
Supercomputing
Frontiers

and Innovations
2022, Vol. 9, No. 1

Scope

• Future generation supercomputer architectures

• Exascale computing

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Novel approaches to computing targeted to solve intractable problems

• Convergence of high performance computing, machine learning and big data technologies

• Distributed operating systems and virtualization for highly scalable computing

• Management, administration, and monitoring of supercomputer systems

• Mass storage systems, protocols, and allocation

• Power consumption minimization for supercomputing systems

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Scientific visualization in supercomputing environments

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA
• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany

• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Andrei Tchernykh, CICESE Research Center, Mexico
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Yana Kraeva, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia

Contents

4D Technology of Variational Data Assimilation for Sea Dynamics Problems
V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova . 4

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban
Surface Air Quality
A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina . 17

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme
and Parallel Implementation on Hybrid Supercomputers
V.M. Stepanenko . 32

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:
Challenges and Initial Results
F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla,
R.S. Pereira, R. Castro, J.V. Silva, R. Salles, A. Fonseca, J. Hermsdorff, M. Magalhães, V. Sã,
A.A. Simões, C. Cardoso, E. Bezerra . 49

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation
H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter, R.P. Souto,
D. Carvalho, D.O. Cardoso . 74

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography
A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov . 87

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.

4D Technology of Variational Data Assimilation

for Sea Dynamics Problems

Victor P. Shutyaev1,3 , Valery I. Agoshkov1,2 , VladimirB. Zalesny1 ,

Eugene I. Parmuzin1,3 , Natalia B. Zakharova1

c© The Authors 2022. This paper is published with open access at SuperFri.org

The technology aimed at high-performance computing is presented for modeling the sea dy-

namics problems based on 4D variational data assimilation technique developed at the Marchuk

Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). The technology

is based on the multicomponent splitting method for the mathematical model of sea dynamics

and the minimization of cost functionals related to the observation data by solving an optimality

system that involves the adjoint equations with observation data and observation error covari-

ances. Efficient algorithms for solving the variational data assimilation problems are presented

based on modern iterative processes with a special choice of iterative parameters. The technology

is illustrated for the Baltic Sea dynamics model with variational data assimilation to restore the

initial states and the heat fluxes on the sea surface.

Keywords: sea dynamics modeling, variational data assimilation, observations, sea surface

temperature.

Introduction

In recent years, there has been an increasing interest in research methods and numerical

solution of inverse and data assimilation problems, which play a fundamental role in the theoret-

ical understanding and mathematical modeling of processes and phenomena from various fields

of knowledge. The data assimilation technique is widely used in geosciences to develop high-

performance computational technologies that combine the flows of real data and hydrodynamic

forecasts using mathematical models. It received the greatest applications in meteorology and

oceanography, where observations of the atmosphere and ocean are assimilated into atmospheric

and oceanic models in order to obtain the initial and/or boundary conditions (and other model

parameters) for further modeling and forecasting [1, 7, 8, 12, 15, 16, 18, 22, 25].

A significant progress in solving data assimilation problems has been the use of variational

methods and, in particular, optimal control methods. The development of this direction at the

INM RAS was initiated by Academician Guriy I. Marchuk [18]. These approaches were the main

content of research of G.I. Marchuk and his scientific school in various fields of mathematics and

applications [1, 4, 5, 18, 25].

The variational data assimilation allows, on a unified methodological basis, to solve the

problems of initializing hydrophysical fields, assessing the sensitivity of a model solution, identi-

fying model parameters, etc. The main idea of the method is to minimize some functional that

describes the deviation of the model solution from the observational data, and the minimum

of this functional is sought on the model trajectories, in other words, in the subspace of model

solutions. The problem is formulated in a four-dimensional space-time domain and requires the

solution of a coupled system of direct and adjoint equations in forward and backward time, re-

spectively, which is very complicated from the computational point of view. The problem adjoint

1Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation
2Lomonosov Moscow State University, Moscow, Russian Federation
3Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation

DOI: 10.14529/jsfi220101

4 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-5932-4478
https://orcid.org/0000-0001-9055-1655
https://orcid.org/0000-0003-3829-3374
https://orcid.org/0000-0001-5472-7481
https://orcid.org/0000-0001-6069-1892

to the original nonlinear problem has a more complex form, and for solving the adjoint problem,

it is required to store 4D arrays of the solutions of the direct problem in machine memory.

Ocean general circulation models are very complex systems, which are based on nonlinear

differential equations describing the evolution of three-dimensional fields of currents, tempera-

ture and salinity, as well as pressure and density [9, 11, 13, 21], and require the development

of efficient numerical methods for a long-time integration. This underlines the importance of

high-performance computing for such problems. The ocean hydrodynamics INMOM model (INM

ocean model) is described by primitive equations in the sigma-coordinate system, which is solved

by finite-difference methods [11, 24, 27]. Its numerical implementation is based on the method

of splitting according to physical processes and spatial coordinates [17, 27], which allows us to

split the complex problem into a number of simpler ones and solve it in time using explicit or

implicit schemes.

This paper is based on the talk given at the Lomonosov Moscow State University Seminar

“Supercomputer Modelling of the Earth System” (headed by V.A. Sadovnichy) and presents

some approaches to solving the problems of variational data assimilation, developed at the INM

RAS last year. As an application, a mathematical model of sea dynamics is considered with

a block of variational assimilation of data on sea surface temperature taking into account the

covariance matrices of observation errors. On the basis of variational assimilation of observational

data, algorithms are proposed for solving inverse problems of restoring initial conditions and

heat fluxes on the sea surface. This is the novelty of this paper compared to the previous

studies [3–6, 25]. The results of numerical experiments for the Baltic Sea area are discussed.

The article is organized as follows. Section 1 is devoted to the the mathematical model of

sea dynamics using the splitting method. In Section 2 we give the statement of the variational

data assimilation problem and formulate the algorithms for its solution. Section 3 contains the

results of numerical experiments for the Baltic Sea water area. The main results are discussed

in the Conclusions.

1. Mathematical Model of Sea Dynamics

We consider the system of equations of sea hydrothermodynamics in geographical coordi-

nates under hydrostatics and Boussinesq approximations [2, 19], in the domain D of variables

(x, y, z) for t ∈ (0, t̄):





d~u

dt
+

[
0 −f
f 0

]
~u− ggradζ +Au~u+ (Ak)2~u = ~F − 1

ρ0
gradPa−

− g

ρ0
grad

z∫

0

ρ1(T, S)dz
′
,

∂ζ

∂t
−m ∂

∂x
(

H∫

0

Θ(z)udz)−m ∂

∂y
(

H∫

0

Θ(z)
n

m
vdz) = f3,

dT

dt
+
(
Ū ,Grad

)
T +ATT = fT ,

dS

dt
+ (Ū ,Grad)S +ASS = fS ,

(1)

where Ū = (u, v, w) is the velocity vector, ζ is the sea surface level function, T is the temperature,

S is the salinity, ~u= (u, v) , ρ1 (T, S) = ρ0βT
(
T − T (0)

)
+ ρ0βS

(
S − S(0)

)
+ γρ0βTS (T, S) is

the water density, Pa is the atmospheric pressure, ~F = (F1, F2) is the forcing, fT , fS are the

functions of the ‘internal’ sources, ρ0 = const ≈ 1 is the mean density, T (0), S(0) are the reference

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 5

values of temperature and salinity, βTS (T, S) is the sum of all other terms of the expansion of

the function of state ρ = ρ (T, S), f3 ≡ f3 (x, y, t) is the function related to the tide-generating

forces, βT , βS , γ, g = const, Aϕϕ ≡ −Div (âϕGradϕ), m = 1/(r cos y), n = 1/r, r = R − z ≈ R,

Θ(z) ≡ (R− z)/R≈ 1, R is the Earth radius.

The operators Aϕϕ ≡ −Div(âϕGradϕ) involve âϕ = diag((aϕ)ii), where (aϕ)11 = (aϕ)22 ≡
µϕ, (aϕ)33 ≡ νϕ , and ϕ may take the values u, v, T, S. We assume that µu = µv ≡ µ,

νu = νv ≡ ν, and µ, ν, µT , µS , νT , νS are diffusion coefficients that are supposed to be

positive bounded functions. The fourth order operator (Ak)2, with Ak taken for Aϕ = Ak, is

defined by the matrix k̂ = diag{kii} with nonnegative diagonal elements kii that are viscosity

coefficients in respective directions. We consider f = f(u) = l + mu sin y ≡ l + f1(u), where

l = l(y) is the Coriolis parameter l = 2ω sin y, and ω is the Earth angular rotaton speed.

The boundary Γ ≡ ∂D of the domain D is represented as a union of four disjoint parts ΓS ,

Γw,op, Γw,c, and ΓH , where ΓS ≡ Ω is the “unperturbed” sea surface, Γw,op is the liquid (open)

part of the vertical lateral boundary, Γw,c is the solid part of the vertical lateral boundary, and

ΓH is the sea bottom. The characteristic functions (indicator functions) of the parts ΓS , Γw,op,

Γw,c, and ΓH of the boundary Γ are denoted by mS , mw,op, mw,c, and mH , respectively. These

functions are equal to 1 on the corresponding parts, otherwise they are equal to zero.

The unit outer normal vector to Γ is denoted by
−→
N ≡ (N1, N2, N3), with

−→
N = (0, 0,−1) on

ΓS and
−→
N = (N1, N2, 0) on Γw = Γw,op

⋃
Γw,c, and ~n ≡ (N1, N2) ≡ (n1, n2) is the unit outer

normal vector to ∂Ω. We assume also that |N3| > 0 on ΓH . The components N1, N2, N3 are

defined by the chosen parametric representation of the corresponding part of the boundary. For

the velocity vector Ū = (u, v, w) on the boundary Γ, the normal components are denoted by

Un : Un = Ū ·−→N = uN1 +vN2 +wN3. Below we put U
(+)
n ≡ (|Un|+Un)/2, U

(−)
n ≡ (|Un|−Un)/2,

with Un = U
(+)
n − U (−)

n on Γ.

The hydrostatics approximation means that
∂P

∂z
= gρ, where P is the pressure, ρ = ρ0 +ρ1.

This equation is used to find P after solving the system (1). Due to this relation, the pressure

gradient in (1) is divided into three terms: the gradients of the atmospheric pressure, sea surface

elevation, and water column pressure deviation.

We consider the equations (1) in D × (0, t̄) with the following boundary and initial condi-

tions [2].

Boundary conditions on ΓS :








H∫

0

Θ~udz


~n = 0 on ∂Ω,

U (−)
n u− ν ∂u

∂z
− k33

∂

∂z
Aku = τ (a)

x

/
ρ0, U

(−)
n v − ν ∂v

∂z
− k33

∂

∂z
Akv = τ (a)

y

/
ρ0,

Aku = 0, Akv = 0,

U (−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT ,

U (−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS ,

(2)

where τ
(a)
x , τ

(a)
y are the tangent wind stress components along the axes Ox and Oy, respectively,

on the sea surface z = 0, γT , γS are the coefficients of relaxation to the specified values of

temperature Ta and salinity Sa, respectively, k33 is the vertical viscosity coefficient, ν is the

turbulent exchange coefficient, and QT , QS are the surface heat and salinity fluxes, respectively.

4D Technology of Variational Data Assimilation for Sea Dynamics Problems

6 Supercomputing Frontiers and Innovations

We have also Un|z=0 = −w|z=0, where w = w(u, v) is defined by the formula

w(x, y, z, t) =
1

r
(m

∂

∂x
(

H∫

z

rudz′) +m
∂

∂y
(
n

m

H∫

z

rvdz′)), (x, y, t) ∈ Ω× (0, t̄). (3)

Boundary conditions on Γw,c (on the “solid” part lateral wall):

Un = 0, AkŨ = 0,
∂Ũ

∂Nu
· τw + (

∂

∂Nu
AkŨ) · τw = 0,

∂T

∂NT
= 0,

∂S

∂NS
= 0, (4)

where τw = (−N2, N1, 0), Ũ ≡ (u, v, 0) ≡ (~u, 0), ∂ϕ/∂Nϕ ≡ −→N · âϕ ·Gradϕ, ϕ = u, T, S.

Boundary conditions on Γw,op (on the “liquid” part lateral wall):





U (−)
n (Ũ · ~N) +

∂Ũ

∂Nu
· ~N = 0, AkŨ = 0

U (−)
n (Ũ · τw) +

∂Ũ

∂Nu
· τw + (

∂

∂Nu
AkŨ) · τw = 0,

U (−)
n T +

∂T

∂NT
= QT , U

(−)
n S +

∂S

∂NS
= QS ,

(5)

where QT , QS are the heat and salinity fluxes, respectively.

Boundary conditions on ΓH (on the bottom):





w = um
∂H

∂x
+ vn

∂H

∂y
, AkŨ = 0,

∂T

∂NT
= 0,

∂S

∂NS
= 0,

∂Ũ

∂Nu
· τx + (

∂

∂Nu
AkŨ) · τx = τ (b)

x /ρ0 ,
∂Ũ

∂Nu
· τy + (

∂

∂Nu
AkŨ) · τy = τ (b)

y /ρ0,

(6)

where τx, τy is the system of unit orthogonal vectors of the coordinate system corresponding to

x and y directions; τ
(b)
x , τ

(b)
y are the projections of the bottom friction vector on the axes Ox,

Oy, respectively.

Initial conditions for u, v, T, S, ζ:

u = u0, v = v0, T = T 0, S = S0, ζ = ζ0, for t = 0, (7)

where u0, v0, T 0, S0, ζ0 are the given functions.

The problem of large-scale sea dynamics in terms of the functions u, v, w, ζ, T, S consists

in solving the system (1)–(7). If the functions u, v, ζ, T, S are found, then the function w is

determined by formula (3).

The main features of the numerical model of sea dynamics INMOM are the simultaneous

use of the splitting method [17, 27] and the σ-coordinate system [24, 27] for (1)–(7). These two

components are used in tandem to build efficient computer technology for 4DVAR ocean data

assimilation.

The transition to the σ-system can be carried out at the stage of considering the original

problem (1)–(7) before applying suitable splitting schemes and other numerical procedures [20].

In order to approximate the model (1)–(7) in time, we use the splitting method that allows

us to represent the solution of the original nonlinear system by subsequent solutions of simpler

problems (steps of the splitting method). Let us introduce the grid on [0; t̄]: 0 = t0 < t1 < ... <

tJ−1 < tJ = t̄, ∆tj = tj − tj−1 and consider problem (1)–(7) on (tj−1, tj), assuming that the

vector of the approximate solution φk ≡ (uk, vk, ξk, Tk, Sk), k = 1, 2, ..., j − 1 at the previous

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 7

intervals, is already defined. To approximate the problem, we use one of the schemes of the total

approximation method [17], which consists in the implementation of the following steps.

Step 1. Consider the problem

Tt +
(
Ū ,Grad

)
T −Div (âT ·Grad T) = fT in D × (tj−1, tj) (8)

under corresponding boundary and initial conditions.

Step 2. Solve the problem

St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (tj−1, tj) (9)

under appropriate boundary and initial conditions.

Step 3. The system





u
(1)
t +

[
0 −l
l 0

]
u(1) − ggradζ = ~F − 1

ρ0
grad


Pa + g

z∫

0

ρ1(T̄ , S̄)dz
′




in D × (tj−1, tj),

ζt − div

(
H∫
0

Θu(1)dz

)
= f3 in Ω× (tj−1, tj),

u(1) = uj−1, ζ = ζj−1 for t = tj−1, u
(1)
j ≡ u(1)(tj) in D

(10)

is solved under corresponding boundary conditions, and the function ζj ≡ ζ(1) is taken as an

approximation to ζ on (tj−1, tj). Then the following problems are solved:





u
(2)
t +

[
0 −f1(ū)

f1(ū) 0

]
u(2) = 0 in D × (tj−1, tj),

u(2) = u
(1)
j for t = tj−1, u

(2)
j ≡ u(2)(tj) in D,

(11)





u
(3)
t + (Ū ,Grad)u(3) −Div(âu ·Grad)u(3) + (Ak)2u(3) = 0 in D × (tj−1, tj) ,

u(3) = u(2) for t = tj−1 in D,

(12)

where u(3) = (u(3), v(3)), Ū (3) = (u(3), w(3)(u(3), v(3))). After solving (12), the vector u(3) ≡
~uj ≡ (uj , vj) is taken as an approximation to the exact vector ~u on D × (tj−1, tj), and the

approximation wj ≡ w (uj , vj) to the vertical component of the velocity vector is calculated

by (3).

It is seen that step 3 consists of 3 substeps, and by the superscripts in parentheses we denote

the value of the solution at the corresponding substeps. The underline stands for 2D vectors,

and the overline stands for 3D vectors.

Steps 1 and 2 may be also subsplitted, each into several substeps, based on the method

of splitting according to spatial coordinates [20, 27]. The differential operator of the three-

dimensional transport-diffusion heat and salt problems (8) and (9) is represented as a sum of

simpler non-negative operators, which allows to split the problems into a number of simpler ones

and solve them in time using explicit or implicit schemes.

When steps 1–3 are implemented, after the first step we get an approximation to T , after the

second an approximation to S, and after the third step we get an approximation to ~u = (u, v)

and ζ. Therefore, the subproblems at these steps are independent of each other and may be

solved in parallel. This is very important for high-performance computing.

4D Technology of Variational Data Assimilation for Sea Dynamics Problems

8 Supercomputing Frontiers and Innovations

2. Variational Data Assimilation Technology

Comprehensive monitoring of the main characteristics of natural environment and climate,

which is important both for everyday life and for reducing the consequences of natural and man-

made disasters, requires the new effective methods and algorithms for the variational assimilation

of remote sensing data in atmospheric, ocean and climate models to be developed for high-

performance computing. The purpose is to estimate the unknown model inputs: the initial

state of the system, the boundary conditions, the source terms, distributed coefficients, etc. The

problems are formulated as optimal control problems (deterministic or stochastic) involving cost

functions associated with observations, and the minimization is considered on the trajectories

(solutions) of the model under consideration [1, 4, 5, 15, 16, 18, 25].

We will demonstrate the data assimilation technology for the case when in problem (1)–(7)

the initial state T 0 and the total heat flux function Q = −νT
∂T

∂z
on ΓS are unknown and treated

as additional “controls”. The cost function is related to observations and has the form:

J(T 0, Q) =
α

2

t̄∫

0

∫

Ω

|Q−Q(0)|2dΩdt+
β

2

∫

D

|T 0 − T (0)|2dD +
1

2

J∑

j=1

J0,j ,

J0,j ≡
tj∫

tj−1

∫
Ω

(T |z=0 − Tobs)R−1(T |z=0 − Tobs)dΩdt,

(13)

where Q(0) = Q(0)(x, y, t), T (0) = T (0)(x, y, z) are the given functions, Tobs is the function of

observations on the sea surface Ω, R is the observation error covariance operator, and α, β =

const > 0 are the regularization parameters. The functions Q(0), T (0) are usually chosen as first

approximations (so-called “background”) for the unknown Q and T 0. The aim of variational

data assimilation is, using Q(0) and T (0), to find better estimates for Q and T 0, consistent with

the model solution and observations, for further modelling and forecast.

We consider the following variational data assimilation problem: find a solution to (1)–(7)

and functions T 0, Q, such that functional (13) takes the minimum value:

J(T 0, Q) = inf
T 0,Q

J(T 0, Q).

The gradient of the functional J(T 0, Q) with respect to T 0, Q is defined by the adjoint

state T ∗ as follows:

J ′Q = α
(
Q−Q(0)

)
+ T ∗ on Ω,

J ′T 0 = β
(
T 0 − T (0)

)
+ T ∗|t=0 in D.

(14)

The nesessary optimality condition J ′Q = J ′T 0 = 0 leads to the optimality system, which de-

termines the solution of the formulated problem of variational data assimilation. The optimality

system includes the direct problem (1)–(7), the adjoint problem, and the optimality conditions

in the form:

α
(
Q−Q(0)

)
+ T ∗ = 0 on Ω,

β
(
T 0 − T (0)

)
+ T ∗|t=0 = 0 in D.

(15)

Equations (14) are obtained by differentiating the cost function (13) with respect to T 0 and Q

and using the classical representation of the result through the adjoint problem [18]. The adjoint

state T ∗ is the solution of the adjoint problem, which in the case of applying the splitting method

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 9

is determined at Step 1 in the form:

−T ∗t −Div
(
ŪT ∗

)−Div (âT ·Grad T ∗) = 0 in D × (tj−1, tj) ,

T ∗ = 0 for t = tj ,

−νT
∂T ∗

∂z
= R−1(T |z=0 − Tobs) on Ω.

(16)

The adjoint problem (16) involves the observation data Tobs and the observation error covariance

operator R in the boundary condition on the sea surface.

The optimality system that determines the solution of the formulated problem of variational

data assimilation reduces to the sequential solution of the subproblems on t ∈ (tj−1, tj), j =

1, 2, . . . , J.

To find an approximate solution of the optimality system, with the simultaneous determi-

nation of T 0, Q by variational assimilation of Tobs we can use the following iterative algorithm.

If Qk is the already constructed approximation to Q on (tj−1, tj), and T 0
k is the approximation

to T 0, then after solving the forward and adjoint problems with Q ≡ Qk, T
0 = T 0

k , the next

approximations Qk+1, T
0
k+1 are computed by:

Qk+1 = Qk − γk(α(Qk −Q(0)) + T ∗) on Ω× (tj−1, tj) , (17)

T 0
k+1 = T 0

k − γk(β(T 0
k − T (0)) + T ∗|t=0) on D (18)

with the parameters γk chosen so that the iterative process (17)–(18) is convergent [3]. After

computing Qk+1, T
0
k+1, the solution of the direct and adjoint problems is repeated with the

new approximations Qk+1, T
0
k+1, and then Qk+2, T

0
k+2 are calculated, and so on. Iterations are

repeated until a suitable convergence criterion is met.

The convergence properties of similar iterative algorithms were studied in previous works of

the authors. For example, in the case β = 0, for γk one can take the parameters

γk =
1

2

tj∫

tj−1

∫

Ω

(T |z=0 − Tobs)R−1(T |z=0 − Tobs)dΩdt
/ tj∫

tj−1

∫

Ω

(T ∗)2|z=0dΩdt

which may significantly accelerate the convergence of the iterative process [3].

The formulated algorithm allows us to solve the considered four-dimensional variational data

assimilation problem. Each step of the assimilation procedure according to (17)–(18) requires

solving the forward and adjoint problems. With the use of the σ-coordinate system, the model

solution domain does not depend on time: its horisontal boundaries do not change, and the

vertical coordinate changes from zero to unity. This allows using the uniform grid in the vertical

direction, which is convenient for numerical implementation. The use of the method of splitting

with respect to geometric coordinates makes it possible to numerically solve the subproblems

independently of each other. These calculations can be done in parallel, which is important for

high-performance computing.

3. Numerical Experiments for the Baltic Sea Water Area

To carry out numerical experiments on the assimilation of satellite observation data on

the sea surface temperature, the water area of the Baltic Sea was selected. In all experiments,

4D Technology of Variational Data Assimilation for Sea Dynamics Problems

10 Supercomputing Frontiers and Innovations

the problem of recovering the initial and boundary conditions was considered in one iterative

procedure of the form (17)–(18). The model of the dynamics of the Baltic Sea was chosen as

the main model [26]. This model uses the method of splitting both in spatial variables and in

physical processes, which greatly simplifies the application of the theory of adjoint equations for

the formulation and solution of the data assimilation problems. It also allows the use of OpenMP

technology for those processes that can be calculated independently of each other.

The second distinctive feature of the model considered is the use of the sigma-coordinate

system. The approximation of the model on the “grid C” [26] was used. This model was sup-

plemented by the variational data assimilation procedure described in the previous section. The

model was started running with zero initial conditions and run with atmospheric forcing ob-

tained from reanalysis, of about 20 years, and after that the result of calculation was taken as

an initial condition for further running of the model. The assimilation procedure worked only

during some time windows.

Meteorological characteristics were used to calculate the atmospheric impact in the INMOM

model [10], including using the bulk formulas for calculating turbulent flows on the sea surface.

The values of the mean climatic heat flow Q(0) calculated in this way were used in the data

assimilation procedure as a background. To start the assimilation procedure, the function T (0)

was taken as a model forecast for the previous time interval. For other functions in the boundary

conditions their climatic values were taken.

The daily mean observations Tobs for the experiments were obtained from the Coperni-

cus Marine Service (https://www.marine.copernicus.eu). Numerical calculations used the DMI

Sea Surface Temperature reprocessed analysis aimed at providing daily gap-free maps of sea

surface temperature, at 0.02◦ x 0.02◦ horizontal resolution, using satellite data from infra-red

radiometers [14]. The data obtained were verified and interpolated on the computational grid

of the numerical model [23]. Based on the observational data on the surface temperature, the

covariance matrices of data errors R [6] were constructed, which are used to calculate the cost

functional (13) and its gradient in the course of the numerical solution of the problem.

(a) Data for January 15, 2017 (b) Data for February 15, 2017

Figure 1. Daily mean SST observation data, ◦C

A number of calculations were made between January and March 2017. The grid step in

the model was 3.5 km in space, with 27 vertical levels. The time step in the experiments was

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 11

5 minutes. In all experiments, the regularization parameters were chosen the same and equal to

α = β = 10−5.

Let us consider some of the calculation results. Figure 1 shows the daily mean sea surface

temperature (SST) fields for January 15 (Fig. 1a) and February 15 (Fig. 1b) obtained from

Copernicus Marine Service and used as observational data in numerical experiments. In the

model with the assimilation procedure, these data are used 2 times a day to adjust the initial

and boundary conditions, i.e. the functions T 0 and Q.

(a) Model calculation without assimilation (b) Model calculation with data assimilation

Figure 2. Daily mean SST, January 15, 2017, ◦C

(a) Model calculation without assimilation (b) Model calculation with data assimilation

Figure 3. Daily mean SST, February 15, 2017, ◦C

Figures 2 and 3 show the results of calculations using the model without variational data

assimilation (Fig. 2a and 3a) and with temperature assimilation of sea surface data (Fig. 2b and

3b). It can be seen from the presented calculations that the use of the assimilation procedure

makes it possible to correct the calculations of the model and bring them closer to the actually

observed data. In wintertime, the sea ice block is used in the model [26], however, the assimilation

does not use the points in the regions with ice, because we have no observation data at these

points. Note that the model without assimilation in the southern part of the Baltic Sea and

in the Gulf of Bothnia gives somewhat underestimated SST values, and the deviation from the

4D Technology of Variational Data Assimilation for Sea Dynamics Problems

12 Supercomputing Frontiers and Innovations

observed values may reach 2.5◦C. Application of the assimilation procedure allows bringing this

deviation to 1–1.5◦C. It is not possible to completely remove this deviation using only the daily

averaged observational data, and it is necessary to use additional data sources for a more reliable

correction of the model.

(a) Baroclinic kinetic energy (b) Barotropic kinetic energy

Figure 4. Difference in energies calculated without assimilation and using variational assimila-
tion, cm2/sec2

Figure 4 shows the differences in the values of the baroclinic and barotropic kinetic energies

of the system as a function of time, obtained from model calculations without using the data

assimilation procedure and with using this procedure.

Numerical experiments show that the influence of assimilation on the value of the baro-

clinic and barotropic energies of the system is insignificant. According to the calculations, the

difference in energies when calculated by the model without assimilation and using the assimi-

lation procedure does not exceed 1%. So, the values of the baroclinic kinetic energy vary in the

range from 4 cm2/sec2 to 28 cm2/sec2, while the difference in values at calculation according

to the model with and without data assimilation lies in the range from –0.08 to 0.06 cm2/sec2

(see Fig. 4a). Similar results are obtained for barotropic kinetic energy. With values from 3 to

17 cm2/sec2, the difference in calculations with and without assimilation varies from –0.012 to

0.023 cm2/sec2 (see Fig. 4a).

From these and many other our numerical experiments it follows that when only the sea

surface temperature is assimilated, the values of the velocities change faintly. Nevertheless, all

hydrophysical fields obtained in the course of computations using the variational assimilation of

observational data remain consistent and physical.

The iterative procedures used for the four-dimensional variational assimilation of the sea

surface temperature in the Baltic Sea showed good convergence, and no more than 10 iterations

were required to obtain the optimal heat flux Q and the initial state T 0. In some experiments,

the parameters of the iterative process can be calculated based on the features of the system

itself, and in this case it is possible to achieve convergence of the process in 3–5 iterations.

Numerical experiments has shown that the inclusion of the data assimilation procedure in-

creases the calculation time by about 10%, which can be reduced by using parallelization. Due to

the fact that some procedures of the numerical model use implicit schemes, it is quite difficult to

build a full parallel model for the version used for experiments in this work. Nevertheless, where

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 13

possible, the procedures were parallelized using the OpenMP methods. A series of calculations

has been run to evaluate performance and acceleration when using the OpenMP technology.

The Tab. 1 shows some test results calculated for 144 steps of the model.

Table 1. Test results

Number of threads Computation time, s Speed-up

1 178.37 1.00

2 118.93 1.49

4 77.31 2.31

When using the OpenMP methods, it was possible to speed up the model calculations by

2.3 times. The assimilation code has also been accelerated using the OpenMP technology. In the

assimilation procedure, for all grid nodes in which there are observation data, the same oper-

ations are performed, therefore, such nodes were grouped into sets of 32, and the assimilation

procedure was rewritten in such a way that each mathematical operation necessary for assimi-

lation was performed in the most nested loop of 32 elements. On a 4-core Intel Core i7-3770K

processor with 8 threads, the program code was accelerated by about 4 times due to parallel

computations using the OpenMP technology.

Numerical experiments for the Baltic Sea dynamics model confirmed the feasibility of the

presented computational technology and demonstrated that the assimilation can improve the

predictive properties of the model.

Conclusions

The paper presents the results obtained by the INM RAS researchers on the 4D technology

of variational data assimilation for sea dynamics problems, which is based on the development of

efficient numerical algorithms for problems of variational assimilation of observation data for a

model of marine hydrothermodynamics. Based on the variational assimilation of the observation

data, we propose the algorithms for solving inverse problems to restore the heat fluxes on the

sea surface and the initial states of the model under consideration. These algorithms have shown

their efficiency for the models based on the use of the method of splitting with respect to physical

processes and geometric coordinates, which made considered problems easier at each implemen-

tation step. The numerical experiments for the Baltic Sea dynamics model have shown the ability

to apply the proposed variational assimilation algorithms to modelling hydrothermodynamics

problems of marine areas and demonstrated a good proximity of the obtained solutions to real

observation data. The reported technology belongs to a class of computational technologies that

combine the flows of real data and hydrodynamic forecasts using mathematical models.

Acknowledgements

The work was supported by the Russian Science Foundation (project 20–11–20057, in the

part of research of Sections 2–3) and the Moscow Center of Fundamental and Applied Math-

ematics (agreement with the Ministry of Education and Science of the Russian Federation,

No. 075–15–2019–1624).

4D Technology of Variational Data Assimilation for Sea Dynamics Problems

14 Supercomputing Frontiers and Innovations

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Agoshkov, V.I.: Methods of Optimal Control and Adjoint Equations in Problems of Math-

ematial Physis. INM RAS, Moscow (2003)

2. Agoshkov, V.I., Gusev, A.V., Diansky, N.A., Oleinikov, R.V.: An algorithm for the solution

of the ocean hydrothermodynamics problem with variational assimilation of the sea level

function data. Russ. J. Numer. Anal. Math. Model 22(2), 133–161 (2007). https://doi.

org/10.1515/RJNAMM.2007.007

3. Agoshkov, V.I., Parmuzin, E.I., Shutyaev, V.P.: Numerical algorithm for variational assim-

ilation of sea surface temperature data. Comp. Math. and Math. Physics 48(8), 1293–1312

(2008). https://doi.org/10.1134/S0965542508080046

4. Agoshkov, V.I., Parmuzin, E.I., Zalesny, V.B., et al.: Variational assimilation of observation

data in the mathematical model of the Baltic Sea dynamics. Russ. J. Numer. Anal. Math.

Model 30(4), 203–212 (2015). https://doi.org/10.1515/rnam-2015-0018

5. Agoshkov, V.I., Zalesny, V.B., Parmuzin, E.I., et al.: Problems of variational assimilation of

observational data for ocean general circulation models and methods for their solution. Izv.

Atmos. Ocean. Phys. 46, 677–712 (2010). https://doi.org/10.1134/S0001433810060034

6. Agoshkov, V.I., Parmuzin, E.I., Zakharova, N.B., Shutyaev, V.P.: Variational assimilation

with covariance matrices of observation data errors for the model of the Baltic Sea dynamics.

Russ. J. Numer. Anal. Math. Model 33(3), 149–160 (2018). https://doi.org/10.1515/

rnam-2018-0013

7. Asch, M., Bocquet, M., Nodet, M.: Data Assimilation: Methods, Algorithms, and Applica-

tions. SIAM, Philadelphia (2016). https://doi.org/10.1137/1.9781611974546

8. Carrassi, A., Bocquet, M., Bertino, L., Evensen, G.: Data assimilation in the geosciences:

an overview of methods, issues, and perspectives. WIREs Clim. Change 9, 1–80 (2018).

https://doi.org/10.1002/wcc.535

9. Chassignet, E.P., Verron, J.: Ocean Weather Forecasting: An Integrated View of Oceanog-

raphy. Springer, Heidelberg (2006). https://doi.org/10.1007/1-4020-4028-8

10. Diansky, N.A., Fomin, V.V., Zhokhova, N.V., Korshenko, A.N.: Simulations of currents

and pollution transport in the coastal waters of Big Sochi. Izv. Atmos. Ocean. Phy. 49(6),

611–621 (2013). https://doi.org/10.1134/S0001433813060042

11. Dymnikov, V.P., Zalesny, V.B.: Fundamentals of Computational Geophysical Fluid Dynam-

ics. GEOS, Moscow (2019)

12. Fletcher, S.J.: Data Assimilation for the Geosciences: From Theory to Application. Elsevier,

Amsterdam (2017)

13. Griffies, S.M., Boening, C., Bryan, F.O., et al.: Developments in ocean climate modelling.

Ocean Model 2, 123–192 (2000). https://doi.org/10.1016/S1463-5003(00)00014-7

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 15

https://doi.org/10.1515/RJNAMM.2007.007
https://doi.org/10.1515/RJNAMM.2007.007
https://doi.org/10.1134/S0965542508080046
https://doi.org/10.1515/rnam-2015-0018
https://doi.org/10.1134/S0001433810060034
https://doi.org/10.1515/rnam-2018-0013
https://doi.org/10.1515/rnam-2018-0013
https://doi.org/10.1137/1.9781611974546
https://doi.org/10.1002/wcc.535
https://doi.org/10.1007/1-4020-4028-8
https://doi.org/10.1134/S0001433813060042
https://doi.org/10.1016/S1463-5003(00)00014-7

14. Hyer, J.L., Karagali, I.: Sea surface temperature climate data record for the North Sea

and Baltic Sea. Journal of Climate 29(7), 2529–2541 (2016). https://doi.org/10.1175/

JCLI-D-15-0663.1

15. Le Dimet, F., Talagrand, O.: Variational algorithms for analysis and assimilation of meteo-

rological observations: theoretical aspects. Tellus A 38, 97–110 (1986). https://doi.org/

10.3402/tellusa.v38i2.11706

16. Lions, J.L.: Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées

Partielles. Dunod, Paris (1968). https://doi.org/10.1016/0041-5553(71)90092-9

17. Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L.

(eds.) Handbook of Numerical Analysi, pp. 197–462. North-Holland, Amsterdam (1990).

https://doi.org/10.1016/S1570-8659(05)80035-3

18. Marchuk, G.I.: Adjoint Equations and Analysis of Complex Systems. Kluwer, Dordrecht

(1995). https://doi.org/10.1007/978-94-017-0621-6

19. Marchuk, G.I., Dymnikov, V.P., Zalesny, V.B.: Mathematical Models in Geophysical Hydro-

dynamics and Numerical Methods for their Implementation. Hydrometeoizdat, Leningrad

(1987)

20. Marchuk, G.I., Rusakov, A.S., Zalesny, V.B., Diansky, N.A.: Splitting numerical technique

with application to the high resolution simulation of the Indian Ocean circulation. Pure

Appl. Geophys. 162, 1407–1429 (2005). https://doi.org/10.1007/s00024-005-2677-8

21. Sarkisyan, A., Sündermann, J.: Modelling Ocean Climate Variability. Springer, Heidelberg

(2009). https://doi.org/10.1007/978-1-4020-9208-4

22. Shutyaev, V.P.: Methods for observation data assimilation in problems of physics of atmo-

sphere and ocean. Izv. Atmos. Ocean. Phys. 55, 17–31 (2019). https://doi.org/10.1134/

S0001433819010080

23. Zakharova, N.B.: Verification of the sea surface temperature observation data. Sovremennye

Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 13(3), 106–113 (2016). https:

//doi.org/10.21046/2070-7401-2016-13-3-106-113

24. Zalesny, V., Agoshkov, V., Aps, R., et al.: Numerical modeling of marine circulation,

pollution assessment and optimal ship routes. J. Mar. Sci. Eng. 5, 1–20 (2017). https:

//doi.org/10.3390/jmse5030027

25. Zalesny, V.B., Agoshkov, V.I., Shutyaev, V.P., et al.: Numerical modeling of ocean hydro-

dynamics with variational assimilation of observational data. Izv. Atmos. Ocean. Phys. 52,

431–442 (2016). https://doi.org/10.1134/S0001433816040137

26. Zalesny, V.B., Gusev, A.V., Ivchenko, V.O., et al.: Numerical model of the Baltic Sea

circulation. Russ. J. Numer. Anal. Math. Model 28(1), 85–99 (2013). https://doi.org/

10.1515/rnam-2013-0006

27. Zalesny, V.B., Marchuk, G.I., Agoshkov, V.I., et al.: Numerical simulation of large-scale

ocean circulation based on the multicomponent splitting method. Russ. J. Numer. Anal.

Math. Model 25(6), 581–609 (2010). https://doi.org/10.1515/rjnamm.2010.036

4D Technology of Variational Data Assimilation for Sea Dynamics Problems

16 Supercomputing Frontiers and Innovations

https://doi.org/10.1175/JCLI-D-15-0663.1
https://doi.org/10.1175/JCLI-D-15-0663.1
https://doi.org/10.3402/tellusa.v38i2.11706
https://doi.org/10.3402/tellusa.v38i2.11706
https://doi.org/10.1016/0041-5553(71)90092-9
https://doi.org/10.1016/S1570-8659(05)80035-3
https://doi.org/10.1007/978-94-017-0621-6
https://doi.org/10.1007/s00024-005-2677-8
https://doi.org/10.1007/978-1-4020-9208-4
https://doi.org/10.1134/S0001433819010080
https://doi.org/10.1134/S0001433819010080
https://doi.org/10.21046/2070-7401-2016-13-3-106-113
https://doi.org/10.21046/2070-7401-2016-13-3-106-113
https://doi.org/10.3390/jmse5030027
https://doi.org/10.3390/jmse5030027
https://doi.org/10.1134/S0001433816040137
https://doi.org/10.1515/rnam-2013-0006
https://doi.org/10.1515/rnam-2013-0006
https://doi.org/10.1515/rjnamm.2010.036

A Supercomputer-Based Modeling System for Short-Term
Prediction of Urban Surface Air Quality

Alexander V. Starchenko1 , Evgeniy A. Danilkin1 ,
Sergei A. Prokhanov1 , Lubov I. Kizhner1, Elena A. Shelmina1,2

c© The Authors 2022. This paper is published with open access at SuperFri.org

This paper proposes a mathematical model and an effective supercomputer-based numerical
method for short-term prediction of extreme meteorological conditions and atmospheric air qual-
ity over limited stretches of land encompassing large population centers. The mathematical model
includes a pollutant transport model with a reduced chemical mechanism and a non-hydrostatic
mesoscale meteorological model with a modern moisture microphysics parametrization scheme.
The numerical method relies on the use of the finite volume method and semi-implicit differ-
ence schemes of the second order of approximation, which are solved using the TDMA method
with a linear dependence of the number of arithmetic operations on the size of the grid. This
property of the numerical method ensures high efficiency when parallelized: not less than 70%

when using up to 256 computing cores with a horizontal grid size of 0.5–1.0 km. Development
of parallel programs was carried out using the Message Passing Interface parallel programming
technology, two-dimensional decomposition of the grid area along horizontal (west to east and
south to north) directions, and introduction of additional fictitious grid nodes along the perimeter
of the decomposition subdomains.

Keywords: parallel computations, numerical weather prediction, mesoscale models, urban air
quality, MPI.

Introduction

Currently, protection of the environment is becoming one of the most important tasks of sci-
ence, interest in which is stimulated by the ever-increasing pace of technological progress around
the world. Intensive industrial development and the resulting increase in industrial emissions of
air pollutants are already starting to have a noticeable effect on the preservation of ecological
balance in many regions of our planet. One of the most pressing issues is that of atmospheric
air quality deterioration. The significance of this problem is primarily due to the fact that the
atmosphere is one of the main vital elements of the environment. Moreover, the quality of the
air in the lower part of the atmosphere, the part that is in contact with the Earth’s surface, is
of particular importance, since it is where the bulk of plant and animal life, including humans,
reside. Presently, the deteriorating quality of the air is of particular concern due to changes in its
chemical and aerosol composition caused by anthropogenic impact – emissions from industrial
enterprises and transport [1].

Recently, mathematical modeling methods have been successfully used to monitor and fore-
cast the ecological state of the urban atmosphere along with instrumental surveys. However,
the complexity and interconnectedness of the processes of propagation, dispersion and chemical
transformation of pollutant components occurring in the turbulent atmospheric boundary layer
make air quality forecasting models cumbersome in mathematical notation and very demand-
ing on computational resources [2]. In addition, reliable calculation of the vertical transport of
pollutants, especially within the conditions of the convective boundary layer, requires the use of
modern algebraic turbulence models to determine turbulent flows of momentum, mass and heat,
which in itself is not an easy task. Thus, the problem of human interaction with the environment
1National Research Tomsk State University, Tomsk, Russian Federation
2Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russian Federation

DOI: 10.14529/jsfi220102

2022, Vol. 9, No. 1 17

https://orcid.org/0000-0002-2388-1395
https://orcid.org/0000-0001-8694-2821
https://orcid.org/0000-0002-4478-2249
https://orcid.org/0000-0002-6278-5961

currently represents a new and actively developing field of application of mathematical modeling
methods.

Currently, several modeling systems have been created and are functioning in the world,
operating in real time, which rely on models of the atmospheric boundary layer and pollutant
transport. The Enviro-HIRLAM [3] is designed as a fully integrated online system for numerical
weather prediction and pollutant transport modeling for study and prediction of meteorological,
chemical and biological weather. The integrated modeling system was developed by the Danish
Meteorological Institute (DMI) in collaboration with other researchers and is used as the base
system of the HIRLAM consortium. Development of the model was started at DMI more than
ten years ago and it is now used by several countries. The current version of Enviro-HIRLAM [4]
is based on the master version of HIRLAM 7.2 with a more complex and efficient chemistry
scheme and aerosol dynamics modules based on a multimode aerosol-radiation and aerosol-cloud
microphysics interaction approach. An immediate emergency report model has been developed.
The system is optimized for use on vector supercomputers. For example, at the Finnish Mete-
orological Institute, calculations are carried out on the FMI Cray XC30 supercomputer, which
includes 3420 computing units with peak performance of 70 Tflops.

ADMS-Urban is a modeling system developed by Cambridge Environmental Research Con-
sultants with support from the UK Meteorological Office [5]. The system is used to monitor
air quality and study complex situations in cities on highways, and in both non-metropolitan
areas and large industrial centers. Currently, this model is used in cities in Europe and Asia,
including China, as well as in the United States to monitor air pollution levels and ensure their
compliance with modern standards. In the UK, over 70 local governments, including London,
use ADMS-Urban for monitoring and evaluation, as well as for modeling possible consequences
of industrial developments, such as the expansion of airports or construction of highways. The
ADMS-Urban Regional Model system runs using the ARCHER UK National Supercomputing
Service.

The EURAD-IM (EURopean Air pollution Dispersion-Inverse Model) system [6], created
at the University of Cologne Institute for Geophysics and Meteorology, simulates the physical,
chemical and dynamic processes that affect the emission, formation, transport and deposition
of atmospheric pollutants, and determines the distribution of concentrations in the troposphere
over Europe, as well as the dry and wet deposition of air pollutants. This system consists of five
submodules. Meteorological data calculations are carried out using the Weather Research and
Forecast model [7], operations related to chemical transformations and pollutant transport are
carried out using the EURAD-IM model, including the Regional Atmospheric Chemistry Mech-
anism (RACM) [8], and emission-related operations are carried out using the EURAD Emission
Model (EEM). This system is used to monitor the formation of ozone and other photooxidants.
The system uses the JURECA supercomputer at the Jülich Supercomputing Centre for Atmo-
spheric air quality calculations.

The aim of the study is to develop efficient parallel numerical methods for a short-term high-
resolution (∼ 1 km) modeling system capable of forecasting extreme meteorological conditions
and determining urban air quality, aimed at the use of a distributed memory supercomputer.

The article is organized as follows. Section 1 is devoted to mathematical state of the problem.
In Section 2 we present a description of numerical method and its parallelization. Conclusion
summarizes the study.

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface...

18 Supercomputing Frontiers and Innovations

1. Description of the Mathematical State of the Problem

To calculate the concentration of pollutant components with regard to the chemical inter-
actions between them, the proposed atmospheric air quality modeling system uses an Eulerian
turbulent diffusion model, which includes non-stationary equations describing advection, turbu-
lent diffusion and chemical reactions:

∂ρCi

∂t
+
∂ρuCi

∂x
+
∂ρvCi

∂y
+
∂ρwCi

∂z
=

=
∂

∂x

(
Kxy

∂Ci

∂x

)
+

∂

∂y

(
Kxy

∂Ci

∂y

)
+

∂

∂z

(
KZ

∂Ci

∂z

)
− σiCi + Si +Ri,

i = 1 , .., ns,

(1)

−Lx/2 ≤ x ≤ Lx/2,−Ly/2 ≤ y ≤ Ly/2, h(x, y) ≤ z ≤ H.

Here, Ci is the dimensionless concentration of the ith pollutant component; u and v are horizontal
wind speed vector components; w is the vertical velocity component of the pollutant; ρ is the air
density; Kxy and KZ are diffusion coefficients; Si is the intensity of pollutant component emis-
sion into the atmosphere from both elevated point and linear land-based sources; Ri describes
the formation and transformation of substances through chemical and photochemical reactions
involving pollutant components; σi is the rate of wet deposition of pollutants through precipita-
tion; ns is the number of chemical components of the pollutant, the concentration of which to be
determined; x and y are horizontal coordinates, the Ox axis is directed to the east, Oy – to the
north; z is the vertical coordinate; t is time. The computational domain is parallelepiped-shaped,
Lx and Ly are the horizontal dimensions, H is its height, and h(x, y) is the elevation above sea
level. The transport model (1) predicts the chemical composition of surface air in an area of
50× 50 km with a resolution of 500 m.

Background component concentration values are used as initial conditions; transport process
and chemical reactions are spun up through a 24-hour period before the start of numerical
surveys. The upper boundary of the examined area is set at 1 km, and the horizontal dimensions
Lx = Ly = 50 km. At the upper boundary, simple gradient conditions for concentrations are
applied. At lateral boundaries, computational conditions of the so-called “radiation” type are
used [9], providing computational stability of calculations in an open-border area.

At the lower boundary of the examined area, in the center of which the city is located,
the conditions of dry deposition of the pollutant due to the resistance of the viscous sublayer,
aerodynamic resistance and resistance caused by the distribution of vegetation are set [10].

Primary air pollutant emission sources taken into account are ground sources – motor vehi-
cles – and elevated sources – factory chimneys. Emission parameters for elevated sources were
assumed to be constant. For linear land-based sources, the standardized emission rate was set
according to the following law:

IV ehicle(t) =

{
0.05 + 0.95 sin (π(t− 6)/18) , t ∈ [6, 24],

0.05, t /∈ [6, 24].
(2)

Here t is the local time in hours. According to this formula, the maximum intensity of vehicle
emissions is observed at about 15:00, local time. From 00:00 to 06:00, the intensity of vehicle
emissions is minimal. The integral emission intensity of linear land-based sources and elevated

A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina

2022, Vol. 9, No. 1 19

sources per day was calculated based on annual emissions of main pollutants in the Tomsk region
for 2019 [11].

In this paper, Ri in (1) is estimated using a kinetic scheme based on two well-tested re-
duced chemical reaction mechanisms [12, 13]. The General Reaction Set semi-empirical chemical
reaction mechanism [12] provides a compact description of the formation of secondary air pol-
lutants (PM2.5, PM10, RP , H2O2, etc). A more detailed representation of tropospheric ozone
generation through photochemical reactions was taken from the reduced mechanism [13].

To calculate the speed vector components (u, v, w) and the turbulent diffusion coefficients,
(1) uses a non-hydrostatic mesoscale meteorological model [14, 15]. This model uses a system
of equations of hydrodynamics and heat and mass transfer in the troposphere, and an upper
soil layer heat equation. The meteorological model predicts the wind speed components and
temperature and humidity characteristics in the boundary layer of the atmosphere at 50 vertical
levels (up to 10 000 m) above a territory of 150 × 150 km and an embedded area with a base
of 50 × 50 km (the grid step is 1 km, the grid is centered on the city) for 24 hours. The basic
equations of the mathematical representation of the model are presented below [16]:

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (3)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=

−∂p
∂x

+ ρfv +
∂

∂x

(
Kxy

∂u

∂x

)
+

∂

∂y

(
Kxy

∂u

∂y

)
+

∂

∂z

(
Km

Z

∂u

∂z

)
,

(4)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=

−∂p
∂y
− ρfu+

∂

∂x

(
Kxy

∂v

∂x

)
+

∂

∂y

(
Kxy

∂v

∂y

)
+

∂

∂z

(
Km

Z

∂v

∂z

)
,

(5)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=

−∂p
∂z
− ρg +

∂

∂x

(
Kxy

∂w

∂x

)
+

∂

∂y

(
Kxy

∂w

∂y

)
+

∂

∂z

(
Km

Z

∂w

∂z

)
.

(6)

Here, t is time, u, v and w are longitudinal, transverse and vertical components of the
average wind speed vector in the direction of the Cartesian coordinates x, y, z, respectively,
f is the Coriolis parameter, Kxy is the horizontal diffusion coefficient, is the momentum vertical
diffusion coefficient, g is gravitational acceleration, and p is pressure.

ρ

(
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z

)
=

∂

∂x

(
Kxy

∂θ

∂x

)
+

∂

∂y

(
Kxy

∂θ

∂y

)
+

∂

∂z

(
Kh

Z

∂θ

∂z

)
+

θ

cpT
(Qrad − ρLwΦ) .

(7)

Here, T is the absolute temperature, θ is the potential temperature, θ = T (p0/p)
R0/cp ,

cp is the air heat capacity at constant pressure, p0 = 101300 N/m2, R0 – the gas constant,
Qrad is heating (or cooling) of the atmosphere due to long- and shortwave radiation heat fluxes
propagating in a humid atmosphere, ρLwΦ is the temperature change caused by phase transitions

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface...

20 Supercomputing Frontiers and Innovations

of moisture in the atmosphere, Kh
z is the heat and moisture vertical diffusion coefficient, Lw is

vaporization heat, and qV is the relative density of atmospheric steam.

p = ρRT,R = R0

[
1− qV
Mair

+
qV

MH2O

]
. (8)

Simulation of water moisture phase transformation processes in the atmosphere in this study
is carried out using the WSM6 6-class moisture microphysics scheme [17]. This scheme simulates
the processes that occur between the six states of atmospheric moisture (water vapor, cloud water
content, rain, ice particles, snow and graupel (hail)). For each of the parameters characterizing
the state of moisture in the atmosphere, a transport equation is used, which includes, along with
advective transport, various parameterizations of physical processes leading to changes in the
phase state of the aforementioned forms of moisture.

To close the system of equations (1), (3)–(8), a turbulence model is used, including an
equation for kinetic energy [18], as well as algebraic relations for determining turbulent diffu-
sion coefficients [19]. The horizontal diffusion coefficient is calculated using the Smagorinsky
formula [20].

In addition, the model takes into account the following: heat transfer through shortwave and
longwave radiation in the examined layer of the atmosphere with regard to clear-sky scattering
and attenuation, water vapor absorption, absorption and reflection by clouds [21, 22]; turbulent
momentum, heat and moisture exchange with the underlying surface [23, 24]; temperature change
in the upper layer of the surface and humidity at the “air-underlying surface” boundary.

The initialization of the mesoscale numerical weather prediction model and its provision with
lateral boundary conditions is carried out based on the results of numerical weather forecasting
by the Hydrometeorological Centre of Russia’s SL-AV operational global model [25].

2. Numerical Method and its Parallelization

Thus, the basis of the mathematical formulation of the problem in question is a generalized
inhomogeneous differential equation of convective diffusion transport:

∂ρΦ

∂t
+
∂ρuΦ

∂x
+
∂ρvΦ

∂y
+
∂ρwΦ

∂z
=

∂

∂x

(
Kxy

∂Φ

∂x

)
+

∂

∂y

(
Kxy

∂Φ

∂y

)
+

+
∂

∂z

(
KΦ

z

∂Φ

∂z

)
+ SΦ.

(9)

Here, Φ represents different sought-for functions in different equations (1), (3)–(7). To account
for in relief of the underlying surface h(x, y), equation (9) is brought to the following form:

x′ = x; y′ = y; z′ =
z − h(x, y)

H − h(x, y)
H. (10)

As a result of this transformation, mixed derivatives appear. Here, H is the height of the
computational domain. Equations such as (9) are solved using the finite volume method using
grids with uniform spacings along the horizontal x and y axes and spacings along the vertical
z axis getting progressively finer towards the Earth’s surface. The lower boundary is 10 m above
the surface. Differential equation (9) is approximated using the finite volume method with second-

A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina

2022, Vol. 9, No. 1 21

order spatial variable approximation and explicit-implicit time approximations [26], which also
provide second-order accuracy in time.

Φn+1
h = Φn

h +
∆tn

2

(
3Lh (Φn

h)− Lh

(
Φn−1
h

))
+

+
∆tn

2

(
Λh

(
Φn+1
h

)
+ Λh (Φn

h)
)

+
∆tn

2

(
3SΦ (Φn

h)− SΦ

(
Φn−1
h

))
,

(11)

where Φn
h =

{
Φn
i,j,k

}
is the grid function of the scalar Φ for which the differential equation (9)

is given; n is the time layer number; i = 1, . . . , Nx is the number of grid nodes along the x axis;
j = 1, . . . , Ny is the number of grid nodes along the y axis; k = 1, . . . , Nz is the number of grid
nodes along the z axis; Lh is the finite-volume analogue of the convective-diffusive operator in
equations (9) except for the vertical diffusion along the z axis, Λh is the difference analogue of the
differential operator of vertical diffusion ∂

∂z

(
Kz

∂Φ
∂z

)
, SΦ(Φ) is the source terms of equation (9).

Implicit approximation for vertical diffusion transport, which is important in the boundary layer
of the atmosphere, allows to avoid a more rigid time restriction on the integration step. When
approximating the convective terms of equation (9), Van Leer’s monotonized linear upstream
schemes are used [27]. For diffusion terms, ordinary approximations of second-order accuracy are
used. These approximations result in a formation of a difference scheme, in which values of the
grid function

{
Φn+1
i,j,k

}
on a new time layer (n+ 1) can be calculated using the tridiagonal matrix

algorithm [28] independently along vertical grid lines. As a result of using this method of forming
the difference scheme (11), the number of arithmetic operations depends linearly on the grid size
and conditions are created for perfectly parallel processing.

To match the finite-difference values of the speed and pressure vector field at each time
step, the predictor-corrector scheme is used. Its main idea is that, firstly, the grid values of
the speed vector components are predicted using difference schemes of the form (11) for known
grid pressure function pnh values at the nth time layer. Then an elliptic difference equation is
solved for pressure correction p′h = pn+1

h − pnh and the intermediate speed and pressure fields
are corrected. This operation is carried out with the requirement that the corrected values of
the speed components exactly satisfy the difference analogue of the continuity equation (3). The
described scheme includes the following sequence of operations at each nth time step:

1. Approximate speed values ũn+1
h , ṽn+1

h , w̃n+1
h are calculated using difference formulas of the

type (11) for a known pressure field pnh.
2. An equation of the following form for pressure correction p′h is solved

api,j,k
(
p′
)
i,j,k
− abi,j,k

(
p′
)
i,j,k−1

− ati,j,k
(
p′
)l+1

i,j,k+1
− aei,j,k

(
p′
)l
i+1,j,k

−

−ani,j,k
(
p′
)l
i,j+1,k

−awi,j,k

(
p′
)l+1

i−1,j,k
− asi,j,k

(
p′
)l+1

i,j−1,k
= bi,j,k(p′h),

i = 1, Nx; j = 1, Ny; k = 1, Nz.

(12)

3. A new pressure field pn+1
h = pnh + p′h is determined.

4. Speed components un+1
h , vn+1

h , wn+1
h are calculated using speed values ũn+1

h , ṽn+1
h , w̃n+1

h and
pressure correction value p′h.

In view of this and the results of conducted computational experiments, a decision was made
to calculate pressure correction p′h using the Gauss-Seidel line by line iteration method [29] with
red and black grid node arrangement for each horizontal level k and implicit representation of

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface...

22 Supercomputing Frontiers and Innovations

sought-for values of the grid function p′h in the nodes (i, j, k+ 1), (i, j, k), (i, j, k− 1), i.e., along
the vertical grid lines:

−abi,j,k
(
p′
)l+1

i,j,k−1
+ api,j,k

(
p′
)l+1

i,j,k
− ati,j,k

(
p′
)l+1

i,j,k+1
=

= aei,j,k
(
p′
)l
i+1,j,k

+ ani,j,k
(
p′
)l
i,j+1,k

+

+ awi,j,k

(
p′
)l+1

i−1,j,k
+ asi,j,k

(
p′
)l+1

i,j−1,k
+ bi,j,k((p′h)l),

i = 1, Nx; j = 1, Ny; k = 1, Nz,

(13)

l is the number of iteration.
Thus, the main complexity of the program for calculating pollutant concentrations and

meteorological fields lies in solving convective-diffusion equations of the form (11) and elliptic
equations for pressure field correction (13).

2.1. The Choice of a Parallel Programming Technology

To find the most suitable parallel programming technology for solving the numerical predic-
tion problems in question and implement the chosen numerical method, test calculations were
carried out. As one of the subtasks for testing, a mathematical statement with mixed boundary
conditions was chosen for one non-stationary inhomogeneous convection diffusion equation (9),
the numerical solution of which used difference scheme (11). Open MultiProcessing (OpenMP),
Message Passing Interface (MPI), Open Accelerators (OpenACC) and Compute Unified Device
Architecture (CUDA) parallel programming technologies [30] were used for test calculations. The
calculations used a 256× 256× 32 grid and 5000 time steps. Calculations were carried out using
Tomsk State University’s Cyberia cluster. Each node of the cluster has the following specifica-
tions: 48Gb RAM, 2×Intel Xeon X5670 (2.93GHz), 1×GPU NVIDIA GeForce RTX 2080 Ti.
Average sequential program runtime for one node is 1733.0 seconds.

When using OpenMP, OpenACC and CUDA technologies, only one node of the cluster with
shared RAM for two CPUs and one GPU can be used. For the test case in question and the
chosen numerical method, OpenMP programming technology was applied by distributing a set
of Nx × Ny independent subtasks of solving tridiagonal systems between independent parallel
threads. To do this, the OpenMP parallel directives were used. As a result of the tests, a speedup
of 10.5 was achieved (Fig. 1). It was also found that for the case in question, parallelization of
two external loops (i and j) yields the same speedup results as parallelization of just the i loop.
Using static, dynamic and guided schedules also does not yield a significant speedup compared
to the default iteration distribution.

Attempts were also made to use hybrid CPU/GPU technologies – OpenACC and CUDA –
to solve the test problem (9) using a graphics card. When using OpenACC, similarly to OpenMP,
compiler directives were used to assign independent subtasks i and j, consisting of solving tridi-
agonal systems of linear equations (11), to GPU cores. This approach yielded a runtime of
20.4 seconds.

When using CUDA technology, an algorithm for solving a tridiagonal system of linear equa-
tions dependent on the indices i and j, was also chosen as the compute kernel. These systems were
distributed among GPU cores and solved for each time step with subsequent synchronization of
computing processes. The use of CUDA made it possible to obtain a solution to the problem in
16.6 seconds.

A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina

2022, Vol. 9, No. 1 23

1 10 100 1000

Number of processes/threads

1

10

100

1000

S
p

e
e

d
U

p

MPI Sp=T1/Tp

Ideal SpeedUp

OpenMP Sp=T1/Tp

Figure 1. Comparison of execution speedup of parallel programs developed using OpenMP and
MPI, tested using TSU’s Cyberia cluster

Thus, when the amount of data transmitted between software modules or the number of
equations to be solved (9) is small, the use of GPUs for implementation of parallel programming
technologies shows more promise.

MPI technology is also often considered for development of parallel programs on multipro-
cessor distributed-memory systems. For the problem in question (9) and the chosen numerical
method (11), this technology was used in combination with a two-dimensional decomposition
of the grid area along the grid lines i and j (in the directions of the x and y axes). Blocking
communication functions MPI_Sendrecv were used to transmit messages between processes. Re-
placing these functions with non-blocking communication functions MPI_Isend and MPI_Irecv
yielded no more than a 5% decrease in the total execution time of the test task, therefore it was
not considered further. To ensure uniformity of parallel computations, two rows of dummy cells
were used along the perimeter of each subdomain of the two-dimensional decomposition, due
to the use of Van Leer’s monotonized upstream scheme [27]. Tridiagonal systems of linear equa-
tions (11) were solved simultaneously in each subdomain. With this method of organizing parallel
computing using technology on one node of the Cyberia cluster, a speedup of 11.4 was achieved
when solving the test problem (9). Note that when performing parallel calculations using the
same program on 128 processes, a speedup was obtained by 103 times (average calculation time
16.8 sec), and by 512 – 337 times (average time 5.1 sec).

When developing a parallel method for solving equations (13), it should be noted that the
iterative scheme corresponds well to the chosen parallel algorithm for solving transport equa-
tions (11) and allows the use of two-dimensional decomposition and asynchronous relaxation [29]
with a minimum amount of data exchange to synchronize parallel computations in decompo-
sition subdomains. Unfortunately, at each iteration, such data exchanges must be performed,
which makes it relevant to use rapidly converging iterative methods with a minimum number of
iterations when they are implemented in parallel.

Thus, if the program code contains several software modules with a large amount of in-
formation transmitted between them during computations, which is a property of numerical
implementation of mathematical models with a large number of equations (more than ten) of
the form (9) and additional algebraic relations, then it is advisable to use the Message Passing
Interface technology.

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface...

24 Supercomputing Frontiers and Innovations

2.2. Parallel Implementation of the Numerical Method for TSUNM3

In view of the results of the computational experiments presented above, the working ver-
sion of the TSUNM3 model of numerical weather prediction (3)–(8) was parallelized using 2D
decomposition and MPI technology. Table 1 shows the resulting speedup values (calculated as the
ratio of the execution time of the serial version of the code to the execution time of the parallel
program) for the parallel program when performing weather forecast computations for the local
research area on two grids for two days: 96 × 96 × 50 nodes (Grid1) and 192 × 192 × 50 nodes
(Grid2). Since the plan is to use the TSUNM3 mesoscale meteorological model with a horizontal
resolution of 1–2 km, Grid1 corresponds to an industrial area with a large number of enter-
prises, transport hubs and a large (∼ million residents) population center at the center of a
100–200 km – wide research area. Grid2 can cover an area of 200–400 km and can be used for
short-term weather prediction in an administrative area with several large population centers
and transport hubs. For the selected grid sizes, mesoscale model calculations were performed on
the TSU Cyberia cluster.

Table 1. TSUNM3 parallel program speedup values for various grids at different process
quantities

Processes 4 9 16 36 64 144 256
Grid1 3.9 8.6 15.2 33.8 59.0 119.1 184.7
Grid2 3.9 8.5 14.8 32.1 58.1 129.2 218.8

The speedup values for parallel computing programs with an increasing number of processes
presented in Tab. 1 show good supercomputer resource utilization efficiency. With the results
obtained, it is possible to carry out predictive calculations for the next day in 12 minutes of
the program’s runtime for Grid1 and 39 minutes for Grid2 using 256 cores of the TSU Cyberia
supercomputer. Note that in the calculations, we used a version of the program in which calcu-
lations are performed with single precision, which makes it possible to reduce the computation
time and the amount of data transmitted between computing nodes.

To clarify the results presented in Tab. 1, diagrams of the relative (in %) time costs of the
work of each of the main blocks were constructed and the speedup values of the execution of
each of these blocks for the considered number of processes were calculated. The main blocks of
the program are: block for calculating the interaction with the underlying surface (friction, heat
and mass transfer) and the exchange of values – WF&Exchange; velocity component calculation
block – Velocities; block for calculating the hydrostatic and non-hydrostatic parts of pressure –
Pressure; block for calculating turbulent kinetic energy and turbulent diffusion – TKE; moisture
microphysics calculation block – MicroPhysics; block for solving the equation of heat transfer in
the atmosphere – Heat; block for assembling distributed data and writing it to disk – Record.
In these blocks, except for the Record block, only the computation time was measured. We also
measured the total time required for interprocessor data transfer in 2D decomposition to perform
parallel computing (MPI_Send).

Figure 2 shows that a large share in the total amount of computational costs is the execution
of blocks for calculating the velocity components and moisture microphysics parameters. This is
understandable, because three equations of the form (9) are solved in the first block, and four in
the second. That is, on average, the numerical solution of one equation (9) by method (11) takes

A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina

2022, Vol. 9, No. 1 25

MPI_Send
3.2

WF&Exchange
13.7

Velocities
26.4

Pressure
7.8

TKE
7.7

MicroPhysics
33.1

Record
0.1

Heat
8

(a)

MPI_Send
8.4

WF&Exchange
11.1

Velocities
19.6

Pressure
19.7

TKE
5.7

MicroPhysics
25.8

Record
3.4

Heat
6.3

(b)

Figure 2. Diagrams of the relative time spent on the execution of various blocks of the program.
(a) is the launch of the program on 36 processes, (b) – on 256. The calculations were performed
on the grid Grid1

about 8–9% of the total computational time when using up to 36 processes. This is confirmed by
the time spent on the implementation of blocks for the numerical solution of the heat transfer
equation and the calculation of turbulent characteristics (Fig. 2), where one equation of the
form (9) is solved. Note that when solving finite-difference equations of the form (11) numerically,
due to the nonlinearity (advection/turbulent diffusion) of equation (9) and the presence of time-
consuming source terms (especially for the MicroPhysics, Velocities, Heat blocks), it is required
to perform quite a lot of arithmetic operations to calculate the coefficients of equations (11) for
each dependent variable. Note also that the WF&Exchange block does not require data exchange
and runs with perfect parallelism. Its share in the total cost of the program is more than 10%.
The costs of implementing the Pressure block with a relatively small number of processes are
commensurate with the costs of numerically solving one transport equation (9). However, with
an increase in the degree of decomposition of the grid domain, the rate of convergence of the
iterative Gauss-Seidel method slows down and more iterations are required to achieve a given
accuracy. This entails an increase in the parallel execution time of the Pressure block (Figs. 2, 3).

After calculating the grid functions of the desired dependent variables for each equation of
the form (11), in accordance with the selected grid pattern, the boundary values of the grid
subdomain in the xz and yz planes are exchanged. Naturally, with an increase in the number of
processes used, the ratio of the computation time for each subdomain to the time of exchange of
boundary grid values to ensure the uniformity of parallel computations decreases (Fig. 2).

Figure 3 shows that, due to a fairly large number of auxiliary calculations in calculating the
coefficients of finite-difference equations (11), due to its nonlinearity and time-consuming source
terms, the speedup of all blocks of the parallel code, except for the pressure calculation block,
is close to ideal even with an increase in the fraction time spent on exchange operations at each
time step. This character of the speedup of calculations is preserved even with a relatively small
amount of grid nodes in the 2D decomposition region. This is confirmed by the above results of
speedup in the numerical solution of one convective-diffusion equation (Fig. 1).

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface...

26 Supercomputing Frontiers and Innovations

0 100 200 300

Number of processes

0

100

200

300
S

p
e

e
d

U
p

WF&Exchange

Velocities

Pressure

TKE

MicroPhysics

Heat

Total

Grid1

(a)

0 100 200 300

Number of processes

0

100

200

300

S
p

e
e

d
U

p

WF&Exchange

Velocities

Pressure

TKE

MicroPhysics

Heat

Total

Grid2

(b)

Figure 3. The speedup of the main blocks of the TSUNM3 program depending on the number
of processes used. The calculations use Grid1 (a) and Grid2 (b)

When solving the finite-difference equation (13) by the iterative Gauss-Seidel method at each
time step, exchange operations must be performed at each iteration. Therefore, for the consid-
ered grids Grid1 and Grid2 and the parallel programming technology, already at 144 processes,
speedup saturation for the pressure calculation block is observed and the time spent on its nu-
merical implementation begins to occupy an increasing share in the total amount of calculations.
Nevertheless, since the rest of the code blocks demonstrate a high level of speedup, in general,
the high efficiency of using a multiprocessor computing system remains for the entire parallel
program (Fig. 3, Tab. 1).

To prove the good strong, relative and weak scalability [31] of the developed parallel program,
we also present Fig. 4, which shows the graphs of absolute efficiency E, relative efficiency rE and
“weak” efficiency wE from the number of processes used, which are calculated by the following
formulas:

E(p,Grid) =
T (1, Grid)

pT (p,Grid)
; rE(p,Grid) =

E(p,Grid)

E(pprev, Grid)
;wE(p) =

T (p,Grid1)

T (4p,Grid2)
. (14)

Here p is the number of processes used, Grid is the size of the grid area, T (p,Grid) is the
program computation time on the Grid on p processes, pprev is the number of processes in the
sequence of test runs preceding p (see Tab. 1, in accordance with which, for example, at p = 36,
pprev = 16), Grid2 is a grid with 4 times more nodes than Grid1.

Figure 4 shows that the developed computational code has good scalability, since its absolute
efficiency is not less than 70% when using up to 256 processes. In addition, the ratio of neighboring
values of absolute efficiency starts to decrease below 0.9 only when more than 100 processes
are used. The values of weak scalability wE also do not fall below 0.9, which shows a small
change in the computation time with a synchronous increase in the grid size and the number of
processes used, while maintaining the number of processed grid values in each subdomain of the
2D decomposition.

Thus, the reasons for the high scalability of the developed TSUNM3 program compared to
parallel programs for the numerical solution of traditional Navier-Stokes equations with constant
coefficients, which consider three equations for the velocity components and an equation for
finding pressure (see, for example, [32]), in our opinion, are the following:

A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina

2022, Vol. 9, No. 1 27

1 10 100 1000

p

0.7

0.8

0.9

1

E
(p

,G
ri
d

1
),

rE
(p

,G
ri
d

1
),

w
E

(p
)

E(p,Grid1)

rE(p,Grid1)

wE(p)

Figure 4. The scalability of the developed program

– in this program, six more three-dimensional non-stationary convective-diffusion equations
of the form (9) are additionally solved numerically;

– the developed parallel numerical method for solving the transport equation (9), as shown
by the above results, has good scalability up to the use of a relatively small number of
nodes in the grid subdomains obtained after applying the two-dimensional decomposition;
the latter is associated with a large volume of calculations of the coefficients of difference
equations (11) and source terms of equations (9), especially for blocks of microphysics of
moisture, turbulence and heat transfer;

– apparently, with more intensive use of fast cache memory with an increase in the degree of
decomposition of the finite difference problem with an increase in the number of processes
used.

The numerical method (11) and MPI parallel programming technology with two-dimensional
decomposition of the grid area along horizontal directions were also used for the pollutant trans-
port model (1), which is applied in off-line mode after calculations using the TSUNM3 numerical
weather prediction model. The computations in question include 12 equations of the form (1),
which are solved on a 100 × 100 × 50 grid with a horizontal step of 500 m and a time step of
∼ 1 sec for a 50 × 50 km area. Table 2 shows the speedup values for the pollutant transport
model (1) parallel program.

Table 2. Pollutant transport parallel program speedup values at different
process quantities

Process 4 16 25 100
SpeedUp 3.9 13.6 19.4 70.8

Thus, the table shows that the efficiency of parallel computing for the model of air quality (1)
in question does not fall below 70%.

Conclusion

A mathematical model and an effective numerical method for the short-term prediction
of dangerous meteorological conditions and atmospheric air quality over limited stretches of

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface...

28 Supercomputing Frontiers and Innovations

land encompassing large population centers designed to be used on multiprocessor distributed-
memory systems were developed in the course of this study. The mathematical model includes a
pollutant transport model with a reduced chemical mechanism and a non-hydrostatic mesoscale
meteorological model with a modern atmospheric moisture microphysics parametrization scheme.
The numerical solution of the non-stationary inhomogeneous convection diffusion equations of the
modeling system is carried out by means of the transformation of coordinates, the finite volume
method and semi-implicit difference schemes of the second order of approximation, which are
solved using the TDMA method with a linear dependence of the number of arithmetic operations
on the size of the grid. Difference equations used for pressure field computations that ensure
correct satisfaction of continuity equations in the difference form are solved using the Gauss-
Seidel iteration method and asynchronous relaxation.

Parallel implementation of the chosen numerical scheme for solving the equations of the
mathematical model was based on the use of MPI parallel programming technology, two-
dimensional decomposition of the grid area along horizontal directions (x and y axes), and intro-
duction of additional fictitious grid nodes along the perimeter of the decomposition subdomains.
The results of computational experiments carried out using the TSU Cyberia cluster showed
good software scalability and computer resource utilization efficiency were not less than 70%

when using up to 256 of the cluster’s computing cores. In this case, numerical prediction of local
weather conditions for the next 24 hours was carried out in 12 minutes on a 96×96×50 grid and
in 39 minutes on a 192×192×50 grid with a horizontal resolution of 1 km. Numerical prediction
of surface air quality for the next 24 hours was carried out in 23 minutes on a 100×100×50 grid
with a horizontal resolution of 500 m.

Acknowledgements

The work was supported by the Russian Science Foundation (project no. 19-71-20042).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References

1. Sokhi, R., Baklanov, A., Schlünzen, H.: Mesoscale Modelling for Meteorological and Air
Pollution Applications. Anthem Press, New York (2018)

2. Dabdub, D., Seinfeld, J.H.: Parallel Computation in Atmospheric Chemical Modeling. Parallel
Computing 22, 111–130 (1996). https://doi.org/10.1016/0167-8191(95)00063-1

3. Baklanov, A.A., Korsholm, U.S., Mahura, A.G., et al.: Physic a land chemical weather fore-
casting as a joint problem: two-way interacting integrated modelling. American Meteorological
Society, Seattle (2011)

4. Nuterman, R., Korsholm, U., Zakey, A., et al.: New developments in Enviro-HIRLAM online
integrated modelling system. Geophysical Research Abstracts 15 (2013)

5. Hood, C., MacKenzie, I., Stocker, J., et al.: Air quality simulations for London using a
coupled regional-to-local modelling system. Atmospheric Chemistry and Physics 18, 11221–

A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina

2022, Vol. 9, No. 1 29

https://doi.org/10.1016/0167-8191(95)00063-1

11245 (2018). https://doi.org/10.5194/acp-18-11221-2018

6. Strunk, A., Ebel, A., Elbern, H.: A nested application of four-dimensional variational as-
similation of tropospheric chemical data. International Journal of Environment and Pollution
46(1–2), 43–60 (2011). https://doi.org/10.1504/IJEP.2011.042607

7. Skamarock, W.C., Klemp, J.B., Dudhia, J., et al.: A Description of the Advanced Research
WRF Model Version 4. National Center for Atmospheric Research, Colorado (2021). https:
//doi.org/10.5065/1dfh-6p97

8. Stockwell, W.R., Kirchner, F., Kuhn, M., Seefeld, S.: A new mechanism for regional atmo-
spheric chemistry modeling. Journal of Geophysical Research Atmospheres 102(22), 25847–
25879 (1997). https://doi.org/10.1029/97jd00849

9. Carpenter, K.: Note on the paper ‘Radiation conditions for the lateral boundaries of limited-
area numerical models’. Quarterly Journal of the Royal Meteorological Society 108(457), 717–
719 (1982). https://doi.org/10.1002/qj.49710845714

10. Wesley, M.L.: Parameterisation of surface resistances to gaseous dry deposition in regional-
scale numerical models. Atmospheric Environment 23(6), 1293–1304 (1989). https://doi.
org/10.1016/0004-6981(89)90153-4

11. Department of Natural Resources and Environmental Protection of the Tomsk Region.
https://depnature.tomsk.gov.ru/2019-god, accessed: 2021-10-29

12. Hurley, P.J.: TAPM V4. Part 1: Technical Description. CSIRO Marine and Atmospheric
Research, Aspendale (2008). https://doi.org/10.4225/08/585c175bc5884

13. Stockwell, W.R., Goliff, W.S.: Comment on “Simulation of a reacting pollutant puff, us-
ing an adaptive grid algorithm” by R.K. Srivastava et al. Journal of Geophysical Research
Atmospheres 107(22), 4643–4650 (2002). https://doi.org/10.1029/2002JD002164

14. Starchenko, A.V., Bart, A.A., Kizhner, L.I., Danilkin, E.A.: Mesoscale meteorological model
TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface
layer over a major population center. Tomsk State University Journal of Mathematics and
Mechanics 66, 35–55 (2020). https://doi.org/10.17223/19988621/66/2

15. Starchenko, A., Prokhanov, S., Danilkin, E., Lechinsky, D.: Numerical Forecast of Local Me-
teorological Conditions on a Supercomputer. In: Voevodin, V., Sobolev, S. (eds.) Supercom-
puting. RuSCDays 2020. Communications in Computer and Information Science, vol. 1331,
pp. 273–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64616-5_24

16. Pielke, R.A.: Mesoscale Meteorological modelling. Academic Press, Orlando (1984)

17. Hong, S., Lim, J.: The WRF single-moment 6-class microphysics scheme (WSM6). Journal
of the Korean Meteorological Society 42(2), 129–151 (2006)

18. Andrén, A.: Evaluation of a Turbulence Closure Scheme Suitable for Air-Pollution Ap-
plications. Journal of Applied Meteorology and Climatology 29(3), 224–239(1990). https:
//doi.org/10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2

A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface...

30 Supercomputing Frontiers and Innovations

https://doi.org/10.5194/acp-18-11221-2018
https://doi.org/10.1504/IJEP.2011.042607
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.1029/97jd00849
https://doi.org/10.1002/qj.49710845714
https://doi.org/10.1016/0004-6981(89)90153-4
https://doi.org/10.1016/0004-6981(89)90153-4
https://depnature.tomsk.gov.ru/2019-god
https://doi.org/10.4225/08/585c175bc5884
https://doi.org/10.1029/2002JD002164
https://doi.org/10.17223/19988621/66/2
https://doi.org/10.1007/978-3-030-64616-5_24
https://doi.org/10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2

19. Yamada, T.: Simulations of Nocturnal Drainage Flows by a q2l Turbulence Closure
Model. Journal of Atmospheric Sciences 40(1), 91–106 (1983). https://doi.org/10.1175/
1520-0469(1983)040<0091:SONDFB>2.0.CO;2

20. Smagorinsky, J.: General Circulation Experiments With the Primitive Equations: Part I.
The Basic Experiment. Monthly Weather Review 91(2), 99–164 (1963). https://doi.org/
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

21. Mahrer, Y., Pielke, R.A.: A numerical study of the airflow over irregular terrain. Beitr. Phys.
Atmosph. 50, 98–113 (1977)

22. Stephens, G.: Radiation Profiles in Extended Water Clouds. Part II: Parameterization
Schemes. Journal of the Atmospheric Sciences 35(11), 2123–2132 (1978). https://doi.org/
10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2

23. Monin, A.S., Obukhov, A.M.: Basic laws of turbulent mixing in the surface layer of the
atmosphere. Tr. Akad. Nauk SSSR Geofiz. 24, 163–187 (1954)

24. Dyer, A.J., Hicks, B.B.: Flux-gradient relationships in the constant flux layer. Quarterly
Journal of the Royal Meteorological Society 96(410), 715–721 (1970). https://doi.org/10.
1002/qj.49709641012

25. Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V.: Structure and Algorithms of SL-AV
Atmosphere Model Parallel Program Complex. Lobachevskii Journal of Mathematics 39(4),
587–595 (2018). https://doi.org/10.1134/S1995080218040145

26. Mazumder, S.: Numerical Methods for Partial Differential Equations. Finite Difference and
Finite Volume Methods. Academic Press (2016)

27. Van Leer, B.: Towards the ultimate conervative difference scheme. II. Monotonicity and
conservation combined in a second order scheme. Journal of Computational Physics 14(4),
361–370 (1974). https://doi.org/10.1016/0021-9991(74)90019-9

28. Patankar, S.: Numerical Heat Transfer and Flow. CRC Press (2009). https://doi.org/10.
1201/9781482234213

29. Ortega, J.O.: Introduction to Parallel and Vector Solution of Linear System. Plenum Press
New York, Charlottesville (1988)

30. Starchenko, A.V., Danilkin, E.A., Prohanov, S.A., Leshchinskiy, D.V.: Parallel imple-
mentation of a numerical method for solving transport equations for the mesoscale mete-
orological model TSUNM3. Journal of Physics: Conference Series 1715(1), 012073 (2020).
https://doi.org/10.1088/1742-6596/1715/1/012073

31. Bruneau, C.-H., Khadra, K.: Highly parallel computing of a multigrid solver for 3D Navier-
Stokes equations. Journal of Computational Science 17(1), 35–46 (2016). https://doi.org/
10.1016/j.jocs.2016.09.005

32. Wang, Y., Baboulin, M., Dongarra, J., et al.: A Parallel Solver for Incompressible Fluid
Flows. Procedia Computer Science 18, 439–448 (2013). https://doi.org/10.1016/j.procs.
2013.05.207

A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina

2022, Vol. 9, No. 1 31

https://doi.org/10.1175/1520-0469(1983)040<0091:SONDFB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<0091:SONDFB>2.0.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2
https://doi.org/10.1002/qj.49709641012
https://doi.org/10.1002/qj.49709641012
https://doi.org/10.1134/S1995080218040145
https://doi.org/10.1016/0021-9991(74)90019-9
https://doi.org/10.1201/9781482234213
https://doi.org/10.1201/9781482234213
https://doi.org/10.1088/1742-6596/1715/1/012073
https://doi.org/10.1016/j.jocs.2016.09.005
https://doi.org/10.1016/j.jocs.2016.09.005
https://doi.org/10.1016/j.procs.2013.05.207
https://doi.org/10.1016/j.procs.2013.05.207

River Routing in the INM RAS-MSU Land Surface Model:
Numerical Scheme and Parallel Implementation on Hybrid
Supercomputers

Victor M. Stepanenko1,2

c© The Author 2022. This paper is published with open access at SuperFri.org

The land surface model (LSM) is a necessary compartment of any numerical weather forecast
system or the Earth system model. This paper presents a new version of the INM RAS-MSU
land surface model where the river hydrodynamic and thermodynamic scheme is embedded into
the parallel execution framework using MPI and OpenMP. Numerical experiments have been
performed for the East European domain with resolution 0.5◦ × 0.5◦. The soil model parallel
efficiency at 1–144 MPI cores was 0.52–0.79 and limited by the presence of ocean area, and by
imbalance of computational load between soil columns. The acceleration of the river model at
MPI level was defined by the size of the largest river basin in the domain. At the OpenMP level,
the potential for acceleration of large river basin simulation is shown to be close to number of
threads used, based on fractal properties of the river networks. This acceleration was hindered in
our numerical experiments by the reduced river orders at the coarse land surface model resolution,
so that the optimal speedup for the Volga river basin was 2.5–3 times attained at 4–6 threads.
This performance is projected to improve with refinement of the LSM spatial resolution.

Keywords: land surface model, soil, river network, MPI, OpenMP.

Introduction

The land surface scheme (or land surface model, LSM) is a necessary compartment of any
numerical weather forecast system or the Earth system model. It reproduces the thermodynamic,
hydrophysical and ecological state of land active layer as well as momentum, mass and energy
fluxes between Earth surface and the atmosphere. These fluxes are important to reproduce well
for reliable weather forecasts at a broad range of time scales: from subdiurnal to seasonal.
Especially, the soil moisture is widely recognized as a critical parameter for seasonal weather
dynamics and prediction [6, 19, 32], as it defines the structure of the soil surface heat balance.

Rivers are an integrating component of the land water cycle, as they gather soil moisture from
large terrestrial areas and transport it to ocean. The significance of rivers in the Earth system is
caused by their notable contribution to the ocean freshwater budget [14, 23], methane, carbon
dioxide [17, 21, 29] and dissolved organic carbon [2, 3] transfer from land to ocean and emission
of greenhouse gases to the atmosphere. In addition, the river discharge at large timescales is
close to accumulated “precipitation minus evaporation” over the river basin, and thus serves as
a useful proxy for this difference during the land surface model validation. Those considerations
led to introduction to the land surface models the so-called river routing schemes representing
river flows in simplified manner [1, 11, 15, 22, 31].

The land surface models for long have been consisting of a large number of independent
vertical 1D soil problems, enabling straightforward parallel implementation using MPI and the
longitude-latitude domain decomposition technique. However, embedding river module intro-
duces horizontal dependency of river variables and thus existing longitude-latitude decomposition
is not optimal for LSM river module. This calls for development of new parallel implementation

1Lomonosov Moscow State University, Moscow, Russian Federation
2Moscow Center of Fundamental and Applied Mathematics, Moscow, Russian Federation

DOI: 10.14529/jsfi220103

32 Supercomputing Frontiers and Innovations

https://orcid.org/1111-2222-3333-4444

approach to LSMs with advanced river simulators. Our paper addresses this objective for the
INM RAS-MSU land surface scheme.

The paper is organized as follows. Section 1 presents general information on the INM RAS-
MSU model basic equations and physical parameterizations, with detailed description of the
soil module. Section 1.2 is devoted to the recently developed thermo- and hydrodynamic model
of the river network inside INM RAS-MSU LSM. Information structure of the INM RAS-MSU
simulator with river block is elaborated in Section 2; the corresponding levels of parallelism are
analyzed in Section 3. Configuration of numerical experiments with parallelized LSM is described
in Section 4. Results of experiments are demonstrated and discussed in Section 5. Conclusions
summarize key results of the study, and sketch future directions for the optimization of LSM
parallel implementation.

1. The INM RAS-MSU Land Surface Scheme

The land surface scheme used in this study is jointly developed by Institute of Numerical
Mathematics (INM), Russian Academy of Sciences, and Lomonosov Moscow State University
(MSU) (Fig. 1). It is a part of the INM-CM5 Earth system model [27] and of the SL-AV nu-
merical weather forecast system [10]. Here, we consider it in a standalone version, where the
atmospheric forcing is prescribed. It reproduces the thermodynamic and hydrophysical state of
soil, lakes and rivers as well as momentum, mass and energy fluxes between Earth surface and
the atmosphere. The effects of surface vegetation on surface-atmosphere exchanges are repre-
sented via modifications of soil-air exchange laws (based mostly on Monin-Obukhov similarity)
and introduction of liquid water sink in soil due to roots suction. This means, no vegetation layer
storage for heat or mass is considered. Subgrid-scale variability of the land surface is simulated
by tile approach, where contribution of each surface type in a cell to cell-averaged fluxes of heat,
radiation, water vapor and carbon is proportional to its areal fraction. Carbon cycle processes
accounted for into the model include photosynthesis, organic matter decay in soils with CO2

release and organics degradation in wetlands with CH4 formation. The most computationally
expensive parts of INM RAS-MSU land model are soil, lake and river modules. The soil and
river modules are described in more detail below. The lake model is similar in its information
structure to the soil model, as both of them comprise a number of independent 1D problems.

1.1. Soil Model

The basic numerical kernel of any land surface scheme is a solver for an equation system
describing heat and water transport in soil and snow, including phase transitions. In INM RAS-
MSU model, this system includes equations as follows. The heat equation is:

ρdc
∂T

∂t
=

∂

∂z
λT
∂T

∂z
+ ρd (LiFi − LvFv) , (1)

where ρdc is a volumetric heat capacity of soil, T is temperature, z is a coordinate directed
along acceleration due to gravity, t is time, λT is coefficient of heat conductivity, ρd is dry soil
bulk density, Lk and Fk are the specific heat and rate of water freezing/melting (k = i) and
evaporation/condensation (k = v), respectively. The heat conductivity λT is a function of liquid
water content W and dry soil conductivity. An equation for liquid water content W describes
vertical transport (diffusion due to capillary and sorption forces and gravitational infiltration),

V.M. Stepanenko

2022, Vol. 9, No. 1 33

Figure 1. INM RAS-MSU land surface model

freezing/melting and evaporation/sublimation, root uptake and horizontal discharge [16]:

∂W

∂t
=

∂

∂z

(
λW

∂W

∂z
+ λI

∂I

∂z

)
+
∂γ

∂z
− Fi − Fv − Sr − Sl. (2)

Here,W is a ratio of liquid water mass to solid soil matrix mass, Sr is root suction, and Sl is a sink
due to lateral water flow. A dependence of soil moisture potential Ψ (or water retention curve,
WTC) and hydraulic conductivity γ on moisture W and ice content I are important features
of the system, defining coefficients λW , λI , γ as functions of the solution (λI is neglected in the
current version of the model). The liquid water diffusivity λW (W) and hydraulic conductivity
γ(W) are related functions:

λW (W) = γ(W)
∂Ψ(W)

∂W
. (3)

At least 22 semi-empirical forms are proposed for WTC [9], fitting different sets of empirical data
with different performance. The WTC function explicitly enters the hydraulic conductivity func-
tion γ. For instance, choosing Mualem approach for hydraulic conductivity quantification [20],
one gets:

γ = γmaxW̃
1/2



∫ W̃

0

dW̃ ′

Ψ(W̃ ′)

(∫ 1

0

dW̃ ′

Ψ(W̃ ′)

)−1

2

, (4)

where W̃ .
= (W−Wmin)/(Wmax−Wmin) is a degree of soil moisture saturation. Thus, introducing

in (4) and (3) different forms of WTC yields corresponding pairs of functions (λW , γ), based
on Mualem equation. In INM RAS-MSU model, the two most widespread sets of (λW , γ) are
implemented, namely those by Brooks-Corey [4, 5] and Mualem-van Genuchten [12, 20].

The content of water vapor (V , expressed as a mass ratio, similar to W) is governed by
diffusion equation and phase transitions:

∂V

∂t
=

∂

∂z
λV

∂V

∂z
+ Fv, (5)

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

34 Supercomputing Frontiers and Innovations

while the dynamics of ice content I is defined by phase transitions only:

∂I

∂t
= Fi. (6)

The system of four equations above is supplemented by boundary conditions, representing heat
and water mass balance at the soil-air interface z = 0 and the bottom of soil column z = H.
At the surface, heat and water balance equations include net radiation and modification of
fluxes by vegetation canopy, while at bottom zero diffusive flux condition is imposed. In cold
season, snow depth dynamics is simulated as well as temperature and snow moisture vertical
distribution [24, 28]:

ρsncsn
∂T

∂t
=

∂

∂z
λT
∂T

∂z
+ ρsnLiFi, (7)

∂W

∂t
=
∂γ

∂z
− Fi, (8)

where the subscript “sn” denotes thermodynamic properties of snow. This system is coupled to
the soil equations set via continuity of fluxes and temperature at the soil-snow interface.

The system is solved by implicit in time and central-differences in space numerical scheme
with 23 levels in soil down to 10 m depth, 4 levels in snow (if present) and 1 hour time step for
every cell of a regular latitude-longitude grid (0.5◦ × 0.5◦ in this study). In order to ensure the
heat balance equation at the soil surface, iteration procedure in respect to surface temperature
is implemented.

The code is written in Fortran and uses the external libraries for I/O in netcdf format, MPI
exchanges and OpenMP threading.

1.2. The Model for River Hydrodynamics and Thermodynamics

The model for river hydrodynamics and thermodynamics is based on diffusive wave approxi-
mation for 1D (i.e. averaged over the vertical cross-section of a stream) Saint-Venant system [24].
Under this approach, the pressure gradient force is balanced by quadratic bottom friction, which
delivers a closed set of equations for vertical cross-section area S and temperature T :

∂S

∂t
+
∂([U0 + U∗]S)

∂x
= Er +

∂

∂x
kS
∂S

∂x
, (9)

∂(ST)

∂t
+
∂([U0 + U∗]ST)

∂x
= utrTtrhtr + bsF +

∂

∂x
kST

∂S

∂x
, (10)

supplemented with boundary conditions:

S|x=0 =
∂S

∂x

∣∣∣∣
x=L

= 0, (11)

ST |x=0 = 0, (12)

where the along-river coordinate x = 0 corresponds to the river origin and x = L locates at
the river mouth, Er is a water volume inflow rate from soil and tributaries per unit of river
length, utrTtrhtr is heat inflow per river unit length from soil and inlets, bs is a width of a river
surface, F is net kinematic heat and radiation flux at the water surface, U∗, kS and kST are
functions of channel slope and geometry. The net radiation includes shortwave and longwave
components, net heat flux includes sensible and latent heat flux calculated by the same Monin-
Obukhov similarity as for the soil model (with water-specific roughness lengths). The ice cover

V.M. Stepanenko

2022, Vol. 9, No. 1 35

is not explicitly simulated in the current version, and water temperature is allowed to decrease
below 0◦C.

The system is solved for each river by Preisman scheme semi-implicit in time with 10 mesh
nodes per the model cell (Fig. 2) and Vreman conservative filtering [30] to suppress two-step
oscillations.

Figure 2. The nodes of the river numerical scheme (red circles on a black line, the black line
representing river course) on a grid of land surface model (blue rectangles), λ is longitude, φ is
latitude (adopted from [24])

2. Information Structure of the Land Surface Model with River
Routing

The soil and river models are one-way coupled. It means that the solution of the soil problem
affects the solution of the river model (via groundwater runoff), but not vice versa. The total
water volume source in the stream continuity equation (9) is Er = Er,s +Er,r, where Er,s is the
soil runoff, and Er,r is the water input from tributaries. The soil water runoff to rivers in each
model cell is:

Er,s =
A

ρw0LA

[
(ρdγ) |z=H +

∫ H

0
ρdSldz

]
, (13)

where A is a cell area, LA is a total river length in a cell, and ρw0 is the reference water density.
Thus, an update of soil variables in a cell during timestep provides Er,s over this time step to be
used in a river model as a longitude-latitude field. The water input from tributaries Er,r is:

Er,r = [(U0 + U∗)S]tr/LA, (14)

with subscript “tr” denoting the tributary(ies) of the river, if any in the cell. The heat source
in (10) is:

utrTtrhtr = Er,sH
−1
a

∫ Ha

0
Tdz + [(U0 + U∗)ST]tr/LA, (15)

with Ha standing for active soil layer depth, assumed 1 m in current model version. The above
formulas mean that in order to advance river variables at each time step the soil runoff and
discharge of tributaries are necessary. Thus the sequence of model execution at each time step is
as follows (omitting other parts of algorithm such as lakes, I/O, etc.):

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

36 Supercomputing Frontiers and Innovations

• soil model (time step i),
• river model (time step i):

– rivers of the 1st order,
– rivers of the 2nd order,
– ...
– rivers of the maximal order.

• soil model (time step i+ 1),
• river model (time step i+ 1):

– rivers of the 1st order,
– ...

Here, we introduced the Strahler orders of rivers, where by definition, rivers of order n have
tributaries of the order not larger than n−1, and the streams having no inlets are of n = 1. This
is the strict sequence that cannot be changed under selected numerical scheme. The independent
in terms of information exchange parts of the algorithm are:
• time step updates of different soil columns,
• time step updates of different river basins,
• time step updates of different rivers of the same order.

Here, we used a term “basin” to denote a river network with highest-order river flowing into the
ocean or a lake with no outlet. The serial and parallel parts of the algorithm indicated above
cause the levels of parallel implementation described in the following section.

The INM RAS-MSU land surface model with river routine scheme described above was shown
to successfully reproduce the annual cycle of runoff of two North Eurasian rivers: Severnaya Dvina
and Kolyma [18, 24].

3. Levels of Parallelism and Analytical Estimates for Model
Speedup

The soil model is parallelized using standard decomposition of longitude-latitude domain in
MλMφ subdomains of the same dimensions, whereMλ andMφ are the numbers of MPI processes
along those two coordinates, respectively. Given no data exchanges are needed between any two
MPI processes for soil simulations, this part of the model should speedup with efficiency ≈ 1

under even computational load of processes.
The river model parallel implementation consists of two levels. The top level comprises the

distribution of river basins between MPI processes. This distribution is realized as follows. Let us
assume, there are Nb basins in the model domain, and ni, i = 1, ..., Nb is a decreasing sequence of
numbers of land model cells constituting these basins. Then, the MPI process of rank 0 simulates
the largest basin (i = 1), whereas k-th process computes dynamics of rivers in basins labeled
i = i1,k, ..., imk,k, so that the total number of cells in those basins

∑
i=i1,k,...,imk,k

ni ≤ n1, and
closest possible to n1. Such a scheme ensures distribution of basins between a small number of
MPI processes which is even in terms of total number of land model cells, but not necessarily in
number of basins.

To supply the river model with input data (meteorological variables, inflow of water volume
and heat from soil to streams), each MPI process should have access to the 2D (lan-lot) arrays
of those variables covering all river basins, which are associated to this process. However, these
2D arrays are originally split between MPI-processes according to 2D domain decomposition of

V.M. Stepanenko

2022, Vol. 9, No. 1 37

the soil model (see the first paragraph of this Section, and Fig. 5 in Section 4). This issue is
solved by allocating auxiliary 2D array covering the whole simulation domain which is identical
on each MPI process and which is filled in with the above mentioned variables by ALLREDUCE
operation. This operation is performed one time each time step after the call of soil update
(PBLFLX subroutine) and before the river update (RIVWAT subroutine).

The second level of parallelizm of the river model is realized for each MPI process, and uses
the informational independency of river equations solution for rivers of the same order. This level
is implemented using OpenMP instructions. Below we estimate the maximal speedup for a single
river basin simulation following this approach, which is attainable under no overhead costs.

Let ω be the Strahler order of a river. We can now introduce the values nω (total number
of watercourses of order ω in a given basin) and Lω (average length of watercourses of order ω
in the basin). According to Horton’s laws, which can be derived from an approximation that the
river network is a fractal [8, 25], the following relations are statistically valid:

nω−1
nω

= Cn > 1, (16)

Lω−1
Lω

= CL < 1, (17)

where Cn and CL are constants of the river basin. The wall-clock time of solving a one-dimensional
problem for one river at one time step can be expressed as O(Lkω), where k is defined by numerical
scheme, e.g., k = 1 for explicit schemes and implicit schemes, where linear systems are solved
by direct factorization method (the case of our model). Now estimate the time of sequential
processing Ts, i.e., time needed for sequential solution of one-dimensional problems for all rivers
of the river basin. For the number of rivers of order ω and their length we have:

nω = nω−1C−1n = ... = n1C
−(ω−1)
n , (18)

Lω = Lω−1C
−1
L = ... = L1C

−(ω−1)
L . (19)

Let ωmax be a maximal order of rivers in the basin. Then

Ts =

ωmax∑

ω=1

nωO(Lkω) = n1O(Lk1)

ωmax∑

ω=1

C
−k(ω−1)
L C−(ω−1)n . (20)

Since 1 = nωmax
= n1C

−(ωmax−1)
n , and introducing C∗L

.
= C−1L > 1, the expression for Ts reads:

Ts = Cωmax−1
n O(Lk1)

ωmax−1∑

ω=0

C−ωn C∗kωL . (21)

If all rivers of the same order are processed simultaneously by different cores, then the update
of all rivers of order ω takes the time O(Lkω) rather than nωO(Lkω) as in the sequential version,
so that the total processing time of the whole river network Tp is estimated as:

Tp = O(Lk1)

ωmax−1∑

ω=0

C∗kωL , (22)

and the speedup of the whole river basin simulation:

Ts
Tp

=
Cωmax−1
n

∑ωmax−1
ω=0 C−ωn C∗kωL∑ωmax−1

ω=0 C∗kωL

. (23)

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

38 Supercomputing Frontiers and Innovations

If for the river basin processing only m cores are available, the above estimate transforms to:

Ts
Tp

=

∑ωmax−1
ω=0 Cωmax−ω−1

n C∗kωL∑ωmax−1
ω=0 max

[
Cωmax−ω−1
n /m, 1

]
C∗kωL

. (24)

An example of river model speedup for single basin processing according to (24) is shown in
Fig. 3. One can see that for largest river basins (with maximal river order exceeding 6–8) the
speedup approaches the number of cores used. This is important, as the largest basins cause a
bottleneck at the MPI level of river model implementation, and their effective speedup at the
OpenMP level may significantly reduce the execution time of the whole river module.

Figure 3. Theoretical speedup of a single river basin processing with no overhead costs, as
estimated from fractal theory (Cn = 4, C∗L = 2)

4. Configuration of Numerical Experiments

Numerical experiments with INM RAS-MSU land surface model have been conducted for
domain 40◦–80◦ N, 20◦–59.5◦ E with horizontal resolution 0.5◦×0.5◦ and for the period of 31 days.
Atmospheric forcing (surface air temperature, humidity, wind speed, downwelling longwave and
shortwave radiation, pressure, precipitation) was read from GFDL-ESM2M piControl simulation
data, 1–31 Jan 1661, bias-corrected EWEMBI dataset of the ISIMIP2b project (https://www.
isimip.org). Atmospheric data has the same grid with the model, temporal resolution is daily,
the model time step is 1 hour. The data for river flow directions and riverbed slopes are taken
from the database of GWSP-WATCH project based on DDM30 data [7] made accessible through
ISIMIP project as well. The resulting river network of the Volga basin is shown in Fig. 5. On

V.M. Stepanenko

2022, Vol. 9, No. 1 39

https://www.isimip.org
https://www.isimip.org

the model mesh, Volga river has the order 6, which is much less than that defined for the river
network obtained at much finer resolution (the Volga order is 9 at 200–500 m resolution, [13]).

Figure 4. The full domain of the INM RAS-MSU land surface model simulations. The small
green arrows depict the Volga river basin, shown in detail in Fig. 5

Two series of experiments have been performed to measure the model speedup:
• MPI series: 1 OpenMP thread, number of MPI processes: 1, 4 (Mλ = Mφ = 2), 16

(Mλ = Mφ = 4), 36 (Mλ = Mφ = 6), 64 (Mλ = Mφ = 8), 100 (Mλ = Mφ = 10), 144
(Mλ = Mφ = 12),
• OpenMP series: 4 MPI processes (Mλ = Mφ = 2), number of OpenMP threads: 1, 2, 4, 6,

8, 10, 12, 14.
The performance of the model at OpenMP level is analyzed for the largest basin in the simulation
domain (Volga basin).

Model simulations have been conducted using Lomonosov-2 supercomputer [26], using nodes
with Intel Haswell-EP E5-2697v3, 2.6 GHz, 14 cores and Infiniband FDR interconnect. The
executable of the land surface model was assembled with ifort compiler using -O3 optimization.
In MPI series of runs, the model was launched as:

sbatch --ntasks=<number of MPI processes> --bind-to none <executable>

whereas for OpenMP series:

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

40 Supercomputing Frontiers and Innovations

Figure 5. Volga river basin on the INM RAS-MSU model mesh (a subdomain of the full model
domain shown in Fig. 4), each arrow denotes the river course segment containing mesh nodes
depicted in Fig. 2, black thin dotted lines are used to show model cells, thick dashed black lines
delineate MPI subdomains, color is used to denote the river Strahler order

sbatch --ntasks=4 --ntasks-per-node=1 --bind-to none <executable>

The latter ensures that each MPI process runs at a separate node, and all OpenMP threads of
a given MPI process locate at the same node.

5. Results and Discussion

The wall-clock time and parallel efficiency (defined as the speedup of parallel version in
respect to serial code version divided by number of MPI processes) for experiments of MPI series
are shown in Fig. 6a and 6b, respectively.

The soil model accelerates with gradual decrease of efficiency from 0.79 at 4 cores to 0.52 at
144 cores, despite the absence of MPI exchanges in this part of the code. The reason is the load
imbalance between MPI processes, taking into account that the wall-clock time of the soil model
at any timestep is defined be the maximal wall-clock time among processes. At 4 cores, all MPI
subdomains include ocean cells and different number of land cells which define the distribution
of workload between processes. At large numbers of MφMλ there are subdomains with all cells
residing over ocean, which means corresponding MPI processes are idle. The fraction of such
processes is estimated as a fraction of ocean cells which is 30%. The efficiency may be corrected
for this factor by taking into account only number of MPI processes, processing land cells, e.g. for
144 cores we have the corrected efficiency 0.52/(1− 0.3) = 0.74. The remaining loss of efficiency
1 − 0.74 = 0.26 is mostly explained by the increase of the time for one-timestep processing of
a single soil column, averaged over a subdomain of the most loaded MPI-process, with rise of
the cores number (from 3.9 × 10−5 s at 1 MPI process to 4.9 × 10−5 s at 144 MPI processes).

V.M. Stepanenko

2022, Vol. 9, No. 1 41

(a) Wall-clock time

(b) Parallel efficiency

Figure 6. Wall-clock time and parallel efficiency of the soil model (subroutine PBLFLX) and the
river model (subroutine RIVWATcycle) using 1–144 MPI processes on Lomonosov-2 supercom-
puter (MPI series)

This means that even fully terrestrial MPI subdomains have different workload depending on
the presence of snow cover and different number of iterations for surface temperature to perform
a timestep depending on the local meteorological conditions.

The regular longitude-latitude decomposition of the LSM computational domain between
MPI processes is inherited from the fully coupled ESM, where this decomposition matches the
decomposition in the atmospheric model. However, as shown above, in standalone mode it be-

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

42 Supercomputing Frontiers and Innovations

comes non-optimal if rectangular domain in (λ, φ) contains ocean cells. In this case, the current
MPI decomposition scheme can be optimized, in order the MPI subdomains to contain only land
cells or a minimal number of ocean cells. This model improvement is left for the future.

Remarkably, the river model is accelerated almost 4 times when using 4 MPI processes,
whereas under larger number of cores the wall-clock time remains almost constant. This is due
to fact that at the MPI level, the largest river basin in the domain (Volga basin) is processed by
single process, and the wall-clock time of this process is a minimal possible for the river model
in general. As a result, the river model contribution to the whole land surface model runtime,
being negligible in serial mode starts to dominate over the soil model above ∼ 100 MPI processes
(3.49 s for river model vs. 1.75 s for soil model).

The time for ALLREDUCE operation gathering the data for the river model input gradually
increases from 0.22 s at MφMλ = 4 to 0.66 s at MφMλ = 144 indicating increasing overhead
costs of this collective operation, still remaining much less than river model computational time
(3.49 s).

The wall-clock time and parallel efficiency of Volga basin processing in experiments of
OpenMP series are shown in Fig. 7a and 7b, respectively. The efficiency is defined here in respect
to the model configuration with 4 MPI processes and 1 OpenMP thread.

Simulation of rivers with smallest order demonstrated the highest speedup and efficiency,
whereas the rivers of order 5 and 6 are simulated with no acceleration. The overall decrease
of Volga simulation time when using 14 threads is 4.11 times which is much smaller compared
to estimated ≈ 12 times from theoretical formula (24). To address this difference, consider the
Volga basin scale-similarity parameters (Horton metrics) computed on the model mesh (Fig. 5),
presented in Tab. 1.

Table 1. The Horton metrics for Volga basin at 0.5◦ × 0.5◦

Horton parameter / Strahler order ω = 2 ω = 3 ω = 4 ω = 5 ω = 6

Cn,ω 5.911 4.5 5 2 1
C∗L,ω 9.098 2.293 2.188 1.943 1.971

The river length parameter C∗L,ω is close to typical value of 2, excluding the case of ω = 2,
because the lengths of low-order rivers are not explicitly reproduced on the model mesh (e.g.,
the majority of first-order rivers have length of the one model cell). On the contrary, the river
number parameter Cn,ω is biased from typical value of ∼ 4 for the largest order 5 and 6. The
value Cn,6 = 1 means that there are one river of order 5 and one river of order 6, which are both
simulated sequentially by one OpenMP thread (see no speedup for those rivers in Fig. 7a). There
are two rivers of order 4, so that the acceleration of their simulation ceases with the number
of threads > 2. Gradual decrease of parallel efficiency of simulation of the rivers with orders 1
and 2 while increasing number of threads is caused by increasing the contribution of overheads of
initializing the OpenMP PARALLEL section and DO loop each timestep to the total wall-clock
time.

To check the reasoning of the previous paragraph, the formula (24) can be extended to
account for variability of Horton coefficients with river order ω:

Ts
Tp

=
n1

[
1 +

∑ωmax−1
ω=1 (cn,ω+1 ∗ cL,ω+1)

]

max [n1/m, 1] +
∑ωmax−1

ω=1 (max [cn,ω+1 ∗ n1/m, 1] ∗ cL,ω+1)
, (25)

V.M. Stepanenko

2022, Vol. 9, No. 1 43

(a) Wall-clock time

(b) Parallel efficiency

Figure 7. Wall-clock time and parallel efficiency of the river model for Volga basin using
4 MPI processes and 1–14 OpenMP threads on Lomonosov-2 supercomputer; the metrics are
given for the whole basin (“Volga_whole”) and for groups of rivers having the same order
(“Volga_order=<n>”) (OpenMP series)

where cn,ω
.
= Πω

i=2C
−1
n,i and cL,ω

.
= Πω

i=2C
∗k
L,i. Substituting to (25) the values from Tab. 1 provides

Ts/Tp = 3.28 for 14 OpenMP nodes, which is much closer to measured acceleration 4.11 compared
to that given by formula (24) with reference Horton metrics (≈ 12 times). The real acceleration
appears to be faster, as the expression (25) does not take into account overheads for processing
each river, related to invoking subroutines, allocating memory etc. In serial mode, these overheads
increase especially the total wall-clock time for solution of model equations for small-order rivers
(due to their large number), and since parallelization of these river orders is more efficient, this
improves the parallel performance for the whole basin.

To summarize, processing of the Volga basin is significantly accelerated up to 4–6 OpenMP
threads, this limit taking place due to serial processing of longest rivers of order 5 and 6. However,
with finer meshes of land surface models, which are expected in future, the orders of resolved

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

44 Supercomputing Frontiers and Innovations

large river basins are to increase and thus the efficiency OpenMP-based approach presented here
is anticipated to improve, according to estimates presented in Section 3.

Conclusion

This paper presents a new version of the INM RAS-MSU land surface scheme where the river
hydrodynamic and thermodynamic model is embedded into the parallel execution framework
using two levels of parallelism: the first is MPI-based indepedent processing of river basins, and
the second uses OpenMP technique to parallelize the simulation of rivers of the same Strahler
order. Numerical experiments have been performed for the East European domain with resolution
0.5◦ × 0.5◦. The MPI implementation of the soil model is based on conventional even longitude-
latitude decomposition of the model domain, inherited from the atmospheric model. The soil
model parallel efficiency at 1–144 cores was shown to be 0.52–0.79 and limited by the presence
of ocean area, and by imbalance of computational load between soil columns depending on the
presence of snow cover and number of iterations for the surface temperature needed to advance
the soil profiles. The acceleration of the river model at MPI level (not exceeding 4 times) is
defined by the size of the largest river basin in the domain (Volga), whereas at OpenMP level the
potential for acceleration of large river basin simulation is shown to be close to number of threads
used. OpenMP-level speedup was hindered in our numerical experiments by the underestimation
of river orders at coarse land surface model resolution (recommended performance for the Volga
basin attained at 4–6 threads with 2.5–3 times acceleration).

The future development of the parallel code includes MPI+OpenMP implementation of the
soil model, optimization of MPI domain decomposition for soil model under presence of ocean
surface, and further tuning the MPI+OpenMP configuration of the river model.

Acknowledgements

The work is partially supported by the Russian Ministry of Science and Higher Education
(agreement No. 075-15-2019-1621, MPI implementation of the soil model), by the Russian Science
Foundation (project No. 21-71-30003, MPI+OpenMP implementation of the river model), and
the Russian Foundation for Basic Research (project No. 20-05-00773, configuration of numerical
experiments, preparation of the input data). The research is carried out using the equipment of
the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References

1. Bell, V.A., Kay, A.L., Jones, R.G., Moore, R.J.: Development of a high resolution grid-based
river flow model for use with regional climate model output. Hydrology and Earth System
Sciences 11(1), 532–549 (2007). https://doi.org/10.5194/hess-11-532-2007

2. Bowring, S.P.K., Lauerwald, R., Guenet, B., et al.: ORCHIDEE MICT-LEAK (r5459), a
global model for the production, transport, and transformation of dissolved organic carbon
from Arctic permafrost regions – Part 1: Rationale, model description, and simulation proto-

V.M. Stepanenko

2022, Vol. 9, No. 1 45

https://doi.org/10.5194/hess-11-532-2007

col. Geoscientific Model Development 12(8), 3503–3521 (2019). https://doi.org/10.5194/
gmd-12-3503-2019

3. Bowring, S.P.K., Lauerwald, R., Guenet, B., et al.: ORCHIDEE MICT-LEAK (r5459),
a global model for the production, transport, and transformation of dissolved organic
carbon from Arctic permafrost regions – Part 2: Model evaluation over the Lena River
basin. Geoscientific Model Development 13(2), 507–520 (2020). https://doi.org/10.5194/
gmd-13-507-2020

4. Brooks, R., Corey, A.: Hydraulic Properties of Porous Media. Tech. rep., Colorado State
University, Fort Collins (1964)

5. Clapp, R., Hornberger, M.: Empirical equations for some soil hydraulic properties. Water
Resources Research 14(4), 601–604 (1978)

6. Conil, S., Douville, H., Tyteca, S.: The relative influence of soil moisture and SST in cli-
mate predictability explored within ensembles of AMIP type experiments. Climate Dynamics
28(2), 125–145 (2007). https://doi.org/10.1007/s00382-006-0172-2

7. Döll, P., Lehner, B.: Validation of a new global 30-min drainage direction map. Journal of
Hydrology 258(1-4), 214–231 (2002). https://doi.org/10.1016/S0022-1694(01)00565-0

8. Downing, J., Cole, J., Duarte, C., et al.: Global abundance and size distribution of streams
and rivers. Inland Waters 2(4), 229–236 (2012). https://doi.org/10.5268/IW-2.4.502

9. Du, C.: Comparison of the performance of 22 models describing soil water retention curves
from saturation to oven dryness. Vadose Zone Journal 19(1) (2020). https://doi.org/10.
1002/vzj2.20072

10. Fadeev, R.Y., Ushakov, K.V., Tolstykh, M.A., Ibrayev, R.A.: Design and development of
the SLAV-INMIO-CICE coupled model for seasonal prediction and climate research. Russian
Journal of Numerical Analysis and Mathematical Modelling 33(6), 333–340 (2018). https:
//doi.org/10.1515/rnam-2018-0028

11. Falloon, P., Betts, R., Bunton, C.: New Global River Routing Scheme in the Unified Model.
Tech. rep., Hadley Centre (2007)

12. van Genuchten, M.T.: A Closed-form Equation for Predicting the Hydraulic Conductivity
of Unsaturated Soils. Soil Science Society of America Journal 44(5), 892–898 (1980). https:
//doi.org/10.2136/sssaj1980.03615995004400050002x

13. Guth, P.L.: Drainage basin morphometry: a global snapshot from the shuttle radar to-
pography mission. Hydrology and Earth System Sciences 15(7), 2091–2099 (2011). https:
//doi.org/10.5194/hess-15-2091-2011

14. Huang, B., Mehta, V.M.: Influences of freshwater from major rivers on global ocean circula-
tion and temperatures in the MIT ocean general circulation model. Advances in Atmospheric
Sciences 27(3), 455–468 (2010). https://doi.org/10.1007/s00376-009-9022-6

15. Lucas-Picher, P., Arora, V.K., Caya, D., Laprise, R.: Implementation of a large-scale variable
velocity river flow routing algorithm in the Canadian Regional Climate Model (CRCM).
Atmosphere-Ocean 41(2), 139–153 (2003). https://doi.org/10.3137/ao.410203

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

46 Supercomputing Frontiers and Innovations

https://doi.org/10.5194/gmd-12-3503-2019
https://doi.org/10.5194/gmd-12-3503-2019
https://doi.org/10.5194/gmd-13-507-2020
https://doi.org/10.5194/gmd-13-507-2020
https://doi.org/10.1007/s00382-006-0172-2
https://doi.org/10.1016/S0022-1694(01)00565-0
https://doi.org/10.5268/IW-2.4.502
https://doi.org/10.1002/vzj2.20072
https://doi.org/10.1002/vzj2.20072
https://doi.org/10.1515/rnam-2018-0028
https://doi.org/10.1515/rnam-2018-0028
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.5194/hess-15-2091-2011
https://doi.org/10.5194/hess-15-2091-2011
https://doi.org/10.1007/s00376-009-9022-6
https://doi.org/10.3137/ao.410203

16. Lykossov, V., Palagin, E.: Dynamics of coupled heat and moisture transport in the soil-
atmosphere system. Russian Meteorology and Hydrology 8, 48–56 (1978), (in Russian)

17. Malakhova, V., Golubeva, E.: The role of the Siberian rivers in increasing dissolved methane
in the East Siberian shelf. Bull. Nov. Comp. Center, Num. Model. in Atmosph. 13, 43–56
(2014)

18. Medvedev, A.I., Stepanenko, V.M.: The influence of external parameters on river runoff in
the INM RAS – MSU land surface model. IOP Conference Series: Earth and Environmental
Science 611, 012023 (2020). https://doi.org/10.1088/1755-1315/611/1/012023

19. Miralles, D.G., Teuling, A.J., van Heerwaarden, C.C., Vilà-Guerau de Arellano, J.: Mega-
heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation.
Nature Geoscience 7(5), 345–349 (2014). https://doi.org/10.1038/ngeo2141

20. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated
porous media. Water Resources Research 12(3), 513–522 (1976). https://doi.org/10.
1029/WR012i003p00513

21. Raymond, P.A., Hartmann, J., Lauerwald, R., et al.: Global carbon dioxide emissions from
inland waters. Nature 503(7476), 355–359 (2013). https://doi.org/10.1038/nature12760

22. Sheng, M., Lei, H., Jiao, Y., Yang, D.: Evaluation of the Runoff and River Routing Schemes
in the Community Land Model of the Yellow River Basin. Journal of Advances in Modeling
Earth Systems 9(8), 2993–3018 (2017). https://doi.org/10.1002/2017MS001026

23. Solomon, A., Heuzé, C., Rabe, B., et al.: Freshwater in the Arctic Ocean 2010–2019. Ocean
Science 17(4), 1081–1102 (2021). https://doi.org/10.5194/os-17-1081-2021

24. Stepanenko, V., Medvedev, A., Korpushenkov, I., et al.: A River Routing Scheme for an
Earth System Model. Numerical Methods and Programming 20, 396–410 (2019). https:
//doi.org/10.26089/NumMet.v20r435, (in Russian)

25. Tarboton, D.G., Bras, R.L., Rodriguez-Iturbe, I.: The fractal nature of river networks. Water
Resources Research 24(8), 1317–1322 (1988). https://doi.org/10.1029/WR024i008p01317

26. Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large
Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomputing Fron-
tiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

27. Volodin, E.M., Gritsun, A.S.: Simulation of Possible Future Climate Changes in the 21st
Century in the INM-CM5 Climate Model. Izvestiya, Atmospheric and Oceanic Physics 56(3),
218–228 (2020). https://doi.org/10.1134/S0001433820030123

28. Volodina, E., Bengtsson, L., Lykosov, V.N.: Parameterization of heat and moisture transfer
in a snow cover for modelling of seasonal variations of land hydrological cycle. Russian
Journal of Meteorology and Hydrology (5), 5–14 (2000)

29. Vorobyev, S.N., Karlsson, J., Kolesnichenko, Y.Y., et al.: Fluvial carbon dioxide emission
from the Lena River basin during the spring flood. Biogeosciences 18(17), 4919–4936 (2021).
https://doi.org/10.5194/bg-18-4919-2021

V.M. Stepanenko

2022, Vol. 9, No. 1 47

https://doi.org/10.1088/1755-1315/611/1/012023
https://doi.org/10.1038/ngeo2141
https://doi.org/10.1029/WR012i003p00513
https://doi.org/10.1029/WR012i003p00513
https://doi.org/10.1038/nature12760
https://doi.org/10.1002/2017MS001026
https://doi.org/10.5194/os-17-1081-2021
https://doi.org/10.26089/NumMet.v20r435
https://doi.org/10.26089/NumMet.v20r435
https://doi.org/10.1029/WR024i008p01317
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1134/S0001433820030123
https://doi.org/10.5194/bg-18-4919-2021

30. Vreman, A.W.: The adjoint filter operator in large-eddy simulation of turbulent flow. Physics
of Fluids 16(6), 2012–2022 (2004). https://doi.org/10.1063/1.1710479

31. Ye, A., Duan, Q., Zhan, C., et al.: Improving kinematic wave routing scheme in Community
Land Model. Hydrology Research 44(5), 886–903 (2013). https://doi.org/10.2166/nh.
2012.145

32. Zhang, H., Liu, J., Li, H., et al.: The Impacts of Soil Moisture Initialization on the Forecasts
of Weather Research and Forecasting Model: A Case Study in Xinjiang, China. Water 12(7),
1892 (2020). https://doi.org/10.3390/w12071892

River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and...

48 Supercomputing Frontiers and Innovations

https://doi.org/10.1063/1.1710479
https://doi.org/10.2166/nh.2012.145
https://doi.org/10.2166/nh.2012.145
https://doi.org/10.3390/w12071892

Machine Learning Approaches to Extreme Weather Events

Forecast in Urban Areas: Challenges and Initial Results

Fabio Porto1, Mariza Ferro1, Eduardo Ogasawara2, Thiago Moeda3,

Claudio D. T. Barros1, Anderson Chaves Silva1, Rocio Zorrilla1,

Rafael S. Pereira1, Rafaela Castro2, João Victor Silva2, Rebecca Salles2,

Augusto Fonseca2, Juliana Hermsdorff 4, Marcelo Magalhães5, Vitor Sá6,

Antonio Adolfo Simões1, Carlos Cardoso1, Eduardo Bezerra2

c© The Authors 2022. This paper is published with open access at SuperFri.org

Weather forecast services in urban areas face an increasingly hard task of alerting the pop-

ulation on extreme weather events. The hardness of the problem is due to the dynamics of the

phenomenon, which challenges numerical weather prediction models and opens an opportunity for

Machine Learning (ML) based models that may learn complex mappings between input-output

from data. In this paper, we present an ongoing research project which aims at building ML pre-

dictive models for extreme precipitation forecast in urban areas, in particular in the Rio de Janeiro

City. We present the techniques that we have been developing to improve rainfall prediction and

extreme rainfall forecast, along with some initial experimental results. Finally, we discuss some

challenges that remain to be tackled in this project.

Keywords: machine learning, rainfall forecast, extreme events.

Introduction

Precipitation nowcasting, a few hours ahead forecast for extreme rainfall events, is a rele-

vant research topic with important impact on urban areas monitoring decision-making. In large

cities, such as Rio de Janeiro, heavy precipitations events have been registered, especially dur-

ing summer, causing property damage, citizens mobility disruption, and even deaths. A single

extreme rainfall event, occurred in 2011 in a Rio de Janeiro nearby town, claimed the lives of

more than 900 people. As the effects of climate change become stronger, more frequent episodes

such as this are likely to be observed [12]. Despite the efforts dispensed to improve strong events

forecast accuracy, results of the Rio Operation Center7 (COR), a department of the municipality

responsible for throwing alerts of extreme events, need improvements. In a 2019 internal study,

da Silva [10] analyzed 168 rain alerts, from February 2019 to May 2019, emitted by COR. On

the total forecasts emitted by COR classified as strong rain, only 12% did materialize as such.

More interestingly, 35% of the these alerts corresponded to actual no rain observed. Conversely,

considering the total forecast events for moderate rain, 49% had no rain and 2% faced heavy

rain. Thus, there is a clear need to improve on extreme weather forecasts in urban areas, and

in particular for the Rio de Janeiro city. Current approach followed by COR involves the in-

terpretation by meteorologists of the results of numerical weather predictions (NWPs), such as:

COSMO [1] and the Weather Research and Forecasting (WRF) model [2]; and the follow-up on

radar images, electromagnetic discharge and other meteorology related sensors. In this context,

1National Laboratory of Scientific Computing, Petropolis, Brazil
2Federal Center for Technological Education, Rio de Janeiro, Brazil
3National Observatory, Rio de Janeiro, Brazil
4Sistema de Alerta Rio da Prefeitura do Rio de Janeiro, Rio de Janeiro, Brazil
5Fundação Instituto de Geotécnica do Munićıpio do Rio de Janeiro, Rio de Janeiro, Brazil
6Centro de Operações Rio, Rio de Janeiro, Brazil
7http://cor.rio/

DOI: 10.14529/jsfi220104

2022, Vol. 9, No. 1 49

a recent research track has explored the opportunities of applying machine learning models in

the prediction of extreme weather events [11, 16, 18]. While the prediction of normal weather

condition benefits from the huge history of recorded weather related observations, which can be

directly used for model training, a major challenge in the extreme weather context is the small

number of events. Fortunately, extreme weather events are still rare, specially in a particular

region, such as the Rio de Janeiro city. As a result, few data points are available recording

the data patterns of these events. Learning under such a constrained scenario has been studied

under the umbrella of learning with small data [5, 23].

In this paper, we describe our initial contributions towards using Machine Learning (ML)

models for predicting extreme weather events. We focus on a particular type of extreme event,

namely, rainfall. We present three alternative approaches we have been investigating to solve

this forecasting problem, along with initial validation experiments for each one of them. The

first approach aim at building deep learning models that learn spatio-temporal signals obtained

from precipitation observations, captured from weather stations, as well as weather forecast data

computed by NWPs. The second approach leverages DL models built using the first approach

but focusing on a particular spatial forecasting region of interest. Finally, the third one, proposes

an extreme weather forecast dataflow.

The remainder of this paper is structured as follows. Section 1 formalizes the problem. Next,

Section 2 contextualizes the problem presenting the geographic regions of interest and available

data sources. In Section 3, we describe the ML approaches we have been investigating for weather

forecast. Section 4 discusses experiments evaluating the presented approaches. Section 5 presents

related work. Then, in Section 6, we describe the challenges we foresee in this project. Finally,

we conclude highlighting some final remarks and pointing to future work.

1. Problem Statement

In this paper, we deal with the problem of precipitation forecasting. We take a machine

learning approach to it. We assume the existence of several spatiotemporal data sources from

which the parameters of the forecasting models can be fitted.

Informally, a spatiotemporal data source provides measurements that have stamps in both

space and time. Formally, we define a spatiotemporal data source as a sequence of observations

made at regular time intervals: X̃ = [X1, X2, . . . , XT]. The interval ∆t between two observations

defines the temporal resolution of the data source. Each observation Xi ∈ RH×W×C , for i =

1, 2, . . . , T consists of a regular grid that determines the spatial location of interest, where H

and W specify the number of horizontal and vertical elements (i.e., subdivisions) in the grid,

respectively. We call each of the H ×W subdivisions in the grid a cell. The values H and W

control the spatial resolution of the data source, since they determine the height and width

of each cell, which we denote by ∆h and ∆w, respectively. For each element in the grid map,

C represents how many meteorological variables (e.g., precipitation, temperature, humidity)

are measured simultaneously. Each data source has its particular set of observed meteorological

variables.

In a machine learning-based spatiotemporal forecasting model, its parameters are fitted us-

ing a set of one or more spatiotemporal data sources as training data. Such a model can be viewed

a function f that maps an input sequence of past observations X̃in = [Xt−Tin+1, . . . , Xt−1, Xt]

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

50 Supercomputing Frontiers and Innovations

to an output sequence of predicted observations X̃out = [X̂t+1, X̂t+2, . . . , X̂t+Tout] (see Eq. 1).

The lengths of these sequences (denoted by Tout and Tin) may differ. However, while Cin ≥ 1

(i.e., several meteorological variables can be used as predictors), Cout = 1 (since there is only

one target variable, namely, precipitation).

X̂t+1, X̂t+2, . . . , X̂t+Tout = f(Xt−Tin+1, . . . , Xt−1, Xt) (1)

If it is the case that more than one spatiotemporal data source is available, we assume that,

as a preprocessing step, these data sources are conciliated with relation to spatial and temporal

resolutions to form an aggregated data source in which each element in a grid map contains the

union of all predictor variables in the component data sources.

The problem of precipitation forecasting is very challenging, and several factors contribute

to this. For example, some of the data sources may have missing data, some elements in the grid

maps may not be observable, conciliation of different spatial and/or temporal resolutions may

be needed, inherent sparseness of precipitation data, just to mention a few.

2. Available Data Sources

As we discuss in Section 5, a number of ML based models for extreme events have been

proposed lately. A common understanding is that extreme events nowcasting considers temporal

extrapolation of trends derived from several types of sensors informing about local weather

conditions, such as radar, satellite, meteorological stations, among others [33]. Indeed, while

investigating approaches to extreme rainfall events in the city of Rio de Janeiro, we are confronted

with a set of data sources that can contextualize each extreme event, compensating for the

scarcity of samples and for resulting data imbalance during training.

In Fig. 1, we depict the geographical area of interest for our work. This region was delim-

ited with the help of meteorologists that make part of our team. The total corresponding area

is 84.23 Km × 48.42 Km. The upper left and lower right coordinates of the rectangle corre-

sponding to the region are (lat = –23.1339033365138, lon = –43.8906028271505) and (lat =

–22.649724748272934, long = –43.04835145732227), respectively.

In this figure, one can find markers for the location of the 33 weather stations, monitored

by COR. These station provide online real-time information about weather conditions in the

city. Most of these stations are only pluviometric (i.e., measure only precipitation), while seven

of them are meteorological (i.e., besides precipitation, they also gather data on temperature,

humidity, wind and pressure). The temporal resolution of these stations is fifteen minutes.

By analysing the small dots and triangles marked in Fig. 1, we can also observe a great

imbalance in the distribution of these stations throughout the city. Moreover, the considered

area contains a chain of mountains that crosses the city with significant coverage by the tropical

forest, which brings humidity to the city and, at the same time, offers obstacles to the dynamics

of weather systems. Rio de Janeiro is a coastal city, and is under the influence of SACZ (South

Atlantic Convergence Zone), two factors that add to the complex climatic scenario observed in

the city.

Most of the weather stations available in our study have been collecting data since 1997

(with some interruptions due to maintenance events). Table 1 presents summary information

about the distribution of rainfall (precipitation) severity levels, considering the time series of

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 51

Figure 1. Spatial region of interest for our study in the Rio de Janeiro city. The light grey area

correspond to land. The dark grey area correspond to sea. Small black dots mark the location

of pluviometric stations. Black triangles mark the location of meteorological stations

all thirty three stations in the period from 2018-01-01 to 2021-12-31. These levels were defined

by a group of meteorologists at AlertaRio, an organization linked to the city’s municipality and

responsible for providing weather bulletins to the population. One can notice that this data

source corresponds to a very unbalanced dataset. Specifically, only 0.17% of the observations

are considered extreme events, according to the AlertaRio’s severity level classification scheme.

However, the occurrence of these kind of events has historically caused great negative impact to

the metropolitan area of Rio de Janeiro, and their precise forecasting would be of paramount

importance to the city.

Table 1. Rain rate statistics of data provided by the 33 weather
stations monitored by COR in the period from 2018-01-01 to
2021-12-31

Rain Rate (mm/h) Proportion (%) Severity Level

0 ≤ x < 5 97.31 No / Light

5 ≤ x < 25 2.19 Moderate

25 ≤ x < 50 0.33 Heavy

x ≥ 50 0.17 Rainstorm

In addition to the weather stations, there is a list of other complementary data sources

that we plan to use to train ML models for extreme precipitation forecast. In Tab. 2, we depict

the different data sources we aim at using to contextualize extreme weather events, and their

corresponding responsible organization. Bellow, we list additional relevant information about

these other data sources.

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

52 Supercomputing Frontiers and Innovations

Table 2. Available data sources and their providers

Simulations from meteorological models IAG8

Fluviometric stations INEA9

Radars INEA, AlertaRio10

Weather buoys Brazilian Navy11, Portal SIMCosta12

Electromagnetic activity Furnas13, SOS Raios14

Pluviometric/meteorologial stations GeoRio

Satellite data INMET15

Weather balloon Tom Jobim Airport

• Simulations from meteorological models. We have available data from simulations produced

by NWP systems, namely, COSMO and GFS25. The geographical area filtered from the

two datasets covers the Rio de Janeiro city and was fixed at Latitude [−19.5,−24.5] and

Longitude [−40.5,−45.5]. The time interval was set to the period from January 2015 to

March 2021. From the data obtained in the spatio-temporal region defined above, we com-

puted a new more fine grained grid dataset. The latter includes a grid of 300× 300 meters

within the limits of the area defined by the original filtered dataset. The values for each

new grid point are the fruit of an interpolation computing an average among the three

nearest points in the filtered dataset inversely weighted by their distance to the new point.

• Fluviometric stations. INEA provides twenty three fluviometric stations that record river

levels every 15 minutes. This data has been collected since 2008.

• Radar data. INEA has two meteorological radars, both with a radius do 250 Km

covering the Rio de Janeiro area and their surroundings. Their coordinates are

(Lat: −22◦59’35.81077”S, Lon: −43◦35’16.65427”W) and (Lat: −22◦24’20.99917”S,

Lon: −41◦51’37.65632”W). This data is being collects since 2015. Each one of them pro-

duces data every five minutes.

• Weather buoys. These sensors collect variables such as dew point, water temperature,

pressure, humidity, wind speed and direction. New data is available every one hour. This

data source is available since 2019.

• Satellite data. We also collect electromagnetic activity data from the GOES satellite

through Amazon API. This data source is available since 2018. This data source produces

a data file every twenty seconds.

• Weather baloon. Every 6 hours, a weather balloon (filled with hydrogen or helium gas)

equipped with a radiosonde raises to the atmosphere from the Tom Jobim International

airport, located in Rio de Janeiro. Its goal is to collect meteorological data (humidity,

temperature, air pressure) at different altitudes. This balloon reaches an altitude of 25 Km.

While the balloon is suspended, its radiosonde sends the data via radio to a ground station.

8https://www.iag.usp.br/
9https://alertadecheias.inea.rj.gov.br/
10http://alertario.rio.rj.gov.br/
11https://www.marinha.mil.br/
12https://simcosta.furg.br/
13https://www.furnas.com.br/
14https://detectorderaios.com.br/
15https://portal.inmet.gov.br/

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 53

In addition to the available data sources describing real-time weather condition, COR me-

teorologists provided us with information regarding previous extreme rainfall events, with the

dates and time of their occurrence.

3. ML Approaches for Precipitation Forecast

To face the challenges involving extreme rainfall prediction in urban areas using ML models,

we count with our previous experiences in building spatiotemporal ML models for weather

predictions. Our expectation is that we can build on these experiences to tackle the particularities

of extreme weather events. In particular, we are currently investigating three approaches to

produce ML models for precipitation forecast. In this section, we briefly describe each of these

approaches. In Section 4, we conduct some initial experiments we have run to validate these

approaches.

3.1. Regression Approach

We start by describing the first approach, which considers the target variable as a contin-

uous one. Hence, in this approach we are trying to fit regression models. We investigate the

application of two deep learning architectures in this approach, namely, YConvLSTM [34] and

STConvS2S [7]. Both models, which are results of recent investigations carried out by the au-

thors, are suited to capture spatial and temporal features by design and automatically make a

connection between temporal and spatial features. As a result, these models can capture com-

plex dependencies, both intra- (time only or space only) and inter-dimensional (time and space)

patterns. In this section, we provide a general view of these two architectures. In Section 4, we

describe how these generic schemes are instantiated to be used with the data available in our

initial experiments.

Figure 2. YConvLSTM architecture uses ConvLSTM layers to generate Xt+Tout predictions
that are a combination of C components, with dimension H ×W , applied as a channel in the
convolutional layer. In this work C represents several NWP models used as input

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

54 Supercomputing Frontiers and Innovations

Figure 2 depicts the YConvLSTM architecture. The latter is an adaptation of the CONVL-

STM model [30], which was proposed to improve rainfall nowcasting. The main novelty intro-

duced by the YConvLSTM deep learning model is to adopt a learning process that combines

predictions from multiple numerical weather prediction models. In YCONVLSTM, the different

predictions produced by the component numerical models are conciliated into a single spatial

and temporal grid. Thus, at each point of the grid and time instant, a list of prediction values

produced by the NWP models is associated. The slicing of the 3D grid at each time-instants

produces frames that are input to the deep learning model. The list of prediction values asso-

ciated at each 2D frame is mapped to the channel structure expected by the convolution input

frame. The prediction process is qualified as auto-regressive, as it reads a single variable type as

input (i.e. precipitation volume) and produces future predictions of the same variable type.

This can be seen as a multivariate regression model, since the variable of interest is predicted

by a combination of predictors.

Figure 3 depicts the architecture of the STConvS2S model. STConvS2S [7] is a sequence-to-

sequence architecture comprised exclusively of convolutional layers. Convolutions are performed

with factorized 3D kernels. The architecture is comprised of three component blocks, each one

in turn is a sequence of factorized convolutional layers. These blocks are applied sequentially

to a given input. The first component is the temporal block, responsible for extracting temporal

features through the temporal kernels. The temporal block uses causal convolutions to maintain

temporal coherency during prediction. The second component is the spatial block, responsible

for receiving the output of the previous block and extracting spatial features through the spatial

kernels. Following the spatial block is the temporal generator block, designed to increase the

sequence length Tin if the task requires a longer predictive horizon, where Tout > Tin. Finally,

the output of this last block is further fed into a final convolutional layer to complete the

prediction. Different from YConvLSTM, STConvS2S is an autoregression model, because the

target variable is predicted based on its own past states.

Figure 3. STConvS2S architecture is composed only of 3D CNNs, which are divided into three
blocks to predict an output with temporal size Tout. The first block learns a temporal repre-
sentation of the input sequence followed by a block that extracts only spatial features. This
architecture can uses the channel in the first convolutional layer to combine several spatiotem-
poral inputs with dimension H ×W × T . Source: [7]

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 55

3.2. DJEnsemble Approach

Another initiative developed within the DEXL Lab16 builds on the traditional ensemble of

models to achieve improved local weather forecasts. We start by taking into account the well

known “No-Free-Lunch Theorem” [29, 36], which, informally, states that no learner can succeed

on all learning tasks. A corollary to this theorem is that for a given problem there will be a

region of the data space where an optimal model trained with a sampled distribution of the

domain will produce predictions that are sub-optimal. We built on this result and introduced a

data pre-processing step in ML model selection for weather prediction [24].

3.2.1. Data pre-processing

This pre-processing step aims at identifying regions of the data space that share similar data

patterns. We consider the spatial domain of interest discretized in a set of point locations, for

instance the positions of weather sensors, and model the observations at each point as time-series.

Thus, let us consider a discretized spatiotemporal domain D = {d1, d2, ..., dn}, where di =

{pi = (x, y), si}, 1 ≤ i ≤ n, p = (x, y) is a spatial location (longitude, latitude) and si =<

v1, v2, .., vk > is a time-series of observations. We accounted for seasonality effects on time-series

of weather observations by splitting them into annual periods. Thus, each time-series corresponds

to the observations of one location during one year. We partition the domain D into disjoint

sub-domains S, S ⊆ D. Such partitioning is obtained through the clustering of the set of time-

series si at each domain point pi ∈ D, 1 ≤ i ≤ n. The k-means clustering algorithm was used to

compute the disjoint partitioning of the domain. In order to compute the distance between time-

series, we adopted the Dynamic Time Warping (DTW) algorithm [27]. Thus, after clustering,

each time-series si is annotated with the cluster-id it was associated to. The choice involving the

number (ie. k) of partitions for a given time-series dataset is obtained by computing partitions

for different values of k and using the Silhouette score [26] to rank the resulting clustering. The

Silhouette score is obtained by first computing a per time-series mean internal clustering DTW

distance (a) divided by the mean extra-cluster DTW distance, for the nearest extra-cluster (b).

The Silhouette score is obtained by computing the mean over all per time-series scores. Finally,

in order to define rectangular spatial areas that conform to the expected frame structure of

data inputs to Deep Learning (convolutional) models, we structured the domain time-series into

disjoint rectangular tiles, T = {t1, t2, . . . , tt}. In this setting, each time-series si ∈ D is associated

to a single tile tj ∈ T . Moreover, tiles are constructed such that a maximum ε of variation in

different clusters is observed. Thus, given si ∈ tj , the set of time-series associated to a tile tj ,

we define tx = arg max
k

sum(xi, xi = 1 if si ∈ ck) as the maximum number of time-series

associated to the same cluster in tile tj , with ck identifying a cluster. Then, the tiling algorithm

assures the constraint for all tiles tj ∈ T, 1 ≤ j ≤ t: tx
|tj | ≤ ε, where |tj | is the number of time-

series in tile tj . Therefore, at the end of the pre-processing stage, we have a tiled spatiotemporal

domain, where each tile exhibits similar data behaviour corresponding to its weather history. As

a final step in data pre-processing, we compute for each tile ti its time-series representative, sr.

The representative in a tile ti is a time-series sr ∈ S whose average DTW distance, dtw(sr, sj),

between sr and all time-series sj ∈ tj is the smallest. Finally, we expect that the structuring

of spatiotemporal domain into tiles to provide a more precise learning experience such that a

model optimized to a tile is less prompt to suffer from the effect of the non-free-lunch theorem

when applied to tiles with similar data distribution.

16http://dexl.lncc.br

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

56 Supercomputing Frontiers and Innovations

3.2.2. Model selection

Once the spatiotemporal domain D has been structured into tiles, the DJEnsemble approach

is ready to compute predictions. We consider spatiotemporal predictive queries Q = {R,M},
where R ⊆ D is a spatiotemporal region where weather predictions are to be computed and

M = {m1,m2, ...,mm} is a set of pre-trained candidate ML models. Each mj model has been

trained in a subset Sj of the domain D. Therefore, for each mi model, there is a set of tiles

{t1, ..tk} that were used for the model mi training. We can interpret that as building specialized

ML models for a region of particular weather characteristics. Thus, we could have a model built

on time-series of the south region of the Rio de Janeiro city, which is a coastal area between

the sea and the mountains, and another model built on the north of the city where weather

tends to be hotter and less influenced by the sea humidity. The DJEnsemble approach works

by finding for each predictive query Q the set of models in M ′ ⊆ M whose training data,

induced by the data distribution of tiles used for their training, most closely approximates the

data distribution of the tiles covered by the query region Q.R. This is obtained by comparing

the distances between time-series representatives among the query tiles and the model training

tiles. Observe that the set of candidate models M may not have been trained on data from

query region Q.R. Nevertheless, DJEnsemble is still able to indicate the best candidate model

whose data distribution most closely approximates that of the query region. Finally, we want to

highlight that the improvements on extreme weather events precision forecasts may involve the

ability to use specialized models whose training capture nuances of the weather behavior of a

region. We expect that the ideas induced by the DJEnsemble may contribute to a more precise

ML based extreme weather forecast.

3.3. Classification Approach

In this approach, we frame the problem of forecasting extreme rainfall events as a binary

classification task. It considers extreme precipitation as an anomaly on the time-series of rainfall

observations. We consider a particular type of spatiotemporal data source, namely, data coming

from a set of meteorological stations, each one of them having collected observations about mul-

tiple weather variables over a given period of time, one of them necessarily being precipitation.

We also assume the times series coming from these meteorological stations all have the same

temporal resolution. For the particular data source we used, this temporal resolution was fifteen

minutes.

3.3.1. Construction of the labelled dataset

As a first step in this approach, we had to build a classification dataset, in which the

target variable is binary: the value 1 indicates the occurrence of an extreme precipitation,

and the value 0 indicates otherwise. Hence, we had to map continuous values of precipitation

to discrete (binary) values. For this, we built a semi-automatic instance labelling system. In

particular, we used a particular type neural network, the Self-organizing Map (SOM) [19]. SOM

neural networks are models based on the functioning of neurons in the human brain’s cortex, in

which learning happens through a process of competition among its neurons. During training,

a multidimensional data point is mapped to a 2D topological map. The latter suggests a visual

interpretation of the input data, where discrepant points can be highlighted [20]. To define a

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 57

SOM architecture, several hyperparameters must be defined, such as dimensions and shape of

the topological map, and the neighborhood function.

To train the SOM model, we concatenated all the time series coming from the meteorolog-

ical stations. As a result, a multivariate time series was built containing observations from all

stations. Notice that, when building this dataset, we completely disregarded the spatial loca-

tions of the meteorological stations. The rationale for that is that we wanted the SOM model

to capture patterns of anomaly (with respect to the precipitation variable) irrespective of the

spatial location.

During training, the data instances were processed in incremental windows of 96 instances,

each window corresponding to one day of measurements of the meteorological stations. When

processing the set of windows, say wi, the model also receives the information provided by the

previous map on wi−1, in order to form the map solution set S.

As a last activity in this step, the solution set of generated maps S is visually analyzed to

assist in labelling the instances. The descriptive method we established for the visual analysis of

SOM maps to detect a shape anomaly consists of interpreting the amplitudes of the displacement

rates of the distances between the spatial components x, y and z in relation to the sequence of

maps si ∈ S. A shape anomaly is detected and annotated in Y if there is a discrepant amplitude

of the component z, correlated to (x, y), whose displacement varies in a discrepant way in relation

to the adjacent maps si−1 and si+1, where (x, y) represents the topographic ordered pair in the

map and the component z the topographical error.

3.3.2. Assessment of the labelled dataset

The visual interpretation of the SOM model in the first step was helpful because it assisted

in the labelling of observations as either normal or anomalous. The goal of this second step was

to assess the quality of the labelling conducted in the first step. For this, we fitted a decision

tree (DT) model to the labelled dataset.

A DT is a symbolic classification method applied in this work as a tool to assess the quality

of the annotations of detected events. In the structure of a DT, each data instance follows a

unique path for its classification, depending on a set of comparison rules, of the If-Then type,

which are performed in each node of the tree, determining whether the result should proceed

left or right, thus building the DT [31]. The DT learning algorithm splits the training example

into subsets, represented in its leaves, in which points falling in the same leave are explained by

a conjunction of predicates over independent features of the dataset.

In our scenario, the dependent variable is the label indicating the value status as normal

or anomalous, whereas the independent variables are the features describing each time instant:

precipitation, humidity, etc. If we consider that the independent variable observe a certain state

when anomalous phenomenon occurs, which differs from the state of a normal status, then we

can expect leaves comprising a single value. Therefore, we propose to compute the entropy of a

DT classification. DTs with lower entropy would indicate that leaves share similar values and the

annotations of anomaly would tend to be correct. Thus, as a criterion for evaluating labelling

step, we established that the more accurate the adjustment of the DT algorithm, the better

would be the qualitative labeling process of anomaly detection. If the results obtained after

fitting the DT model were not satisfactory, the process is restarted with a new hyperparameter

configuration for training the SOM model. Otherwise, we proceed to the third (and last) step

to fit a classification model to the previously labelled dataset.

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

58 Supercomputing Frontiers and Innovations

3.3.3. Model fitting through LSTMs

In this last step, the goal was to fit the binary classification model to predict the label (either

extreme/anomalous or normal) for a given instance. For this, we used a Long Short-term Memory

(LSTM) neural network, due to the capacity of its units to learn long sequential patterns of data

behavior. The LSTM architecture is a type of recurrent neural network, which are designed to

analyze the behavior of data sequences over time. As stated in [13], an LSTM model addresses

the problem of vanishing gradients, incorporating functions (gates) into its state dynamics to

maintain or discard information. The original LTSM formulation features three gates: input,

forget and output.

After model fitting, the model is evaluated. If the obtained results are not satisfactory, the

process is restarted from step 1 (dataset labelling). Otherwise, the resulting classification model

is ready to be used for inference.

3.4. Discussion

The YConvLSTM model [34] implements a post-processing ensemble approach on the output

of NWPs. It builds on the architecture proposed by Shi et al. [30] extending it to cope with

the input coming from n NWP simulators. We also discussed STConvS2S, originally presented

in [7]. The model comprises a autoregressive CONV2D+1 architecture suited for spatiotemporal

prediction. Although these two models were able to minimize rainfall prediction error with

respect to individual NWPs, they were not designed for the forecasting of extreme weather

events. In fact, as discussed in Ding et al. [11], deep learning models tend to either underfit

or overfit on extreme weather predictions, due to the imbalance on training datasets. Thus,

as an initial attempt to close this gap, we presented a dataflow of machine learning models,

combining Self Organized Maps (SOM), Decision Tree and LSTM, specifically designed for

extreme precipitation detection. The task is modeled as a binary classification where extreme

events are annotated to the observational data. Finally, we presented the DJEnsemble approach

that considers a spatiotemporal ensemble of ML models.

4. Experiments

In this section we report initial experiments with all approaches described in Section 3.

These experiments aim at highlighting the potential of the different approaches towards the

challenges in extreme weather events forecast.

4.1. Validating the Deep Learning Approaches

In this section, we present some preliminary experiments we conducted to train and val-

idate out two Deep Learning models, YConvLSTM and STConvS2S (see Section 3). In these

experiments, we trained both models using the same dataset. This dataset contains precipitation

simulation data obtained from two numerical models, COSMO and GFS25. The temporal range

of the observations is from January 2018 to April 2021. The data are arranged in a 7 × 7 grid

covering the city of Rio de Janeiro (see Fig. 1). The time distance between each grid (i.e., the

temporal resolution) is 3 hours.

For training the YConvLSTM and STConvS2S models, we set the following learning task: we

use the previous ten observations (at timesteps t−9, t−8, . . . , t) to predict the next observation

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 59

(at timestep t + 1). We use as predictors the outputs of the above mentioned NWP models.

Our target variable is precipitation. Furthermore, we used data in the temporal range between

years 2018 and 2019. Data from 2020 were used for validation. Finally, we set data collected

in 2021 for testing their generalization performance, which we estimated using Mean Squared

Error (MSE). The sizes (i.e., number of observations) of the training, validation and test sets

are 5840, 2928, and 849, respectively.

The hardware infrastructure used in training both models has the following hardware set-

tings: CPU Intel(R) Core(TM) i7-7740X CPU @ 4.30GHz; GPU: GeForce GTX 1080 Ti 11GB;

RAM: 32GB.

We conducted 10 runs of training using the STConvS2S architecture. For these ten runs, we

got an average training time of approximately 14 min, with a standard deviation of 3.91 seconds.

Also for these 10 runs, the resulting average MSE (on the test dataset) was 2.0052, with a

standard deviation of 0.2145. Figure 4 presents the learning curves resulting from training the

STConvS2S model in one of the runs. The hyperparameters used to fit the STConvS2S model

were the following: learning rate = 5e-6; optimizer: RMSProp, with alpha set to 0.99; eps: 1e-6;

weight decay set to 1e-1. We trained the model for 200 epochs, and used a batch size of 64. The

resulting MSE on the test set was 1.802.

Figure 4. Learning curves obtained during one of the runs of STConvS2s model training. The
losses are MSE values measured over the rainfall domain. Hence their unit is squared millimeters
(mm2) of rain over the specified period. The vertical dashed line indicates the epoch in which
the best model (measured in the validation set) was obtained

To assess the difficulty of detecting extreme events, we manually picked ten events between

January and April of 2021 that were considered extreme in our test dataset. We wanted to

know if the model was capable of making good predictions of these picked up extreme events.

We analysed two scenarios. We first considered all the spatial observations of these ten extreme

events that presented the highest precipitation. The resulting MSE in this case was 22.20. In

the second scenario, we considered the ten largest precipitation values in the same time period.

In this case, the MSE value increased to 174.88. As a conclusion, the model error considering

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

60 Supercomputing Frontiers and Innovations

only extreme events was much higher when compared to the average MSE value measured in

the whole test set. We attribute this difference in predictive quality to the sparseness of extreme

events, one of the many challenges we face in this project (see Section 6 for further discussion

on this subject).

In a second validating experiment, we trained the YConvLSTM model using the same

hardware infrastructure described above. The model was trained for 200 epochs with a batch

size of 64, as its training time is significantly higher than the STConvS2S. The architecture

consists of two ConvLSTM layers with 32 and 64 filters each and was optimized using the Adam

optimizer and Keras default hyperparameters. We achieved the loss of 1.773 MSE on the testing

set. The average training time was 50 minutes. Figure 5 presents the learning curves resulting

from training the YConvLSTM model in one of the runs.

Figure 5. Learning curves obtained during one of the runs of YConvLSTM model training. The
losses are MSE values measured over the rainfall domain. Hence their unit is squared millimeters
(mm2) of rain over the specified period. The vertical dashed line indicates the epoch in which
the best model (measured in the validation set) was obtained

We also conducted the same experiment regarding extreme events on the predictive model

produced by the YConvLSTM architecture (we used the same manually picked 10 extreme

events in our test dataset). In the first scenario, the resulting MSE was 100.23, and in the second

scenario the value increased to 534.18. As already happened with STConvS2S, the YConvLSTM

model also had much difficulty to correctly predict extreme events.

4.2. Validating the DJEnsemble Approach

In this section, we depict an experiment comparing the DJEnsemble approach against other

ensemble types. In the traditional ensemble approach, each available model is run over the entire

query region and the prediction results are linear combinations of each prediction. In the stacking

ensemble approach, a model is trained with data produced by a set of component models. The

new model can be a linear regression learning algorithm, for example. The predictions are

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 61

Figure 6. Queries over the temperature (left) and rainfall (right) domains

obtained by invoking the stacking model (ie. the predictor) on the outcome of the component

models’ predictions.

The data used in the experiments is a subset of the Climate Forecast System Reanalysis

(CFSR) dataset that contains air temperature observations from January 1979 to December 2015

covering the space between 8N-54S latitude and 80W-25W longitude (temperature dataset) [22].

Additionally, we use a subset of the rainfall dataset from NASA’s TRMM and GPM missions,

with rainfall collected for the same spatial region as in the CSFR dataset over 22 years (rainfall

dataset) [14]. The inclusion of experiments with temperature and precipitation aim to assess

the approach prediction quality under different spatio-temporal patterns. We present the results

of five queries executed on these data. Temperature is considered by meteorologists as an easy

variable to model as opposed to rain, which is considered one of the most complex variables

to predict. The temperature is homogeneously distributed in large spatial regions, while the

rainfall is more heterogeneous and concentrated in small areas. Based on these, we can argue

that we define queries on data with different behavior (i.e. data distribution). Figure 6 depicts

the regions corresponding to every query. Each color represents a region with different data

distribution (i.e. cluster). Table 3 summarizes the results for a traditional ensemble, a stacking

ensemble, and DJEnsemble. DJEnsemble achieves the best accuracy for all the queries. The gap

between DJEnsemble and the other ensembles is as much as a factor of 9.

Table 3. RMSE over the temperature (Q1, Q2 and Q5) and precipitation
(Q3 and Q4) domains. Precipitation values represent an estimate for the
volume of rainfall, in millimeters, in a global 0.1o spatial grid and half
hourly intervals. The temperature values correspond to a resolution of
6 hours intervals and a spatial grid of 0.5o, in Celsius

Query R[lat, lon] Trad. ensemble Stacking DJEnsemble

Q1 [70:130, 95:140] 25.01 7.28 3.35

Q2 [60:110, 40:80] 27.88 5.52 4.29

Q3 [125:175, 25:90] 14.28 13.96 5.34

Q4 [0:40, 60:130] 8.80 12.94 6.04

Q5 [59:100, 25:100] 29.10 5.04 3.18

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

62 Supercomputing Frontiers and Innovations

http://www.data.nodc.noaa.gov
http://www.data.nodc.noaa.gov

These results, originally presented in [24], are reproduced here to illustrate the potential of

the DJEnsemble approach towards more precise data driven ML model predictions of meteoro-

logical variables.

4.3. Validating the Classification Approach

In this section, we present an experimental evaluation of the method introduced in Sec-

tion 3.2.2. The hardware configuration used in these experiments is the following: CPU: 280× In-

tel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz; RAM: 512GB.

We used data from the seven meteorological stations (see Fig. 1). Specifically, we considered

the periodic measurements of three variables, namely precipitation, temperature and humid-

ity. We selected a subset of these time series covering the period from December 1st, 2015 to

March 17th, 2021. To prepare the data, some pre-processing steps were required. Initially, we

applied data normalization and interpolation of missing values through the mean value. In the

results reported in this study, there was no treatment for removing noise in the data, as this op-

eration had a negative influence on the dataset labelling step (Section 3.3.1). The normalization

of the input data for an interval between [0, 1] was obtained through the method MinMaxS-

caler [28]. Working with data at the same scale is a good practice when it comes to distance

calculation algorithms. It also speeds up the optimization process for generating models via

gradient-based learning algorithms, as in the case in SOM neural networks.

In the first step (see Section 3.3.1), we started by training the SOM model. For this, 100.000

iterations for training were defined, the learning rate starting at 0.6 with the radius of the

training area starting at 0.5. Then, the visual analysis of the generated maps and the subsequent

annotation of the instances were performed on the data set.

After the first step, the resulting labelled dataset was subdivided into six disjoint subsets

(A1 to A6). Table 4 summarizes these subsets.

Table 4. Information about Meteorological datasets

Subset Number of Instances Period

A1 38.112 01/12/2015 a 31/12/2016

A2 35.040 01/01/2017 a 31/12/2017

A3 35.040 01/01/2018 a 31/12/2018

A4 35.040 01/01/2019 a 31/12/2019

A5 35.136 01/01/2020 a 31/12/2020

A6 7.296 01/01/2021 a 17/03/2021

To exemplify the way in which the maps produced by the SOM model were visually ana-

lyzed to pinpoint extreme precipitation events, the SOM output for subset A6 is presented in

Fig. 7. (However, this process was applied to all subsets.). The amplitudes of the component z

correspond to the similarity errors of the instances in the accommodation in the node in the

topographic mesh of the produced map. High amplitudes represent extreme events. Figure 8, in

addition to the z component, the x and y components correspond to the topographic coordi-

nates of the map. Vertical lines in red correspond to the beginning of the annotation of detected

anomalies. The correlation between the three components represents the similarities, as well as

the breaking of the similarity in relation to the input space. Thus, these correlations between

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 63

the peaks of the z component and the sudden and prolonged change in the x and y components

were interpreted as anomalies of form.

Figure 7. z z-component produced by SOM for subset A6

Figure 8. z components x, y, and z produced by the SOM for the subset A6. Vertical lines in
black correspond to major shape anomalies detected and vertical lines in light gray correspond
to minor anomalies

To validate the accuracy of the classification performed in the previous step, seeking to

reduce subjectivity inherent to the visual analysis, a DT algorithm was applied and the result

evaluated for each subset. The annotated dataset was divided into 70% for training and 30% for

testing. We evaluated the labels annotated in the datasets by analyzing the test of the models

fitted with such data, using the cross validation, ROC curve, and F1-score metrics. Obtained

results are shown in Tab. 5.

Table 5. Summary of decision tree results for the entire dataset

Dataset ROC Precision Sensitivity F1-score Cross Validation (10x)

A1 to A6 0.8976 0.98/0.85 0.99/0.81 0.98/0.83 0.9700 (+/– 0.01)

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

64 Supercomputing Frontiers and Innovations

Finally, the step described in Section 3.3.3 was carried out to generate the binary classifi-

cation model for predicting the occurrence of extreme events. An LSTM neural network model

was trained for each subset. Similar to what we did in the second step, the data instances in

each subset were also split in 70% used for training and 30% for testing. An Embedding layer

was used in order to make the data streams continuous and dense.

Due to the imbalance of binary labels, experiments were performed with different balance

proportions using the Synthetic Minority Over-sampling Technique (SMOTE) class from the

imbalanced-learn library [15]. As mentioned by the documentation of this library, SMOTE and

its variations work best if done in combination with some major class subsampling method. Thus,

the applied methods of oversampling and undersampling are applied consecutively through a

pipeline on the data provided by SMOTE and the random method RandomUnderSampler. Thus,

all LSTM models were trained, tested and evaluated using the SMOTE methodology, according

to the aforementioned strategy.

The network architecture was defined with a single hidden layer with 21 LSTM units. The

Adam optimizer with a learning rate of 0.001 was used. The number of training epochs was set

to 100, and the batch size equal to 32. The loss function used was the binary crossentropy. The

value of 252 was determined for the length of the string that returns to the model. In order to

reduce overfitting, one Dropout layer with value of 0.3 were used. Finally, an output layer of just

one unit was defined with the sigmoid activation function providing the result as a probability

value. Each classification model trained with one given subset was validated against the other

subsets.

We built ROC curves to evaluate the classification performance of the models fitted with

each subset. Figure 9 illustrates the results obtained for the model trained on subset A6 (we

present just one curve for lack of space).

Figure 9. ROC plot of trained model with A6 dataset

Comparisons between classification performances are shown in Tab. 6. Each model was

trained with a given subset and then applied to the other subsets for inference. The first col-

umn corresponds to the models generated by the subset in parentheses. The best results are

highlighted in bold. We considered the union of the subsets as a sample of the complete data

domain. Under this assumption, and considering the proportion to the total of samples at each

subset, we computed the standard deviation (StdDev) for the F1 score for each model. The

standard deviation average for all models is 0.07764.

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 65

Table 6. Summary of LSTM model validation results. F1-score metric

Model/Data A1 A2 A3 A4 A5 A6 StdDev

m(A1) – 0.4659 0.6779 0.4476 0.6152 0.6590 0.0441

m(A2) 0.5877 – 0.6797 0.4490 0.6141 0.6598 0.0367

m(A3) 0.4116 0.0964 – 0.2919 0.6110 0.6571 0.0945

m(A4) 0.3924 0.4620 0.6811 – 0.1102 0.0903 0.1021

m(A5) 0.5898 0.4697 0.6796 0.4479 – 0.6607 0.0433

m(A6) 0.6267 0.0025 0.0125 0.7743 0.5609 – 0.1450

5. Related Work

Nowcasting deals with the problem of short-term forecasting of extreme weather events.

These events may include the determination of the future track of a particularly severe storm

for warning purposes, the estimation of the amount of additional precipitation that will fall in a

given area in the next few hours, severe wind, winter precipitation types, etc. In addition, various

types of meteorological data could be used to forecast severe weather events, including radar

measurements, satellite data, and weather stations’ observations [35]. This section presents a

literature review of recent solutions for weather nowcasting applied on different source of data.

The works presented here focus on Artificial Intelligence, mainly in Machine Learning based

solutions.

Ravuri et al. [25] developed a Deep Generative Model of rainfall (DGMR) for radar’s proba-

bilistic nowcasting of precipitation. Their nowcasting algorithm is a conditional generative model

that predicts N future radar fields given M past radar fields using radar-based estimates of sur-

face precipitation at a given time point. Learning is framed in the algorithmic framework of

a conditional generative adversarial network (GAN), which is specialized for the precipitation

prediction problem and is driven by two loss functions. These functions guide the parameter

adjustment by comparing real radar observations to those generated by the model. The first loss

is defined by a spatial discriminator, a CNN that aims to distinguish individual observed radar

fields from generated fields. The second loss is defined by a temporal discriminator, a 3D CNN

that aims to distinguish observed and generated radar sequences. The model is trained on a

large corpus of precipitation events, 256× 256 crops extracted from the radar stream, of length

110 min (22 frames). All models are trained on radar observations for the UK from 2016–2018

and evaluated on a test set from 2019. DGMR performance ranked first for its accuracy and

usefulness in 89% of cases against two state-of-art methods (PySTEPS and Unet). According

to the authors, their model produces realistic and spatiotemporally consistent predictions over

regions up to 1,536 km × 1,280 km and with lead times from 5–90 min ahead. Despite the ac-

curacy and operational utility, the prediction of heavy precipitation at long lead times remains

difficult for all approaches.

The work of [8] proposes a classifier named RadRAR (Radar products values prediction

using Relational Association Rules) for convective storms nowcasting based on radar data. In

addition, RadRAR is intended to prove that relational association rule mining applied on radar

data helps discriminate between severe and normal weather conditions. RadRAR is trained on

radar data collected from normal weather conditions and learns to predict whether the radar

echo values will be higher than 35dBZ, indicating the occurrence of a storm. Experiments are

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

66 Supercomputing Frontiers and Innovations

conducted on real radar data provided by the Romanian National Meteorological Administration

for the 5th of June 2017. It was a day with moderate atmospheric instability manifested through

thunderstorms accompanied by heavy rain and medium-size hail. Analyzing the experimental

results and the comparison to existing approaches, the authors conclude that the RadRAR is

effective for predicting if the radar echo values are higher than 35dBZ, obtaining performances

better than the results from the literature and a Critical Success Index of 61%.

Agrawal et al. [3] present an application of DL to the problem of predicting the instantaneous

rate of precipitation one hour into the future from radar data with high-resolution (1 km× 1 km).

More specifically, the model uses the ubiquitous U-Net Convolutional Neural Network (CNN).

Dataset is from multi-radar multi-sensor (MRMS), removing non-meteorological artifacts and

projects the combined observations onto a rectangular grid. Forecasting is treated as an image-

to-image translation problem where is given a sequence of n input radar images that start at

some point of time, tin1, and end at tinn. The task is to generate the radar image at some point in

the future, tout. Before training the model, data is transformed, labeling images by quantifying

precipitation rates into four discrete ranges, based on three thresholds of millimeters of rain

per hour. This step provides three binary classifications that indicate whether the rate exceeds

thresholds that roughly correspond to trace rain, light rain, and moderate rain. In sequence,

they partition the US into 256 km × 256 km tiles and independently make predictions for

each tile. Model is trained on data collected in 2018 and tested on data for 2017 and 2019.

Results show their model performs better than MRMS persistence, optical flow (OF) and, the

High Resolution Rapid Refresh (HRRR) system (the current best operational NWP available

from NOAA) one-hour forecast methods. However, once the prediction window is increased to

approximately 5 hours, the HRRR models consistently outperform their approach.

Sønderby et al. [32] introduce MetNet, a Neural Weather Model (NWM) that forecasts rates

of precipitation with a lead time of up to 8 hours at the high spatial resolution (1 km × 1 Km)

and at the temporal resolution of 2 minutes using radar images and spectral bands of satellite as

input data. MetNet covers a 7000× 2500 km geographical area corresponding to the continental

United States. MetNet relies on mosaicked ground based radar and satellite imagery as input

and the predictions take in the order of seconds independently of lead time and can be done

in parallel. They cast precipitation forecasting as a structured prediction problem where the

output comes in the form of a three-dimensional tensor. Each value of the tensor corresponds to

a time and a location and indicates the corresponding rate of precipitation measured in mm/h.

Target precipitation rates are estimated by the MRMS ground based radars as a function of

the returned radar echoes. MetNet architecture combines a CNN, which encodes the time slices

sampled every 15 minutes with a Convolutional LSTM to processes the time slices in the direction

of time. Results show the performance of MetNet at various precipitation thresholds and find

that MetNet outperforms HRRR Numerical Weather Prediction at forecasts of up to 7 to 8 hours

on the scale of the continental United States.

The work [9] explores SOM to detect patterns on real radar data from Romenia National

Meteorological Administration. The main goal is to provide better insight regarding how the

values of weather radar products are evolving in time, both in calm and severe weather condi-

tions, with the broader goal of using these findings for weather nowcasting. In addition, they

investigated if SOM can distinguish severe weather conditions from radar data. The exported

raw data collected through the radar scans during one day (24 h) on a particular geographic

region is provided as a sequence of dimensional matrices. A matrix corresponds to a specific

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 67

timestamp t and a meteorological product. For each time moment t, a sequence of matrices

(3D data grid) is available, containing the values for various radar products at time t. Two

data sets were constructed for representing the radar data collected during the timestamps on a

day. One dataset uses the entire set of meteorological products provided by the radar (i.e., 24).

Another one employs only 13 products: base reflectivity of particles on six elevations, velocity

on six elevations, and the estimated quantity of water contained by a one square meter column

of air. To detect the underlying structure of the datasets, the SOM model is applied to obtain an

unsupervised two-dimensional representation of the datasets . The corresponding U-matrices are

analyzed and compared for assessing the relevance of the meteorological products used in detect-

ing the timestamps when a certain meteorological event occurred. Through this methodology,

SOM detects temporal intervals where certain meteorological phenomena occur. The U-matrix

visualization for the SOM built using the proposed data model shows readable changes in the

meteorological products almost 2 hours before the event, which might help forecast the start of

the phenomena. In general, they conclude that there is a slow change in the values over time,

except when certain severe phenomena occur.

RainNet [4] introduces a deep neural network that aims at learning representations of spa-

tiotemporal precipitation field movement and evolution from radar data to provide skillful pre-

cipitation nowcasts. RainNet follows an encoder-decoder architecture, as U-Net [3]. The encoder

progressively downscales the spatial resolution using pooling, followed by convolutional layers.

The decoder progressively upscales the learned patterns to a higher spatial resolution using

upsampling, followed by convolutional layers. RainNet was trained to predict precipitation at

a lead time of 5 min, using several years of weather radar. Dataset covers Germany with a

spatial domain of 900 km × 900 km and has a spatiotemporal resolution of 1 km in space and

5 min in time, respectively. Verification experiments were carried out on 11 summer precipita-

tion events from 2016 to 2017. Since RainNet uses a convolutional architecture and does not use

LSTM layers to propagate information through time, it was only trained to predict precipitation

at 5 min lead times. So, a recursive approach was implemented using RainNet predictions to

achieve a lead time of 60 min. Results showed that RainNet competes against a conventional

nowcasting model based on optical flow. This work confirms [3] that CNNs provide a firm basis

for competing with conventional nowcasting models based on optical flow.

Song et al. [33] present an Artificial Neural Network (ANN) nowcasting model for hourly

summer precipitation over the Eastern Alps. The ANN model, a Multilayer Perceptron (MLP), is

developed for the nowcasting of hourly precipitation for a one-hour lead time. Several predictors

from diverse sources are used as input, including QPE, QPF, three INCA convective analysis

data (CAPE, CIN, MCONV), and three radar data composite measurements of five C-band

radars (MAXCAPPI, ECHOTOP, VIL). The performance of the MLP model is compared with

the traditional INCA extrapolation technique and a multiple linear regression approach (MLR)

model. The available period for both radar products and raw INCA forecasts is the summer

period of 2012–2014 (June to September) yielding 12 months in total. The dataset is divided

into the training set, containing ten randomly chosen months, and the verification set, containing

the remaining two months. The independent verification months, August 2013 and July 2014,

are used to evaluate the performance of the proposed nowcasting methodology. Precipitation

case studies were analyzed, and the results showed that both the MLR and MLP models could

predict the precipitation similarly to the INCA extrapolated forecast. However, the forecast

by MLP model is better than INCA, providing more detailed small-scale structures. Also, the

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

68 Supercomputing Frontiers and Innovations

precipitation intensity of the MLP model forecast is closer to gridded precipitation observations

than the INCA.

The study presented in [6] uses video prediction deep learning (VPDL) algorithms applied

in precipitation nowcasting for São Paulo, Brazil. They use the PredRNN++ as a VPDL model

to predict reflectivity images and precipitation edges from weather radar images for up to 1-

h lead time and compare the results with ENCAST, an extrapolation-based model used for

precipitation nowcasting. PredRNN++ utilizes causal LSTM to capture complex dependencies

and variations and gradient highway unit (GHU) to keep the gradients during training. This

study uses a dual-polarization S-band (SPOL) Doppler weather radar from the Department of

Water and Electric Energy, manufacture Selex ES GmbH, installed at Ponta Nova, State of São

Paulo, Brazil. These radar measurements are restricted to 100 km of range for the period of

March 2015 to December 2019 with a time interval of 5 min. The results have some limitations,

and the authors propose several improvements; despite this, they advocate that VPDL model

has good potential as an additional tool to assist nowcasting.

Jiang, Ma and Wu [37] main purpose is to propose nowcasting precipitation prediction at

target station within 1–2 hours in the future using the radar historical map sequence in the

past 1.5 hours. Also, a solution to deal with missing data in this kind of dataset. For this

purpose, they train a CNN and two auxiliary ML models (NN and gradient boosting decision

tree – GBDT) using different features from the real Hubei dataset. This dataset comprises radar

reflectivity maps, precipitation and rainfall time recorded by ground monitoring stations, and

stations’ altitude, latitude, and longitude. For training are used 2300 samples and the remain-

ing 200 samples for evaluation. Results showed that the precipitation nowcasting mechanism

was suitable for radar reflectivity data with single or cumulative altitudes. The models showed

better performance than traditional optical flow methods, and the CNN model performed best

compared with the other 2 ML models. Finally, the authors conclude that their way of deal-

ing with missing data on the experiments does not have a large negative impact on prediction

performance.

6. Challenging Aspects

In this section, we present some of the challenges we are facing in the current project, with

emphasis on our geographic region of interest, the Rio de Janeiro municipality. For some of

them, we also present the lines of investigation we plan to follow.

• Missing data. An important line of research in this project has to do with an investigation

of the procedure for handling missing data. As an example, we have the case of simulation

data from meteorological models. In this case, not all models present data for the entire

time series. It would be interesting to investigate how incomplete data for certain criteria

can be used to improve training done with data from periods where there is complete

observation.

• Relief influence. One challenging aspect that was raised by the specialists is that forecast of

meteorological variables in the city of Rio de Janeiro is directly influenced by the geography

of the location. Hence, we plan to investigate how information about the municipality’s

relief can be used to increase the predictive power of forecasting models.

• Data sparsity. Another complicating factor found concerns the sparseness of observed data

related to a combination. We actually empirically observed the result of this data property

in our preliminary experiments with Deep Learning models (see Section 4.1). A possible

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 69

solution to this problem involves an investigation of data subsampling and augmentation

techniques. Another envisioned solution is the training of prediction models using Physics

Informed Machine Learning [17]. This approach allows the training of models to take

into account restricted the evolution of the underlying physical phenomena, as a way of

compensating for the sparseness of the observed data.

• Spatially non-uniformity of observations. Another interesting aspect worthy of scientific

investigation concerns the fact that observations from various data sources planned to be

used in model training are collected in regions of space that do not form a regular grid. For

example, the 33 meteorological stations under AlertaRio’s responsibility are distributed

in such a way that most of them are located in the eastern region of the municipality

(see Fig. 1). Another example concerns observations from metoceanographic buoys. This

is a complicating factor when considering the use of classical convolutional neural network

architectures, which assume that training data is represented as regular lattices. Possible

solutions are the use of neural network architectures for graphs, such as Graph Neural

Networks [21].

• Adding other data sources. During the first phase of the project, the team identified several

data sources potentially relevant for tuning the prediction models (see Tab. 2). It is natural

to think that there must be other sources not yet considered that might be equally relevant.

We have already mentioned the issue of relief before. Other data sources that are on the

team’s investigation horizon are related to aerosols, COR cameras located in key positions

of the city, and radar images all potentially useful at the nowcasting prediction level.

• Consideration of the dynamics of events. At this point of investigation, we are interested

in evaluating how we can capture the fine dynamics of events in space-time. We consider

that this real-time dynamic must interact with the predictions, correcting them. As an

example, we have the effect of side winds influencing the occurrence of convective rain

and impacting its location and timing. Other elements are the so-called meteorological

phenomena, such as Trough17, and how to consider them in the learning process.

Conclusion

Extreme weather events have become stronger and more frequent worldwide. The concentra-

tion of the population in large urban areas places the occurrence of extreme weather events, such

as strong rain, as a risk for the population. Governments have been investing in apparatus to

monitor weather sensors and in organizations responsible for alerting the population and taking

measures ahead of the extreme event. In this context, this paper describes an initiative we have

been developing with the Rio de Janeiro municipality in building ML models to forecast extreme

rainfall events a few hours ahead. Our initial investigations show that building ML models to

predict extreme events is a very challenging problem, due to their scarcity of occurrences and

fast dynamics.

As for the computational experiments, we presented initial results in this paper. We plan

to do a more thorough experimental comparison using stronger baselines in future work. How-

ever, our initial computational experiments have led us to believe that, to achieve more precise

forecasts, we will need to combine multiple data modalities. Hence, we plan to enrich the data

we learn from with other available weather sensors we allude to in Section 2. We also envision

the need of need fundamental ML research to cope with the challenges aspects of the problem

we pointed out in Section 6.

17An elongated geographic region presenting relatively low atmospheric pressure.

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

70 Supercomputing Frontiers and Innovations

Acknowledgements

The authors are funded by CNPq productivity research fellowship. The authors thank the

Centro de Operações Rio, GeoRio, and INEA for providing us meteorological expertise and the

several data sources we investigate in our project. The authors also thank professor Pedro Dias

and professor Demerval Moreira, both from IAG, for providing us with NWP simulation data

used in our experiments. Finally, experiments were run in the Petrus cluster at DEXL/LNCC.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. https://www.cosmo-model.org/, accessed: 2021-09-20

2. https://www.mmm.ucar.edu/weather-research-and-forecasting-model, accessed:

2021-09-20

3. Agrawal, S., Barrington, L., Bromberg, C., et al.: Machine learning for precipitation now-

casting from radar images. CoRR abs/1912.12132 (2019), http://arxiv.org/abs/1912.

12132

4. Ayzel, G., Scheffer, T., Heistermann, M.: Rainnet v1.0: a convolutional neural network for

radar-based precipitation nowcasting. Geoscientific Model Development 13(6), 2631–2644

(2020). https://doi.org/10.5194/gmd-13-2631-2020

5. Bendre, N., Marn, H.T., Najafirad, P.: Learning from few samples: A survey (2020). https:

//doi.org/10.48550/ARXIV.2007.15484

6. Bonnet, S.M., Evsukoff, A., Morales Rodriguez, C.A.: Precipitation Nowcasting with

Weather Radar Images and Deep Learning in São Paulo, Brasil. Atmosphere 11(11) (2020).

https://doi.org/10.3390/atmos11111157

7. Castro, R., Souto, Y.M., Ogasawara, E., Porto, F., Bezerra, E.: STConvS2S: Spatiotemporal

Convolutional Sequence to Sequence Network for weather forecasting. Neurocomputing 426,

285–298 (2021). https://doi.org/10.1016/j.neucom.2020.09.060

8. Czibula, G., Mihai, A., Czibula, I.: RadRAR: A relational association rule mining approach

for nowcasting based on predicting radar products values. Procedia Computer Science 176,

300–309 (2020). https://doi.org/10.1016/j.procs.2020.08.032

9. Czibula, G., Mihai, A., Mihuleţ, E., Teodorovici, D.: Using Self-Organizing Maps for Unsu-

pervised Analysis of Radar Data for Nowcasting Purposes. Procedia Comput. Sci. 159(C),

48–57 (2019). https://doi.org/10.1016/j.procs.2019.09.159

10. daSilva, F.: Projeto pesquisa operacional (2019), internal Report, in PT

11. Ding, D., Zhang, M., Pan, X., et al.: Modeling extreme events in time series prediction. In:

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. pp. 1114–1122. KDD ’19, ACM, New York, NY, USA (2019). https:

//doi.org/10.1145/3292500.3330896

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 71

https://www.cosmo-model.org/
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://arxiv.org/abs/1912.12132
http://arxiv.org/abs/1912.12132
https://doi.org/10.5194/gmd-13-2631-2020
https://doi.org/10.48550/ARXIV.2007.15484
https://doi.org/10.48550/ARXIV.2007.15484
https://doi.org/10.3390/atmos11111157
https://doi.org/10.1016/j.neucom.2020.09.060
https://doi.org/10.1016/j.procs.2020.08.032
https://doi.org/10.1016/j.procs.2019.09.159
https://doi.org/10.1145/3292500.3330896
https://doi.org/10.1145/3292500.3330896

12. Gates, B.: How to avoid a Climate Disaster: The Solutions We Have and the Breakthroughs

We Need. Random House Large Print Publishing (2021)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation pp. 52–65

(1997)

14. Huffman, G., Bolvin, D., Braithwaite, D., et al.: NASA Global Precipitation Measurement

(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) v5.2. NASA (2014)

15. Imbalanced Learn: The imbalanced-learn (2021), https://imbalanced-learn.org/

stable/

16. Jaye, A., Bruyère, C.L., Done, J.M.: Understanding future changes in tropical cyclogenesis

using Self-Organizing Maps. Weather and climate extremes 26, 100235 (2019)

17. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., et al.: Physics-informed machine

learning. Nature Reviews Physics 3(6), 422–440 (2021). https://doi.org/10.1038/

s42254-021-00314-5

18. Kim, S., Kim, H., Lee, J., et al.: Deep-Hurricane-Tracker: Tracking and Forecasting Extreme

Climate Events. In: 2019 IEEE Winter Conference on Applications of Computer Vision

(WACV). pp. 1761–1769 (2019). https://doi.org/10.1109/WACV.2019.00192

19. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990).

https://doi.org/10.1109/5.58325

20. Kohonen, T.: Essentials of the self-organizing map. Elsevier - Neural Networks 37, 52–65

(2013). https://doi.org/10.1016/j.neunet.2012.09.018

21. Liu, Z., Zhou, J.: Introduction to Graph Neural Networks. Morgan & Claypool (2020)

22. NCAR: NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January

1979 to December 2010 (2010). https://doi.org/10.5065/D69K487

23. Pereira, R.: Strategies and techniques for deep learning on small data. Ph.D. thesis, National

Laboratory of Scientific Computing (2020)

24. Pereira, R., Souto, Y., Chaves, A., et al.: DJEnsemble: A Cost-Based Selection and Allo-

cation of a Disjoint Ensemble of Spatio-Temporal Models, pp. 226–231. ACM, New York,

NY, USA (2021). https://doi.org/10.1145/3468791.3468806

25. Ravuri, S., Lenc, K., Willson, M., et al.: Skilful precipitation nowcasting using deep gen-

erative models of radar. Nature 597(7878), 672–677 (2021). https://doi.org/10.1038/

s41586-021-03854-z

26. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and vali-

dation of cluster analysis. Journal of Computational and Applied Mathematics

20, 53–65 (1987), https://wis.kuleuven.be/stat/robust/papers/publications-1987/

rousseeuw-silhouettes-jcam-sciencedirectopenarchiv.pdf

27. Sakoe, Chiba, S.: Dynamic programming algorithm optimization for spoken word recogni-

tion. IEEE Transactions on Acoustics, Speech, and Signal Processing 26(1), 43–46 (1978)

Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas:...

72 Supercomputing Frontiers and Innovations

https://imbalanced-learn.org/stable/
https://imbalanced-learn.org/stable/
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1109/WACV.2019.00192
https://doi.org/10.1109/5.58325
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.5065/D69K487
https://doi.org/10.1145/3468791.3468806
https://doi.org/10.1038/s41586-021-03854-z
https://doi.org/10.1038/s41586-021-03854-z
https://wis.kuleuven.be/stat/robust/papers/publications-1987/rousseeuw-silhouettes-jcam-sciencedirectopenarchiv.pdf
https://wis.kuleuven.be/stat/robust/papers/publications-1987/rousseeuw-silhouettes-jcam-sciencedirectopenarchiv.pdf

28. Scikit Learn: Scikit-learn: Machine Learning in Python (2011), https://scikit-learn.

org/stable/index.html

29. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press (2017)

30. Shi, X., Chen, Z., Wang, H., et al.: Convolutional lstm network: A machine learning

approach for precipitation nowcasting. In: Proceedings of the 28th International Conference

on Neural Information Processing Systems - Volume 1. pp. 802–810. NIPS’15, MIT Press,

Cambridge, MA, USA (2015)

31. Skiena, S.S.: The Data Science Design Manual, vol. 1. Springer, New York (2017)

32. Sønderby, C.K., Espeholt, L., Heek, J., et al.: MetNet: A Neural Weather Model for Precip-

itation Forecasting. CoRR abs/2003.12140 (2020), https://arxiv.org/abs/2003.12140

33. Song, L., Schicker, I., Papazek, P., et al.: Machine Learning Approach to Summer Precipi-

tation Nowcasting over the Eastern Alps. Meteorologische Zeitschrift 29(4), 289–305 (2020).

https://doi.org/10.1127/metz/2019/0977

34. Souto, Y.M., Porto, F., Moura, A.M., Bezerra, E.: A Spatiotemporal Ensemble Approach

to Rainfall Forecasting. In: Proceedings of the International Joint Conference on Neural

Networks. pp. 574–581 (2018). https://doi.org/10.1109/IJCNN.2018.8489693

35. Wang, Y., Coning, E., Harou, A., et al.: Guidelines for Nowcasting Techniques (2017)

36. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on

Evolutionary Computation 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

37. Xiang, Y., Ma, J., Wu, X.: A precipitation nowcasting mechanism for real-world data based

on machine learning. Mathematical Problems in Engineering 2020, 1–11 (2020). https:

//doi.org/10.1155/2020/8408931

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 73

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://arxiv.org/abs/2003.12140
https://doi.org/10.1127/metz/2019/0977
https://doi.org/10.1109/IJCNN.2018.8489693
https://doi.org/10.1109/4235.585893
https://doi.org/10.1155/2020/8408931
https://doi.org/10.1155/2020/8408931

Data Assimilation by Neural Network for Ocean Circulation:

Parallel Implementation

Haroldo F. Campos Velho1, Helaine C. M. Furtado2,

Sabrina B. M. Sambatti3, Carla O. F. Barros4, Maria E. S. Welter4,

Roberto P. Souto4, Diego Carvalho5, Douglas O. Cardoso6,7

c© The Authors 2022. This paper is published with open access at SuperFri.org

Data assimilation (DA) is an essential issue for operational prediction centers, where a com-

puter code is applied to simulate physical phenomena by solving differential equations. The pro-

cedure to determine the best initial condition combining data from observation and previous

forecasting (background) is carried out by a data assimilation method. The Kalman filter (KF) is

a technique for data assimilation, but it is computationally expensive. An approach to reduce the

computational effort for DA is to emulate the KF by a neural network. The multi-layer perceptron

neural network (MLP-NN) is employed to emulate the Kalman in a 2D ocean circulation model,

and algorithmic complexity to KF and NN is presented. A shallow-water system models the ocean

dynamics. Synthetic measurements are used for evaluating the MLP-NN for the data assimilation

process. Here, a parallel version for the DA procedure by the neural network is described and

tested, showing the performance improvement for a parallel version of the NN-DA.

Keywords: data assimilation, artificial neural network, shallow water equations, parallel pro-

cessing.

Introduction

An essential step for the prediction centers is identifying the better set of initial condi-

tions for each prediction period. Several issues are involved for producing good predictions from

a mathematical model, starting with calculation of the best possible initial condition. In this

context, the analysis typically employs data assimilation (DA) procedure, which combines ob-

servational data with the previous prediction (background) of a numerical model to obtain an

optimal estimate of the evolving system state. Weather services were the first centers to employ

schemes for data assimilation, using several methods such as optimal interpolation, Kalman

filter, variational approaches, and particle filter [8, 11, 15].

The mentioned methods for DA are computing-intensive [11], and one alternative to reduce

computer processing time is to adopt a neural network (NN) formulation to emulate or replace

parts or the entire method. Here, the artificial neural network architecture based on multi-

layer perceptron (MLP) formulation will be employed. The MLP is a supervised fully-connected

neural network, requiring a training algorithm to compute interconnecting weights. The back-

propagation algorithm is applied for training the MLP-NN as a surrogate for the Kalman filter

for the DA process.

The literature has registered applications of neural networks for DA in forecasting systems

in different areas of geophysics: meteorology [6, 7], hydrology modeling [3], and space weather

application [4]. Here, the DA by the neural network is applied to the shallow-water equation

1National Institute for Space Research, São José dos Campos, Brazil
2Federal University of Western Pará, Santarém, Brazil
3Independent researcher, São José dos Campos, Brazil
4National Laboratory for Scientific Computing, Petrópolis, Brazil
5Federal Center for Technological Education Celso Suckow da Fonseca, Rio de Janeiro, Brazil
6Federal Center for Technological Education Celso Suckow da Fonseca, Petrópolis, Brazil
7Polytechnic Institute of Tomar, Tomar, Portugal

DOI: 10.14529/jsfi220105

74 Supercomputing Frontiers and Innovations

(SWE) designed to represent ocean circulation dynamics as described in Bennett’s book [2]. The

shallow water system can be used for different applications in geophysical fluid dynamics, the

dimension describing the domain and mainly parameters associated to the simulation are used

to determine a good representation of this system for the application expressed in the numerical

experiment. Next section will be to describe the SWE configured to the ocean circulation [2].

The supervised MLP-NN is designed to emulate the Kalman filter for DA – see also ref-

erences [9, 16] for 2D shallow water system and reference [4] for space weather applications.

Besides, in this paper, a parallel version of the DA procedure is presented aiming to enhance the

computational performance for neural data assimilation. In some previous results, the MLP-NN

was used to emulate KF, focusing on data assimilation. The algorithmic complexity of these two

schemes is included in this paper.

The following section describes the mathematical model used as a prediction system. Data

assimilation methods – Kalman filter and neural network – are presented in Section 2. The

strategy for parallel implementation is commented on in Section 3. Results for speed-up and

efficiency are shown in Section 4. The last section offers conclusions and final remarks.

1. Shallow-Water Equations as a Model for Ocean Circulation

The shallow-water approach works for fluid dynamics simulation, assuming that the vertical

dimension is much smaller than the horizontal dimension. Integrating the NavierStokes equations

on vertical coordinate, a 2D system of partial differential equations (PDE) is derived. The latter

PDE system is called shallow water equations (SWE). The SWE can be solved by applying a

numerical algorithm, and it is able to model the ocean circulation dynamics. Here, the same

SWE presented in the Bennett’s book [2] is employed. The 2D SWE is described with fluid

depth (H), coupled to a velocity field (u, v). The three independent variables (u, v, q) are under

influence of gravitational force (g) acting on the fluid. Mathematical equations for the worked

model are given by:

∂u

∂t
− fv + g

∂q

∂x
+ ruu = Fu , (1)

∂v

∂t
+ fu+ g

∂q

∂y
+ rvv = Fv , (2)

∂q

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
+ rqq = 0 , (3)

where t > 0 and (x, y) ∈ (0, Lx)× (0, Ly), the Coriolis parameter is denoted by f , the damping

coefficients are represented by (ru, rv, rq) – these coefficients are linked with the linearization

process of the nonlinear terms, (u, v) is the velocity field, Fu and Fv are external forcing, H is

the mean depth of the ocean, and the free perturbed ocean surface is defined by q. Boundary

conditions are shown in Fig. 1.

The forcing terms are expressed as:

Fu = −Cd ρa u
2
a/(H ρw) ,

Fv = 0 , (4)

where Cd is the drag coefficient, ρa and ρw are air and ocean water densities – respectively, ua

is the zonal wind forcing.

H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter...

2022, Vol. 9, No. 1 75

Figure 1. Boundary conditions for the equations (1)–(3)

The spatial discretization for the system (1)–(3) is carried out by finite difference technique,

and the forward-backward method is applied for time integration [14]. The space mesh 2D

discretization follows the Arakawa grid-C scheme – see Fig. 2.

Figure 2. The Arakawa grid-C employed for space discretization

2. Data Assimilation Methods

As already mentioned, data assimilation is a scheme to compute the initial condition by

combining the background fields with the available observations, producing the analysis. The

supervised artificial neural network is self-configured to emulate the Kalman filter. Therefore,

both DA methods are presented in this section.

2.1. Kalman Filter

A Kalman Filter is a well-known scheme to estimate the unknown state by least-squares

taking into account the Gaussian statistics for the measurement and the modeling errors. Data

assimilation algorithm using Kalman filter is written as:

1. Forecast model for state vector (MN is the matrix of the system): xfn+1 = M{xan} ≈Mn x
a
n .

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

76 Supercomputing Frontiers and Innovations

2. Update the forecasting covariance matrix (Wmod is the modeling covariance error matrix,

and P a the analysis covariance matrix – see item 5):

P f
n+1 = MnP

a
nM

T
n +Wmod

n .

3. Compute the Kalman gain (W obs is the measurement covariance error matrix):

Kn+1 = P f
n+1H

T
n+1[W

obs
n+1 +Hn+1P

f
n+1H

T
n+1]

−1 .

4. Compute the analysis (DA) – xan+1, with xobs being the state observation vector:

xan+1 = xfn+1 +Kn+1[x
obs
n+1 − (Hn+1x

f
n+1)] .

5. Update the analysis covariance: P a
n+1 = [I −Kn+1Hn+1]P

f
n+1 .

Data assimilation using the Kalman filter has a high computational effort. The processing

DA cost can be mitigated by using artificial neural networks trained to emulate the KF. In fact,

the MLP-NN has a lower computational complexity than KF, as shown below.

2.2. Artificial Neural Network (ANN)

Artificial neural networks (ANN) have been used for many applications. However, The neural

network employed to DA is a relatively recent application. The supervised multilayer perceptron

(MLP) [10], using a back-propagation algorithm for the training phase, is used here to emulate

the Kalman filter by reducing the computational effort during the DA process [16]. The best

topology for the MLP-ANN is found by solving an optimization problem with cost functional:

fobj = penalty ×
[
ρ1 × Etrain + ρ2 × Egen

ρ1 + ρ2

]
, (5)

where the errors associated to the training and generalization evaluations are denoted by Etrain

and Egen, balancing parameters for the generalization and training errors are given by: ρ1 =

ρ2 = 0.5. The penalty term is a degree of neural network complexity. The procedure searches

for a neural network with a fewer neurons and faster training iteration. The penalty factor is

expressed by:

penalty = c1e
(nneurons)

2

+ c2(nepochs) + 1 (6)

with c1 = 5 × 108 and c2 = 5 × 105 as used by Anochi and co-authors [1]. The objective

function (5) is solved by a meta-heuristic called multi-particle collision algorithm (MPCA) [12].

Figure 3 shows the isovalues for q-variable in the shallow water system (1)–(3) at time-step

t = 30, where TRUE, KF, and ANN are reference, Kalman filter, and neural network configured

by MPCA (emulating Kalman filter) [16], respectively.

2.3. KF and MLP-NN: Algorithmic Complexity

Unlike in Section 2.2, the expression complexity is not linked to the number of artificial

neurons or how fast the convergence is for the training phase. The algorithmic complexity is

related to the number of arithmetic operations of an algorithm. Cintra and co-authors [5] have

applied MLP-NN to reduce the Kalman filter complexity, where the NN was trained as an

operator to matrix inversion. Indeed, depending on the application, the Kalman filter complexity

can be reduced when the system matrix can be partitioned into smaller dimension matrices [17].

For general applications, the Kalman filter complexity has order O(M3) in terms of a number

of floating-point multiplications [13] – M being the state-vector dimension, due to the matrices

operations in the Kalman filter algorithms.

H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter...

2022, Vol. 9, No. 1 77

Figure 3. Data assimilation for shallow water system 2D applying Kalman filter and neural
network at t = 30 – see also reference [16]

In the analysis for neural network algorithm, we are going to consider the M0 = 2 ×M2

inputs – with: M2 is the number of observations and background grid points, L the number of

layers (including output layer), M`,1 (` = 1, 2, . . . , L−1) the number of artificial neurons for the

`-th hidden layer – for simplicity, we are considering: M1,1 = M2,1 = . . . = ML−1,1 = M1. For

each neuron, a linear combination of M inputs has the complexity:

s =
M∑

i=1

θiXi ∼ O(M) , (7)

where θi are the connection weights and Xi the inputs, respectively. The value s feeds the

activation function ϕ(s), representing the non-linear term in the supervised neural mapping.

The activation function can be computed from a polynomial approximation by Horner’s rule

(nested multiplication):

ϕ(s) = a0 + a1 s+ a2 s
2 + . . .+ aN−1 s

N−1 + aN sN

= a0 + s(a1 + s(a2 + . . .+ s(aN−1 + aN s) . . .)) (8)

with O(N) of multiplications and additions. Denoting by CNN the complexity of the MLP-NN,

this value can be estimated by:

CNN ∼M1 [O(M0) +O(N)] + (L− 1)M1 [O(M1) +O(N)] +M2 [O(M1) +O(N)] . (9)

Considering the entries of inputs and outputs, one can consider: O(M0) ∼ O(M1) ∼ O(M2) ∼
O(M), where the stronger assumption is O(M1) ∼ O(M). For standard applications, L � M ,

and O(N) < O(M). Therefore, CNN ∼ O(M2). For applications: CKF = O(M3) > O(M2) =

CNN, showing that multilayer perceptron neural network has a smaller complexity than Kalman

filter.

Before showing the results with parallel runs, a sequential execution was carried out for a

comparison considering CPU-time between data assimilation performed by Kalman filter and

neural network [9] with N
(1)
x = N

(1)
y = 40. Two numerical experiments were considered with 25

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

78 Supercomputing Frontiers and Innovations

(Exp-1) and 100 (Exp-2) observation points. Table 1 shows the CPU-time (hr:min:sec) for two

simulations with different number of observations for the data assimilation process.

Table 1. CPU-time for data
assimilation using Kalman filter (KF)
and multi-layer perceptron neural
network (MLP-NN) with 25 (Exp-1)
and 100 (Exp-2) observation points
per data assimilation cycles

Expriments KF MLP-NN

Exp-1 00:42:02 00:01:39

Exp-2 01:19:03 00:05:01

From the results shown in Tab. 1, data assimilation process with neural network was about

25 and 15 times faster than Kalman filter for Exp-1 and Exp-2, respectively. These results for

CPU-time are in agreement with results obtained with global atmospheric models. Cintra and

Campos Velho did data assimilation experiments with SPEED global model (3D spectral model

with very simplified physical parameterizations) [6], where the NN approach was 95 times faster

than ensemble Kalman filter (EnKF). Another result with comparison with NN and EnKF with

global atmospheric model was carried out with Florida State University (FSU) model. Data

assimilation by the NN was 55 times faster than applying EnKF for the FSU model [7].

For parallel version implementation, the data assimilation by NN is much more effective than

KF. In the analysis computed by NN, the procedure is performed at each variable for a specific

grid point, combining background value with observation available. In the KF, the analysis is

calculated by estimating the Kalman gain (item 3, Section 2.1), involving matrix multiplication

and inversion, with another step for producing the analysis from a product between a matrix

(Kalman gain) and a vector (difference between background and observation vectors) – see

item 4, Section 2.1. Therefore, the parallel implementation is much more effective for NN than

KF.

3. Parallel Version Strategy

The data assimilation process described in Section 2, is summarized by algorithm

SW2D DA (Algorithm 1). For the worked example here, only assimilation for the q-

variable is assimilated. The algorithm (or function) to implement the shallow-water model

(SW2D Model) is called at all Nt timesteps. In contrast, the Kalman filter data assimilation

algorithm (KF DA) or the neural networks (ANN DA, showed in Algorithm 2) is triggered at

regular intervals of timesteps (data assimilation cycles), represented by freqObsT , called here

as the frequency of observation.

In this article, the Kalman filter algorithm will not be shown in detail since the focus of the

work was the parallelization of data assimilation by neural networks for a space domain with

a high number of grid points. In Algorithm 2, the DA is carried out independently for each

grid point. Therefore, the parallel strategy is to compute the DA for each grid point in parallel.

Considering Ng the number of the grid points and Np the number of processors, the analysis

is computed by a trivial parallel approach, executing Ng/Np computation cycles for completing

the DA on the entire space domain.

H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter...

2022, Vol. 9, No. 1 79

The loops traversing the grid points in the horizontal and vertical directions are parallelized

with OpenMP directives, and the FORTRAN source code where the parallel strategy was imple-

mented is in Fig. 4. The same approach was employed to a parallel version of the shallow-water

function (SW2D Model), as can be seen in Fig. 5.

Algorithm: SW2D DA

input :

qModel: reference SW2D model values (true)

qObserv: observed SW2D values (true + noise)

Nt: number of timesteps

freqObsT : frequency of observation

freqObsT : (defines number of assimilation cycles)

Nx: number of grid points in horizontal direction

Ny: number of grid points in vertical direction

assimType: data assimilation type (KF or ANN)

output:

qAnalysis: result of data assimilation

begin

for t← 1 to Nt do
SW2D Model(Nx, Ny, u, v, q)

qAnalysis
(t) = q

if mod(t, freqObsT) = 0 then

switch assimType do

case 1 do

KF DA(Nx, Ny, qAnalysis
(t))

end

case 2 do

ANN DA(Nx, Ny, qModel
(t) , qObserv

(t) , qAnalysis
(t))

end

end

end

end

Algorithm 1. Shallow-Water 2D Data Assimilation (SW2D DA)

Figure 4. Parallel OpenMP Fortran code for the Algorithm-2

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

80 Supercomputing Frontiers and Innovations

Algorithm: ANN DA

input :

qModel: reference SW2D model values (true)

qObserv: observed SW2D values (true + noise)

Nx: number of grid points in horizontal direction

Ny: number of grid points in vertical direction

output:

qAnalysis: result of data assimilation

begin

for i← 1 to Nx do

for j ← 1 to Ny do

v1,2(i, j) =

#neurons∑

l=1

[
w1l(i, j) q

Model + w2l(i, j) q
Observ(i, j) + b(i, j)

]

qAnalysis(i, j) = tanh[v1(i, j)] + tanh[v2(i, j)]

end

end

end

Algorithm 2. Artificial Neural Network Data Assimilation (ANN DA)

Figure 5. Parallel OpenMP Fortran code of shallow-water 2D model

4. Results

The shallow-water system was defined by considering the ocean circulation. The numerical

values for the parameters are shown in Tab. 2, with tmax = Nt ∆t, the spatial domain dis-

cretization given by ∆x and ∆y, and Nx and Ny are, respectively, the number of grid points in

horizontal and vertical directions, and the upper indexes (1) and (2) are related to the 40-point

and 2560-point grid sizes. Finally, the data assimilation cycle (the frequency of observation in

Algorithm 2) is performed at each 10 time-steps (freqObsT = 10).

The executions were made in one compute node of the Santos Dumont supercomputer

(an ATOS machine). The computer node has two CPU Intel Xeon E5-2695v2 with 48 cores

and 384 Gigabytes of RAM. Initially, for serial performance comparison purposes between the

original assimilation method with Kalman Filter and the method with neural networks, a 40-

point grid size was used. According to results from Furtado and co-authors [9], the KF method

H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter...

2022, Vol. 9, No. 1 81

Table 2. Parameters used in the integration for the
SW-model

Parameter Value Parameter Value

∆t (h) 180 ru (s−1) 1.8× 104

Nt 200 rv (s−1) 1.8× 104

tmax (h) 3.6× 104 rq (s−1) 1.8× 104

∆x (km) 105 ρa (kg/m−3) 1.275

∆y (km) 105 ρw (kg/m−3) 1.0× 103

N
(1)
x 40 Cd 1.6× 10−3

N
(1)
y 40 H (m) 5000

N
(2)
x 2560 g (m/s−2) 9.806

N
(2)
y 2560 f (s−1) 1.0× 10−4

is much more computing expensive than the ANN method. In addition to the ANN method

being considerably faster, the final result obtained is relatively close to that of KF, and also to

the reference solution (TRUE) for the q shallow-water variable at grid position (8, 8), as can

be seen in Fig. 6a. Similar comparisons between KF and ANN methods have already previously

been done – see references [4, 9, 16].

(a) (b)
Figure 6. The reference (TRUE) shallow-water, KF and ANN data assimilation values of vari-
able q at grid position (8, 8) for 40-point grid size (a), and at grid position (512, 512) for 2560-
point grid size (b), using weights and bias obtained for the 40-point grid size neural network

The evaluation of parallel performance of the ANN assimilation method for a computational

problem with a high number of grid-points was tested. The number of grid-points used for this

purpose was one with 2560 points in the horizontal and vertical coordinates, i.e., N
(2)
x = N

(2)
y =

2560. For this grid size, it was unfeasible to obtain the KF data assimilation result, with the

actual source code. Figure 6 shows the comparison result only between the reference q values

(TRUE) and the ANN assimilation result (ANN DA) at grid position (512, 512), but using the

same neural network employed for the 40-point grid size. As mentioned, the neural network for

the finer resolution problem is the same of that configured to emulate the Kalman filter with

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

82 Supercomputing Frontiers and Innovations

the a coarser computational mesh. Even so, we can observe the neural network dynamics close

to the curve of the true solution – see Fig. 6b.

The serial execution profiling of the Fortran implementation of Shallow-Water 2D Data

Assimilation algorithm (SW2D DA, in Algorithm 1) is shown in Tab. 3. The biggest hotspot is

the function SW2D Model, which integrates the 2D shallow-water model in all 200 timesteps.

The second hotspot is the ANN DA function, which emulates data assimilation obtained by

Kalman filter using an artificial neural network. Important to note that this function is activated

only at the end of each 10-timesteps cycle. Therefore, it is called in only 20 times from a total

of 200 timesteps.

Table 3. Serial performance profiling

Function Time (s) Time share (%)

SW2D Model 217.1 74.7

ANN DA 41.2 14.2

Others 32.3 11.1

Total time 290.6 100.0

The parallel performance of the functions SW2D DA and ANN DA, obtained using up to

32 OpenMP threads, is presented in Tab. 4. A reduction about ten times from the serial time

was achieved in the first function (SW2D Model), while a less significant reduction was observed

in the second function (ANN DA).

The processing time reduction in the shallow-water function SW2D DA results from the

good parallel efficiency achieved, especially with up to 16 threads. Using 32 OpenMP threads, the

runtime reduces from 217.1 seconds to 34.7 seconds. However, we believe the speed-up obtained

with 32 threads could be even better.

In order to have a better understanding for the results with 16-threads and 32-threads, the

number of grid points were increased to Nx = Ny = 4000 (in Tab. 5), just to verify if there is

a saturation for processing demand, i.e., enhancing the computational load, a better speed-up

should be obtained. However, we got a worse performance than 2500 grid points. Therefore,

such behavior from the results show other issues are acting. Probably the performance results

are linked to the cache misses and/or synchronization among the processing cores. Further

investigation is needed to improve the parallel efficiency with this number of threads.

The parallel performance obtained with the ANN DA function was better than 2D shallow-

water function. Using 32 OpenMP threads, the runtime for ANN DA function is reduced from

41.2 seconds to 2.1 seconds for the 2560-grid size, obtaining a speed-up of almost 20 times

concerning the serial execution, according to values presented in Tab. 4. A similar speed-up was

also reached for the 4000-grid size, shown in Tab. 5. In this case, the runtime is reduced from

91.9 seconds to 5.0 seconds, obtaining a speed-up about 18 times.

After the parallelization performed in the two main hotspots, the remaining code (Others

in Tab. 3), not listed here, are instructions used to prepare the memory for SW2D Model and

ANN DA routines. Since it amounts to 11.1% of the total time, improving these functions’

performance is not mandatory in future developments.

H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter...

2022, Vol. 9, No. 1 83

Table 4. Parallel performance of shallow-water 2D model and ANN assimilation for
2560-grid points in both X and Y coordinates

SW2D Model ANN DA

#threads Time (s) Speed-up Eff #threads Time(s) Speed-up Eff

1 217.1 1.0 1.00 1 41.2 1.0 1.00

2 119.8 1.8 0.91 2 21.4 1.9 0.96

4 70.0 3.1 0.78 4 11.2 3.7 0.92

8 45.6 4.8 0.60 8 6.0 6.9 0.86

16 31.1 7.0 0.44 16 3.1 13.3 0.83

32 34.7 6.3 0.20 32 2.1 19.6 0.61

Table 5. Parallel performance of shallow-water 2D model and ANN assimilation for
4000-grid points in both X and Y coordinates

SW2D Model ANN DA

#threads Time (s) Speed-up Eff #threads Time(s) Speed-up Eff

1 555.5 1.0 1.00 1 91.9 1.0 1.00

2 312.5 1.8 0.89 2 49.7 1.8 0.92

4 195.8 2.8 0.71 4 28.0 3.3 0.82

8 134.3 4.1 0.52 8 15.4 6.0 0.75

16 114.6 4.8 0.30 16 8.1 11.3 0.71

32 155.5 3.6 0.11 32 5.0 18.4 0.57

5. Final Remarks

The parallel processing techniques were applied to reduce data assimilation processing time

with neural networks for domains with an increased grid points density, presenting a more

significant speeding-up. However, a deeper study must be carried out to obtain a better parallel

efficiency of the function implemented to the shallow-water 2D algorithm. A preliminary strategy

got implemented using OpenMP. Thus, one way to improve parallel performance can be through

a better choice of thread scheduling. Looking at a higher level of parallelism, one can also use MPI

to execute the code in a distributed memory machine, a cluster p.ex., through a subdivision of

the spatial domain. In this case, one can even run costly instances of the shallow-water problem,

using a grid containing an even more significant number of points.

Acknowledgements

The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI,

Brazil) for providing HPC resources of the SDumont supercomputer, which have contributed to

the research results reported within this paper. URL: http://sdumont.lncc.br. The authors

would also like to thank the Brazilian agencies for their research support. Author HFCV thanks

the National Council for Scientific and Technological Development (CNPq, Portuguese) for the

research grant (CNPq: 312924/2017-8).

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

84 Supercomputing Frontiers and Innovations

http://sdumont.lncc.br

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Anochi, J.A., Campos Velho, H.F., Hernandez Torres, R.: Two geoscience applications by

optimal neural network architecture. Pure and Applied Geophysics 1776(1), 1–21 (2019).

https://doi.org/10.1007/s00024-019-02386-y

2. Bennett, A.F.: Inverse Modeling of The Ocean and Atmosphere. Cambridge University

Press (2002)

3. Boucher, M.A., Quilty, J., Adamowski, J.: Data assimilation for streamflow forecasting

using extreme learning machines and multilayer perceptrons. Water Resources Research 56

(2020). https://doi.org/10.1029/2019WR026226

4. Campos Velho, H.F., Härter, F.P., Rempel, E.L., Chian, A.: Neural networks in auroral

data assimilation. Journal of Atmospheric and Solar-Terrestrial Physics 70(10), 1243–1250

(2008). https://doi.org/10.1016/j.jastp.2008.03.018

5. Cintra, R.C., Campos Velho, H.F., Todling, R.: Redes neurais artificiais na melhoria de

desempenho de métodos de assimilação de dados: filtro de Kalman. TEMA: Trends in

Computational and Applied Mathematics 11(1), 29–39 (2010). https://doi.org/10.5540/

tema.2010.011.01.0029

6. Cintra, R.S.C., Campos Velho, H.F.: Data assimilation by artificial neural networks for

an atmospheric general circulation model. In: El-Shahat, A. (ed.) Advanced Applications

for Artificial Neural Networks, chap. 14, pp. 265–285. Intech (2018). https://doi.org/10.

5772/intechopen.70791

7. Cintra, R.S.C., Campos Velho, H.F., Cocke, S.: Tracking the model: data assimilation by

artificial neural network. In: IEEE International Joint Conference on Neural Networks –

IJCNN, Vancouver, Canada, July 24-29, 2016. vol. 4, pp. 403–410 (2016). https://doi.

org/10.1109/IJCNN.2016.7727227

8. Daley, R.: Atmospheric Data Analysis. Cambridge University Press (1993)

9. Furtado, H.C., Cintra, R.S.C., Campos Velho, H.F., et al.: Neural network for data as-

similation method applied to shallow water equation. In: 2nd International Symposium on

Uncertainty Quantification and Stochastic Modeling, Rouen, France, July 7-11, 2014. pp.

299–311 (2014)

10. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall Inc. (1994)

11. Kalnay, E.: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge Uni-

versity Press (2003)

12. Luz, E.F.P., Becceneri, J.C., de Campos Velho, H.F.: A new multi-particle collision algo-

rithm for optimization in a high performance environment. Journal of Computational In-

terdisciplinary Sciences 1(1), 3–10 (2008). https://doi.org/10.6062/jcis.2008.01.01.

0001

H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter...

2022, Vol. 9, No. 1 85

https://doi.org/10.1007/s00024-019-02386-y
https://doi.org/10.1029/2019WR026226
https://doi.org/10.1016/j.jastp.2008.03.018
https://doi.org/10.5540/tema.2010.011.01.0029
https://doi.org/10.5540/tema.2010.011.01.0029
https://doi.org/10.5772/intechopen.70791
https://doi.org/10.5772/intechopen.70791
https://doi.org/10.1109/IJCNN.2016.7727227
https://doi.org/10.1109/IJCNN.2016.7727227
https://doi.org/10.6062/jcis.2008.01.01.0001
https://doi.org/10.6062/jcis.2008.01.01.0001

13. Mendel, J.: Computational requirements for a discrete Kalman filter. IEEE Transactions on

Automatic Control 16(6), 748–758 (1971). https://doi.org/10.1109/TAC.1971.1099837

14. Mesinger, F., Arakawa, A.: Numerical methods used in atmospheric models. Global Atmo-

spheric Research Program – World Meteorological Organization (1976)

15. Reich, S., Cotter, C.: Probabilistic Forecasting and Baysian Data Assimilation. Cambridge

University Press (2015)

16. Sambatti, S.B.M., Campos Velho, H.F., Furtado, H.C.M., et al.: Self-configured neural

network for data assimilation using FPGA for ocean circulation. In: 3Conference of Com-

putational Interdisciplinary Science (CCIS 2016), São José dos Campos (SP), Brazil (2016)

17. Vaidehi, V., Krishnan, C.N.: Computational complexity of the Kalman tracking algorithm.

IETE Journal of Researcht 44(3), 125–134 (1998). https://doi.org/10.1080/03772063.

1998.11416038

Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation

86 Supercomputing Frontiers and Innovations

https://doi.org/10.1109/TAC.1971.1099837
https://doi.org/10.1080/03772063.1998.11416038
https://doi.org/10.1080/03772063.1998.11416038

Multistage Iterative Method to Tackle Inverse Problems of Wave
Tomography

Alexander V. Goncharsky1,2, Sergey Y. Romanov1,2, Sergey Y. Seryozhnikov1,2

c© The Authors 2022. This paper is published with open access at SuperFri.org

This paper is concerned with developing the methods for solving inverse problems of low-
frequency ultrasound tomography under scalar wave models using supercomputer technologies.
Unlike X-ray tomography, the inverse problem considered is posed as a problem of minimizing a
non-convex residual functional. The multistage iterative method (MSM) is proposed as a method
for obtaining an approximate solution to the inverse problem. Convergence of the method to the
exact solution is achieved via the use of low-frequency sounding signals at the initial stages of the
iterative method. The method is illustrated on model problems focused on ultrasound tomographic
diagnostics of soft tissues in medicine. Finite-difference time-domain method is used to solve the
wave equation, which accounts for most of the computational complexity of the method. The
multistage method reduces the computation time, since the initial stages use low-resolution finite
difference grids. The effectiveness of the MSM method is investigated on GPU and SIMD-capable
CPU computing platforms. Numerical simulations showed that modern processors equipped with
AVX-512 FPUs are capable of solving small-scale problems of wave tomography. For large-scale
tasks, GPUs equipped with fast on-board memory are preferred. The numerical algorithm is
data-parallel and well-suited for GPU architecture. The proposed method can be used in medical
imaging and nondestructive testing applications.

Keywords: ultrasound tomography, coefficient inverse problem, gradient method, numerical
simulation.

Introduction

At present, it is hard to imagine a field of science or technology where tomographic imaging
is not used. First tomographs that appeared in the middle of the latest century used X-ray
radiation. However, the history of tomography can well begin at the beginning of the latest
century, when X-rays have been discovered (Nobel Prize of the year). At the same time, Radon’s
solution of the inverse problem of reconstructing a function of two variables given its linear
functionals has been published [1]. This result essentially solved the mathematical problems of
tomography in a linear model. However, it took humanity half a century of intensive scientific
research to develop first X-ray tomographs.

Currently, various tomographs (X-ray, MRI, positron emission tomography) are widely used
in medicine, science and technology. All these technologies are united by the fact that, from a
mathematical point of view, the problems of interpreting the data of tomographic experiments are
inverse problems that can be solved within the framework of linear mathematical models. Solving
such problems does not presently pose serious mathematical concerns. Personal computers are
sufficient for data interpretation in a linear problem.

At the end of the latest century, it became possible to research a very interesting field of wave
tomography, which employs ultrasonic, electromagnetic, seismic or optical radiation for sounding.
For all these problems, it is necessary to use nonlinear mathematical models to interpret the data
of tomographic experiments.

The progress in wave tomography developments has been driven by several factors. The
first is the development of modern methods for solving inverse problems. First results obtained
1Lomonosov Moscow State University, Moscow, Russia
2Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

DOI: 10.14529/jsfi220106

2022, Vol. 9, No. 1 87

by Academician Tikhonov in the 60s [2, 3] were continued in the works of his students and
followers [4–6]. By the end of the nineties, exhaustive results had been obtained in the field of
solving ill-posed linear and nonlinear problems. Tikhonov brought the concept of a regularizing
algorithm as a method for the approximate solution of the inverse problem. Within the framework
of this concept, effective numerical methods have been developed for solving a wide range of
problems in mathematical physics [7–11]. Important results were obtained in the field of using
iterative schemes for the approximate solution of nonlinear inverse problems [5]. Intensive research
was carried out in the field of solving coefficient inverse problems of mathematical physics [12, 13]
Fast-growing supercomputer technology was another factor that contributed to the development
of wave tomography. The solution of inverse problems under the wave model requires ample
computational resources due to large problem dimensions and its nonlinearity. It is impossible
to solve inverse problems of wave tomography without the use of supercomputers [14, 15].

In short, the situation with wave tomography at the moment can be characterized as follows.
Most works on wave tomography consider scalar wave models that take into account the effects
of diffraction, refraction, and even multiple scattering. The inverse problem in this case can
be posed as a problem of minimizing the residual functional between the experimental data
(measured wave field at the detectors) and the wave field computed using the mathematical
model of wave propagation. The most important recent result in wave tomography is the ability
to calculate the gradient of the residual functional explicitly [16–18]. This result makes it possible
to use gradient-based methods for minimizing the residual functional to obtain an approximate
solution to the inverse problem. Since the functional is not convex and has local minima, the
problem of finding the global minimum of the functional arises. Despite the large number of works
on this topic [19–21] this problem is unsolvable in a general case. In this paper, it is proposed to
narrow the search area using additional information in order to find the global minimum of the
residual functional.

Using additional information in solving inverse problems is not a new approach. In [4, 5]
it was proposed to use such information about the sought-for functions as their monotonicity
or convexity for constructing approximate solutions to ill-posed problems. In a finite-difference
approximation, the problem reduces to minimizing a functional on a convex polyhedron with
known vertices. Effective numerical algorithms have been developed for this approach.

To solve the problems of wave tomography, the authors propose a multistage iterative method
(MSM) that uses additional prior information specific to these inverse problems. As a possible
application of wave tomography, medical tomographic imaging for differential diagnosis of breast
diseases is considered. Several groups of researchers are intensively working in this field [22–24].
These developments are currently at the stage of prototypes. At the moment, the main problem is
constructing effective algorithms for data interpretation. This paper demonstrates that MSM can
effectively find an approximate solution to inverse problems of tomographic image reconstruction
in application to medical ultrasound imaging of soft tissues. The question of choosing the optimal
computing platform for the proposed method is discussed.

Developing ultrasound tomography devices is a challenging task. A natural question arises:
what advantages ultrasound tomography can provide in comparison with existing diagnostic
methods. Let us try to give an answer to this question using the example of medical diagnostics,
where ultrasound devices have been successfully used for a long time. To discuss the problem
more specifically, we will narrow the field of medical diagnostics to soft tissue imaging. Unlike
conventional ultrasound instruments, ultrasound tomographs can characterize the inspected tis-

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

88 Supercomputing Frontiers and Innovations

sues. Just as in X-ray tomography, the doctor can obtain the value of the sound wave velocity
at any point of the image. This result opens up the possibility of classifying neoplasms by the
speed of sound in them. Neural networks can automate the tissue classification process [25]. Why
cannot this be done using standard ultrasound diagnostic devices? Both X-ray and ultrasound
tomography employ sounding waves transmitted through the object. Conventional ultrasound
instruments detect only reflected waves, and this information is principally insufficient for tissue
characterization. Finally, unlike X-ray tomography, ultrasound tomography is completely safe
and therefore can be used for regular screening.

The article is organized as follows. Section 1 describes the inverse problem of wave tomogra-
phy and the solution method. In Section 2 we introduce the proposed multistage iterative method.
Section 3 describes the finite difference numerical method employed in the solution algorithm,
Section 4 describes the parallel implementation of the solution algorithm. Section 5 compares the
performance of the algorithm on various CPU and GPU computing systems. Section 6 presents
model problems to demonstrate the proposed multistage method. Conclusion summarizes the
study and points directions for further work.

1. Formulation of the Inverse Problem of Wave Tomography
and its Solution Method

In this study, we consider the waves described by the scalar wave equation. In the scalar
model, the scalar wave field u(r, q, t), which represents the acoustic pressure, can be computed
from the given initial data using the equation

c(r)utt(r, q, t)−∆u(r, q, t) = δ(r − q)g(t) (1)

u(r, q, t = 0) = ut(r, q, t = 0) = 0. (2)

Here, c−0.5(r) = v(r) is the speed of sound in the medium, r ∈ R2, ∆ is the Laplacian
operator with respect to r, δ is the Dirac delta function, which defines a point source at q. The
sounding pulse emitted by the source is described by function g(t). Short broadband sounding
pulses with a useable frequency range of 100–600 kHz and a duration up to 50 µs can be used
for sounding in medical ultrasound tomography. The sounding pulses are further discussed in
Section 6.

Detectors

Emitters

Object

G

S

Figure 1. Ultrasound tomographic imaging scheme

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 89

The inverse problem of ultrasound tomography can be formulated as follows. Figure 1 shows
the scheme of ultrasound tomographic imaging. The object with an unknown speed of sound
v(r) occupies region G. The object G, emitters and detectors of ultrasound are placed in a
homogeneous medium with a known speed of sound v0 = c0

−0.5 = const. The emitters are
located at coordinates qj . A total ofM emitter positions j = 1, . . . ,M are located around region
G. Measurements of the wave field u(r, q, t) are taken on a circle S surrounding region G.

Function g(t), which describes the sounding pulse, is known. In the inverse problem, the
objective is to determine an unknown function v(r) at r ∈ G, using experimental data U(s, qj , t)

obtained at the boundary S (s ∈ S) for emitter positions qj , j = 1, . . . ,M . Thus, the wave field
u(s, qj , t) from equations (1)–(2) satisfies the following equation for all emitter positions qj :

u(s, qj , t)|s∈S = U(s, qj , t). (3)

The system of equations (1)–(3) defines the inverse problem. Thus, solving inverse problem
of ultrasound tomography in the scalar model involves reconstructing the unknown wave velocity
v(r) in region G according to equations (1)–(3).

The residual functional Φ(c) of the argument c(r) is the difference between the experimental
data and the data computed from equations (1)–(2). The residual functional for a computed
wave field on the boundary S determined by a given speed of sound c(r) can be written as

Φ(c) =

M∑

j=1

1

2

T∫

0

∫

S

(u(s, qj , t)− U(s, qj , t))
2 dsdt. (4)

Here U(s, qj , t) are the experimental data on the boundary S for the time interval (0, T),
and u(s, qj , t) is the wave field obtained via solving the direct problem (1)–(2), which depends on
the specified coefficient c(r). For multiple sounding wave sources, the residual functional is the
sum over j = 1, . . . ,M of the residual values obtained for each source. For each fixed source j,
the integral is summed over time (0, T) and over the boundary S – for all the detectors receiving
the signal from the selected source. Mathematically, the inverse problem is posed as a problem
of finding a function c̄(r) that minimizes the residual functional (4) c̄(r) : min

c(r)
Φ(c) = Φ(c̄) The

c̄(r) function is taken as an approximate solution to the inverse problem. Gradient methods have
proven effective for minimizing the residual functional Φ(c). A rigorous mathematical formulation
for the gradient of the residual functional has been obtained in [17, 18, 26]. The gradient of the
functional (4) has the form

Φ′(c) =

M∑

j=1

T∫

0

1

2
wt(s, qj , t)ut(s, qj , t) dt, (5)

where u(s, qj , t) is the solution of the main problem (1)–(2) and w(s, qj , t) is the solution of the
conjugate problem (6)–(7). Both solutions depend on c(r) coefficients [14, 18].

c(r)wtt(r, qj , t)−∆w(r, qj , t) = u(s, qj , t)− U(s, qj , t)|s∈S , (6)

w(r, qj , t = T) = wt(r, qj , t = T) = 0. (7)

The inverse problem of wave tomography in the considered formulation is a nonlinear coeffi-
cient inverse problem. In nonlinear problems, typically, the residual functional (4) is not convex,

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

90 Supercomputing Frontiers and Innovations

which means that the functional may have local minima. As a consequence, gradient methods
for minimizing the residual functional from an arbitrary initial approximation may converge to
a local minimum, but not to the global one.

2. The Main Idea of the Multistage Method for Obtaining
Approximate Solutions to Nonlinear Inverse Problems
of Ultrasound Tomography

As shown in Section 1, inverse problem of ultrasound tomography can be solved by minimiz-
ing the residual functional (4), which may have local minima. There are many works concerned
with finding global minima of functionals. However, this problem has no solution in a general
case. In problems of wave tomography, an important prior information is present, which is that
the area of convergence of iterative processes of minimizing the residual functional strongly de-
pends on the wavelength of the sounding radiation. If the central frequency of the sounding
pulses tends to 0, then passing to the limit in equation (1) reduces it to a linear integral equation
with respect to the unknown function c(r). This idea of using linear models in problems of wave
diagnostics is actively discussed in [7, 27–30].

It would seem that this result opens up wide possibilities for solving inverse problems of
nonlinear wave tomography, but this is actually not the case for several reasons. The first reason
is that in real ultrasound imaging, the center frequency of the sounding wave determines the
resolution, and generally all medical ultrasound devices have center frequencies of 1 MHz or
higher. It is not possible to obtain experimental data in the frequency range close to zero.

The second reason is that the experimental data are measured with some error. In order to
use the linear approximation, it is necessary to calculate the second derivative of measured wave-
forms, which is poorly conditioned. Nevertheless, the idea of using low frequencies in problems
of ultrasound diagnostics is fruitful, and this idea is used in the proposed multistage iterative
method (MSM) for obtaining an approximate solution to the inverse problem of ultrasound
tomography.

In this article, the capabilities of the MSM method are illustrated using the problems of
ultrasound tomographic imaging of soft tissues in medicine, namely, breast imaging. The problem
of early-stage breast cancer diagnosis is one of the most important problems of modern medicine.
A characteristic feature of soft tissue imaging is that the difference between the speed of sound
in soft tissues and the speed of sound in surrounding water v0 is quite low and does not exceed
15%. It seems natural to use the known speed of sound v0 in a homogeneous medium surrounding
an object in region G as an initial approximation in iterative processes. However, as it will be
shown via numerical simulations, the choice of an initial approximation in the form of a constant
v0 in nonlinear problems does not guarantee convergence to the global minimum of the residual
functional.

Multistage iterative method (MSM) proposed in this study for solving coefficient inverse
problems of ultrasound tomography ensures convergence of the gradient descent algorithm to the
global minimum. By increasing the mean wavelength of the sounding signal we expand the range
of initial approximations from which the gradient descent method of minimizing the residual
functional converges to the global minimum. This idea is at the heart of the MSM method, and
it is demonstrated in this study on a large number of model problems that simulate the problem of

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 91

ultrasound tomographic imaging for breast cancer diagnosis for various configurations of objects
and sounding pulses.

In a practical implementation of the MSM method, experimental data for two (or more)
frequency bands with different central frequencies f1 and f2, f1 < f2 are used. First, the inverse
problem is solved via an iterative gradient descent method for minimizing the residual functional
using the lowest frequency band f1. The initial approximation is chosen as a constant equal
to the speed of sound v0 in the environment. Then, at the second stage, the inverse problem is
solved via an iterative method using a higher frequency band f2. The result of solving the inverse
problem at the first stage at a lower frequency f1 is used as an initial approximation of the speed
of sound for the gradient descent method at the second stage.

The described scheme of MSM method application consists of two stages. In a real situation,
it may be necessary to apply several successive stages for three or more frequency bands. The
number of stages depends on the task of ultrasound tomography considered. It is important that
at each stage the initial approximation is close enough to the point of the global minimum of
the residual functional for the frequency band used at that stage. Numerous model calculations
have shown that a five-stage method is optimal for tomographic imaging of soft tissues with
low-frequency ultrasound in the 100 – 600 kHz band. To ensure the convergence of the MSM
method to the exact solution of the inverse problem, the first stage should be carried out using a
wavelength λ = 12 mm (the central frequency of the pulse is 125 kHz). Subsequent stages were
carried out using wavelengths of 8, 6, 4 mm, and the last stage uses λ = 3 mm (500 kHz). The
wavelength of 3 mm provides a high spatial resolution of the method – 1–1.5 mm in application
to soft tissue imaging.

The following model problem illustrates the capabilities of the MSM method. The parame-
ters of model problems correspond to breast ultrasound tomography. The variation of the speed
of sound in model problems does not exceed 15%. In order to ensure the convergence of the iter-
ative process, the developed methods of ultrasound diagnostics use significantly lower sounding
frequencies compared to conventional medical ultrasound devices.

The following parameter values were used in the numerical simulations. The speed of sound
in the medium surrounding the object is v0 = 1.5 mm/µs (water), the speed of sound in the
object varies from 1.4 mm/µs to 1.7 mm/µs. The calculations were carried out for five frequency
bands with central frequencies of 125, 188, 250, 375 and 500 kHz (mean wavelengths of sounding
pulses equal to 12, 8, 6, 4 and 3 mm, respectively). The size of the two-dimensional computational
domain was 25×25 cm, the size of the finite difference grid for the 500 kHz band was 1600×1600

points, for the 125 kHz band – 480×480 points. In the calculations, the sources and receivers were
located around the object. There were 24 source positions in total, located on a circle 200 mm
in diameter. The receivers were located with a step of ≈ 1 mm on a circle 165 mm in diameter.

Figure 2 presents the results of solving an inverse problem. Figure 2a shows the original image
of the object (simulated phantom). Figure 2b plots the residual functional (4) for three frequency
bands with mean wavelengths of λ = 3 mm, 6 mm and 12 mm. The abscissa corresponds to the
parameter α in the interval (–0.1, 1.4), which determines the value of the function c(r) by the
following formula c(r;α) = (1 − α)c0 + αc̄(r). Here, c−0.5(r) = v(r) is the wave velocity in the
medium, c−0.50 = v0 = const. For α = 1, we get c(r) = c̄(r), which is the exact solution and the
residual functional equals to 0. For α = 0, c(r) = c0, which corresponds to the initial approx-
imation of the iterative process. For short wavelengths λ = 3 mm and 6 mm, the value of the
residual functional in the interval 0 < α < 1 first increases with α, and only then decreases to 0.

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

92 Supercomputing Frontiers and Innovations

a) b) c)

d) e)
Figure 2. Numerical simulation: a – exact image (phantom); b – plots of the residual functional
(4) for wavelengths λ = 3 mm, 6 mm and 12 mm; c – an image reconstructed using a wavelength
λ = 3 mm from an initial approximation c0 = const, d – an image reconstructed using a wave-
length λ = 12 mm from an initial approximation c0 = const, e – an image reconstructed via the
multistage method

This illustrates the idea that the iterative gradient descent process for these wavelengths stops
at a local minimum of the residual functional if the iterative process is started from an initial
approximation of c(r) = c0. For the wavelength λ = 12 mm, the residual functional decreases
monotonically to 0 as the parameter α changes from 0 to 1. This result allows us to assume that
the initial approximation c(r) = c0 lies in the vicinity of the global minimum of the residual
functional if the mean wavelength equals to 12 mm or longer. The global minimum is reachable
from the initial approximation via the gradient descent method in this case.

To ensure the convergence of the iterative gradient descent process, a five-stage method
has been used. For λ = 12 mm, the iterative process was started from an initial approximation
of c(r) = c0. The resulting approximate solution was used as an initial approximation for the
second stage with a mean wavelength λ = 8 mm, and so on. The result of the iterative process for
λ = 4 mm was used as an initial approximation for the last stage with λ = 3 mm. The difference
between wavelengths should be sufficiently small for the global minimum to be reachable from
the initial approximation via the gradient descent method at each stage.

Figure 2c shows the image reconstruction results for a sounding pulse wavelength of
λ = 3 mm, where c0 = const is chosen as the initial approximation for the iterative process.
In this case, the iterative process stops at a local minimum, and the resulting solution is very
different from the original image. Figure 2d shows the image reconstruction results for a sounding

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 93

pulse wavelength of λ = 12 mm; c0 = const is chosen as the initial approximation. In this case,
the initial approximation lies in the vicinity of the global minimum, and an approximate solution
to the inverse problem is obtained. However, due to the large wavelength, the spatial resolution
of the resulting image is rather low.

Figure 2e shows the image reconstruction results using the multistage method with 5 stages.
The central wavelength at the last stage is λ = 3 mm. The image obtained at the first stage for
λ = 12 mm (shown in Fig. 2d) was used as an initial approximation for the iterative process
using a wavelength λ = 8 mm at the second stage, and so on for wavelengths of 6 mm, 4 mm
and 3 mm. The multistage method made it possible to avoid the iterative process stopping at a
local minimum and to obtain the resulting high-quality image.

It turns out that the MSM method not only provides convergence to an approximate solution
to the problem, but also significantly reduces the computation time. This issue will be discussed
in more detail in Section 6.

3. Numerical Approximation of the Wave Equation

Finite-difference time-domain method (FDTD) was employed to solve equations (1) – (2). We
define a uniform rectangular finite difference grid: xi = ih, yj = jh, tk = kτ ; i, j = 1, ..., N, k =

1, ...,M , where h is the spatial discretization step, and τ is the time step. A second-order finite
difference scheme approximates equation (1):

cij
uk+1
ij − 2ukij + uk−1ij

τ2
−

Lk
ij

h2
= 0.

Here, ukij = u(xi, yj , tk) are the values of u(r, q, t) at point (i, j) at the time step k for a fixed q; cij
and aij are the values of c(r) and a(r) at point (i, j). The first term approximates c(r)utt(r, q, t),
the second term approximates a(r)ut(r, q, t). The discrete Laplacian is denoted by Lk

ij . A fourth-
order numerical approximation [31] on a 5×5-point stencil is used for the discrete Laplacian:

Lk
ij =

i+2∑

m=i−2

j+2∑

n=j−2
vmnu

k
mn. (8)

The parameters h and τ are related by the Courant stability condition c−0.5τ < h/
√

2.
For the problem considered, we used a time step equal to τ = 0.3c0.50 h, which ensured the
stability of the finite difference method. The number of operations required to compute a wave
propagation simulation is proportional to O(N3), where N is the number of grid points along
spatial dimensions. The number of points N is chosen so that the precision of the wave simulation
for the selected wavelength range is sufficient. Thus, computational complexity of the numerical
method scales as a third power of wave frequency and spatial image resolution.

An approximate solution to the inverse problem is obtained via an iterative gradient descent
method. Each iteration involves solving direct (1)–(2) and conjugate (6)–(7) problems in order to
compute the gradient of the residual functional, which requires simulating the wave propagation
process in forward and reverse time.

The numerical method was implemented in software for GPU and SIMD-capable CPU com-
puting platforms. The discrete Laplacian computation (8) is the most compute-intensive opera-
tion in this method. The flowchart of the SIMD algorithm for computing the discrete Laplacian

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

94 Supercomputing Frontiers and Innovations

is shown in Fig. 3. The Laplacian is spherically symmetrical, which makes it less computationally
expensive than a convolution problem in a general case.

×

Laplacian coefficient
vector

Partial sums

Input vector
Result vector

Shift
(rename)

Register matrix

Figure 3. SIMD Discrete Laplacian computation algorithm

Y-marching method was employed to compute the convolution using registers for temporary
storage. The results are calculated sequentially in vertical direction. Using the input data vector
and horizontally adjacent cells, partial sums are computed and stored in the register matrix,
which contains the data for 5 lines of the image. The result vector is computed by multiplying
the register matrix by the Laplacian coefficient vector. The algorithm advances to the next line
by shifting the lines in the register matrix up and reloading the last line from the input vector.
The data is shifted via renaming the registers.

Modern processors (AVX, AVX-512, ARM NEON-class FPUs) typically have 32 SIMD reg-
isters, each of which holds a vector of 8 32-bit floating point elements for AVX FPU, 16 elements
for AVX-512 FPU and 4 elements for ARM NEON FPU. There are three partial sums per line
and five lines in the register matrix; thus, the input vector can be two registers long for the single
wave simulation (u(r, q, t) for the direct problem (1)–(2)) and one register long for the dual wave
simulation (u(r, q, t) and w(r, q, t) for the conjugate problem (6)–(7)).

The computations on multi-core CPUs were parallelized using OpenMP. MPI interface was
used for data exchange between computing nodes (CPU sockets or GPU devices). Figures 4a, b
illustrate the order of computations for multi-core CPUs and GPUs, respectively.

Span

Vector

Computing
Core 2

Core 2 Core 3

Core 1

Thread block

Span

Vector

a) b)
Figure 4. Parallelizing the computations on multi-core processors (a) and GPU (b)

For efficient use of cache memory, the length of the vertical segment (“Span”) of the Y-
marching method was limited to some specified value. The span length typically ranges from 5
to 40 pixels. On multi-core CPUs, individual spans are computed in sequence along the horizontal
dimension. The data of the previous span remains in the cache memory and is used to compute
a part of the next span. The optimal span length depends on the image size and CPU cache
properties and can be determined for each system via performance tests. The better the data fits
into the cache, the larger span lengths are preferred. An equal amount of data is distributed to

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 95

each computing core. For GPU, the computations are performed in parallel within each thread
block. The thread block size can be adjusted for better performance.

4. Parallel Implementation of the Inverse Problem Solution
Algorithm

Figure 5a illustrates the direct problem solution algorithm. The algorithm simulates the
wave field propagating through an inhomogeneous medium. A predefined numerical phantom
simulates the object being imaged. The phantom specifies the speed of sound c(r) in the imaging
plane. Ultrasound emitters and detectors are placed in a circular formation around the phantom,
as shown in Fig. 1.

Input
c(r)

Initial
pulse

generation

Emitters and detectors
placement

Wave
simulation

Wave data

Output

Approximate
c(r)

Direct
problem

Gradient
computation

Memory
buffer

Wave data

Input

Output image

Iterative
update

a) b)
Figure 5. Direct (a) and inverse (b) problem solution algorithms

The wave field is simulated sequentially in time, starting from the initial pulse that is com-
puted as a spherical wave radiating from the emitter position. The resulting wave field at the
detector positions for each emitter is recorded in the output data.

Figure 5b illustrates the inverse problem solution algorithm. An approximate solution to
the inverse problem of wave tomography is computed via the iterative gradient descent method.
An initial approximation of c(r) coefficients is set at the beginning of the iterative process. The
direct problem is solved for the current approximation of c(r).

The boundary values of computed u(r, q, t) wave field are stored in the memory buffer. The
buffer is used to reverse the wave propagation direction of u(r, q, t) in formula (5). At the gradient
computation stage (Fig. 5b) the data from the buffer are applied to the boundary of the com-
putational domain in reverse time in order to compute u(r, q, t) in reverse time simultaneously
with w(r, q, t).

The w(r, q, t) wave is computed from u(r, q, t) and the input wave data, and the gradient
is computed using formula (5). The current approximate solution is updated by adding the
computed gradient to the c(r) coefficient array, and the process is repeated. The iterative process
continues until the residual functional ceases to decrease. At the end of the process, the resulting
approximate solution is the output of the inverse problem solution algorithm.

The iterative gradient descent method permits parallelizing the computations contained
within a single iteration.

Figure 6a illustrates the parallelized computing process. Computation of the gradient of the
residual functional can be subdivided into independent sub-tasks for each ultrasound emitter.

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

96 Supercomputing Frontiers and Innovations

Node

Parallel-processed

Sequential-
processed

Node ...

Batch

Batch

Batch

Batch processing

Data 1

Core 1

Data 2

Core 2

Data 3

Core 3 Core 4

a) b)
Figure 6. Parallelizing the computations on multi-core processors (a) and GPU (b)

The total number of emitters in wave tomography typically ranges from 10 to 100. The emitters
are divided evenly between the computing nodes.

For each node, the computations are grouped into one or more batches executed sequentially.
A batch consists of the data for several ultrasound emitters that are processed in parallel. For
GPUs, the batch size is determined by the GPU memory capacity. A typical modern GPU can
process most ultrasound tomography problems within its on-board memory as a single batch.
For CPUs, the batch size is optimized for maximum performance, and typically is chosen close
to the CPU last-level cache size. The data for a single emitter can amount to several megabytes;
thus, small batch sizes of 1–2 emitters are common for CPUs.

Figure 6b illustrates the order of computations within a batch. The computations performed
for each ultrasound emitter are identical and consist of a direct problem solution (wave simula-
tion) and a gradient computation that involves simulating two wave fields u(r, q, t) and w(r, q, t).
The only difference between emitters is in the data contents. Thus, wave fields for multiple emit-
ters can be processed as a single data array in order to divide the computations evenly between
computing cores.

The result of each iteration is the gradient of the residual functional, which is the sum of
partial gradients computed for each ultrasound emitter. The partial gradients are summed up
within each node, and then summed up over nodes using MPI interface. Data exchanges between
nodes occur only once per iteration and therefore do not incur any noticeable delay.

5. Computing Performance for Different Computing Platforms

The software implementation of the algorithm has been tested on multiple computing plat-
forms: Intel Haswell-EP (14 cores, AVX2 FPU), Intel 6240R (12 cores, AVX-512 FPU), NVidia
Tesla P100 and NVidia Tesla V100 GPUs.

The multistage method involves solving inverse problems of wave tomography using data
with bandwidth gradually increasing from stage to stage. Since the computation time strongly
depends on the finite difference grid size, at each stage of the multistage method the grid size is
chosen as the smallest size that still provides sufficient accuracy of the finite difference scheme.
The computation time for a multistage task is the sum of the time intervals spent on each stage.
To estimate the computation time for multistage tasks, the performance of computing platforms
was tested on the computations of separate iterations of the gradient descent method for various
grid sizes.

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 97

CPU performance significantly depends on cache utilization, as external memory is much
slower than cache memory. Thus, for optimal performance we choose the batch size (the amount
of data to be processed in parallel by the CPU, Fig. 6a) close to the CPU cache size. In order to
optimize the computations, performance tests were conducted to determine the optimal batch
size for parallel processing on each target system. The batch sizes determined may differ form
the physical CPU cache size due to the use of an additional memory buffer (Fig. 5b).

Batch size (MB)
0 20 40 60 80 100

O
u
tp

u
t
ra

te
,
G

P
ix

e
l/
s

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Intel 6240R
Intel Haswell-EP

Figure 7. CPU performance depending on batch size

Figure 7 plots CPU performance depending on batch size. Output data rate is measured
in the tests as the number of computed gradient pixels per second in gigapixels/s. Each pixel
of a reconstructed image uses 32 bytes of data. The tests showed that using too large batch
sizes results in a performance decrease due to cache misses. Too small batch sizes are also non-
optimal because the task execution time for a small batch becomes very short and the thread
synchronization latency becomes noticeable, especially on a fast CPU such as Intel 6240R. As a
result, a batch size of 22 Mb was chosen for computations on Intel CPUs.

A single simulation frame uses N ×N pixels of output, where N is the grid size along each
dimension. Wave simulation requires approximately N time steps for the computed wave to reach
the detectors. The wave simulation is performed for every ultrasound emitter in order to compute
the gradient of the residual functional. The multistage method uses multiple grids with different
resolutions. To determine the computing time for a task, we determine the computing time for a
single wave simulation and multiply that by the number of emitters and the number of gradient
descent iterations.

A series of tests were conducted to determine the computing time for each grid resolution.
Figure 8a plots the computing devices’ performance depending on the finite difference grid size.
For Intel CPUs, the performance decreases for larger grids, as such grids do not fit in the CPU
cache. For GPUs the performance may slightly increase with increased grid size due to more
parallelism being available on larger grids. The NVidia Tesla P100 and NVidia Tesla V100 GPUs
tested are equipped with sufficient amount of VRAM to process the whole inverse problem as a
single batch in parallel.

Figure 8b plots the computing time per iteration per emitter corresponding to the output
rate shown in Fig. 8a. The time scale is logarithmic in this plot. The number of operations to
compute a wave simulation scales as a third power of the grid size. Employing smaller grids to
complete the first iterations quickly in the multistage iterative method significantly decreases

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

98 Supercomputing Frontiers and Innovations

Grid size
500 1000 1500 2000

O
u
tp

u
t
ra

te
,
G

P
ix

e
l/
s

0

2

4

6

8

10
Performance by grid size

NVidia V100
NVidia P100
Intel 6240R
Intel Haswell-EP

Grid size
500 1000 1500 2000

T
im

e
,
s

10-2

10-1

10
0

10
1

Time per iteration

NVidia V100
NVidia P100
Intel 6240R
Intel Haswell-EP

a) b)
Figure 8. Device performance depending on finite difference grid size (a); corresponding com-
puting time per iteration per emitter (b)

the total computing time compared to performing all the iterations using the highest-resolution
grid.

Table 1. Multistage method parameters

Stage 1 2 3 4 5
Resolution, px 480 640 800 1200 1600

Wavelength, mm 12 8 6 4 3
Iterations 30 30 30 30 30
Time, sec 3 7 15 50 120

Numerical simulations showed that on average 30 iterations are sufficient at each stage of the
multistage method to obtain an approximate solution suitable for the next stage, or to obtain
the final result at the last stage. Multistage method parameters suitable for medical imaging for
breast cancer diagnosis are summarized in Tab. 1. The computing time row in Tab. 1 lists the
actual times achieved on a computing node of “Lomonosov-2” supercomputer [32] equipped with
two NVidia Tesla V100 GPUs working in parallel.

Time to completion (CPU*minutes)
0 10 20 30 40 50 60 70 80

NVidia V100

NVidia P100

Intel 6240R

Intel Haswell-EP

Figure 9. Overall performance of the computing devices

Using these parameters, the total computing time required to complete the inverse problem
solution can be estimated for each computing device. Figure 9 shows the computing time for
the devices tested. For example, to obtain 30 images per hour in a medical imaging setup (one
image is a single cross-section of an object) a computing cluster of either 4 NVidia Tesla V100,
8 NVidia Tesla P100, 12 Intel 6240R or 36 Intel Haswell-EP processors would be needed.

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 99

Provided that almost all the data is cached, Intel 6240R with AVX-512 FPU is only 1.5 times
behind NVidia Tesla P100 GPU. Thus, CPU or GPU clusters can be used for image reconstruc-
tion using the multistage method with image sizes up to 1600 pixels. Such grid sizes are sufficient
for low-frequency wave tomography of relatively small objects, where the object size is on the or-
der of 25–30 wavelengths. For higher frequencies or larger objects, larger grids would be required,
putting CPU systems at a significant disadvantage compared to GPUs.

GPUs were found to be the preferred architecture for solving direct and inverse problems of
wave tomography, especially for higher-resolution images. GPU performance on a typical FDTD
algorithm is approximately proportional to its memory throughput. The numerical algorithm
is data-parallel and requires neither synchronized data exchanges between computing cores nor
cache coherence. Thus, the algorithm can benefit from the specific structure of graphics proces-
sors.

6. Model Problem Examples

The multistage iterative method for solving inverse problems of wave tomography proposed
in this study is designed primarily to ensure convergence of the gradient iterative method to the
global minimum. Approximate solutions of the inverse problem are computed using gradually
increasing sounding pulse bandwidth and image resolution.

It may seem that an experimental setup with 5 different ultrasound emitters is needed to
use a 5-stage iterative method in practice. However, the input data for multiple stages can
be produced from a single experimental measurement via application of a low-pass filter to the
broadband signal. This approach requires the signal to contain sufficiently strong low frequencies.
Broadband ultrasound transducers with a usable frequency range of 100 to 600 kHz can be used
for this task.

Time, us
0 1 2 3 4 5

-0.5

0

0.5

Time, us
0 1 2 3 4 5

-0.2

-0.1

0

0.1

0.2

Frequency, MHz
0 0.2 0.4 0.6 0.8 1 1.2

0

0.05

0.1

0.15

0.2
6 mm wave
3 mm wave

a) b) c)
Figure 10. Sounding pulses: a – waveform with a mean wavelength of 3 mm; b – waveform with
a mean wavelength of 6 mm; c – frequency spectra of the sounding pulses

Figure 10a shows the waveform of a broadband sounding pulse with a mean wavelength
of 3 mm used in the presented numerical simulations at the last stage of the MSM method.
Figure 10b shows the sounding pulse with a mean wavelength of 6 mm used for an intermediate
stage of the MSM method. Figure 10c shows the frequency spectra of these two sounding pulses.
The spectrum of the longer wave with a central frequency of 250 kHz is a part of the spectrum
of the shorter wave with a central frequency of 500 kHz. A short pulse contains both low and
high frequencies, lower parts of the spectrum can be filtered and used for low-resolution stages.

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

100 Supercomputing Frontiers and Innovations

Lower-resolution approximations can be computed much faster; thus, the multistage iterative
method can be used to improve computing time even if multiple stages are not necessary for
convergence. Figure 11 presents an example of a low-contrast phantom, the image of which can
be reconstructed via the gradient descent method using a wavelength of 3 mm and a constant
initial approximation.

a) b)

c) d) e)
Figure 11. Single-stage and multistage reconstruction: a – exact image, b – image reconstructed
at 3 mm wavelength from a constant initial approximation, c – image reconstructed at the first
stage from a constant initial approximation, d – image reconstructed at the 3rd stage, e – image
reconstructed using at the final stage

Figure 11a shows an exact image of the phantom. Figure 11b shows an image reconstructed
using the gradient method from a constant initial approximation and with a pulse wavelength of
3 mm. Even without using the multistage method, the image is reconstructed quite accurately.
However, to solve this inverse problem, 100–120 gradient descent iterations are required.

Figures 11c–e show approximate solutions obtained at various stages of the multistage
method. Figure 11c shows an image reconstructed at the first stage of the multistage method
from a constant initial approximation using a wavelength of 12 mm and a grid size of 480× 480

points. Figure 11d shows an image reconstructed at the third stage of the multistage method
using a wavelength of 6 mm and a grid size of 800 × 800 points. Figure 11e shows an image
reconstructed at the last stage of the multistage method using a wavelength of 3 mm and a grid
size of 1600× 1600 points.

Figure 11 demonstrates that the image Fig. 11e obtained via the multistage method is
closer to the original than the image in Fig. 11b obtained via the gradient descent method with
fixed parameters and a constant initial approximation. Although the parameters of the iterative

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 101

method are the same for Fig. 11b and Fig. 11e, a better image quality in Fig. 11e is achieved due
to a better initial approximation being used in the last stage of the MSM method. Instead of a
constant, an image computed at the previous stage is used, which is much closer to the exact
image than a constant.

In this example, the multistage method can reduce the computation time and improve the
image quality. The parameters of the multistage method are listed in Tab. 1. The total number
of gradient descent iterations at all stages is 150, however, only 30 of them are performed in a
high resolution of 1600× 1600. These iterations are the most time-consuming. Starting from an
initial approximation computed at the previous stage instead of a constant initial approximation,
only 30 iterations at the highest resolution are sufficient to complete the process.

First stages of the multistage method require significantly less computation time than the
last. The total computation time in this example is 195 seconds, of which the last stage takes
120 s. In 195 seconds, it is possible to perform 48 high-resolution gradient descent iterations,
which is usually not enough to reconstruct an image with good accuracy. Thus, the multistage
method allows us to reduce the computation time.

a) b)

c) d) e)
Figure 12. Complex phantom example: a – exact image, b – image reconstructed at 3 mm wave-
length from a constant initial approximation, c – image reconstructed using 12 mm wavelength
from a constant initial approximation, d – image reconstructed using 6 mm wavelength at the
3rd stage, e – final image after 5 stages

Figure 12 shows an example of reconstructing a complex internal structure of an object.
Figure 12a shows the exact image of the model object (phantom) In this example, the gradient
descent process does not converge using a constant initial approximation and a short sounding
pulse with a wavelength of 3 mm. Figure 12b shows the reconstruction result for this case.

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

102 Supercomputing Frontiers and Innovations

The iterative process stops at a local minimum of the residual functional and the image is not
reconstructed. To obtain a tomographic image of such an object, it is necessary to apply the
multistage method.

At the first stage, an approximate solution is computed using a constant initial approxi-
mation, a central wavelength of 12 mm and a grid size of 480 × 480 points. The result of the
first stage is shown in Fig. 12c. This image has a low resolution, but is sufficiently close to the
original. It is used as an initial approximation for the next stage of the multistage method. In
total, 5 stages are performed according to Tab. 1. The image quality gradually improves from
stage to stage. This means that the images can be analyzed before the whole reconstruction pro-
cess is completed – as early as the sought-for image features are resolved. This property of the
multistage method can improve image analysis time in practical applications. Highest-resolution
stages take considerably more time to compute. Figure 12d shows the result of the third stage of
the multistage method with an average wavelength of 6 mm and a grid size of 800× 800 points.
Figure 12e shows the result of the last stage with an average wavelength of 3 mm and a grid
dimension of 1600×1600 points. Thus, the MSM method ensures the convergence of the iterative
process of gradient-descent minimization of the residual functional and allows for high accuracy
tomographic image reconstructions via wave tomography technology.

Conclusion

This article discusses the methods of ultrasound tomography, which can be used to inspect
various objects, for example, in nondestructive testing or in medical imaging such as tomographic
imaging of soft tissues for early-stage breast cancer diagnosis. A characteristic feature of ultra-
sound tomography is that it takes into account not only the reflected radiation, but also the
radiation transmitted through the object, similarly to X-rays. It is well known that the higher
the frequency, the higher the spatial resolution can be achieved in ultrasound imaging. Con-
ventional medical ultrasound diagnostic devices usually employ frequencies above 1 MHz. The
tomographic methods considered in this study use low frequencies in the 100–600 kHz band
for medical ultrasound tomography. The proposed MSM method uses low frequencies for initial
stages of the method to ensure its convergence and high frequencies for final stages to achieve
high resolution.

The article discusses a supercomputer implementation of the multistage iterative method
(MSM) for solving nonlinear inverse problems of ultrasound tomography. From a mathematical
point of view, the problem is posed as a problem of minimizing the residual functional, which is
not convex and has local minima. The method is based on a prior information which is typical for
most inverse problems of wave tomography. The effectiveness of the MSM method is illustrated
on a large number of model problems focused on ultrasound tomographic diagnostics of soft
tissues. As shown in the article, the MSM method completely covers the problem of constructing
an approximate solution in the problems of medical ultrasound tomographic diagnostics of soft
tissues.

In contrast to previous works [33, 34], this article considers the inverse problem of ultrasonic
tomography in the wave model without taking into account the absorption of the medium. The
numerical algorithms have been adapted for SIMD-capable CPUs. The performance of comput-
ing systems is compared for different sizes of the computational grid and for a multistage run.
To ensure the convergence of the iterative process of solving the inverse problem, filtering the
spectrum of a broadband sounding pulse is proposed. This approach greatly simplifies the exper-

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 103

iment compared to using multiple narrow-band emitters. In this study, a significant acceleration
of the algorithm has been achieved due to the use of smaller grids for lower frequencies. The
method has been tested on phantoms of a complex structure close to reality.

Both CPU- and GPU-based computing clusters can be used to implement the MSM method
in practice. It is shown that GPU supercomputers have an advantage, especially for large volumes
of data. The numerical algorithm is data-parallel an well-suited for GPU architecture. Modern
processors equipped with AVX-512 FPUs are capable of solving small-scale tasks that fit in the
CPU cache memory. For large-scale tasks, it is always better to use a GPU equipped with fast
on-board memory.

Recently, a new processor architecture has been developed, consisting of several hundred
thousand computing cores located on a single silicon wafer. For problems of wave tomography,
this line of work is also of great interest. Wafer-scale processors manufactured by Cerebras are
designed for machine learning tasks. A specific feature of such tasks is a large number of opera-
tions being performed on a fixed data array. Wave tomography problems have the same property
– the operation of wave propagation simulation is performed many times on the same data array
in the iterative process. On an actual problem of physical process simulation, the wafer-scale
system has achieved a performance of 860 TFlops [35]. To date, the wafer-scale architecture
has the highest performance-to-memory ratio and is thus the most promising architecture for
implementing large-scale wave tomography applications.

To conclude, we note that the use of supercomputer technologies for solving wave tomog-
raphy problems opens up the possibility of using complex mathematical models describing such
physical processes as diffraction, refraction, multiple scattering, and so on. Under such models,
the inverse problems are nonlinear and the methods developed in this study can be used to solve
such problems. First of all, the developed solution methods focus on the problems of medical
ultrasound tomography and inverse problems of electromagnetic sounding.

The paper discusses the possibilities of solving inverse problems of wave tomography in
the framework of scalar wave models. From a physical point of view, only one type of wave
propagates in a scalar medium – longitudinal compression wave. This model is ideal, for example,
for ultrasound tomographic screening for breast cancer diagnosis. However, the scalar model is
no longer adequate to reality in such cases as, for example, obtaining ultrasound tomographic
images of a knee joint. Unlike in soft tissues, multiple types of waves propagate in solid bodies.
There are works concerned with solving direct problems of wave propagation in solids. In some
works, attempts are made to solve inverse problems of ultrasound imaging in solids [36, 37].
These problems typically arise in the field of nondestructive testing. Solving inverse problems
in vector models is a much more complicated task, compared to scalar models. Solving such
problems is impossible without the use of supercomputers.

Acknowledgements

The paper was published with the financial support of the Ministry of Education and Science
of the Russian Federation as part of the program of the Moscow Center for Fundamental and
Applied Mathematics under the agreement No. 075-15-2019-1621. The research is carried out
using the equipment of the shared research facilities of HPC computing resources at Lomonosov
Moscow State University.

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

104 Supercomputing Frontiers and Innovations

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References

1. Radon, J.: Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser
Mannigfaltigkeiten. Berichte uber die Verhandlungen der Koniglich-Sachsischen Akademie
der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse [Reports on the Proceedings
of the Royal Saxonian Academy of Sciences at Leipzig, Mathematical and Physical Section],
Leipzig: Teubner 69, 262–277 (1917)

2. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method.
Soviet. Math. Dokl. 4, 1035–1038 (1963)

3. Tikhonov, A.N.: Regularization of incorrectly posed problems. Soviet Math. Dokl. 4, 1624–
1627 (1963)

4. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for
the Solution of Ill-Posed Problems. Springer, Dordrecht (1995). https://doi.org/10.1007/
978-94-015-8480-7

5. Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications.
Kluwer Academic Publishers. Springer, Dordrecht (1994). https://doi.org/10.1007/
978-94-011-1026-6

6. Vinokurov, V. A.: Regularizability of Functions. In: Ill-posed problems in the Natural Sci-
ences, pp. 52–70, Mir, Moscow (1987)

7. Lavrentiev, M.M., Romanov, V.G., Shishatskii, S.P.: Ill-Posed Problems of Mathematical
Physics and Analysis. American Mathematical Society, Providence, (1986)

8. Ramm, A.G.: Non-uniqueness of the solution to an inverse problem in geophysics. Inverse
problems 2, 123–125 (1986)

9. Engl, H.W., Kunish, K., Neubaer, A.: Convergence rate for Tikhonov regularization of non-
linear ill-posed problem. Inverse problems 4, 532–540 (1989)

10. Groetch, C.W.: The theory of Tikhonov regularization for Fredholm equations of the first
kind. SIAM Review 28, 116–118 (1986). https://doi.org/10.1137/1028033

11. Nashed, M.Z.: Ill-posed Problems: Theory and Practice. Reidel, Dordrecht (1985)

12. Klibanov, M.V., Timonov, A.A.: Carleman Estimates for Coefficient Inverse Problems
and Numerical Applications. Walter de Gruyter GmbH (2004). https://doi.org/10.1515/
9783110915549

13. Romanov, V.G., Kabanikhin, S.I. Inverse Problems for Maxwell’s Equations. VSP, Utrecht,
(1994)

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 105

https://doi.org/10.1007/978-94-015-8480-7
https://doi.org/10.1007/978-94-015-8480-7
https://doi.org/10.1007/978-94-011-1026-6
https://doi.org/10.1007/978-94-011-1026-6
https://doi.org/10.1137/1028033
https://doi.org/10.1515/9783110915549
https://doi.org/10.1515/9783110915549

14. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Inverse problems of 3D ultrasonic
tomography with complete and incomplete range data. Wave Motion 51(3), 389–404 (2014).
https://doi.org/10.1016/j.wavemoti.2013.10.001

15. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Comparison of the capabilities of
GPU clusters and general-purpose supercomputers for solving 3D inverse problems of ul-
trasound tomography. Journal of Parallel and Distributed Computing 133, 77–92 (2019).
https://doi.org/10.1016/j.jpdc.2019.06.008

16. Natterer, F., Sielschott, H., Dorn, O., et al.: Frechet derivatives for some bilinear in-
verse problems. SIAM J. Appl. Math. 62, 2092–2113 (2002). https://doi.org/10.1137/
s0036139901386375

17. Beilina, L., Klibanov, M.V., Kokurin, M.Y.: Adaptivity with relaxation for ill-posed prob-
lems and global convergence for a coefficient inverse problem. J. Math. Sci. 167, 279–325
(2010). https://doi.org/10.1007/s10958-010-9921-1

18. Goncharsky, A.V., Romanov, S.Y.: Iterative Methods for Solving Coefficient Inverse Prob-
lems of Wave Tomography in Models with Attenuation. Inverse Probl. 33(2), 025003 (2017).
https://doi.org/10.1088/1361-6420/33/2/025003

19. Global Optimization: From Theory to Implementation. Edition by Liberti, L., Maculan, N.
Springer (2006)

20. Gel’fand, I.M., Tsetlin, M.L.: Some methods of control for complex systems. Russian Mathe-
matical Surveys 17, 95–117 (1962). https://doi.org/10.1070/rm1962v017n01abeh001124

21. Sulimov, A.V., Zheltkov, D.A., Oferkin, I.V., et al.: Tensor Train Global Optimization: Ap-
plication to Docking in the Configuration Space with a Large Number of Dimensions. Com-
munications in Computer and Information Science (CCIS), vol. 793, pp. 151–167. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_12

22. Duric, N., Littrup, P., Li, C., et al.: Breast ultrasound tomography: bridging the gap to
clinical practice. Proc. SPIE, 8320, 83200O (2012). https://doi.org/10.1117/12.910988

23. Jirik, R., Peterlik, I., Ruiter, N., et al.: Sound-speed image reconstruction in sparse-aperture
3D ultrasound transmission tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
59, 254–264 (2012). https://doi.org/10.1109/tuffc.2012.2185

24. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: A computer simulation study of soft
tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67, 136–150
(2016). https://doi.org/10.1016/j.ultras.2016.01.008

25. Shen, Y., Shamout, F.E., Oliver, J.R., et al.: Artificial intelligence system reduces false-
positive findings in the interpretation of breast ultrasound exams. Nat. Commun. 12, 5645
(2021). https://doi.org/10.1038/s41467-021-26023-2

26. Natterer, F.: Sonic imaging. In: Scherzer O. (eds) Handbook of Mathematical Meth-
ods in Imaging, pp. 1253–1278. Springer, New York (2015). https://doi.org/10.1007/
978-1-4939-0790-8_37

Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography

106 Supercomputing Frontiers and Innovations

https://doi.org/10.1016/j.wavemoti.2013.10.001
https://doi.org/10.1016/j.jpdc.2019.06.008
https://doi.org/10.1137/s0036139901386375
https://doi.org/10.1137/s0036139901386375
https://doi.org/10.1007/s10958-010-9921-1
https://doi.org/10.1088/1361-6420/33/2/025003
https://doi.org/10.1070/rm1962v017n01abeh001124
https://doi.org/10.1007/978-3-319-71255-0_12
https://doi.org/10.1117/12.910988
https://doi.org/10.1109/tuffc.2012.2185
https://doi.org/10.1016/j.ultras.2016.01.008
https://doi.org/10.1038/s41467-021-26023-2
https://doi.org/10.1007/978-1-4939-0790-8_37
https://doi.org/10.1007/978-1-4939-0790-8_37

27. Bakushinsky, A., Goncharsky, A., Romanov, S., Seatzu, S.: On the identification of velocity
in seismics and in acoustic sounding. Pubblicazioni IAGA, Series “Problemi non ben posti e
inversi” 71 (1994)

28. Bakushinskii, A.B., Kozlov, A.I., Kokurin, M.Yu.: One Inverse Problem for a Three-
Dimensional Wave Equation. Computational Mathematics and Mathematical Physics 43(8),
1149–1158 (2003)

29. Bakushinskii, A.B., Leonov, A.S.: Low-cost numerical method for solving a coefficient inverse
problem for the wave equation in three-dimensional space. Computational Mathematics and
Mathematical Physics 58, 548–561 (2018). https://doi.org/10.1134/s0965542518040073

30. Klibanov, M.V., Li, J., Zhang, W.: Linear Lavrent’ev Integral Equation for the Numerical
Solution of a Nonlinear Coefficient Inverse Problem. SIAM J. Appl. Math. 81(5), 1954–1978
(2021). https://doi.org/10.1137/20M1376558

31. Hamilton, B., Bilbao, S.: Fourth-order and optimised finite difference schemes for the 2-D
wave equation. In: Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13).
pp. 363–395. Springer (2013)

32. Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale,
Deep Monitoring and Fine Analytics for the User Community. Supercomputing Frontiers
and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

33. Goncharsky, A., Seryozhnikov, S.: Supercomputer technology for ultrasound tomographic
image reconstruction: mathematical methods and experiment. In: Voevodin, V., Sobolev, S.
(eds) Supercomputing. RuSCDays 2018. Communications in Computer and Informa-
tion Science, vol. 965, pp. 401–413. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-05807-4_34

34. Romanov, S. Supercomputer simulation study of the convergence of iterative methods for
solving inverse problems of 3D acoustic tomography with the data on a cylindrical surface
// In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications
in Computer and Information Science, vol. 965, pp. 388–400. Springer, Cham (2019). https:
//doi.org/10.1007/978-3-030-05807-4_33

35. Rocki, K., Essendelft, D.V., Sharapov, I.: Fast stencil-code computation on a wafer-scale
processor. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (2020)

36. Lechleiter, A., Schlasche, J.W.: Identifying Lame parameters from time-dependent elastic
wave. Inverse Problems in Science and Engineering 25(1), 2–26 (2017). https://doi.org/
10.1080/17415977.2015.1132713

37. He, J., Rao, J., Fleming, J.D., et al.: Numerical ultrasonic full waveform inversion (FWI)
for complex structures in coupled 2D solid/fluid media. Smart Materials and Structures 30,
085044 (2021). https://doi.org/10.1088/1361-665X/ac0f44

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 107

https://doi.org/10.1134/s0965542518040073
https://doi.org/10.1137/20M1376558
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1007/978-3-030-05807-4_34
https://doi.org/10.1007/978-3-030-05807-4_34
https://doi.org/10.1007/978-3-030-05807-4_33
https://doi.org/10.1007/978-3-030-05807-4_33
https://doi.org/10.1080/17415977.2015.1132713
https://doi.org/10.1080/17415977.2015.1132713
https://doi.org/10.1088/1361-665X/ac0f44

	V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova
	A.V. Starchenko, E.A. Danilkin, S.A. Prokhanov, L.I. Kizhner, E.A. Shelmina
	V.M. Stepanenko
	F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla, R.S. Pereira, R. Castro, J.V. Silva, R. Salles, A. Fonseca, J. Hermsdorff, M. Magalhães, V. Sã, A.A. Simões, C. Cardoso, E. Bezerra
	H.F. Campos Velho, H.C.M. Furtado, S.B.M. Sambatti, C.O.F. Barros, M.E.S. Welter, R.P. Souto, D. Carvalho, D.O. Cardoso
	A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

