through external memory, both at the synthesis

(programming) stage and at the DPC operation in operand blocks.

3. Data Flow Synchronization Management. Operand Block

Without violating the generality, we assume that all operations in the DPC computing struc-

tures are double. They are divided into two groups: operations with constants and threads. The

necessary synchronizing component configuration is performed during the synthesis of computing

structures on DPC or during data processing in OBs. The operand stream can be synchronized

either with a register variable (constant), with an array of constants, or with another stream.

The operand block structure OBi is given in Fig. 4.

Figure 4. OB structure

D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora

2023, Vol. 10, No. 2 67

The operand block consists of swi and swo dynamic switches, the rg variable storage register,

the syncf operand flow synchronization block, the IWR external memory access interface, and

the ctrl control block. The ctrl control block is designed to calculate the out of sync value,

automatic or forced control of operating modes and the formation of appropriate control signals.

The swi and swo dynamic switches are also devices of the “multiplexer/demultiplexer”

type. It are intended both for implementation of conditional transitions at solving problems

and for synthesis of a computational structure. The parameters on their control inputs can be

determined by the FD operation results or formed at the DPC program transmission.

The rg register is used in arithmetic and logical operations on a data stream and a variable

that changes its value in no less time than the stream processing time. In this case, the variable

digit capacity should not exceed the rg digit capacity. For example, the FP64 format of the

IEEE 754 standard is used at solving mathematical physics problems. Therefore, the rg digit

capacity must be at least 64 bits. A constant is written to this register at the DPC programming

stage, or a variable is written and stored until a new entry is made at solving problem.

The syncf and IWR delay synchronizers in OBs operate according to the “shift register”

principle and perform the data flows coordinating functions between the FDs. The latencies of

different FD cannot coincide, and streams from different parts of the computational structure

can arrive asynchronously. The syncf is used at operand streams matching, if the out of sync

does not exceed 103 clock cycles. However, the out of sync value can be more than 103 clock

cycles between fragments of computational structures. In this case, it is often necessary to use

arrays of constants or intermediate data with the volume more than 103 bits at solving complex

problems. It is necessary to use the IWR that provides access to external memory through the

SW static switch and external memory interface system, described above. It is important to

note that the number of simultaneously possible interfaces between different OBs and external

memory is determined by the bandwidth of the memory channels of the entire DPC.

Taking into account the possible variety of synchronization scenarios, four main operating

modes should be provided in the OB. In this case, the synchronization mode definition in the ctrl

block can be performed at the DPC programming stage. For this, the del synchronization value

is written in the ctrl block under the control of the wd signal, the value of which determines

the operation mode. At the same time, the forced synchronization signal is set as avt = 1. If

avt = 0, the determination of the operation mode will be performed automatically in accordance

with the out of sync value between the mx and my markers of the x and y operand streams at

solving the problem.

Operation modes 1, 2 or 3 are set according to the out of sync value between the operand

streams. The mode 1 is set if the operand streams come synchronously or it is set forcibly at

solving the problem. In this case, the input operand streams of the x and y are transferred

directly to the outputs o1 and o2 of the swu switch. The mode 2 is set if the out of sync value is

up to 103 clock cycles or forcibly at operating with arrays of constants with a volume up to 103

bits. The leading operand stream of x (or y) through the swi switch is transferred to syncf , and

then with the lagging operands stream of y (or x) flows synchronously through the swi switch

to the outputs. The mode 3 is set at the out of sync value and is more than 103 clock cycles or

forcibly at operating with arrays of constants of more than 103 bits, stored in external memory.

The mode 0 is set in operations with a constant. At the same time, during operation, the rg

can be connected to the required output of the swo switch, or be disconnected, and the operand

block can operate in modes 1–3.

Elements of a Digital Photonic Computer

68 Supercomputing Frontiers and Innovations

The description of input signals and OB operation modes, corresponding to it, are given in

Tab. 1.

Table 1. Error-free data transfer rates

Ctrl input signals
Mode number Note

sb wc avt wd mx my

– 0 0 0 1 1 1 if ∆=0

– 0 0 0 1 1 2 or 3
mode 2, if ∆ ≤ 103

mode 3, if ∆ > 103

0 1 0 0 1 0 – rg=x

1 1 0 0 0 1 – rg=y

0 0 0 0 1 0 0 yo=rg

1 0 0 0 0 1 0 xo=rg

– 1 0 1 0 0 – write del to ctrl

– 0 1 0 1 1 2 or 3
mode 2, if del≤ 103

mode 3, if del> 103

0 1 1 0 1 0 –
write x to syncf, if del≤ 103

write x to IWR, if del> 103

1 1 1 0 0 1 –
write y to syncf, if del≤ 103

write y to IWR, if del> 103

At calculation the out of sync value, one clock cycle of machine time at the DPC frequency

is taken as a measure unit. The calculation process of out of sync value is started and stopped

by the mx or my marker of the leading operand x or y according to the formula:

Qi = Qi−1 + 1, if mxi ⊕myi = 1,

where Q is a counter value; i is the clock cycle number of the counter at some time.

Fixing the desynchronization value ∆ is performed according to the formula:

∆ = Qi, if (mxi−1 ∨myi−1)&mxi&myi = 1.

If only one of the x or y channels starts receiving the data into the OB, the ctrl is in the

mode 0. At the same time, the leading data from x (or y) channel is transferred to the input

x0 (or y0), and a constant from rg is transferred to the output y0 (or x0). In general, it is

not known in advance whether the second data stream will come, so the determination process

of ∆ value starts automatically. Until the Q value achieves the value 103, the input operand

stream is written by syncf under the signal control ws = 1. If the Q value becomes greater than

103, then the signal wi = 1 is generated and the input operand stream from syncf is rewritten

to external memory via IWR. In the case, after i clock cycles after the arrival of the operand

leading stream, the lagging stream of operands begins to arrive (mxi = myi = 1), then the ctrl

sets the operating mode 2 or 3 based on the value of the out of sync value ∆ > 0. The ctrl block

allows forcing the mode 2 or 3. For this, the value of the forced delay is written over the del bus

at wc = 1 and wd = 1. Then the signals avt = 1, wc = 0 and wd = 0 are set.

Figure 5 shows the mode and transition diagram of the ctrl control unit. In accordance

with this diagram, the configuration and installation algorithms of synchronization modes of

D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora

2023, Vol. 10, No. 2 69

the input operand streams x and y are defined. According to the Fig. 5, the “Mode 0” is the

base for control block. Therefore, transitions from it to any operation modes are possible.

Figure 5. Diagram of transitions and the ctrl signals modes

Table 2 shows the basic conditions for switching the ctrl block to each operating mode and

installation of the corresponding signals and data: sm mode numbers; md data markers; wi, ws,

wr writting enable signals; as and ai delay depths.

Table 2. Basic conditions for transitions and the ctrl signals modes

The mode Transition condition Action

“Mode 0” (mx⊕my)&wc&avt&wd = 1 sm = 0;ws = 1;md = 1

“Write rg” (mx⊕my)&wc&avt&wd = 1 sm = 0;wr = 1;ws = 0;md = 0;

rg=x, if sb=0;

rg=y, if sb=1;

switch to “Mode 0”

“Mode 1” mx&my&(∆ = 0)&ws&avt&wd = 1 sm = 1;ws = 0;md = 1

“Mode 2” mx&my&(0 < ∆ ≤ 103)&ws&avt&wd = 1 sm = 2;ws = 1;wi = 0;md = 1;

or as=∆, if avt=0;

mx&my&(0 < del ≤ 103)&ws&wd = 1 as=del, if avt=1

“Mode 3” mx&my&(∆ > 103)&ws&avt&wd = 1 sm = 3;wi = 1;ws = 0;md = 1;

or ai = ∆, if avt=0;

mx&my&(del > 103)&ws&wd = 1 ai=del, if avt=1

“Write del” wc&wd&&avt&mx&my = 1 write del in ctrl

The considered modes of the ctrl block provide the necessary OB functional set for synthesis

of computational structures or data processing on synthesized structures at solving the problems.

The construction of rg and syncf elements is of particular importance for OB implementa-

tion. These elements perform memory functions at storing constants and synchronizing threads.

As noted earlier, the prospects for the photonic memory creation are very indefinite. It is possible

to use only the DPC trigger elements for their implementation. At the same time, DPC triggers

do not have an information storage mode. Therefore, it is necessary to use a “ring buffer” scheme

Elements of a Digital Photonic Computer

70 Supercomputing Frontiers and Innovations

to develop the delay and store register of the rg constant. The rg block diagram, implemented

in the DPC basis, has the form as shown in Fig. 6.

Figure 6. The rg block diagram

The rg block includes:

– TΦ
64–TΦ

1 are DPC triggers;

– MXΦ is the DPC multiplexer.

The time diagram of the rg operation is given in Fig. 7.

Figure 7. Time diagram of rg operation

When the logical “1” is applied to input w, the MXΦ multiplexer output switches to bus d,

and the input data is written to the TΦ
64–TΦ

1 triggers. As soon as the logical “0” is received at

the input w, the MXΦ output will switch to the bus t, closing the ring connection. According to

the time diagram, the output data < a1
1, a

1
2, a

1
3, . . . , a

1
64 > appears at the output o after 1 clock

cycle. If necessary, the delay can be increased without increasing hardware costs up to 64 clock

cycles by switching the output bus o to the appropriate trigger.

The described approach to the construction of the n-bit data storage register assumes se-

quential one-bit processing. At the same time, one MXΦ multiplexer and n TΦ triggers are

required to implement the rg.

Such hardware costs for the TΦ resource completely coincide with the costs of nbit data

parallel processing with any bit reduction coefficient r by digits [27]. The hardware costs of the

MXΦ resource are determined by the ratio
n

r
.

The computational structure of the syncf block included in the OB is shown in Fig. 8.

The syncf block allows the delay of operands by ∆ clock cycles. It consists of N serially

connected DPC triggers TΦ
1 –TΦ

N and MX multiplexer. The delay value is set by transfer of the

value ∆ to the input a. The time diagram of the rg operation is shown in Fig. 9.

Three options of operand stream synchronization on the syncf block are shown in the

diagram: 1 is the synchronization of operand streams with the difference a = 3 clock cycles;

2 is the synchronization of operand streams with the difference a = 5 clock cycles; 3 is the

synchronization of operand streams with the difference a = 6 clock cycles.

D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora

2023, Vol. 10, No. 2 71

Figure 8. Syncf block diagram

Figure 9. Time diagram of syncf operation

To organize data delays synchronization by ∆ clock cycles during sequential one-bit pro-

cessing, the ∆ of TΦ triggers and one MXΦ multiplexer will be required. This is r times less

compared to the costs at parallel data processing. The increasing of the processed data digit

capacity will lead to corresponding increase in the hardware costs for syncf implementation.

Theoretically, the DPC data processing can be performed in a format of any digit capacity.

However, taking into account the necessity to coordinate data flows between the DPC and exter-

nal memory, the increase of digit capacity of data processing at solving problems on the DPC in

the paradigm of structural calculations leads to the same increase in the cost of implementation

of external microelectronic memory. Therefore, the DPC data processing will be present in the

minimum possible single-digit format in the near future.

4. Performance Evaluation of the Proposed Solutions

The performance P of computational structure D described in the third section was evalu-

ated according to the following formula P = (f ·N)/S, where f is the DPC operation frequency;

N is the number of FD, performing arithmetic operations in the 64FP IEEE754 standard; S is

the duty cycle of input data.

Elements of a Digital Photonic Computer

72 Supercomputing Frontiers and Innovations

At f = 1THz, N = 3, S = 64 the theoretical performance of the computational structure

will be equal to P = 46.875 Gflops. This corresponds to the performance of modern processors.

Theoretical researches of the DPC performance with the structural organization of calcula-

tions were performed on the DPC functional prototype made on the RCS “Tertius-2T” [28]. The

computational structure is synthesized for solving five-diagonal SLAE by dimension 104 and the

grid step of 0.01 by the Gauss-Seidel method [29] of 60 sequentially connected pipes, each of

which performs one algorithm iteration. The one pipe contains five one-bit OB and five one-bit

FD: four adders and one multiplier performing calculations in the 64FP standard. In addition,

three one-bit static switches of the first level, one one-bit static switch of the second level and

six one-bit RAM access channels are used to develop the computational structure.

Researches have shown that such computing structure on DPC, provided it operates at

the 1 THz frequency, will solve the problem in about 430 µs. The computational structure of

60 pipes on one FPGA XCKU095 RCD “Tertius-2T” solves a five-diagonal matrix of about

0.15 s, and the Intel Core i5-12600K 3.4 GHz processor is about 2 s. Therefore, the DPC can

provide acceleration by 340 times compared to the modern FPGAs [30], and compared to modern

processors – by 4500 times, subject to an equivalent amount of hardware costs.

Conclusion

The architecture of DPC and approaches to the construction of one of its main elements –

the data flow switching and synchronization subsystem are described in the paper. In the future,

they will make it possible to effectively use the available DPC computing resource and maintain

the performance gain over microelectronic devices due to the higher frequency of data processing.

The proposed scheme for block construction of dynamic switching and synchronization of

operand flows provides basic functionality both for synthesis of computing structures on DPC

and matching the rate of operand flows during solving problems of mathematical physics. Fur-

ther reseaches of the proposed architecture of DPC and development of the functionality of its

elements will potentially expand the class of problems efficiently solved on the DPC that require

high computational accuracy.

The estimates performed by the authors show that the DPC with the data flow architecture

and the structural organization of calculations at solving time-consuming problems of mathe-

matical physics currently have the potential to provide performance exceeding by two or more

decimal orders of magnitude the performance of modern computing systems.

Acknowledgements

The work was carried out within the framework of the scientific program of the National Cen-

ter for Physics and Mathematics (the project “National Center for Supercomputer Research”).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora

2023, Vol. 10, No. 2 73

References

1. Chernyak, L.: Amdahl’s Law and the future of multicore processors. Open systems. DBMS

04 (2009). https://www.osp.ru/os/2009/04/9288815/, accessed: 2023-05-02

2. Moore, G.: No Exponential is Forever: But “Forever” Can Be Delayed! In: Interna-

tional SolidState Circuits Conference (ISSCC), 2003. Session 1. Plenary 1.1. Vol. 91, no. 11,

pp. 1934–1939. IEEE (2003). https://doi.org/10.1109/ISSCC.2003.1234194.

3. Benioff, P.: Quantum mechanical hamiltonian models of turing machines. Journal of Statis-

tical Physics 29(3), 515–546 (1982). https://doi.org/10.1007/BF01342185

4. D-Wave Announces General Availability of First Quantum Computer Built

for Business. https://www.dwavesys.com/company/newsroom/press-release/

d-wave-announces-general-availability-of-first-quantum-computer-built-for-\

business/, accessed: 2023-05-02

5. Dalzell, A.M., Harrow, A.W., Koh, D.E., Placa, R.L.L.: How many qubits are needed for

quantum computational supremacy? Quantum 4, 264 (2020). https://doi.org/10.22331/

q-2020-05-11-264

6. Shubin, V.V., Balashov, K.I.: Fully optical logical basis based on a micro-

ring resonator. Patent No. 2677119. The Federal State Unitary Enterprise “Russian

Federal Nuclear Center - All-Russian Research Institute of Experimental Physics”

(FSUE RFNC-VNIIEF), Rosatom VNIEF

7. Tamer, A.: Moniem All-optical XNOR gate based on 2D photonic-crystal ring resonators.

Quantum Electronics 47(2), 169 (2017). https://doi.org/10.1070/QEL16279

8. Next generation photonic memory devices are “light-written”, ultrafast

and energy efficient (2019). https://www.tue.nl/en/news/news-overview/

10-01-2019-next-generation-photonic-memory-devices-are-light-written-ultra\

fast-and-energy-efficient/, accessed: 2023-05-02

9. Using light for next-generation data storage (2018). https://phys.org/news/

2018-06-next-generation-storage.html, accessed: 2023-05-02

10. Zhang, Q., Xia, Z., Cheng, Y.B., et al.: High-capacity optical long data memory based on

enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat Commun 9, 1183

(2018). https://doi.org/10.1038/s41467-018-03589-y

11. Gordeev, A., Voitovich, V., Svyatets, G.: Promising photonic and phonon do-

mestic technologies for terahertz microprocessors, RAM and interface with ultra-

low power consumption. Modern Electronics 2(22). https://www.soel.ru/online/

perspektivnye-fotonnye-i-fononnye-otechestvennye-tekhnologii-dlya-teragert\

sovykh-mikroprotsessorov-o/, accessed: 2023-05-02

12. Starikov, R.S.: Optical image correlators: History and current state. In: XVI International

Conference on Holography and Applied Optical Technologies, HOLOEXPO 2019. Abstracts.

pp. 82–90. Bauman Moscow State Technical University, Moscow (2019)

Elements of a Digital Photonic Computer

74 Supercomputing Frontiers and Innovations

https://www.osp.ru/os/2009/04/9288815/
https://doi.org/10.1109/ISSCC.2003.1234194
https://doi.org/10.1007/BF01342185
https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-general-availability-of-first-quantum-computer-built-for-\ business/
https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-general-availability-of-first-quantum-computer-built-for-\ business/
https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-general-availability-of-first-quantum-computer-built-for-\ business/
https://doi.org/10.22331/q-2020-05-11-264
https://doi.org/10.22331/q-2020-05-11-264
https://doi.org/10.1070/QEL16279
https://www.tue.nl/en/news/news-overview/10-01-2019-next-generation-photonic-memory-devices-are-light-written- ultra\ fast-and-energy-efficient/
https://www.tue.nl/en/news/news-overview/10-01-2019-next-generation-photonic-memory-devices-are-light-written- ultra\ fast-and-energy-efficient/
https://www.tue.nl/en/news/news-overview/10-01-2019-next-generation-photonic-memory-devices-are-light-written- ultra\ fast-and-energy-efficient/
https://phys.org/news/2018-06-next-generation-storage.html
https://phys.org/news/2018-06-next-generation-storage.html
https://doi.org/10.1038/s41467-018-03589-y
https://www.soel.ru/online/perspektivnye-fotonnye-i-fononnye-otechestvennye-tekhnologii-dlya-teragert\ sovykh-mikroprotsessorov-o/
https://www.soel.ru/online/perspektivnye-fotonnye-i-fononnye-otechestvennye-tekhnologii-dlya-teragert\ sovykh-mikroprotsessorov-o/
https://www.soel.ru/online/perspektivnye-fotonnye-i-fononnye-otechestvennye-tekhnologii-dlya-teragert\ sovykh-mikroprotsessorov-o/

13. Lugt, A.V.: Signal detection by complex spatial filtering. IEEE Transactions on Information

Theory 10(2), 139–145 (1964). https://doi.org/10.1109/TIT.1964.1053650

14. Arsenault, H.H., Sheng, Y.: An Introduction to Optics in Computers. Volume 8 of Tutorial

texts in optical engineering. SPIE Press, Washington (1992). 126 p.

15. Stone, R.V., Zeise, F.F., Guilfoylev, P.S.: DOC II 32-bit digital optical computer: opto-

electronic hardware and software. In: Optical Enhancements to Computing Technology.

Proceedings, vol. 1563. SPIE (1991). https://doi.org/10.1117/12.49689

16. Barhen, J., Kotas, C., Humble, T.S., et al.: High performance FFT on multicore pro-

cessors. In: 2010 Proceedings of the Fifth International Conference on Cognitive Radio

Oriented Wireless Networks and Communications, (CROWNCOM). pp. 1–6. IEEE (2010).

https://doi.org/10.4108/ICST.CROWNCOM2010.9283

17. Stepanenko, S.A.: Interference logic elements. Reports of the Russian Academy of Sciences.

Mathematics, Computer Science, Management Processes 493, 68–73 (2020)

18. Kuznetsova, O.V., Speransky, V.S.: Solving optical signal processing problems without

optoelectronic conversion. Telecommunications and Transport. T-Comm. 8, 35–39 (2012)

19. Wu, X., Tian, J., Yang, R.: A Type of All-Optical Logic Gate Base on Graphene Surface

Plasmon Polaritons. Optics Communications 403, 185–192 (2017). http://doi.org/10.

1016/j.optcom.2017.07.041

20. Papaioannou, M., Plum, E., Valente, J., et al.: All-Optical Multichannel Logic Based on

Coherent Perfect Absorption in a Plasmonic Metamaterial. APL PHOTONICS 1, 090801

(2016). https://doi.org/10.1063/1.4966269

21. Hussein, M.E., Ali, T.A., Rafab, N.H.: New Design of a Complete Set of Photonic Crystals

Logic Gates. Optics Communications 411, 175–181 (2018). https://doi.org/10.1016/j.

optcom.2017.11.043

22. Stepanenko, S.A.: Photonic computing machine. Principles of implementation. Pa-

rameter estimates. Reports of the Academy of Sciences 476(4), 389–394 (2017).

https://doi.org/10.1134/S1064562417050234

23. Levin, I.I., Sorokin, D.A., Kasatkin, A.V.: Perspective architecture of a digital

photonic computer. Izvestiya of the SFeDu. Technical sciences 6(230), 61–71 (2022).

https://doi.org/10.18522/2311-3103-2022-6-61-71

24. Besedin, I.V., Dmitrenko, N.N., Kalyaev, I.A., et al.: A family of basic modules for building

reconfigurable computing systems with a structural and procedural organization of com-

puting. In: Scientific service on the Internet. Proceedings of the All-Russian Conference.

pp. 47–49. MSU, RSU, IVT RAS (2006)

25. Kalyaev, I.A., Levin, I.I.: Reconfigurable multiconveyor computing systems for solving

streaming problems. Information technologies and computing systems 2, 12–22 (2011)

26. Kalyaev, I.A., Levin, I.I., Semernikov, E.A., Shmoilov, V.I.: Reconfigurable Multipipeline

Computing Structures. Nova Science Publishers, Inc., New York, USA (2012). 345 p.

D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora

2023, Vol. 10, No. 2 75

https://doi.org/10.1109/TIT.1964.1053650
https://doi.org/10.1117/12.49689
https://doi.org/10.4108/ICST.CROWNCOM2010.9283
http://doi.org/10.1016/j.optcom.2017.07.041
http://doi.org/10.1016/j.optcom.2017.07.041
https://doi.org/10.1063/1.4966269
https://doi.org/10.1016/j.optcom.2017.11.043
https://doi.org/10.1016/j.optcom.2017.11.043
https://doi.org/10.1134/S1064562417050234
https://doi.org/10.18522/2311-3103-2022-6-61-71

27. Dordopulo, A.I., Sorokin, D.A.: Methodology for reducing hardware costs in complex sys-

tems at solving problems with significantly variable intensity of data flows. Izvestiya SFeDu.

Technical sciences 4(129), 194–199 (2012)

28. Supercomputers and Neurocomputers Research Center. Tertsius-2.

http://superevm.ru/index.php?page=tertsius-2, accessed: 2023-05-02

29. Shpakovsky, G.I., Verkhoturov, A.E.: Algorithm of parallel SLOUGH solution by Gauss-

Seidel method. Bulletin of BSU 1(1), 44–48 (2007)

30. Kalyaev, I.A., Levin, I.I.: Reconfigurable computing systems with high real performance.

In: International Scientific Conference, Parallel Computational Technologies, PaCT-2009.

Proceedings. SUSU Publishing House, Chelyabinsk (2009)

Elements of a Digital Photonic Computer

76 Supercomputing Frontiers and Innovations

http://superevm.ru/index.php?page=tertsius-2

Neuromorphic Computing Based on CMOS-Integrated

Memristive Arrays: Current State and Perspectives∗

Alexey N. Mikhaylov1, Evgeny G. Gryaznov1, Maria N. Koryazhkina1,

Ilya A. Bordanov2, Sergey A. Shchanikov1,3, Oleg A. Telminov4,

Victor B. Kazantsev1,3

c© The Authors 2023. This paper is published with open access at SuperFri.org

The paper presents an analysis of current state and perspectives of high-performance com-

puting based on the principles of information storage and processing in biological neural networks,

which are enabled by the new micro- and nanoelectronics component base. Its key element is the

memristor (associated with a nonlinear resistor with memory or Resistive Random Access Memory

(RRAM) device), which can be implemented on the basis of different materials and nanostruc-

tures compatible with the complementary metal-oxide-semiconductor (CMOS) process and allows

computing in memory. This computing paradigm is naturally implemented in neuromorphic sys-

tems using the crossbar architecture for vector-matrix multiplication, in which memristors act as

synaptic weights – plastic connections between artificial neurons in fully connected neural network

architectures. The general approaches to the development and creation of a new component base

based on the CMOS-integrated RRAM technology, development of artificial neural networks and

neuroprocessors using memristive crossbar arrays as computational cores and scalable multi-core

architectures for implementing both formal and spiking neural network algorithms are discussed.

Technical solutions are described that enable hardware implementation of memristive crossbars

of sufficient size, as well as solutions that compensate for some of the deficiencies or fundamental

limitations inherent in emerging memristor technology. The performance and energy efficiency are

analyzed for the reported prototypes of such neuromorphic systems, and a significant (orders of

magnitude) gain in these parameters is highlighted compared to the computing systems based

on traditional component base (including neuromorphic ones). Technological maturation of a new

component base and creation of memristor-based neuromorphic computing systems will not only

provide timely diversification of hardware for the continuous development and mass implemen-

tation of artificial intelligence technologies but will also enable setting the tasks of a completely

new level in creating hybrid intelligence based on the symbiosis of artificial and biological neural

networks. Among these tasks are the primary ones of developing brain-like self-learning spiking

neural networks and adaptive neurointerfaces based on memristors, which are also discussed in

the paper.

Keywords: memristor, CMOS integration, neuromorphic hardware, artificial intelligence.

Introduction

The fourth industrial revolution, on the brink of which the humanity stands, presents entirely

new requirements for the hardware of artificial intelligence (AI) technologies, which should

approach the capabilities of the human brain (natural intelligence). In addition to demands for

compactness and energy efficiency, new AI hardware must be compatible with existing silicon

microelectronics technology and with biological systems. Meeting these requirements will enable

mass production of AI hardware systems and the implementation of new hybrid forms of AI.

The second requirement implies that new electronic AI systems must not only replicate formally

∗The paper is published as part of special issue “PST2023: Perspective Supercomputer Technologies”.
1Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
2Murom Institute of Vladimir State University, Murom, Russian Federation
3Moscow Institute of Physics and Technology, Moscow, Russian Federation
4Joint-Stock Company Molecular Electronics Research Institute, Moscow, Russian Federation

DOI: 10.14529/jsfi230206

2023, Vol. 10, No. 2 77

(as they do now), but also reproduce functionally the elements of the nervous system and the

brain.

Current paradigmatic changes in electronics are aimed at meeting these requirements asso-

ciated with the transition from the traditional von Neumann architecture (in which memory and

processing are separated in space) to analog computing in memory and massive parallelism in

information processing similar to that in the brain. At the core of the new post-digital paradigm

is a brain-like electronic component base represented by memristors (analog resistive memory

devices) and memristive systems that mimic the functions of elements of the living nervous sys-

tem (neurons and synapses). The diversity of possible computing architectures is ensured by the

universal character of the memristive phenomenon, as it can be implemented in classical and

quantum systems, in various artificial materials and structures (inorganic, organic, molecular,

etc.), and in living systems.

The results of comprehensive research and diverse applications of memristive devices have

become the subject of numerous publications in recent years (e.g., see [4, 12, 19, 20, 53, 55, 60],

including roadmaps, reviews, and perspectives in top journals) showing the importance and

relevance of this field at the global level, as well as the need to implement a master plan (coor-

dinated and interdisciplinary efforts) in the field of bioinspired systems aimed at technological

development of the new component base and creating prototypes of next-generation information-

computing systems.

This paper presents the current state and prospects of high-performance computing based

on memristors. We consider general approaches to the development of Resistive Random Access

Memory (RRAM) integrated with complementary metal-oxide-semiconductor (CMOS) technol-

ogy required for creating elements and functional blocks of a memristive neuroprocessor, as well

as the application of new computing systems in artificial and hybrid intelligence technologies.

To show the perspectives of memristor-based neuromorphic computing systems, their achieved

parameters are compared to that of traditional computing systems.

The paper is organized as follows. Section 1 is devoted to a discussion of the relevance and

prospects of research and development of memristors and memristor-based neuromorphic and

neurohybrid systems. In Section 2, we discuss a multilevel and interdisciplinary approach to the

development of neuromorphic systems based on CMOS-compatible memristive devices. Section 3

contains a consideration of various options for scaling up the CMOS-integrated memristive cross-

bars to increase the speed of signal transmission in artificial neural networks. Section 4 contains a

comparison of neuromorphic computing systems based on traditional and new component base.

Conclusion summarizes the study.

1. Memristor and Memristor-Based Neuromorphic

and Neurohybrid Systems

Over the past five decades, global microelectronics has developed according to Moore’s

law, which predicts an exponential increase in the number of transistors on a chip, resulting

in faster computing and reduced energy consumption for each new generation of technology.

Currently, this trend has reached a physical limit – further increase in the number of transistors

does not lead to an increase in clock speed or a reduction in energy consumption. The main

bottleneck is the data exchange between the central processor and external memory, making

digital processors based on traditional von Neumann architecture extremely inefficient in terms of

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

78 Supercomputing Frontiers and Innovations

Figure 1. Original and generalized definitions of memristor [13, 14]

energy consumption and time delays. Meanwhile, the volume of digital data requiring processing

continues to increase exponentially. Every two years, more data is created than in all of human

history before that point. Unstructured data already comprises over 80 % of the total volume

of data generated daily. Thus, the demand is growing faster than the performance of modern

computers. Breakthrough technological solutions are required to address this von Neumann

bottleneck. Currently, two main solutions are being explored in leading scientific centers around

the world – combining computation and memory in a single functional unit, and transitioning

from traditional von Neumann architectures to neuromorphic architectures that reproduce the

principles of information storage and processing in the nervous system and brain.

The new paradigm in electronics, which is associated with a breakthrough in the hardware

implementation of neuromorphic information-processing systems, is based on the use of mem-

ristors. The memristor (memory resistor) was theoretically described by Leon Chua in 1971 as a

missing passive element of electrical circuits that relates the change in magnetic flux φ(t) to the

electrical charge q(t) [13] (Fig. 1). It can be shown that this element is equivalent to a nonlinear

resistor that changes its resistance M(q(t)) depending on the history of the electrical charge

flowing through it. This definition of an ideal memristor still causes doubts and disputes among

scientists [15, 22, 50] and stimulates the search for materials and structures that exhibit a phys-

ical connection between magnetic and electrical properties [45]. However, in 1976 L. Chua and

S. Kang proposed a generalized definition of memristors and memristive dynamical systems [14]

that are described by a port equation equivalent to Ohm’s law and a set of state equations

that describe the dynamics of the internal state variables (w). This definition is universal and

describes the change in resistance (memory effect) based on various phenomena in inorganic

and organic nanomaterials (ion migration, redox reactions, phase transitions, spin and ferro-

electric effects) [53], as well as in photonic [46] and superconducting [37, 41] circuits. Among

them, it is necessary to highlight nanostructures of the metal-oxide-metal (MOM) type, which

are ideal for creating compact (with nanometer-scale size) and energy-efficient (with femtojoules

per switch) RRAM devices that can be integrated into the standard CMOS technological pro-

cess. Such devices can not only store the logical value determined by conductivity, but also allow

it to be changed in the same physical location implementing a non-von Neumann paradigm of

in-memory computing. In addition, the simple structure of memristor enables the creation of

ultra-dense and, in the future, three-dimensional arrays of crossbars that naturally (based on

Ohm’s and Kirchhoff’s laws and in analog form) implement vector-matrix multiplication (VMM)

operations, which underlies inference in traditional artificial neural networks with deep learning

and new algorithms for training spiking neural networks [31].

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 79

The development of AI technologies relies on the development of neuromorphic comput-

ing systems according to the well-known forecast within the international technology roadmap:

“The Future of AI is Neuromorphic”. Brain-like electronic components with memristors and

memristive systems will provide timely diversification of hardware, which mainly imposes fun-

damental limitations on each cycle of AI development, and will prevent another “winter” of

AI. Alternative neuromorphic technologies based on new component base are only just entering

maturity, competing with currently dominant digital high-performance computing technologies.

A detailed analysis and comparison of the achieved characteristics of neuromorphic computing

systems based on memristors and traditional component base have been previously presented

in the literature [4, 60], but every year new prototypes and records (see, e.g., [5, 51, 52, 61]) are

reported, which are discussed in Section 4. According to the roadmap for brain-inspired com-

puting chips [60], creating memristive general-purpose neuroprocessors is expected within the

next 5–10 years. The prototypes of memristive computing systems demonstrated now already

compete with the well-known neuromorphic processors based on traditional digital components

and specialized architectures (ASIC) [4].

Despite all the successes in the development of AI technologies and the impressive progress

in the development of specialized computing systems that implement neural network algorithms,

more attention is being paid to the prospects for significantly deeper adaptation of neuromorphic

principles than has been achieved so far [38]. In addition to being similar in form and essence to

the functioning of the brain, neuromorphic systems (in their narrow understanding) implemented

on the basis of memristive systems have significant potential for achieving a new level of cognitive

abilities, primarily by means of efficient real-time processing of the electrical activity of biological

neural systems as part of so-called bio- or neurohybrid systems [11, 17, 40]. At the same time,

the first known examples from the literature in which memristive devices and arrays have been

used to process bio-electrical activity only record the fact of communication between electronic

and biological systems through individual memristive devices [43] or do so in isolation from the

living systems (for example, in recently published papers [29, 30, 62], memristive chips are used

to process emulated sequence of rectangular spikes or signals of neuronal activity taken from

publicly available databases).

Remarkable progress in the development of memristive neurohybrid systems has been re-

ported in the paper [44], which demonstrates the first bidirectional adaptive neurointerface based

on advanced solutions in the field of memristive electronics and neuroengineering (Fig. 2).

A culture of hippocampal neuron cells with functional connections between neuron groups

spatially ordered with the help of a microfluidic chip has been used on a multi-electrode array

from the side of a living system. A memristive network is used not only to solve the problem

of nonlinear classification of the spatial-temporal response of a cell culture to electrical stimuli,

but also to control its functional state. Specifically, the output signals of the memristive network

correspond to different stimuli and are used for adaptive stimulation control, which allows for

the restoration of disrupted functional connections in the neural culture.

There is a great interest in the prospects of using such neurohybrid technologies for neurore-

habilitation tasks, restoring or reorganizing biological neuronal functions after the development

of a pathological condition [18].The perspective of creating cell cultures that highly reproduce

brain architectural features is extremely attractive both from the standpoint of a convenient

experimental model and from the standpoint of their use in real neurohybrid technology [10].

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

80 Supercomputing Frontiers and Innovations

Figure 2. Bidirectional adaptive neurointerface between ordered neuronal culture and memristor-
based artificial neural network [44]

Thus, the combination of high energy efficiency and unique scalability of memristive systems

allows for a decisive step from neuromorphic computing systems to neurohybrid systems based

on direct (physiological) and safe interaction between artificial electronic systems and living

neuronal systems [33]. As a result, memristive neuromorphic systems will have a worthy place

in AI medical technologies, providing not only efficient solutions to traditional AI tasks related

to processing and analyzing biomedical data, but also creating compact and energy-efficient

adaptive systems for replacing / restoring lost or improving existing brain and nervous system

functions (neuroprosthetics and instrumental correction / support / enhancement of human

cognitive abilities).

2. General Approach to Creating Memristor-Based

Neuromorphic Computing Systems

According to recent perspectives [20, 32], research and development in the field of neu-

romorphic and brain-inspired computing systems are characterized by a complex (multi-level)

and interdisciplinary nature. The first characteristic implies that new functional products are

born from the co-optimization of solutions at the levels of materials, devices, and systems. The

interdisciplinary nature not only requires the integration of different scientific communities (al-

though this is already a big challenge in itself), but also the implementation of a coordinated

plan, financing, and support (essentially, a master plan, as we have seen in the field of digital or

quantum technologies, for example). In this section, let us consider how this combined approach

is implemented in the case of developing neuromorphic and neurohybrid systems [33] based on

CMOS-compatible MOM devices with resistive switching (Fig. 3).

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 81

Figure 3. Illustration of complex (multi-level) and interdisciplinary approaches to designing
neuromorphic and neurohybrid systems based on memristors

At the material level, MOM nanostructures are fabricated and studied, which exhibit resis-

tive switching (one of the classic mechanisms of the memristive phenomenon). However, for un-

derstanding the regularities of memristive phenomenon and controlling its parameters, detailed

study of physicochemical phenomena at the nano- or microlevel is insufficient. For example,

the combination of different transport phenomena (phonons, electrons, ions) at different time

scales makes even one memristor a complex nonlinear system with a rich dynamical response.

In order to move further towards neuromorphic and neurohybrid systems, the same developed

memristive structures are implemented as integrated devices and chips that are part of various

functional circuits at the system level. Experimental work is always carried out in parallel with

multiscale modeling: from models of physical phenomena at the micro-, meso-, and macrolevels

to compact models of devices and circuit models required for automated design of electronic cir-

cuits. At the heart of such an approach lies the cross-cutting technology of memristive devices,

compatible with traditional silicon technology and providing the creation of a component base

for new brain-like information processing systems with a wide range of applications, including

traditional and spiking neural network architectures, and neurointerfaces.

The interdisciplinary nature of the project is also illustrated in Fig. 3. Physics and tech-

nology of memristive nanostructures is one of the key areas that, based on traditional and new

approaches in microelectronics, creates a technological platform for hardware implementation

of memristor-based neuromorphic systems. To interpret, describe, and predict the memristive

phenomenon, it is necessary to use the significant scientific knowledge in the fields of statistical

physics and nonlinear dynamics. Based on the latest achievements in neurobiology and neu-

rotechnology, the next step towards the symbiosis of artificial electronic and living biological

systems can be taken.

To achieve the goal, interrelated tasks should be reached, including: 1) the investigation of

new materials and devices, 2) the development of cross-cutting technology of a new component

base, and 3) the development and hardware implementation of neural network architectures.

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

82 Supercomputing Frontiers and Innovations

Figure 4. Illustration of memristive nanostructures integrated with CMOS circuitry using the
BEOL process

Regarding memristors, reaching the first task is complicated by the fact that the complex

nature of memristive phenomenon requires interconnected research at the micro- and macro-

scopic levels involving physics and chemistry of solid-state nanostructures, nonlinear dynamics,

and statistical physics. The development of these interdisciplinary studies results in the discov-

ery of new phenomena and the implementation of new methods to improve the characteristics of

electronic devices based on memristive materials. Essentially, reaching this task means resolving

fundamental issues associated with the correct description of the memristive phenomenon in

various structures and materials and accompanying the design and creation of AI information

and computing systems based on new component base.

The development of a cross-cutting technology based on resistive switching devices involves

the development of scientific and technological solutions for creating elements and cells of non-

volatile RRAM based on memristive nanostuctures with good yield, high endurance and reten-

tion parameters. The most important characteristic of memristive devices from the viewpoint of

neuromorphic applications is their ability to store information at multiple levels, and significant

progress is being made in this area now [39]. The main solution in the development of RRAM

technology is the fabrication of functional RRAM blocks based on the integration of memristive

structures, which are made at laboratory facilities in top metal layers (back-end-of-line – BEOL

process), and the active layer of CMOS (front-end-of-line – FEOL process), which is made in

industrial conditions (Fig. 4). Examples of images for the FEOL wafer, its fragment after the

completion of the BEOL process, and the ready-made crossbar array of 1T1R (one memristor –

one transistor) memristive cells are shown in Fig. 5. In the case of successful implementation,

the cross-cutting technology for creating memristive microchips will provide a technological plat-

form for a wide range of products, from RRAM microchips to neurochips, neurointerfaces, and

neuroprosthesis for medical applications.

Research and development within this task results in the design and fabrication of test

crystals with functional blocks of non-volatile resistive memory (memory cells and RRAM ar-

rays) required to demonstrate the capabilities of new memory devices and basic principles of

neuromorphic computing (VMM operations).

The main task within this scientific and technological field is the development of a neuromor-

phic processor with an array of synaptic weights based on memristors in a crossbar architecture

(the most popular active RRAM crossbar is 1T1M). This processor should have digital-analog

neurons of the leaky integrate and fire (LIF) type and other configurable parameters, with the

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 83

Figure 5. Images of the FEOL wafer, its fragment after completion of the BEOL process, and
the final array of 1T1R memristors

Figure 6. Formal neuron model – the weighted sum of inputs is fed into a basic nonlinear
activation function, which can be either a sigmoid or a simpler Rectified Linear Unit (ReLU)
transformation

ability to control and rewrite arbitrary memristive cells, supervised and unsupervised learning,

including that based on local rules, and working in logical inference modes, as well as algorithms

based on formal neural networks and spiking neural networks with spatio-temporal coding of

multi-dimensional patterns of the solved problem. In the future, such a neuroprocessor should

be able to solve various tasks in the field of AI: recognition of visual images, text and speech

processing, analysis of various types of big data, prediction of temporal data series, sensorimotor

control of mobile objects, optimization control of data flows in real-time, etc.

Let us take a closer look at the general approach to building an artificial neural network,

which is based on a neuron model. There are two types of neuron models: formal (Fig. 6)

and spiking one (Fig. 7) [34]. The main difference lies in the way the processed signals are

represented: in a formal neuron, these signals have a continuous form, while in a spiking neuron,

they are pulse-based. On the one hand, the hardware implementation of spiking neurons has an

advantage of several orders of magnitude in terms of energy efficiency, but, on the other hand,

the sharp fronts of the pulse signal make differentiation difficult, and as a result, the widely

used backpropagation method fails when training a neural network. This situation leads to the

necessity of developing new training algorithms for spiking neural networks based on bioplausible

local plasticity rules [16].

The formal model of a neuron is widely used in various types of modern coprocessors, such

as digital signal processors (DSP, digital signal processing), graphic processing unit (GPU),

numerous neural accelerators and tensor accelerators (Google TPU (Google company), IVA

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

84 Supercomputing Frontiers and Innovations

Figure 7. Spiking neuron receives sequences of spikes on its inputs and, under certain conditions,
generates a spike at its output; for example, in the LIF model, each spike contributes to the
neuron’s status – its amplitude, which decays over time; if a sufficient number of spikes con-
tributes to the status in a certain time window, the neuron amplitude exceeds a threshold, and
the neuron generates an output spike. The electrical model of such a neuron can be implemented
using an operational amplifier (OA) with an integrating RC circuit in the inverting input arm
and a comparator

Figure 8. Software-hardware ecosystem for implementing neural networks on the formal neuron
model: a significant foundation has been created, and best practices can be used for rapid
development and testing of innovative neuromorphic systems

TPU (IVA Technologies company), NM6408 (Scientific and Technical Center “Module”), Ro-

boDeus (Research and Development Center “ELVEES”), and many others), application-specific

integrated circuit (ASIC), and field-programmable gate arrays (FPGA). Frameworks have been

developed and widely used as software environments for developing neural networks, training

them, and performing inference using the aforementioned processors. Thus, full hardware and

software ecosystem has been developed for processing neural networks using the formal model

of a neuron (Fig. 8). The further development of the formal model continues in the direction of

improving processing algorithms and reducing the technology nodes of CMOS processors [23].

This background can be partially used for the hardware and software of new processors based

on neuromorphic architectures and on a component base of new physical principles. Currently,

the best neuromorphic model is based on the spiking model, but over time, neurophysiologists

will discover and justify a more realistic model of neuron operation. At the moment, digital

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 85

Figure 9. Modern neuromorphic systems based on the spiking neuron model

Figure 10. Memristive crossbar used in the VMM (inference) mode: input voltages are multiplied
by the conductance G of the corresponding memristors in a certain column, and the resulting
currents are summed up in the column. Selectors provide the connection of memristors to the
crossbar lines. In some cases, selectors provide reverse connections, where inputs are swapped
with outputs (blue lines receive voltages, and red lines extract currents) for the training process

(IBM, Motif NT), digital-analog (Intel), and analog (MIT and others) neuroprocessors have been

developed on the spiking model. Naturally, there are many other developments not indicated in

Fig. 9. The analog implementation of neurons is based on the use of operational amplifiers (OA)

allowing a number of mathematical operations to be performed using currents and voltages in

an electrical circuit.

The main operation carried out in neural network computation is VMM. As noted above,

VMM is naturally and in analog form implemented in a memristive crossbar, which consists of

a set of parallel metal lines in one plane and another set of parallel lines oriented perpendicular

in another parallel plane. Memristors with programmable (self-adapting based on local rules)

conductance values are placed at the crossbar nodes along with selectors – elements that provide

correct addressing when accessing memristors (Fig. 10) [4].

On the one hand, analog representation and processing of information without the clocking

characteristic of modern von Neumann architecture processors and coprocessors provides max-

imum speed and eliminates pipeline delays when obtaining results. On the other hand, digital

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

86 Supercomputing Frontiers and Innovations

Figure 11. Levels of logical zero and one for a supply voltage range of 5V, ensuring high noise
immunity for processed signals. The signal ranges VO (output of the signal source) for the logical
zero and one are wider than their corresponding ranges VI (input of the signal receiver), compen-
sating for possible voltage fluctuations during signal transmission through the interconnection
lines between logical elements, signal source, and receiver

representation of information in the form of logical zeros and ones provides a high level of noise

immunity due to the fact that the entire range of power supply voltage is divided into 3 zones

(Fig. 11), the middle of which is not used and minimizes the number of possible errors. The use

of analog, continuous amplitude scales for processing signals automatically imposes limitations

on the dimensionality of the crossbar.

Memristive crossbars are the basis for hardware analog execution of mathematical opera-

tions inherent in various architectures of neuromorphic devices. Specifically, they allow for the

execution of the VMM, which occupies the majority of data processing time in neuromorphic

systems (inference), in parallel for several neurons in a single clock processor cycle with very

low (picojoule) energy consumption. However, the potential for high performance and low en-

ergy consumption is not automatically realized – the computations in memristive crossbar-based

systems must be organized in the most optimal way. Analogous to von Neumann architecture,

the task of signal switching and control of a computing device can become a “bottleneck” in

neuromorphic systems if not handled correctly.

A characteristic feature of neuromorphic systems is that, similar to biological networks of

neurons, they contain a large number of interconnected nodes performing the same operations

on the information being processed. For practical applications, the number of nodes (neurons)

can be measured in thousands and the number of connections (synapses) – in millions. Individual

memristive crossbars, having a specific number of memristive devices determined by the topology

of the crystal and existing technological constraints, physically implement only a portion of the

connections between neurons in different layers, with several crossbars possibly related to the

same neurons. In these conditions, the developed architectures must be scalable.

The scalability of neuromorphic systems based on memristors logically should be imple-

mented both at the neural model architecture level – “horizontally” (to provide the necessary

number of neuron layers) and “vertically” (to provide the necessary number of neuron inputs),

as well as at the level of parallel processing of data flows by multiple neuromorphic models with

the same architecture. Moreover, physically, such scaling also has several levels – increasing

the number of crossbars in a single neuroprocessor, increasing the number of neuroprocessors,

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 87

Figure 12. A separate in-memory computing chip based on the memristor-based array equipped
with built-in dynamic RAM. Input and output circuits provide binary signal conversion into
voltage and the reverse conversion of resulting currents into voltage. Computations are controlled
by a multi-core processor device with cache memory implemented on another chip

and combining them into a cluster, and so on. The basic requirement for each level of scaling

is to maintain a high level of parallelism in signal commutation for their simultaneous deliv-

ery to an equivalent crossbar (single crossbar or several crossbars combined “horizontally” and

“vertically”) and control of keys and selectors.

3. Approaches to Scaling Up Memristor-Based Neuromorphic

Computing Systems

Let us consider various options for scaling active memristive crossbars in a CMOS-integrated

form to increase the speed of signal transmission in memristive neural networks with static and

spike coding [48].

In the classical von Neumann architecture, separate devices are used for data storage (ran-

dom access memory, RAM) and computation (arithmetic logic unit, ALU). The operation prin-

ciple of the slow dynamic memory DRAM limits the speed of reading/writing information of

both initial and resulting data of the computational process. Therefore, when computing in

memory, a separate chip is equipped with its own memory and computational cirtuit, which is

controlled by the central processing unit (CPU) chip – Fig. 12 [4].

The computational process is organized as follows. The processor updates the weight coeffi-

cients in the memristive crossbar as needed, loads the input matrix into the embedded eDRAM

memory in the chip for in-memory calculations, and issues the command to start the calcu-

lations. Data from eDRAM are transferred to the input circuit and converted into voltages

required to operate the memristive crossbar. Each column of the memristive crossbar sums the

products of input voltage and memristor conductivity in the form of current, performing an

analog implementation of multiplication with accumulation in memory. In the output circuit,

the results are converted into an output resulting matrix and stored in eDRAM for further use

by the processor in the computing process.

The input and output circuits servicing the operation of the memristive crossbar are imple-

mented using digital circuits with the use of analog-to-digital and digital-to-analog converters

(ADCs and DACs) designed using CMOS technology – Fig. 13 [4].

The simplest binary neural networks require a relatively small percentage of CMOS process-

ing circuits in the overall hardware implementation taking into account the memristive crossbar.

The current level of development in the design and technology of memristive devices reflects the

availability of devices with two levels of information storage. Binary networks are very energy-

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

88 Supercomputing Frontiers and Innovations

Figure 13. Flexibility and energy efficiency are maximized with analog signal processing. The
hardware implementation of post-processing of the input signal (voltage) is also simplified for
the transition from digital to analog representation

efficient but capable of solving relatively simple tasks, such as pre-processing and processing of

sound and speech.

Moving to three or more binary digits on one side opens the possibility of using more

complex neural networks, but also means an increase in the share of CMOS circuits in the

overall hardware implementation. New technologies of such multi-level memristors are actively

being developed [39].

The use of unlimited (analog) precision of weights requires the use of corresponding memris-

tors, which are not widely available at present, as well as a significant volume of high-precision

CMOS component base to provide digital-to-analog and analog-to-digital support for memristive

crossbars. The undeniable advantage of neural networks in such implementation is the high de-

gree of accuracy achieved during their operation due to the absence of the need to reduce the bit

depth of weight coefficients during the conversion of the model into hardware implementation.

Each column is implemented in the simplest analog encoding circuit with amplitude encoding

of the input signal and a 0T1R memristor cell in the crossbar node operated by an OA with

a feedback resistor (Fig. 13, analog voltage encoding). The addition of duration to the input

signal requires an integrating function in the OA (Fig. 13, analog voltage and duration encoding).

To process signals in a full memristive crossbar with 1T1R cells and digitized amplitude and

sampled duration of the input signal, the most complex CMOS circuit will be required, using a

comparator and counter (Fig. 13, digital voltage and duration encoding).

The activation function is also implemented in circuits using OA (Fig. 14). A circuit con-

taining 2 OA and a set of resistors serves one column of a memristive crossbar [28].

In well-designed CMOS circuits for memristive crossbars, the limiting factor for increasing

their dimensionality is the presence of parasitic sneak paths in these crossbars. The problem

is that current, in addition to the desired propagation path of row-column, also flows through

adjacent undesirable paths. In [64], an analysis of this problem was carried out: the ratio of the

voltage range in the crossbar to the voltage range in one memristor was calculated depending

on the stored values in the crossbar and the grounding of rows and columns. The presence

of parasitic paths depends significantly on the stored values in the memristive crossbar. The

dependence of the parameter ∆′, which is equal to the ratio of the power supply voltage and the

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 89

Figure 14. An example of implementing an activation function on an OA for a fully connected
layer of a neural network when the total column current Ic is received: V0 is the activated output,
VT is the target value for V0, ∆V is the mismatch error between V0 and VT

zero voltage (ground) difference for the entire crossbar to the same difference for one memristor,

was investigated. In the ideal case, the result is equal to one, in others – less than one. The

simulation results show that a significant decrease in the analyzed parameter is observed even

for relatively small dimensions of a 16× 16 and 64× 64 arrays.

To address the issue of parasitic sneak paths, several methods are being considered. The first

method is called multi-stage reading and includes five steps: measuring the target cell current,

setting the target cell to high-resistance state (HRS) and measuring the current, performing a

similar operation for low-resistance state (LRS), comparing the measured currents, and returning

the cell to its original state. The second method involves column separation architecture for each

memristor. The third and fourth methods involve using a diode and a transistor as a selector

(1D1R and 1T1R cells, respectively). The fifth method involves using complementary memristors

that provide constant resistance RLRS+RHRS, significantly reducing parasitic currents. Although

the 1T1R cell takes up more space and an additional line is required to control the transistor

gate, this method is the most common.

In various crossbar circuits, duplication of elements is used to achieve the required func-

tionality and increase performance, as well as multiplexing the component base for its subse-

quent reuse to perform various functions with time division. Thus, the HRS and LRS in binary

ReRAMs are positive, so the XNOR operation is used for encoding signed weights, and the

number of rows of memristive crossbars is doubled (Fig. 15) [44]. In Fig. 15, SL is the source

line, BL is the bit line, WL is the word line: lines of source, bits and words; the input signal

value “–1” is encoded by a pair of 1 and 0, the value “+1” – by a pair of 0 and 1; the weight

“–1” is encoded by a pair of LRS and HRS, the weight “+1” – by a pair of HRS and LRS; eight

bit lines are collected into a processing block; the next bit line is selected on the multiplexer

and its value (128 levels) is digitized with the help of instrumentation amplifiers. High precision

instrument amplifiers operating in voltage mode are used to process signals of the memristive

array columns, which are separated by a multiplexer for processing the signal of one of the eight

columns (bit lines). In the first case, there is a duplication of the hardware, in the second case,

there are savings of the CMOS base by increasing the signal processing time. Various circuits

of adaptive compensation of large or small current values in polled memristors are used, for

example, the voltage clamp control circuit [59].

The active development of circuits on memristive crossbars is accompanied by the increase

in the dimensionality of crossbars on one hand, and by proposals to map neural networks to the

hardware implementation of such processors on the other. For example, in [51], the NeuRRAM

processor with a multilevel organization of processor units is proposed. At the top level, the

implemented hardware neural network is mapped onto such a processor consisting of 48 cores

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

90 Supercomputing Frontiers and Innovations

Figure 15. Example of implementing a memristive array with an effective size of 64× 64

organized in an array of 8 rows by 6 columns (Fig. 16). To operate the neural network, it is

mapped onto 48 cores of a chip in one of 6 ways: (1) 1 layer in 1 core, (2) duplication in multiple

cores to increase throughput, (3) multiple layers in one core, (4) reordering in one core to increase

utilization, (5) and (6) parallelization on multiple cores. Each core consists of an array of 16×16

corelets, each of which contains a 16 × 16 RRAM weights and a CMOS neuron. The single-

bit BL and SL switches of the corelet can change the direction of the signal being processed

by the CMOS neuron from BL to SL or vice versa. This configuration is called Bidirectional

transposable neurosynaptic array (TNSA), meaning that the input signals can be fed to both

rows and columns with the help of supporting CMOS circuits. At the stage of VMM input, the

drivers convert the register inputs (REG) and PRN inputs into analog voltages and transmit

them to TNSA. At the stage of VMM output, the drivers transmit digital outputs from neurons

back to registers through REG. In addition, various activation functions, including stochastic

ones, are implemented in the CMOS circuits.

At the lower level, the corelet consists of a 16 × 16 array of memristors and one CMOS

neuron. The neuron is connected to one of 16 bit lines and one of 16 source select lines that pass

through the corelet. It is responsible for integrating inputs from all 256 RRAMs connected to a

single BL or SL: 16 RRAMs in the current corelet and 240 RRAMs in other corelets along the

same row / column. Thanks to an advanced routing system, each core is capable of performing

forward, backward, and recurrent VMM on all 256 rows.

The above-mentioned memristive crossbars with CMOS control circuits are implemented

as monolithic microchips with 90 and 130 nm technology nodes. As noted above, the CMOS

control circuits are located in the FEOL layer, while the memristive crossbar is located between

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 91

Figure 16. Architecture of the NeuRRAM project [51]

the metallization layers in the BEOL layer or on top of it (Fig. 4). However, there is another

relatively new approach to implementing complex devices, including cases where their parts are

made using different and possibly incompatible technologies. In the above example, the oxide

layer in the memristor may be destroyed by the high temperature during the formation of the

upper layers using CMOS technology – exceeding the temperature budget [63].

The idea of dividing a large chip by area into a set of separate chiplets (mini-chips) with

their subsequent placement and side-by-side connection on the substrate-interposer plane (2.5D

integration) or in the form of a stack (stepped structure, 3D integration) with connection by

vertical conductors (TSV, through silicon via) originated in 2015 [25]. Each chiplet is usually

a system module, implemented using incompatible technologies or implementing a complex

functional block (IP, intellectual property). Pascal Vivet (LETI – Laboratory of Electronics

and Information Technologies, European center for research in microelectronics) believes that

“Chiplet-based ecosystems will deploy rapidly in high-performance computing and various other

market segments, such as embedded HPC for the automotive and other sectors” [25]. LETI

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

92 Supercomputing Frontiers and Innovations

Figure 17. Active interposer presented by the LETI center [25] to combine 96 cores on 6 chiplets.
The active interposer with RDL (redistribution layer) allows combining the interposer with a
bump pitch of 200 µm (at the bottom) and micro-bump pitch of 20 µm (at the top of the chiplet)

presented an active interposer technology for chiplets, which was used to assemble a structure

consisting of 6 chiplets with a total of 96 cores (Fig. 17).

The issues of chiplet assembly, testing, and yield, as well as CAD support, are not yet

adequately addressed in the technology of chiplets. However, extensive work is being done to

standardize interchip communication technologies, such as Intel’s Advanced Interface Bus (AIB),

the Optical Internetworking Forum’s CEI-112G-XSR, and Open Domain-Specific Architecture’s

BoW (Bunch of Wires) and OpenHBI (High Bandwidth Interface).

The seriousness of chiplet technology is confirmed by the participation of well-known com-

panies like Boeing, Cadence, Synopsys, Intel, Micron, and others in the project Common Hetero-

geneous Integration and IP Reuse Strategies (CHIPS, a program for integrating heterogeneous

chips and reusing complex functional blocks since 2017), as well as GE, Intel, Keysight, Xilinx,

and others in the project The State of The Art (SOTA) Heterogeneous Integrated Packaging

(SHIP, an advanced program for packaging heterogeneous chips – to establish interface stan-

dards between chiplets and ensure the assembly of complex functional blocks since 2019). Both

projects are being implemented by the American agency DARPA.

An actual example of using such technology for in-memory computing on memristive cross-

bars is the SIAM project – Chiplet-based Scalable In-Memory Acceleration with Mesh for Deep

Neural Networks [24], a chiplet-based scalable in-memory computing accelerator for deep neural

networks (Fig. 18). At the initial stage, a transition from a neural network to an architecture is

made, taking into account: the IMC (In-Memory Computing) chip mode, the network frequency

in the package (NoP), the size and number of chiplets, IMC mapping, the number of tiles per

chiplet, the size of the crossbar, memory cell type, technology node, and accumulator size; the

“engine” for partitioning and mapping: internal chiplet planning, chiplet placement, “engines”

for NoP and DRAM; mapping to IMC tiles, external chiplet planning, routing and placement,

“engine” for electrical circuit and chip network (NoC, network on chiplet); obtaining a chip

partitioning as shown in Fig. 18 on the left.

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 93

Figure 18. SIAM project [24]: implementing computational functions through chiplets, global
accumulator and buffer, DRAM memory placed and connected on the interposer in a package
and connected to the NoP (on the left). Each IMC chiplet consists of IMC tiles, calculation
modules, communication and routing (on the right). Each tile consists of multiple processing
elements (PE), a multiplexer, ADC, instrumentation OA, shift and adder device, buffer; each
PE contains a memristive crossbar (not shown)

4. Comparison of Computational Systems Based on Traditional

and New Component Base

Let us take a closer look at the results of comparing known GPU and neuromorphic proces-

sors based on traditional digital components with prototypes of memristor-based neuromorphic

processors. For comparison, we will use two absolute criteria – the number of cells and peak

performance (gigaoperations per second, GOPs), and two relative criteria – performance per

chip area (GOPs/mm2) and performance per watt of energy consumption (energy efficiency,

GOPs/W). These criteria are calculated for the inference of neural networks, where the basic

operation is a VMM. The comparison results are shown in Fig. 19.

For this comparison, specialized neuromorphic processors Altai [1] and Tianjic [36], opti-

mized for spiking neural networks, and the most powerful GPU from NVIDIA – Tesla V100 [2],

which is more universal than the previous ones, as it allows solving a wide range of tasks in the

field of data processing, were chosen. The performance metrics were taken from open sources (ref-

erences at the horizontal axis) as indicated by the authors. All prototypes of memristor-based

processors selected for comparison are made using CMOS-compatible technology and have a

device layer with transistor selectors (except [7]) and other electronics required for operation.

As seen in Fig. 19a, computing systems based on memristive devices have significantly

fewer cells than existing processors. However, this is not a disadvantage and is explained by

the fact that the presented developments are still prototypes created as a result of research

and development. Nevertheless, even such relatively small processors, with up to 4 million cells,

demonstrate sufficiently high performance, surpassing Altai and Tianjic processors with 67 and

10 million synapses, respectively (see Fig. 19b).

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

94 Supercomputing Frontiers and Innovations

(a) (b)

(c) (d)

Figure 19. Comparison results of memristor-based computing systems (bar chart columns) with
neuromorphic processors (horizontal solid lines) and GPU (horizontal dashed line) based on
traditional digital components according to the following criteria: the number of cells (a), peak
performance (b), performance per chip area (c) and performance per watt of energy consump-
tion (d)

The advantages of computing systems based on memristive devices are most clearly demon-

strated when compared according to relative criteria. The high potential for miniaturization of

memristive devices (down to a few nanometers) and RRAM cells (requiring only 1–2 transistors)

allows for more efficient use of chip space, as shown in Fig. 19c. For example, the RAND chip

(Resistive Analog Neuro Device [35]) made using 40 nm technology has an area of 2.71 mm2 at

a density of 1.48M synapses per mm2 with drivers, controllers, and multiplexers while providing

three times higher relative performance than the Tianjic processor and 12.6 times higher perfor-

mance than NVIDIA Tesla V100. In turn, the energy efficiency of memristor-based computing

systems is 2–3 orders of magnitude better than existing processors (see Fig. 19d). For example,

the nvCIM macro chip [21] made using 22 nm technology node demonstrates 12–150 times lower

power consumption than Tianjic and 300–3700 times lower consumption than NVIDIA Tesla

V100.

With the advancement of technology in creating memristor-based neural processors, the

number of cells will increase, meaning that with higher computing density, peak performance

will exceed the performance parameters of neuromorphic processors based on traditional digital

electronics and specialized architectures presented in Fig. 19b. Of course, this growth cannot be

indefinitely large, and potential high performance and energy efficiency will be more influenced

by design solutions at the processor and computing system architecture levels, especially the

growing overhead costs of routing and input/output data in digital form (see also Section 3). For

example, when it comes to processing signals of different nature, performance will be limited by

the characteristics of sensors and information transmission interfaces, so devices for computing in

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 95

sensors with direct transmission of information in analog form to a memristor-based computing

device are currently being developed for such tasks [31, 49].

A number of other notable examples of memristor-based computing systems were not in-

cluded in this comparison, as authors in publications often do not provide the values of the

criteria used in Fig. 19. In addition to these, there are more specialized criteria for assessing

performance and energy efficiency in relation to the peculiarities of the processor architecture

or the specific problem being solved. These criteria include the number of synaptic giga- or

teraoperations per second (GSOPs, TSOPs) [3, 36], the number of giga- or teraoperations per

second computed per 1 Mb of ReRAM (GOPs/Mb, TOPs/Mb) [51], AiMC TOPS/W [8], the

number of processed frames per watt (frames/W) [61], and energy-delay-product (EDP, j·s) [51].

Furthermore, some authors use software simulators (such as XPEsim [58]) to evaluate the per-

formance and energy efficiency characteristics of ReRAM-based chips due to the high cost of

prototyping. In the future, a valuable criterion for comparing in-memory computing systems

will be the cost of 1 k/M/G byte of memory.

Neuromorphic computing accelerators (standard digital ASICs based on CMOS, system

solutions, and memristor-based microchips) presented in Fig. 19 were compared for performance

and energy efficiency taking into account their high (comparable to software emulation) accuracy

in inference of neural network models for specific tasks such as pattern recognition, classification,

segmentation, etc. Table 1 shows the numerical values of characteristics of memristor-based

computing systems, including the task, neural network model architecture and achieved accuracy

metrics.

From Tab. 1, it can be seen that the considered processors perform at a high level on

commonly accepted test tasks for image classification from the MNIST dataset with an accu-

racy range of 90.8 [35] to 99 % [51], CIFAR-10 – from 85.7 [51] to 95.19 % [21], CIFAR-100 –

65.71 % [57], recognize Google voice commands with an 84.7 % probability [51], and success-

fully solve other tasks whilst implementing well-known neural network architectures such as

MLP (multilayer perceptron), DNN (deep neural network), CNN (convolutional neural net-

work), LSTM (long short-term memory) and ResNet-20, ResNet-50, VGG16 models.

It should be noted that, among the considered prototypes, the most versatile in terms of the

ability to launch different architectures of neural networks is the NeuRRAM chip [51]. As can be

seen from Fig. 19 and Tab. 1, NeuRRAM already has 33–800 times better energy efficiency at

technology node of 130 nm than Tianjic, Altai, and NVIDIA Tesla V100 processors, and provides

high relative performance compared to them. At the same time, a many orders of magnitude

gain in the mentioned and other parameters is expected when scaling the technology node to

7 nm from the current level of 90–130 nm, which are currently used in creating prototypes of

multi-core processors based on memristive devices in the structure of MOM.

Thus, in-memory computing is currently the only way to increase the performance and re-

duce the energy consumption of AI computing systems, as it is the most bioplausible information

processing principle from a functional point of view, and it allows for a significant reduction in

data transfer distance and required memory volume (model parameters are constantly stored

in the processor), as well as energy consumption required for VMM. For in-memory computing,

different types of memory can be used [42]: SRAM, DRAM, Flash, however, the most suitable

one is RRAM, as other types of memories have disadvantages (such as low scalability, high cost

and volatility for SRAM, poor process compatibility with CMOS for processors and the need for

regeneration tens of times per second for DRAM, difficulties in implementing write at arbitrary

address for Flash, etc.) and impose significant limitations on the creation of neuromorphic chips.

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

96 Supercomputing Frontiers and Innovations

T
a
b
le

1
.

N
u

m
er

ic
al

ch
ar

ac
te

ri
st

ic
s

of
m

em
ri

st
or

-b
as

ed
co

m
p

u
ti

n
g

sy
st

em
s

R
ef

.
C

M
O

S
U

n
it

C
el

l
C

ro
ss

b
ar

P
ea

k
E

n
er

gy
A

re
a

A
cc

u
ra

cy
o
n

te
ch

n
.

ce
ll

n
u

m
b

.
si

ze
T

h
ro

u
gh

p
u

t
E

ffi
ci

en
cy

E
ffi

ci
en

cy
A

p
p

li
ca

ti
o
n

s

(G
O

P
S

)
(G

O
P

S
/W

)
(G

O
P

S
/m

m
2
)

D
em

o
n

st
ra

te
d

[5
1]

*
7

n
m

1T
1R

3M
16
×

16
2,

13
5

1,
36

0,
00

0
12

,8
00

99
%

M
N

IS
T

,
8
5
.7

%
C

IF
A

R
-1

0
,

8
4
.7

%
G

o
o
g
le

sp
ee

ch

[2
1]

22
n

m
1T

1R
4M

10
24
×

51
2

39
4

19
4,

00
0

65
.7

9
2
.0

1
–
9
5
.1

9
%

C
IF

A
R

-1
0

[3
5]

40
n

m
1T

1R
4M

n
/a

66
0

66
,5

00
24

0
9
0
.8

%
M

N
IS

T
(M

L
P

)

[5
1]

13
0

n
m

1T
1R

3M
16
×

16
2,

13
5

43
,0

00
13

.4
se

e
ro

w
[5

1
]*

[2
7]

13
0

n
m

2T
2R

15
9k

n
/a

1,
50

0
78

,4
00

71
9
4
.4

%
M

N
IS

T
(M

L
P

)

[6
1]

13
0

n
m

1T
1R

16
k

12
8
×

16
41

,9
00

14
,9

00
3,

10
0

4
0
.2

1
d

B
P

S
N

R
a
n

d

2
2
.3

8
d

B
S

N
R

fo
r

M
R

I
a
n

d
C

T
im

a
g
es

[2
6]

2
µ

m
1T

1R
8k

12
8×

64
1,

64
0

11
9,

70
0

15
0

n
/
a

[5
7]

22
n

m
1T

1R
2M

51
2
×

51
2

29
14

6,
00

0
4.

8
90

.8
8

%
C

IF
A

R
-1

0
(R

es
N

et
-2

0
),

65
.7

1
%

C
IF

A
R

-1
0
0

(R
es

N
et

-2
0
)

[3
5]

*
18

0
n

m
1T

1R
2M

n
/a

33
0

21
,0

00
26

se
e

ro
w

[3
5
]

[5
4]

13
0

n
m

1T
1R

18
k

25
6
×

16
78

0
1,

65
0

69
n
/
a

[5
8]

13
0

n
m

1T
1R

16
k

12
8
×

16
81

11
,0

00
1,

16
0

9
6
.9

2
%

M
N

IS
T

(C
N

N
)

[5
6]

55
n

m
1T

1R
1M

51
2
×

25
6

12
53

,1
70

1.
6

88
.5

2
%

C
IF

A
R

-1
0

(C
N

N
)

[9
]

65
n

m
1T

1R
1M

51
2
×

25
6

19
16

,9
50

3
98

.8
%

M
N

IS
T

(L
eN

et
D

N
N

)

[4
7]

15
0

n
m

1T
1R

4k
32
×

32
10

1
46

2
2

n
/
a

[6
]

13
0

n
m

2T
2R

1k
32
×

32
2.

7
4,

20
0

13
9
8
.4

%
M

N
IS

T
(M

L
P

),

8
7

%
C

IF
A

R
-1

0
(C

N
N

)

[7
]

18
0

n
m

0T
1R

6k
54
×

10
8

57
18

7.
6

0.
9

94
.6

%
b

re
a
st

ca
n

ce
r

sc
re

en
in

g
d

a
ta

se
t

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 97

Conclusion

Memristors are very simple devices and at the same time very smart and complex nonlin-

ear systems promising a wide range of applications from memory chips and in-memory neuro-

morphic computing systems to adaptive neural interfaces. The implementation of neuromorphic

computing systems based on this new component base requires coordinated and interdisciplinary

research and development at various levels. The basis of the corresponding scientific and tech-

nological direction is the cross-cutting technology of memristive devices and circuits, providing

for the creation of a new brain-like information and computing system base with a wide range

of applications. The currently demonstrated perspectives are associated with the monolithic in-

tegration of memristive devices and arrays with CMOS circuits, as well as co-optimization of

materials, devices, and architectures necessary for creating demonstration prototypes of infor-

mation and computing systems based on memristors.

Various scaling options of active memristive crossbars in integrated implementation provide

an increase in signal transmission speed in memristive neural networks with both static and

spike coding. The analysis of circuit solutions based on CMOS component base, which ensure

efficient operation of the memristive crossbar during training and inference, demonstrates an

increase in effective crossbar dimensions in recent years. An alternative solution to monolithic

integrated implementation is also presented in the paper through various examples of chiplet

technology-based implementations.

Comparison of neuromorphic computing systems based on traditional and new component

bases shows that existing prototypes already significantly (by orders of magnitude) outperform

known computing systems based on traditional component base in terms of performance and

energy efficiency without reducing precision in vector-matrix multiplication and artificial neural

network inference.

Acknowledgements

This study was conducted within the framework of the scientific program of the National

Center for Physics and Mathematics, section No. 9 “Artificial intelligence and big data in tech-

nical, industrial, natural and social systems”.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Neurochip “Altai”. https://motivnt.ru/neurochip-altai/, accessed: 2023-05-15

2. NVIDIA Tesla V100 GPU architecture the world’s most advanced data cen-

ter GPU. https://www.nvidia.cn/content/dam/en-zz/Solutions/Data-Center/

tesla-product-literature/volta-architecture-whitepaper.pdf, accessed: 2023-05-

15

3. Akopyan, F., Sawada, J., Cassidy, A., et al.: TrueNorth: Design and Tool Flow of a 65 mW

1 Million Neuron Programmable Neurosynaptic Chip. IEEE Transactions on Computer-

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

98 Supercomputing Frontiers and Innovations

https://motivnt.ru/neurochip-altai/
https://www.nvidia.cn/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/volta-architecture-whitepaper.pdf
https://www.nvidia.cn/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/volta-architecture-whitepaper.pdf

Aided Design of Integrated Circuits and Systems 34(10), 1537–1557 (oct 2015). https:

//doi.org/10.1109/TCAD.2015.2474396

4. Amirsoleimani, A., Alibart, F., Yon, V., et al.: In-Memory Vector-Matrix Multiplication

in Monolithic Complementary Metal-Oxide-Semiconductor-Memristor Integrated Circuits:

Design Choices, Challenges, and Perspectives. Advanced Intelligent Systems 2(11), 2000115

(nov 2020). https://doi.org/10.1002/AISY.202000115

5. Bianchi, S., Muñoz-Martin, I., Covi, E., et al.: A self-adaptive hardware with resistive

switching synapses for experience-based neurocomputing. Nature Communications 14(1),

1–14 (mar 2023). https://doi.org/10.1038/s41467-023-37097-5

6. Bocquet, M., Hirztlin, T., Klein, J.O., et al.: In-Memory and Error-Immune Differential

RRAM Implementation of Binarized Deep Neural Networks. Technical Digest - International

Electron Devices Meeting, IEDM 2018-December, 20.6.1–20.6.4 (jan 2019). https://doi.

org/10.1109/IEDM.2018.8614639

7. Cai, F., Correll, J.M., Lee, S.H., et al.: A fully integrated reprogrammable memristor-CMOS

system for efficient multiply-accumulate operations. Nature Electronics 2(7), 290–299 (jul

2019). https://doi.org/10.1038/s41928-019-0270-x

8. Cai, F., Yen, S.H., Uppala, A., et al.: A Fully Integrated System-on-Chip Design with

Scalable Resistive Random-Access Memory Tile Design for Analog in-Memory Computing.

Advanced Intelligent Systems 4(8), 2200014 (aug 2022). https://doi.org/10.1002/AISY.

202200014

9. Chen, W.H., Dou, C., Li, K.X., et al.: CMOS-integrated memristive non-volatile computing-

in-memory for AI edge processors. Nature Electronics 2(9), 420–428 (aug 2019). https:

//doi.org/10.1038/s41928-019-0288-0

10. Chiaradia, I., Lancaster, M.A.: Brain organoids for the study of human neurobiology at

the interface of in vitro and in vivo. Nature Neuroscience 23(12), 1496–1508 (nov 2020).

https://doi.org/10.1038/s41593-020-00730-3

11. Chiolerio, A., Chiappalone, M., Ariano, P., Bocchini, S.: Coupling resistive switching devices

with neurons: State of the art and perspectives. Frontiers in Neuroscience 11(FEB), 70 (feb

2017). https://doi.org/10.3389/FNINS.2017.00070/BIBTEX

12. Christensen, D.V., Dittmann, R., Linares-Barranco, B., et al.: 2022 roadmap on neuromor-

phic computing and engineering. Neuromorphic Computing and Engineering 2(2), 022501

(may 2022). https://doi.org/10.1088/2634-4386/AC4A83

13. Chua, L.O.: MemristorThe Missing Circuit Element. IEEE Transactions on Circuit Theory

18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

14. Chua, L.O., Kang, S.M.: Memristive Devices and Systems. Proceedings of the IEEE 64(2),

209–223 (1976). https://doi.org/10.1109/PROC.1976.10092

15. Demin, V.A., Erokhin, V.V.: Hidden symmetry shows what a memristor is. International

Journal of Unconventional Computing 12, 433–438 (2016)

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 99

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1002/AISY.202000115
https://doi.org/10.1038/s41467-023-37097-5
https://doi.org/10.1109/IEDM.2018.8614639
https://doi.org/10.1109/IEDM.2018.8614639
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1002/AISY.202200014
https://doi.org/10.1002/AISY.202200014
https://doi.org/10.1038/s41928-019-0288-0
https://doi.org/10.1038/s41928-019-0288-0
https://doi.org/10.1038/s41593-020-00730-3
https://doi.org/10.3389/FNINS.2017.00070/BIBTEX
https://doi.org/10.1088/2634-4386/AC4A83
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/PROC.1976.10092

16. Demin, V.A., Nekhaev, D.V., Surazhevsky, I.A., et al.: Necessary conditions for STDP-

based pattern recognition learning in a memristive spiking neural network. Neural Networks

134, 64–75 (feb 2021). https://doi.org/10.1016/J.NEUNET.2020.11.005

17. George, R., Chiappalone, M., Giugliano, M., et al.: Plasticity and Adaptation in Neuromor-

phic Biohybrid Systems. iScience 23(10), 101589 (oct 2020). https://doi.org/10.1016/J.

ISCI.2020.101589

18. Guggisberg, A.G., Koch, P.J., Hummel, F.C., Buetefisch, C.M.: Brain networks and their

relevance for stroke rehabilitation. Clinical Neurophysiology 130(7), 1098–1124 (jul 2019).

https://doi.org/10.1016/J.CLINPH.2019.04.004

19. Ham, D., Park, H., Hwang, S., Kim, K.: Neuromorphic electronics based on copying and

pasting the brain. Nature Electronics 4(9), 635–644 (sep 2021). https://doi.org/10.1038/

s41928-021-00646-1

20. Huang, Y., Kiani, F., Ye, F., Xia, Q.: From memristive devices to neuromorphic sys-

tems. Applied Physics Letters 122(11), 110501 (mar 2023). https://doi.org/10.1063/5.

0133044/2880793

21. Hung, J.M., Xue, C.X., Kao, H.Y., et al.: A four-megabit compute-in-memory macro

with eight-bit precision based on CMOS and resistive random-access memory for AI

edge devices. Nature Electronics 4(12), 921–930 (dec 2021). https://doi.org/10.1038/

s41928-021-00676-9

22. Kim, J., Pershin, Y.V., Yin, M., et al.: An Experimental Proof that Resistance-Switching

Memory Cells are not Memristors. Advanced Electronic Materials 6(7), 2000010 (jul 2020).

https://doi.org/10.1002/AELM.202000010

23. Krasnikov, G.Y.: The capabilities of microelectronic processes with 5 nm critical dimension

and less. Nanoindustry Russia 13(S5-1(102)), 13–19 (2020)

24. Krishnan, G., Mandal, S.K., Pannala, M., et al.: SIAM: Chiplet-based Scalable In-Memory

Acceleration with Mesh for Deep Neural Networks. ACM Transactions on Embedded Com-

puting Systems (TECS) 20(5s) (sep 2021). https://doi.org/10.1145/3476999

25. LaPedus, M.: Chiplet Momentum rising. Semiconductor Engineering. https://

semiengineering.com/chiplet-momentum-rising/ (2020), accessed: 2022-10-28

26. Li, C., Hu, M., Li, Y., et al.: Analogue signal and image processing with large mem-

ristor crossbars. Nature Electronics 1(1), 52–59 (dec 2017). https://doi.org/10.1038/

s41928-017-0002-z

27. Liu, Q., Gao, B., Yao, P., et al.: A Fully Integrated Analog ReRAM Based 78.4TOPS/W

Compute-In-Memory Chip with Fully Parallel MAC Computing. Digest of Technical Papers

- IEEE International Solid-State Circuits Conference 2020-February, 500–502 (feb 2020).

https://doi.org/10.1109/ISSCC19947.2020.9062953

28. Liu, X., Zeng, Z.: Memristor crossbar architectures for implementing deep neural networks.

Complex and Intelligent Systems 8(2), 787–802 (apr 2022). https://doi.org/10.1007/

S40747-021-00282-4/TABLES/7

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

100 Supercomputing Frontiers and Innovations

https://doi.org/10.1016/J.NEUNET.2020.11.005
https://doi.org/10.1016/J.ISCI.2020.101589
https://doi.org/10.1016/J.ISCI.2020.101589
https://doi.org/10.1016/J.CLINPH.2019.04.004
https://doi.org/10.1038/s41928-021-00646-1
https://doi.org/10.1038/s41928-021-00646-1
https://doi.org/10.1063/5.0133044/2880793
https://doi.org/10.1063/5.0133044/2880793
https://doi.org/10.1038/s41928-021-00676-9
https://doi.org/10.1038/s41928-021-00676-9
https://doi.org/10.1002/AELM.202000010
https://doi.org/10.1145/3476999
https://semiengineering.com/chiplet-momentum-rising/
https://semiengineering.com/chiplet-momentum-rising/
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1109/ISSCC19947.2020.9062953
https://doi.org/10.1007/S40747-021-00282-4/TABLES/7
https://doi.org/10.1007/S40747-021-00282-4/TABLES/7

29. Liu, Z., Tang, J., Gao, B., et al.: Multichannel parallel processing of neural signals in

memristor arrays. Science Advances 6(41) (oct 2020). https://doi.org/10.1126/SCIADV.

ABC4797/SUPPL_FILE/ABC4797_SM.PDF

30. Liu, Z., Tang, J., Gao, B., et al.: Neural signal analysis with memristor arrays towards

high-efficiency brain-machine interfaces. Nature Communications 11(1), 1–9 (aug 2020).

https://doi.org/10.1038/s41467-020-18105-4

31. Makarov, V.A., Lobov, S.A., Shchanikov, S., et al.: Toward Reflective Spiking Neural Net-

works Exploiting Memristive Devices. Frontiers in Computational Neuroscience 16, 62 (jun

2022). https://doi.org/10.3389/FNCOM.2022.859874/BIBTEX

32. Mehonic, A., Kenyon, A.J.: Brain-inspired computing needs a master plan. Nature

604(7905), 255–260 (apr 2022). https://doi.org/10.1038/s41586-021-04362-w

33. Mikhaylov, A., Pimashkin, A., Pigareva, Y., et al.: Neurohybrid memristive cmos-integrated

systems for biosensors and neuroprosthetics. Frontiers in Neuroscience 14, 358 (apr 2020).

https://doi.org/10.3389/FNINS.2020.00358/BIBTEX

34. Miranda, E., Suñé, J.: Memristors for Neuromorphic Circuits and Artificial Intelligence

Applications. Materials 13(4), 938 (feb 2020). https://doi.org/10.3390/MA13040938

35. Mochida, R., Kouno, K., Hayata, Y., et al.: A 4M synapses integrated analog ReRAM based

66.5 TOPS/W neural-network processor with cell current controlled writing and flexible

network architecture. Digest of Technical Papers - Symposium on VLSI Technology 2018-

June, 175–176 (oct 2018). https://doi.org/10.1109/VLSIT.2018.8510676

36. Pei, J., Deng, L., Song, S., et al.: Towards artificial general intelligence with hybrid Tian-

jic chip architecture. Nature 572(7767), 106–111 (jul 2019). https://doi.org/10.1038/

s41586-019-1424-8

37. Pfeiffer, P., Egusquiza, I.L., DI Ventra, M., et al.: Quantum memristors. Scientific Reports

6(1), 1–6 (jul 2016). https://doi.org/10.1038/srep29507

38. Pulvermüller, F., Tomasello, R., Henningsen-Schomers, M.R., Wennekers, T.: Biological

constraints on neural network models of cognitive function. Nature Reviews Neuroscience

22(8), 488–502 (jun 2021). https://doi.org/10.1038/s41583-021-00473-5

39. Rao, M., Tang, H., Wu, J., et al.: Thousands of conductance levels in memristors in-

tegrated on CMOS. Nature 615(7954), 823–829 (mar 2023). https://doi.org/10.1038/

s41586-023-05759-5

40. Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with neuro-

morphic computing. Nature 575(7784), 607–617 (nov 2019). https://doi.org/10.1038/

s41586-019-1677-2

41. Schegolev, A.E., Klenov, N.V., Soloviev, I.I., et al.: Superconducting Neural Networks: from

an Idea to Fundamentals and, Further, to Application. Nanobiotechnology Reports 16(6),

811–820 (nov 2021). https://doi.org/10.1134/S2635167621060227/METRICS

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 101

https://doi.org/10.1126/SCIADV.ABC4797/SUPPL_FILE/ABC4797_SM.PDF
https://doi.org/10.1126/SCIADV.ABC4797/SUPPL_FILE/ABC4797_SM.PDF
https://doi.org/10.1038/s41467-020-18105-4
https://doi.org/10.3389/FNCOM.2022.859874/BIBTEX
https://doi.org/10.1038/s41586-021-04362-w
https://doi.org/10.3389/FNINS.2020.00358/BIBTEX
https://doi.org/10.3390/MA13040938
https://doi.org/10.1109/VLSIT.2018.8510676
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/srep29507
https://doi.org/10.1038/s41583-021-00473-5
https://doi.org/10.1038/s41586-023-05759-5
https://doi.org/10.1038/s41586-023-05759-5
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1134/S2635167621060227/METRICS

42. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., Eleftheriou, E.: Memory devices and

applications for in-memory computing. Nature Nanotechnology 15(7), 529–544 (mar 2020).

https://doi.org/10.1038/s41565-020-0655-z

43. Serb, A., Corna, A., George, R., et al.: Memristive synapses connect brain and silicon

spiking neurons. Scientific Reports 10(1), 1–7 (feb 2020). https://doi.org/10.1038/

s41598-020-58831-9

44. Shchanikov, S., Zuev, A., Bordanov, I., et al.: Designing a bidirectional, adaptive neural

interface incorporating machine learning capabilities and memristor-enhanced hardware.

Chaos, Solitons and Fractals 142, 110504 (jan 2021). https://doi.org/10.1016/J.CHAOS.

2020.110504

45. Shen, J., Shang, D., Chai, Y., et al.: Nonvolatile Multilevel Memory and Boolean

Logic Gates Based on a Single Ni/ [Pb (Mg1/3Nb2/3) O3] 0.7 [PbTiO3] 0.3 /Ni Het-

erostructure. Physical Review Applied 6(6), 064028 (dec 2016). https://doi.org/10.1103/

PHYSREVAPPLIED.6.064028/FIGURES/5/MEDIUM

46. Spagnolo, M., Morris, J., Piacentini, S., et al.: Experimental photonic quantum

memristor. Nature Photonics 16(4), 318–323 (mar 2022). https://doi.org/10.1038/

s41566-022-00973-5

47. Su, F., Chen, W.H., Xia, L., et al.: A 462GOPs/J RRAM-based nonvolatile intelligent

processor for energy harvesting IoE system featuring nonvolatile logics and processing-in-

memory. Digest of Technical Papers - Symposium on VLSI Technology pp. C260–C261 (jul

2017). https://doi.org/10.23919/VLSIT.2017.7998149

48. Telminov, O., Gornev, E.: Possibilities and Limitations of Memristor Crossbars for Neu-

romorphic Computing. Proceedings - 6th Scientific School ”Dynamics of Complex Net-

works and their Applications”, DCNA 2022 pp. 278–281 (2022). https://doi.org/10.

1109/DCNA56428.2022.9923302

49. Vasileiadis, N., Ntinas, V., Sirakoulis, G.C., Dimitrakis, P.: In-Memory-Computing Realiza-

tion with a Photodiode/Memristor Based Vision Sensor. Materials 14(18), 5223 (sep 2021).

https://doi.org/10.3390/MA14185223

50. Vongehr, S., Meng, X.: The Missing Memristor has Not been Found. Scientific Reports 5(1),

1–7 (jun 2015). https://doi.org/10.1038/srep11657

51. Wan, W., Kubendran, R., Schaefer, C., et al.: A compute-in-memory chip based on resis-

tive random-access memory. Nature 608(7923), 504–512 (aug 2022). https://doi.org/10.

1038/s41586-022-04992-8

52. Wang, S., Li, Y., Wang, D., et al.: Echo state graph neural networks with analogue random

resistive memory arrays. Nature Machine Intelligence 5(2), 104–113 (feb 2023). https://

doi.org/10.1038/s42256-023-00609-5

53. Wang, Z., Wu, H., Burr, G.W., et al.: Resistive switching materials for information pro-

cessing. Nature Reviews Materials 5(3), 173–195 (jan 2020). https://doi.org/10.1038/

s41578-019-0159-3

Neuromorphic Computing Based on CMOS-Integrated Memristive Arrays: Current...

102 Supercomputing Frontiers and Innovations

https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41598-020-58831-9
https://doi.org/10.1038/s41598-020-58831-9
https://doi.org/10.1016/J.CHAOS.2020.110504
https://doi.org/10.1016/J.CHAOS.2020.110504
https://doi.org/10.1103/PHYSREVAPPLIED.6.064028/FIGURES/5/MEDIUM
https://doi.org/10.1103/PHYSREVAPPLIED.6.064028/FIGURES/5/MEDIUM
https://doi.org/10.1038/s41566-022-00973-5
https://doi.org/10.1038/s41566-022-00973-5
https://doi.org/10.23919/VLSIT.2017.7998149
https://doi.org/10.1109/DCNA56428.2022.9923302
https://doi.org/10.1109/DCNA56428.2022.9923302
https://doi.org/10.3390/MA14185223
https://doi.org/10.1038/srep11657
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1038/s41578-019-0159-3
https://doi.org/10.1038/s41578-019-0159-3

54. Wu, T.F., Le, B.Q., Radway, R., et al.: 14.3 A 43pJ/Cycle Non-Volatile Microcontroller

with 4.7µs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Tech-

niques. Digest of Technical Papers - IEEE International Solid-State Circuits Conference

2019-February, 226–228 (mar 2019). https://doi.org/10.1109/ISSCC.2019.8662402

55. Xia, Q., Yang, J.J.: Memristive crossbar arrays for brain-inspired computing. Nature Ma-

terial 18(4), 309–323 (mar 2019). https://doi.org/10.1038/s41563-019-0291-x

56. Xue, C.X., Chen, W.H., Liu, J.S., et al.: 24.1 A 1Mb Multibit ReRAM Computing-In-

Memory Macro with 14.6ns Parallel MAC Computing Time for CNN Based AI Edge Pro-

cessors. Digest of Technical Papers - IEEE International Solid-State Circuits Conference

2019-February, 388–390 (mar 2019). https://doi.org/10.1109/ISSCC.2019.8662395

57. Xue, C.X., Chiu, Y.C., Liu, T.W., et al.: A CMOS-integrated compute-in-memory macro

based on resistive random-access memory for AI edge devices. Nature Electronics 4(1), 81–90

(dec 2020). https://doi.org/10.1038/s41928-020-00505-5

58. Yao, P., Wu, H., Gao, B., et al.: Fully hardware-implemented memristor convolu-

tional neural network. Nature 577(7792), 641–646 (jan 2020). https://doi.org/10.1038/

s41586-020-1942-4

59. Yin, S., Sun, X., Yu, S., Seo, J.S.: High-Throughput In-Memory Computing for Binary Deep

Neural Networks with Monolithically Integrated RRAM and 90-nm CMOS. IEEE Transac-

tions on Electron Devices 67(10), 4185–4192 (oct 2020). https://doi.org/10.1109/TED.

2020.3015178

60. Zhang, W., Gao, B., Tang, J., et al.: Neuro-inspired computing chips. Nature Electronics

3(7), 371–382 (jul 2020). https://doi.org/10.1038/s41928-020-0435-7

61. Zhao, H., Liu, Z., Tang, J., et al.: Energy-efficient high-fidelity image reconstruction with

memristor arrays for medical diagnosis. Nature Communications 14(1), 1–10 (apr 2023).

https://doi.org/10.1038/s41467-023-38021-7

62. Zhu, X., Wang, Q., Lu, W.D.: Memristor networks for real-time neural activity

analysis. Nature Communications 11(1), 1–9 (may 2020). https://doi.org/10.1038/

s41467-020-16261-1

63. Zhuk, M., Zarubin, S., Karateev, I., et al.: On-Chip TaOx-Based Non-volatile Resistive

Memory for in vitro Neurointerfaces. Frontiers in Neuroscience 14, 94 (feb 2020). https:

//doi.org/10.3389/FNINS.2020.00094/BIBTEX

64. Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., Salama, K.N.: Memristor-based memory:

The sneak paths problem and solutions. Microelectronics Journal 44(2), 176–183 (feb 2013).

https://doi.org/10.1016/J.MEJO.2012.10.001

A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov...

2023, Vol. 10, No. 2 103

https://doi.org/10.1109/ISSCC.2019.8662402
https://doi.org/10.1038/s41563-019-0291-x
https://doi.org/10.1109/ISSCC.2019.8662395
https://doi.org/10.1038/s41928-020-00505-5
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1109/TED.2020.3015178
https://doi.org/10.1109/TED.2020.3015178
https://doi.org/10.1038/s41928-020-0435-7
https://doi.org/10.1038/s41467-023-38021-7
https://doi.org/10.1038/s41467-020-16261-1
https://doi.org/10.1038/s41467-020-16261-1
https://doi.org/10.3389/FNINS.2020.00094/BIBTEX
https://doi.org/10.3389/FNINS.2020.00094/BIBTEX
https://doi.org/10.1016/J.MEJO.2012.10.001

Improving Efficiency of Hybrid HPC Systems Using

a Multi-agent Scheduler and Machine Learning Methods

Vladimir S. Zaborovsky1 , Lev V. Utkin1 , Vladimir A. Muliukha1 ,

Alexey A. Lukashin1

c© The Authors 2023. This paper is published with open access at SuperFri.org

One of the promising directions for improving hybrid reconfigurable high-performance com-

puter platforms operating in the mode of collaborative applied computing centers is their inclusion

as an active component in the machine learning ecosystem, which opens up new opportunities to

enhance the actual outperformance of solving various application tasks by intellectualizing the

management of available computing resources. The task scheduler operation is crucial in improv-

ing the efficiency of hybrid supercomputer platforms, which combine dozens of processor blocks

with different architectures, including specialized graphics and reconfigurable accelerators. To form

an optimal order of jobs in the HPC queue, the article proposes to apply deep survival machine

learning models, which increase the accuracy of the estimated time of the tasks successful ex-

ecution and the required amount of computing resources. The main peculiarity of the machine

learning models is that they are trained on censored heterogeneous data collected from previous

periods of task execution observations using a multi-agent scheduler. In order to ensure high ac-

curacy, the random survival forest is used as a part of the machine learning model which provides

survival and hazard functions in the framework of the survival analysis. A specific weighted clus-

tering procedure is proposed to divide tasks in accordance with their execution times as well as

the feature vectors. Various numerical experiments with actual data illustrate the outperformance

of the presented approach.

Keywords: high performance computing, hybrid computing systems, machine learning, multi-

agent scheduler, random survival forest, survival analysis, survival function, XAI.

Introduction

A modern supercomputer is a very complex technical system that simultaneously performs

quadrillions (a number with 15 zeros) operations used to solve complex mathematical computa-

tions and process huge amounts of data that arise in the process of solving various scientific and

engineering problems. Supercomputer users, whose number is steadily growing every year, are

interested in the real result of their calculations, and not just the peak performance of the super-

computer, which is nominally expressed in the number of floating-point arithmetic operations

per second. As the performance of supercomputers increases, the complexity of their use also in-

creases. Therefore, users need to have a deep knowledge not only in the field of their professional

activity but also real skills in the most efficient use of available computing resources to consume

the real performance of a supercomputer. In this process, the task scheduler plays an important

role, combining different groups of processors, including graphics (vector) and reconfigurable

(FPGA) accelerators, into a consistent hybrid computing field available for a specific user task.

To improve the efficiency of the scheduler for a wide range of applied tasks, machine learning

models with attention mechanisms are proposed. These models allow calculating with high ac-

curacy the probability of successful completion of a user task in a given time interval, as well as

evaluating specific task parameters that can greatly affect the actual performance of the hybrid

platform. The system parameters, machine learning models, and promising transformer-based

architecture presented in the article were obtained based on the analysis of the functioning of a

1Peter the Great St.Petersburg Polytechnic University, St.Petersburg, Russian Federation

DOI: 10.14529/jsfi230207

104 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0003-2284-9833
https://orcid.org/0000-0002-5637-1420
https://orcid.org/0000-0002-3583-7324
https://orcid.org/0000-0002-1906-2207

hybrid supercomputer cluster of St. Petersburg Polytechnic University with a peak performance

of more than 1 PFlops.

One of the tools for dealing with the task completion problem is survival analysis [7] which

is used in many applied areas [13, 20, 27]. A comprehensive review of survival analysis methods

and their implementation by the machine learning models can be found in [27]. An important

peculiarity of the survival models is that their outcomes are functions (the survival function,

the hazard function, the cumulative hazard function, etc.) as predictions instead of point-valued

data which are predicted by most machine learning models.

All survival models can be divided into three groups. The first group consists of parametric

models for which a probability distribution of time to event is known, but its parameters are

unknown. The second group contains semi-parametric models for which it is assumed that a

functional dependence between features and the model outcomes is known. The well-known Cox

proportional hazards model [4] belongs to the second group. Models of the third group are called

non-parametric. They assume that the probability time-to-event distribution is unknown, and

the relationship between features and the model outcomes is also unknown. The Kaplan–Meier

model [27] is one of the models from the third group.

Following the Cox model, many its extensions have been proposed, which use the non-

linear relationship between covariates and the time of event [20]. A lot of models are based on

neural networks. However, the difficulty to train a neural network, when the number of training

examples is restricted, led to applying another approach based on using the random survival

forests [2], which can be regarded as an extension of the original random forest [3] to the case of

survival analysis. It turns out that the random survival forests are a powerful and efficient tool

for survival analysis due to their several useful peculiarities. First of all, random forests require

a few tuning parameters [9]. Random forests are highly data adaptive and can deal with both

low and high dimensional data [26]. Therefore, we use the random survival forests as a basic

model for analyzing the task completion time.

Our contributions can be summarized as follows:

1. Collection of job execution data and comprehensive statistical analysis of performed jobs

taking into account domain and user characteristics.

2. Survival analysis for computing probabilistic characteristics of the task completion time

(survival functions, expected times of the task completion, etc.) is proposed to be applied.

One of the reasons for using survival analysis is the availability of many tasks which have

been terminated due to several reasons and are considered as censored data.

3. The predictions of the task completion time by means of a set of the random survival forests

are proposed to be performed. The random survival forest is a powerful and efficient tool

for the case when the number of training data is limited.

4. A specific procedure for clustering training data and for training several random survival

forests is proposed, which allows us to take into account the fact that tasks may be quite

different and they should be separated into clusters with a homogeneous structure. This

approach is supplemented by a specific procedure of computing predictions for new tasks.

5. A simple approach for taking into account the user history is proposed, which is reduced to

computing probability distributions of different task completion events. The corresponding

probability distributions are concatenated with the initial feature vector obtained for the

analyzed user.

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 105

6. We consider questions how to explain prediction of the task completion time in order to

have an opportunity for the user to change the task parameters or just to understand why

the corresponding task can be completed unsuccessfully.

7. An approach of integrating the developed prediction model into the existing environment

of a hybrid supercomputer environment by integration of the predicted execution time of a

job to a scheduler.

The article is organized as follows. A description of the supercomputer analyzed and of its

component (the Slurm Task Scheduler) is given in Section 1. General approaches to improving

the efficiency of the SCC are discussed in Section 2. Elements of survival analysis are considered

in Section 3. The main algorithm for the task completion prediction is provided in Section 4.

Ways for improving the proposed algorithm based on survival analysis are described in Section 5.

Section 6 considers the important question of interpretation of the machine learning analysis re-

sults. Numerical experiments with the analysis of results are considered in Section 7. Concluding

remarks and perspectives are discussed in the Conclusion section.

1. Current Situation in the Supercomputer Center

“Polytechnic”

1.1. Description of the Supercomputer Center “Polytechnic”

Supercomputing Centre “Polytechnic”(hereinafter SCC) is a hybrid high performance com-

puting system consisting of several computing clusters with different architectures (homoge-

neous and heterogeneous) located in a single information and computing field and connected

using 56 Gb/s Infiniband FDR, as well as a common storage Luster, with a volume of about

1 PB, which allows file exchange between different computing clusters. All SCC systems provide

more than 1.5 PFlops performance on double-precision floating point computation and more

than 2.5 PFlops on single and half-precision computations that are typically used for training

machine learning algorithms.

All registered users get access to SCC resources from the dedicated server using the terminal

client protocol. SCC resources are managed using the Slurm Workload Manager. The principle

of its operation is as follows (Fig. 1): the user requests some resource (processor cores, memory,

etc.), placing his task in the queue; the system, based on the user’s priorities and the current

filling of the queue, selects the moment of task launch. A queue is a sequence of tasks that must

be solved on a specific computing resource (a group of nodes). At the same time, each node at

the current time can be occupied by only one task of one user. Thus, the node is assigned to the

exclusive use of the task hosted on it, and other tasks on the busy node will not be executed.

The life cycle of a task created by a user in the SCC consists of four stages:

• user connection to the console of the control node of the SCC through a client (for example,

PuTTY for Windows OS, or built-in SSH client for Linux OS);

• creating and running a task in the console in interactive or batch mode;

• execution of the task on the selected resources of the SCC;

• completion of the task.

SCC provides different systems by dividing resources into multiple queues (partitions in

SLURM terminology). Currently, the following clusters are available:

• Tornado: homogeneous cluster with 28-core and 64 GB of RAM nodes;

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

106 Supercomputing Frontiers and Innovations

Figure 1. Structure and information flows of the supercomputer center “Polytechnic”

• Tornado-k40: heterogeneous cluster with 28-core, 64 GB of RAM, and 2 Tesla GPUs

nodes;

• Cascade: homogeneous cluster with 48-core and 192 GB of RAM nodes;

• NV: heterogeneous cluster with 48-core, 768 GB of RAM, and 8 Tesla GPUs nodes.

Every job is submitted into a particular partition with specific resources available. All clus-

ters are connected to the same storage. That provides users with the ability to use different

compute resources for the different stages of numerical simulations and data processing.

1.2. Description of the Slurm Task Scheduler

Slurm is a cluster management and task planning system. It performs three main functions:

• distributes access to resources (computing nodes) for users;

• provides an environment for launching, executing and monitoring tasks on dedicated nodes;

• manages the task queue.

The user can submit tasks in two modes via the command line – interactive and batch

modes.

In interactive mode, the user can act according to two algorithms. In the first case, resources

are requested, the application necessary for operation is launched on the head node of the SCC,

and then the user is working on the application. In the second case, a connection is made to the

selected node, and the rest of the actions are performed on this node.

In batch mode, the user prepares the task script in the command window: determines the

parameters for launching a task, configures the working environment necessary for the appli-

cation to work, and determines the task launch sequence. After that, the task is placed in the

corresponding queue.

Job configuration supports a large number of different parameters like the number of cores

or the amount of GBs RAM per process. But the most important parameters are the amount

of compute resources (nodes) and the time of their allocation.

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 107

Additionally, the number of processors per subtask, the amount of memory in the node, the

amount of memory in the processor, the number of subtasks in the task, the start time of the

task, and others can be specified. The user has the ability to select a variety of options for a

detailed description of how the task should be performed.

The Slurm forms a separate job queue for each type of SCC computing resource. While

creating a task, users independently select the required resources. Due to the qualification of

most users in the field of parallel programming, they prefer to use traditional CPU-based nodes.

And often they use only 1–2 nodes for their task. Thus, different clusters within the SCC are

loaded differently. An example of the loading of computing clusters of the SCC “Polytechnic”is

shown in Fig. 2.

All tasks were divided into classes depending on the field of science: Astrophysics, Bioin-

formatics, Biophysics, Energy, Geophysics, Informatics, Mechanical Engineering, Mechanics,

Physics and Radiophysics. For clarity, in Fig. 2, each of the classes is indicated by its own color:

• Astrophysics is turquoise;

• Bioinformatics is red;

• Biophysics is pink;

• Energy is green;

• Geophysics is yellow;

• Informatics is black;

• Mechanical Engineering is blue;

• Mechanics is gray;

• Physics is lime;

• Radiophysics is orange;

• Uncertain Tasks are purple.

2. Approaches to Improving the Efficiency of the SCC

One of the promising directions for increasing the efficiency of using supercomputer resources

is the use of various task parameters to adapt the process of its solution.

Currently, SPbPU considers two main areas of adaptation of the work of the SCC:

1. The use of intelligent technologies and machine learning methods for a preliminary assess-

ment of the effectiveness of solving a new problem based on statistical data on solving similar

problems in the past.

2. Development of methods for adapting the SCC hardware to the requirements of a specific

task by using reconfigurable computers.

2.1. Application of Machine Learning Methods to Optimize the Parameters

of Tasks Received by the SCC

In this work using a machine learning approach to improve the real performance of SCC is

proposed. The hybrid supercomputer cluster should act as an active component of the machine

learning ecosystem (Fig. 3). In this mode, the supercomputer generates a multiset of calculation

data, as well as information on how the application tasks affect the cluster resources. Although

all data are in principle available to users, their interpretation requires high skill and, therefore,

is much more difficult in practice. Obviously, most of this data can be used for machine learning

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

108 Supercomputing Frontiers and Innovations

(a) Homogeneous “Tornado”Group nodes

(b) Heterogeneous “Tornado”Group nodes

(c) Homogeneous “Cascade”Group nodes

Figure 2. Uneven loading of cluster nodes of the supercomputer center “Polytechnic”

of intelligent blocks cluster scheduler, including for constructing a user qualification model that

characterizes the description confidence level and script parameters for the executable task.

As a result, the intelligent block of the Slurm scheduler can generate estimates of the effi-

ciency of using available resources, as well as generate a statistical metric of confidence in the

results obtained, including recommendations for improving the efficiency of calculations. All

data generated by the intelligent block of the Slurm scheduler, along with the direct results of

calculations, are provided to users, and are also taken into account as parameters in the trained

model of his qualification profile.

The machine learning ecosystem infrastructure built in this way, which includes both the

supercomputer itself and its various users, allows you to analyze the entire course of calculations

performed and fixing the trajectory of each application process, organizing an effective machine

learning process of the resource scheduler, including for the tasks of new users.

In this case, the training sample includes both “successful”and “unsuccessful”sets of com-

pleting tasks, that carry out important information characterizing the so-called “survivor’s er-

ror”. Generating an explanation of why the application task “survived”or why it was not com-

pleted within the time specified by the scheduler will speed up the user’s understanding of the

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 109

Figure 3. Structure and information flows of the supercomputer center “Polytechnic”

specifics of using supercomputer resources. At the same time, the dispatcher will be able to

predictively calculate the parameters of the description of the applied task, which increase the

probability of its successful completion, as well as “learn”to respond to new tasks, including

reconfiguration of accelerators used to solve special applied tasks.

2.2. Multi-agent Scheduler of Reconfigurable Computational Resources

To expand the capabilities of the SCC in terms of solving specialized tasks, a cluster of

Tertius-2 nodes containing FPGA appeared as part of our hybrid SCC in 2022. The work on

the integration of the reconfigurable nodes (reconfigurable computation units – RCU) into the

computational field of the SCC is in progress. The following scheme for integrating RCU into

the structure of the SCC “Polytechnic”is proposed in Fig. 4. The advantage of the proposed

scheme is the presence of regular mechanisms for integrating the RCU into the computational

field of the SCC “Polytechnic”, as well as the implementation of the possibility of direct control

of RCU by the Multi-agent scheduler after the initialization procedure.

According to research works [11, 12] the multi-agent scheduler (MAS) is an effective decen-

tralized method of managing a distributed computing cluster, including a heterogeneous one.

In general terms, the process of solving problems with the use of RCU consists of the

following steps:

1. Upon request from the MAS RCU to Slurm, the latter allocates RCU resources to full

control of the MAS by launching a software agent on each allocated RCU.

2. Among the tasks received from the user, the AI module for reconfigurable system (AIM)

selects those that can be solved in the RCU using the RCU firmware that exist in the

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

110 Supercomputing Frontiers and Innovations

Figure 4. Proposal for the integration of reconfigurable nodes under the control of a multi-agent

scheduler into the SCC “Polytechnic”

firmware library. A task descriptor is formed as a set of parameters characterizing the

selected task.

3. AIM, if necessary, decomposes the input data of the task into blocks that can be processed

by the RCU, and for each of the blocks, the preferred solution method is selected from the

existing RCU configuration modules in the library.

4. AIM transmits the generated task descriptions with a descriptor to any of the bulletin board.

5. Each software agent on the RCU independently polls all bulletin boards to find the most

suitable user tasks. For each of the tasks on the bulletin board, using the information

generated by the AIM, the agent determines whether it can be performed.

6. If the agent can compute the task, it, using information from the AIM, determines which

RCU configuration module from those available in the library it should use for this.

7. If the agent decides to solve a problem, if necessary, it downloads the recommended RCU

configuration module from the library and loads it into the RCU, executes the task in the

RCU computational field, and sends the results to the required address.

8. The statistics of the task execution time on the RCU are stored for the subsequent use of

additional training of the AIM.

In the course of future work, it is planned to consider the possibility of IM integration

directly on each MAS software agent.

As part of the work in 2023, the library will contain at least two RCU firmware designed for

solving matrices up to 4000 by 4000 using the LU decomposition method and solving diagonal

matrices with 3, 5, and 7 diagonals using the Jacobi method. In the future, the list of RCU

firmware in the library can be expanded.

Upon request from MAS to Slurm, the latter allocates RCU resources for full management

by launching a certain software agent on each allocated RCU (it is a task for Slurm).

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 111

With the use of AIM, among the tasks arriving at the SCC, there are computationally

time-consuming tasks that can be solved in the RCU using the configuration modules existing

in the library. The data of tasks, if necessary, are divided in the AIM of the SCCs into parts

corresponding to the capabilities of the RCU. As a result, a task is formed with a descriptor (set

of parameters) for solving on the Tertius-2 RCU, and all this is transferred to any of the MAS

bulletin boards to ensure the possibility of a parallel solution in the RCS.

A software agent (hereinafter PA) is software for managing and adapting resources of a

heterogeneous computing cluster for solving problems of a dynamic search for a load for an

agent-controlled computing resource and adaptive reconfiguration of hardware components of

the RCU, constantly running on the universal processor of the RCU and, together with other

MAS agents, forming a single computing – communication space.

The software agent can receive data about its parameters from the RCU. In addition, the

SCC already has software that allows you to monitor the parameters of all RCUs.

Each of the PA, in case of readiness of its RTM for work and the absence of tasks currently

performed on its RTM, independently interrogates all DOs to find the most suitable user tasks.

For each of the tasks on the DO, using the information generated by the RCC IM and

attached to the task, the agent determines whether it can complete it. If it can fulfill the task,

it, using information from the IM SKTS, determines which RCU configuration modules from

those available in the library must be used. If the agent decides to solve a problem, if necessary,

it downloads the configuration module from the library and loads it into the RCU, executes the

task in the RCU computational field, and sends the results to the required address.

Depending on the mode of operation of the RCS, in the event of a long idle time or at

the command of the operator, the agent can complete its work and return control to the RBC

Slurm.

The first step in increasing the efficiency of a supercomputer is to minimize the average time

jobs are spending in the queue. For making a denser queue, Slurm needs a reliable information

about the task execution time. As studies have shown, the results of which are given below,

users significantly overestimate the task execution time and the Slurm is forced to look for a

larger slot in queue to put the task in it. This situation negatively affects the length and density

of the queue.

Machine learning models are proposed to be used for more accurate estimation of the task

execution time. The input of such models is the vector of task’s parameters xi = (xi1, ..., xim),

and the output is the expected execution time of this task. The values of the individual pa-

rameters of the task i in vector xi are taken from the data of the Slurm processes: scontrol,

sacct, and sbatch. For example, xi1 is the ID of the user running the task, and xi2 is the ID of

the user’s group, followed by the requested number of computing nodes, and so on, including

meta-parameters of the executable file, such as included libraries. A description of the machine

learning methods used in the work is given below.

3. Some Elements of Survival Analysis and Preliminaries

3.1. Basic Concepts of Survival Analysis

We represent a dataset D of tasks in the framework of survival analysis as a set of triplets

of the form (xi, δi, Ti), where xi = (xi1, ..., xim) is the feature vector which contains all available

information about the i-th task represented by m features; Ti is the i-th task completion time.

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

112 Supercomputing Frontiers and Innovations

In contrast to the standard regression analysis, there is the additional component δi of the

dataset which is the indicator function so that δi = 1 if we observe a successful task completion,

and δi = 0 if the i-th task has not been successfully completed. In the first case (δi = 1),

time Ti corresponds to the time between the baseline time and the time of the successful task

completion. This case corresponds to the uncensored observation. In the second case (δi = 0),

Ti is the observation time, i.e., the time moment when the task is terminated due to several

reasons, and we have the censored observation. The aim of survival analysis is to predict the

completion time of a new task characterized by the feature vector x by using the training dataset

consisting of n examples (xi, δi, Ti), i = 1, ..., n.

Important concepts in survival analysis are the survival and hazard functions. The survival

function, denoted as S(t|x), is the probability that the task x is not completed up to the time t,

that is S(t|x) = Pr{T > t|x}. The hazard function or the hazard rate h(t|x) is the rate of the

task completion at time t given that no tasks completed before time t. It can be written as

h(t|x) = lim
∆t→0

Pr{t ≤ T ≤ t+ ∆t|T ≥ t|x}
∆t

=
f(t|x)

S(t|x)
, (1)

where f(t|x) is the density function of the task completion.

The hazard function can also be expressed though the survival function as follows:

h(t|x) = − d

dt
lnS(t|x). (2)

Hence, we can express the survival function through the cumulative hazard function H(t)

as

S(t|x) = exp

(
−
∫ t

0
h(z|x)dz

)
= exp (−H(t|x)) . (3)

It can be seen from the above that the functions depend on the vector x.

There are several well-known models used in survival analysis. First, we should mention the

non-parametric Kaplan–Meier model for estimating the survival function. However, the Kaplan–

Meier estimator gives the average view of objects (tasks) and does not take into account the

task features x. Therefore, we cannot evaluate how the task features influence the survival prob-

abilities. The first model which allows us to estimate the survival or hazard functions depending

on the vector x is the Cox proportional hazards model [4]. According to the model, the hazard

function at time t given the feature vector x is defined as

h(t|x) = h0(t) exp
(
xbT

)
, (4)

where h0(t) is an arbitrary baseline hazard function; b = (b1, ..., bm) is an unknown vector of

regression coefficients or parameters.

The survival function S(t|x) is computed as

S(t|x) = (S0(t))exp(xbT) . (5)

Here S0(t) is the baseline survival function. It is important to point out that S0(t) as well

as h0(t) do not depend on x and are estimated by using the Kaplan–Meier estimator.

The main peculiarity of the Cox model is the linear combination of features. On the one hand,

it simplifies the model and allows us to use it in the interpretation of the model predictions. On

the other hand, it restricts the Cox model use because real datasets usually have a more complex

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 113

structure. Various modifications have been proposed to generalize the Cox model by replacing

the linear relationship with some non-linear functions, for example, with neural networks [5, 20],

the support vector machine [14, 22].

3.2. Random Survival Forests

Despite the availability of many machine learning models for survival analysis, they require a

large amount of training data to obtain reasonable estimations. One of the efficient models deal-

ing with small and heterogeneous data is the random survival forests [10]. A general algorithm

of constructing RSFs can be represented as follows:

1. Q bootstrap samples of size N are selected from the original data, where Q is a hyperpa-

rameter defining the number of survival trees in the random survival forests.

2. A survival tree is constructed by using a single bootstrap sample so that each node of the

tree is split using the candidate feature that maximizes survival difference between daughter

nodes. The depth of the trees is also a hyperparameter.

3. The survival function or the cumulative hazard function at each leaf of a tree is calculated

by using the Kaplan–Meier estimator or the Nelson–Aalen estimator.

4. The ensemble cumulative hazard function or the ensemble survival function is obtained by

averaging the cumulative hazard functions over all trees.

One of the important peculiarities of the tree construction is a splitting rule. Several splitting

rules are reviewed in [27]. The most popular rule is the log-rank rule which separates nodes of

the decision tree by selecting the split that yields the largest log-rank test [25]. The best split is

given by the greatest difference between two daughter nodes which is given by the largest value

of the log-rank test.

If we denote the cumulative hazard estimate of the k-th tree as Hk(t|x), then the ensemble

cumulative hazard estimate for the random survival forest consisting of Q trees is determined

as follows [10]:

H(t|x) =
1

Q

Q∑

k=1

Hk(t|x). (6)

In fact, the above expression can be regarded as the mean function over all cumulative hazard

functions predicted by each tree in the random survival forest. The obtained function will be

used later for computing the survival function and the expected time to the task completion.

In order to verify whether the obtained survival function is the best one from the optimal

hyperparameters point of view, the C-index is used.

3.3. C-index

An important question in survival analysis is how to compare the machine learning survival

models. One of the measures for comparison is the C-index (the concordance index) proposed by

Harrell et al. [6]. The C-index allows us to estimates how good the model is at ranking survival

times. This is the probability that the task completion times of a pair of tasks are correctly

ranking [19]. In order to formally define the C-index, we first define inadmissible pairs. A pair is

not admissible if the task completion events are both right-censored or if the earliest time in the

pair is censored. The C-index is calculated as the ratio of the number of pairs correctly ordered

by the model to the total number of admissible pairs. If the C-index is equal to 1, then the

corresponding survival model is supposed to be perfect. If the C-index is 0.5, then the model is

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

114 Supercomputing Frontiers and Innovations

no better than random guessing. By using the predicted survival function S(t|x), we can write

the C-index as [27]:

C =
1

M

∑

i:δi=1

∑

j:Ti<Tj

1 [S(Ti|xi) > S(Tj |xj)] . (7)

Here M is the number of all comparable or admissible pairs; 1[·] is the indicator function

taking the value of 1 if its argument is true, and of 0 – otherwise.

Another definition of the C-index is

C =

∑
i

∑
j 1 [Ti < Tj] · 1

[
T̂i < T̂j

]
· δi

∑
i

∑
j 1 [Ti < Tj] · δi

, (8)

where T̂i is the predicted survival duration; i and j are indices of all examples from the dataset,

i, j = 1, ..., n.

4. Algorithm for the Task Completion Prediction

A goal of the proposed algorithm of training the random survival forest is to predict the

probabilistic characteristics of the task completion, including the survival function and the

expected task completion time. At the first stage of study when the dataset of examples is

restricted, we propose to apply the random survival forest as one of the efficient models dealing

with the limited number of training data. The random survival forest consists of Q survival

trees.

Every vector x consists of m features which include the most important ones: UserID (the

ID of a user), GroupID (the ID of the group on behalf of which the task was queued), NumNodes

(the number of nodes requested or allocated for the task), NCPUs (the total number of processors

allocated to the task), NumTasks (the total number of subtasks in the task), CPUs/Task (the

ratio of the total number of processors to the number of subtasks), ReqB:S:C:T (the number

of different hardware components requested for the task), Socks/Node (the desired ratio of

the number of sockets to the number of compute nodes), NtasksPerN:B:S:C (the number of

subtasks required to run on a specific number of hardware components), CoreSpec (the number

of cores reserved), MinCPUsNode (the minimum ratio of the number of processors to the number

of nodes), MinMemoryNode (the minimum ratio of memory in MB to the number of nodes),

JobID (the task identification number), Priority (the task priority determined by the SLURM

scheduler), etc. It should be noted that the completion times Ti of different tasks are changed in

a large interval of time. The distribution of tasks in accordance with their completion times is

shown in Fig. 5. It can be seen from this distribution that the number of “long” tasks is rather

small in comparison with tasks completed in a short time. This causes a difficulty for training

the random survival forest because survival trees are mainly trained on the “short” task and do

not take into account the “long” tasks. In order to overcome this problem, we propose to cluster

all training examples into K groups which are separated by using the completion time T as well

as the feature vector x. However, the completion time is more important in comparison with

the feature vector because it determines the presented distribution of tasks. At the same time,

the vector x should be also used. Therefore, we propose to introduce weights w0 and w1 of the

completion time as well as the feature vector, respectively, in the clustering procedure so that

w0 + w1 = 1, w0 > w1. The weighted K-means clustering procedure is used, where the distance

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 115

Figure 5. Distribution of tasks in accordance with their completion times

between the centroid c of points from a cluster Ck and the vector x are computed as follows:

dist(c,x ∪ T) =

√
w0

(
T − c(T)

)2
+ w1

∥∥x− c(f)
∥∥2
, (9)

where c(T) and c(f) are two parts of the centroid vector corresponding to the completion time

and the feature vector, respectively, so that c(T) ∪ c(f) = c.

The cluster procedure divides the dataset D into K clusters D1, ..., DK such that D1 ∪ ...∪
DK = D. Now we can train K random survival forests on K obtained datasets (clusters). In

sum, we have K models for predicting the survival function. The next question is how to use

these models to obtain prediction for a new task x. We do not know the cluster for x and cannot

determine it because we do not know the completion time T for the task. Therefore, we propose

the following procedure for solving this problem. The new task is fed to K random survival

forest, and we obtain K survival functions S1(t|x), ..., SK(t|x). It is obvious that only one of

the survival functions is correct. In order to select the unique result, we propose the following

approach. By having survival functions, we compute K expected times to the task completion

E1(x), ..., EK(x), where Ek(x) =
∫∞

0 Sk(t|x)dt. Since the number of observations is finite, say n,

and it is assumed that all times to the task completion are different, then this integral is reduced

to the sum:

Ek(x) =

n∑

i=1

Sk(ti|x)(ti − ti−1), t0 = 0. (10)

Assuming that the time to the task completion for the new task x is Ek(x), we obtain

vectors x∪Ek(x), i = 1, ...,K. A simple rule for selecting the cluster for x is to find the smallest

distance between the obtained vector and the centroid, i.e., we select the k-th cluster and the

k-th survival function Sk(t|x) if there holds

k = arg min
j=1,...,K

dist(cj ,x ∪ Ej(x)). (11)

In order to find the optimal or suboptimal hyperparameters, we use the C-index given in

(7) or (8), which can be regarded as a measure of the model quality.

Finally, we can write a scheme of the following algorithm for training and testing the survival

model and for computing the survival functions of a new task.

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

116 Supercomputing Frontiers and Innovations

1. Initial data: dataset D = {(xi, δi, Ti), i = 1, ..., n}. Hyperparameters: the number of random

survival trees Q in the forest, the number of examples N from the dataset for constructing

random trees; the number of clusters K, weights w0 and w1.

Training part:

2. Divide the dataset D into two subsets: training Dtrain and testing Dtest.

3. Divide all examples from the dataset Dtrain into K clusters D1, ..., DK by using the K-means

algorithm based on the distance metric given in (9) with weights w0 and w1.

4. Train K random survival forests consisting of Q trees on datasets D1, ..., DK by randomly

selecting N examples for every tree, respectively.

Testing part:

5. Take examples x from the testing subset Dtest.

6. Compute the cumulative hazard function H
(k)
i (t|x) for the i-th tree from the k-th random

forest, i = 1, ..., Q, k = 1, ...,K.

7. Compute the ensemble cumulative hazard function H(k)(t|x) for the k-th random forest by

using (6) for all k = 1, ...,K.

8. Compute the survival function Sk(t|x) from H(k)(t|x) by using (3) for all k = 1, ...,K.

9. Compute expected times Ek(x) to the task completion by using (10) for all k = 1, ...,K.

10. Compute distances dist(cj ,x∪Ej(x)), j = 1, ...,K, and find k corresponding to the smallest

distance.

11. Output Sk(t|x).

12. Compute the C-index by using (7) or (8) and the testing dataset Dtest. If the C-index does

not satisfy the model requirements, then the hyperparameters are changed and go to Step 1,

otherwise it is supposed that the model is successfully trained and can be used for new tasks.

5. Improving the Algorithm

One of the difficulties when the proposed algorithm is implemented is the restricted informa-

tion about a user. Indeed, we did not use a history of tasks that had been previously performed

by the user. This information may significantly improve the algorithm and enhance the quality

of predictions.

Suppose that there are R events of the task unsuccessful termination and S events of the

task successful completion when the user ran tasks. The unsuccessful terminations of the task

may be due to the following reasons:

• termination of the task as a result of the intended stop when the program execution time

exceeded the time requested by the user (r1);

• termination of the task as a result of division by zero (r2);

• termination of the task as a result of an infinite loop (r3);

• termination of the task as a result of an unknown failure (r4);

• termination of the task due to lack of memory (r5).

Here r1, ..., r5 are numbers of unsuccessful terminations.

The successful completion of the task can also include the following events:

• the ratio of the program execution time and the time requested by the user does not exceed

20% (s1);

• the ratio of the program execution time and the time requested by the user is between

20% and 40% (s2);

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 117

• the ratio of the program execution time and the time requested by the user is between

40% and 60% (s3);

• ...

• the ratio of the program execution time and the time requested by the user exceeds 100%

(s6).

Here s1, ..., s6 are numbers of different events of the task successful completion.

Let us construct two probability distributions π = (π1, ..., π5) and ϕ = (ϕ1, ..., ϕ6) defined

as

πi = ri/R, i = 1, ..., 5, ϕj = sj/S, j = 1, ..., 6.

The above implies that the user history can be represented by means of the above features

in the form of the two distributions. Hence, we extend the feature vector x of a user by the prob-

ability distributions π and ϕ. If a new user is analyzed, we can consider the uniform probability

distribution to characterize the new user. Another way for taking into account the new user is

to add two additional features which take values of 0 if the user is not new and has some history

of the task performance, and of 1 if the user is new. It is interesting to point out that these

additional features can be in interval [0, 1] indicating uncertainty of the historical observation.

In particular, when the number of runs by the user is small, then values of the two additional

features should be close to 1, otherwise they are close to 0. The choice of the uncertainty measure

is a direction for further research.

6. Interpretation of the Machine Learning Analysis Results

One of the important problems to optimize the computer performance is to explain why

the user task is characterized by the obtained survival function or the expected time to the

task completion. This problem can be referred to the direction called the eXplainable Artificial

Intelligence (XAI). Methods of XAI try to answer the question which features of an example

significantly influence a prediction of a machine learning model. Most methods are explained

locally, that is, they explain a prediction of a single example, and assume that the analyzed

machine learning model is a black box which means that we know only its input and output

data. A lot of the explanation methods are based on local approximating the unknown prediction

function at a point by means of the linear function of features because coefficients of the function

can be regarded as quantitative impacts on the prediction.

One of the first local explanation methods is the Local Interpretable Model-agnostic Expla-

nations (LIME) [23], which uses linear model to approximate predictions of black-box models.

According to LIME, the explanation is derived from a set of synthetic examples generated ran-

domly in the neighborhood of the explained example. Every synthetic example has a weight

depending on its proximity to the explained example. However, LIME cannot be applied to sur-

vival machine learning models because the output of the models is not a point, but the function

(the cumulative hazard function or the survival function).

To overcome this difficulty, another method called SurvLIME (Survival LIME) has been

proposed in [16]. The main idea behind SurvLIME is to approximate the black-box survival

model predictions by using the Cox model. It can be seen from (4) that the hazard function

in the Cox model contains the linear function of features. This implies that coefficients of the

linear function can be viewed as quantitative impacts on the predicted hazard function. In

other words, SurvLIME uses the Cox model as an explainable meta-model or an approximation

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

118 Supercomputing Frontiers and Innovations

of the cumulative hazard function or the survival function predicted for an example by the

black-box model. According to SurvLIME, a set of examples {x1, ...,xL} around the explained

point x are generated and then fed to the black-box survival model, which produces a set

of cumulative hazard functions {H(t|x1), ...,H(t|xL)}. Simultaneously, the cumulative hazard

functions HCox(t|xk,b), k = 1, ..., L, of the Cox model as functions of coefficients b are computed

for all generated examples {x1, ...,xL} by using(4). The parameters b of the Cox model are

calculated by minimizing the average distance between the cumulative hazard functions of the

Cox model and the black-box survival model. Many numerical results with using real open

datasets provided in [16] demonstrate that SurvLIME is an efficient method for explaining

the survival models. Moreover, following the results obtained in [16], an open-source Python

package that implements the SurvLIME algorithm has been presented in [21]. Another method

for explaining the survival model predictions is called SurvNAM [24]. It is based on applying of

the generalized additive model g1(x1) + ...+ gm(xm) instead of the simple linear model. Here gi

is a univariate shape function of one variable (feature). Two ideas underlying SurvNAM are the

following. First, the functions gi(xi) are usually unknown and any assumptions about their form

may lead to incorrect results. Therefore, it is proposed to implement the functions by means

of simple neural networks with a single-feature input. This idea allows to implement arbitrary

functions. The training weights of the networks are parameters of the explanation model. In

sum, the whole model represents m fully connected neural networks implementing the functions

gi(xi), which are connected by the summation operation. The second idea is that the whole

explanation neural network model implementing the generalized additive model is trained again

by using the extended Cox model where the linear combination of features xbT is replaced with

the generalized additive model g1(x1) + ...+ gm(xm).

Finally, the algorithm of the explanation model SurvLIME in terms of the considered task

completion problem is the following.

1. Initial data: the explained example x; the standard deviation σ for generating the perturbed

examples; the number of the generated examples.

2. Generate random examples x1, ...,xL around the explained point x having the normal dis-

tribution with the expectation x and the predefined standard deviation σ.

3. Find the cumulative hazard functions Hk1(t|x1), ...,HkL(t|xL) as predictions of the random

survival forest (the random forest). Index kj corresponds to the optimal cluster which is

selected when the generated example xj is fed to the black-box model (the random forest).

4. Find the vector bopt which minimizes the function of distances:

bopt = arg min
b

L∑

j=1

dist(Hkj (t|x1), HCox(t|xk,b)).

Results of the interpretation by means of SurvLIME and SurvNAM allow the user to de-

termine which features significantly influence the survival function or the expected time to the

task completion, and how the feature can be changed to obtain the reasonable survival function

which ensures to complete the task in a required time with a certain probability.

7. Analysis of Tasks Statistics and Survival Functions

A structured form of the computational process metadata was obtained. It includes the

parameters for launching the task, which the user has specified when have queued the task for

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 119

execution to the Slurm. The considered form of data representation can be used in the machine

learning methods for task schedulers.

A JSON file structure has been developed. It consists of all 89 possible attributes for tuning

the sbatch SLURM command of version 21.08. Attributes, according to the custom entity, have

been structured and distributed into 5 different groups: User Information, Job Accounting,

Resource Management, Job Control, and Job Interaction.

The structure of the database for storing data about the tasks launched on the SCC was

also proposed. It consists of three tables scontrol, sacct and sbatch, corresponding to the sources

of the collected data. Each table contains an integer field ID of the task, as well as two fields

of the VARCHAR(500) type, which allows us to dynamically allocate memory for the size of

the attribute loaded into it, not exceeding 500 characters. These two fields allow to specify a

key-value pair for an attribute and its corresponding value.

A special program was also developed for extracting, lexical processing and sending task data

to the developed database. The program has been tested on a laboratory stand by running test

tasks. As a result, 60 attributes are collected in the scontrol table for each task, 107 attributes

are collected in the sacct table, and in the sbatch table as many records are stored as the number

of parameters specified by the user during the startup script. The user, on average, specifies no

more than 8 parameters in the startup script. In total, for each task ID, the database contains

about 180 parameters, while some fields may be empty if Slurm was unable to obtain information

on these attributes.

A program for the collection of statistical data of the SCC was developed. The program

is called by the event of allocation of resources for the task, as well as by the event of the

completion of the task. Thus, at the output of the program, two corresponding databases are

formed. The running time for each call is about 4–5 seconds due to waiting for requests from the

SCC control computer to the remote database server, so the program runs in the background

so as not to cause any delay in the scheduler. As a result of the work of the statistics collection

program, more than 400,000 tasks from users were collected in 2022, and more than 200,000

tasks were collected in 2023.

To solve the problem of optimizing the structure of the queue, machine learning models have

been developed and implemented to predict one of the parameters of the task: its execution

time, taking into account the current load of the SCC nodes. During the analysis of the data,

the following problems were identified:

• a large spread of the estimated execution time value (from several seconds up to two

weeks);

• a strong imbalance of tasks across the ranges to which they belong (more than 53 percent

are tasks that take less than 10 minutes);

• insufficient amount of information in the available factors on which the target value is

estimated.

Various machine learning models have been implemented, including regression models, data

classification and clustering models, and survival models, which also allow the use of data on

tasks that were forced to complete by Slurm.

Figure 6 shows the error matrix based on user ratings, normalized by the number of tasks

falling within each range. The matrix shows that more than 89 percent of all tasks with an actual

duration of [0, 10] minutes indicate an approximate execution time from 1 hour to 15 days. In

most cases, users significantly overestimate the time it takes to complete tasks.

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

120 Supercomputing Frontiers and Innovations

Figure 6. Error matrix based on user ratings, normalized by the number of tasks falling within

each range

Users behavior studies were conducted to assess the impact of these data on the tasks. Users

and virtual users of geovation were separated due to significant differences in their data. The

following estimations were received:

• more than 90 percent of users posted less than 100 tasks;

• more than 60 percent of virtual users of geovation posted from 30 to 60 thousand tasks

and two posted more than 100 thousand tasks;

• more than 64 percent of users completed tasks in a very short time (less than 10 minutes);

• more than 92 percent of non-geovation users used just one compute node for their tasks.

The information obtained during the research showed that some of the tasks are executed

exactly at the time that the user set and after that Slurm forcibly terminated them. So there

is a set of tasks whose real execution time is not known, since they were forcibly terminated

before they were completed. Survival models are used to work with such data. Kaplan–Meier

model was used to estimate the distribution of the required time and processor time for tasks

in various areas of knowledge (Fig. 7). Visual analysis of the obtained estimations of survival

functions in various fields of knowledge allows to establish that tasks in the fields of geophysics

and mechanics require stochastically more time to be successfully completed than tasks from

other fields of knowledge, and the shortest tasks in terms of processor time usage are typical for

bioinformatics.

Conclusion

Obviously, an NLP outline of the description of applied tasks can be added to the machine

learning ecosystem so that the user can conduct a dialogue with the supercomputer in terms

of meaningful queries in the context of applied tasks. Using the capabilities of a pre-trained

transformer (Fig. 8), which generates the source code of the description of the applied task

in response to the meaningful request, the user can analyze the accuracy of the formulated

queries and in a recursive mode, conducting a meaningful interaction with a supercomputer,

that inevitably improves his qualifications and task understanding.

Let us point out several perspective directions for further research and development.

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 121

(a) 1.2 ∗ 106 seconds

(b) 4 ∗ 105 seconds (c) 1 ∗ 105 seconds

(d) 1 ∗ 104 seconds (e) 1 ∗ 103 seconds

Figure 7. Kaplan–Meier estimations of task execution time distributions in various fields of

knowledge with detailed area of task execution times not exceeding

We have proposed the specific weighted scheme of clustering, which allows us to take into

account the difference between predicted times of the task completion as well as the difference

between the feature vectors. However, a more interesting approach is to assign weights to each

feature. Moreover, these weights should not be hyperparameters, but they have to be trained

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

122 Supercomputing Frontiers and Innovations

Figure 8. Proposal for the integration of reconfigurable nodes under the control of a multi-agent

scheduler into the SCC “Polytechnic”

during the training of the whole system. This approach has two advantages. First, it allows us

to make the clustering procedure to be more flexible and enhance the prediction quality. Second,

it allows us to supplement the explanation procedure. The obtained weights of features show

the importance of features and answer the question of which features are important from the

clustering point of view. However, in order to implement the training of weights, the random

survival forests have to be replaced with neural networks to train in an end-to-end manner.

This requirement leads to the second perspective which is to develop a transformer to solve

the survival problems and process multi-modal data. By collecting training data, we obtain the

opportunity to totally or partially avoid the random forests and to construct the neural network

models. However, the idea of the task description in terms of the natural language requires the

development of more complex and efficient structures based on the attention mechanism and

transformers. It should be noted that transformers have been proposed to solve the survival anal-

ysis problems [8, 28]. However, these transformers do not take the peculiarities of the problems

which are solved when the task completion time optimization problem is solved. Another inter-

esting idea is to combine the random survival forests and the transformer. It has been partially

solved for original random forests in [15]. However, this approach cannot be directly used in sur-

vival analysis. New approaches are needed to develop an efficient multi-modal transformer-based

system.

It is important to note that one of the perspective directions is to adapt the trained system to

changes in the supercomputer structure, for example, to new additional computer blocks which

can be supplemented in some time. In this case, we cannot directly use the trained model and

need to re-train the whole prediction system. In order to avoid that, we propose to apply ideas

of the heterogeneous treatment effect [1, 17] or transfer learning [18, 29]. These approaches allow

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 123

us to do hard computations for training the system when the structure of the supercomputer

has been changed.

“A network is a computer”, a slogan that had originally been used by Sun Microsystems

in the early 1980s, became a basic truism of computer science: “computers must be networked,

otherwise they are... not computers”. Today we propose two new extensions of former slogan,

namely “A frontier ML system is HPC”, and vice versa “HPC is a frontier ML system”. These

two slogans have not become truism yet but they clearly reflect ideas of our article and obvious

computer evolution tendency – frontier high-performance computing systems become not only

a driving force of global digital transformation process, but also active part of machine learning

ecosystem.

Acknowledgements

The research is partially funded by the Ministry of Science and Higher Education of the Rus-

sian Federation as part of state assignments “Development of a Multi-Agent Resource Manager

for a Heterogeneous Supercomputer Platform Using Machine Learning and Artificial Intelli-

gence” (topic FSEG-2022-0001).

The results of the work were obtained using computational resources of the supercomputer

center in Peter the Great Saint-Petersburg Polytechnic University (https://scc.spbstu.ru).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Alaa, A., van der Schaar, M.: Limits of estimating heterogeneous treatment effects: Guide-

lines for practical algorithm design. In: Proceedings of the International Conference on

Machine Learning, pp. 129–138. PMLR (2018)

2. Bou-Hamad, I., Larocque, D., Ben-Ameur, H.: A review of survival trees. Statistics Sur-

veys 5, 44–71 (2011). https://doi.org/10.1214/09-SS047

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001). https://doi.org/10.

1023/A:1010933404324

4. Cox, D.: Regression models and life-tables. Journal of the Royal Statistical Society, Series B

(Methodological) 34(2), 187–220 (1972). https://doi.org/10.1111/j.2517-6161.1972.

tb00899/x

5. Faraggi, D., Simon, R.: A neural network model for survival data. Statistics in Medicine

14(1), 73–82 (1995). https://doi.org/10.1002/sim.4780140108

6. Harrell, F., Califf, R., Pryor, D., et al.: Evaluating the yield of medical tests. Journal of the

American Medical Association 247, 2543–2546 (1982). https://doi.org/10.1001/jama.

1982.03320430047030

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

124 Supercomputing Frontiers and Innovations

https://scc.spbstu.ru
https://doi.org/10.1214/09-SS047
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/j.2517-6161.1972.tb00899/x
https://doi.org/10.1111/j.2517-6161.1972.tb00899/x
https://doi.org/10.1002/sim.4780140108
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1001/jama.1982.03320430047030

7. Hosmer, D., Lemeshow, S., May, S.: Applied Survival Analysis: Regression Modeling of

Time to Event Data. John Wiley & Sons, New Jersey (2008) https://doi.org/10.1007/

s00362-010-0360-3

8. Hu, S., Fridgeirsson, E., van Wingen, G., Welling, M.: Transformer-based deep survival

analysis. In: Survival Prediction-Algorithms, Challenges and Applications, pp. 132–148.

PMLR (2021)

9. Ishwaran, H., Kogalur, U.: Random survival forests for R. R News 7(2), 25–31 (2007).

https://doi.org/10.1214/08-AOAS169

10. Ishwaran, H., Kogalur, U., Blackstone, E., Lauer, M.: Random survival forests. Annals of

Applied Statistics 2, 841–860 (2008). https://doi.org/10.1214/08-AOAS169

11. Kalyaev, A., Kalyaev, I., Khisamutdinov, M., et al.: An effective algorithm for multia-

gent dispatching of resources in heterogeneous cloud environments. In: 5th International

Conference on Informatics, Electronics and Vision (ICIEV), pp. 1140–1142. IEEE (2016).

https://doi.org/10.1109/ICIEV.2016.7760177

12. Kalyaev, I.A., Kalyaev, A.I. Method and Algorithms for Adaptive Multiagent Resource

Scheduling in Heterogeneous Distributed Computing Environments. Autom Remote Con-

trol 83, 1228–1245 (2022). https://doi.org/10.1134/S0005117922080069

13. Katzman, J., Shaham, U., Cloninger, A., et al.: Deepsurv: Personalized treatment recom-

mender system using a Cox proportional hazards deep neural network. BMC Medical Re-

search Methodology 18(24), 1–12 (2018). https://doi.org/10.1186/s12874-018-0482-1

14. Khan, F., Zubek, V.: Support vector regression for censored data (SVRc): a novel tool for

survival analysis. In: 2008 Eighth IEEE International Conference on Data Mining. pp. 863–

868. IEEE (2008). https://doi.org/10.1109/ICDM.2008.50

15. Konstantinov, A., Utkin, L., Lukashin, A., Muliukha, V.: Neural attention forests:

Transformer-based forest improvement (Apr 2023), arXiv:2304.05980. https://doi.org/

10.48550/arXiv.2304.05980

16. Kovalev, M., Utkin, L., Kasimov, E.: SurvLIME: A method for explaining machine learn-

ing survival models. Knowledge-Based Systems 203, 106164 (2020). https://doi.org/10.

1016/j.knosys.2020.106164

17. Kunzel, S., Stadie, B., Vemuri, N., et al.: Transfer learning for estimating causal effects

using neural networks (Aug 2018), arXiv:1808.07804. https://doi.org/10.48550/arXiv.

1808.07804

18. Lu, J., Behbood, V., Hao, P., et al.: Transfer learning using computational intelligence: A

survey. Knowledge-Based Systems 80, 14–23 (2015). https://doi.org/10.1016/j.knosys.

2015.01.010

19. May, M., Royston, P., Egger, M., et al.: Development and validation of a prognostic model

for survival time data: application to prognosis of HIV positive patients treated with an-

tiretroviral therapy. Statistics in Medicine 23, 2375–2398 (2004). https://doi.org/10.

1002/sim.1825

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 125

https://doi.org/10.1007/s00362-010-0360-3
https://doi.org/10.1007/s00362-010-0360-3
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1109/ICIEV.2016.7760177
https://doi.org/10.1134/S0005117922080069
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1109/ICDM.2008.50
https://doi.org/10.48550/arXiv.2304.05980
https://doi.org/10.48550/arXiv.2304.05980
https://doi.org/10.1016/j.knosys.2020.106164
https://doi.org/10.1016/j.knosys.2020.106164
https://doi.org/10.48550/arXiv.1808.07804
https://doi.org/10.48550/arXiv.1808.07804
https://doi.org/10.1016/j.knosys.2015.01.010
https://doi.org/10.1016/j.knosys.2015.01.010
https://doi.org/10.1002/sim.1825
https://doi.org/10.1002/sim.1825

20. Nezhad, M., Sadati, N., Yang, K., Zhu, D.: A deep active survival analysis approach for

precision treatment recommendations: Application of prostate cancer. Expert Systems with

Applications 115, 16–26 (2019). https://doi.org/10.1016/j.eswa.2018.07.070

21. Pachon-Garcia, C., Hernandez-Perez, C., Delicado, P., Vilaplana, V.: SurvLIMEpy: A

Python package implementing SurvLIME (Feb 2023), arXiv:2302.10571. https://doi.org/

10.48550/arXiv.2302.10571

22. Polsterl, S., Navab, N., Katouzian, A.: An efficient training algorithm for kernel survival sup-

port vector machines (Nov 2016), arXiv:1611.07054v. https://doi.org/10.48550/arXiv.

1611.07054

23. Ribeiro, M., Singh, S., Guestrin, C.: “Why should I trust You?” Explaining the predictions

of any classifier In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016). https://doi.org/

10.1145/2939672.2939778

24. Utkin, L., Satyukov, E., Konstantinov, A.: SurvNAM: The machine learning survival model

explanation. Neural Networks 147, 81–102 (2022). https://doi.org/10.1016/j.neunet.

2021.12.015

25. Waititu, H., Koske, J., Onyango, N.: Analysis of balanced random survival forest using dif-

ferent splitting rules: Application on child mortality. International Journal of Statistics and

Applications 11(2), 37–49 (2021). https://doi.org/10.5923/j.statistics.20211102.03

26. Wang, H., Zhou, L.: Random survival forest with space extensions for censored data. Artifi-

cial Intelligence in Medicine 79, 52–61 (2017). https://doi.org/10.1016/j.artmed.2017.

06.005

27. Wang, P., Li, Y., Reddy, C.: Machine learning for survival analysis: A survey. ACM Com-

puting Surveys (CSUR) 51(6), 1–36 (2019). https://doi.org/10.1145/3214306

28. Wang, Z., Sun, J.: SurvTRACE: Transformers for survival analysis with competing events.

In: Proceedings of the 13th ACM International Conference on Bioinformatics, Computa-

tional Biology and Health Informatics, pp. 1–9. ACM (2022). https://doi.org/10.1145/

3535508.3545521

29. Weiss, K., Khoshgoftaar, T., Wang, D.: A survey of transfer learning. Journal of Big Data

3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

126 Supercomputing Frontiers and Innovations

https://doi.org/10.1016/j.eswa.2018.07.070
https://doi.org/10.48550/arXiv.2302.10571
https://doi.org/10.48550/arXiv.2302.10571
https://doi.org/10.48550/arXiv.1611.07054
https://doi.org/10.48550/arXiv.1611.07054
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.neunet.2021.12.015
https://doi.org/10.1016/j.neunet.2021.12.015
https://doi.org/10.5923/j.statistics.20211102.03
https://doi.org/10.1016/j.artmed.2017.06.005
https://doi.org/10.1016/j.artmed.2017.06.005
https://doi.org/10.1145/3214306
https://doi.org/10.1145/3535508.3545521
https://doi.org/10.1145/3535508.3545521
https://doi.org/10.1186/s40537-016-0043-6

The High Performance Interconnect Architecture

for Supercomputers

Alexey S. Simonov1,2, Alexander S. Semenov1 , Andrey N. Shcherbak1,

Ivan A. Zhabin1

c© The Authors 2023. This paper is published with open access at SuperFri.org

In this paper, we introduce the design of an advanced high-performance interconnect ar-

chitecture for supercomputers. In the first part of the paper, we consider the first generation

high-performance Angara interconnect (Angara G1). The Angara interconnect is based on the

router ASIC, which supports a 4D torus topology, a deterministic and an adaptive routing, and

has the hardware support of the RDMA technology. The interface with a processor unit is PCI

Express. The Angara G1 interconnect has an extremely low communication latency of 850 ns using

the MPI library, as well as a link bandwidth of 75 Gbps. In the paper, we present the scalability

performance results of the considered application problems on the supercomputers equipped with

the Angara G1 interconnect. In the second part of the paper, using research results and experi-

ence we present the architecture of the advanced interconnect for supercomputers (G2). The G2

architecture supports 6D torus topology, the advanced deterministic and zone adaptive routing al-

gorithms, and a low-level interconnect operations including acknowledgments and notifications. G2

includes support for exceptions, performance counters, and SR-IOV virtualization. A G2 hardware

is planned in the form factor of a 32-port switch with the QSFP-DD connectors and a two-port

low profile PCI Express adapter. The switches can be combined to 4D torus topology. We show

the performance evaluation of an experimental FPGA prototype, which confirm the possibility of

implementing the proposed advanced high performance interconnect architecture.

Keywords: interconnect, high performance computing, supercomputer, Angara.

Introduction

An interconnection network (interconnect) is a critical supercomputer component to achieve

high scalability and performance on different applications. Modern supercomputer applications

include mathematical physics, business analytics and machine learning problems.

Analysis of world experience in designing custom interconnection networks for high-end

supercomputers, primarily the IBM BlueGene L/P/Q series [6, 8, 11] and Cray SeaStar/Gemini

[1, 5, 7], simulation results [20] allowed to design the principles of operation of the first generation

of the high-performance Angara interconnect (Angara G1) [21]. Series-produced Angara G1

hardware was presented in 2013. The Angara G1 interconnect is a direct network, it supports

topologies from 1D-mesh to 4D-torus and provides the possibility of building a supercomputer

with a size of up to 32K nodes.

The operation experience of existing high-performance interconnect solutions allows to

develop architecture features and design the principles of operation of an advanced high-

performance interconnection network for supercomputers.

The paper is structured as follows. Section 1 describes the architecture and the perfor-

mance results of the Angara G1 interconnect. Section 2 presents the architecture and features of

the advanced high-performance interconnect for supercomputers, and provides the performance

evaluation obtained on a FPGA prototype of the proposed interconnect architecture. Conclusion

summarizes the paper and points directions for further work.

1Federal State Unitary Enterprise “Russian Federal Nuclear Center-Zababakhin All – Russia Research Institute

of Technical Physics”, Snezhinsk, Russia
2Federal State Budgetary Educational Institution of Higher Education Moscow Aviation Institute (National Re-

search University), Moscow, Russia

DOI: 10.14529/jsfi230208

2023, Vol. 10, No. 2 127

https://orcid.org/0000-0003-4878-6287

1. The First Generation Angara Interconnect

The choice of the interconnect topology determines the range of applicable routing algo-

rithms and methods for solving the main problems of communication networks: deadlocks,

starvation and livelocks. As a research result, the following decisions were made on the Angara

G1 interconnect architecture:

• torus topology;

• the deterministic directional order routing algorithm with a fixed order of directions [10],

a direction bit (dirbit) routing rule does not allow both positive and negative directions

of a dimension in a route. There is a possibility of the first and last steps of a route in an

arbitrary positive and negative directions for bypassing failed nodes and links [18];

• the bubble routing method [2, 16] is used to avoid deadlocks in a ring (movement without

changing a direction). The direction order routing [9] garantees no deadlocks in torus

directions. The first and last steps can violate the direction order rule, the routing table

generation algorithm provides deadlock freedom [12]. The adaptive routing has the ability

by a timeout to switch to a nonblocking deterministic virtual channel in case of potential

deadlock;

• a minimal full-adaptive routing algorithm with assignment of possible directions;

• virtual subnets for deterministic, adaptive and broadcast routing based on virtual channels;

• a virtual cut-through flow control method;

• the used routing algorithms are minimal, i.e., each step of a packet route reduces the

distance to a destination node. Minimal routing provides livelock freedom;

• fair arbitrage algorithms allow to avoid starvation;

• the PCI Express interface with CPU;

• a network adapter at the hardware level supports remote direct memory access (RDMA)

write, read, and atomic operations;

• hardware and software support for the main functions of the SHMEM and MPI libraries;

• each node has a dedicated memory region available for remote access from other nodes to

support, OpenSHMEM and partitioned global address space (PGAS);

• router implementation in the form of custom ASIC.

On the basis of custom designed router ASIC the following options of the Angara G1 inter-

connect hardware were released:

• a full-height full-length PCI Express adapter, which provides the ability to combine directly

up to 32 thousand computing nodes of a supercomputer into a topology up to 4D torus

topology 8× 16× 16× 16;

• a 24-port switch for installation in a 19-inch rack and a low profile PCI Express adapter

for installation in supercomputer nodes. This option provides the ability to combine up to

2048 computing nodes with 2D torus topology of switches.

1.1. Experimental Results and Performance Evaluation

The first computing system equipped with the Angara G1 interconnect is the Angara-C1

36-node computing cluster [3], designed for hardware and system software development of the

interconnect.

The High Performance Interconnect Architecture for Supercomputers

128 Supercomputing Frontiers and Innovations

During the development, different options for combining computing nodes into a torus topol-

ogy were tested, system software was debugged, including the Slurm job scheduling system, a

plugin for the Zabbix monitoring system. Figure 1 shows the Angara G1 system software stack.

Low-level communication library (ALLAPI)

Applications

IntelMPI
 2021.5.1ch3

OpenMPI 4.0.5
mtl

MPICH 3.4
ch4

MVAPICH2 1.9
ch4

High-level library

MPICH 3.0.4-3.3
ch3: angara

libfabric 1.13.2

Configuring driver (angara_router)

Angara interconnect adapter

Netdev 2
driver

TCP/IP

Angara RDMA
driver

OpenMPI 1.10.2
btl: angara

provider: amf

Application
launch system

ANSU

trun

Slurm

Slurm
Angara
plugin

Figure 1. The Angara G1 system software stack

A supercomputer series of difference performance based on the Angara G1 interconnect were

produced, including the Desmos [22] and Fisher [19, 23] supercomputers installed at the JIHT

RAS.

Several years of operation and maintenance of supercomputers based on the the Angara G1

interconnect made it possible to identify both the advantages and disadvantages of Angara G1.

The advantages include:

• extremely low communication latency, for example on Desmos the obtained latency is

850 ns using the MPI library on the osu latency benchmark. In comparison with other

commercially available communication networks, on Angara G1 the latency is stable with

a network load increase and with an increase of the supercomputer node number;

• 75 Gbit/s link bandwidth, which does not change with increasing distance between su-

percomputer nodes. This feature is ensured both by the chosen topology and by a good

balance of the stages of the entire Angara G1 pipeline.

The mentioned advantages made it possible to obtain good performance scalability of

benchmarks and applications on the supercomputers based on the Angara G1 interconnect

[4, 13–15, 17, 22–24]. Figure 2 presents performance scalability obtained on the Desmos, Fisher

and Angara C1 supercomputers on quantum mechanical calculation software called VASP and

a fluid simulation software.

The main disadvantages of the Angara G1 interconnect are the following:

• network connectivity degradation in case of computing node and communication cable

failure, associated with the limited capabilities of the routing algorithms for bypassing the

failed network resources;

• supercomputer performance degradation in the situation of interconnect congestions, as-

sociated with the features of the deterministic and adaptive routing algorithms;

• insufficient hardware support of fault tolerance in the router ASIC;

• insufficient hardware support of modern multi-core processors;

• insufficient hardware support for GPU integration;

• lack of hardware support of the TCP/IP protocol stack;

• lack of hardware support of virtualization;

A.S. Simonov, A.S. Semenov, A.N. Shcherbak, I.A. Zhabin

2023, Vol. 10, No. 2 129

10.40

8.04

0

2

4

6

8

10

12

0 4 8 12 16 20 24 28 32 36

Sp
ee

du
p

Number of nodes

Desmos, Angara
Fisher, Infiniband FDR

(a) Quantum mechanical calculations VASP, Desmos

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200

S
p

e
ed

u
p

Core number

Sedan 4m, 4М cells

Real-world application, 6.7M cells

(b) A fluid simulation software, Angara-C1

Figure 2. Performance result scaling of the Angara based supercomputers on the simulation

application softwares

• insufficient hardware support for supercomputer monitoring and control systems, which is

especially important for high-end large supercomputers;

• large physical dimensions of the full-height full-length PCI Express Angara G1 adapter;

• limitation on the number of supercomputer nodes when using the Angara G1 24-port

switch and the low profile PCI Express adapter.

These disadvantages were taken into account when developing an advanced high-

performance interconnect architecture.

2. Advanced Interconnect Architecture

An advanced G2 high-performance interconnect is designed to combine computing nodes

of supercomputers up to a subexascale performance level. During its development, technical

risks were minimized, the advantages and disadvantages of the Angara G1 interconnect were

taken into account. In addition to the goal of ensuring high performance and high scalability

of supercomputers built using the developed interconnect, the goal was to extend the product

segments of the interconnect. The intended product segments are not only supercomputers, but

also storage systems, business analytic processing systems and data centers.

To ensure the scalability of application performance and support new product areas, it was

necessary to:

• use more flexible routing algorithms;

• have low communication latency;

• increase the message rate;

• extend the interconnect functional capabilities and features.

2.1. Interconnect Architecture

The essential differences between the G2 interconnect architecture and the existing solution

are the following:

• flexible options for combining available topologies from 1D mesh to 6D torus, topologies

with shifted connections are also supported;

The High Performance Interconnect Architecture for Supercomputers

130 Supercomputing Frontiers and Innovations

• an advanced deterministic delta routing algorithm that provides more route options when

bypassing failed or congested network sections;

• an advanced zone-adaptive routing algorithm;

• an extended low-level network operation set, including acknowledgements, notifications

and synchronization operations;

• multihost hardware support, that allows to divide the PCI Express interconnect adapter

interface into 2 or 4 independent interfaces and connecting different computing nodes via

them;

• hardware support for modern multicore processors, 128 independent injection pipelines

are implemented;

• hardware methods to solve the starvation network problem;

• advanced fault tolerance support, as well as monitoring and control systems for supercom-

puters, including support for exceptions, traps and performance counters;

• hardware support for SR-IOV virtualization, up to 15 virtual functions are supported in

each PCI Express endpoint;

• hardware support for hot swap of failed interconnect hardware.

The most important difference between the G2 interconnect and the existing solution is 6D

torus topology. This architecture feature follows the global trend of high-radix communication

networks to increase the connectivity of each node or switch.

The advanced delta routing algorithm implements the dimension order routing rule. In the

dirbit routing algorithm implemented in the Angara G1 interconnect a packet header stores not

only a target node address, but also a bit that specify a torus direction, in which a packet will

move. In contrast to the dirbit routing algorithm, in the delta routing algorithm a packet header

for each torus coordinate stores only the difference between the current and a target node, which

allowed to reduce bit number in the packet header. Also, the delta routing algorithm is more

flexible and allows you to transmit a packet both in a positive and in a negative torus direction,

and by a large number of steps, which allows to significantly extend the possibilities of bypassing

failed supercomputer nodes or communication cables. In addition, the delta routing algorithm

allows to build shifted connections in a torus topology, which in some cases can reduce the

network diameter and improve communication latency.

The second important difference is the possibility of a zone-adaptive routing. In the Angara

G1 interconnect, when a packet moves using adaptive routing, in case of, for example, congestion

or failure, the packet waits too long for a connection, the packet is transferred to the deterministic

subnet, and it is impossible to return the packet back to movement with the adaptive routing.

The zone-adaptive routing allows to specify in which directions a packet can be transmitted

using an adaptive algorithm, and in which directions using the deterministic algorithm. Thus,

the packet movement using the deterministic algorithm will be used only in hyperplanes in which

there are problems, for example, failed computing nodes or communication channels.

The nomenclature of low-level G2 operations includes simple put, get, and atomic opera-

tions (including returning a value) in a memory of a remote node. In addition to the mentioned

operations there are write to a segment operations, moreover three types of segments are avail-

able: number of incoming packets, aggregating segments and circular segments. Also there

are operations with acknowledgements and notifications, including interrupts. The use of these

types of operations allows to optimize the implementation of low-level software of the MPI and

TCP/IP libraries, reduces the load on CPU and significantly improves the application perfor-

A.S. Simonov, A.S. Semenov, A.N. Shcherbak, I.A. Zhabin

2023, Vol. 10, No. 2 131

Aсknowledgments,
notifications

К
ро
сс
ба
р

Link
−X

Data transfer unit

aсknowledgments

S
e

rD
e

s

Virtual channels

requests

replies

adaptive

Link −Y Link +Y

Link −Z Link +Z

Link −K Link +K

Interface
management units

Service
operations

Service CPU

Injection and ejection
units

Nonblocking, atomic,
read opeations

Aggregation
and synchronization

Link
+X

Data transfer unit

aсknowledgments

S
e

rD
e

s

Virtual channels

requests

replies

adaptive

Adapter

Router

PCIe 4.0 x8PCIe 4.0 x8 PCIe 4.0 x8 PCIe 4.0 x8

Link −L Link +L

Link −M Link +M

Figure 3. The G2 interconnect architecture

mance and scalability. The G2 interconnect supports the technology of direct memory access to

the remote node (RDMA), which significantly affects the obtained performance not only in the

high-performance computing systems, but also in storage and Big Data processing systems.

Figure 3 presents the G2 interconnect architecture, which consists of two parts: a router

and an adapter. The router is intended for routing and transmission of packets between nodes,

includes four virtual channels in each link, including: three deterministic virtual channels for

request, response and confirmations subnets and an adaptive subnet. Deterministic virtual chan-

nels implement the deterministic delta routing algorithm with dimension-order routing and an

order of dimensions can be set at system startup.

The adapter performs the injection of packets into the network and the processing of packets

ejected from the network, as well as a set of service functions that ensure the minimization of

traffic over the network and through the interface to the node processor. The adapter includes:

• interface control units, which support PCI Express protocols and implement virtual func-

tions;

• injection and ejection units, that form packets for sending to the network and parse the

headers of packets that came from the network;

• a service unit, that processes packets going to and from the service processor;

• aggregation and synchronization units, as well as confirmation and notification units, which

support the execution of different network operations;

• non-blocking, atomic and read operation units, which support RDMA technology.

The G2 interconnect hardware is planned to be released in the form factor of a 32-port

switch for installation in a standard 19-inch rack and a low profile PCI Express adapter for

installation in supercomputer nodes. This option provides the possibility of combining up to

several thousand computing nodes by connecting switches in a topology from 1D to 4D torus.

The High Performance Interconnect Architecture for Supercomputers

132 Supercomputing Frontiers and Innovations

Each switch will include 32 ports with QSFP-DD connectors, and the low profile adapter will

include 2 ports with QSFP-DD connectors and support multihost operation of several PCI

Express interfaces.

2.2. Prototype Performance Evaluation

Development of the underlying architectural solutions of G2 was on a simulation model,

as well as on a cluster with prototype network adapters based on the Virtex7 FPGA, each

computing node includes 2x Intel Xeon CPU E5-2630 v3 processors @ 2.40 GHz, 32 GB of

memory.

A prototype network adapter is made in the form factor of a full-length full-height PCI

Express expansion card. Due to the technical limitations of the FPGA, PCI Express 2.0 x8

was used as an interface with CPU, there are four independent injection packet pipelines and

8 QSFP connectors were used for communication with other adapters.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

La
te

nc
y,

 m
s

Message size, bytes

osu_latency

Figure 4. The osu latency results obtained on two nodes of the M4 prototyping cluster

The frequency of the prototype adapter is 167 MHz, we obtained 2.01 us communication

latency between two neighboring nodes on the osu latency test using the MPI library. Figure 4

presents osu latency results for different message sizes. The latency for each additional hop is

no more than 0.5 us. The 30 Gbit/s bandwidth of the prototype adapter is limited by the

performance of packet injection into the network, the overhead of the G2 interconnect data

transmission protocol when transmitting large messages is less than 9% of the peak bandwidth

of the communication channel.

Conclusion

In this paper, we introduce the main features of the advanced high-performance intercon-

nect architecture for supercomputers, including topology, adaptive and deterministic routing

algorithms, remote direct memory access technology.

We have considered the first generation high-performance Angara interconnect (Angara G1).

Angara G1 has an extremely low communication latency of 850 ns, as well as a link bandwidth of

75 Gbps. However, it has insufficient hardware support for GPU integration, TCP/IP protocol

stack, virtualization, for supercomputer monitoring and control systems, which is especially

important for high-end large supercomputers.

A.S. Simonov, A.S. Semenov, A.N. Shcherbak, I.A. Zhabin

2023, Vol. 10, No. 2 133

Based on the performance evaluation and operation of the high-performance computing sys-

tems built with the Angara G1 interconnect solution, we present the main architectural features

for the advanced interconnect for supercomputers. The proposed G2 architecture supports 6D

torus topology, the advanced deterministic delta routing and zone adaptive routing algorithms,

and extended low-level interconnect operations. G2 includes support for exceptions, performance

counters, and the SR-IOV virtualization technology. The G2 hardware is planned in the form

factor of a 32-port switch with the QSFP-DD connectors and a two-port low profile PCI Express

adapter. We showed the performance evaluation of the experimental FPGA prototype. In future

works, we plan to present more detailed performance evaluation of the FPGA prototype.

Acknowledgements

This work is supported by the Ministry of Industry and Trade of the Russian Federa-

tion under the complex project, which is performed by FSUE “VNIITF named after Academ.

E. I. Zababakhin”.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Abts, D.: The Cray XT4 and Seastar 3D torus interconnect (2011)

2. Adiga, N.R., Blumrich, M.A., Chen, D., et al.: Blue Gene/L torus interconnection network.

IBM Journal of Research and Development 49(2.3), 265–276 (2005). https://doi.org/10.

1147/rd.492.0265

3. Agarkov, A., Ismagilov, T., Makagon, D., et al.: Performance evaluation of the Angara in-

terconnect. In: Proc. Int. Conf. on Russian Supercomputing Days, Moscow, Russia. pp. 626–

639 (2016). https://russianscdays.org/files/pdf16/626.pdf, accessed: 2023-05-15 (in

Russian)

4. Akimov, V., Silaev, D., Aksenov, A., et al.: FlowVision scalability on supercomputers with

Angara interconnect. Lobachevskii Journal of Mathematics 39, 1159–1169 (2018). https:

//doi.org/10.1134/S1995080218090081

5. Alam, S.R., Kuehn, J.A., Barrett, R.F., et al.: Cray XT4: an early evaluation for petascale

scientific simulation. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomput-

ing. pp. 1–12 (2007). https://doi.org/10.1145/1362622.1362675

6. Almasi, G., Asaad, S., Bellofatto, R.E., et al.: Overview of the IBM Blue Gene/P project.

IBM Journal of Research and Development 52(1-2), 199–220 (2008). https://doi.org/10.

1147/rd.521.0199

7. Alverson, R., Roweth, D., Kaplan, L.: The Gemini system interconnect. In: 2010 18th

IEEE Symposium on High Performance Interconnects. pp. 83–87. IEEE (2010). https:

//doi.org/10.1109/HOTI.2010.23

The High Performance Interconnect Architecture for Supercomputers

134 Supercomputing Frontiers and Innovations

https://doi.org/10.1147/rd.492.0265
https://doi.org/10.1147/rd.492.0265
https://russianscdays.org/files/pdf16/626.pdf
https://doi.org/10.1134/S1995080218090081
https://doi.org/10.1134/S1995080218090081
https://doi.org/10.1145/1362622.1362675
https://doi.org/10.1147/rd.521.0199
https://doi.org/10.1147/rd.521.0199
https://doi.org/10.1109/HOTI.2010.23
https://doi.org/10.1109/HOTI.2010.23

8. Chen, D., Eisley, N., Heidelberger, P., et al.: The IBM Blue Gene/Q interconnection fabric.

IEEE Micro 32(1), 32–43 (2011). https://doi.org/10.1109/MM.2011.96

9. Dally, W.J., Seitz, C.L.: The torus routing chip. Distributed computing 1(4), 187–196

(1986). https://doi.org/10.1007/BF01660031

10. Duato, J., Yalamanchili, S., Ni, L.: Interconnection networks. Morgan Kaufmann (2003)

11. Gara, A., Blumrich, M.A., Chen, D., et al.: Overview of the Blue Gene/L system ar-

chitecture. IBM Journal of research and development 49(2.3), 195–212 (2005). https:

//doi.org/10.1147/rd.492.0195

12. Mukosey, A., Simonov, A., Semenov, A.: Extended routing table generation algorithm for

the Angara interconnect. In: Russian Supercomputing Days. pp. 573–583. Springer (2019).

https://doi.org/10.1007/978-3-030-36592-9_47

13. Nikolskiy, V., Pavlov, D., Stegailov, V.: State-of-the-art molecular dynamics packages for

GPU computations: Performance, scalability and limitations. In: Russian Supercomputing

Days. pp. 342–355. Springer (2022). https://doi.org/10.1007/978-3-031-22941-1_25

14. Ostroumova, G., Orekhov, N., Stegailov, V.: Reactive molecular-dynamics study of onion-

like carbon nanoparticle formation. Diamond and Related Materials 94, 14–20 (2019).

https://doi.org/10.1016/j.diamond.2019.01.019

15. Polyakov, S., Podryga, V., Puzyrkov, D.: High performance computing in multiscale

problems of gas dynamics. Lobachevskii Journal of Mathematics 39(9), 1239–1250 (2018).

https://doi.org/10.1134/S1995080218090160

16. Puente, V., Izu, C., Beivide, R., et al.: The adaptive bubble router. Journal of Parallel and

Distributed Computing 61(9), 1180–1208 (2001). https://doi.org/10.1006/jpdc.2001.

1746

17. Pugachev, L., Umarov, I., Popov, V., et al.: PIConGPU on Desmos supercomputer: GPU

acceleration, scalability and storage bottleneck. In: Russian Supercomputing Days. pp. 290–

302. Springer (2022). https://doi.org/10.1007/978-3-031-22941-1_21

18. Scott, S.L., et al.: The Cray T3E network: adaptive routing in a high performance 3D torus

(1996)

19. Shamsutdinov, A., Khalilov, M., Ismagilov, T., et al.: Performance of supercomputers based

on Angara interconnect and novel AMD CPUs/GPUs. In: International Conference on

Mathematical Modeling and Supercomputer Technologies. pp. 401–416. Springer (2020).

https://doi.org/10.1007/978-3-030-78759-2_33

20. Simonov, A.: Simulation model of high-speed Angara communication network with kd-tor

topology. Trudy MAI (109), 22–22 (2019). https://doi.org/10.34759/trd-2019-109-22,

(in Russian)

21. Simonov, A., Makagon, D., Zhabin, I., et al.: The first generation of Angara high-speed

interconnect. Science Technologies 15(1), 21–28 (2014) (in Russian)

A.S. Simonov, A.S. Semenov, A.N. Shcherbak, I.A. Zhabin

2023, Vol. 10, No. 2 135

https://doi.org/10.1109/MM.2011.96
https://doi.org/10.1007/BF01660031
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.1007/978-3-030-36592-9_47
https://doi.org/10.1007/978-3-031-22941-1_25
https://doi.org/10.1016/j.diamond.2019.01.019
https://doi.org/10.1134/S1995080218090160
https://doi.org/10.1006/jpdc.2001.1746
https://doi.org/10.1006/jpdc.2001.1746
https://doi.org/10.1007/978-3-031-22941-1_21
https://doi.org/10.1007/978-3-030-78759-2_33
https://doi.org/10.34759/trd-2019-109-22

22. Stegailov, V., Dlinnova, E., Ismagilov, T., et al.: Angara interconnect makes GPU-

based Desmos supercomputer an efficient tool for molecular dynamics calculations. The

International Journal of High Performance Computing Applications 33(3) (2019). https:

//doi.org/10.1177/1094342019826667

23. Stegailov, V., Smirnov, G., Vecher, V.: VASP hits the memory wall: Processors efficiency

comparison. Concurrency and Computation: Practice and Experience, p. e5136 (2019).

https://doi.org/10.1002/cpe.5136

24. Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V.: Structure and algorithms of SLAV

atmosphere model parallel program complex. Lobachevskii Journal of Mathematics 39(4),

587–595 (2018). https://doi.org/10.1134/S1995080218040145

The High Performance Interconnect Architecture for Supercomputers

136 Supercomputing Frontiers and Innovations

https://doi.org/10.1177/1094342019826667
https://doi.org/10.1177/1094342019826667
https://doi.org/10.1002/cpe.5136
https://doi.org/10.1134/S1995080218040145

	N.S. Abramov, S.M. Abramov
	A.I. Dordopulo, I.I. Levin, V.A. Gudkov, A.A. Gulenok
	A.I. Legalov, N.K. Chuykin
	I.I. Levin, A.M. Fedorov, Yu.I. Doronchenko, M.K. Raskladkin
	D.A. Sorokin, A.V. Kasarkin, A.V. Podoprigora
	A.N. Mikhaylov, E.G. Gryaznov, M.N. Koryazhkina, I.A. Bordanov, S.A. Shchanikov, O.A. Telminov, V.B. Kazantsev
	V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin
	A.S. Simonov, A.S. Semenov, A.N. Shcherbak, I.A. Zhabin

