
Supercomputing
Frontiers

and Innovations
2021, Vol. 8, No. 4

Scope

• Future generation supercomputer architectures

• Exascale computing

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Novel approaches to computing targeted to solve intractable problems

• Convergence of high performance computing, machine learning and big data technologies

• Distributed operating systems and virtualization for highly scalable computing

• Management, administration, and monitoring of supercomputer systems

• Mass storage systems, protocols, and allocation

• Power consumption minimization for supercomputing systems

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Scientific visualization in supercomputing environments

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA
• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany

• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Andrei Tchernykh, CICESE Research Center, Mexico
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Yana Kraeva, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia

Contents

Technology for Supercomputer Simulation of Turbulent Flows in the Good New Days
of Exascale Computing
A.V. Gorobets, A.P. Duben . 4

Improving the Computational Efficiency of the Global SL-AV Numerical Weather
Prediction Model
M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman . 11

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics
Anomalies During the Next Winter in INMCM5 Model Data
M.A. Tarasevich, E.M. Volodin . 24

Representation of Spatial Data Processing Pipelines Using Relational Database
I.G. Okladnikov . 40

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer
Transport on HPC Systems: Comparison of CPU Architectures
E.V. Mortikov, A.V. Debolskiy . 50

Scalability as a Key Property of Mapping Computational Tasks to Supercomputer
Architecture
A.S. Antonov . 69

High-performance Shallow Water Model for Use on Massively Parallel
and Heterogeneous Computing Systems
A.V. Chaplygin, A.V. Gusev, N.A. Diansky . 74

PLUMED Plugin Integration into High Performance Pmemd Program for Enhanced
Molecular Dynamics Simulations
V.V. Drobot, E.M. Kirilin, K.E. Kopylov, V.K. Švedas . 94

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy
and Its Evaluation Based on Large-Eddy Simulations
A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov . 100

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.

Technology for Supercomputer Simulation of Turbulent Flows

in the Good New Days of Exascale Computing

Andrey V. Gorobets1, Alexey P. Duben1

c© The Authors 2021. This paper is published with open access at SuperFri.org

A technology for scale-resolving simulations of turbulent flows in the problems of aerody-

namics and aeroacoustics is presented. It is based on the higher accuracy numerical schemes on

unstructured mixed-element meshes and latest non-zonal hybrid approaches combining Reynolds-

averaged Navier – Stokes (RANS) and Large eddy simulation (LES) methods for turbulence mod-

eling. It targets a wide range of high performance computing (HPC) systems, from a compute

server or small cluster to an exascale supercomputer. The advantages of the key components of

the technology are summarized. These key components are a hybrid RANS-LES turbulence mod-

eling method, a numerical scheme for discretization in space, a parallel algorithm, and a portable

software implementation for modern hybrid systems with extra massive parallelism. Examples of

our simulations are given and parallel performance on various HPC systems is presented.

Keywords: computational fluid dynamics, turbulent flows, scale-resolving simulation, hybrid

RANS-LES approach, CPU+GPU, MPI+OpenMP+OpenCL.

Introduction

Hyrbid RANS-LES methods are widely recognized as the most efficient ones in terms of

cost/accuracy ratio in many computational aerodynamics and aeroacoustics applications [6, 11].

Such methods combine Reynolds-averaged Navier – Stokes (RANS) and Large Eddy Simula-

tion (LES) turbulence models. However, scale-resolving simulation of complex configurations

such as an entire aircraft is still too computationally expensive for widespread use in practice.

The growing computing power and the emergence of exascale supercomputers are expanding

the applicability of such resource-intensive applications. The evolution of high-accuracy schemes

and turbulence models is aimed at reducing requirements for mesh resolution, which leads to a

significant reduction in computational costs. The development of parallel algorithms and hetero-

geneous software implementations ensures efficient use of modern hybrid supercomputers. The

present work is devoted to the successful choice of these main components of the simulation

technology: hybrid turbulence modeling approaches, high-accuracy numerical schemes, parallel

algorithms and portable software implementation for hybrid supercomputers. In the following

sections, a combination of these key components is proposed and the advantages of the selected

state-of-the-art methods are outlined.

1. High-accuracy Schemes

To describe a turbulent flow, the Navier – Stokes equations for a viscous compressible

gas are discretized in space using unstructured mixed-element meshes. The following is required

from numerical schemes: high accuracy to provide sufficiently accurate solutions on much coarser

meshes than are needed for low order schemes, low computational cost, low memory requirements

to fit in scarce GPU memory, applicability to flows with discontinuities to simulate supersonic

flows, implicit time integration to overcome the time step constraints, which make it by far

unacceptably small due to the mesh step size in boundary layers. For spatial discretization, we

use vertex-centered edge-based reconstruction schemes (EBR) for smooth flows [1] (subsonic)

1Keldysh Institute of Applied Mathematics, RAS Moscow, Russian Federation

DOI: 10.14529/jsfi210401

4 Supercomputing Frontiers and Innovations

and flows with discontinuities [2] (supersonic). Quasi one-dimensional reconstruction of variables

with simple interpolation constructs significantly increases accuracy while keeping computational

cost almost equal to a basic compact low-order scheme. The EBR schemes have “superpowers” on

translationally-invariant meshes (such as structured Cartesian mesh zones), which allow reaching

the fifth order of accuracy. On arbitrary unstructured meshes, they can compete in terms of

accuracy with higher-order schemes, which are far more expensive. In the case of implicit time

integration, another advantage of EBR schemes consists in using a simplified Jacobian with

the same sparse matrix portrait as for a compact scheme with only direct nodal adjacency by

edges. This ability to discard additional nodal couplings of rather wide interpolation constructs

dramatically reduces memory consumption, which is critical on GPUs. In terms of accuracy, the

effect of using EBR schemes on the numerical solution is shown in Fig. 1. It is important to note

that the difference in computing cost with a low order scheme is within 15%. As a drawback, such

vertex-centered schemes require careful use in terms of mesh quality, especially in the transition

between structured and unstructured mesh areas. Certain stability or monotonicity problems

still remain to be solved.

Figure 1. The effect of using EBR schemes compared to a basic first order scheme (4.5 million

nodes mesh, round underexpanded jet, density gradient in the mid-span section)

2. Turbulence Modeling

For turbulence modeling, non-zonal hybrid approaches are used, which combine LES and

RANS. The former needs fine enough spatial and temporal resolution to capture accurately

relevant turbulent structures. The later requires much lower computational costs due to the

possibility of using coarser and anisotropic meshes, since only average flow gradients need to

be resolved. It is more widely, used but in many applications it can be inaccurate, especially in

flows with strong separation, or inapplicable if unsteady characteristics such as noise are needed.

Combining RANS in the near-wall regions and LES elsewhere allows taking advantages of both

methods: RANS significantly reduces resolution requirements in wall-tangential directions in

boundary layers, while LES efficiently reproduce unsteady flow features.

The following is required from modern turbulence modeling approaches: adaptive switching

between different modes depending on the mesh resolution and flow features; fast transition from

RANS to LES in shear layers; a minimum level of empiricism and user involvement; simplicity

of parallel implementation. In accordance with the above requirements, we suggest using the

following combination of methods. For faster RANS-LES transition (see Fig. 2), we use the

most recent formulations of the detached eddy simulation (DES) approach, the Delayed DES

(DDES) [14] and Improved DDES (IDDES) [10], but with alternative LES models and subgrid

length scales.

A.V. Gorobets, A.P. Duben

2021, Vol. 8, No. 4 5

Figure 2. Faster transition to turbulence in shear layers with the ∆lsq scale and S3QR LES

model (9 million nodes mesh, round subsonic jet, vorticity magnitude in the mid-span section)

The latest empiricism-free adaptive subgrid length scale ∆lsq [13, 16] is used because it

works just as well as the ∆SLA scale used in [10, 14], but it is much easier to implement for

unstructured meshes, simply on the basis of a gradient operator with minor modifications. The

S3PQR family models [15], used as an alternative LES model, self-adapt to the presence of walls

and are sensitive to quasi-2D flow structures, in contrast to Smagorinsky model in [14].

However, despite the fact that new advanced models and length scales have been recently

developed, the so-called gray area problem [12] (transition between RANS and LES) still remains

to a certain extent. The main efforts are now aimed at its further mitigation.

3. Parallel Computing

From the parallel computing perspective, the following is required: no scalability limi-

tations, distributed-memory parallelization with hiding of communication overhead, efficient

shared-memory parallelization for manycore CPUs, full compatibility with stream processing

on GPUs, heterogeneous co-execution on both CPU and GPU. These properties enable the use

of numerous computing devices, CPUs and GPUs, and open the way to the exascale level. We

use hierarchical parallelization based on multilevel mesh decomposition. The Message-passing

interface (MPI) is used at the upper level to couple hybrid cluster nodes and devices inside

nodes. To reduce network traffic, the mesh is decomposed first among hybrid nodes, then among

computing devices, manycore CPUs and GPUs. To hide the data transfer overhead, overlap-

ping communications and computations is used. At the lower level, OpenMP shared memory

decomposition-based parallelization is used for manycore CPUs and accelerators. The mesh sub-

domains of CPUs are further decomposed among parallel threads of MPI processes (instead of

using loop-based parallelism, which is less efficient on NUMA systems). Finally, to compute

on GPUs, the OpenCL standard is used. In contrast to the NVIDIA CUDA framework, it can

engage GPUs from different vendors, including NVIDIA, AMD, Intel. To use CPUs and GPUs

concurrently, their mesh subdomains are balanced according to the actual performance ratio.

The heterogeneous parallel algorithm is implemented in the NOISEtte code [8]. Further details

on parallel algorithm, adaptation of the numerical algorithm and software implementation to

GPU computing can be found in [7–9]. Examples of parallel speedups are shown in Fig. 3 for

CPUs, GPUs, and CPU+GPU co-execution (numerical configuration: EBR5 scheme, implicit

BDF2 scheme, hybrid RANS-LES approach). Relatively coarse meshes of up to 80 million nodes

are used in tests in order to observe the degradation of the parallel efficiency of the available

rather modest computational resources (on finer meshes, the parallel efficiency is too high to

evaluate the limits of parallelism).

Technology for Supercomputer Simulation of Turbulent Flows in the Good New Days of...

6 Supercomputing Frontiers and Innovations

(a) Intel Xeon 8160 (b) NVIDIA V100 (c) Intel Xeon E5-2697v3 + NVIDIA K40

Figure 3. Parallel speedups on supercomputers in CPU, GPU, and CPU+GPU computing modes

The summary of performance tests: execution on 36 NVIDIA V100 GPUs is as fast as on

10,000 CPU cores, about 0.27 s per implicit time step; co-execution on CPUs and GPUs on

Lomonosov-2 supercomputer (14-core CPU and NVIDIA K40 GPU per node) gives 25–30%

speedup compared to GPU-only execution; high parallel efficiency is observed when payload per

CPU core is above 10 thousand mesh nodes, or above 1 million nodes per GPU NVIDIA V100

(this load is more than enough to hide most of the exchanges behind computations). On meshes

of few billion nodes, several hundred thousand CPU cores or several thousand GPUs can be

engaged, which corresponds to computing resources of tens of PFLOPS. When performing a

series of simulations for multiple variants of geometry or flow conditions, an entire exascale

supercomputer can be fully occupied with high efficiency (if we live to see those bright days

when such systems will be available to us).

4. Applications

Below are typical examples of our scale-resolving simulations of problems in which stationary

RANS methods are either inapplicable or too problematic and inaccurate.

Modeling low-pressure turbine blades of turbofan engines is shown in Fig. 4. The presence

of laminar-turbulent (LT) transition and flow separation on the suction side of the blades makes

this configuration very problematic for RANS methods, even using LT models, since accurate

capturing of the transition location is critical for predicting integral characteristics. For instance,

RANS was unable to correctly reproduce the effect of total pressure loss observed in the exper-

iment, so scale-resolving simulations had to be performed, in which sufficiently accurate results

were obtained. Details on these simulations can be found in [5].

Due to the lack of computational resources, we usually consider only a section of a blade

in a linear cascade with periodic conditions when performing a series of simulations. An entire

blade has been simulated on meshes up to 150 million nodes so far, which is rather coarse. For

accurate simulations of entire blades, meshes with more than a billion of nodes are required.

Modeling aerodynamics and aeroacoustics of helicopter rotors and drone propellers is shown

in Fig. 5. In this case, RANS approaches are inapplicable for predicting broad-band aerodynamic

noise. This requires high-fidelity scale-resolving simulations. Meshes of about 100 million nodes

per blade are needed for resolving relevant flow structures. In our simulations, meshes of up to

400 million nodes have been used so far. More information, including validation and comparison

of RANS and DES results, can be found in [3, 4].

A.V. Gorobets, A.P. Duben

2021, Vol. 8, No. 4 7

(a) Q-criterion isosurfaces1 (b) density field in middle section

Figure 4. Flow in a low pressure turbine with LT transition present on the suction side

(a) Helicopter rotor

(b) Drone propeller

Figure 5. Simulation of rotors: turbulence (Q-criterion) and acoustics (time derivative of pres-

sure)

Currently available supercomputer resources allow modeling only separate fragments of air-

crafts. We typically use meshes of several hundred million nodes for industrial applications yet

(for meshes of the order of a billion nodes, only test runs were performed to demonstrate oper-

ability and robustness). The demonstrated parallel efficiency, as well as the inherent potential

of multilevel parallelism and the absence of scalability constraints, suggest that future exaflop

supercomputers will allow us to use meshes dozens of times more detailed and simulate such

complex configurations as an entire aircraft.

1Q = 0.5(‖Ω‖2 − ‖S‖2), where Ω and S are the vorticity and strain rate tensors, respectively.

Technology for Supercomputer Simulation of Turbulent Flows in the Good New Days of...

8 Supercomputing Frontiers and Innovations

Acknowledgements

This work was supported by Moscow Center of Fundamental and Applied Mathematics,

Agreement with the Ministry of Science and Higher Education of the Russian Federation,

No. 075-15-2019-1623. Results in Section 3 were obtained within the RSF project 19-11-00299.

The research is carried out using the equipment of the shared research facilities of HPC comput-

ing resources at Lomonosov Moscow State University [17], the equipment of Shared Resource

Center of KIAM RAS (http://ckp.kiam.ru). The authors thankfully acknowledge these institu-

tions.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Abalakin I., Bakhvalov P., Kozubskaya, T.: Edge-based reconstruction schemes for unstruc-

tured tetrahedral meshes. International Journal for Numerical Methods in Fluids 81(6),

331–356 (2016), https://doi.org/10.1002/fld.4187

2. Bakhvalov, P.A., Kozubskaya, T.K.: EBR-WENO scheme for solving gas dynamics problems

with discontinuities on unstructured meshes. Computers & Fluids 157, 312–324 (2017),

https://doi.org/10.1016/j.compfluid.2017.09.004

3. Bobkov, V., Abalikin, I., Kozubskaya, T.: Simulation of Helicopter Rotors On Unstructured

Mixed Meshes Using Edge-Based Reconstruction Schemes. WCCM-ECCOMAS2020 (2020).

https://doi.org/10.23967/wccm-eccomas.2020.308

4. Bobkov, V., Gorobets, A., Kozubskaya, T., et al.: Supercomputer Simulation of Turbulent

Flow Around Isolated UAV Rotor and Associated Acoustic Fields. RuSCDays 2021, CCIS

1510 (2021). https://doi.org/10.1007/978-3-030-92864-3_20

5. Duben, A.P., Kozubskaya, T.K., Marakueva, O.V., et al.: Simulation of flow over high-

lifted turbine cascade at low Reynolds numbers. Journal of Physics: Conference Series 1891,

012018 (2021). https://doi.org/10.1088/1742-6596/1891/1/012018

6. Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent

flows. Progress in Aerospace Sciences 44(5), 349–377 (2008). https://doi.org/10.1016/

j.paerosci.2008.05.001

7. Gorobets, A.V., Bakhvalov, P.A., Duben, A.P., et al.: Acceleration of NOISEtte Code for

Scale-Resolving Supercomputer Simulations of Turbulent Flows. Lobachevskii Journal of

Mathematics 41(8), 1463–1474 (2020), https://doi.org/10.1134/S1995080220080077

8. Gorobets, A.: Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations.

Lobachevskii Journal of Mathematics 39(4), 524–532 (2015), https://doi.org/10.1134/

S1995080218040078

9. Gorobets, A., Bakhvalov, P.: Improving Reliability of Supercomputer CFD Codes on Un-

structured Meshes. Supercomputing Frontiers and Innovations 6(4), 44–56 (2020). https:

//doi.org/10.14529/jsfi190403

A.V. Gorobets, A.P. Duben

2021, Vol. 8, No. 4 9

http://ckp.kiam.ru
https://doi.org/10.1002/fld.4187
https://doi.org/10.1016/j.compfluid.2017.09.004
https://doi.org/10.23967/wccm-eccomas.2020.308
https://doi.org/10.1007/978-3-030-92864-3_20
https://doi.org/10.1088/1742-6596/1891/1/012018
https://doi.org/10.1016/j.paerosci.2008.05.001
https://doi.org/10.1016/j.paerosci.2008.05.001
https://doi.org/10.1134/S1995080220080077
https://doi.org/10.1134/S1995080218040078
https://doi.org/10.1134/S1995080218040078
https://doi.org/10.14529/jsfi190403
https://doi.org/10.14529/jsfi190403

10. Guseva, E.K., Garbaruk, A.V., Strelets, M.K.: Assessment of Delayed DES and Improved

Delayed DES Combined with a Shear-Layer-Adapted Subgrid Length-Scale in Separated

Flows. Flow, Turbulence and Combustion 98, 481–502 (2017), https://doi.org/10.1007/

s10494-016-9769-7

11. Heinz, S.: A review of hybrid RANS-LES methods for turbulent flows: Concepts and appli-

cations. Progress in Aerospace Sciences 114, 100597 (2020). https://doi.org/10.1016/j.

paerosci.2019.100597

12. Mockett, C., Haase, W., Schwamborn, D. (eds.): Go4Hybrid: Grey Area Mitigation for

Hybrid RANS-LES Methods. Springer International Publishing (2018). https://doi.org/

10.1007/978-3-319-52995-0

13. Pont-Vı́lchez, A., Duben, A., Gorobets, A., et al.: New strategies for mitigating the gray

area in delayed-detached eddy simulation models. AIAA Journal pp. 1–15 (2021). https:

//doi.org/10.2514/1.j059666

14. Shur, M.L., Spalart, P.R., Strelets, M.K., et al.: An enhanced version of DES with rapid

transition from RANS to LES in separated flows. Flow, Turbulence and Combustion 95(4),

709–737 (2015). https://doi.org/10.1007/s10494-015-9618-0

15. Trias, F.X., Folch, D., Gorobets, A., et al.: Building proper invariants for eddy-viscosity

subgrid-scale models. Physics of Fluids 27, 065103 (2015), https://doi.org/10.1007/

s10494-016-9769-7

16. Trias, F.X., Gorobets, A., Silvis, M.H., et al.: A new subgrid characteristic length for

turbulence simulations on anisotropic grids. Physics of Fluids 29(11), 115109 (2017). https:

//doi.org/10.1063/1.5012546

17. Voevodin, Vl., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale,

Deep Monitoring and Fine Analytics for the User Community. Supercomputing Frontiers

and Innovations 6(2), 4–11 (2019), https://doi.org/10.14529/jsfi190201

Technology for Supercomputer Simulation of Turbulent Flows in the Good New Days of...

10 Supercomputing Frontiers and Innovations

https://doi.org/10.1007/s10494-016-9769-7
https://doi.org/10.1007/s10494-016-9769-7
https://doi.org/10.1016/j.paerosci.2019.100597
https://doi.org/10.1016/j.paerosci.2019.100597
https://doi.org/10.1007/978-3-319-52995-0
https://doi.org/10.1007/978-3-319-52995-0
https://doi.org/10.2514/1.j059666
https://doi.org/10.2514/1.j059666
https://doi.org/10.1007/s10494-015-9618-0
https://doi.org/10.1007/s10494-016-9769-7
https://doi.org/10.1007/s10494-016-9769-7
https://doi.org/10.1063/1.5012546
https://doi.org/10.1063/1.5012546
https://doi.org/10.14529/jsfi190201

Improving the Computational Efficiency of the Global SL-AV

Numerical Weather Prediction Model

Mikhail A. Tolstykh1,2 , Rostislav Yu. Fadeev1,2 ,

Vladimir V. Shashkin1,2 , Gordey S. Goyman1

c© The Authors 2021. This paper is published with open access at SuperFri.org

The recent works on improving the efficiency of the Russian SL-AV global numerical weather

prediction model both for medium- and long-range forecasts are described. The algorithmic im-

provements of SL-AV dynamical core, implementation of parallel I/O and several code optimiza-

tions are presented. We investigate the impact of single precision computations in some parts of

the code on present climate simulations. As a result of efforts described in this article, we are now

able to compute a 24-hour forecast for the model version having about 10 km horizontal resolution

and 104 vertical levels in 13 min using 2916 processor cores of Cray XC40 system. This timing

allows multiple experiments for tuning this new model and fits the requirements for operational

weather forecast. The single long-range forecast with low-resolution SL-AV version now takes just

89 minutes instead of 111. We have also verified that the partial utilization of single precision

computations produces approximately the same model climate as the previous version with fully

double precision computations.

Keywords: numerical weather prediction, global atmosphere model, computational efficiency,

I/O optimization.

Introduction

The common ways to improve medium-range (3–10 days) numerical weather prediction

is, first, to increase the prognostic model resolution, second, to take into account the model

uncertainty, and, third, to replace the atmosphere model with the coupled many-component

model incorporating atmosphere, ocean sea-ice models called Earth system model. Accounting

for model uncertainty is accomplished by the ensemble prediction that uses 20–100 runs of the

same model incorporating some perturbations and starting from the perturbed initial condi-

tions [12]. Using ensemble technique makes it also possible to produce a probabilistic forecast

of area-averaged anomalies of weather parameters for months ahead. Both medium-range and

long-range forecasting is usually done with the same global atmosphere model. As smaller scales

are less predictable than larger scales, a lower-resolution model is applied for long range predic-

tion. All the above mentioned applications require huge computer resources for timely forecast

delivery. Many computer systems of the world weather forecasting centres are present in the

supercomputer Top500 list [13].

A modern global atmosphere model should be able to use efficiently up to hundred of

thousands of processor cores. At the same time, the new concerns about climate change require

to weigh the advantages in weather prediction quality gained by the increase of resolution and/or

model complexity with respect to electric power consumption [5]. All these considerations lead

to increasing demands to the parallel efficiency of the atmosphere model code with different

resolutions, along with its portability to different architectures.

In this paper, we describe recent works on improving the computational efficiency of the SL-

AV global numerical weather prediction model both for medium-range and long-range forecasts

1Marchuk Institute of Numerical Mathematcis RAS, Moscow, Russian Federation
2Hydrometeorological Research Center, Moscow, Russian Federation

DOI: 10.14529/jsfi210402

2021, Vol. 8, No. 4 11

https://orcid.org/0000-0002-6908-1211
https://orcid.org/0000-0002-3928-9986
https://orcid.org/0000-0002-8950-6715
https://orcid.org/0000-0002-8975-7725

applications. This model is developed at Marchuk Institute of Numerical Mathematics Rus-

sian Academy of Sciences and Hydrometcenter of Russia. This model is applied for operational

medium-range and long-range weather forecasts [17]. Algorithms and their parallel implementa-

tion using one-dimensional MPI decomposition and OpenMP loop parallelization are described

in [15, 16]. The earlier code version demonstrated 53% efficiency at 9072 processor cores for

3024×1513×126 grid (without I/O) [20].

There is a new version of SL-AV model with horizontal resolution of about 10 km and

104 vertical levels (SL-AV10). Some works on its optimizations are presented in [18, 19]. The

elapsed time necessary to run a 24-hour forecast had reached 32 min at 4000 processor cores,

without I/O. The results achieved earlier are not sufficient for operational application of this

version of the SL-AV model that requires the 24-hour forecast to be computed in less than

20 minutes using less than 3000 processor cores. Furthermore, it is very time-consuming to

carry out complex tuning of all model parametrizations for subgrid-scale processes that are

mostly resolution-dependent. Such a tuning requires multiple numerical experiments involving

a series of forecasts for different seasons.

In this paper, recent algorithmic improvements of SL-AV dynamical core (Section 1), im-

plementation of parallel I/O (Section 2) and some code optimizations (Section 3) are presented.

In Section 4, we study the impact of the partial use of single precision computations introduced

earlier [19] on present climate simulation. All these works are summarized in Conclusions.

Cray XC40 system installed at Roshydromets Main Computing Center is used in all the

tests described in this article. It consists of 936 nodes with two Intel Xeon E2697v4 18-core

CPUs and 128 GB memory. All the nodes are connected with Cray ARIES inter-connect. The

peak performance is 1.29 PFlops. The system includes Lustre parallel file system. We use Cray

Fortran compiler version 10.0.3. We have also tried Intel Fortran Compiler version 19.1.254,

similar results are obtained. We also use NetCDF library version 4.7.4 in this study.

1. Algorithmic Improvements

For a long time during the development of SL-AV model, we observed a noise in the numerical

solution over the mountainous regions when using large values of the time step. To alleviate this

problem, we had to decrease the time step that compromised model efficiency. Actually, the

resulting time step value in operational medium range weather forecast was more than two

times smaller than in the ECMWF IFS model [7] that is similar to SL-AV model in many

aspects. In this section, we describe the modifications that allowed to get rid of the noise and

consequently increase the time step value and hence improve model efficiency.

Upon inspecting the orographic noise in the model, it turned out that it consists of ap-

proximately 100–200 km-scale stationary wave modes in geopotential height field. Initially, we

attributed this behaviour to the spurious orographic resonance – the known problem of semi-

implicit semi-Lagrangian atmospheric models [11]. However, the spurious modes were insensi-

tive to the common techniques of spurious orographic resonance damping [10, 11] (e.g., time

off-centering of Crank-Nicolson scheme).

It was noted that the noise amplitude is sensitive to the settings of the horizontal diffusion

block. Application of this kind of fields filtering is a common practice in atmospheric modelling

caused by the need to avoid enstrophy clustering near the smallest resolved scales due to non-

linear cascade [8]. The biharmonic hyper-diffusion operator with the implicit time-integration

scheme is applied in SL-AV model [16].

Improving the Computational Efficiency of the Global SL-AV Numerical Weather...

12 Supercomputing Frontiers and Innovations

The interesting fact is that this noise amplifies with the increase of diffusion coefficients,

contrary to the behavior one could normally expect. We then come to the conclusion that the

orographic noise in SL-AV model depends on the details of the diffusion implementation. To

investigate this effect, the diffusion-driven stationary orographic noise model is developed. This

model is based on the linearized shallow water model of [9] used to investigate properties of the

spurious resonant response of a semi-implicit semi-Lagrangian model to the orographic forcing.

The considerations [9] are modified to account for SL-AV specifics, the vorticity-divergence

representation of the flow and horizontal diffusion implementation.

We start from 1D non-linear shallow water equations system:

ut = −uux − ghx − gbx, (1)

ht = −uhx − hux, (2)

where u is the flow speed, h is the fluid layer thickness, b is bottom elevation (terrain height),

g is the gravity acceleration, subscripts indicate partial derivatives in space (x) and time (t).

This system is linearised with respect to the reference state with uniform fluid thickness H,

and wind speed U (u and h are now perturbations to the reference state):

ut = −Uux − ghx − gbx, (3)

ht = −Uhx −Hux. (4)

We apply then the standard semi-implicit semi-Lagrangian time integration scheme based

on the Crank-Nicolson method:

un+1 = −∆t

2

(
ghn+1

x + gbx
)

+A

(
un − ∆t

2
(ghnx + gbx)

)
, (5)

hn+1 = −∆t

2
Hun+1

x +A

(
hn − ∆t

2
Hunx

)
, (6)

where A is the linearised semi-Lagrangian advection operator: (Af)(x) = f(x − U∆t). Equa-

tions (5), (6) are linearised shallow water counterparts of the 3D equations used in SL-AV model.

The SL-AV model reformulates this system in terms of vorticity and divergence (in 1D case only

divergence is relevant variable). The prognostic equation for the divergence D = ux is obtained

after differentiation of wind equation (5) in x:

Dn+1 = −∆t

2

(
ghn+1

x + gbx
)
x

+

[
A

(
un − ∆t

2
(ghnx + gbx)

)]

x

. (7)

The height equation is also formulated using divergence, i.e. D is substituted for ux type terms.

Consider system (6), (7) for one Fourier harmonic eikx: (D,h)T = (D̂, ĥ)T eikx and b = b̂eikx.

The resulting equations are:

D̂n+1 = −∆t

2
(ik)2

(
gĥn+1 + gb̂

)
+ e−ikU∆t

(
D̂n − (ik)2 ∆t

2

(
gĥn + gb̂

))
, (8)

ĥn+1 = −∆t

2
HD̂n+1 + e−ikU∆t

(
ĥn − ∆t

2
HD̂n

)
, (9)

M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman

2021, Vol. 8, No. 4 13

where e−ikU∆t is the Fourier image of semi-Lagrangian advection operator A.

The SL-AV solution procedure for system (8, 9) is as follows. First, ĥn+1 is excluded from

(8) using (9) and the Helmholtz problem is solved for the divergence:

D̂n+1 + k2 ∆t2

4
gHD̂n+1 = R̂helm, (10)

where R̂helm is the combination of known time step n terms.

Second, artificial biharmonic diffusion (small scale filtering) is applied to the divergence:

D̂n+1∗ = D̂n+1/(1 + ∆tCk4), (11)

where C is the diffusion coefficient. After divergence filtering, ĥn+1 is calculated from equation (9)

by substitution of D̂n+1∗ for Dn+1. After all, hn+1 is filtered using the same scheme as for

divergence (11) (in the 3D model h is not filtered, the temperature that is closely related to h

by hydrostatic equation is filtered instead).

From shallow-water considerations, it may seem that filtering divergence at the same time

with h after solution of system (8, 9) will be more consistent. However, this early divergence

filtering makes sense in 3D model because it implies filtering of updates for some derived fields

like surface pressure and vertical velocity which will be left unfiltered otherwise (see Section 4

of [16]).

The calculation of D̂n+1, ĥn+1 using the procedure described above can be summarized by

the following equation: (
D̂

ĥ

)n+1

= Q

(
D̂

ĥ

)n+1

+R

(
b̂

0

)
, (12)

where Q and R are the matrices with complex entries describing the solution procedure. We

are interested in stationary orography-forced solutions of this system and their dependence on

the wave number k and diffusion coefficients. Stationary solutions can be found with setting

D̂n+1 = D̂n = D̂s, ĥ
n+1 = ĥn = ĥs in equation (12):

(
D̂s

ĥs

)
= (I −Q)−1R

(
b̂

0

)
. (13)

We investigate stationary orographic response properties for three different options of diffu-

sion application. The first is original SL-AV diffusion where the divergence is filtered right after

the Helmholtz problem solution and h field is not filtered at all (the diffusion coefficient for the

temperature in SL-AV is significantly smaller than for divergence). This option will be referred

to as ‘reference’. With the second option, the divergence is filtered after the calculation of hn+1,

h itself is not diffused (this will be referred to as ‘semi-consistent’). The third option is diffusion

application for both Dn+1, hn+1 after their calculation with the same coefficient (‘consistent’

option).

Figure 1 shows the amplitude of height field response to orographic forcing obtained numer-

ically using equation (13). The following non-dimensional parameters are used: U = 0.3, H = 1,

g = 1, ∆t = 0.1, b̂ = 1, C = 10−7. The black curve in the figure shows the exact response ampli-

tude, independent of the wavenumber k. The most spectacular feature in Fig. 1 is the blue curve

showing perfect spurious orographic resonance in the absence of any dissipation mechanisms.

The response amplitude reaches infinite values at about wave number k = 29π that corresponds

to the shortest scale motions in the real model. However, this curve is not relevant for the

Improving the Computational Efficiency of the Global SL-AV Numerical Weather...

14 Supercomputing Frontiers and Innovations

Figure 1. The amplitude of height field response to orographic forcing. Red curve – ‘reference’

scheme of diffusion application, green – ‘semi-consistent’ diffusion, blue – no diffusion, orange –

‘consistent’ diffusion, black – analytic response amplitude

real SL-AV model because both explicit (diffusion, Cranck-Nicolson off-centering) and implicit

(advection scheme damping) numerical dissipation will prevent the model from instability.

The red curve shows the response of the ‘reference’ scheme. This curve shows weak resonance

with wavelengths that are short enough, but still far from the shortest scales resolved on the

grid. We believe that exactly this scenario takes place in the model simulations. The reason for

the amplitude growth is the inconsistent application of diffusion breaking the balance between

D and h that makes orographic mode stationary and this is compensated by the exaggerated

growth of h amplitude. At the shortest scales, the resonance is effectively eliminated.

The green and orange curves in Fig. 1 show the response amplitude for ‘semi-consistent’

and ‘consistent’ schemes. The response of ‘consistent’ scheme is very close to the exact curve

for large and intermediate wavelengths, orographic waves are dumped out at the shortest scales.

The ‘semi-consistent scheme’ shows very weak amplification of response for intermediate and

short wave lengths.

Linearised shallow-water study, therefore, indicates that the ‘reference’ diffusion scheme

can spuriously amplify the orographic response at the scales well-resolved on the grid. ‘Semi-

consistent’ diffusion leads to much more accurate solutions. The best result is achieved with

‘consistent’ diffusion, suggesting that using the same diffusion coefficients for all fields might be

favourable.

The difference between diffusion application schemes can be noticed in the non-linear 3D

SL-AV model simulations as well as in the shallow-water model. The typical picture is given

in Fig. 2 that compares two SL-AV20 (approximately 24 km horizontal resolution) six-hour

forecasts of 500 hPa geopotential height field. Both forecasts are computed using the time step

value ∆t = 540 s that is 2.25 times greater than the operational time step. The forecast using

‘reference’ diffusion depicted in Fig. 2b suffers from evident orographic noise over North-Eurasia.

M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman

2021, Vol. 8, No. 4 15

Figure 2. 6-hour forecast of 500 hPa geopotential height field using SL-AV20 model configuration

with a) ‘semi-consistent diffusion’, b) ‘reference diffusion’

At the same time, the run with the ‘semi-consistent’ diffusion (Fig. 2a) is free of this deficiency.

The run with the ‘consistent’ diffusion scheme (not shown) is very similar to the ‘semi-consistent’

one. That means there is no strong evidence for using the same diffusion coefficients for all fields

in 3D model. The implementation of the ‘semi-consistent’ horizontal diffusion has allowed to

increase the time-step size of the SL-AV model by a factor of 2.25 with respect to the one

previously used. The elapsed time of the 24-hour forecast (without I/O) has reduced by the

same factor.

2. Code Optimizations

Historically, SL-AV model used a single array for the state vector of the model ~ϕ =

(u, v, T, q,D, ξ, ln ps)
T containing zonal and meridional components of wind field, temperature,

specific humidity, horizontal divergence, relative vorticity, logarithm of the surface pressure, re-

spectively. This array had the indices arrangement as (Nlon, 6Nlev + 5, Nj) in earlier versions

of the model, where Nlon – is the number of grid points along longitudinal direction, Nlev – is

the number of vertical levels and Nj – is the number of grid points along latitudinal direction

for a given MPI-process (the second dimension number is explained by the fact that the surface

pressure is a two-dimensional variable stored along with its derivatives). Such a data storage

organization was convenient in terms of computations parallelization (MPI and OpenMP par-

allelization along the latitudinal direction was used) since it allowed to perform MPI exchanges

for all state vector fields at a time without using buffer arrays. A demand to use more processor

Improving the Computational Efficiency of the Global SL-AV Numerical Weather...

16 Supercomputing Frontiers and Innovations

cores required to switch to use OpenMP loop parallelization along the other dimension (longi-

tude or Fourier space wave numbers). Taking into account the large volume of the model source

code, the simplest and most efficient way to organize such a transition required changing the

structure of the state vector array to (6Nlev+ 5, Nlon,Nj). This allowed to increase the maxi-

mum theoretical number of cores used from 865 to more than 10000 for the version of the SL-AV

model with the horizontal resolution of about 24 km [15]. However, new indices arrangement

is not optimal in terms of memory access, since it spoils the localization in memory of a given

grid-point field, especially in SL-AV10 model with about 10 km horizontal resolution. Indeed,

previously Nlon · Nlev values laid sequentially in memory, while now it is only Nlev values.

This led to a slowdown in the execution time of individual parts of the code, which at that time

was not very significant and was an acceptable price to pay for increasing the model scalability.

In the last few years, a number of works were carried out [18–20] that allowed to significantly

speed up the subgrid scale parametrizations and semi-Lagrangian advection blocks, being the

most time consuming parts of the model. The recent profiling of the model showed that the

slowdown associated with the use of a non-optimal state vector storage structure can no longer

be considered insignificant. Thus, we decided to replace the above mentioned state vector with

the individual arrays having dimensions (Nlev,Nlon,Nj) for each grid-point field in the state

vector.

The implementation of these changes results in a 16–22% speed up of the time step elapsed

time for the model with the grid dimensions 400 × 251 × 96. In particular, the time needed

to compute a single long-range forecast (in fact, single ensemble member) has decreased from

111 to 89 minutes. The effect of these optimizations is even more significant for the version

of the SL-AV model with the horizontal resolution of about 10 km and 104 vertical levels

(3600 × 1946 × 104 grid dimension). Experiments using 2916 processor cores (81 nodes with

6 MPI-processes and 6 OpenMP threads) show a decrease in execution time of a model time

step without I/O by about 30%, which leads to a 7-minute reduction of a runtime needed to

deliver a single 24-hour forecast.

3. I/O Optimizations

The typical horizontal resolution of a modern global atmosphere model (7–10 km) having

the problem size of order 109 requires high I/O efficiency as the typical size of the initial data

file is about some tens of gigabytes. Indeed, from 10 to 12 3D variables and about 20 2D vari-

ables need to be stored in this file. 3D variables in a modern atmosphere model include wind

speed components, temperature, specific humidity, 4–5 hydrometeors (i.e., rain droplets and ice

particles concentrations), ozone concentration, turbulent kinetic energy. Then the output fore-

cast information with a size of 3 GB needs to be stored every 1–3 hours depending on forecast

lead-time. This information usually consists of five 3D fields defined at isobaric surfaces (geopo-

tential, temperature, wind speed components, relative humidity) and 2D fields (precipitation,

near surface temperature, wind components, relative humidity, snow depth, etc).

It is known since long ago that the implementation of parallel input-output of data in an

atmospheric model can significantly accelerate its execution. Gradual establishment of MPI-IO

moved the focus towards interfaces convenient for atmosphere and Earth system models. So the

incorporation of parallel capabilities based on MPI-IO into NetCDF freeware library commonly

used in Earth system models and its model components [3] was natural. NetCDF file contains

M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman

2021, Vol. 8, No. 4 17

meta-data information making it portable and searchable. This format is supported by many

software packages used to manipulate, analyse and plot.

Historically, the GRIB (and GRIB2) formats [1] are generally accepted in the numerical

weather prediction community, contrary to the NetCDF format widely used in climate mod-

elling [6]. GRIB2 format allows to significantly compress data thus reducing the file size. Typ-

ically, a file in GRIB2 format is 2–3 times smaller than the file with the same single-precision

information written in NetCDF4 format without compression. Unfortunately, the compression

algorithm used in GRIB is essentially sequential. Recent NetCDF libraries (starting from ver-

sion 4.7.4) include parallel compression [2, 3], still the size of NetCDF file obtained with parallel

compression is significantly larger than GRIB2 file size.

There are advanced parallel I/O systems based on NetCDF format applied for many Earth

system models coupling many component models (atmosphere, ocean, sea ice, etc.) [4, 21].

We have earlier implemented parallel I/O in the SL-AV model using parallel NetCDF stan-

dard library routines [14]. We have now implemented an improved version of the parallel I/O

in the model but also in all technological accompanying code (preprocessing, postprocessing of

the output fields). The parallel I/O is tested for the new SL-AV medium-range forecast version

having horizontal resolution of about 10 km and 104 vertical levels.

Figure 3. Elapsed time in seconds for different I/O steps of SL-AV model code while using

2916 cores at Cray XC40. ML means writing the information at model levels; the content mostly

coincides with the initial data file. PL means writing prognostic information at pressure levels.

MSP means sequential I/O at the master process with gather/scatter data from/to all other

processes

The elapsed time for different I/O tasks in the SL-AV model using sequential and parallel

I/O is shown in Fig. 3. The results of using Lustre file system capabilities for accelerating parallel

I/O are also shown there.

One can see that using parallel I/O significantly accelerates this part of the code. Further

acceleration is achieved while using Lustre file system options. For example, the procedure of

reading the file with initial data is accelerated by a factor of 2.1 for parallel I/O alone and by

factor of 10 if this file is physically located at different hard disk drives as set by lfs setstripe

command.

Now the breakdown between different I/O components is as follows. Reading initial data at

the beginning of the forecasts takes approximately 30 seconds. 70 seconds is required to write

a file similar to the file with initial data which is used as a first guess file at the next forecast

Improving the Computational Efficiency of the Global SL-AV Numerical Weather...

18 Supercomputing Frontiers and Innovations

cycle (6-hour forecast), and just 14 seconds is needed to write postprocessed data at pressure

levels for the forecasts at all other lead times. This can be compared with the elapsed time of

the usual model time step that takes 2.3 s for the time steps without radiation computations

and 4.9 s for the time step including radiation calculations (this is every eighth step). Given

that the output of forecast fields at pressure levels is required every three hours, the I/O elapsed

time per forecast day is reduced from 440 sec to 120 sec for all forecast days other than the first

one. The similar numbers for the first forecast day are 715 and 182 sec, respectively.

4. Evaluating Single Precision Computations for Climate

Simulation

Earlier, the single precision calculations were introduced in some parts of the SL-AV model,

namely, in the parts solving elliptic equations on the sphere, semi-Lagrangian advection and

respective parallel data exchanges [19]. These parts of the SL-AV model are time consuming

and include intensive parallel communications. We have found the impact of reduced accuracy

on medium-range forecasts to be negligible [18], however, the impact of these changes on the

model climate has not yet been investigated. We address this issue in this Section.

Details on implementation of single precision in the SL-AV program complex are presented

in [19], so, we only briefly outline the main points here. The algorithm for solving elliptic

equations requires a global data transposition (parallel communication of the all-to-all type),

before and after the execution of this part of the code. To perform this communication, buffer

arrays with compile-time defined data type (single or double precision) are used. That is, when

using single precision, typecasting occurs during copying data to and from the buffer array

within parallel communication phase. In the semi-Lagrangian advection block, the values of the

grid-point fields to be interpolated to the departure points of the particles trajectories are stored

at the single array. This array is directly used when performing parallel halo exchanges in this

block, and its data type also can be switched to single precision. This allows to halve the size of

data to be sent.

The following versions of the SL-AV model are considered in this Section: the model version

with the reduced accuracy in the above mentioned parts, and a reference version of SL-AV

with double precision computations in respective parts. Experiments are also performed for the

‘intermediate’ versions of the SL-AV model, where single precision is used either in the data

transposition procedure (hereafter RATRAN experiment) or in the semi-Lagrangian scheme

(RASL experiment). The horizontal resolution is 0.72 by 0.9 degrees in latitude and longitude

respectively, the model has 96 vertical levels. The SL-AV model with this resolution is integrated

for 5 years of model time, using I/O setup typical for long-range forecasts. It is worth to note

that the new version of the model completes a year integration in 146 minutes as compared to

167 minutes for the version with double precision computations.

We define here the relative deviation of function f2 from function f1 as the l2 norm f2 − f1

divided by the l2 norm of f1. Figure 4 illustrates the relative deviation evolution for some model

characteristics for the new version of the SL-AV model with reduced accuracy with respect to

its reference version with double precision. The following fields are shown in this figure: the

zonal wind at 250 hPa, precipitation, zonal wind, temperature and geopotential at 850 hPa.

The averaging was performed over a period of integration time. It can be seen that the relative

deviation decreases with time for all of the variables (including those not presented in the figure).

M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman

2021, Vol. 8, No. 4 19

The maximum values of the relative deviation are reached on variables with large gradients: the

zonal wind and precipitation. Large gradients in these fields are achieved at the boundaries of

jets (for the zonal wind) and mountains (for precipitation). It should be noted that the relative

deviation of the zonal wind at 850 hPa is much larger than at 250 hPa, where much stronger

wind values are achieved. This means that the sensitivity of the atmospheric circulation in the

SL-AV model with respect to the accuracy of the calculations decreases with height.

Figure 4. Relative deviation as a function of time (months) of the new version of the SL-AV

model with reduced accuracy with respect to its reference version with double precision

The maximum value of the relative deviation of the 5-year averaged fields does not ex-

ceed 10%. Figure 5a illustrates the 5-year averaged zonal wind in the experiment based on the

new version of the SL-AV model with reduced accuracy. The deviation of this variable from

that obtained using the reference version of the SL-AV model with double precision is shown

in Fig. 5b. It can be seen that the maximum value of the relative deviation of the averaged fields

does not exceed 10% and is achieved due to a small shift of the jets. However, the magnitude of

the shift is not large and therefore it does not significantly affect most of the forecast fields.

The dashed and dotted green curves in Fig. 4 correspond to the relative deviation of the time-

averaged zonal wind at 850 hPa obtained in experiments performed using a version of the SL-AV

model with a partial transition to the reduced accuracy. The dotted curve here corresponds

to the application of single precision in the transposition procedure (RATRAN experiment),

and the dashed curve corresponds to single precision in the semi-Lagrangian scheme (RASL

experiment). It can be seen that the relative deviation of individual modifications compared

to the reference version of the SL-AV model is larger. The cumulative effect of introducing

single-precision calculations leads to a reduction in the relative deviation.

One can conclude that the introduction of the single precision calculations in the above

mentioned parts of the model does not affect the model climate to a significant extent.

Improving the Computational Efficiency of the Global SL-AV Numerical Weather...

20 Supercomputing Frontiers and Innovations

Figure 5. The 5-year time-averaged zonal wind at 850 hPa (top) and its absolute deviation in

the version of the SL-AV model with the reduced accuracy compared to its reference version

(bottom)

Conclusions

Initially, the elapsed time necessary to compute the 24-hour forecast with the SL-AV10 model

with the horizontal resolution of about 10 km and 104 vertical levels using about 4000 processor

was 42 minutes without time for I/O. The efforts undertaken in 2020 reduced this time to

32 min [19]. As mentioned above, this was still too much as the operational requirements impose

a limit of no more than 20 minutes. The number of processor cores had to be reduced to less

than 3000. As a result of the efforts described in this article, we are now able to compute the

24-hour SL-AV10 forecast in 13 min using 2916 processor cores. This timing allows multiple

experiments for tuning this new model and fits operational requirements. Also important is the

fact that the single long-range forecast (i.e., one ensemble member) with low-resolution SL-AV

version now takes just 89 min instead of 111 min.

We have investigated the impact of the partial use of single precision computations on

present climate simulations. It turns out that these model changes do not affect the model

climate significantly.

The results described in this paper allow us to extend and accelerate the work on further

model improvements.

M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman

2021, Vol. 8, No. 4 21

Acknowledgements

The authors are grateful to Vassily Mizyak, Radomir Zaripov, Svetlana Travova, Vladimir

Rogutov from Hydrometcenter of Russia who participate in model development and research.

The numerical experiments with the SL-AV model are carried out using Cray XC40 installed

at the Roshydromet Main Computer Center (MCC). Most of study (except for Section 4) was

performed at Hydrometcenter of Russia and supported by the Russian Science Foundation,

project 21-17-00254, https://rscf.ru/project/21-17-00254/.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Manual on Codes - International Codes, Volume I.2, Annex II to the WMO Technical

Regulations: Part B Binary Codes, Part C Common Features to Binary and Alphanumeric

Codes WMO-TD 611. Geneva, Switzerland (1994)

2. Learning HDF5. https://portal.hdfgroup.org/display/HDF5/Learning+HDF5 (2021),

accessed: 2021-10-21

3. Network common data form (NetCDF). https://www.unidata.ucar.edu/software/

netcdf/ (2021), accessed: 2021-10-21

4. Xios. XML-IO-Server. https://portal.enes.org/models/software-tools/xios (2021),

accessed: 2021-10-21

5. Bauer, P., Stevens, B., Hazeleger, W.: A digital twin of Earth for the green transition. Nature

Climate Change 11, 80–83 (2021). https://doi.org/10.1038/s41558-021-00986-y

6. Dennis, J.M., Edwards, J., Loy, R., et al.: An application-level parallel I/O library for Earth

system models. Int. J. High Perf. Comput. Appl. 26, 43–53 (2012). https://doi.org/10.

1177/1094342011428143

7. Hortal, M.: Aspects of the numerics of the ECMWF model. In: Procs. of the ECWMF

Seminar, September 7-11, 1998. Reading, UK (1999)

8. Jablonowski, C., Williamson, D.L.: The Pros and Cons of Diffusion, Filters and Fixers in

Atmospheric General Circulation Models, chap. 13, pp. 381–493. Springer (2011). https:

//doi.org/10.1007/978-3-642-11640-7_13

9. Lindberg, K., Alexeev, V.A.: A study of the spurious orographic resonance in semi-implicit

semi-Lagrangian models. Monthly Weather Review 128(6), 1982–1989 (2000). https://doi.

org/10.1175/1520-0493(2000)128<1982:ASOTSO>2.0.CO;2

10. Ritchie, H., Tanguay, M.: A comparison of spatially averaged Eulerian and semi-Lagrangian

treatments of mountains. Mon. Wea. Rev. 124, 167–181 (1996). https://doi.org/10.1175/

1520-0493(1996)124$<$0167:ACOSAE$>$2.0.CO;2

Improving the Computational Efficiency of the Global SL-AV Numerical Weather...

22 Supercomputing Frontiers and Innovations

https://portal.hdfgroup.org/display/HDF5/Learning+HDF5
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/
https://portal.enes.org/models/software-tools/xios
https://doi.org/10.1038/s41558-021-00986-y
https://doi.org/10.1177/1094342011428143
https://doi.org/10.1177/1094342011428143
https://doi.org/10.1007/978-3-642-11640-7_13
https://doi.org/10.1007/978-3-642-11640-7_13
https://doi.org/10.1175/1520-0493(2000)128<1982:ASOTSO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<1982:ASOTSO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124$<$0167:ACOSAE$>$2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124$<$0167:ACOSAE$>$2.0.CO;2

11. Rivest, C., Staniforth, A., Robert, A.: Spurious resonant response of semi-Lagrangian dis-

cretizations to orographic forcing: Diagnosis and solution. Monthly Weather Review 122(2),

366–376 (1994). https://doi.org/10.1175/1520-0493(1994)122<0366:SRROSL>2.0.CO;

2

12. Slingo, J., Palmer, T.: Uncertainty in weather and climate prediction. Phil. Trans. R. Soc.

A 369, 4751–4767 (2011). https://doi.org/10.1098/rsta.2011.0161

13. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: Top500 list. https://top500.org/

lists/top500/ (2021), accessed: 2021-10-21

14. Tolstykh, M., Fadeev, R., Mizyak, V.: Parallel program complex for numerical weather

prediction and climate modeling. In: CEUR Worskshop Proceedings. RuSCDays 2015 -

Proceedings of the 1st Russian Conference on Supercomputing Days 2015, Moscow, Russia,

September 28-29, 2015. vol. 1482, pp. 356–367 (2015)

15. Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V.: Structure and algorithms of SL-AV

atmosphere model parallel program complex. Lobachevskii Journal of Mathematics 39(4),

587–595 (2018). https://doi.org/10.1134/S1995080218040145

16. Tolstykh, M., Shashkin, V., Fadeev, R., Goyman, G.: Vorticity-divergence semi-Lagrangian

global atmospheric model SL-AV20: dynamical core. Geoscientific Model Development

10(5), 1961–1983 (2017). https://doi.org/10.5194/gmd-10-1961-2017

17. Tolstykh, M., Fadeev, R., Shashkin, V., et al.: Multiscale global atmosphere model SL-AV:

the results of medium-range weather forecasts. Russ. Meteorol. Hydrol. 43, 773–779 (2018).

https://doi.org/10.3103/S1068373918110080

18. Tolstykh, M., Goyman, G., Fadeev, R., et al.: Development of the global multiscale atmo-

sphere model: computational aspects. In: Journal of Physics: Conference Series. vol. 1740,

p. 012074. IOP Publishing (2021). https://doi.org/10.1088/1742-6596/1740/1/012074

19. Tolstykh, M.A., Goyman, G., Fadeev, R., Shashkin, V.V.: Implementation of SL-AV global

atmosphere model with 10 km horizontal resolution. In: Supercomputing - 6th Russian

Supercomputing Days, RuSCDays 2020, Moscow, Russia, September 21-22, 2020, Revised

Selected Papers. Communications in Computer and Information Science, vol. 1331, pp. 216–

225. Springer (2020). https://doi.org/10.1007/978-3-030-64616-5_19

20. Tolstykh, M.A., Goyman, G., Fadeev, R., et al.: SL-AV model: Numerical weather pre-

diction at extra-massively parallel supercomputer. In: Supercomputing - 4th Russian Su-

percomputing Days, RuSCDays 2018, Moscow, Russia, September 24-25, 2018, Revised

Selected Papers. Communications in Computer and Information Science, vol. 965, pp. 379–

387. Springer (2018). https://doi.org/10.1007/978-3-030-05807-4_32

21. Yang, R., Ward, M., Evans, B.: Parallel I/O in Flexible Modelling System (FMS) and

Modular Ocean Model 5 (MOM5). Geosci. Model Dev. 13, 1885–1902 (2020). https://

doi.org/10.5194/gmd-13-1885-2020

M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman

2021, Vol. 8, No. 4 23

https://doi.org/10.1175/1520-0493(1994)122<0366:SRROSL>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<0366:SRROSL>2.0.CO;2
https://doi.org/10.1098/rsta.2011.0161
https://top500.org/lists/top500/
https://top500.org/lists/top500/
https://doi.org/10.1134/S1995080218040145
https://doi.org/10.5194/gmd-10-1961-2017
https://doi.org/10.3103/S1068373918110080
https://doi.org/10.1088/1742-6596/1740/1/012074
https://doi.org/10.1007/978-3-030-64616-5_19
https://doi.org/10.1007/978-3-030-05807-4_32
https://doi.org/10.5194/gmd-13-1885-2020
https://doi.org/10.5194/gmd-13-1885-2020

The Influence of Autumn Eurasian Snow Cover

on the Atmospheric Dynamics Anomalies during the Next

Winter in INMCM5 Model Data

Maria A. Tarasevich1,2, Evgeny M. Volodin2

c© The Authors 2021. This paper is published with open access at SuperFri.org

The influence of autumn Eurasian snow cover on the atmospheric dynamics anomalies during

the following winter is studied based on the INM RAS climate model data. The North Atlantic

Oscillation is the leading pattern that causes the weather and climate variability in the Northern

hemisphere. We evaluate the up-to-date model version (INMCM5) ability of the autumn Eurasian

snow – winter NAO teleconnection simulation on different timescales. Maximum covariance analy-

sis (MCA) is used to find winter atmospheric signals that are significantly correlated with autumn

snow cover anomalies. Using MCA we conclude that Autumn Eurasian snow – winter NAO telecon-

nection is present in INMCM5 experiments on pre-industrial and present-day climate simulation.

However, this method fails to show this phenomenon in experiments on a seasonal timescale. We

conduct additional experiments on a seasonal timescale to assess the sensitivity of North Atlantic

Oscillation index predictability to initial snow cover perturbations. These experiments demonstrate

the absence of direct autumn Eurasian snow impact on the NAO index.

Keywords: climate model, seasonal hindcasts, North Atlantic Oscillation, Eurasian snow

cover, teleconnection.

Introduction

A leading pattern affecting winter weather and climate variability over Northern hemisphere

is the North Atlantic Oscillation (NAO) [17]. The NAO is defined as the fluctuation of the

pressure gradient between the Stykkishólmur (Icelandic Low) and the Ponta Delgada (Azores

High). The North Atlantic Oscillation represents the redistribution of atmospheric mass between

the Arctic and the subtropical Atlantic. So the switch of the NAO phases is accompanied by large

changes in surface air temperature, winds, storminess, and precipitation over the Atlantic as well

as the adjacent continents. Thus the North Atlantic Oscillation typifies wintertime weather in

Northern hemisphere extratropics. That is why the NAO phase prediction on seasonal to decadal

timescales is an active goal for climate science centres [8, 24, 25, 36].

Several observations-based studies [4, 5, 23] suggest the Eurasian snow cover in autumn as

a source of predictability of the North Atlantic Oscillation in winter. The dynamical mechanism

linking autumn Eurasian snow cover to the following wintertime climate is described in [4].

Modelling experiments forced with prescribed observations-based Eurasian snow cover

anomalies also reproduce this teleconnection [10, 11, 13]. However, even CMIP5, as well as

CMIP3 Earth system models, cannot recover the autumn Eurasian snow – winter NAO rela-

tionship with internally-generated snow cover [12, 14].

In this paper we evaluate the INM RAS climate model’s ability to simulate the autumn

Eurasian snow cover – winter North Atlantic Oscillation teleconnection on different time scales.

We also study the response of the model to initial snow cover perturbations.

The organization of this paper is as follows. Section 1 provides an overview of the INM RAS

climate model and the numerical experiments’ design. Section 2 describes the calculation of the

North Atlantic Oscillation index and the simulated data processing methods. Section 3 discusses

1Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
2Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russian Federation

DOI: 10.14529/jsfi210403

24 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0003-1073-7287

the results of simulating the teleconnection between Eurasian autumn snow and the following

winter NAO phase. Finally, the conclusions summarize the results.

1. Model and Data

For all simulations we use the climate model developed in the INM RAS. The model is

coupled, i. e., it consists of two global circulation ones: the atmosphere and the ocean models. The

atmosphere model performs the solution of the hydrothermodynamic equations with hydrostatic

approximation in advective form. The ocean model represents large scale hydrothermodynamic

equations with hydrostatic and Boussinesq approximations.

In the study we use the up-to-date version of the INM RAS climate model called IN-

MCM5 [30]. The spatial resolution of its global atmosphere circulation model is 2◦ × 1.5◦ in

longitude and latitude and 73 in vertical σ-levels. The stratosphere upper bound and its vertical

resolution are σ = 0.0002 (about 60 km) and 500 m respectively. The interactive aerosol mod-

ule [29] describing the concentration evolution of the 10 substances is included in the atmosphere

model. The ocean global circulation model has horizontal resolution of 0.5◦× 0.25◦ in longitude

and latitude and 40 vertical σ-levels. It includes dynamics and thermodynamics module [38] for

the sea ice with the elastic-viscous-plastic rheology with a single gradation of thickness.

The atmosphere and the ocean global circulation models and the aerosol module are imple-

mented as independent distributed applications that exchange data using MPI (Message Passing

Interface) library when working in coupled mode.

The atmosphere global circulation model uses a semi-implicit discretization scheme that

requires solving an auxiliary Helmholtz-type equation each dynamical step. In the current ver-

sion a fast Fourier transform based algorithm is used which parallel implementation requires

global data transposing. The scaling ability of this operation was studied in [22]. Different ap-

proaches that employ the multigrid method on massively-parallel architecture are shown to scale

better [21], but they require special hardware and are not used now.

The oceanic model step consists of several stages. The hardest stage of a step is the barotropic

adaptation because it requires solving a system of three implicitly discretized equations for the

velocity components and the ocean level. This system is solved iteratively using the PETSc

package for distributed computations [27].

The INMCM5 is good in simulation of the present-day climate [30, 31] as well as its changes

in 1850–2014 [28]. This version of the INM RAS climate model takes part in the Coupled Model

Intercomparison Project Phase 6 (CMIP6). In this study we use data of the following INMCM5

experiments: pre-industrial control (piControl), historical and seasonal hindcasts. The design of

the piControl and the historical experiments was supplied by the CMIP6 [9].

The piControl and the historical runs were performed on the supercomputer of the Joint

Supercomputer Center of the Russian Academy of Sciences (720 cores of 8-core Intel Xeon

E5-2690). The INMCM5 seasonal hindcasts were produced with the INM RAS supercomputer

(160 cores of 12-core Intel Xeon Silver 4214).

1.1. The piControl Run

The pre-industrial control simulation is performed under all forcings fixed at conditions

of the year of 1850. There are neither naturally occurring (e. g., volcanoes and Earth’s orbital

characteristics) nor human-induced (e. g., land usage and greenhouse gases emissions) changes in

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 25

forcings. As a part of the CMIP6, the piControl experiment is mostly used for the Earth system

models evaluation and simulation of the intrinsic climate variability. The INMCM5 piControl

run lasts for 1200 model years.

1.2. Historical Runs

The historical experiment is carried out under the evolving external forcings and the anthro-

pogenic changes in atmospheric composition. Time series of the total solar irradiance and solar

spectrum, greenhouse gases and stratospheric volcanic sulfate aerosol concentrations, as well as

anthropogenic emissions of SO2, black and organic carbon, are prescribed based on observations.

The ensemble of ten INM RAS climate model historical runs was computed. The runs started

with perturbed initial conditions obtained from the piControl one. The duration of each run is

165 model years from 1850 to 2014. The historical experiments demonstrate that INMCM5

simulates extreme climate and weather phenomena well [18, 26, 32].

1.3. Seasonal Hindcasts

Since recently we have been using the INMCM5 not only for climate modelling but also for

weather hindcasting on a seasonal timescale. To obtain a hindcast for a winter season we set the

initial states on November 1st. The initial states are constructed by eliminating the bias between

the simulated climate and the observed one. The bias is eliminated by adding anomalies based

on the reanalyses data to the INMCM5 1980–2014 climatology obtained from the ensemble of

historical runs [34, 35]. The reanalysis anomaly is the difference between the reanalysis data on

November 1st and its climatology. For the atmosphere and the land surface initial states we use

ERA-Interim reanalysis [7]. The ocean initial states are obtained from SODA3.4.2 reanalysis [3].

The ensemble of the INMCM5 seasonal hindcasts was performed [34, 35] for every winter in

the 1981–2015 period. Each hindcast lasts for 5 model months (November–March). The ensemble

consists of 10 members with slightly perturbed initial air temperature and wind speed. The

hindcasts data is available upon request from the authors. The correlation analysis of various

hindcasted weather fields and the study on the response to the quasi-biennial oscillation is

presented in [35]. The North Atlantic Oscillation and the Pacific-North American indices as well

as sudden stratospheric warming events predictability are discussed in [33, 34].

1.4. ERA5 Reanalysis

We compare the INMCM5 simulations with the state-of-the-art ERA5 reanalysis [15]. It is

based on the Integrated Forecasting System (IFS) Cy41r2 with the incremental 4D-Var [1] data

assimilation technique. The ERA5 covers the period from 1979 and continues to be extended

forward in near real time. For our purposes we download the reanalysis data with the INMCM5

horizontal resolution for the 1981–2015 winter seasons directly from C3S Climate Data Store.

2. Methods

2.1. Maximum Covariance Analysis (MCA)

Following [37] we use MCA to study the possible Eurasian autumn snow influence on the

winter Northern hemisphere atmospheric circulation anomalies. With maximum covariance anal-

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics...

26 Supercomputing Frontiers and Innovations

ysis two evolving fields Xi(t), Yj(t) are decomposed as:

Xi(t) = Xi +X
(1)
i a1(t) +X

(2)
i a2(t) + . . . ,

Yj(t) = Yj + Y
(1)
j b1(t) + Y

(2)
j b2(t) +

Here each new term is obtained by maximization of the covariance between ak(t) and bk(t),

X
(k)
i , Y

(k)
j – two families of orthogonal modes with respect to the standard discrete L2 inner

product given by (
Z(m)
p , Z(n)

p

)
L2

=
∑

p

wpZ
(m)
p Z(n)

p , wp = cosϕp,

where ϕp stands for latitude of the p-th field point and Z is either X or Y . To work with more

convenient Euclidean inner product, we scale the fields in the following manner

Z̃p =
√
wpZp,

(
Z(m)
p , Z(n)

p

)
L2

=
(
Z̃(m)
p , Z̃(n)

p

)
≡
∑

i

Z̃(m)
p Z̃(n)

p .

To perform MCA, we use singular value decomposition (SVD) [2]. First the covariance

matrix C is constructed:

C =
(
cij

)
, cij =

1

Nt

Nt∑

t=1

(
X̃i(t)− X̃i

)(
Ỹj(t)− Ỹj

)
,

then we compute the SVD of C:

cij =
r∑

k=1

σkX̃
(k)
i Ỹ

(k)
j , σk = cov

(
ak(t), bk(t)

)
≡ 1

Nt

Nt∑

t=1

ak(t)bk(t).

The obtained X̃
(k)
i , Ỹ

(k)
j are orthonormal as they are left and right singular vectors. The modes

X
(k)
i , Y

(k)
j are rescaled further to satisfy condition std ak(t) = std bk(t) = 1. Under this scaling

σk = corr
(
ak(t), bk(t)

)
.

In this research we apply the maximum covariance analysis in the region from 20◦N to 80◦N
for the following fields:

•
{
Xi(t)

}
– October–November Eurasian (10◦W–170◦W) snow cover percentage (SC) and

snow water equivalent (SWE) from the piControl and the historical runs; snow water

equivalent on November 1st (SWE1Nov) based on the ERA-Interim reanalysis from the

seasonal hindcasts;

•
{
Yj(t)

}
– December–February (DJF) averaged monthly mean sea level pressure (SLP)

produced by all of the considered INMCM5 experiments.

2.2. North Atlantic Oscillation (NAO) Index Calculation

The NAO index based on simulated or reanalyses data is usually calculated [16, 17] as

the expansion coefficient of the leading Empirical Orthogonal Function (EOF) of the sea level

pressure (SLP) anomalies over the Atlantic (20◦N–80◦N, 90◦W–40◦E). The leading EOF is the

first eigenvector of the SLP anomalies covariance matrix.

We compute the first empirical orthogonal function of winter (DJF) sea level pressure anoma-

lies for the 1981–2015 period. The monthly mean SLP we obtain from the ERA5 reanalysis data.

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 27

L

H
Azores

Iceland

−4

−2

0

2

4

Figure 1. The first empirical orthogonal function of the DJF 1981–2015 sea level pressure anoma-

lies based on ERA5 reanalysis data

The sea level pressure anomalies we compute relative to the reanalysis climatology over the con-

sidered period. Figure 1 shows the ERA5 leading EOF of the December–February averaged SLP

anomalies.

We calculate the winter North Atlantic Oscillation index as the projection of the DJF sea

level pressure anomalies on the ERA5 first empirical orthogonal function. We obtain Decem-

ber–February NAO index 1981–2015 time series NAOM and NAOR from the INMCM5 seasonal

hindcasts ensemble mean and the ERA5 reanalysis SLP anomalies respectively. The NAOM and

NAOR time series are normalized so that their standard deviations are equal to 1.

2.3. Composites of the Anomalies

2.3.1. DJF sea level pressure

We compute the DJF sea level pressure anomalies composite CSLP to find a pattern corre-

sponding to the negative phase of the North Atlantic Oscillation. Using the December–February

SLP over the 20◦–80◦N domain and NAOR obtained from the ERA5 reanalysis data we calculate

CSLP:

CSLP =

∑
y : NAOR(y)<0

(
SLP(y)− SLP

)
·NAOR(y)

∑
y : NAOR(y)<0

NAOR(y)
. (1)

From here and thereafter the y is the ordinal number of the year from the 1981–2015 period.

2.3.2. Snow water equivalent on November 1st

Snow water equivalent on November 1st SWE1Nov is used as initial state in seasonal hind-

casts. It is computed from the ERA-Interim reanalysis and INMCM5 historical runs data:

SWE1Nov(y) = SWE1Nov
M +

(
SWE1Nov

R (y)− SWE1Nov
R

)
· std

(
SWE1Nov

M

)

std
(
SWE1Nov

R

) . (2)

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics...

28 Supercomputing Frontiers and Innovations

With the SWE1Nov anomalies in Eurasia over the 25◦–80◦N latitudes and NAOM obtained

from the INMCM5 seasonal hindcasts we calculate CSWE1Nov :

CSWE1Nov =
1

35

35∑

y=1

(
SWE1Nov(y)− SWE1Nov

M

)
·
(
NAOM(y)−NAOM

)
. (3)

Under the assumption of simple linear relation between NAOM(y) and SWE1Nov(y) given

by

NAOM(y) = NAOM +

∫
A ·
(

SWE1Nov(y)− SWE1Nov
M

)
dΩ,

the CSWE1Nov represents the perturbation of snow water equivalent that would result in increasing

NAOM by 1:

∆NAOM =

∫
A · CSWE1Nov dΩ =

1

35

35∑

y=1

(
NAOM(y)−NAOM

)2
= var

(
NAOM(y)

)
= 1. (4)

2.4. Data Processing and Significance Assessment

The data of each INMCM5 experiment are grouped into a sequence of overlapping 35-

year intervals. For the piControl run we take every fifth year as interval start thus forming

234 intervals. For the historical runs we take each year as an interval start forming 130 intervals

per ensemble member. Finally, for the seasonal hindcasts we have a single 35-year interval per

ensemble member. In figures intervals are denoted by their first years.

For each of the 35-year intervals we perform MCA for the SLP and one of the snow describing

field (SC, SWE and SWE1Nov). Only the leading pair of modes X
(1)
i , Y

(1)
j is considered. We are

also interested in the following quantities:

• temporal correlation coefficient for the leading pair

σ1 = corr
(
a1(t), b1(t)

)
;

• fraction of snow field variance, explained by its first mode term

vX1 =
var
(
X

(1)
i a1(t)

)

varXi(t)
;

• same for the sea level pressure

vY1 =
var
(
Y

(1)
j b1(t)

)

varYj(t)
;

• spatial correlation coefficient between the pressure mode and the SLP composite

r = corrL2

(
Y

(1)
j , CSLP

)
.

The 95% confidence intervals for each quantity are estimated using bootstrap technique [6].

For each experiment we plot X
(1)
i and Y

(1)
j averaged by all intervals for which r is greater

than the fifth percentile of all r for that experiment, i. e., five percent of intervals with the least

correlation between the pressure mode and the SLP composite are excluded from the average.

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 29

3. Results

Following (1) we compute the sea level pressure anomaly composite that corresponds to the

negative NAO phase from the ERA5 reanalysis data. This composite is shown in Fig. 2. It is

later compared with pressure modes obtained by MCA.

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−6

−4

−2

0

2

4

6

Figure 2. Composite of the sea level pressure anomalies corresponding to the negative NAO

phase based on ERA5 reanalysis data (CSLP, hPa)

3.1. The piControl Run

From the piControl data we study the autumn snow – winter pressure teleconnection using

internally-generated snow cover percentage (SC) and snow water equivalent (SWE). We repeat

MCA for 234 overlapping 35-year intervals that span the 1200-year run period.

The results of MCA applied to SC–SLP and SWE–SLP pairs are summarized in Tab. 1 and

Tab. 2. Each table contains σ1, the temporal correlation between the leading modes of snow

and pressure; vSC1 , vSWE
1 , the fraction of variance that is explained by the first mode of snow;

vSLP1 , the fraction of variance that is explained by the first mode of pressure and r, the spatial

correlation between the SLP mode and CSLP.

Table 1. Results of MCA applied to SC–SLP pair from the piControl run

σ1,% vSC1 ,% vSLP1 ,% r,%

mean 74.1 7.1 28.2 65.9

95% confidence interval [73.4, 74.8] [6.9, 7.4] [27.4, 29.1] [63.8, 67.8]

Table 2. Results of MCA applied to SWE–SLP pair from the piControl run

σ1,% vSWE
1 ,% vSLP1 ,% r,%

mean 76.8 6.0 28.6 65.6

95% confidence interval [76.3, 77.4] [5.8, 6.1] [27.8, 29.4] [63.6, 67.2]

Figure 3 shows the spatial correlation coefficient r plotted against the first year of the

corresponding 35-year interval. For the most of intervals the correlation coefficient stays above

40%.

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics...

30 Supercomputing Frontiers and Innovations

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

p5 = 0.37
mean = 0.66

(a) SC–SLP pair

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

p5 = 0.41
mean = 0.66

(b) SWE–SLP pair

Figure 3. Spatial correlation coefficient r between the pressure mode and the SLP composite in

piControl run for series of 234 MCA experiments

Figures 4 and 5 show leading MCA modes for SC–SLP and SWE–SLP pairs averaged by

all intervals except for those where spatial correlation r was extremely low (below its fifth

percentile).

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) SC leading mode, %

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−3

−2

−1

0

1

2

3

(b) SLP leading mode, hPa

Figure 4. Averaged leading MCA modes for SC–SLP pair in piControl run

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−1.0

−0.5

0.0

0.5

1.0

(a) SWE leading mode, mm

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−3

−2

−1

0

1

2

3

(b) SLP leading mode, hPa

Figure 5. Averaged leading MCA modes for SWE–SLP pair in piControl run

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 31

The SLP leading mode for the SC–SLP and SWE–SLP pairs is almost the same. It demon-

strates typical North Atlantic Oscillation and Pacific-North American patterns.

The SC MCA first mode has its maximum in Siberia and its minimum in the East European

Plain and is in good agreement with the results from [37].

The SWE mode demonstrates similar to SC distribution, but extrema are located closer to

the North Pole.

3.2. Historical Runs

The key difference between piControl and historical runs is that the latter is carried out

under evolving forcings. Like in the piControl run the data is grouped in 35-year intervals, except

that now we take every model year as an interval start and have 10 ensemble members for each

interval. Following results are obtained by treating each ensemble member separately, i. e., no

ensemble averaging is performed to reduce the smoothing of the extrema.

Similar to piControl the MCA results for historical runs are summarized in Tab. 3 and

Tab. 4

Table 3. Results of MCA applied to SC–SLP pair from the historical runs

σ1,% vSC1 ,% vSLP1 ,% r,%

mean 72.9 6.9 29.0 63.8

95% confidence interval [72.7, 73.2] [6.8, 7.0] [28.7, 29.3] [62.8, 64.7]

Table 4. Results of MCA applied to SWE–SLP pair from the historical runs

σ1,% vSWE
1 ,% vSLP1 ,% r,%

mean 77.0 6.0 29.6 65.5

95% confidence interval [76.7, 77.2] [5.9, 6.1] [29.3, 30.0] [64.5, 66.4]

Figure 6 shows a scatter plot of the spatial correlation coefficient r for each of the 10 ensemble

members of the historical runs drawn against the first year of the corresponding interval.

0 20 40 60 80 100 120

−0.2

0.0

0.2

0.4

0.6

0.8

p5 = 0.33
mean = 0.64

(a) SC–SLP pair

0 20 40 60 80 100 120

−0.2

0.0

0.2

0.4

0.6

0.8

p5 = 0.32
mean = 0.65

(b) SWE–SLP pair

Figure 6. Spatial correlation coefficient r between the pressure mode and the SLP composite in

10 historical runs for series of 130 MCA experiments

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics...

32 Supercomputing Frontiers and Innovations

Just like in the piControl case we drop 5% of outliers with the least value of the spatial

correlation coefficient r for each ensemble member and average the resulting set of pressure and

snow modes. The averaged modes are presented in Fig. 7 and Fig. 8.

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) SC leading mode, %

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−3

−2

−1

0

1

2

3

(b) SLP leading mode, hPa

Figure 7. Averaged leading MCA modes for SC–SLP pair in historical runs

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−1.0

−0.5

0.0

0.5

1.0

(a) SWE leading mode, mm

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−3

−2

−1

0

1

2

3

(b) SLP leading mode, hPa

Figure 8. Averaged leading MCA modes for SWE–SLP pair in historical runs

The results obtained from historical runs are in excellent agreement with the ones from the

piControl run, except for the snow modes that are slightly smoother. We believe this is due to

averaging them over the individual ensemble members.

Comparing the results for piControl and historical runs we conclude that evolving forcings

do not produce any significant impact on the simulation of the considered phenomenon.

3.3. Seasonal Hindcasts

From the results for piControl and historical runs it becomes clear that there is no significant

difference whether we perform MCA on SC–SLP or SWE–SLP pair. In both cases we get quite

close results for numerical quantities (σ1, v1, r) as well as for averaged SLP mode.

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 33

Thus for the seasonal hindcasts we do not consider SC and only focus on SWE1Nov. The

other reason to do so is that SC is a diagnostic variable while SWE1Nov is a prognostic variable.

SWE1Nov is explicitly set in the initial conditions for the November 1st via (2).

For the seasonal hindcasts we have only one 35-year interval and 10 ensemble members. The

results of MCA performed for SWE1Nov and SLP are summarized in Tab. 5.

Table 5. Results of MCA applied to SWE1Nov–SLP pair from the seasonal

hindcasts

σ1,% vSC1 ,% vSWE1Nov

1 ,% r,%

mean 53.6 26.0 18.5 41.2

95% confidence interval [50.3, 57.5] [23.6, 27.5] [15.3, 21.2] [26.1, 55.2]

The SLP leading mode pattern presented in Fig. 9b shows resemblance to the patterns

obtained from piControl and historical runs, but the extrema in the Atlantic have less absolute

value. In contrast, the SWE1Nov pattern shown in Fig. 9a is noisy and lacks many features that

it has in piControl and historical runs, for example in the Eastern Europe and the Southern

Siberia regions.

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−1.0

−0.5

0.0

0.5

1.0

(a) SWE1Nov leading mode, mm

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−3

−2

−1

0

1

2

3

(b) SLP leading mode, hPa

Figure 9. Averaged leading MCA modes for SWE1Nov–SLP pair in seasonal hindcasts

The results from seasonal hindcasts significantly differ from the results in piControl and

historical runs. There may be several explanations for this inconsistency:

• SWE1Nov field is not internally generated by the model but supplied from reanalysis in-

stead;

• model run is not continuous because it is restarted each November 1st with new initial

conditions;

• snow itself might not be the only cause of the teleconnection.

3.4. NAO Sensitivity to Perturbations of Initial Snow Water Equivalent

To study the North Atlantic Oscillation sensitivity to snow water equivalent perturbations

we carry out an ensemble of runs similar to seasonal hindcasts. The snow water equivalent

anomaly is substituted with ±2·CSWE1Nov and the other initial states are taken equal to INMCM5

climatology computed from the historical runs. The ensemble consists of 30 runs for each of the

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics...

34 Supercomputing Frontiers and Innovations

SWE1Nov = SWE1Nov
M + 2 · CSWE1Nov (“addition”) and SWE1Nov = SWE1Nov

M − 2 · CSWE1Nov

(“subtraction”) experiments. The CSWE1Nov is obtained by (3) and is presented in Fig. 10a.

Assuming linear relation between NAO index and SWE1Nov we expect the NAO index to

be increased by 2 in the “addition” experiment and to be decreased by 2 in the “subtraction”

experiment according to (4).

The obtained values of NAO index for each ensemble member for both experiments are

presented in Fig. 10b. The mean values of NAO index are −0.07 (95% CI [−0.81, 0.70]) for

the “subtraction” experiment and 0.23 (95% CI [−0.56, 0.97]) for the “addition” experiment.

Mann-Whitney test [19], applied to the two series of NAO values produces pvalue = 0.46 which

means that there is no significant response in NAO index to altering SWE1Nov.

180°150°W

120°W

90°W

60°
W

30°W 0° 30°E

60°E

90°E

120
°E

150°E

15°N

30°N

45°N

60°N

75°N

−2

−1

0

1

2

(a) Snow water equivalent composite (CSWE1Nov ,

mm)

0 5 10 15 20 25 30

4

2

0

2

4

SWE1Nov = SWE1Nov
M 2CSWE1Nov

SWE1Nov = SWE1Nov
M + 2CSWE1Nov

(b) NAO index plotted against the number of run

Figure 10. Sensitivity experiments to snow water equivalent perturbations

Conclusion

The piControl and historical runs show that INMCM5 is capable of simulating the autumn

Eurasian snow – winter NAO teleconnection. This was not the case for the previous version

of the model (INMCM4) which participated in CMIP5 [12, 20]. A possible explanation is that

INMCM5 has a higher upper atmosphere bound than INMCM4 and has a finer vertical resolution

in the stratosphere. According to [4], the stratosphere plays a key role in the mechanism of the

teleconnection.

There is almost no difference in results obtained by applying MCA to SC–SLP and

SWE–SLP pair which indicate that both snow coverage and snow water equivalent may be

equally used to study the autumn snow influence on winter atmospheric circulation anoma-

lies. The leading MCA mode of the sea level pressure has both North Atlantic Oscillation and

Pacific-North American patterns.

A possible reason for INMCM5 seasonal hindcasts not capturing the phenomenon may be

the way we feed the model with the reanalysis data. Instant change in prognostic variables can

cause perturbations that might not settle on the seasonal time scale or might destroy the initial

state pattern. These perturbations can be reduced by employing continuous observational or

reanalysis data assimilation.

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 35

The experiments of altering initial snow water equivalent in INMCM5 seasonal hindcasts

indicate that Eurasian autumn snow itself does not significantly affect winter NAO. However,

good teleconnection simulation obtained in piControl and historical runs might also indicate

that autumn snow is only a manifestation of other phenomena that affect winter North Atlantic

Oscillation in INMCM5.

Acknowledgements

The research was supported by the Russian Science Foundation, project No. 20-17-00190

(analysis of the piControl and historical runs) and by the Russian Foundation for Basic Research,

project No. 20-05-00673 (analysis of the seasonal hindcasts and NAO sensitivity). The winter

seasonal hindcasts and the sensitivity experiments were obtained using the HPC computation

cluster at the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Bonavita, M., Hólm, E., Isaksen, L., Fisher, M.: The evolution of the ECMWF hybrid

data assimilation system. Quarterly Journal of the Royal Meteorological Society 142(694),

287–303 (2016). https://doi.org/10.1002/qj.2652

2. Bretherton, C.S., Smith, C., Wallace, J.M.: An Intercomparison of Methods for Finding

Coupled Patterns in Climate Data. Journal of Climate 5(6), 541–560 (1992). https://doi.

org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2

3. Carton, J.A., Chepurin, G.A., Chen, L.: SODA3: A New Ocean Climate Reanalysis. Journal

of Climate 31(17), 6967–6983 (2018). https://doi.org/10.1175/JCLI-D-18-0149.1

4. Cohen, J., Barlow, M., Kushner, P.J., Saito, K.: Stratosphere-Troposphere Coupling and

Links with Eurasian Land Surface Variability. Journal of Climate 20(21), 5335–5343 (2007).

https://doi.org/10.1175/2007JCLI1725.1

5. Cohen, J., Entekhabi, D.: Eurasian snow cover variability and northern hemisphere climate

predictability. Geophysical Research Letters 26(3), 345–348 (1999). https://doi.org/10.

1029/1998GL900321

6. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and their Application. Cambridge Uni-

versity Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511802843

7. Dee, D.P., Uppala, S.M., Simmons, A.J., et al.: The ERA-Interim reanalysis: configuration

and performance of the data assimilation system. Quarterly Journal of the Royal Meteoro-

logical Society 137(656), 553–597 (2011). https://doi.org/10.1002/qj.828

8. Dunstone, N., Smith, D., Scaife, A.: Skilful predictions of the winter North Atlantic Os-

cillation one year ahead. Nature Geoscience 9(11), 809–814 (2016). https://doi.org/10.

1038/ngeo2824

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics...

36 Supercomputing Frontiers and Innovations

https://doi.org/10.1002/qj.2652
https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
https://doi.org/10.1175/JCLI-D-18-0149.1
https://doi.org/10.1175/2007JCLI1725.1
https://doi.org/10.1029/1998GL900321
https://doi.org/10.1029/1998GL900321
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1002/qj.828
https://doi.org/10.1038/ngeo2824
https://doi.org/10.1038/ngeo2824

9. Eyring, V., Bony, S., Meehl, G.A., et al.: Overview of the Coupled Model Intercompari-

son Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model

Development 9(5), 1937–1958 (2016). https://doi.org/10.5194/gmd-9-1937-2016

10. Fletcher, C.G., Hardiman, S.C., Kushner, P.J., Cohen, J.: The Dynamical Response to

Snow Cover Perturbations in a Large Ensemble of Atmospheric GCM Integrations. Journal

of Climate 22(5), 1208–1222 (2009). https://doi.org/10.1175/2008JCLI2505.1

11. Fletcher, C.G., Kushner, P.J., Cohen, J.: Stratospheric control of the extratropical cir-

culation response to surface forcing. Geophysical Research Letters 34(21), L21802 (2007).

https://doi.org/10.1029/2007GL031626

12. Furtado, J.C., Cohen, J.L., Butler, A.H., et al.: Eurasian snow cover variability and links to

winter climate in the CMIP5 models. Climate Dynamics 45(9), 2591–2605 (2015). https:

//doi.org/10.1007/s00382-015-2494-4

13. Gong, G., Entekhabi, D., Cohen, J.: Modeled Northern Hemisphere Winter Climate Re-

sponse to Realistic Siberian Snow Anomalies. Journal of Climate 16(23), 3917–3931 (2003).

https://doi.org/10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2

14. Hardiman, S.C., Kushner, P.J., Cohen, J.: Investigating the ability of general circula-

tion models to capture the effects of Eurasian snow cover on winter climate. Journal of

Geophysical Research: Atmospheres 113(D21), 123 (2008). https://doi.org/10.1029/

2008JD010623

15. Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis. Quarterly Journal

of the Royal Meteorological Society 146(730), 1999–2049 (2020). https://doi.org/10.

1002/qj.3803

16. Hurrell, J.W.: Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and

Precipitation. Science 269(5224), 676–679 (1995). https://doi.org/10.1126/science.

269.5224.676

17. Hurrell, J.W., Deser, C.: North Atlantic climate variability: The role of the North Atlantic

Oscillation. Journal of Marine Systems 78(1), 28–41 (2009). https://doi.org/10.1016/j.

jmarsys.2008.11.026

18. Kim, Y.H., Min, S.K., Zhang, X., et al.: Evaluation of the CMIP6 multi-model ensemble

for climate extreme indices. Weather and Climate Extremes 29, 100269 (2020). https:

//doi.org/10.1016/j.wace.2020.100269

19. Mann, H.B., Whitney, D.R.: On a Test of Whether one of Two Random Variables is

Stochastically Larger than the Other. The Annals of Mathematical Statistics 18(1), 50–60

(1947). https://doi.org/10.1214/aoms/1177730491

20. Martynova, Y.V.: October snow cover and winter atmospheric conditions in Siberia.

In: International Young Scientists School and Conference on Computational Informa-

tion Technologies for Environmental Sciences, May 27 – June 6, 2019. IOP Conference

Series: Earth and Environmental Science, vol. 386, p. 012001. IOP Publishing (2019).

https://doi.org/10.1088/1755-1315/386/1/012001

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 37

https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/2008JCLI2505.1
https://doi.org/10.1029/2007GL031626
https://doi.org/10.1007/s00382-015-2494-4
https://doi.org/10.1007/s00382-015-2494-4
https://doi.org/10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2
https://doi.org/10.1029/2008JD010623
https://doi.org/10.1029/2008JD010623
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1126/science.269.5224.676
https://doi.org/10.1126/science.269.5224.676
https://doi.org/10.1016/j.jmarsys.2008.11.026
https://doi.org/10.1016/j.jmarsys.2008.11.026
https://doi.org/10.1016/j.wace.2020.100269
https://doi.org/10.1016/j.wace.2020.100269
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1088/1755-1315/386/1/012001

21. Mortikov, E.: The efficiency of the implementation of iterative methods for the solution of

elliptic equations in atmospheric general circulation models on massively parallel systems.

In: Sobolev, S., Voevodin, V. (eds.) 1st Russian Conference on Supercomputing Days 2015,

RuSCDays 2015s. CEUR Workshop Proceedings, vol. 1482, pp. 528–534. CEUR-WS (2015),

http://ceur-ws.org/Vol-1482/528.pdf

22. Mortikov, E.V.: Improving scalability of the high spatial resolution earth system model soft-

ware complex. In: Parallelnye vychislitelnye tekhnologii (PaVT 2015). pp. 431–435 (2015),

http://omega.sp.susu.ru/books/conference/PaVT2015/short/102.pdf, (in Russian)

23. Saito, K., Cohen, J., Entekhabi, D.: Evolution of Atmospheric Response to Early-Season

Eurasian Snow Cover Anomalies. Monthly Weather Review 129(11), 2746–2760 (2001).

https://doi.org/10.1175/1520-0493(2001)129<2746:EOARTE>2.0.CO;2

24. Scaife, A.A., Arribas, A., Blockley, E.: Skillful long-range prediction of European and North

American winters. Geophysical Research Letters 41(7), 2514–2519 (2014). https://doi.

org/10.1002/2014GL059637

25. Smith, D.M., Scaife, A.A., Eade, R.: Seasonal to decadal prediction of the winter North

Atlantic Oscillation: emerging capability and future prospects. Quarterly Journal of the

Royal Meteorological Society 142(695), 611–617 (2016). https://doi.org/10.1002/qj.

2479

26. Tarasevich, M.A., Volodin, E.M.: Influence of various parameters of INM RAS climate model

on the results of extreme precipitation simulation. In: International Young Scientists School

and Conference on Computational Information Technologies for Environmental Sciences,

May 27 – June 6, 2019. IOP Conference Series: Earth and Environmental Science, vol. 386,

p. 012012. IOP Publishing (2019). https://doi.org/10.1088/1755-1315/386/1/012012

27. Terekhov, K.M., Volodin, E.M., Gusev, A.V.: Methods and efficiency estimation of parallel

implementation of the σ-model of general ocean circulation. Russ. J. Numer. Anal. Math.

Modelling 26(2), 189–208 (2011). https://doi.org/10.1515/rjnamm.2011.011

28. Volodin, E.M., Gritsun, A.S.: Simulation of observed climate changes in 1850–2014 with

climate model INM-CM5. Earth System Dynamics 9(4), 1235–1242 (2018). https://doi.

org/10.5194/esd-9-1235-2018

29. Volodin, E.M., Kostrykin, S.V.: The aerosol module in the INM RAS climate model.

Russian Meteorology and Hydrology 41(8), 519–528 (2016). https://doi.org/10.3103/

S106837391608001X

30. Volodin, E.M., Mortikov, E.V., Kostrykin, S.V., et al.: Simulation of modern climate with

the new version of the INM RAS climate model. Izvestiya, Atmospheric and Oceanic Physics

53(2), 142–155 (2017). https://doi.org/10.1134/S0001433817020128

31. Volodin, E.M., Mortikov, E.V., Kostrykin, S.V., et al.: Simulation of the present-day climate

with the climate model INMCM5. Climate Dynamics 49(11), 3715–3734 (2017). https:

//doi.org/10.1007/s00382-017-3539-7

The Influence of Autumn Eurasian Snow Cover on the Atmospheric Dynamics...

38 Supercomputing Frontiers and Innovations

http://ceur-ws.org/Vol-1482/528.pdf
http://omega.sp.susu.ru/books/conference/PaVT2015/short/102.pdf
https://doi.org/10.1175/1520-0493(2001)129<2746:EOARTE>2.0.CO;2
https://doi.org/10.1002/2014GL059637
https://doi.org/10.1002/2014GL059637
https://doi.org/10.1002/qj.2479
https://doi.org/10.1002/qj.2479
https://doi.org/10.1088/1755-1315/386/1/012012
https://doi.org/10.1515/rjnamm.2011.011
https://doi.org/10.5194/esd-9-1235-2018
https://doi.org/10.5194/esd-9-1235-2018
https://doi.org/10.3103/S106837391608001X
https://doi.org/10.3103/S106837391608001X
https://doi.org/10.1134/S0001433817020128
https://doi.org/10.1007/s00382-017-3539-7
https://doi.org/10.1007/s00382-017-3539-7

32. Volodin, E.M., Tarasevich, M.A.: Simulation of Climate and Weather Extreme Indices with

the INM-CM5 Climate Model. Russian Meteorology and Hydrology 43(11), 756–762 (2018).

https://doi.org/10.3103/S1068373918110067

33. Vorobyeva, V., Volodin, E.: Analysis of the predictability of stratospheric variability and

climate indices based on seasonal retrospective forecasts of the INM RAS climate model.

Russian Journal of Numerical Analysis and Mathematical Modelling 36(2), 117–126 (2021).

https://doi.org/10.1515/rnam-2021-0010

34. Vorobyeva, V., Volodin, E.: Evaluation of the INM RAS climate model skill in climate indices

and stratospheric anomalies on seasonal timescale. Tellus A: Dynamic Meteorology and

Oceanography 73(1), 1–12 (2021). https://doi.org/10.1080/16000870.2021.1892435

35. Vorobyeva, V.V., Volodin, E.M.: Experimental Studies of Seasonal Weather Predictability

Based on the INM RAS Climate Model. Mathematical Models and Computer Simulations

13(4), 571–578 (2021). https://doi.org/10.1134/S2070048221040232

36. Wang, L., Ting, M., Kushner, P.J.: A robust empirical seasonal prediction of winter

NAO and surface climate. Scientific Reports 7(1), 279 (2016). https://doi.org/10.1038/

s41598-017-00353-y

37. Wu, Q., Hu, H., Zhang, L.: Observed Influences of Autumn-Early Winter Eurasian Snow

Cover Anomalies on the Hemispheric PNA-like Variability in Winter. Journal of Climate

24(7), 2017–2023 (2011). https://doi.org/10.1175/2011JCLI4236.1

38. Yakovlev, N.G.: Reproduction of the large-scale state of water and sea ice in the Arctic

Ocean in 1948–2002: Part I. Numerical model. Izvestiya, Atmospheric and Oceanic Physics

45(3), 357–371 (2009). https://doi.org/10.1134/S0001433809030098

M.A. Tarasevich, E.M. Volodin

2021, Vol. 8, No. 4 39

https://doi.org/10.3103/S1068373918110067
https://doi.org/10.1515/rnam-2021-0010
https://doi.org/10.1080/16000870.2021.1892435
https://doi.org/10.1134/S2070048221040232
https://doi.org/10.1038/s41598-017-00353-y
https://doi.org/10.1038/s41598-017-00353-y
https://doi.org/10.1175/2011JCLI4236.1
https://doi.org/10.1134/S0001433809030098

Representation of Spatial Data Processing Pipelines Using

Relational Database

Igor G. Okladnikov1,2

c© The Author 2021. This paper is published with open access at SuperFri.org

A methodology for representation of spatial data processing pipelines using relational database

within the framework of the computing backend of the online information-analytical system “Cli-

mate” (http://climate.scert.ru) is proposed. Each pipeline is represented by a sequence of

instructions for the computing backend describing how to run data processing modules and pass

datasets between them (from the output of one module to the input of another one), including

raw data and final computational results obtained in graphical or binary formats. Using relational

database for storing descriptions of processing pipelines used in the “Climate” system provides

flexibility and efficiency while adding and developing spatial data processing modules. It also

provides computing pipelines scaling for further implementation for multiprocessor systems.

Keywords: spatial data, information systems, databases, workflow, directed multigraph, pro-

cessing pipeline, climate research.

Introduction

Usually, data analysis process represents a set of sequential operations starting from data

search and retrieval and ending with the output of results in the required format. Depending

on the complexity of the research method chosen, such a sequence might consist of three or

more relatively simple computational procedures where intermediate results are passed from

one to another. For instance, to calculate a quite simple climatic index “Monthly maximum

of minimum daily temperatures”, first it is necessary to read data from corresponding files

(https://www.climdex.org/learn/indices/#index-Tnx), then to find the minimum daily

values, then in the obtained values to find the monthly maximum value and finally to dis-

play and save the result, for example, in the graphical format. In the case when it is addi-

tionally necessary to calculate the trend of the index over several years one more operation is

added. Practically in most studies such a procedure is either completely or partially a man-

ual process when each such operation is performed by a researcher independently using various

software products, starting from the very beginning every time. To automate this process spe-

cialized software products aimed at eliminating the need for regular routine actions and thereby

speeding up the research might be used. One of such software products is the information-

analytical system “Climate” [1] which allows solving problems of various range of complexity

for the Earth science field, so that hiding complex technical and routine operations from the

system user. However, even to be able to use the automation tools for computational processes,

user (or developer) needs special skills and considerable time to form the necessary sequences

of operations, namely, computing pipelines, for each separate type of data processing and anal-

ysis. Thus, an urgent task is to formalize the representation of computing (data processing)

pipelines in a convenient and standardized form, that makes it possible to facilitate and force

the process of their formation, modification, and reuse. This will contribute to the implemen-

tation of the current FAIR principles used for the management of scientific data and results

(https://www.go-fair.org/fair-principles/), within the framework of any information-

1Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy

of Sciences, Tomsk, Russian Federation
2Federal Research Center for Information and Computational Technologies, Tomsk, Russian Federation

DOI: 10.14529/jsfi210404

40 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0003-0356-4410

analytical system. This paper describes a methodology for representing computing pipelines as

modified labeled oriented multigraphs with their subsequent translation to relational database.

The methodology is quite universal and might be adapted for other information and analytical

systems.

1. General Approach

Within the framework of the digital information-analytical system “Climate”, the developed

computing modules providing unified programming interface are used for spatial data internal

batch processing. A computing module is an isolated set of internal data structures and functions

(class) that has an application programming interface (API) for input arguments (input data and

control parameters), returning results (output data), and running module itself. A computational

module can be represented as a function f , such that Y = f(X), where X is a vector of

arguments, Y is a vector of results, and each element of the vector is a multidimensional array

of spatial data. A sequence of computing module calls where the results of one module are

passed to the input of another one forms a computing pipeline. The pipeline described using one

of the conventional technical formats (XML, JSON, etc.) is passed to the computing backend

of the system which sequentially runs modules providing them with the necessary data and

parameters. As a rule, the first module in the conveyor receives as an input one or more datasets,

representing multidimensional arrays of climatic data obtained as a result of numerical modeling

or observations. Subsequently, the datasets, representing intermediate processing results, are

transferred along the pipeline from module to module. This procedure, aimed at performing a

specialized processing of climatic data by “running” them through the computing pipeline, is

known within the framework of the system by the name “processor”. Each type of data processing

(for example, the calculation of the specific climatic index) has its own processor. Parameters

of the processor consist of the set parameters of the corresponding computing modules. Each

parameter can take one of several valid values (or range of values). These can be threshold values

of some measurable quantity (for example, the daily maximum temperature that must be greater

than the threshold value of 25◦C for calculating the climatic index “Number of summer days”

and less than 0◦C for calculating the index “Number of frost days”), or the choice of the one of the

predetermined time period types for which an index is defined (day, month, year, etc.). Different

values of the processor parameters affect the operation of its constituent computing modules

and lead to different results. “Processor configuration” is a set of parameters of the computing

pipeline that took one of the valid values. As part of the interaction with the “Climate” system

the user selects a processor using a graphical interface and sets its parameters which are then

passed to the computing modules thereby forming a specific configuration. Processor parameters

have two types: variables (user-defined) and constants. The values of the variable parameters

depend on the choice the user made using the interface. Constant parameter values do not change

and are the inherent properties of each processor.

In the process of developing the digital information-analytical system “Climate”, the first

version of the metadata database was developed, built on the basis of the MySQL DBMS and

designed to store information about the spatial datasets and processors available to the user [2].

As a result of the evolutionary development of the system it became obvious that the information

about the processors in the metadata database should be extended using descriptions of the com-

puting pipelines associated with these processors. The previously used approach to representing

computing pipelines as separate XML files [3] proved to be inconvenient and unpromising from

I.G. Okladnikov

2021, Vol. 8, No. 4 41

the point of view of further system development. The adding of the computing pipeline descrip-

tions to the metadata database provides flexibility and efficiency to the procedure of extending

the computing backend functionality. It also provides the “client-server” model realization at

the computing backend level, that, in turn, increases flexibility and reliability of its functioning

within the framework of the distributed computing technology implemented in the “Climate”

system.

To represent a computing pipeline within the scope of the relational database such as

MySQL, initially it is convenient to display it as a graph reflecting the workflow [4]. Such

a graph should describe not only the sequence of operations, but also the directions of the

datasets transferred between them, thus separating the data flow and the control flow [5]. As it

is shown in the number of related works, this task is solved by introducing additional properties

to the graph (for instance, state vectors or “messages” of various types to pass the information

between operations), labels of vertices and arcs, etc. [5–8]. Within the framework of the digital

information-analytical system “Climate” to represent the computing pipeline in the form of a

graph with its following translation to relational database, only the necessary additional con-

structions are introduced: labels of vertices and arcs. Using these, a specific computing module

is assigned to each vertex, and dataset passed from one module to another is assigned to each

arc. The dataset might represent processor parameters as well as intermediate or final results of

calculations. Each arc has additional numeric labels that indicate the position of each dataset

in the result data vector and in the vector of computing module arguments (thus defining the

order of arguments and results for each dataset and computing module). Then, key-value pairs

are associated with some vertices to specify the condition of their presence in the graph. It is

generally accepted to use a labeled oriented multigraph [9] as a basis for representing such a

workflow. The multigraph should be modified by adding extra labels for vertices and end labels

for arcs.

The following is the methodology for representing the workflow of the data processing

pipeline using modified labeled oriented multigraph as well as an information model that provides

its implementation in the advanced version of the metadata database of the digital information-

analytical system “Climate”.

2. Methodology

2.1. Data Processing Pipeline Graph Representation

First, the workflow of an arbitrary computing pipeline might be presented as a simple labeled

oriented multigraph G (V,A, s, t,ΣV ,ΣA, lV , lA), where V is the set of the graph vertices; A is

a set of arcs connecting them; s : A → V , t : A → V — two mappings that define the source

and target vertices of an arc; ΣV , ΣA are two sets of labels of vertices and arcs containing the

names of computing modules and datasets, respectively; lV : V → ΣV , lA : A → ΣA are two

mappings that assign labels to vertices and arcs. The vertices of such a graph correspond to the

associated computing module calls, and the arcs correspond to the operations of transferring

control, datasets, and processor parameters between modules. Let us modify this graph so that

it fully reflects the computing pipeline of the “Climate” system.

Conditional vertices. Let us assume that K is a set of names of processor parameters,

W is a set of corresponding allowed parameter values and the mapping Z : K → W defines

which values each parameter can take. Let us introduce the mapping F : V c → Z that defines

Representation of Spatial Data Processing Pipelines Using Relational Database

42 Supercomputing Frontiers and Innovations

for graph vertices belonging to the set V c ⊂ V the conditions in the form of “key-value” pairs

which consist in the equality of the parameter k ∈ K to the one of the allowed values Z (k).

The vertex vc ∈ V c is suggested to be called “conditional”, and the set F (V c) is the “set

of graph conditions”. A graph GG containing conditional vertices will be called “generalized”.

The generalized graph takes its final form only at runtime of the computing backend. Due to

this fact, different computing pipelines can be formed from the same generalized graph “on the

fly” both for different processors as well as for different configurations of the same processor

depending on the user’s choice. The graph GD ⊆ GG that has taken its final form at runtime

of the computing backend will be called “determined”. An example of the generalized graph

containing a conditional vertex (highlighted by a dotted line) is shown in Fig. 1.

Figure 1. Generalized graph containing the conditional vertex 3. The condition of vertex ex-

istence in the processor current configuration is the presence of the parameter “key” with the

value “value”

Let us introduce a conditional vertex deleting rules: 1) if a conditional vertex is removed

from the generalized graph, then the incoming arc of the deleted vertex is redirected to the vertex

to which the outgoing arc of the deleted vertex is directed; 2) if there are several incoming arcs,

then all of them are redirected to the vertex to which the outgoing arc of the deleted vertex is

directed; 3) if there are several outgoing arcs, then the incoming arc is redirected to each vertex

where the outgoing arcs belonging to the removed vertex are directed; 4) if a vertex has several

incoming and outgoing arcs, then such a vertex cannot be deleted and, therefore, cannot be

conditional. Arcs corresponding to data transmission only are not considered and are removed

along with the vertex.

If the condition associated with the conditional vertex is met for the processor configuration

selected by the user, then at runtime the conditional vertex is preserved in the graph (GD ≡ GG)

(see Fig. 2).

If the condition associated with the conditional vertex is not met for the processor configura-

tion selected by the user (the configuration does not contain the corresponding parameter-value

pair), the conditional vertex at runtime is removed from the graph according to the introduced

vertex deleting rule thereby forming a subgraph GD ⊆ GG (see Fig. 3).

Thanks to this technique different processors can use the same generalized graph, building

on its basis the required computing pipeline using their own configuration.

End labels of arcs. The arcs A of the labeled oriented multigraph G representing a

computing pipeline of the “Climate” system correspond either to the operations of transferring

control and datasets between the computing modules or only to the operations of transferring

data that determine the configuration of the processor. The vertex of the graph arc comes out

I.G. Okladnikov

2021, Vol. 8, No. 4 43

Figure 2. Graph with the vertex 3 when the condition is met

Figure 3. Subgraph when the vertex 3 is absent since the condition is not met

from will be called “source”, and the vertex into which the arc enters – “target”. The set ΣA

contains special labels corresponding to different datasets or processor properties. If several

datasets are passed from one module to another, multiple arcs with their own identification are

introduced between the corresponding vertices of the graph, using one for each dataset. Since

the order of the arguments and results is important to the module, each arc should be assigned

two additional “end” labels: “output index” and “input index”. When considering the dataset

corresponding to an arc, the output index is its position in the vector of the source vertex results,

and the input index is the position in the vector of the target vertex arguments. To connect arcs

with these labels two mappings should be introduced lo : A→ N , li : A→ N , which determine

the source vertex output index and the target vertex input index of each arc, where N is the set

of natural numbers. The generalized graph with added arc end labels is shown in Fig. 4.

Figure 4. Processing pipeline graph containing conditional vertex and arc labels

Representation of Spatial Data Processing Pipelines Using Relational Database

44 Supercomputing Frontiers and Innovations

Thus, the computing pipeline of the “Climate” system might be represented as a generalized

modified labeled oriented multigraph GG (V,A,Z, F, s, t,ΣV ,ΣA, lV , lA, lo, li) that takes its final

form (forming the required computing pipeline) only at runtime of the computing backend based

on the processor configuration specified by the user interacting with the graphical interface.

Additionally, it should be noted that due to the specifics of the task manager of the Climate

platform, the presence of loops in graphs is not allowed.

2.2. Representation of the Computing Pipeline Graph in the Relational

Database

To translate the graph of the computing pipeline to the relational database, an appropriate

information model should be developed. The following entities will be required:

• graph vertex,

• computing module,

• graph arc,

• dataset,

• processor,

• processor configuration,

• parameter,

• parameter value,

• computing pipeline.

Several processors might be associated with a single computing pipeline. Each pipeline

is represented as a graph consisting of vertices and arcs. Each vertex is associated with the

corresponding computational module, and if the vertex is conditional, with a parameter-value

pair (combination) specifying the condition. Each arc connects two vertices (source and target),

the output index of the source vertex, the input index of the target vertex, and the dataset

label associated with the arc. The computing module always has a unique name. The parameter

also has a unique name, valid parameter values having unique values. The processor has a

unique name and is associated with the processor configuration. The processor configuration is

associated with pairs of parameter names and valid values. Each parameter can correspond to

several valid values that it can take. And each valid value can be matched by several parameters

that can take it. Datasets have unique conditional labels.

The conceptual diagram of the information model displaying a computing pipeline graph is

as follows:

1. processor

(a) processor ID (PK);

(b) pipeline ID (FK).

2. computing pipeline

(a) pipeline ID (PK);

(b) pipeline description.

3. vertex

(a) vertex ID (PK);

(b) computing module ID (FK);

(c) ID of combination specifying the condition (FK).

4. arc

(a) arc ID (PK);

I.G. Okladnikov

2021, Vol. 8, No. 4 45

(b) pipeline ID (FK);

(c) source vertex ID (FK);

(d) target vertex ID (FK);

(e) source vertex output index;

(f) target vertex input index;

(g) dataset ID (FK).

5. computing module

(a) computing module ID (PK);

(b) computing module name.

6. parameter

(a) parameter ID (PK);

(b) parameter name.

7. parameter value

(a) parameter value ID (PK);

(b) parameter value name.

8. dataset

(a) dataset ID (PK);

(b) dataset label.

9. processor configuration

(a) processor configuration ID (PK);

(b) processor configuration description.

10. combination (“parameter-value” pair)

(a) combination ID (PK);

(b) parameter ID (FK);

(c) parameter value ID (FK).

11. processor has processor configuration

(a) processor ID (FK);

(b) processor configuration ID (FK);

12. processor configuration contains a combination

(a) processor configuration ID (FK);

(b) combination ID (FK).

Here PK mean primary key attributes while FK mean foreign key attributes. The conceptual

ER diagram using Crow’s Foot notation [10] is presented in Fig. 5.

2.3. Building the Computing Pipeline Based on the Relational Database

To build a computing pipeline based on the information contained in the relational database,

it is necessary to execute several SQL queries. The nature and specification of such queries

depends on the specific DBMS and SQL language version, so they are not presented in this work.

The result of the SQL queries execution is the information about the vertices and associated

computing modules as well as the arcs that connect them. Having this information in mind, it

is possible to restore a generalized computing pipeline graph in the computer’s RAM using any

conventional way (for instance, using an adjacency list by the method of Guido van Rossum,

https://www.python.org/doc/essays/graphs/).

To be able to obtain a generalized graph specific implementation, it is required having a list of

parameters selected by the user, to enumerate all the conditional vertices of the built generalized

Representation of Spatial Data Processing Pipelines Using Relational Database

46 Supercomputing Frontiers and Innovations

processor

processor ID INT

pipeline ID INT

parameter value

parameter value ID INT

parameter value name VARCHAR(145)

parameter

parameter ID INT

parameter name VARCHAR(145)

processor has processor configuration

processor ID INT

processor configuration ID INT

computing module

computing module ID INT

computing module name VARCHAR(100)

vertex

vertex ID INT

computing module ID INT

combination ID INT

dataset

dataset ID INT

dataset label VARCHAR(45)

arc

arc ID INT

pipeline ID INT

source vertex ID INT

source vertex output index INT

target vertex ID INT

target vertex input index INT

dataset ID INT

computing pipeline

pipeline ID INT

pipeline description VARCHAR(245)

processor configuration

processor configuration ID INT

processor configuration description VARCHAR(245)

combination

combination ID INT

parameter ID INT

parameter value ID INT
processor configuration contains combination

processor configuration ID INT

combination ID INT

Figure 5. ER model representing a processing pipeline generalized graph

graph and then, according to the methodology presented in this work, to delete those that do not

meet the conditions. The graph obtained represents a sequence of operations of the computing

pipeline that meets the user’s requirements. The sequence might be extracted, for example, by

performing starting from the starting vertex a complete traversal of the graph using the breadth-

first search method [11]. Then the operation sequence should be transformed into description

of the computing pipeline with the following transfer to the corresponding computing unit of

the system backend. A single pipeline can be associated with several processors thus providing

the reuse of already developed pipelines. In this case the mechanism of conditional vertices

allows, using various parameters of the processor, to obtain various specific implementations of

computing pipelines. This reduces the time required to add new processors to the system and

greatly simplifies the work of developers thus speeding up the process of bringing new features

to the system users.

2.4. Climatic Index Example

Let us consider a simple case based on the example of building a computing pipeline for the

“Monthly maximum of daily minimum temperatures” index (Fig. 6).

The figure depicts a generalized graph for a given data processing pipeline. The following

constant vertices corresponding to the computing modules can be distinguished: cvcCalcMaxi-

mum, which basically calculates the index at each point of the geographic grid, and cvcOutput

which outputs the results of the computations in the format required. The yellow dashed line out-

lines the conditional vertices cvcCalcTrendTM calculating the trend values, and cvcCalcTiMean

which associated module calculates the average values of the index in the case the user se-

lects more than one annual period for processing (then the index is calculated for the selected

I.G. Okladnikov

2021, Vol. 8, No. 4 47

Figure 6. Processing pipeline of the climate index “Monthly maximum of daily minimum tem-

peratures”

month of each year, for example, July). The preserving condition for the cvcCalcTrendTM ver-

tex is the presence of the “Trend” parameter with the “yes” value (the user selected the trend

calculation using the graphical interface), and for the cvcCalcTiMean vertex – the “Trend” pa-

rameter with the “no” value (the user did not select the trend calculation). Thus, a specific

pipeline implementation contains only one of these conditional vertices. The INPUT DATA 1

arc corresponds to the dataset being processed, for example, the ERA-Interim reanalysis [12],

the INPUT PARAMETERS 1 arc corresponds to the configuration parameters of the processor

(computing modules), the RESULT 1 and RESULT 2 arcs correspond to the intermediate cal-

culation results in the form of datasets, OUTPUT IMAGE arc corresponds to the calculation

result in the graphical format (GeoTIFF, Shapefile), and OUTPUT RAW arcs correspond to the

calculation results in the format of a multidimensional binary array of spatial data (NetCDF).

Conclusion

The proposed methodology allows to effectively represent spatial data processing pipelines in

the relational metadata database of the digital information-analytical system “Climate”. Thanks

to the “generalized” graph approach different processors can use the same graph. Based on the

graph different computing pipelines are generated for different values of configuration parame-

ters. Translating descriptions of generalized computing pipelines to relational database provides

flexibility and efficiency in adding new and revising existing spatial data processing modules

as well as provides computing pipelines scaling for further implementation for multiprocessor

systems. The methodology is substantially universal and might be adapted for other information

and analytical systems, as well as find application in other subject areas.

Representation of Spatial Data Processing Pipelines Using Relational Database

48 Supercomputing Frontiers and Innovations

Acknowledgements

The reported study was funded by the State project No. 121031300158-9.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Gordov, E., Shiklomanov, A., Okladnikov, I., et al.: Development of Distributed Research

Center for analysis of regional climatic and environmental changes. IOP Conference Se-

ries: Earth and Environmental Science 48, 012033 (2016). https://doi.org/10.1088/

1755-1315/48/1/012033

2. Okladnikov, I.G., Gordov, E.P., Titov, A.G.: Development of climate data storage and

processing model. IOP Conference Series: Earth and Environmental Science 48, 012030

(2016). https://doi.org/10.1088/1755-1315/48/1/012030

3. Okladnikov, I.G.: Computing core of a software package for “cloud” analysis of climate

change and the environment. IOP Conference Series: Earth and Environmental Science 611,

012058 (2020). https://doi.org/10.1088/1755-1315/611/1/012058

4. Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. Wiley-Blackwell,

New York (1980)

5. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with

graphs. International Conference on Learning Representations (ICLR) (2018). https:

//openreview.net/pdf?id=BJOFETxR-

6. Chang, C.L.: Interpretation and execution of fuzzy programs. In: Zadeh, L.A., et al. (eds.)

Fuzzy Sets and Their Applications to Cognitive and Decision Process, pp. 191–218. Academic

Press, New York (1975)

7. Averkin, A.N., Batyrshin, I.Z., Blishun, A.F., et al.: Fuzzy sets in models of control and

artificial intelligence. Nauka, Moscow (1986)

8. Li, Yu., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks.

International Conference on Learning Representations (ICLR) (2015). https://arxiv.org/

pdf/1511.05493.pdf

9. Balakrishnan, V.K.: Graph Theory. McGraw-Hill (1997)

10. Halpin, T.: Entity Relationship modeling from an ORM perspective: Part 1. Object Role

Modeling. http://www.orm.net/pdf/JCM11.pdf, accessed: 2020-02-25

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (3rd

ed.). MIT Press and McGraw-Hill, Cambridge (2009)

12. Dee, D.P., Uppala, S.M., Simmons, A.J., et al.: The ERAInterim reanalysis: Configuration

and performance of the data assimilation system. Quarterly Journal of the royal meteoro-

logical society 137(656), 553–597 (2011). https://doi.org/10.1002/qj.828

I.G. Okladnikov

2021, Vol. 8, No. 4 49

https://doi.org/10.1088/1755-1315/48/1/012033
https://doi.org/10.1088/1755-1315/48/1/012033
https://doi.org/10.1088/1755-1315/48/1/012030
https://doi.org/10.1088/1755-1315/611/1/012058
https://openreview.net/pdf?id=BJOFETxR-
https://openreview.net/pdf?id=BJOFETxR-
https://arxiv.org/pdf/1511.05493.pdf
https://arxiv.org/pdf/1511.05493.pdf
http://www.orm.net/pdf/JCM11.pdf
https://doi.org/10.1002/qj.828

Direct Numerical Simulation of Stratified Turbulent Flows
and Passive Tracer Transport on HPC Systems: Comparison
of CPU Architectures

Evgeny V. Mortikov1,2,3 , Andrey V. Debolskiy1,3,4

c© The Authors 2021. This paper is published with open access at SuperFri.org

In this paper we assess the influence of CPU architectures commonly used in HPC systems
on the efficiency of the implementation of algorithms used for direct numerical simulation (DNS)
of turbulent flows. We consider a stably stratified turbulent plane Couette flow as a benchmark
problem supplemented with the additional transport of passive substances. The comparison in-
cludes the Intel Xeon, AMD Rome x86 CPU architecture processors and the Huawei Kunpeng
ARM CPU processor. We discuss the role of memory-oriented optimizations on the efficiency of
tracer transport implementation on each platform.

Keywords: turbulence, direct numerical simulation, ARM, supercomputing.

Introduction

Numerical simulation of geophysical turbulent flows today remains one of the most chal-
lenging computational problems. The large-scale complex climate and weather forecast models,
research studies of the physics of turbulence dynamics and engineering computational fluid dy-
namics (CFD) applications belong to foremost demanding tasks for all HPC centers. All of these
problems involve the numerical solution of hydrodynamic equations obtained from the well-known
Navier-Stokes system of equations with additional simplifications implied for specific problem.

While large body (which to the author’s knowledge is an understatement) of scientific lit-
erature is devoted to the development of efficient numerical methods, algorithms for solutions
of CFD problems, the emergence of exascale computing presents new and continuing challenges:
how well do commonly used and well-known approaches are suited for the current and next-
generation HPC systems? Major challenges are related to the massive concurrent and highly
heterogeneous environments in terms of both memory and computations used or expected to be
used in supercomputers, resulting from the development of more energy- and computationally-
efficient hardware. Even the often considered algorithms for solution of wide range of problems
in CFD applications, e.g., FFT or multigrid methods, to name a few, may require reformulation
and optimization for such HPC architectures [2, 8].

Though a notable development of supercomputers in the last decades is the advent of co-
processors, e.g., GPU-based computing, a more recent approach for building HPC systems is
associated with the ARM-based CPUs designed with energy-efficiency considerations kept at
the forefront [19]. These considerations are essentially tied with the computational performance
achievable by large-scale HPC systems highly restricted by power consumption. A notable exam-
ple in this regard is the Fugaku supercomputer with ARM-based A64FX 48C 2.2GHz CPUs at
the RIKEN Center for Computational Science, which leads the June 2021 TOP500 list of fastest
HPC systems.

In this paper we consider DNS (Direct Numerical Simulation) of turbulence as a computa-
tional benchmark to compare the performance of CPUs with distinct architecture: Intel Xeon
1Lomonosov Moscow State University Research Computing Center, Moscow, Russian Federation
2Marchuk Institute of Numerical Mathematics RAS, Moscow, Russian Federation
3Moscow Center of Fundamental and Applied Mathematics, Moscow, Russian Federation
4A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russian Federation

DOI: 10.14529/jsfi210405

50 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-9683-5701
https://orcid.org/0000-0002-0182-5675

Gold, AMD Rome and the ARM-based Huawei Kunpeng 920. DNS of turbulence implies the nu-
merical solution of Navier-Stokes system of equations as is and consequently requires to resolve
all energy significant scales of turbulent motions down to the smallest scales, where the dissipa-
tion of energy takes place. While LES (Large-Eddy Simulation) and RANS (Reynolds-Averaged
Navier-Stokes) models may be used to study flows on larger scales (up to planetary one), they
rely on additional turbulence closure assumptions to represent the momentum, heat and other
scalar fluxes attributed to the small scales, which are not resolved on the computational grid
or excluded from the coarse physical model itself. On the contrary DNS models are devoid of
such assumptions and provide invaluable data for insight into turbulence dynamics, development
of RANS and LES turbulence models and parameterizations albeit at the expense of very high
computational cost [11, 12]. These high computational requirements of DNS are especially pro-
nounced for geophysical turbulence. For example, a crude estimate may be obtained considering
the Reynolds number Re, which represents the ratio of largest to smallest scales of motion and
may reach values of around 107–109 in the atmospheric and oceanic boundary layers [22, 31]. The
size of a computational grid for a DNS of 3D turbulence is known to scale as Re9/4, which shows
that doubling of the Reynolds number increases the computational cost by almost an order of
magnitude when accounting also for the time dependence of equations of motion and assuming
linear computational complexity (in terms of number of grid cells) of the algorithm. To put that
into perspective, numerical simulations, for example, of turbulent channel flows require on the
order of 103 CPU cores for Re values exceeding 105 and feasible computational time frame, see,
e.g. [16].

The computational benchmark considered in this study is based on stably stratified turbulent
plane Couette flow, which is extensively used in studies of turbulence dynamics [7, 17, 29] and
verification of turbulence closures developed for large-scale models of atmosphere and ocean [16,
30]. The Couette flow is a shear flow of viscous fluid between two plane parallel walls moving
relative to each other in the absence of external pressure gradient. The simple formulation and
geometry of the flow eases implementation of numerical algorithms and their comparison.

The problems of urban air quality, chemical pollutant dispersion, aerosol distribution fore-
cast add substantial computational complexity in the atmospheric models. In general they may
require numerical solution of more than one hundred of additional prognostic equations for con-
centrations of different tracer species [20]. The similar computational problem also arises in
ocean-biochemistry coupled models [26]. In this study we consider the transport of passive trac-
ers as a proxy of such models, supplementing the DNS model of turbulent plane Couette flow
with advection-diffusion type equations for substances concentration. This allows us to assess
the efficiency of the implementation of the algorithms for solving scalar transport equations on
different CPU architectures and the role of memory optimizations.

The paper is structured as follows. In Section 1 we introduce the governing equations of the
DNS model and the numerical methods. The implementation aspects of the DNS code used for
comparison study are reviewed in Section 2. The setup of numerical experiments and the details
of code tuning and compilation for specific CPUs are given in Sections 3 and 4. The results of
performance comparison and the influence of memory optimizations are discussed in Section 5,
followed by summary and conclusions.

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 51

1. Governing Equations and Numerical Method

The dynamics of thermally stratified fluid are governed by the Navier-Stokes system of
equations in the Boussinesq approximation. The corresponding momentum, continuity and heat
advection-diffusion equations in divergent form are written as:

∂ui
∂t

+
∂uiuj
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ αgδi3Θ, (1)

∂ui
∂xi

= 0, (2)

∂Θ

∂t
+
∂uiΘ

∂xi
= χ

∂2Θ

∂xi∂xi
, (3)

where u(x, t) = (u1, u2, u3)
T ≡ (u, v, w)T is the velocity vector, p(x, t) – pressure, Θ(x, t) –

potential temperature, ν and χ are molecular coefficients of kinematic viscosity and thermal
diffusivity respectively, ρ0 is the reference density, x = (x1, x2, x3)

T ≡ (x, y, z)T and t is time.
The last term on the right-hand size of the equation (1) describes buoyancy forces acting on the
fluid in the vertical direction, where α – thermal expansion coefficient, g – acceleration due to
gravity and δij – Kronecker delta.

Besides the equations (1)–(3) we consider additional passive tracer transport equations for
substances concentrations Ck(x, t) expressed as:

∂Ck

∂t
+
∂uiCk

∂xi
= χk

∂2Ck

∂xi∂xi
, (4)

where 1 ≤ k ≤ nc and no summation over index k is assumed, nc – number of tracer species and
χk is molecular diffusivity coefficient for k-th tracer.

The projection method [4] is applied for the time advancement of momentum equations (1)
coupled with incompressibility constraint (2). At the first stage the intermediate velocity ũi is
calculated using the flow state at the n-th time step:

ũi − uni
∆t

=
3

2
Rn

i −
1

2
Rn−1

i − 1

ρ0

∂pn

∂xi
+ αgδi3Θ

n+1. (5)

Here explicit in time second-order Adams-Bashforth approximation is used for the right-hand
side Ri, which contains the contributions from advection and diffusion fluxes. The velocity ui on
the new (n+ 1)-th time step is calculated at the second stage of projection method as:

un+1
i − ũi

∆t
= − ∂q

∂xi
, (6)

where ∆t is the discrete time step and q is a scalar correction to the pressure field and pn+1 =

pn+ρ0q. The pressure correction is obtained by applying the divergence operator to equation (6)
and solving the Poisson equation:

∂2q

∂xi∂xi
=

1

∆t

∂ũi
∂xi

. (7)

This ensures that the velocity field satisfies the continuity equation at each time step. The
boundary conditions for the Poisson problem directly follow from the boundary conditions on
the velocity field with equations (1) and (2) taken into account. The heat and scalar transport

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

52 Supercomputing Frontiers and Innovations

equations are solved in the same way using the explicit in time Adams-Bashforth second-order
method, so the temperature Θn+1 is known at the first stage (5) of projection method.

Second or fourth-order finite-difference schemes [14, 25] on rectangular structured grids with
staggered arrangement of nodes are used for approximation of spatial derivatives. The finite-
difference approximation is momentum and energy conservative with the advection terms ex-
pressed in skew-symmetric form.

Biconjugate gradient stabilized (BiCGstab) iterative method [27] with a V-cycle geometric
multigrid preconditioner [24] is used for solving the finite-difference approximation of the Poisson
equation (7). On each grid in the multigrid sequence, smoothing iterations are performed by
successive upper relaxation method (SOR) for red-black ordering of nodes. The projection onto
coarse grid and the prolongation operator onto a fine grid correspond to a bilinear interpolation
consistent with the averaging operator used in finite-difference stencils.

2. Implementation

For computational tests and performance comparison we use the unified DNS -, LES -,
RANS - code [15, 16] developed at the Research Computing Center of Lomonosov Moscow State
University jointly with the Marchuk Institute of Numerical Mathematics RAS, which solves a
set of partial differential equations governing the dynamics of geophysical boundary layers, with
focus on simulating atmospheric and oceanic boundary layer structure and evolution. The numer-
ical model is especially suited for simulating the flows over a complex terrain, e.g. an urbanized
surface inter alia, using immersed boundary methods [15]. The code implements a collection
of finite-difference and finite-volume schemes, iterative and direct methods for solution of sys-
tems of linear equations, turbulence and subgrid closures in the LES and RANS framework,
particle transport and tracking submodule with different options of complexity. The DNS -,
LES -, RANS - model is extensively used for turbulence dynamics research [16, 29, 30], simu-
lations of the atmospheric flows [7, 9, 23] and studies of lake hydrodynamics [6, 21]. The code
is written in C/C++ programming language and supports hybrid architectures of modern day
supercomputers using the combined MPI-OpenMP-CUDA stack.

In its simplest form the algorithm for solving the particular discrete problem (1)–(4)
corresponds to a linear algebra problem with large sparse matrices, e.g., consists of matrix-
vector/matrix multiplications, calculation of linear combinations of vectors, dot and cross prod-
ucts, solution of linear systems of equations, etc. Matrix operations in the code are implemented
in “matrix-free” form meaning that the matrix elements are not stored in memory and instead
matrix-vector products are represented as functions corresponding to some discretization method.
This allows to significantly decrease the number of memory access operations, which is a com-
mon bottleneck for these types of problems. We stress that the algorithm implies calculations
involving sparse matrices and the benchmarks similar to HPCG [5], in general, will be more
representative of the implementation performance, compared with common benchmarks (e.g.,
HPL) oriented at dense matrix problems.

MPI library is used for 1D, 2D or 3D spatial decomposition of the computational grid among
MPI-processes. Different algorithms for MPI exchanges are implemented as their efficiency is
known to be dependent on the computational platform, in particular the ones based on MPI
derived datatypes or manual packing and unpacking of messages, with blocking or nonblock-
ing MPI primitives, etc. Common optimizations for improving scaling on HPC systems include
options for combining MPI data exchanges for a number of arrays (e.g., vector or tensor compo-

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 53

nents) or increasing the width of the grid halo region (see, e.g. [3]) for reducing latency of MPI
communications. The latter allows to reduce the number of calls to MPI functions but at the
cost of additional computational overhead, which may be negligible when the size of the problem
on MPI-process is comparatively small. For large-scale simulations (where the grid may contain
more than 108 cells) the code also makes use of parallel file I/O operations through MPI-IO
interface.

A hybrid MPI-OpenMP approach is supported, where the calculations on each MPI-
process are performed by OpenMP threads. In this case only the thread support mode
MPI_THREAD_FUNNELED is implemented, that is each MPI-process is multi threaded, but only the
master thread performs calls to MPI communication functions. In parts of the code, where large
MPI communication overhead is expected (e.g., iterative methods for solving linear systems), non
blocking MPI subroutines are used with overlapping computations and communications where
possible. The implementation of MPI communications and computational functions makes use
of the OpenMP “orphan” directives, which if necessary allows to decrease the number of implicit
thread synchronization points by merging code parts in a single parallel region.

The code is structured in a such way as to separate the solution of high-level “numerical” and
“physical” problems from the code related to parallelization or low-level algorithm optimization
highly dependent on the computational architecture. This is consistent with recent approaches
proposed for implementation of next generation Earth system models, see [18], for multi- and
many-core heterogeneous HPC systems. The principal advantage of such separation of concerns is
ability to tune the code for different architectures without modifying the high-level and problem
specific part of the code. The separation of high- and low- level primitives in the DNS -, LES -and
RANS -code is based on the C++ template specialization functionality and, in particular, is used
for the implementation of code on GPU architecture within the CUDA programming framework.

3. Numerical Model Setup

In what follows we consider the stably stratified turbulent plane Couette flow as a computa-
tional benchmark. The flow, while highly idealized, may be seen as model problem for studying
the dynamics of thermally stratified sheared fluid in the surface layer of the atmosphere [13],
where the total momentum and heat fluxes are approximately constant with height. The experi-
ment setup corresponds to the one used in [7, 16, 29]. The velocity u(x, t) and temperature Θ(x, t)

are prescribed on the upper and lower walls of the channel: u = −U0/2, Θ = Θ1, v = w = 0

for z = 0 and u = U0/2, Θ = Θ2, v = w = 0 for z = H, where the stable stratification is
imposed by setting Θ2 > Θ1, U0 is the relative wall velocity and H is the channel height. The
Dirichlet boundary conditions are applied for the scalar concentrations Ck(x, t) at the walls. In
the horizontal directions periodic boundary conditions are used. The flow is characterized by
the dimensionless Reynolds number Re = U0H/ν, Richardson number Ri = gα(Θ2 −Θ1)H/U

2
0 ,

Prandtl number Pr = ν/χ and the Schmidt numbers Sck = ν/χk. Figure 1 shows the char-
acteristic S-shaped vertical distribution of the mean tracer concentration C(z) and streamwise
velocity component U(z), averaged in horizontal homogeneous directions and time, and the in-
stantaneous passive tracer concentration at the center of the channel, z = H/2, obtained in the
high resolution simulations [16] of neutrally stratified Couette flow for Re = 8 × 104 with the
DNS code used in this study.

To measure CPU performance of the code, we fix the streamwise and spanwise sizes of the
channel in the numerical experiments as Lx = 6H and Ly = 4H, respectively, and consider

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

54 Supercomputing Frontiers and Innovations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z/H

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

U
/U

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
/C

0

(a)

(b)

0 1 2 3 4 5 6

x/H

0

0.5

1

1.5

2

2.5

3

3.5

4

y
/H

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 1. (a) The normalized mean streamwise velocity (blue) and normalized tracer concen-
tration profiles (red); (b) instantaneous normalized tracer concentration in the −xy plane at
z/H = 0.5 for neutrally stratified turbulent Couette flow

two grid resolutions: low resolution model configuration with grid dimensions (nx, ny, nz) =

(96, 64, 64) and high resolution configuration (nx, ny, nz) = (192, 128, 128) (denoted hereafter as
LR and HR in tables and figures), where nx, ny and nz are the number of grid cells in horizontal
−x, −y and vertical −z directions. The grid step in the vertical direction is refined near the
walls according to transformation z = H/2(1 + tanh(η)/ tanh(η0)), where |η| < η0, and the
spatial discretization is second-order accurate. In the horizontal directions we use second-order
accurate, as well as fourth-order accurate spatial discretizations. The Reynolds number is kept
fixed Re = 5200, the bulk Richardson number is set as Ri = 0.01 to maintain the influence of
stable stratification on the flow and the Prandtl and Schmidt numbers are set to 0.7. The grid
resolution allows to appropriately resolve all necessary spatial scales of the flow in the core of
the channel and near the walls for this particular set of parameters. On the other hand the grid

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 55

size chosen for the LR and HR cases matches the expected characteristic number of grid cells per
computational node ratio in large-scale simulations. Time step is chosen to maintain same CFL
number of around 0.1 between all experiments. In addition we set the number of tracer species
nc = 10 to mimic reduced acid-base atmospheric chemistry models [28].

For the case of fourth-order accurate method we use only second-order accurate 7-point sten-
cil approximation of the finite-difference Laplace operator in the geometric multigrid iterations
to implicitly define the BiCGstab preconditioner. This only mildly affects the overall convergence
of the iterative method even for high-resolution simulations, but considerably decreases the MPI
communications resulting from parallel implementation of Gauss-Seidel/SOR algorithms. As the
computational grid is anisotropic due to smaller grid steps in the vertical direction and the near-
wall refinement, we use the approach proposed in [10] for coarsening in the multigrid algorithm.

Additionally we do not consider the possible tuning of the multigrid preconditioner MPI
implementation for specific computational architectures and instead use the same parameters
obtained by improving the convergence rate alone. The multigrid method performs successive
coarsening of the computational grid to reduce the error for a given approximation of solution
to the linear system. When the grid is coarsened in the multigrid V cycle and the computational
task size on some MPI-process becomes smaller than a prescribed threshold, then the MPI-
process is excluded from computations and its domain is merged with one of the neighbouring
MPI-processes. This in general improves the performance as for sufficiently small problem the
increase in the number of parallel processes leads to increase of the computational time due to
communication and synchronization overheads. On the upper branch of the V cycle (consecutive
grid refinement starting from the coarsest resolution) an inverse process is implemented – the data
from MPI-process is scattered to neighbouring inactive processes when local grid size becomes
large enough to benefit from using additional parallel tasks. It is evident that the performance of
the mulitgrid algorithm on specific CPU architecture may depend on the depth of grid coarsening
(as is the convergence of the method), threshold values defining sufficiently “small” problem size
and the number of smoothing iterations. Thus we assume that the contribution of the multigrid
method corresponds to a “worst case scenario” and the scaling of the iterative method for the
solution of Poisson equation may at least be not optimal. In general, we stress that the runtime
share of the iterative method for solution of Poisson equation may vary with the grid resolution,
multigrid algorithm parameters and the Re and Ri particular values.

The discussed setup allows us to directly assess the performance of the numerical methods
and algorithms for solving the system of equations (1)–(4). We measure the runtime for different
components of the algorithm: projection method (eqs. (5), (6) and (7)), Poisson equation (7)
solved within the projection method, the heat equation (3) and the tracer transport equations (4).
The performance metrics were gathered for 10H/U0 dimensionless time units which corresponds
to 3200 time steps in HR case and 1600 time steps in the LR case. This is done in order to get
sufficient statistical data and to diminish model initialization latency in the results.

4. Code Compilation and Tuning

For performance comparison it is desirable that the code allows to use extended instruction
sets available on each CPU architecture. The different code components were thoroughly checked
to at least allow compiler autovectorization for each server with specific compiler suite available.
In particular, it turned out that some components were not autovectorized, when using the GCC
compiler suite. The high potential for code runtime reduction by using vectorized instruction

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

56 Supercomputing Frontiers and Innovations

sets was evident by the results for simple linear algebra math and stencil kernel tests and also
for the DNS numerical model on all the CPU systems considered.

To improve autovectorization of the code, we focused on implementation of the projection
method, eqs. (5) and (6), and scalar transport, eqs. (3) and (4). This included simplifying memory
access patterns in loops and modifying implementation of OpenMP thread decomposition, which
in some instances limited compiler optimizations. The subsequent code tuning to allow autovec-
torization resulted in overall reduction of total computational time over 20% for LR and 25% for
HR cases, with the most significant improvements detected for the heat/tracer transport equa-
tions – around 50%. While this optimization improved the code performance on Intel Xeon Gold
and AMD Rome platforms, it showed even better speed up on the ARM-based Kunpeng 920,
especially for the solution of passive transport equations.

To ease comparison of CPU platforms we only use the results obtained with the latest
versions of the GCC compiler suite and OpenMPI library available on each server, i.e. GCC 9.3
with OpenMPI 4.0 on AMD Rome, GCC 10.2 with OpenMPI 4.3 on Intel Xeon Gold, and
GCC 10.3 with OpenMPI 4.3 on Kunpeng 920 CPUs. The use of Intel compiler suites for the
tests on Intel Xeon Gold CPU showed only slightly worse/better performance depending on the
code setup.

While we use the same code without any further fine tuning for any specific architecture,
the compiler keys were optimized to give the best performance where possible. The default GCC
keys supplied with the DNS code were used on the ADM Rome and Intel Xeon Gold systems:

mpicxx -c -fopenmp -O3 -fno-strict-aliasing -funroll-loops -march=native
-std=c++0x↪→

The porting of the DNS model to the ARM-based 2x48 Kunpeng 920-4826 Taishan server
was straightforward and did not require any specific changes to the code. The default GCC
compiler keys were supplemented with a general ARM v.8.2-a target key -march=armv8.2-a, as
GCC provided -march=armv8.2-a+crypto+fp16 as native target. For optimization additional
extensions +rdma and +lse were considered. Those provide Round Double Multiply Accumulate
(RDMA) and Large System Extension (LSE) instructions respectively. LSE key is meant to
optimize atomic instructions by replacing the old styled exclusive load-store using a single CAS
(compare-and-swap) or SWP (for exchange) and are known to inherently increase performance
of applications using atomics. We also enabled -fomit-frame-pointer key, which avoids the
instructions to save, set up and restore the frame pointer; on many targets it also makes an extra
register available. The resulting optimized compiler key set for the Kunpeng 920 platform is:

mpicxx -c -fopenmp -O3 -fno-strict-aliasing -funroll-loops
-march=armv8.2-a+rdma+lse -std=c++0x↪→

For coarse grid size, in LR case, this optimization yields 25% reduction in total time on av-
erage between the number of cores used. This is achieved by faster execution time of projection
method and time advancement of heat/tracer transport code. With the grid refinement the ac-
celeration due to optimized keys levels on average at 13% and seems to not affect the heat/tracer
transport equation subroutines. Speedup appears to change little when the number of cores is
increased.

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 57

5. Comparison and Discussion

We run the turbulent Couette flow benchmark with setup presented in the previous sections
on three different platforms: 2x64 AMD Rome 7H12 (2.6 GHz) with 256GB DDR4 RAM node of
the Mahti CSC supercomputer based on the Atos BullSequana XH2000 system, 2x48 Kunpeng
920-4826 (2.6 GHz) with 512GB DDR4 on TaiShan 200 server and 2x18 Intel Xeon Gold 6140
(2.3 GHz) node with 384GB DDR4. We limit computational tests to the intra-node scalability
and run-time analysis.

The benchmark results are presented for the MPI only implementation, except when the
full computational node was utilized. In the latter case the results correspond to the MPI-
OpenMP hybrid mode of the DNS code with 2 OpenMP threads per MPI process. The OpenMP
only implementation showed better scaling compared with MPI only for low core count and
with specific thread/core bindings used, e.g., scaling in single NUMA domain on AMD Rome
platform. In general the MPI only implementation turned out to be faster than OpenMP only
or MPI-OpenMP hybrid and the gap is more pronounced for coarse grids. This is related to
thread synchronization overheads, which are as expected more evident for small size problems.
On the contrary, when all cores of the two-socket nodes were used, the MPI-OpenMP hybrid
implementation showed consistent improvement, in particular, in the multigrid algorithm due to
overlapping communications and computational subroutines, and reduced run-time on each of
the systems considered. Note that on all nodes the hyperthreading or SMT use was disabled, as
it rarely benefits memory bound applications.

The run-time per 1000 time steps for single core tests and when using the maximum number
of cores available on each node (2x64 cores on AMD Rome, 2x18 on Intel Xeon Gold and 2x48 on
Kunpeng 920) are presented for the LR and HR cases in Tabs. 1 and 2, respectively. Here x2 and
x4 denote the second- or the fourth-order finite-difference approximation used in the horizontal
directions. For all CPUs the use of higher order scheme results in increase on average of only
about 30% in computational time. The difference is even slightly lower for the HR case than for
LR coarse grid. The only exception is found for the Kunpeng 920 system, where the maximum
run-time increase of about 50% is reached for the HR single core test. The actual number of
floating point operations in the algorithm increases by more than twofold for the fourth-order
scheme (but still second-order in the vertical direction), e.g., 16 FLOP per grid cell and time step
in second-order scheme compared to 38 FLOP when using fourth-order scheme for calculation
of diffusion terms. This shows that the implementation of higher-order schemes are much more
efficient on all CPUs irrespective of the architecture and in general should be preferred for CFD
memory bound applications where it well suits the numerical and physical problem.

The overall three times higher run-time on single core for Kunpeng 920 CPU compared to
other two platforms is partially related to its shorter vector instructions length, 128-bit NEON
SIMD extension vs. 256/512-bit for AVX2/AVX512 extensions for Intel and AMD processors.
However, the difference in run-time between CPUs changes when the full node is utilized with
Kunpeng processor outperforming the Intel Xeon Gold node, which alludes to better intra-node
scalability on the ARM-based Kunpeng 920 platform.

To delve into more detailed analysis, we look into run-time shares of the model components on
different platforms relative to the number of cores used. Figure 2 depicts the corresponding share
of the run-time attributed to each code component, where ‘proj. method - poisson eq.’ in
the figure legend denotes the run-time share of the projection method with the exception of the
solution of Poisson equation (7), which is shown as ‘poisson eq.’ component. The ‘heat eq.’

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

58 Supercomputing Frontiers and Innovations

Table 1. LR case run-time, in seconds per 1000 time steps

AMD Rome 7H12 Intel Xeon Gold 6140 Kunpeng 920
single core, x2 and (x4) 39.94 (54.58) 48.53 (59.84) 123.70 (166.28)
max cores, x2 and (x4) 2.16 (2.89) 5.94 (7.94) 2.12 (2.90)

Table 2. HR case run-time, in seconds per 1000 time steps

AMD Rome 7H12 Intel Xeon Gold 6140 Kunpeng 920
single core, x2 and (x4) 285.23 (372.19) 391.11 (458.09) 1018.81 (1511.12)
max cores, x2 and (x4) 10.23 (13.49) 26.83 (32.81) 18.27 (25.02)

refers to the discrete heat transport eq. (3) and the ‘tracers eqs.’ is the run-time share of the
time advancement of all nc tracer transport equations (4). The problem-specific diagnostics in the
DNS code constitute the remainder of calculations. Additionally the ‘mpi comm’ corresponds to
the total run-time share of MPI-communications. Note that the timing of MPI communications
is not excluded from other components, so the total sum of all run-time shares of algorithm
partition described above is greater than unity.

Figure 3 shows the intra-node scaling of the DNS code and its model components on different
platforms attained while increasing the number of CPU cores. The change in the component
shares with the increase in the number of cores used is similar for Xeon Gold and Kunpeng
processors. The better scaling for scalar transport equations (eqs. (3) and (4)) and worse scaling
for Poisson equation (7) solver here leads to decrease of run-time share for the former, while
the latter share increases and the BiCGstab algorithm with multigrid preconditioner eventually
restricts the overall scaling of the code. For all platforms there appears to be little difference in
run-time share of different components between 2-nd order and 4-th order spatial discretizations.
In general higher speedup is observed as expected for the HR case compared with coarse LR
model configuration for Xeon Gold and Kunpeng CPUs. The intra-node scaling on AMD Rome
appears to be worst, especially for high core count used due to lowest ratio of grid cells per core.
However, in terms of actual run-time this platform shows the best results, see Tabs. 1 and 2.

The more efficient scaling of the code on Kunpeng 920 CPU appears to be more pronounced
for coarse grid LR case in terms of total run-time, probably due to higher cache hit rate. This
effect persists for all of the code components, but is more prominent for the tracer transport equa-
tions and less significant for projection method algorithm for solving momentum and continuity
equations. At the same time, the run-time shares of heat and tracer equations on Kunpeng 920
platform decrease faster with increasing core count rather than for Intel Xeon Gold and, espe-
cially, for AMD Rome CPU. This indicates that due to better scaling of those code components
Kunpeng 920 hardware is utilized more effectively.

We note that the results of CPU comparison are in line with the simple vector, stencil
kernel and MPI bandwidth benchmarks builtin in the DNS model code and used in preliminary
tests to assess CPU performance. This showed that the flop/s single core performance on the
ARM-based Kunpeng 920 CPU is comparable or outperforms the Intel Xeon Gold processors
for relatively small vector sizes and rapidly decreases, when long vectors are considered. The
MPI bandwidth ping-pong communication test showed that the Kunpeng 920 CPU outperforms
Intel processor for large message size, but the latency of MPI-communications may still affect

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 59

1 2 4 8 16 18 32 36

Number of cores

0

0.5

1

1.5
R

u
n

ti
m

e
sh

ar
e

(a)

1 2 4 8 16 18 32 36

Number of cores

0

0.5

1

1.5
(b)

1 2 4 8 16 32 64 128

Number of cores

0

0.5

1

1.5

R
u

n
ti

m
e

sh
ar

e

(c)

1 2 4 8 16 32 64 128

Number of cores

0

0.5

1

1.5
(d)

1 2 4 8 16 32 48 64 96

Number of cores

0

0.5

1

1.5

R
u

n
ti

m
e

sh
ar

e

(e)

1 2 4 8 16 32 48 64 96

Number of cores

0

0.5

1

1.5
(f)

proj. method - poisson eq. LR

poisson eq. LR

heat eq. LR

tracers eqs. LR

mpi comm LR

proj. method - poisson eq. HR

poisson eq. HR

heat eq. HR

tracers eqs. HR

mpi comm HR

Figure 2. Run-time shares of model components for LR and HR cases on Intel Xeon Gold 1640
(a, b), AMD Rome 7H12 (c, d) and Kunpeng 920 (e, f) CPUs for 2-nd order (a, c, e) and 4-th
order accurate finite-difference schemes (b, d, f)

performance, in particular, the implementation of multigrid algorithm, where MPI message size
may be small. Our findings are in general also consistent with the performance evaluation of
the Kunpeng 920 processor in [1] using specially designed set of benchmarks. This highlights
that simple computational benchmarks might be useful to at least make a gross estimate of the
expected performance of complex memory- and cache-bound CFD applications on different CPU
architectures.

As part of the study we consider potential memory and cache use optimizations for the im-
plementation of tracer transport component of the model. As evident from Fig. 2, the additional
10 passive tracer equations (4) amount for around 30% of total run-time across CPU platforms.
This reinforces rationale to investigate the influence of code optimizations on this model com-
ponent, especially considering that for some CFD applications the number of tracer species nc
may be considerably higher, e.g., atmospheric chemistry.

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

60 Supercomputing Frontiers and Innovations

0 5 10 15 20 25 30 35

Number of cores

0

10

20

30

S
p

ee
d

u
p

(a)

0 5 10 15 20 25 30 35

Number of cores

0

10

20

30

S
p

ee
d

u
p

(b)

0 20 40 60 80 100 120

Number of cores

0

20

40

60

80

100

120

S
p

ee
d

u
p

(c)

0 20 40 60 80 100 120

Number of cores

0

20

40

60

80

100

120

S
p

ee
d

u
p

(d)

0 20 40 60 80

Number of cores

0

20

40

60

80

S
p

ee
d

u
p

(e)

0 20 40 60 80

Number of cores

0

20

40

60

80

S
p

ee
d

u
p

(f)

linear

 total time LR

 total time HR

 proj. method LR

 proj. method HR

 tracers eqs. LR

 tracers eqs. HR

Figure 3. Speedup of DNS model and its components for LR and HR cases on Intel Xeon
Gold 1640 (a, b), AMD Rome 7H12 (c, d) and Kunpeng 920 (e, f) CPUs for 2-nd order (a, c, e)
and 4-th order accurate finite-difference schemes (b, d, f)

The numerical algorithm for solution of eq. (4) using the explicit in time second-order Adams-
Bashforth scheme may be represented by the following computational steps:

ADVn = −
[
∂uiCk

∂xi

]n

h

, (8.1)

DIFFn =

[
χk

∂2Ck

∂xi∂xi
,

]n

h

, (8.2)

RHSn =
3

2
(ADV + DIFF)n − 1

2
(ADV + DIFF)n−1, (8.3)

Cn+1
k = Cn

k + ∆tRHSn, (8.4)

where [·]nh denotes the finite-difference spatial approximation of the term on computational grid
using variables on the n-th time step. The algorithm in this form consists of the calculation
of the advection (8.1) and diffusion (8.2) terms; computation of tendencies according to time

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 61

advancement scheme (8.3) and updating the concentration values Ck for k-th species (8.4) on
the next (n+ 1)-th time step.

The implementation, where each of the algorithm steps (8) corresponds to a loop over the
3D computational grid, was used for the CPU performance comparison. While it is expected that
this approach is sub-optimal, it represents an upper limit estimate for numerical approaches with
explicit synchronization points disallowing loop fusion, e.g., when using implicit in time meth-
ods and/or advection/diffusion flux calculation stages. In turn this also allows us to consider
the influence of simple optimizations for memory-bound applications based on loop fusion ap-
proach, which are known to improve cache reuse. The first such optimization consists of merging
calculations of advection (8.1), diffusion (8.2) and tendencies (8.3) parts in a single loop. This
represents any potential improvements for models including the species reactions with, as often
used, implicit in time discretization. The second optimization involves fusing the entire algorithm
in a single loop, estimating the maximal effect such optimizations may yield for fully explicit in
time schemes. Finally, we consider the influence of merging MPI point-to-point communications
for all nc species concentrations, which are performed at the end of each time step to fill the
halo/ghost cell regions of the local computational grid, on the intra-nodal scaling of the code as
it may decrease additional overheads due to communication latency.

Figure 4 shows the results of optimizations described above implemented in the passive tracer
transport algorithm for the coarse grid LR case. The run-time for each optimization considered is
normalized with the run-time of the default implementation, where the algorithm (8) is separated
into four distinct loops. Here ‘fusion-adv/diff’ refers to the optimization, where (8.1)–(8.3) are
fused, ‘fusion’ depicts the case, where loop fusion is applied to all steps of the algorithm (8). The
‘fusion + MPI’ refers to the latter optimization coupled with merging of MPI-communications
at the end of time step iteration in a single call for all passive tracers. The results for HR case
are shown in Fig. 5.

The loop fusion of steps (8.1)–(8.3) results in 23% performance increase on single core of
Intel Xeon Gold CPU, and slightly less 15% reduction in run time for the AMD Rome processor.
The full fusion of algorithm (8) yields additional 20% and 10% performance gain for Intel and
AMD processors, respectively. Increasing the number of cores used diminishes these gains on
both platforms as the higher-level cache is used more efficiently and the number of cells per core
is reduced. Overall the results show that a significant (up to two-times for grid sizes used in
tests) reduction of run-time on Intel and AMD CPUs may be achieved for memory- and cache-
aware optimizations. On the contrary, on the Kunpeng 920 platform both optimizations deliver
none or only small performance increase. The merging of MPI point-to-point communications
for species concentrations provides only marginal improvements in run-time on Intel Xeon Gold,
while it may even negatively affect performance on AMD Rome and Kunpeng 920 CPUs, which
is especially evident on two-socket tests.

Conclusions

In this study we assessed the efficiency of the implementation of numerical methods used for
direct numerical simulation of stratified turbulent flows on a set of CPU architectures commonly
used in HPC systems. The DNS model supplemented with passive tracer equations may be seen,
at least to some extent, as a proxy for more general RANS and LES models. The stably stratified
turbulent plane Couette flow was used as a computational benchmark with two grid resolutions

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

62 Supercomputing Frontiers and Innovations

(a)

x2 x4

0

0.2

0.4

0.6

0.8

1

(b)

x2 x4

0

0.2

0.4

0.6

0.8

1

(c)

x2 x4

0

0.2

0.4

0.6

0.8

1

fusion-adv/diff

fusion

fusion+MPI

(d)

x2 x4

0

0.2

0.4

0.6

0.8

1

(e)

x2 x4

0

0.2

0.4

0.6

0.8

1

(f)

x2 x4

0

0.2

0.4

0.6

0.8

1

(g)

x2 x4

0

0.2

0.4

0.6

0.8

1

(h)

x2 x4

0

0.2

0.4

0.6

0.8

1

(i)

x2 x4

0

0.2

0.4

0.6

0.8

1

Figure 4. Normalized run-time (relative to default implementation) of the optimized tracer
transport model component for LR case on Intel Xeon Gold 1640 (a, b, c), AMD Rome 7H12
(d, e, f) and Kunpeng 920 (g, h, i) CPUs for 2-nd order (‘x2’) and 4-th order accurate finite-
difference schemes (‘x4’). Tests are performed on a single core (left column), socket (center
column) and full node (right column)

matching the characteristic number of grid cells per computational node ratio in large-scale
simulations.

We ran the Couette flow benchmark on three different CPU platforms: two with x86 ar-
chitecture, namely AMD Rome 7H12 and Intel Xeon Gold 6140, and the ARM-based Kunpeng
920-4826. This CPUs differ significantly in core count, SIMD instructions sets, cache size and
memory bandwidth. The porting of the DNS code to ARM-based Kunpeng platform was straight-
forward and did not require any specific code modifications. Nevertheless we fine tuned compiler
keys on Kunpeng CPU by enabling RDMA and LSE instruction set extensions (which are not
included in the GCC compiler native target provided for this platform). This optimizations led
to overall performance increase by 25% and 13% for low (LR) and high grid resolution (HR)
cases respectively. We stress the importance of enabling SIMD vector instruction sets in CFD
applications irrespective of the CPU architecture. In particular, the GCC autovectorization im-
proved the code performance by over 20% for LR and 25% for HR cases, with the most significant

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 63

(a)

x2 x4

0

0.2

0.4

0.6

0.8

1

(b)

x2 x4

0

0.2

0.4

0.6

0.8

1

(c)

x2 x4

0

0.2

0.4

0.6

0.8

1

fusion-adv/diff

fusion

fusion+MPI

(d)

x2 x4

0

0.2

0.4

0.6

0.8

1

(e)

x2 x4

0

0.2

0.4

0.6

0.8

1

(f)

x2 x4

0

0.2

0.4

0.6

0.8

1

(g)

x2 x4

0

0.2

0.4

0.6

0.8

1

(h)

x2 x4

0

0.2

0.4

0.6

0.8

1

(i)

x2 x4

0

0.2

0.4

0.6

0.8

1

Figure 5. Same as in Fig. 4, but for HR case

improvement found for the numerical solution of heat/tracer transport equations – around 50%
reduction of run-time, for all of the platforms.

We compared CPUs by considering intra-node scaling and run-time of the DNS code and
its components. We found that the MPI only implementation in general turned out to be faster,
compared with OpenMP only or MPI-OpenMP hybrid implementations, in tests where the full
node was not utilized with the gap more pronounced for coarse grid case. This is related to
thread synchronization overheads, which are especially evident in the multigrid algorithm. For
two-socket full node tests the MPI-OpenMP implementation resulted in consistent performance
improvement, in part due to overlapping of MPI communications and computational subroutines,
and reduced run-time on all processors.

The DNS code exhibits near linear scaling for LR and HR cases with up to 16 cores used on
AMD Rome and Kunpeng 920 CPUs, and up to 8 cores used on Intel Xeon Gold. The speedup
then drops to half of linear estimate or more when using up to 1/2 number of cores available
on each node in coarse resolution simulations. Model scaling improves for the HR case, with
the most significant improvement observed for Kunpeng 920 platform. Comparison of the code
performance on three different platforms revealed that the Kunpeng CPU underperforms on
single core tests, which is consistent with its lower 128-bit length of vector instructions set. The

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

64 Supercomputing Frontiers and Innovations

AMD Rome showed the best single core performance. However, due to more efficient intra-node
scaling, on full node tests Kunpeng 920 CPU shows better performance than Intel Xeon Gold
by three-fold and reduces the differences in performance with AMD Rome to 50% for the high
resolution case, while matching run-time with AMD processor for coarse computational grid.

We emphasize that the Kunpeng 920 allows more effective scaling for the scalar transport
equations, especially for smaller grid size simulations. In this regard the ARM-based Kunpeng
CPU architecture may be more beneficial for applications involving high number of tracer species,
e.g., atmospheric chemistry or ocean biochemistry modeling, where the computational time share
of solution of transport equations (4) may be larger than that of solving hydrodynamic equations.

Investigating the influence of the order of spatial discretization on the DNS code performance
we found that for all CPU architectures the use of higher-order approximations (fourth-order vs.
second-order accurate) results in increase on average of only about 30% in computational time
and the difference is lower in HR case than in LR tests. Comparing this to more than two-fold
increase in the number of floating point operations for the fourth-order scheme highlights that
for CFD memory bound applications the use of higher-order spatial discretizations will lead to
more efficient utilization of available CPU resources.

Lastly we explored the impact of memory-oriented optimizations on the Eulerian tracer
transport component of the code. We showed that the loop fusion transformation applied for
the scalar transport algorithm to improve cache reuse may provide results highly dependent
on the CPU platform and the number of grid cells per core ratio. This optimization, which in
general may be deemed beneficial, offers negligible effect in the worst case and on the other hand
may lead up to 50% improvement in terms of run-time. The improvements are least noticeable
on the Kunpeng 920 and are most pronounced on the Intel Xeon Gold CPU, possibly in part
due to larger L1/L3 cache size of the former processor, which is also in line with the lesser
effect this optimization has in HR case. Another optimization aimed at reducing intra-node
communication latency overhead by merging MPI point-to-point communications for different
tracer species produced mixed results – slowing the application by 15% in the worst case and
improving performance by 12% in the best case scenario.

Acknowledgements

The development of DNS -, LES -, RANS -code was supported by the Russian Science
Foundation, grant No. 21-71-30003, research on the efficient implementation of tracer trans-
port for HPC systems was supported by Russian Ministry of Science and Higher Education
(agreement No. 075-15-2019-1621). The statistical processing of the DNS results was supported
by the RF President grant for young scientists MK-1867.2020.5. The porting and optimization
of the DNS code on Kunpeng ARM-platform was supported by Huawei company, agreement
No. OAA20100800391587A. Authors acknowledge CSC for providing computational resources
on Mahti supercomputer. The research is carried out using the equipment of the shared research
facilities of HPC computing resources at Lomonosov Moscow State University. Authors would
like to thank Victor Stepanenko for fruitful comments and discussion of research presented.

The code of the model used in this study including ported version and auxiliary scripts is
available at http://tesla.parallel.ru upon request.

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 65

http://tesla.parallel.ru

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References

1. Afanasyev, I., Lichmanov, D.: Evaluating the performance of Kunpeng 920 proces-
sors on modern HPC applications. In: Parallel Computing Technologies 2021, Proceed-
ings. pp. 301–321. Springer International Publishing (2021). https://doi.org/10.1007/
978-3-030-86359-3_23

2. Ayala, A., Tomov, S., Haidar, A., Dongarra, J.: heFFTe: Highly efficient FFT for exascale.
In: Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science.
pp. 262–275. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50371-0_19

3. Besnard, J., Malony, A., Shende, S., et al.: An MPI halo-cell implementation for zero-copy
abstraction. In: EuroMPI ’15: Proceedings of the 22nd European MPI Users’ Group Meeting.
pp. 1–9. ACM Press (2015). https://doi.org/10.1145/2802658.2802669

4. Brown, D., Cortez, R., Minion, M.: Accurate projection methods for the incompressible
Navier-Stokes equations. J. Comp. Phys. 168, 464–499 (2001). https://doi.org/10.1006/
jcph.2001.6715

5. Dongarra, J., Heroux, M., Luszczek, P.: A new metric for ranking high performance com-
puting systems. Nat. Sci. Rev. 3(1), 30–35 (2016). https://doi.org/10.1093/nsr/nwv084

6. Gladskikh, D., Stepanenko, V., Mortikov, E.: The effect of the horizontal dimensions of
inland water bodies on the thickness of the upper mixed layer. Water Res. 48, 226–234
(2021). https://doi.org/10.1134/S0097807821020068

7. Glazunov, A., Mortikov, E., Barskov, K., et al.: Layered structure of stably stratified tur-
bulent shear flows. Izv., Atmos. Ocean. Phys. 55(4), 312–323 (2019). https://doi.org/10.
1134/S0001433819040042

8. Ibeid, H., Olson, L., Gropp, W.: FFT, FMM, and multigrid on the road to exascale:
Performance challenges and opportunities. J. Parallel Distrib. Comput. 136, 63–74 (2020).
https://doi.org/10.1016/j.jpdc.2019.09.014

9. Kadantsev, E., Mortikov, E., Zilitinkevich, S.: The resistance law for stably stratified at-
mospheric planetary boundary layers. Q. J. R. Meteorol. Soc. 147(737), 2233–2243 (2021).
https://doi.org/10.1002/qj.4019

10. Larsson, J., Lien, F., Yee, E.: Conditional semicoarsening multigrid algorithm for the Poisson
equation on anisotropic grids. J. Comp. Phys. 208, 368–383 (2005). https://doi.org/10.
1016/j.jcp.2005.02.020

11. LeMone, M., Angevine, W., Bretherton, C., et al.: 100 years of progress in boundary layer
meteorology. Meteorological Monographs 59, 9.1–9.85 (2019). https://doi.org/10.1175/
AMSMONOGRAPHS-D-18-0013.1

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

66 Supercomputing Frontiers and Innovations

https://doi.org/10.1007/978-3-030-86359-3_23
https://doi.org/10.1007/978-3-030-86359-3_23
https://doi.org/10.1007/978-3-030-50371-0_19
https://doi.org/10.1145/2802658.2802669
https://doi.org/10.1006/jcph.2001.6715
https://doi.org/10.1006/jcph.2001.6715
https://doi.org/10.1093/nsr/nwv084
https://doi.org/10.1134/S0097807821020068
https://doi.org/10.1134/S0001433819040042
https://doi.org/10.1134/S0001433819040042
https://doi.org/10.1016/j.jpdc.2019.09.014
https://doi.org/10.1002/qj.4019
https://doi.org/10.1016/j.jcp.2005.02.020
https://doi.org/10.1016/j.jcp.2005.02.020
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1
https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1

12. Moin, P., Mahesh, K.: Direct numerical simulation: A tool in turbulence research. Annu.
Rev. Fluid Mech. 30, 539–578 (1998). https://doi.org/10.1146/annurev.fluid.30.1.539

13. Monin, A., Yaglom, A.: Statistical fluid mechanics: The mechanics of turbulence. MIT Press,
Cambridge (1971)

14. Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite
difference schemes for incompressible flows. J. Comp. Phys. 143, 90–124 (1998). https:
//doi.org/10.1006/jcph.1998.5962

15. Mortikov, E.: Numerical simulation of the motion of an ice keel in a stratified flow. Izv., At-
mos. Ocean. Phys. 52(1), 108–115 (2016). https://doi.org/10.1134/S0001433816010072

16. Mortikov, E., Glazunov, A., Lykosov, V.: Numerical study of plane Couette flow: turbulence
statistics and the structure of pressure-strain correlations. Russ. J. Numer. Analysis Math.
Model. 34(2), 119–132 (2019). https://doi.org/10.1515/rnam-2019-0010

17. Pirozzoli, S., Bernardini, M., Orlandi, P.: Turbulence statistics in Couette flow at high
reynolds number. J. Fluid Mech. 758, 327–343 (2014). https://doi.org/10.1017/jfm.
2014.529

18. Porter, A., Appleyard, J., Ashworth, M., et al.: Portable multi- and many-core performance
for finite-difference or finite-element codes – application to the free-surface component of
NEMO (NEMOLite2D 1.0). Geosci. Model Dev. 11, 3447–3464 (2018). https://doi.org/
10.5194/gmd-2017-150

19. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: Making the
case for an ARM-based HPC system. Future Generation Computer Systems 36, 322–334
(2014). https://doi.org/10.1016/j.future.2013.07.013

20. Sofiev, M., Vira, J., Kouznetsov, R., et al.: Construction of the SILAM Eulerian atmospheric
dispersion model based on the advection algorithm of Michael Galperin. Geosci. Model Dev.
8, 3497–3522 (2015). https://doi.org/10.5194/gmd-8-3497-2015

21. Soustova, I., Troitskaya, Y., Gladskikh, D., et al.: A simple description of the turbulent
transport in a stratified shear flow as applied to the description of thermohydrodynamics of
inland water bodies. Izv., Atmos. Ocean. Phys. 56, 603–612 (2020). https://doi.org/10.
1134/S0001433820060109

22. Thorpe, S.: An introduction to ocean turbulence. Cambridge University Press, Cambridge
(2007)

23. Tkachenko, E., Debolskiy, A., Mortikov, E.: Intercomparison of subgrid scale models in large-
eddy simulation of sunset atmospheric boundary layer turbulence: computational aspects.
Lobachevskii Journal of Mathematics 42, 1580–1595 (2021). https://doi.org/10.1134/
S1995080221070234

24. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)

25. Vasilyev, O.: High order finite difference schemes on non-uniform meshes with good conser-
vation properties. J. Comp. Phys. 157, 746–761 (2000). https://doi.org/10.1006/jcph.
1999.6398

E.V. Mortikov, A.V. Debolskiy

2021, Vol. 8, No. 4 67

https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1006/jcph.1998.5962
https://doi.org/10.1006/jcph.1998.5962
https://doi.org/10.1134/S0001433816010072
https://doi.org/10.1515/rnam-2019-0010
https://doi.org/10.1017/jfm.2014.529
https://doi.org/10.1017/jfm.2014.529
https://doi.org/10.5194/gmd-2017-150
https://doi.org/10.5194/gmd-2017-150
https://doi.org/10.1016/j.future.2013.07.013
https://doi.org/10.5194/gmd-8-3497-2015
https://doi.org/10.1134/S0001433820060109
https://doi.org/10.1134/S0001433820060109
https://doi.org/10.1134/S1995080221070234
https://doi.org/10.1134/S1995080221070234
https://doi.org/10.1006/jcph.1999.6398
https://doi.org/10.1006/jcph.1999.6398

26. Vichi, M., Pinardi, N., Masina, S.: A generalized model of pelagic biogeochemistry for the
global ocean ecosystem. Part I: theory. J. Mar. Sys. 64, 89–109 (2007). https://doi.org/
10.1016/j.jmarsys.2006.03.006

27. Van der Vorst, H.: Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for
the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644
(1992). https://doi.org/10.1137/0913035

28. Yli-Juuti, T., Barsanti, K., Hildebrandt Ruiz, L., et al.: Model for acid-base chemistry in
nanoparticle growth (MABNAG). Atmos. Chem. Phys. 13(24), 12507–12524 (2013). https:
//doi.org/10.5194/acp-13-12507-2013

29. Zasko, G., Glazunov, A., Mortikov, E., Nechepurenko, Y.: Large-scale structures in stratified
turbulent Couette flow and optimal disturbances. Russ. J. Numer. Analysis Math. Model.
35(1), 37–53 (2020). https://doi.org/10.1515/rnam-2020-0004

30. Zilitinkevich, S., Druzhinin, O., Glazunov, A., et al.: Dissipation rate of turbulent kinetic
energy in stably stratified sheared flows. Atmos. Chem. Phys. 19, 2489–2496 (2019). https:
//doi.org/10.5194/acp-19-2489-2019

31. Zoric, D., Sandborn, V.: Similarity of large reynolds number boundary layers. Bound. Layer-
Meteorol. 2, 326–333 (1972). https://doi.org/10.1007/BF02184773

Direct Numerical Simulation of Stratified Turbulent Flows and Passive Tracer Transport...

68 Supercomputing Frontiers and Innovations

https://doi.org/10.1016/j.jmarsys.2006.03.006
https://doi.org/10.1016/j.jmarsys.2006.03.006
https://doi.org/10.1137/0913035
https://doi.org/10.5194/acp-13-12507-2013
https://doi.org/10.5194/acp-13-12507-2013
https://doi.org/10.1515/rnam-2020-0004
https://doi.org/10.5194/acp-19-2489-2019
https://doi.org/10.5194/acp-19-2489-2019
https://doi.org/10.1007/BF02184773

Scalability as a Key Property of Mapping Computational Tasks

to Supercomputer Architecture

Alexander S. Antonov1

© The Author 2021. This paper is published with open access at SuperFri.org

When solving complex computational problems on modern supercomputers, an increasingly

important role is played by the scalability property, which characterizes the ability of applications

to adapt to various degrees of parallelism of computing systems.

Keywords: scalability, supercomputer, AlgoWiki, parallel structure, problems, methods, algo-

rithms, implementations, computing platforms.

1. Description of the Algorithms Properties in the AlgoWiki

Encyclopedia

The project of the AlgoWiki Open Encyclopedia [1] implements on the Internet the pos-

sibilities for uniting the efforts of the computing community to form a bank of descriptions

of the computational algorithms properties according to a single universal scheme. Within the

framework of this scheme, two parts of the description are distinguished – the first describes

the properties of the algorithms themselves, and the second describes the properties of soft-

ware implementations and the dynamic characteristics of their execution on specific computing

systems [2].

Algorithm descriptions are the most important, but not the only part of the AlgoWiki Open

Encyclopedia. Within the framework of the encyclopedia, hierarchical descriptions are built in

the form of chains “problem–method–algorithm–implementation–computer” [3], corresponding

to the scheme actively used in practice for solving problems on high-performance computing sys-

tems of various architectures. Currently, work is underway to close such chains with descriptions

of supercomputers in the framework of the Algo500 project [4].

2. Scalability

The scalability property is one of the most studied properties of parallel programs [5].

Different authors interpret this concept in different ways. In the most general approach [6],

scalability is understood as a property of a parallel program that characterizes the dependence

of the entire set of dynamic characteristics of this program on the set of its launch parameters.

From the dynamic characteristics of programs in practice, the achieved value of performance

is considered most often, and from the launch parameters – the number of parallel processes and

the computational complexity of the problem being solved. Taking these three values together

it will determine the most commonly used types of scalability. So, most often in practice, the

dependence of performance on the number of application processes is considered, fixing the size

of the task (computational complexity). This dependence is commonly referred to as a strong

scalability. In many cases, unless a special caveat is made, it is strong scalability that is meant.

Many real-life problems are designed in such a way that their computational complexity can

be regulated by setting a few simple parameters. If so, then it makes sense to simultaneously

increase both the number of computational processes and the computational complexity of the

1Lomonosov Moscow State University, Moscow, Russian Federation

DOI: 10.14529/jsfi210406

2021, Vol. 8, No. 4 69

problem. If the system performance continues to grow, then the program is said to have weak

scalability. In addition to strong and weak, some other types of scalability are also known, but

it is these two types that are encountered most often in practice.

One of the well-known scalability metrics is the isoefficiency function [7], which shows the

required level of growth in the computational complexity of a problem to maintain a given level

of efficiency (understood as the ratio of acceleration to the number of processes used). In the

framework of the AlgoWiki Open Encyclopedia, another version of the scalability metric of

algorithm implementations has been proposed, based on empirical data.

3. Scalability Obstacles

Various obstacles that hinder the achievement of high scalability rates on various high-

performance computing systems are of interest for study. It is important that scalability in-

terference can occur at all stages of the mapping of the problem being solved to the target

supercomputer, which we propose to fix using the mechanisms of the AlgoWiki encyclopedia.

The reasons for poor scalability may lie in the structure of the problem itself, in the chosen

method for solving it, in a specific algorithm, its software implementation, as well as on the side

of the computer’s software and hardware environment.

3.1. Algorithm-Level Obstacles

Sometimes the algorithm itself is designed in such a way that no implementation of it will

effectively scale to the available computing system. This can be determined, for example, by a

small number of operations of the considered algorithm or by the presence of true information

dependencies between the available operations. Ultimately, this leads to the fact that the use of

the available parallelism resource is justified only for a relatively small number of computational

processes. When scaling to large configurations, the computational load on each process becomes

unreasonably small, and the gain from parallelization is lost against the background of additional

overhead costs. In this case, they say that the limit of decomposition of the computational

domain has been reached, and no additional efforts will give a fundamentally better scalability

without changing the algorithmic basis itself, which should be reflected in the description of the

algorithm.

3.2. Obstacles at the Software Implementation Level

In some cases, the considered algorithm has a sufficiently large parallelism resource to achieve

good scalability, but the situation is spoiled by an ineffective software implementation.

So, in many algorithms that work with matrices of a special type (for example, triangular),

the parallelism resource is sufficient to scale to large computing systems. However, when using

parallelism of only the outer loop using a static distribution (Fig. 1), the operations of the

algorithm will be extremely unevenly distributed among the processes. Some processes will get

significantly more iterations of the inner loop than others, and such uneven load will lead to

downtime of some processes, which will significantly affect scalability in general.

In other cases, scalability can be affected, for example, by poor choice of functionality

provided by a particular parallel programming technology. For example, the overuse of blocking

communications in MPI can lead to downtime waiting for data or even deadlocks. Figure 2 shows

Scalability as a Key Property of Mapping Computational Tasks to Supercomputer...

70 Supercomputing Frontiers and Innovations

#pragma omp for schedule (static)

for(i=0; i<N; i++)

for(j=i; j<N; j++)

a[i][j]=...

Figure 1. Parallelizing a fragment of triangular matrix computations

a typical example of an inefficient implementation of transfers from all communicator processes

to process number 0 in a program using MPI technology. This fragment implements a strict

order of receiving data in the order of increasing process numbers in the communicator. In many

cases, it would be more efficient to abandon this ordering by accepting data from ready-made

processes, for which you can use the MPI_ANY_SOURCE option. This can especially strongly affect

the performance of large configurations of computing systems when the rest of the program is

executed asynchronously.

if(rank != 0)

MPI_Send(&a, 1, MPI_DOUBLE, 0, 1, MPI_COMM_WORLD);

else

for(int i = 1; i < size; i++)

MPI_Recv(&a, 1, MPI_DOUBLE, i, 1, MPI_COMM_WORLD, &status);

Figure 2. Sending data from all processes to one (MPI technology)

Excessive process synchronization also often affects efficiency and scalability. Too many

spawned parallel threads can add a significant amount of overhead. Using unsuccessful commu-

nication schemes can result in additional wasted time. There can be a lot of such reasons; it is

planned to devote a separate study to their analysis.

3.3. Obstacles at the System Software Stack Level

Choosing the right software and configuring it efficiently is also critical to achieving a high

level of scalability. Here it is important to correctly configure not only compilers and user

libraries, but also, for example, the resource manager used on the computing system – the

efficiency of its execution can greatly depend on how it distributes the processes of a user

program among computational nodes. Other system settings inaccessible to an ordinary user

are also important, for example, routing settings in a communication network. Using different

routing algorithms for a large number of processes or for long messages may result in better

scalability of applications.

3.4. Obstacles at the Hardware and Environmental Level

In some cases, the very choice of the target supercomputer may be unfortunate in terms

of achieving a high level of scalability. For example, the computational structure of a fragment

can be effectively implemented on an existing supercomputer, but the amount of RAM and the

required speed of working with it for large tasks may be insufficient. In such cases, it is necessary

to formulate the requirements for the target computing system, taking into account the tasks

to be solved, using the principles of supercomputer code design [8].

A.S. Antonov

2021, Vol. 8, No. 4 71

Good scalability can be hindered by the use of quite suitable computing systems. Thus, most

supercomputers are used in a shared access mode. Most often, computing nodes in such systems

are exclusively allocated for the task, but a number of important system resources (such as a

communication network, storage system) are shared by all users of the system. Therefore, any

currently running task can affect the scalability of our application by organizing heavy traffic

over the network or actively engaging in data I/O.

4. AlgoWiki Encyclopedia and Scalability

The description of the scalability properties in the Open Encyclopedia AlgoWiki is given in

the section 2.4 of the unified algorithms description. Until now, a scheme for describing the scal-

ability properties of the algorithm itself has not been proposed, therefore, in most descriptions

of algorithms, special attention is paid to the scalability of the algorithm implementation. For

this, experimental data are obtained from runs of the existing implementation of the algorithm

on some high-performance computing system. The key point of this section is to show the real

scalability parameters of the implementation of this algorithm on various computing platforms,

depending on the number of processors and the size of the task. In this case, it is important to

choose such a ratio between the number of processors and the size of the task in order to reflect

all characteristic points in the behavior of a parallel program, in particular, the achievement of

maximum performance, as well as subtle effects arising, for example, due to the block structure

of the algorithm or the memory hierarchy.

It is proposed to implement an integrated approach to describing scalability in the Open

Encyclopedia AlgoWiki, reflecting at all stages of the chains “problem–method–algorithm–

implementation–computer” all possible obstacles for the effective adaptation of the properties

of computational problems to an increase in the degree of parallelism of computing systems.

Conclusion

This article discusses the issue of studying the scalability property, which is one of the

key properties characterizing the quality of parallel programs execution. The idea of expanding

the description of the algorithms properties within the framework of the AlgoWiki project is

proposed, which allows to present the most complete approach to the study of potential problems

with scalability by analyzing all steps in solving problems. Possible obstacles to achieving good

scalability can be observed at any stage of the mapping of the problems being solved to the

architecture of the target supercomputers. A detailed study and description of such obstacles by

the user community within the AlgoWiki framework will help to avoid them, achieving a high

level of scalability of parallel applications.

Acknowledgements

Described results were obtained at Lomonosov Moscow State University with the financial

support of the Russian Science Foundation, agreement № 20–11–20194. The research is car-

ried out using the equipment of the shared research facilities of HPC computing resources at

Lomonosov Moscow State University [9].

Scalability as a Key Property of Mapping Computational Tasks to Supercomputer...

72 Supercomputing Frontiers and Innovations

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Open Encyclopedia of Parallel Algorithmic Features. http://algowiki-project.org/en,

accessed: 2021-11-22

2. Antonov, A., Voevodin, Vad., Voevodin, Vl., Teplov, A.: A Study of the Dynamic Char-

acteristics of Software Implementation as an Essential Part for a Universal Description of

Algorithm Properties. 24th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing Proceedings, February 17-19, 2016. pp. 359–363. IEEE Computer

Society (2016). http://dx.doi.org/10.1109/PDP.2016.24

3. Antonov, A., Frolov, A., Konshin, I., Voevodin, Vl.: Hierarchical Domain Representation in

the AlgoWiki Encyclopedia: From Problems to Implementations. Communications in Com-

puter and Information Science, vol. 910, pp. 3–15. Springer (2018). http://dx.doi.org/10.

1007/978-3-319-99673-8_1

4. Antonov, A., Nikitenko, D., Voevodin, Vl.: Algo500 – a New Approach to the Joint Analysis

of Algorithms and Computers. Lobachevskii Journal of Mathematics 41(8), 1435–1443 (2020).

http://dx.doi.org/10.1134/S1995080220080041

5. Scalability. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA

(2011). https://doi.org/10.1007/978-0-387-09766-4_2046

6. Antonov, A., Teplov, A.: Generalized approach to scalability analysis of parallel applica-

tions. Algorithms and Architectures for Parallel Processing - ICA3PP 2016 Collocated Work-

shops: SCDT, TAPEMS, BigTrust, UCER, DLMCS, Granada, Spain, December 14-16, 2016,

Proceedings. Lecture Notes in Computer Science, vol. 10049, pp. 291–304. Springer (2016).

http://dx.doi.org/10.1007/978-3-319-49956-7_23

7. Grama, A.Y., Gupta, A., Kumar, V.: Isoefficiency: measuring the scalability of parallel

algorithms and architectures. IEEE Parallel Distrib. Technol. 1(3), 12–21 (1993). https:

//doi.org/10.1109/88.242438

8. Dosanjh, S.S., Barrett, R.F., Doerfler, D.W., et al.: Exascale design space exploration and

co-design. Future Generation Computer Systems 30, 46–58 (2014). http://dx.doi.org/10.

1016/j.future.2013.04.018

9. Voevodin, Vl., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale,

Deep Monitoring and Fine Analytics for the User Community. Supercomputing Frontiers and

Innovations 6(2), 4–11 (2019). http://dx.doi.org/10.14529/jsfi190201

A.S. Antonov

2021, Vol. 8, No. 4 73

http://algowiki-project.org/en
http://dx.doi.org/10.1109/PDP.2016.24
http://dx.doi.org/10.1007/978-3-319-99673-8_1
http://dx.doi.org/10.1007/978-3-319-99673-8_1
http://dx.doi.org/10.1134/S1995080220080041
https://doi.org/10.1007/978-0-387-09766-4_2046
http://dx.doi.org/10.1007/978-3-319-49956-7_23
https://doi.org/10.1109/88.242438
https://doi.org/10.1109/88.242438
http://dx.doi.org/10.1016/j.future.2013.04.018
http://dx.doi.org/10.1016/j.future.2013.04.018
http://dx.doi.org/10.14529/jsfi190201

High-performance Shallow Water Model for Use on Massively

Parallel and Heterogeneous Computing Systems

Andrey V. Chaplygin1, Anatoly V. Gusev1,2,3, Nikolay A. Diansky1,3,4

c© The Authors 2021. This paper is published with open access at SuperFri.org

This paper presents the shallow water model, formulated from the ocean general circulation

sigma model INMOM (Institute of Numerical Mathematics Ocean Model). The shallow water

model is based on software architecture, which separates the physics-related code from parallel

implementation features, thereby simplifying the model’s support and development. As an im-

provement of the two-dimensional domain decomposition method, we present the blocked-based

decomposition proposing load-balanced and cache-friendly calculations on CPUs. We propose var-

ious hybrid parallel programming patterns in the shallow water model for effective calculation on

massively parallel and heterogeneous computing systems and evaluate their scaling performances

on the Lomonosov-2 supercomputer. We demonstrate that performance per a single grid point on

GPUs dramatically decreases for small grid sizes starting from 219 points per node, while perfor-

mance on CPUs scales up to 217 well. Although, calculations on GPUs outperform calculations on

CPUs by a factor of 4.7 at 30 nodes using 60 GPUs and 360 CPU cores at 6100 × 4460 grid size.

We demonstrate that overlapping kernel execution with data transfers on GPUs increases perfor-

mance by 28%. Furthermore, we demonstrate the advantage of using the load-balancing method

in the Azov Sea model on CPUs and GPUs.

Keywords: shallow water, supercomputer modeling, heterogeneous computing systems, MPI,

OpenMP, CUDA.

Introduction

The current intensive development of climate models, particularly the ocean general circu-

lation models, is associated primarily with the rapid development of computer technology. The

emergence of teraflop and petaflop computing systems opened up the possibility of designing

ocean models of high spatial resolution, which allows to describe meso- and submesoscales of

eddy variability in the scope of long-term simulations. Today, most high-performance comput-

ing systems are heterogeneous, combining various computing processors, clearly seen from the

TOP 500 list of most powerful supercomputers in the world. Such systems can generally consist

of a large number of processors of various types. Nowadays, the main direction of developing het-

erogeneous systems is the joint use of multi-core Central Processing Units (CPUs) and massively

parallel accelerators, such as Graphics Processing Units (GPUs). Supercomputer technology is

rapidly developing in Russia, and the development trend is similar to the world one – this can be

seen from the TOP 50 list of most powerful supercomputers in the Commonwealth of Indepen-

dent States (CIS). The most powerful supercomputers of Russia, for example, “Lomonosov-2” at

Lomonosov Moscow State University, are heterogeneous computing systems. Creating a model

that effectively uses the resources of such heterogeneous computing systems is a complex and

relevant problem nowadays [1, 13]. The variety of computing systems leads to more complex

parallel programming patterns and challenges porting software for efficient usage.

The shallow water equation set is a key component in ocean general circulation models,

which is difficult enough to resolve. This system of equations in ocean models is obtained for

1Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia
2P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russia
3N.N. Zubov State Oceanographic Institute, Moscow, Russia
4Lomonosov Moscow State University, Moscow, Russia

DOI: 10.14529/jsfi210407

74 Supercomputing Frontiers and Innovations

barotropic adaptation by vertically integrating three-dimensional momentum and continuity

equations. Due to the high speed of the external gravity waves, the solution of the barotropic

adaptation in ocean models performs with a time step smaller by one or two orders of magni-

tude than the time step for solving three-dimensional equations [2]. Therefore the demanding

time for solving the shallow water equation set is a significant part of the total time spent for

the complete equation set of ocean hydrothermodynamics. We take the system of shallow water

equations as our starting point for evaluating various parallel methods and approaches useful for

ocean models. This paper considers the system of shallow water equations in the form presented

in the ocean general circulation sigma model INMOM (Institute of Numerical Mathematics

Ocean Model). The INMOM model is being developed at the INM RAS (Marchuk Institute

of Numerical Mathematics of the Russian Academy Sciences). For more than a decade and a

half, the model has been used as the oceanic block of the climate model INMCM (Institute of

Numerical Mathematical Climate Model). This coupled model is so far the only representative

from Russia at various stages of the international project for comparing climate models CMIP

(Coupled Model Intercomparison Project), conducted under the auspices of IPCC (Intergovern-

mental Panel on Climate Change) [10]. The model is completely written in the Fortran 90/95

programming language. The shallow water model has been formulated that can be used both as

a program block of the sigma ocean model INMOM and independently, for example, to calculate

tsunami waves, tides, and wind surges [4, 6].

This paper presents a new software architecture of the shallow water model, based on

the separation of concerns, which involves using various hybrid parallel programming patterns.

Software architecture separates the physics-related code of the model from features of parallel

implementation, thereby simplifying the support and development of the entire software package.

Our approach is influenced by the PSyKAl approach, which is also based on the separation of

concerns [3]. In contrast with the PSyKAl approach, our software architecture preserves the

original structure of loops in computational kernels at the lowest software architecture level

and adds loops over block data structures at the intermediate parallel level. That allows us to

implement the following approaches:

• load-balancing and cache-friendly calculation on CPUs;

• utilizing various parallel approaches on GPUs such as overlapping kernel execution with

data transfer, load-balancing, and effective calculation on computing nodes with multiple

GPUs per node.

Many atmospheric and oceanic general circulation models use the uniform domain decom-

position method as the baseline of parallel implementation [7, 16]. However, due to land in

most ocean areas, a block-based decomposition using non-uniform partitions and load-balancing

methods is more efficient. There are several implementations of block-based decomposition in

ocean models. For example, the parallel version of the finite element model of the Arctic Ocean

(FEMAO) uses the logical mask of wet points marking computational points for each CPU core

and uses data arrays shared by all blocks [17]. In contrast, Parallel Ocean Program (POP) [20]

and High Resolution Operational Model for the Baltic Sea (HIROMB) [24] allocate separate

data arrays for each block and organize computations in blocks, which is more cache-friendly

on CPUs. We present a block-based decomposition implemented using derived data types con-

taining blocks that are allocated separately and distribute data among processing units. A

load-balancing method using the Hilbert space-filling curves is also presented. Our novelty is an

organization of computations in blocks both on CPUs and GPUs.

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 75

We present various hybrid parallel programming patterns for use on massively parallel and

heterogeneous computing systems. A pure MPI and hybrid MPI-OpenMP are presented as

calculation patterns on CPUs. Hybrid approaches for calculations on CPUs have recently become

increasingly relevant and are used in many hydrodynamic models [1, 8, 21]. Our model uses the

task-based hybrid MPI-OpenMP approach, which is more efficient compared to the widespread

vector-based hybrid MPI-OpenMP approach in ocean models [6]. General-purpose computing

on GPUs is becoming increasingly popular for climate modeling too. There are examples of

successful porting of atmosphere and ocean models on GPUs, including shallow water models

[12, 18, 25]. We present three hybrid parallel programming patterns for calculations on GPUs:

hybrid MPI-CUDA, hybrid asynchronous MPI-OpenMP-CUDA, and multi GPUs per node MPI-

OpenMP-CUDA calculation patterns for effective use on heterogeneous computing systems. Our

novelty is using block-based decomposition on GPUs to achieve overlapping kernel execution

with data transfer, calculations with load-balancing, and effective calculation on computing

nodes with multiple GPUs per node. The code for GPUs is written using native CUDA Fortran

syntax instead of CUDA C common in ocean modeling.

1. Description of the Shallow Water Model

The model considered in this paper is based on a system of nonlinear shallow water equations,

which is written in an arbitrary orthogonal coordinate system in the following form:

∂rxryhu

∂t
+ Tu(u, v)− Fu(u, v)− hrxrylv + ryhg

∂ζ

∂x
= RHSu,

∂rxryhv

∂t
+ Tv(u, v)− Fv(u, v) + hrxrylu+ rxhg

∂ζ

∂y
= RHSv,

∂h

∂t
+

1

rxry

(
∂uryh

∂x
+
∂vrxh

∂y

)
= 0,

(1)

where rx, ry are the Lamé metric coefficients that arise while writing a system of equations

in an arbitrary orthogonal coordinate system; u, v are the components of the depth-averaged

horizontal velocity vector; l is the Coriolis parameter; g is the free-fall acceleration; ζ is a

deviation of the sea surface height from its undisturbed state; h = H + ζ is the total depth of

the ocean; H is the depth of the ocean at a rest state describing bottom topography.

The transport operators Tu, Tv are written in the divergent form:

Tu(u, v, h) =
∂hryuu

∂x
+
∂hrxvu

∂y
− h

(
v
∂ry
∂x
− u∂rx

∂y

)
v,

Tv(u, v, h) =
∂hryuv

∂x
+
∂hrxvv

∂y
+ h

(
v
∂ry
∂x
− u∂rx

∂y

)
u.

(2)

The viscosity operators Fu, Fv are written as the divergence of the stress tensor:

Fu(u, v) =
1

ry

∂

∂x

(
r2yKDTh

)
+

1

rx

∂

∂y

(
r2xKDSh

)
,

Fv(u, v) = − 1

rx

∂

∂y

(
r2xKDTh

)
+

1

ry

∂

∂x

(
r2yKDSh

)
,

(3)

where K is the viscosity coefficient, and DT and DS are tension and shear components of the

stress tensor:

High-performance Shallow Water Model for Use on Massively Parallel and...

76 Supercomputing Frontiers and Innovations

DT =
ry
rx

∂

∂x

(
u

ry

)
− rx
ry

∂

∂y

(
v

rx

)
,

DS =
rx
ry

∂

∂y

(
u

rx

)
+
ry
rx

∂

∂x

(
v

ry

)
.

(4)

The gradients of atmospheric pressure and wind friction stress are generally calculated at

the right-hand side of equations RHSu, RHSv. At the solid boundary, no normal flow and free

slip are set as velocity boundary conditions.

In the form (1)–(4), the nonlinear shallow water equations are presented in the ocean general

circulation sigma model INMOM as vertically integrated momentum and continuity equations

in order to resolve fast barotropic gravitational waves at a separate stage with minimum com-

putational efforts [9]. The system of equations (1)–(4) is solved using numerical methods on the

traditional Arakawa ‘C’ structured grid. The second-order numerical schemes on the structured

grid and the explicit first-order ‘leapfrog’ scheme are used as spatial and temporal discretization

schemes in the model, respectively. Due to the explicit time scheme, our computational method

is matrix-free. More details about the form of writing a system of nonlinear shallow water equa-

tions and their numerical implementation can be found in papers [4, 9]. The shallow water model

simulates extreme surges in the Azov Sea well: numerical results match ocean model results and

actual observations [11]. Also, the model simulates the 2011 tsunami in Japan, which led to the

Fukushima disaster, and numerical results match observations [5].

2. Software Architecture

A new software architecture for the shallow water model has been developed based on the

separation of concerns. This software architecture divides program code into three layers. The

lowest layer contains all subroutines required to calculate nonlinear shallow water equations, so-

called computational model kernels. The highest layer is responsible for calling computational

kernels and describes the time cycle of the model at a relatively high level without the knowledge

of parallel data structures and parallel methods used in the model. The intermediate layer

between the first two is responsible for parallel methods and approaches used in the model.

That separation allows flexibly configuring the model for various computing systems without

changing physics-related parts of the program.

A three-layer software architecture based on the separation of concerns has proven itself

in the shallow water model of the ocean model NEMO (Nucleus for European Modeling of the

Ocean) [3]. The researchers plan to implement such software architecture in the whole ocean

model NEMO by 2022 [15].

As mentioned before, the shallow water model is completely written in the Fortran language

introducing its specifics into the software architecture. Modules, derived types (classes), inter-

faces, and macros are extensively used in the code. We remind that the code for GPUs is written

using native CUDA Fortran syntax. We describe each program layer of the model.

2.1. Kernel Layer

The Kernel layer contains all computational subroutines, so-called model kernels. The origi-

nal non-parallelized program is a set of exactly such subroutines, which are the model’s baseline.

In total, there are about 15 model kernels in the shallow water model. The model kernel is a sub-

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 77

routine that consists of grid variables calculations without data synchronization inside. It means

that if the subroutine has several loops over grid points and data synchronizations between them,

it must be split into several subroutines (model kernels) without data synchronization inside.

The Interface layer is responsible for data synchronization between model kernel calls and will

be discussed later.

In the case of using CPUs for computing, the model kernel is a two-dimensional loop over

grid points that updates values at grid points by numerical schemes. At this level, we work

with ordinary two-dimensional arrays. Figure 1a shows a general view of the model kernel for

calculation on CPUs, where nx start, nx end, ny start, ny end are boundaries of the subdomain;

bnd x1, bnd x2, bnd y1, bnd y2 are boundaries of the subdomain including halo points; var is

a grid variable.

subroutine ke rne l (var)

real (wp8) , intent (inout) : : var (bnd x1 : bnd x2 , bnd y1 : bnd y2)

[. . .]

do m = nx star t , nx end

do n = ny sta r t , ny end

var (m, n) = [. . .]

enddo

enddo

end subroutine

(a) Code for CPUs

a t t r i b u t e s (g l o b a l) subroutine ke rne l (var)

real (wp8) , intent (inout) : : var (bnd x1 : bnd x2 , bnd y1 : bnd y2)

[. . .]

m = (blockIdx%x−1)∗blockDim%x + threadIdx%x + (n x s t a r t − 1) − 1

n = (blockIdx%y−1)∗blockDim%y + threadIdx%y + (n y s t a r t − 1) − 1

i f (m <= nx end + 1 .and . n <= ny end + 1) then

var (m, n) = [. . .]

endif

end subroutine

(b) Code for GPUs

Figure 1. The Kernel layer of the shallow water model

In the case of using GPUs for computing, the model kernel is updating values at a single

grid point instead of the usual two-dimensional loop over grid points for calculation on CPUs.

Each point in the grid corresponds to its thread on GPU. The model kernel launching on GPU

is performed by threads that cover all grid points. Figure 1b shows a general view of the model

kernel for calculation on GPUs.

In that way, 15 model kernels have been implemented for calculations on both CPUs and

GPUs.

2.2. Algorithm Layer

The Algorithm layer establishes the order of calling model kernels and is the highest software

architecture layer. The main time cycle of the model is described at this level. At this level, we

High-performance Shallow Water Model for Use on Massively Parallel and...

78 Supercomputing Frontiers and Innovations

work with abstract data structures, such as the ocean type class, which includes the main grid

variables of shallow water equations. Figure 2 shows a code example of this layer. In this example,

the sea level calculation kernel (kernel ssh) is called first, then the velocity component calculation

kernel (kernel uv). Special envoke procedure, part of the Interface, calls model kernels and will

be discussed later.

[. . .]

type (ocean type) , target : : ocean data

procedure (empty kernel) , pointer : : k e rne l s sh , ke rne l uv

[. . .]

ca l l envoke (ocean data%ssh , k e r n e l s s h)

ca l l envoke (ocean data%u , ocean data%v , ke rne l uv)

[. . .]

Figure 2. The Algorithm layer of the shallow water model

2.3. Interface Layer

The intermediate layer between the model kernel and the model kernel call is the Interface

layer at which parallel methods and approaches are implemented. In particular, the block-

based decomposition (Section 3.1), the load-balancing method (Section 3.1), the hybrid approach

using MPI and OpenMP technologies (Section 3.2), hybrid approaches using MPI, OpenMP and

CUDA technologies (Section 3.3) are implemented at the Interface layer. This layer also includes

code for processors synchronization, halo swaps, data transfers between CPU and GPU. The

Kernel layer and the Algorithm layer contain a description of physical processes in the shallow

water model. At the same time, nothing is known at these layers about features of parallel

implementation hiding from them in the Interface layer. The Interface layer allows configuring

the model to any target computing system flexibly. At this layer, we work with specific parallel

data types, for example, the data 2D real 8 type class, which contains distributed data across

blocks and processors. In the case of using GPUs for computing, parallel data types contain

symmetrical data in GPU and procedures for synchronizing this data between CPU and GPU.

Figure 3 shows the interface implementation for calculating model kernels on CPUs using

a single envoke subroutine. This subroutine calls the model kernel for each data block and then

synchronizes OpenMP threads and MPI processes (see Section 3.2 for more information about

this approach).

Figure 3 shows the interface implementation for calculating model kernels on GPUs using a

single envoke subroutine. This subroutine calls the model kernel for each data block correspond-

ing to its GPU using a special CUDA syntax. The subroutine performs data synchronization

between CPU and GPU. OpenMP threads and MPI processes are synchronized too (see Sec-

tion 3.3 for more information about this approach).

3. Parallel Methods and Approaches

The following parallel methods and approaches have been implemented in the shallow wa-

ter model based on the described software architecture: the block-based decomposition with

load-balancing; the hybrid approach using MPI and OpenMP; hybrid approaches using MPI,

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 79

subroutine envoke (var , k e rne l)

type (data2D rea l8 type) : : var

[. . .]

! $omp do p r i v a t e (k) s chedu l e (s t a t i c , 1)

do k = 1 , b locks

ca l l ke rne l (var%block (k)%host)

enddo

! $omp end do nowait

ca l l sync ha lo

end subroutine

(a) Interface for CPUs

subroutine envoke (var , k e rne l)

type (data2D rea l8 type) : : var

[. . .]

! $omp do p r i v a t e (k) s chedu l e (s t a t i c , 1)

do k = 1 , b locks

cudaSetDevice (k−1)

ca l l kerne l<<<tGrid , tBlock>>> (var%block (k)%dev i ce)

enddo

! $omp end do nowait

ca l l c o p y d e v i c e t o h o s t

ca l l sync ha lo

ca l l c o p y h o s t t o d e v i c e

end subroutine

(b) Interface for GPUs

Figure 3. The Interface layer of the shallow water model

OpenMP and CUDA for computing on heterogeneous computing systems. Further, we describe

each parallel method and approach in the model.

Figure 4. The uniform domain decomposition method and synchronization of processors

High-performance Shallow Water Model for Use on Massively Parallel and...

80 Supercomputing Frontiers and Innovations

3.1. Block-based Decomposition and Load-balancing Method

The shallow water model uses a two-dimensional domain decomposition method as the

primary parallelization method. The initial computational domain is divided into subdomains,

and each processor is assigned its subdomain. Each subdomain has extra boundaries with halo

points which exchanges boundary data with a neighboring subdomain. Processors are synchro-

nized, and halo points are updated using MPI technology before each subdomain calculation.

The most common and easily implemented domain decomposition method is the method of

uniform subdivision into rectangular subdomains. Figure 4 demonstrates this method and the

synchronization mechanism of processors with halo points updating. The figure also shows that

the uniform domain decomposition method leads to workload imbalances among participating

processors due to land points. Some subdomains contain only land points; some subdomains

are more than half-filled with land points. Thus, some processors are idle in computing lead-

ing to performance losses. Due to islands and coasts in most ocean areas, load-balancing is an

exceptionally urgent task for ocean models, particularly shallow water models [4].

Figure 5. Load-balancing method: a) The domain is uniformly divided into blocks; b) The

Hilbert curve is formed; c) Subdomains are formed along the Hilbert curve

Therefore, an improved method of subdivision into subdomains, so-called block-based de-

composition, has been implemented in the model. This method uniformly divides the compu-

tational domain into rectangular blocks of small size. Then, subdomains are formed along the

Hilbert space-filling curves to have approximately the same amount of workload. Land blocks

are excluded from subdomains and further calculations. Each processor is assigned a certain

number of blocks, which form its computational subdomain. Figure 5 clearly shows the steps of

the described algorithm. All calculations in the model are organized in blocks, and each block

has extra boundaries with halo points, as shown in Fig. 6. Block halo points are updated before

each calculation. If a neighbor block is located on the same processor, we copy boundary values

without calling the MPI library. For halo points exchanges with blocks on other processors, we

use asynchronous MPI calls.

The block-based decomposition has another advantage in addition to the load-balanced

distribution. It is efficient memory management while computing on CPUs, and one can get a

performance increase on CPUs due to better cache behavior of smaller blocks. For hydrodynamic

models, this property is essential because most of them are strongly memory-bound, so memory

management is critical to the model’s efficiency and performance scaling [22].

The shallow water model employs the block-based decomposition for calculations on GPUs

as well as CPUs. Calculations on GPUs are also organized in blocks, and synchronizations occur

in the same way as it is done for calculations on CPUs, with the addition of halo points transfer

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 81

Figure 6. The block-based decomposition

between CPU and GPU. The block-based decomposition allows organizing asynchronous data

transfer between CPU-GPU and overlapping calculations with memory copying and communi-

cations, leading in turn to improved performance on GPUs (see Section 3.3).

However, the block-based decomposition has a disadvantage: overheads for copying block

boundary values during synchronization. Previous work [6] showed that effective work with cache

memory compensates for copying overheads during synchronization for calculation on CPUs with

small blocks. Therefore this disadvantage can be considered insignificant. This disadvantage

becomes significant for calculations on GPUs since copying block boundary values must be

carried out between CPU and GPU. Nevertheless, as it will be shown in Section 4, it is possible

to improve performance using the block-based decomposition on GPUs for large computational

areas due to the overlapping computations with synchronizations.

Figure 7. Parallel programming patterns implemented in the shallow water model

3.2. Hybrid Approach Using MPI and OpenMP for Use on Multiprocessor

Computing Systems

Data synchronization between processors is a bottleneck in the shallow water model on

multiprocessor computing systems. With an increase in the number of computing nodes, syn-

chronization overheads increase due to the high load on the communication network. It is possible

to reduce the load on the communication network using OpenMP for parallelization on shared

memory inside a node. It is a so-called hybrid approach. The pure MPI approach creates a

High-performance Shallow Water Model for Use on Massively Parallel and...

82 Supercomputing Frontiers and Innovations

separate MPI process for each core on a node, whereas the hybrid MPI + OpenMP approach

creates only one MPI process for each node and separate threads for each core.

In the shallow water model, the task-based hybrid MPI-OpenMP approach has been imple-

mented, which distributes subdomains (blocks from block-based decomposition) across OpenMP

threads as shown in Fig. 7 compared to the pure MPI approach. Blocks are first distributed across

MPI processes using the load-balancing method. Then, blocks are distributed across available

threads within the MPI process, ensuring a uniform computational workload per thread. The

previous work [6] has showed that this approach has the advantage compared to the widespread

vector-based MPI-OpenMP hybrid approach, in which OpenMP is used only for parallelizing

two-dimensional loops over subdomains. The performance of the implemented task-based hybrid

approach is twice as high as the vector-based hybrid approach when calculating the model on

multiple computing nodes. The previous work has also showed the advantage in performance of

the task-based hybrid approach over the pure MPI approach.

3.3. Hybrid Approaches Using MPI, OpenMP and CUDA for Use

on Heterogeneous Computing Systems

In the shallow water model, calculation on GPUs has been fully supported using CUDA tech-

nology. For this purpose, we have adapted 15 model kernels to calculations on GPUs. We have

modified the Interface layer of the software architecture to utilize various calculation patterns

on GPUs in the model. As mentioned earlier, the model kernel is a single grid point calculation

on GPUs by a single thread, and it is launched by threads entirely covering the computational

domain. It is necessary to note two essential details in model kernels implementation for cal-

culation on GPUs. The first is that double precision is used everywhere in calculations, and,

second is the lack of memory optimizations. The last means that no specific data placement

optimizations on GPUs are implemented in model kernels; in particular, shared and texture

memories are not used. All memory accesses in model kernels occur immediately to the GPU’s

global memory. Modern generations of GPUs are less sensitive compared to the older ones to

data placement optimization, mostly due to improvements of global memory caches, as shown

in [14]. The authors of this paper have considered various benchmark applications, including

computational fluid dynamics solver, and showed that using different memory optimizations on

modern generations of GPUs (Pascal, Volta) overall does not produce as much speedup as older

ones. However, these results should be considered only as part of an overall picture. Further-

more, we have implemented model kernels for calculations on GPUs with minimal effort, and

adaptation on GPUs can be further automated using macros, as done in work [3].

The implementation on GPUs has been adapted to support the block-based decomposi-

tion in the shallow water model, which has proven itself on CPUs. Due to the block-based

decomposition, it is possible to balance a workload of computations on GPUs. Three paral-

lel programming patterns have been implemented for calculations on GPUs: the synchronous

MPI-CUDA pattern, the asynchronous MPI-OpenMP-CUDA pattern, the multi GPUs per node

MPI-OpenMP-CUDA pattern. Note that all patterns have not been challenging to implement

in the software architecture based on the separation of concerns. All code modifications have

been implemented at the Interface layer without affecting the Kernel and the Algorithm layers.

We describe each of the patterns in detail.

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 83

3.3.1. Synchronous MPI-CUDA calculation pattern

In this approach, each MPI process is assigned a subdomain containing only one block and

a single GPU, as shown in Fig. 7. The subdomain calculation is performed entirely on GPU

using CUDA. After model kernel’s calculation on GPUs, processors synchronization occurs as

follows:

1. Boundary points of the subdomain are transferred from GPU to CPU synchronously, mean-

ing blocking data transfers are used.

2. MPI processes are synchronized, and halo points of each subdomain are updated. MPI

synchronization is performed entirely on the CPU.

3. The updated halo points are transferred back from CPU to GPU. Data transfer is still

synchronous.

This pattern supports calculations on multiple GPUs assuming only one block per MPI pro-

cess and does not support the block-based decomposition. Thus, there is no load-balancing of

calculations on GPUs using this pattern.

3.3.2. Asynchronous MPI-OpenMP-CUDA calculation pattern

In this pattern, the block-based decomposition is supported for calculations on GPUs. Each

MPI process is assigned a subdomain containing multiple blocks, and OpenMP threads and

CUDA streams are created for each subdomain’s block in the MPI process, as shown in Fig. 7.

The model kernel is launched for calculation on GPU for each subdomain’s block as follows:

1. Each OpenMP thread asynchronously launches the model kernel on GPU for the subdo-

main’s block. Launching is performed in the CUDA stream corresponding to the OpenMP

thread.

2. Each OpenMP thread asynchronously transfers boundary points from GPU to CPU of the

subdomain’s block. Data transfer is performed in the CUDA stream corresponding to the

OpenMP thread.

3. All CUDA streams and OpenMP threads are synchronized.

4. MPI processes are synchronized, and halo points of each subdomain’s block are updated.

MPI synchronization is performed entirely on the CPU.

5. Each OpenMP thread asynchronously transfers back halo points from CPU to GPU of the

subdomain’s block. Data transfer is performed in the CUDA stream corresponding to the

OpenMP thread.

Since modern GPUs have separate control elements for execution kernels and data transfers,

this calculation pattern organizes asynchronous data transfers and overlaps kernel execution on

GPU with data transfers between CPU and GPU using different CUDA streams. Figure 8

shows steps of this calculation pattern in comparison with the synchronous MPI-CUDA pattern

schematically. It can be seen that data transfers overlap with kernel execution in time for the

asynchronous MPI-OpenMP-CUDA pattern. This calculation pattern is completely hybrid and

designed for more efficient calculation on computing nodes with one GPU per node compared

to the synchronous MPI-CUDA pattern.

High-performance Shallow Water Model for Use on Massively Parallel and...

84 Supercomputing Frontiers and Innovations

(a) Synchronous MPI+CUDA pattern

(b) Asynchronous MPI+OpenMP+CUDA pattern

Figure 8. The synchronous MPI-CUDA and the asynchronous MPI-OpenMP-CUDA patterns

3.3.3. Multi GPUs per node MPI-OpenMP-CUDA calculation pattern

This pattern also supports the block-based decomposition for calculations on GPUs, but

differently than the asynchronous MPI-OpenMP-CUDA pattern. Each MPI process is assigned

a number of blocks and OpenMP threads as many as available GPUs on a node. Accordingly,

every GPU managed by a single OpenMP thread contains a single block subdomain on a node.

OpenMP threads independently launch CUDA kernels, allowing efficient use of every GPU

available on a node. Synchronizations are organized as in the MPI-CUDA pattern, but with

synchronization of GPUs on a node and block boundaries points gathering for synchronization

of MPI processes. The approach is completely hybrid and designed to calculate on computing

nodes with multiple GPUs per node.

4. Results and Discussions

Our experiments were performed on the Lomonosov-2 supercomputer at Lomonosov Moscow

State University [23], which is a completely heterogeneous computing system and is one of

the most high-performance supercomputers in Russia today according to the TOP500 list. We

performed our numerical experiments on the Pascal and Volta sections of the supercomputer,

which contain modern GPUs on nodes. The Pascal section includes 160 nodes with one Intel

Xeon Gold 6126 2.60GHz CPU (12 cores) and two Nvidia Tesla P100 GPUs; the Volta section

includes 16 nodes with Intel Xeon Gold 6126 2.60GHz CPU (12 cores) and two Nvidia Tesla V100

GPUs. We compiled the software code using the Nvidia HPC Fortran compiler (PGI compiler),

which supports native CUDA in Fortran and has recently become free. We used the optimization

option -fast and libraries Open MPI v3.1.5, CUDA 11.1 for compilation.

4.1. The Box Test

The first series of experiments were performed for the Box test. This test represents the

computational domain without land points and with constant sea depth. We set a gaussian

water level elevation as the initial condition, and there were no wind forcing. We made this test

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 85

to demonstrate the performance scaling of the shallow water model without workload imbalances

on processors. We evaluated the model’s performance at different grid sizes of the computational

domain. We chose computational grids corresponding to the Azov Sea grids with a resolution of

250 meters and 62.5 meters: 1525 × 1115 points and 6100 × 4460 points. We performed model

simulations for one model day, with 86400 model steps in total.

(a) Speedup (b) Time per model step (in logarithmic scale)

Figure 9. Performance scaling on the Pascal section for the Box test with 6100 × 4460 grid size

Figure 9 demonstrates the performance scaling of various calculation patterns on CPUs and

GPUs at 6100 × 4460 grid size. Demonstrated results on the figure were obtained using 30 nodes

of the supercomputer’s Pascal section. The pure MPI and the hybrid MPI-OpenMP calculation

patterns on CPUs demonstrate close to linear (black line on the figure) scaling up to 30 nodes

(360 cores in total). However, the hybrid MPI-OpenMP calculation pattern failed to outperform

the pure MPI pattern on this supercomputer. We assume that using 30 nodes is not enough to

see the advantages of the hybrid calculation pattern over the pure MPI due to the low load on

the communication network. The multi GPUs per node MPI-OpenMP-CUDA pattern allows

performing calculations on 60 GPUs using 30 nodes and demonstrates the best calculation

time due to the efficient use of all computing resources on a node. The multi (two exactly)

GPUs per node pattern have twice better performance up to 16 nodes than one GPU per node

CUDA-MPI pattern, but then the performance difference decreases due to small subdomain

size per GPU. Calculation on a single GPU outperforms any calculation pattern on a single

CPU by a factor of 6.3. Although the performance scaling on GPUs is worse than on CPUs,

calculations on GPUs still outperform calculations on CPUs by a factor of 4.7 at 30 nodes using

60 GPUs and 360 CPU cores. We also compared the performance scaling on CPUs and GPUs

at 1525 × 1115 grid size. Figure 10 shows times per a single grid point for calculations on CPUs

and GPUs running 1525 × 1115 and 6100 × 4460 grid sizes. Performance per a single grid point

on GPUs dramatically decreases after 219 points per node, while performance on CPUs scales

up to 217 well. Accordingly, GPUs are much more sensitive to the grid size than CPUs in two

aspects. First, communication overheads, including data transfers between CPU and GPU, can

exceed the computation time and become a bottleneck in GPUs’ performance. Second, small

subdomains lead to better cache behavior for calculation only on CPUs but cannot saturate

execution and entirely hide memory latencies on GPUs.

High-performance Shallow Water Model for Use on Massively Parallel and...

86 Supercomputing Frontiers and Innovations

Figure 10. Time per single grid point (in logarithmic scale). The Pascal section of the super-

computer Lomonosov-2 was used

To further investigate performance scaling on GPUs, we tested the asynchronous MPI-

OpenMP-CUDA calculation pattern, which overlaps data transfers with kernel execution. Ex-

periments at 6100 × 4460 grid size were performed on the supercomputer’s Volta section, includ-

ing Nvidia Tesla V100 GPUs on nodes. Figure 11 demonstrates performances using a different

number of blocks in the block-based decomposition on a single GPU. We see that the asyn-

chronous calculation pattern on GPUs outperforms by 17% the synchronous calculation pattern

due to kernel execution and data transfer overlapping. Figure 12 shows performance scaling of

the asynchronous calculation pattern on GPUs using an optimal number of blocks (8 blocks

per GPU as shown in Fig. 11) compared to the synchronous calculation pattern on GPUs. This

experiment shows that the asynchronous pattern is better scaled up to 8 nodes and 28% faster

on 8 GPUs than the synchronous calculation pattern. Also, this experiment clearly shows that

overlapping kernel execution with data transfer compensates for overheads of copying blocks’

boundary values during synchronization in the block-based decomposition on GPUs. However,

this statement is valid only for sufficiently large computational domains.

Figure 11. Time per model step (in logarithmic scale) on a single V100 GPU for the Box test

with 6100 × 4460 grid size

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 87

(a) Speedup (b) Time per model step (in logarithmic scale)

Figure 12. Performance scaling on V100 GPUs for the Box test with 6100 × 4460 grid size

4.2. The Azov Sea Test

The Azov Sea is a convenient region to test shallow water models because its dynamics

and circulation can be described well by two-dimensional numerical models, thanks to small

depth [19]. The computational domain of the Azov Sea has a relatively large number of land

points. Figure 5 shows that more than half of the blocks is entirely land when dividing the domain

into small blocks. Thus, the load-balancing method will be especially relevant here. The second

series of experiments were performed for the Azov Sea to evaluate the performance scaling of the

shallow water model with workload imbalances on processors and demonstrate the advantage

of using the load-balancing method for calculations on CPUs and GPUs. We choose different

spatial resolutions for the test: 250 meters (1525 × 1115 grid size) and 62.5 meters (6088 × 4448

grid size). It should be noted that a high resolution of the Azov Sea model is required to more

correctly describe coastal flow currents and sea level changes, which are required for practical

purposes, for example, for calculating level fluctuations in ports of the Azov Sea. Simulations

were performed for one model day, with 86400 model steps in total.

The LB metric is responsible for balancing the partitioning in terms of computing load on

processors and is defined as follows. Suppose that the partition occurs into k subdomains for

p processors, then LB is defined as:

LB(k, p) =
max1≤i≤kWi

1
p

∑k
i=1Wi

,

where max1≤i≤kWi – is the maximum workload of the i-th subdomain,
∑k

i=1Wi – is the full

workload of the entire computational domain. The workload is computed differently for cal-

culations on CPUs and GPUs. For CPUs, the workload of the subdomain is a sum of “wet”

points in the subdomain. However, for GPUs, the workload of the subdomain is a sum of any

points (“dry” and “wet”). Due to branch divergence, performance on GPUs does not drop with

increasing the proportion of “wet” points, unlike on CPUs, and we take it into account. So, for

calculation on GPUs, we uniformly distribute blocks from the block-based decomposition across

GPUs, excluding entirely land blocks. This metric shows the ratio of the maximum subdomain’s

High-performance Shallow Water Model for Use on Massively Parallel and...

88 Supercomputing Frontiers and Innovations

workload to the optimal workload. The value LB = 1 corresponds to a perfectly load-balanced

partition.

As mentioned early, the block-based decomposition divides the domain into small blocks and

distributes them across available processors. On the one hand, using a small number of blocks

in a partition leads to a high LB metric and unbalanced subdomains of processors. On the other

hand, using a large number of blocks in a partition leads to high overheads of copying blocks’

boundary values during processors synchronization, which is especially true for calculations on

GPUs since we must transfer data between CPU and GPU for each block. Therefore, the number

of blocks k in the partition is chosen adaptively for distribution across p processors according

to the following criterion:

k(p) = min
n=0,1,...

{4n s.t. LB(4n, p)− LB(4n+1, p) < 0.15}. (5)

That criterion means that optimal blocks partition is a minimum partition (4n blocks) for

which more fine partitions (4n+1 blocks and more) do not significantly reduce the value of the

LB metric. Table 1 demonstrates optimal number of blocks for calculation on CPUs according

to the described criterion; the optimal number of blocks is highlighted in the table.

Table 1. LB metrics for the Azov Sea with 250 meters resolution

Processes LB for 256 blocks LB for 1024 blocks LB for 4096 blocks

48 1.371 1.045 1.012

96 1.802 1.154 1.022

192 – 1.385 1.070

We tested the Azov Sea on the Pascal section of the Lomonosov-2 supercomputer. Figure 13

demonstrates performance scalings of the model with load-balancing compared to the model

without load-balancing on CPUs at 1525 × 1115 grid size and on GPUs at 6088 × 4448 grid

size. We considered only the pure MPI calculation pattern on CPUs and compared the asyn-

chronous calculation pattern to the synchronous pattern on GPUs. On one node, the model was

calculated without load-balancing. We used an optimal number of blocks according to crite-

ria 5. For calculations on CPUs, Tab. 1 shows an optimal number of blocks; for GPUs, we used

64 blocks for 4 nodes and 256 blocks for 16 nodes. The figure shows that load-balancing has a

significant impact on CPU computing performance: the model with load-balancing outperforms

by 30% the model without load-balancing at 16 nodes and scales superlinearly due to better

cache behavior of small blocks. For calculation on GPUs, it can be seen that the asynchronous

pattern with load-balancing outperforms the synchronous and asynchronous patterns without

load-balancing by 30% and 18% respectively at 16 nodes. Still, performance on GPUs, even

with the higher resolution of the Azov Sea, scales worse than on CPUs. As mentioned before,

GPUs are much more sensitive to the problem size than CPUs (see Fig. 10). That fact is espe-

cially relevant here because, with increasing nodes, the number of points per GPU dramatically

decreases due to the presence of land points in the computational domain.

Conclusions

In this paper, we present the three-layer software architecture of the shallow water model

based on the separation of concerns. The software architecture separates the physics-related code

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 89

(a) Speedup of CPU version for 250m resolution (b) Speedup of GPU version for 62.5m resolution

Figure 13. Performance scaling of the Azov Sea model. The Pascal section of the supercomputer

Lomonosov-2 was used

from features of parallel implementation, simplifying the model’s support and development. We

present the blocked-based decomposition to improve the two-dimensional domain decomposition

method proposing load-balanced and cache-friendly calculations on CPUs. We support the block-

based decomposition for calculations on GPUs proposing overlapping kernel execution with data

transfer. We present various hybrid parallel programming patterns for use on massively parallel

and heterogeneous computing systems. The pure MPI and the hybrid task-based MPI-OpenMP

are presented as calculation patterns on CPUs. We develop three hybrid parallel programming

patterns for calculations on GPUs. The synchronous MPI-CUDA pattern supports calculations

on multiple GPUs assuming only one block per MPI process and does not employ block-based

decomposition. The asynchronous MPI-OpenMP-CUDA pattern overlaps kernel execution with

data transfers to more effective calculation on nodes with one GPU per node than the syn-

chronous MPI-CUDA pattern. Lastly, the multi GPUs per node MPI-OpenMP-CUDA pattern

is designed to calculate on nodes with multiple GPUs per node.

We test the shallow water model on the Lomonosov-2 supercomputer at Lomonosov Moscow

State University. First, we evaluate different calculation patterns’ scaling performances on CPUs

and GPUs at the computational domain without land points. We demonstrate that performance

per a single grid point on GPUs dramatically decreases after 219 points per node while perfor-

mance on CPUs scales up to 217 well. Although, calculations on GPUs outperform calculations

on CPUs by a factor of 4.7 at 30 nodes using 360 CPU cores and 60 GPUs at 6100 × 4460 grid

size. We demonstrate that the asynchronous MPI-OpenMP-CUDA pattern is better scaled up

to 8 nodes and 28% faster on 8 GPUs than the synchronous calculation pattern. Second, we

demonstrate the advantage of using the load-balancing method in the Azov Sea model. We show

that the load-balancing significantly impacts computing performances: calculations with load-

balancing outperform by 30% calculations without load-balancing on both CPUs and GPUs at

16 nodes.

The considered shallow water model is formulated from a barotropic solver of the ocean

general circulation sigma model INMOM. This research challenges us to extend current work to

the three-dimensional ocean model INMOM on heterogeneous supercomputers.

High-performance Shallow Water Model for Use on Massively Parallel and...

90 Supercomputing Frontiers and Innovations

Acknowledgements

The reported study was funded by RFBR, project number 20-31-90109. The research is

carried out using the equipment of the shared research facilities of HPC computing resources at

Lomonosov Moscow State University.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Afzal, A., Ansari, Z., Faizabadi, A.R., Ramis, M.K.: Parallelization Strategies for Computa-

tional Fluid Dynamics Software: State of the Art Review. Archives of Computational Methods

in Engineering 24, 337–363 (2017). https://doi.org/10.1007/s11831-016-9165-4

2. Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling system (ROMS): a

split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling

9(4), 347–404 (2005). https://doi.org/10.1016/j.ocemod.2004.08.002

3. Porter, A.R., Appleyard, J., Ashworth, M., et al.: Portable multi- and many-core performance

for finite-difference or finite-element codes – application to the free-surface component of

NEMO (NEMOLite2D 1.0). Geosci. Model Dev. 11, 3447–3464 (2018). https://doi.org/

10.5194/gmd-11-3447-2018

4. Chaplygin, A.V., Dianskii, N.A., Gusev, A.V.: Load balancing using Hilbert space-filling

curves for parallel shallow water simulations. Num. Meth. Prog. 20:1, 75–87 (2019). https:

//doi.org/10.26089/NumMet.v20r108

5. Chaplygin, A.V., Diansky, N.A., Gusev, A.V.: Parallel Modeling of Nonlinear Shallow Water

Equation. In: Proc. 60th All-Russia Conf. on Applied Mathematics and Informatics, Moscow

Institute of Physics and Technology, Dolgoprudny, Russia, November 20-26, 2017. pp. 192–

194. Moscow Inst. Phys. Technol., Dolgoprudny (2017)

6. Chaplygin, A.V., Gusev, A.V.: Shallow Water Model Using a Hybrid MPI/OpenMP Par-

allel Programming. Problems of Informatics 1, 65–82 (2021). https://doi.org/10.24411/

2073-0667-2021-10006

7. Christidis, Z.: Performance and Scaling of WRF on Three Different Parallel Supercomputers.

In: Kunkel, J., Ludwig, T. (eds.) High Performance Computing. ISC High Performance

2015. Lecture Notes in Computer Science, vol. 9137, pp. 514–528. Springer, Cham (2015).

https://doi.org/10.1007/978-3-319-20119-1_37

8. Akhmetova, D., Iakymchuk, R., Ekeberg, O., Laure, E.: Performance Study of Multithreaded

MPI and OpenMP Tasking in a Large Scientific Code. 2017 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), pp. 756–765. IEEE (2017)

https://doi.org/10.1109/IPDPSW.2017.128

9. Diansky, N.A.: Ocean circulation modelling and research of its response to short-term and

long-term atmospheric forcing. Fizmatlit, Moscow (2013)

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 91

https://doi.org/10.1007/s11831-016-9165-4
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.5194/gmd-11-3447-2018
https://doi.org/10.5194/gmd-11-3447-2018
https://doi.org/10.26089/NumMet.v20r108
https://doi.org/10.26089/NumMet.v20r108
https://doi.org/10.24411/2073-0667-2021-10006
https://doi.org/10.24411/2073-0667-2021-10006
https://doi.org/10.1007/978-3-319-20119-1_37
https://doi.org/10.1109/IPDPSW.2017.128

10. Volodin, E.M., Diansky, N.A., Gusev, A.V.: Simulation and Prediction of Climate Changes

in the 19th to 21st Centuries with the Institute of Numerical Mathematics, Russian Academy

of Sciences, Model of the Earths Climate System. Izv., Atmos. Ocean. Phys. 49(4), 347–366

(2013)

11. Fomin, V.V., Diansky, N.A.: Simulation of Extreme Surges in the Taganrog Bay with

Atmosphere and Ocean Circulation Models. Russ. Meteorol. Hydrol. 43, 843–851 (2018).

https://doi.org/10.3103/S1068373918120051

12. Fu, H., Gan, L., Yang, C., et al.: Solving global shallow water equations on heterogeneous

supercomputers. PLoS ONE 12(3), e0172583 (2017). https://doi.org/10.1371/journal.

pone.0172583

13. Lawrence, B.N., Rezny, M., Budich, R., et al.: Crossing the chasm: how to develop weather

and climate models for next generation computers? Geosci. Model Dev. 11, 1799–1821 (2018).

https://doi.org/10.5194/gmd-11-1799-2018

14. Bari, M.S., Stoltzfus, L., Lin, P., et al.: Is Data Placement Optimization Still Relevant on

Newer GPUs? 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of

High Performance Computer Systems (PMBS), Dallas, TX, USA, 2018. pp. 83–96. IEEE,

2018. https://doi.org/10.1109/PMBS.2018.8641666

15. NEMO Consortium. NEMO development strategy Version 2: 2018-2022. https:

//www.nemo-ocean.eu/wp-content/uploads/NEMO_Development_Strategy_Version2_

2018-2022.pdf (2018)

16. Tintó, O., Acosta, M., Castrillo, M., et al.: Optimizing domain decomposition in an ocean

model: the case of NEMO. Procedia Computer Science 108, 776–785 (2017). https://doi.

org/10.1016/j.procs.2017.05.257

17. Perezhogin, P., Chernov, I., Iakovlev, N.: Advanced parallel implementation of the coupled

oceanice model FEMAO (version 2.0) with load balancing. Geosci. Model Dev. 14, 843–857

(2021). https://doi.org/10.5194/gmd-14-843-2021

18. Reguly, I.Z., Giles, D., Gopinathan, D., et al.: The VOLNA-OP2 tsunami code (version 1.5).

Geosci. Model Dev. 11, 4621–4635 (2018). https://doi.org/10.5194/gmd-11-4621-2018

19. Saburin, D.S., Elizarova, T.G.: Modelling the Azov Sea circulation and extreme surges

in 2013-2014 using the regularized shallow water equations. Russian Journal of Numerical

Analysis and Mathematical Modelling 33(3), 173–185 (2018). https://doi.org/10.1515/

rnam-2018-0015

20. Smith, R., Jones, P., Briegleb, B., et al.: The parallel ocean program (POP) reference

manual: ocean component of the Community Climate System Model (CCSM) and Com-

munity Earth System Model (CESM). http://www.cesm.ucar.edu/models/cesm1.0/pop2/

doc/sci/POPRefManual.pdf

21. Liu, T., Zhuang, Y., Tian, M., et al.: Parallel Implementation and Optimization of Regional

Ocean Modeling System (ROMS) Based on Sunway SW26010 Many-Core Processor. IEEE

Access 7, 146170–146182 (2019). https://doi.org/10.1109/ACCESS.2019.2944922

High-performance Shallow Water Model for Use on Massively Parallel and...

92 Supercomputing Frontiers and Innovations

https://doi.org/10.3103/S1068373918120051
https://doi.org/10.1371/journal.pone.0172583
https://doi.org/10.1371/journal.pone.0172583
https://doi.org/10.5194/gmd-11-1799-2018
https://doi.org/10.1109/PMBS.2018.8641666
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_Development_Strategy_Version2_2018-2022.pdf
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_Development_Strategy_Version2_2018-2022.pdf
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_Development_Strategy_Version2_2018-2022.pdf
https://doi.org/10.1016/j.procs.2017.05.257
https://doi.org/10.1016/j.procs.2017.05.257
https://doi.org/10.5194/gmd-14-843-2021
https://doi.org/10.5194/gmd-11-4621-2018
https://doi.org/10.1515/rnam-2018-0015
https://doi.org/10.1515/rnam-2018-0015
http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf
http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf
https://doi.org/10.1109/ACCESS.2019.2944922

22. van Werkhoven, B., Maassen, J., Kliphuis, M., et al.: A distributed computing approach

to improve the performance of the parallel ocean program. Geosci. Model Dev. 7, 267–281

(2014). https://doi.org/10.5194/gmd-7-267-2014

23. Voevodin, Vl., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale,

Deep Monitoring and Fine Analytics for the User Community. Supercomputing Frontiers and

Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

24. Wilhelmsson, T.: Parallelization of the HIROMB ocean model. https://pdfs.

semanticscholar.org/ee95/be1a6bb90becdc31c84f83c343ca8daf5bdc.pdf

25. Xu, S., Huang, X., Oey, L.-Y., et al.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model.

Geosci. Model Dev. 8, 2815–2827 (2015). https://doi.org/10.5194/gmd-8-2815-2015

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 93

https://doi.org/10.5194/gmd-7-267-2014
https://doi.org/10.14529/jsfi190201
https://pdfs.semanticscholar.org/ee95/be1a6bb90becdc31c84f83c343ca8daf5bdc.pdf
https://pdfs.semanticscholar.org/ee95/be1a6bb90becdc31c84f83c343ca8daf5bdc.pdf
https://doi.org/10.5194/gmd-8-2815-2015

PLUMED Plugin Integration into High Performance Pmemd

Program for Enhanced Molecular Dynamics Simulations

Viktor V. Drobot1,2, Evgeny M. Kirilin1,2, Kirill E. Kopylov2,3,

Vytas K. Švedas2,3

c© The Authors 2021. This paper is published with open access at SuperFri.org

Metadynamics as an enhanced sampling procedure of molecular dynamics simulations is an

effective tool to simulate complex molecular motions, conformations and reactivity, including en-

zyme plasticity and catalysis. The classic non-enhanced molecular simulation tools have reached

unprecedently high performance utilizing GPU units, however their implementation for enhanced

sampling are still on demand. The widespread AMBER (molecular dynamics package) + PLUMED

(metadynamics plugin) still does not take advantage of GPU computing or the CPU utiliza-

tion optimization included in the AMBER pmemd program. In this work we have developed

PLUMED binding to pmemd program resolving performance issues within hybrid molecular dy-

namics/metadynamics runs. Preliminary checks and test results of the model system have validated

this implementation.

Keywords: high performance pmemd program, enhanced molecular dynamics simulations,

PLUMED plugin integration, metadynamics, CUDA, GPU.

Introduction

Molecular dynamics (MD) is one of the key methods for modeling complex processes in living

systems, including protein folding, formation of enzyme-substrate complexes, ligand binding, etc.

Classic MD approach consists in the calculation of forces acting on the atoms of the system at

each time frame. Complex molecules are usually represented as rigid balls (atoms) connected

with springs (chemical bonds) of different hardness. Solving multidimensional systems differential

equations allows to calculate forces acting on each atom and corresponding coordinates and

momenta, so one can track mechanical evolution of the system in time. However classic MD

has one significant drawback: because of free-running simulation atoms of the system will have

specific energy distribution which leads to the movement of the whole system to the nearest local

energy minimum. If one wants to study some process with activation energy barrier (chemical

reaction, protein folding, conformational dynamics) it then can be hindered for observation

because it requires significant movement of the system from the local energy minimum.

Running MD simulation under elevated temperature is one of the well-known approaches

to evade such problems: higher kinetic energy of the system facilitates overcoming of energy

barriers [3]. However, it can lead to physically nonsense states which have no reference points in

empirical studies. Adaptive bias methods are more preferred to deal with local minima problems

as their selective nature allows to shift the whole system from local equilibrium and push it across

barriers. The adaptive bias methods open a way for reconstruction of energy surface profile, thus

making assessment of other metastable states possible. AMBER [1] is one of the most popular

MD packages and provides great variety of adaptive free energy methods such as:

• MM-PBSA – for calculation of protein–ligand binding energy;

• thermodynamic integration and calculational alchemistry;

• umbrella sampling;

1Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Moscow, Russia
2Lomonosov Moscow State University, Research Computing Center, Moscow, Russia
3Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia

DOI: 10.14529/jsfi210408

94 Supercomputing Frontiers and Innovations

• steering dynamics (e. g. APR);

• non-equilibrium free energy (NFE) methods, including simple metadynamics.

Most methods listed above are available for use in pmemd module of AMBER which is

capable of using GPU for calculations (specifically, pmemd.cuda and pmemd.cuda.mpi executa-

bles), thus leading to the significant acceleration of the whole simulation. However, current list

of available collective variables for NFE methods is pretty much limited while config system is

not quite flexible for complex setups.

Metadynamics (MetaD) as one of the adaptive bias methods is used for potential energy

surface exploration in selected coordinates (collective variables, CV) [2]. The usage of collective

variables (distances between atoms, attack angles, coordination numbers etc) allows one to re-

duce full-dimensional phase space of generalized coordinates and momenta to a much smaller

phase space of selected CVs, thus facilitating its exploration. Moreover, physically-based CVs

give more clear representation of the process under study. The essence of the method is to

add small biasing energy potential to the full energy of the system at specific time, thus push-

ing it from current local equilibrium. Having history of such additions it becomes possible to

reconstruct free energy surface of the system by summing all added biases and inverting the

sign.

Since collective variables are functionally dependent on generalized coordinates and mo-

menta communication between MD and MetaD code is required. One of the most popular pack-

ages for performing MetaD runs is PLUMED [5] which acts both as a plugin for existing MD

engines and as a molecular dynamics trajectory analysis tool. PLUMED provides much broader

variety of CVs and adaptive bias methods (classic MetaD, well-tempered MetaD, steering dy-

namics, etc) and existing code has been used for 12 years. However, previously there was only

one PLUMED extension for AMBER engine, which allowed to use it only with sander module

and CPUs.

1. Results and Discussion

Weve implemented [4] another PLUMED extension for AMBER with the help of the original

authors of the former: it allowed to use PLUMED with pmemd module of AMBER as well as

its variants (MPI, CUDA, CUDA+MPI) including both CPU and GPU calculations. Original

source code and idea was taken from existing extension for sander, however, the usage of GPU

required special actions Fig. 1. Right after MD run all necessary information about units used

(time, length, mass, charge, etc) is passed to the PLUMED. Next on each step of molecular

dynamics run all current coordinates, velocities and charges are passed to the MetaD engine.

After that PLUMED calculates required biasing potential and passes it back to the MD engine,

which in turn sums it with full energy. At the same time the rest of the energy is calculated in

the MD kernel on the CPU (sander, pmemd, sander.MPI, pmemd.MPI executables) or on the

GPU (pmemd.cuda, pmemd.cuda.MPI). Key difference between our approach and the existing

PLUMED extension for sander is the synchronization of coordinates and velocities of atoms with

master process for the subsequent transfer to the PLUMED.

Such synchronization can be a potential bottleneck and can slow down the whole calculation.

NFE code analysis has shown that currently there is no way to implement adaptive bias methods

in AMBER fully on GPU. After basic implementation of PLUMED extension for pmemd all

required checks were held [6] to confirm the correctness of MD and MetaD interaction:

V.V. Drobot, E.M. Kirilin, K.E. Kopylov, V.K. Švedas

2021, Vol. 8, No. 4 95

Figure 1. Classic MD and MetaD interaction algorithm. By exchanging coordinates, forces and

charges between MD and MetaD engines one can calculate biasing potential in the PLUMED

kernel followed by passing calculated forces back to the MD engine

• coordinates passing: to verify atomic coordinates are being passed in specific order and

right units;

• integrator timestep passing: to verify that time-dependent properties will be calculated

correctly in MetaD engine;

• energy passing: to verify energies are being calculated in MetaD engine;

• masses and charges passing: to verify that inertial (gyration radii, centers of mass, etc)

and dipole values are being calculated right;

• forces passing: to verify calculated biases;

• virials passing: to verify pressure-dependent values;

• forces on energy passing: to verify energy-dependent biases.

All checks listed above were successfully passed. Then test system consisted of alanine

dipeptide in water box (10234 atoms, TIP3P water), that is widely used as for demonstrational

purposes, was prepared for metadynamics run with the new extension. The Lomonosov-2 [7]

supercomputer cluster was used for executing test runs in the following configurations:

1. CPU-only MD simulations: pmemd.MPI and sander.MPI executables from AmberTools

21/Amber 20 package were compiled with GCC 9.1.0 toolchain using OpenMPI 4.1.0 and

Intel MKL 2015.3.187 (including FFTW) libraries. Plumed 2.7.1 was also compiled with

GCC 9.1.0 using OpenMPI 4.1.0 and BLAS/LAPACK libraries from Intel MKL 2015.3.187.

PLUMED was triggered via usual AmberTools interface by setting PLUMED KERNEL

environment variable. OpenMP support was turned on during compilation. Executables

were run in parallel: 36 MPI processes on single “volta2” partition node (2x Intel Xeon

PLUMED Plugin Integration into High Performance Pmemd Program for Enhanced...

96 Supercomputing Frontiers and Innovations

Gold 6240 2.60GHz, 36 CPU cores in total; 1.5 TiB RAM; 2x NVIDIA Tesla V100, not used

for this kind of run). Infiniband FDR node interconnect was not involved in the calculation.

HILLS, COLVAR files and MD trajectories were stored on distributed Lustre filesystem

included in Lomonosov-2 cluster.

2. GPU-involved MD simulations: pmemd.cuda SPFP executable from AmberTools 21/Am-

ber 20 package was compiled with GCC 9.1.0 and NVCC 11.1.74 toolchains using Intel

MKL 2015.3.187 and NVIDIA CUDA Toolkit 11.1 libraries (including FFTW from MKL

and CUFFT from CUDA Toolkit). Plumed 2.7.1 was also compiled with GCC 9.1.0 using

OpenMPI 4.1.0 and BLAS/LAPACK libraries from Intel MKL 2015.3.187. PLUMED was

triggered via usual AmberTools interface by setting PLUMED KERNEL environment vari-

able. MPI support was explicitly disabled during compilation, while OpenMP support was

enabled. pmemd.cuda SPFP executable was run as a single process on single node on the

following Lomonosov-2 partitions:

• “compute”: 1x Intel Xeon E5-2697 v3 2.60GHz, 14 CPU cores; 64 GiB RAM;

1x NVIDIA Tesla K40s;

• “pascal”: 1x Intel Xeon Gold 6126 2.60GHz, 12 CPU cores; 92 GiB RAM; 2x NVIDIA

Tesla P100;

• “volta2”: 2x Intel Xeon Gold 6240 2.60GHz, 36 CPU cores in total; 1.5 TiB RAM;

2x NVIDIA Tesla V100.

In cases when node had 2 GPUs the executable was run on the first of them. Infiniband

FDR node interconnect was not involved in the calculation. HILLS, COLVAR files and MD

trajectories were stored on distributed Lustre filesystem included in the Lomonosov-2 cluster.

Resulting MD simulation performance is shown in Fig. 2.

Figure 2. Dependence of MD performance of AmberTools 21/Amber 20 + Plumed 2 binding

(Lomonosov-2 cluster) on the run configuration (on CPUs for single node in MPI mode; on

NVIDIA GPUs for single mode on different GPU generations: K40s “Kepler”, P100 “Pascal”,

V100 “Volta”)

Performance is determined as a number of finished MD steps per specific time period, which

is then converted to the usual unit of ns/day. Sander executable is included in AmberTools 21

package and have MetaD support implemented by PLUMED authors. Our version of PLUMED

V.V. Drobot, E.M. Kirilin, K.E. Kopylov, V.K. Švedas

2021, Vol. 8, No. 4 97

extension for pmemd increases performance by a factor of 2.3. Usage of GPU for calculations

gives 4.4x boost in case of NVIDIA Tesla K40s GPUs, 7.9x boost for NVIDIA Tesla P100

GPUs and 7.4x boost for NVIDIA Tesla V100 GPUs. In the latter case performance limit

is observed for PLUMED + pmemd.cuda case despite of boost for classic MD run without

MetaD in comparison with NVIDIA Tesla P100. Its due to the specific algorithm implementation

and GPU-CPU synchronization being the most important performance-limiting step. Impact of

such a synchronization is clearly demonstrated by usage of NVIDIA Nsight Systems profiler.

Analysis of pmemd.cuda SPFP executable performance on GPU run was held with NVIDIA

Nsight Systems profiler (CUDA Toolkit 11.1). For this analysis, debug versions of AmberTools

21/Amber 20 and Plumed 2.7.1 were built having the configuration described above with extra

enabledebug configuration option and -g compilation option. Analysis was done in terminal mode

with nsys tool on single “volta2” node by using DWARF traceback algorithm.

Resulting *.qdrep file was analyzed in NVIDIA Nsight Systems GUI (Fig. 3, Fig. 4).

Figure 3. Results of profiling the original pmemd.cuda SPFP executable version (CUDA 11.1)

with NVIDIA Nsight Systems. 1 ms range is shown. Most of the calculation time is spent during

“computational kernels” execution

Figure 4. Results of profiling the Plumed-enabled pmemd.cuda SPFP executable version

(CUDA 11.1) with NVIDIA Nsight Systems. 1 ms is shown. Data exchange between CPU and

GPU takes about 42% of all calculation time while “computational kernels” execution takes

about 58% of time

Profiling has shown that for the original version of pmemd.cuda SPFP executable most of the

time is spent during “computational kernels” execution on GPU while the data exchange between

CPU and GPU have almost negligible impact on the overall calculation time: all required data

is already placed in the GPU memory.

PLUMED Plugin Integration into High Performance Pmemd Program for Enhanced...

98 Supercomputing Frontiers and Innovations

For the runs with PLUMED plugin enabled profiling has shown that very intensive trans-

mission of data between CPU and GPU occurs on each MD run step, thus taking about 42% of

all calculation time. Unfortunately, current PLUMED calculations can be done only on CPU and

such transmission is absolutely required for synchronization. It leads to the bottleneck and limits

MD run performance. In general, the use of PLUMED in combination with the high performance

pmemd executable of the AmberTools software suite can successfully accelerate the calculations

of enhanced sampling methods based on molecular dynamics. The next fundamental step in

acceleration would be the transfer of the existing additional metadynamic potential to the GPU

memory to lower CPU and GPU synchronization while updating metadynamic potential is not

rate limiting task up to date.

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grant 20-04-01119).

The research was carried out using the equipment of the shared research facilities of HPC

computing resources at Lomonosov Moscow State University [7].

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Case, D.A., Aktulga, H.M., Belfon, K., et al.: Amber 2021. University of California Press

(2021), http://ambermd.org/doc12/Amber21.pdf

2. Laio, A., Parrinello, M.: Escaping free-energy minima. Proceedings of the National Academy

of Sciences 99(20), 12562–12566 (2002). https://doi.org/10.1073/pnas.202427399

3. Qi, R., Wei, G., Ma, B., Nussinov, R.: Replica Exchange Molecular Dynamics: A Practical

Application Protocol with Solutions to Common Problems and a Peptide Aggregation and

Self-Assembly Example, pp. 101–119. Springer, New York, NY (2018). https://doi.org/

10.1007/978-1-4939-7811-3_5

4. The PLUMED Consortium: Plumed 2 source code repository. Pull request #486 (2019),

https://github.com/plumed/plumed2/pull/486

5. The PLUMED Consortium: Promoting transparency and reproducibility in enhanced

molecular simulations. Nature Methods 16(8), 670–673 (2019). https://doi.org/10.1038/

s41592-019-0506-8

6. The PLUMED Consortium: The PLUMED manual, version 2.7 (2020), https://www.

plumed.org/doc-v2.7/developer-doc/html/_how_to_plumed_your_m_d.html

7. Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large

scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers

and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

V.V. Drobot, E.M. Kirilin, K.E. Kopylov, V.K. Švedas

2021, Vol. 8, No. 4 99

http://ambermd.org/doc12/Amber21.pdf
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1007/978-1-4939-7811-3_5
https://doi.org/10.1007/978-1-4939-7811-3_5
https://github.com/plumed/plumed2/pull/486
https://doi.org/10.1038/s41592-019-0506-8
https://doi.org/10.1038/s41592-019-0506-8
https://www.plumed.org/doc-v2.7/developer-doc/html/_how_to_plumed_your_m_d.html
https://www.plumed.org/doc-v2.7/developer-doc/html/_how_to_plumed_your_m_d.html
https://doi.org/10.14529/jsfi190201

Turbulent Length Scale for Multilayer RANS Model of Urban

Canopy and Its Evaluation Based on Large-Eddy Simulations

Andrey V. Glazunov1,2,3 , Andrey V. Debolskiy3,4 ,

Evgeny V. Mortikov1,3

c© The Authors 2021. This paper is published with open access at SuperFri.org

Large-Eddy Simulation (LES) numerical experiments of neutrally-stratified turbulent flow

over an urban-type surface and passive scalar transport by this flow are performed. A simple

parameterization of the turbulent length scale containing only one empirical constant is proposed.

Multilayer Reynolds-Averaged Navier-Stokes (RANS) model of turbulent flow and turbulent scalar

diffusion is constructed. The results of the RANS model are compared with the LES experiments.

It is shown that the proposed approach allows predicting the average flow velocity and the scalar

concentration inside and above the urban canopy.

Keywords: atmospheric boundary layer, numerical simulation of turbulence, urban canopy,

scalar turbulent transport.

Introduction

Increasing performance of supercomputers makes it possible to make detailed weather fore-

casts, in which the horizontal scale of large metropolitan areas is resolved explicitly on grids

of General Circulation Models (GCMs). One of the important blocks of large-scale models are

local one-dimensional RANS models of the atmospheric boundary layer, which describe the near

surface turbulent transport of momentum and scalar quantities vertically. In most contemporary

GCMs, any surface, including the urban canopy, is considered a rough surface coinciding with

the smoothed terrain, and its small-scale geometric features (e.g., high-rise buildings) are taken

into account only in terms of their integral impact on the turbulent exchange processes between

the surface as a whole and the atmosphere above. At the same time, along with grid refinement

of GCMs horizontally, their vertical resolution also increases so that for several grid nodes with a

step of the order of several meters close to the surface there are city buildings which induce form

drag that needs to be accounted for. So, it is necessary to develop multilayer one-dimensional

turbulence models that take into account the dynamic and thermal effects of buildings and

vegetation on turbulence in the form of vertically distributed forcing and incorporate special

turbulent closures for them. In such models, the surface layer is considered as a porous medium,

which creates volumetric resistance to the mean wind and is capable of generating turbulent

kinetic energy in the flow around buildings.

The first such models appeared quite a long time ago (see, e.g., [17]) and now incorporate

parameterizations of various physical processes, such as multilayer parameterizations of radiation

sources and heat sinks, the dynamic and thermal interactions of turbulence with vegetation

(see [5, 14–16, 20]). These models will eventually make it possible to refine the meteorological

characteristics within the urban canopy near surface. In addition, an important stimulus for the

development of multilayer RANS models is the need to predict the concentrations of pollutants

represented by gaseous impurities and particulate matter.

1G.I. Marchuk Institute of Numerical Mathematics, Russian Academy of Science, Moscow, Russian Federation
2Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
3Research Computing Center, Lomonosov Moscow State University, Moscow, Russian Federation
4A.M. Obukhov Institute of Atmospheric Physics,Russian Academy of Science, Moscow, Russian Federation

DOI: 10.14529/jsfi210409

100 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-8780-3513
https://orcid.org/0000-0002-0182-5675
https://orcid.org/0000-0002-9683-5701

One of the most important problems arising in the development of multilayer one-

dimensional models of the urban canopy is the difficulty of independent evaluation of their

individual components. Measurements in real cities are not always feasible, since they are sub-

ject to the combined influence of numerous external meteorological factors and have significant

spatial heterogeneity. There is a need for evaluation of RANS models in idealized conditions

simulating urban turbulence in a state of statistical equilibrium and spatial homogeneity on

horizontal scales exceeding the size of large elements of urban surface roughness. It is possible

to create such conditions in two ways. The first one is traditional and consists of setting up

specialized laboratory experiments to measure the statistical characteristics of turbulence of a

flow around objects similar to buildings, but with simple shape and regular structure of their

location on the surface (see, for example, [3]).

For laboratory experiments performing high Reynolds number flow experiments, compara-

ble to urban canopy in atmospheric boundary layer, remains a challenge. Researchers resort to

some combined way of organizing measurements, placing large arrays of simple in shape large

objects (e.g., cubes of a 1.5 m size) in the open air, rather than in the laboratory setup (see,

experiment COSMO (Comprehensive Outdoor Scale Model) http://www.ide.titech.ac.jp/ kan-

dalab/COSMO/COSMO.html [13]). This approach provided reliable data for developing param-

eterizations of the dynamic and thermal interaction of turbulence with urban-type surfaces (see,

e.g., [12]).

Another way to obtain low noise, detailed and sufficiently reliable data on turbulent dynam-

ics and turbulent scalar transport in urban-type environments is direct numerical simulation

(DNS) and large-eddy simulation (LES). The use of numerical models (both LES and DNS) to

establish the aerodynamic characteristics of urban-type surfaces is not new. The first such nu-

merical simulations were performed more than 15 years ago [4, 21] and showed good agreement

with laboratory data [3]. Contemporary HPC systems, not only allow us to significantly extend

the range of surface configurations considered, but also to accurately resolve the characteristics

of turbulent flow within the 0 < z < h layer filled with roughness objects. This, in particular,

makes it possible to use LES data to construct and verify multilayer local one-dimensional RANS

models.

In [19] the LES data obtained from flow simulations over an array of cubes (see Fig. 3

of [19]), a second order (K-l) multilayer model based on prognostic equation for turbulent kinetic

energy (TKE) and prescribed turbulent length scales within the canopy layer was calibrated

and validated: lm to calculate the turbulent viscosity and TKE diffusion coefficients and lε to

calculate TKE dissipation rate. In that study universal functions l̃m(z̃) and l̃ε(z̃) of these scales

are proposed, which depend on the geometric parameters of urban canopy (here: l̃m = lm/h,

l̃ε = lε/h, z̃ = z/h are normalized by the thickness of the urban canopy layer). The one-

dimensional model is constructed by introducing an additional drag force into the equation for

the average velocity U :

FD = −CDU |U | , (1)

where CD is positive inside the layer 0 < z < h and, generally speaking, depends on z volume

drag coefficient with dimensions [CD] = m−1. In addition, a new term is added to the TKE

balance equation, which describes its production through the interaction with the buildings:

PD = CD |U |3 . (2)

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 101

The authors of [19] have shown with their tests that the parameterization calibrated with LES

data improves the reproduction of the average velocity U both inside and above the 0 < z < h

layer. In addition, that paper has provided comparisons with other independent simulations and

measurements.

Our study has two research objectives. First, we will try to test the performance of the

proposed parameterizations for surfaces with relatively small object densities (on the grounds

that when including them in GCMs, we will first have to consider the impact of the highest

buildings, which are typically represented with a small fraction). Second, we will test how the

proposed parameterizations model turbulent scalar transport within canopy. These goals seem

to us even more relevant than modelling of the mean wind and its dispersion profiles in the

urban environment, because it is directly related to the possibility of forecast of pollutants

concentrations.

In addition, we propose the simplest way to construct a turbulent length scale within the

roughness layer. This scale is derived from dimensional considerations and includes only one

empirical parameter. In addition, we propose to calculate this scale without using data of the

geometry of the urban surface, which is extremely difficult to generalize and express by a single

number. We suggest that the nature of the turbulence itself can do this generalization for us.

Indeed, above the roughness layer at large Reynolds numbers and for neutral stratification,

the profile of the dimensionless mean wind velocity Ũ can be approximated by a logarithmic

relationship:

Ũ =
U

U∗
=

1

κ
ln

(
z −Du

z0u

)
, (3)

where U∗ is the friction velocity (U∗ = |τs|1/2; τs is the mean tangential frictional stress on the

surface as a whole normalized by air density); κ ≈ 0.4 is the von Karman constant; z0u is the

roughness length parameter, Du is the displacement height. The parameter z0u � h has the

meaning of a height independent additive constant to the entire dimensionless velocity profile

and characterizes the surface as a whole in terms of the efficiency of momentum exchange with

the atmosphere, and hence it is, to a greater extent, related to the value of the drag coefficient

CD. At the same time, the validity of using the height z′ = (z −Du) in the approximation (3)

suggests that the characteristic turbulent length scales in the flow over the complex surface due

to the influence of surface geometry are proportional to the scale z′ = z −Du (instead of their

proportionality to the scale z over the flat wall) with small corrections. Our null hypothesis is

that the dimensionless parameter Du/h characterizes the turbulent length scales both above

and inside the canopy layer, since at least the largest turbulent fluctuations obviously cannot

be independent outside and inside the urban environment. The specific form of our proposed

approximation is given below. Note that the parameters z0u and Du are measurable and can be

obtained from meteorological observations and eddy covariance momentum flux measurements

over the urban surface.

Below we present the results of numerical experiments with the INM RAS LES model [7],

which has been previously repeatedly tested for modeling turbulence over urban surfaces [8–11].

The experiments have been performed in the traditional formulation, which coincides, except for

minor details, with the numerical experiments design carried out in [4, 21] and [19]. In addition

to modeling the flow itself, we calculated the turbulent scalar transport with the source at the

surface.

A one-equation K − l turbulence model similar to the [19] model was used as a local one-

dimensional RANS model and, in the same way, augmented with parameterization of the bulk

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

102 Supercomputing Frontiers and Innovations

form drag (1) and TKE production (2). The main difference is in the choice of the turbulent

length scale. For comparison, we also present the results of calculations with our RANS model

with the length scales proposed in [19]. Here we do not investigate the parameterization of the

CD coefficient, so we will use the coefficient calculated from LES data for its assignment in both

RANS models.

The results of the local-one-dimensional models are compared with the LES data and with

each other. We will show that our proposed simple parameterization of the turbulent scale on the

considered surface geometries is not inferior, and in some cases superior, to the parameterizations

built on the basis of generalization of geometric parameters of the urban environment.

The article is organized as follows. The sections 1 and 2 provide a brief descriptions of the

models (LES and RANS, correspondingly). Section 3 describes the setup of numerical experi-

ments with the models and the parameters of numerical calculations. The proposed turbulent

length scale is presented in section 5. Section 6 shows the results of RANS calculations and their

comparison with LES data.

1. LES Model Description

The model explicitly reproduces the filtered velocity u ≡ F∆(u), except for small-scale

fluctuations u′′ = u − u (here: F∆ is a given spatial filter commuting with differentiation

operators). The differential equations for conservation of momentum and mass of incompressible

fluid in tensor notation have the following form:

∂ui
∂t

+
∂uiuj
∂xj

= −∂τij
∂xj
− ∂p

∂xi
+ F e

i ,
∂ui
∂xi

= 0, (4)

where F e
i corresponds to the external force acting on the flow, as well as the Coriolis acceleration

and buoyancy forces (equal to zero in the case under consideration); p is the normalized pressure;

τij = uiuj − ui uj is the “sub-grid/ sub-filter” stress tensor, subject to parameterization. The

term involving the kinematic viscosity of air ν is usually neglected in LES models of atmospheric

boundary layer flows.

The system of equations (4) is supplemented by the filtered scalar transport equation s:

∂s

∂t
+ ui

∂s

∂xi
= −∂ϑ

s
i

∂xi
+ Fs, (5)

where Fs are bulk sources; ϑsi = sui − ui s are parameterizable subgrid fluxes.

The system of equations (4), (5) is solved by an explicit method. The conservative fourth-

order accurate spatial approximation [18] and the second-order Adams-Bashforth scheme in time

are applied. The Poisson equation is solved iteratively by the preconditioned conjugate gradient

method. The equations are discretized on a regular staggered grid.

1.1. Turbulent Closure

A mixed subgrid/subfilter model [1] is used to compute the tensor τij :

τmix
ij = τ smag

ij + τ ssmij = −2(Cs∆)2|S|Sij + (ui uj − ui uj), (6)

where Sij is the filtered strain-rate tensor; Cs is the dimensionless coefficient variable in space

and time dependent on the local flow characteristics and determined dynamically [6]. The details

of the localized dynamic model and features of its numerical implementation are described in [7].

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 103

The turbulent diffusion model is used as a closure for scalar fluxes:

ϑsi = −Kh
subgr ∂s

∂xi
, (7)

where Kh
subgr = (1/Scsubgr)(Cs∆)2|S| is subgrid diffusivity coefficient. The turbulent subgrid

Schmidt number Scsubgr has a fixed value Scsubgr = 0.8.

1.2. Boundary Conditions

In the numerical experiments presented below, a simple configuration of roughness elements

is considered, which does not require accurate reproduction of the positions of flow separation

and the formation of internal boundary layers. It is assumed that within the grid cell closest to

the surface, the flow has a plane-parallel structure, which obeys the general laws of turbulent

near-wall flow over the surface with small roughness elements.

The natural boundary conditions for the resolved velocity components at the solid bound-

aries of the region for staggered grids are the free slip and non-penetration:

∂us/∂n|Γ = 0; un|Γ = 0, (8)

where us is the tangential velocity to the boundary Γ, and un is the normal velocity component.

This conditions allows us to obtain an approximation of the convective terms of the equation of

motion (4) , which preserves the kinetic energy in the absence of viscosity.

The terms associated with the subgrid turbulent stresses are approximated in flux form,

so that the wall friction is taken into account by setting the surface tangential stress vector

τs = (τinτjn)|Γ, depending on the velocity us = (ui, uj) at grid nodes distant from the boundary

by a distance ∆gn/2 (∆gn is the grid step in the direction of the normal n to the surface):

τin|Γ = −C2
u|us|ui. (9)

The momentum exchange coefficient Cu in these calculations was set the same for all surfaces of

urban canopy (ground, roofs and walls) and corresponds to the value of the roughness parameter

z0/h = 6.25 · 10−4, where h is the height of objects.

Periodic boundary conditions are used at the lateral boundaries of the computational do-

main, and the condition (8) is used at the upper boundary. The boundary conditions for scalar

quantities are similar to those for the velocity components tangential to the surface (8). For the

scalar transport, the source at the surface is specified as an additional constant flux Qs.

1.3. Parallel Implementation

Algorithms for solving system of equations (4), (5) of the LES model are parallelized using

MPI library. A three-dimensional decomposition of the computational domain is applied. At

each model step and at each iteration in procedures for Poisson and dynamic Smagorinsky

closure, the MPI-processes exchange with each other by data related to the boundary nodes of

the decomposition subdomains. Collective communication calls are used to calculate the norms

of vectors used in iterative methods and for spatial averaging in statistical data processing

procedures. Depending on the spatial approximation of a particular differential operator, the

data for exchanges are shifted by one or two grid nodes from the subdomain boundaries. Most

of the exchanges between the processes are implemented using MPI non-blocking subroutines.

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

104 Supercomputing Frontiers and Innovations

2. RANS Model Description

For a horizontally homogeneous, unidirectional, neutrally stratified flow, the one-

dimensional (in the vertical direction) equations of the RANS model are as follows:

∂U

∂t
+
∂τ

∂z
= −Cd |U |U + Fe,

∂S

∂t
+
∂Qs

∂z
= Fs.

(10)

Here U , and S are mean wind speed and scalar concentration, respectively. FD = −Cd |U |U is

the quadratic form drag.

The turbulent momentum flux τ and turbulent kinematic scalar concentration flux Qs are

calculated using the gradient approximation:

τ = −Km
∂U

∂z
,

Qs = −Kh
∂S

∂z
,

(11)

where Km and Kh are the turbulent viscosity and diffusivity coefficients, which, in contrast

to the LES formulation, do not depend on the length scale related to the filter width or the

grid resolution. The system of equations (10), (11) corresponds to the simplified boundary layer

model used in large-scale atmospheric models. We will consider a closure in which the coefficients

Km and Kh are determined from the similarity relations:

Km = Sm
E2

k

ε
,

Kh = Sh
E2

k

ε
≡ Km/Sct.

(12)

The TKE is described by a prognostic equation:

∂Ek

∂t
− ∂

∂z

Km

σk

∂Ek

∂z
= P + PD − ε, (13)

where PD is the TKE production through interactions with buildings, given by the formula (2),

and P is the TKE production by mean shear:

P = Km

(
∂U

∂z

)2

. (14)

The TKE dissipation rate ε is defined with a diagnostic turbulent length scale lε:

ε =
E

3/2

k

lε
. (15)

In the equations (12–15) Sm and Sh are universal functions determining, in particular, the

turbulent Schmidt number Sct = Sm/Sh , σk is the closure parameter responsible for the TKE

diffusion. Here, we will follow the traditional approach and assume σk = 1. In stratified turbulent

flows, the functions Sm and Sh depend on the Richardson number Ri. Since in these calculations

buoyancy was not considered, we set constant values: Sm = 0.09, Sct = 0.8, Sh = Sm/Sct.

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 105

Obviously, the interactions between flow and buildings significantly changes the scale of

turbulent vortices both inside and above the urban canopy. In the standard model described

above, a single length scale lε is introduced, and all other length scales are proportional to it,

since the model coefficients are fixed and do not change values depending on the solution and

position in space. The standard choice for the turbulent scale over a flat wall is:

lε = lT = κz, (16)

In the external flow over the urban medium (at z > h) we can use approximation:

lT = κ(z −Du). (17)

It remains to choose the length scale in the layer 0 < z < h. A separate section 5 of this paper

is devoted to this issue, where we will discuss construction of the length scale using methods

reminiscent of those of similarity theory. Thus, we retain the standard and well-known K-l model

of turbulence (see, for example, [2]) without changing the relations between length scales and

without introducing any other corrections responsible for time scales.

An alternative approach is to introduce unknown, different functions ψi of arbitrary form

within layer 0 < z < h for length scales of dissipation lε, velocity lm, scalar fluctuations, and

so on, which are assumed universal: lε = zψε(z/h, ς1, ς2, ς3,), lm = zψm(z/h, ς1, ς2, ς3, ...),....

Here, ς1, ς2, ς3, ... is a set of dimensionless parameters generated from all geometric dimensions

of the underlying surface. In fact, this is the approach proposed in [19] to construct lε and

lm, where the functions ψε and ψm are determined and calibrated from LES data. The main

defect of this method is the difficulty of determining a limited set of leading dimensionless

parameters ςi, i < N ∼ 1. Moreover, this choice may not be universal with respect to the

underlying surface geometry.

We do not cite formulas from [19] in this paper due to their unwieldiness and some differ-

ences in writing in terms of the system of equations (12)–(15). However, we have adopted their

turbulence model within our RANS code and will compare its results with those obtained using

the lT scale described below.

3. Numerical Experiments Design

3.1. LES Model

Here we present the results of three simulations performed on an equilateral grid of

512×256×128 nodes. The experiments EXP1, EXP2, and EXP3 (see, Fig. 1a) differ in the

geometry and location of the objects on the lower boundary of the area (cubes and rectangular

parallelepipeds simulating buildings). In this figure: h and h/2 are the heights of the objects

(there are 32 grid steps ∆ per height h). The height h will further be used as a length unit to nor-

malize the results. The size of the entire computational domain was: Lx×Ly×Lz = 16h×8h×4h.

The flow is accelerated by a constant external pressure gradient

F e
i = −dP/dx = U2

∗fix/(Lz − h), where U∗fix is the given value of friction velocity at

height h in equilibrium. The initial profiles of the mean streamwise velocity at z > Du were

calculated using equation (3) and from preliminary estimates of the parameters z0u and Du.

The average scalar concentration was set equal to zero in the entire computational domain.

An additional term is added to the right-hand side of the prognostic equation of the scalar

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

106 Supercomputing Frontiers and Innovations

EXP1

EXP2

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

EXP2

EXP3

() (b)

EXP3

h/2

h/2

h

h

h/2

h

h

h/2

Figure 1. (a) configuration of streamlined objects; (b) visualization of the instantaneous flow

fields in EXP2 and EXP3 (inside the area denoted by the dotted line on the left); the color

on the section shows the normalized scalar concentration transported by the turbulent flow

(S − Stop)/S∗; isosurface – (S − Stop)/S∗ = 7

concentration s to compensate for the trend of the mean concentration, which is independent

of the coordinates:

Fs =
1

Vair

∫

Γ
−QsdΓ, (18)

where Vair is the volume of the part of the model domain filled with air, and Γ is the surface on

which the concentration flux Qs is set (in this case, the “ground” surface).

To initialize the simulations, random noise of small amplitude was imposed on the initial

conditions. The calculations were run for 40 units of dimensionless time t̃ = Lz/U∗fix, the last

10 units of dimensionless time were used to average the results. To normalize the scalar con-

centration profiles, the presented results use the turbulent concentration scale S∗ = 〈w′s′〉h /U∗,
where 〈w′s′〉h is the total time- and space-averaged steady-state scalar flux (including subgrid

diffusion) at height z = h+ 1.5∆ (∆ is the model grid step). The velocity is normalized by the

friction velocity U∗ at the same height. Since we set the scalar flux from the surface rather than

calculating it, we compare the LES results with the RANS results by the scalar concentration

defect (S−Stop)/S∗, where Stop is the calculated concentration near the top of the model domain.

From the physical point of view, this means that we compare the concentrations calculated in

LES and RANS under the condition of equality of their fluxes from the ground surface and

that at the height Lz is scalar concentration is equal to zero. Figure 1 shows the concentration

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 107

(S−Stop)/S∗ (one of the instantaneous states) in experiments EXP2 and EXP3 to demonstrate

the turbulent nature of the flow.

3.2. RANS-models

The conditions of numerical experiments with one-dimensional RANS models are identical

to those in LES. The same height of the computational region Lz = 4h and the same roughness

parameter of the ground surface z0/h = 6.25E − 4 were chosen. The grid in all RANS-model

experiments matched the vertical grid of the LES model. For correctness of comparison here

we will not apply any parameterizations of the drag coefficient CD(z) in both models, but will

take its “true” value obtained from LES results (see section 4). Additional checks have shown

that, at qualitative level, the conclusions presented below do not change when the parameterized

coefficient CD is substituted.

4. LES Results

0 5 10 15
0

1

2

3

4

EXP1

EXP2

EXP3

z
/h

U/U*

(D
u
+z

0u
)/h

0,00 0,05 0,10 0,15 0,20 0,25 0,30
0,00

0,25

0,50

0,75

1,00

EXP1

EXP2

EXP3

z
/h

C
D
*h-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

<u'w'>
air
/U*

2

EXP1

EXP2

EXP3

<s'w'>
air
/S*U*

z
/h

0 5 10 15
0

1

2

3

4

EXP1

EXP2

EXP3z
/h

(S-S
top
)/S*

(a) (b)

(c) (d)

Figure 2. Results of LES-model experiments with configurations EXP1, EXP2 and EXP3: (a)

normalized velocity U/U∗, (b) scalar concentration defect (S−Stop)/S∗, (c) normalized momen-

tum and concentration fluxes (averaging over part of the region occupied by air), (d) normalized

form drag coefficient hCD

Some results of the LES numerical experiments are shown in Fig. 2. Here Fig. 2a shows

the average flow velocity in all three experiments. The dotted curves approximate the velocity

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

108 Supercomputing Frontiers and Innovations

profiles by logarithmic law (3). Displacement heights Du and roughness parameters z0u were

determined by minimizing the standard deviation of the approximations from the LES profiles

at the model grid cell located in the height interval 1.1 < z/h < 2.6. Figure 2a shows that the

dependence (3) sufficiently well approximate the simulated mean velocity. The largest deviations

of the approximation from the values obtained in LES are observed for the surface in EXP2 with

variable roughness elements height. In addition, Fig. 2a shows that the surfaces EXP2 and EXP3

produce approximately the same aerodynamic drag for the external turbulent flow above them,

since the average flow velocities in these calculations are close to each other. The surface EXP1

has greater aerodynamic drag and provides a lower flow velocity for the same external force

accelerating the flow. The data on the values of parameters Du and z0u are presented in Tab. 1.

The dimensionless scalar concentration defects are shown in Fig. 2b. This figure shows that the

Table 1. Roughness length z0u

and displacement height Du

determined from the mean

average velocity profiles for

different surface configurations

z0u/h Du/h

EXP1 2.2 · 10−2 0.7

EXP2 1.76 · 10−2 0.45

EXP3 1.83 · 10−2 0.32

surfaces EXP2 and EXP3 provide approximately the same ventilation of the layer 0 < z/h < 0,

and for the surface EXP1 the concentration of the impurity in the lower part is higher.

Figure 2c shows the full (including the explicitly resolved and subgrid part in LES) scalar

and momentum fluxes, normalized to the corresponding turbulent scales. It can be seen from

Fig. 2c that in all three experiments an equilibrium state is reached, in which the divergence

of the mean fluxes balances a constant external force: for both concentration and momentum,

the fluxes have a linear form at z/h > 1. Here, the averaging was performed only over the

part of the computational domain occupied by air, so the concentration fluxes in Fig. 2c have

discontinuities at heights where the area occupied by the objects changes. When averaged over

the entire computational domain and considering zero fluxes inside the objects, the heat fluxes

are continuous and piecewise linear. The momentum flux profiles in this averaging will have

discontinuities due to subgrid friction against the top boundary of the objects and due to the

abrupt change in form drag.

The normalized drag coefficient CDh obtained for the different LES experiments is shown in

Fig. 2b. This coefficient is calculated from the balance of mean forces in the equilibrium state:

CDU
2
air = −∂P

∂x
− ∂ 〈u′w′〉air

∂z
. (19)

Here, the averaging is also performed over the part of the region filled with air. The corresponding

correction factor Sair/Stot differing slightly from unity is taken into account when substituting

the factor CD(z) in the RANS model, where no real objects are present. Note that EXP2 and

EXP3 produce the same coefficient CD at the top of the canopy layer. This is apparently due to

the fact that the frontal area of objects per unit volume in these calculations at 0.5 < z/h < 1

is the same, and the interposition of objects does not have much influence on the value of CD

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 109

at their rather sparse distribution. Note that although EXP2 and EXP3 configurations differ

significantly in the value of CD at small values of z/h, they set approximately the same resistance

for the external flow (the mean velocities of the external flows in EXP2 and EXP3 are close to

each other), that is: for the value of z0u the upper part of the urban geometry has a determining

influence. As it will be seen from the results presented in section 6, none of the multilayer RANS

models tested reproduce this effect.

5. Turbulent Length Scale for RANS

0

1

0,0 0,2 0,4

c
1
=0.4

c
1
=1

c
1
=0

D
u

/ h

k (z-D
u
) / h

k z / h

lT / h

z / h

0

1

0,0 0,2 0,4 0,6

D
u
/h=0.75

D
u
/ h=0.25

k
(1

-z
/h

)

k (z/h-1)

D
u
/ h=0.5

D
u
/ h=0.05

D
u
/h=0.95

k z / h

lT / h

z / h

(a) (b)

Figure 3. (a) variations of the turbulent scale lT (23) with changes in c1 (grey solid lines). The

curve at c1 = 0.4 is highlighted in black. All simulations with the RANS model shown in Fig. 4

are performed with this value of c1. (b) variations of lT with changes in Du (here, c1 = 0.4)

As noted in the introduction, the length scale Du (along with some average building height

scale 〈h〉 and ground surface distance z) is one of the defining turbulent length scales, as indicated

by the calculated velocity profiles (see Fig. 2) that are close to logarithmic dependence (3).

Indeed, when the velocity gradient is normalized by length scale z′ = z −Du we obtain a value

close to the constant:
dU

dz

z −Du

U∗
≈ 1

κ
,

from which the expression (3) follows. In turn, this means that the scale z′ = z − Du char-

acterizes the spatial spectra and co-spectra of turbulent fluctuations above urban canopy (see

spectral analysis of such turbulent flows in papers [9] and [10]). Since there is no clear boundary

between the urban canopy and the atmosphere above it, we are entitled to assume that the spec-

tral characteristics of turbulence in these two layers under the influence of disturbances from

streamlined objects change in a such way, that one can establish the similarity between them

using length scales Du, 〈h〉 and z. In this case, Du acts as a length scale that has already ab-

sorbed all the geometric parameters of the urban environment. The simplest, and in some cases

successful, technique to obtain one generalized length scale from several is inverse interpolation

of scales with some weighting coefficients. This is equivalent to averaging with the weights of

the corresponding wave numbers and it approximates, for example, the co-spectrum-weighted

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

110 Supercomputing Frontiers and Innovations

average wave numbers proportional to the inverse scale of the Prandtl mixing length, which, in

fact, we need to calculate the turbulent viscosity and diffusion coefficients (see [9]). Since the

RANS model with only TKE prognostic equation in its most simplified form needs only one

scale of length lT , and all others are considered proportional to it, we will use the following

approximation:
1

lT
=

1

czz
+

1

cDDu
, (20)

where cz and cD are undefined functions depending on two dimensionless quantities z/〈h〉 and

〈h〉/Du. We can impose the following constraints these functions need to satisfy:

lT → κz, for z → 0, (21)

and

lT = κ(〈h〉 −Du), for z = 〈h〉 . (22)

The constraint (21) means that the length scale we obtain should transition into the usual

near-wall turbulence scale κz when approaching the ground surface, and the constraint (22)

ensures continuity of the length scale as we transition from the canopy layer to the external flow

above it.

Conditions (21) and (22) allow us to set cz = κ, and also impose a restriction on the type

of function cD = cD(z/〈h〉, 〈h〉/Du). To calculate lT we use the following linear with respect to

z′ = (〈h〉 − z) /Du expression for cD:

cD = κ

[(〈h〉
Du

)2

− 〈h〉
Du

]
+ c1z

′f1

(〈h〉
Du

)
, (23)

where c1 is a constant, f1 is a function, which depends on only one variable 〈h〉/Du. Note that

in the expansion (23) the first term is determined by the constraint (22). Let us consider the

case f1 ≡ 1, which allows us to obtain an expression for lT containing only one constant c1.

The dependence of the turbulent scale on the height z/〈h〉 at different values of c1 is shown in

Fig. 3a. Figure 3b shows the changes of turbulent scale lT with varying displacement height Du

value. It can be seen that the scale lT approaches κz in the entire layer 0 < z < h when Du goes

to zero, i.e. in the case when the influence of the canopy is negligible.

The function (23) allows us to set a maximum in the value of lT at some height from the

surface inside the canopy, z < h, and at that corresponds to a polynomial of small degree from

the arguments z/〈h〉 and Du/〈h〉.
The determination of additional parameters c1 and, in the general case, of the function f1

requires large set of LES experiments for different configurations of the roughness elements

within urban canopy. Further, when setting lT and evaluating RANS model with LES data, for

simplicity we will assume that c1 = 0.4 (the curve is highlighted in black in Fig. 3).

6. RANS Results and Their Comparison with LES Data

Here we compare only the velocity and scalar concentration profiles in the equilibrium

state, since they are what the simplified RANS-models are supposed to reproduce. In addition,

in authors opinion, comparing the TKE in one-dimensional RANS and the TKE in LES is

incorrect, especially within the roughness layer, for a number of reasons, such as: the presence of

passive large-scale structures in LES that do not carry momentum and concentration vertically;

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 111

the presence of a two-dimensional dispersion component of the time-averaged horizontal velocity

associated with the flow’s envelopment of obstacles; and the substantial anisotropy of turbulent

fluctuations, which is only implicitly accounted for this type of the flow in one dimensional RANS

model. A comparison of the TKE in LES and the TKE in RANS would require an interpretation

which deserves a separate study.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 2 4 6 8 10 12 14

LES

TKE drag production

RANS

zero TKE drag production

RANS

TKE drag production

RANS (Nazarian 2020)

zero TKE drag production

RANS (Nazarian 2020)

U/U*

z
/h

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 2 4 6 8 10 12 14

U/U*

z
/h

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 2 4 6 8 10 12 14

U/U*

z
/h

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 4 8 12 16 20 24

(S-S
top

)/S*

z
/h

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 4 8 12 16 20 24

(S-S
top

)/S*

z
/h

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 4 8 12 16 20 24

(S-S
top

)/S*

z
/h

EXP1 EXP2 EXP3

Figure 4. Comparison of LES and RANS results. The black curves are LES results. Blue curves –

profiles calculated using the turbulent length scale shown in Fig. 3; red curves – according to the

turbulent length scale model from [19]. The solid lines are RANS with TKE production term due

to form drag (2); the dashed lines correspond to the ones without this additional production

term. Left, center and right columns correspond to EXP1, EXP2 and EXP3 configurations

respectively

Figure 4 shows the results of calculations using the RANS models in comparison with the

LES data (black curves). Profiles of the normalized velocity U/U∗ are plotted in the upper row,

and the lower row corresponds to the normalized scalar concentration defect (S−Stop)/S∗. The

blue curves show profiles calculated using the turbulent length scale described in section 5, and

the red curves show profiles obtained using the turbulent length scale model proposed in [19].

The solid lines show the results obtained using the full TKE balance model, which includes TKE

production due to form drag (2), and the dashed curves show the results RANS simulations in

which this term in the TKE balance equation (13) is omitted. The plots are arranged by columns,

each representing different geometry configurations of urban canopy.

Let us highlight the most characteristic differences between the results obtained with the

model proposed in this study and the model [19]. Near the ground surface, the velocity and scalar

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

112 Supercomputing Frontiers and Innovations

gradients reproduced by the proposed model increase towards the surface, which is a reflection

of the correct asymptotic of the near-wall flow observed also in LES results. Inside the 0 < z < h

layer, the profiles calculated using the proposed LT scale have a regular curved shape, reflecting

the absence of excess turbulent viscosity and diffusion. In most cases (except for the velocity

profile in EXP2), adding extra TKE production associated with turbulent flow interactions with

buildings improves simulation results. In the [19] model, all profiles appeared excessively mixed

within the 0 < z < h layer, and no near-ground asymptotic are observed. These exact features

can also be seen in the authors original paper (see mean velocity in Figs. 12 and 14 from [19]).

Note that here we have made more rigid requirements to RANS models by using a low density

of the buildings configurations (plane density for the EXP1 is equal to 6.25 ·10−2 – lower limit of

what was modeled in [19], and EXP2 and EXP3 has even lower plane density), so that the defects

of turbulent closure in reproducing velocity profiles are more appreciable than the influence of

form drag. Second, we have considered transport of scalars for which this volume force is absent.

The manifestation of asymptotic of the logarithmic layer near the surface in RANS simulations

allows us to hope that with such a model it is possible to refine modelling of heat and moisture

exchange with the ground surface in urban canopies, for which Monin-Obukhov similarity theory

is of most importance.

Both RANS models equally incorrectly reproduced the velocity profile in EXP2. The profiles

obtained in RANS are shifted relative to the LES profile to the left, that is, the canopy modelled

by RANS creates a greater aerodynamic resistance to external flow than the explicitly resolved

canopy in LES experiments. In terms of approximations (3), this means that the roughness

parameter z0u of the model surface was overestimated. In section 4, we noted that, judging from

the comparison of EXP2 and EXP3 results, the upper part of the objects is more responsible

for the efficiency of momentum exchange between the external flow and the surface as a whole.

We do not have a ready recipe for taking this effect into account in the RANS models, but we

hope that this problem can also be solved by involving dimensional considerations.

Conclusions

In this paper, we performed numerical experiments with LES model of neutrally stratified

flow over an urban-type surface with a low density of roughness elements. The LES was used as

a benchmark for evaluation of multilayer local one-dimensional RANS models of urban canopy.

Due to the development of supercomputer technology, such models may, in the near future,

become units of weather prediction and climate atmospheric models and will allow detailing

weather forecasts and assessing possible risks during climatic changes in urban environments of

specific megapolises.

In order to construct a one-dimensional RANS model of the urban canopy, we deliberately

chose the simplest possible approach, being limited to the standard K-l turbulence closure and

did not adjust its constants for specific type of the flow. However, the choice of simple turbulent

length scale, which logically follows from the dimensional analysis and trivial considerations

about the spectral structure of urban canopy turbulence, gives reassuring results. The main “null

hypothesis” was the assumption that the wide set of key length scales necessary to generalize

the geometric characteristics of the urban environment is already contained in the spectral

structure of the turbulent flow over the urban canopy. The main integral and “measurable”

parameter, which reflects the impact of the surface geometry as a whole on the spatial spectra,

is the displacement height Du. Based on this hypothesis, we proposed a parameterization of

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 113

the turbulent length scale within the urban canopy, which includes Du as one of the main

dimensional parameters, and does not incorporate the analysis of the geometry of objects as

such.

The proposed turbulent length scale parameterization allows simple tuning of RANS models

with just one constant without losing physically valid asymptotics near the ground surface

and near the upper boundary of the urban canopy. More rigorous validation and tuning of

the proposed model requires consideration of a wide range of surface configurations, which will

require additional supercomputer computational experiments with eddy-resolving turbulent flow

models (LES and DNS).

Identified defects of the proposed closure are indicated in section 6. In particular, our model,

as well as the model [19], was unable to correctly reproduce the velocity of the external flow for

canopy with variable heights of roughness objects and overestimates the aerodynamic drag of

such a surface as a whole. Additional LES calculations with surfaces of this type are needed to

elucidate the reasons for this defect and to correct it. Here we have considered only neutrally

stratified flows, however there is a greater interest for flows which are affected by buoyancy

forces, characteristic for the atmospheric boundary layer, as well as – processes of heat and

moisture exchange with the urban surface. Such flows over the urban canopy can also be studied

with LES-models (see, for example, [10]). Comparison of the results of multilayer RANS models

with the data of eddy-resolving simulations is the most straightforward way to evaluate and

improve such turbulence closures.

Acknowledgements

Numerical experiments, their analysis and the development of new parameterization for

RANS of urban layer (sections 3, 4 and 5) was performed with financial support of the Russian

Science Foundation, grant 21-71-30023.

LES and RANS model code development and implementation of numerical algorithms for

solving of LES and RANS equations (sections 1 and 2) was supported by INM RAS Division of

Moscow Center for Fundamental and Applied Mathematics (agreement No. 075-15-2019-1624).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy sim-

ulation. In: 13th fluid and plasmadynamics conference. p. 1357 (1980). https://doi.org/

10.2514/6.1980-1357

2. Burchard, H.: Applied turbulence modelling in marine waters, vol. 100. Springer Science &

Business Media (2002)

3. Cheng, H., Castro, I.P.: Near wall flow over urban-like roughness. Boundary-Layer Meteo-

rology 104(2), 229–259 (2002). https://doi.org/10.1023/A:1016060103448

4. Coceal, O., Thomas, T., Castro, I., Belcher, S.: Mean flow and turbulence statistics over

groups of urban-like cubical obstacles. Boundary-Layer Meteorology 121(3), 491–519 (2006).

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

114 Supercomputing Frontiers and Innovations

https://doi.org/10.2514/6.1980-1357
https://doi.org/10.2514/6.1980-1357
https://doi.org/10.1023/A:1016060103448

https://doi.org/10.1007/s10546-006-9076-2

5. Dupont, S., Otte, T.L., Ching, J.K.: Simulation of meteorological fields within and above

urban and rural canopies with a mesoscale model. Boundary-Layer Meteorology 113(1),

111–158 (2004). https://doi.org/10.1023/B:BOUN.0000037327.19159.ac

6. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity

model. Physics of Fluids A: Fluid Dynamics 3(7), 1760–1765 (1991). https://doi.org/10.

1063/1.857955

7. Glazunov, A., Rannik, Ü., Stepanenko, V., et al.: Large-eddy simulation and stochas-

tic modeling of lagrangian particles for footprint determination in the stable boundary

layer. Geoscientific Model Development 9(9), 2925–2949 (2016). https://doi.org/10.

5194/gmd-9-2925-2016

8. Glazunov, A.V.: Numerical simulation of turbulence and transport of fine particulate im-

purities in street canyons. Numerical methods and programming 19, 17–37 (2018)

9. Glazunov, A.: Numerical modeling of turbulent flows over an urban-type surface: Computa-

tions for neutral stratification. Izvestiya, Atmospheric and Oceanic Physics 50(2), 134–142

(2014). https://doi.org/10.1134/S0001433814010034

10. Glazunov, A.: Numerical simulation of stably stratified turbulent flows over an urban sur-

face: Spectra and scales and parameterization of temperature and wind-velocity profiles.

Izvestiya, Atmospheric and Oceanic Physics 50(4), 356–368 (2014). https://doi.org/10.

1134/S0001433814040148

11. Glazunov, A.: Numerical simulation of stably stratified turbulent flows over flat and urban

surfaces. Izvestiya, Atmospheric and Oceanic Physics 50(3), 236–245 (2014). https://doi.

org/10.1134/S0001433814030037

12. Kanda, M., Kanega, M., Kawai, T., et al.: Roughness lengths for momentum and heat

derived from outdoor urban scale models. Journal of Applied Meteorology and Climatology

46(7), 1067–1079 (2007). https://doi.org/10.1175/JAM2500.1

13. Kanda, M., Kawai, T., Moriwaki, R., et al.: Comprehensive outdoor scale model experiments

for urban climate (COSMO). In: Proc., 6th Int. Conf. on Urban Climate. pp. 270–273 (2006).

https://doi.org/10.1023/A:1016060103448

14. Krayenhoff, E.S., Jiang, T., Christen, A., et al.: A multi-layer urban canopy meteorolog-

ical model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate. Urban

Climate 32, 100590 (2020). https://doi.org/10.1016/j.uclim.2020.100590

15. Krayenhoff, E., Christen, A., Martilli, A., Oke, T.: A multi-layer radiation model for urban

neighbourhoods with trees. Boundary-layer meteorology 151(1), 139–178 (2014). https:

//doi.org/10.1007/s10546-013-9883-1

16. Krayenhoff, E., Santiago, J.L., Martilli, A., et al.: Parametrization of drag and turbulence

for urban neighbourhoods with trees. Boundary-Layer Meteorology 156(2), 157–189 (2015).

https://doi.org/10.1007/s10546-015-0028-6

A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

2021, Vol. 8, No. 4 115

https://doi.org/10.1007/s10546-006-9076-2
https://doi.org/10.1023/B:BOUN.0000037327.19159.ac
https://doi.org/10.1063/1.857955
https://doi.org/10.1063/1.857955
https://doi.org/10.5194/gmd-9-2925-2016
https://doi.org/10.5194/gmd-9-2925-2016
https://doi.org/10.1134/S0001433814010034
https://doi.org/10.1134/S0001433814040148
https://doi.org/10.1134/S0001433814040148
https://doi.org/10.1134/S0001433814030037
https://doi.org/10.1134/S0001433814030037
https://doi.org/10.1175/JAM2500.1
https://doi.org/10.1023/A:1016060103448
https://doi.org/10.1016/j.uclim.2020.100590
https://doi.org/10.1007/s10546-013-9883-1
https://doi.org/10.1007/s10546-013-9883-1
https://doi.org/10.1007/s10546-015-0028-6

17. Martilli, A., Clappier, A., Rotach, M.W.: An urban surface exchange parameterisation for

mesoscale models. Boundary-layer meteorology 104(2), 261–304 (2002). https://doi.org/

10.1023/A:1016099921195

18. Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite

difference schemes for incompressible flows. J. Comp. Phys. 143, 90–124 (1998). https:

//doi.org/10.1006/jcph.1998.5962

19. Nazarian, N., Krayenhoff, E.S., Martilli, A.: A one-dimensional model of turbulent

flow through “urban” canopies (MLUCM v2.0): updates based on large-eddy simula-

tion. Geoscientific Model Development 13(3), 937–953 (2020). https://doi.org/10.5194/

gmd-13-937-2020

20. Santiago, J., Martilli, A.: A dynamic urban canopy parameterization for mesoscale models

based on computational fluid dynamics Reynolds-averaged Navier–Stokes microscale simu-

lations. Boundary-layer meteorology 137(3), 417–439 (2010). https://doi.org/10.1007/

s10546-010-9538-4

21. Xie, Z., Castro, I.P.: LES and RANS for turbulent flow over arrays of wall-mounted ob-

stacles. Flow, Turbulence and Combustion 76(3), 291–312 (2006). https://doi.org/10.

1007/s10494-006-9018-6

Turbulent Length Scale for Multilayer RANS Model of Urban Canopy and Its...

116 Supercomputing Frontiers and Innovations

https://doi.org/10.1023/A:1016099921195
https://doi.org/10.1023/A:1016099921195
https://doi.org/10.1006/jcph.1998.5962
https://doi.org/10.1006/jcph.1998.5962
https://doi.org/10.5194/gmd-13-937-2020
https://doi.org/10.5194/gmd-13-937-2020
https://doi.org/10.1007/s10546-010-9538-4
https://doi.org/10.1007/s10546-010-9538-4
https://doi.org/10.1007/s10494-006-9018-6
https://doi.org/10.1007/s10494-006-9018-6

	A.V. Gorobets, A.P. Duben
	M.A. Tolstykh, R.Yu. Fadeev, V.V. Shashkin, G.S. Goyman
	M.A. Tarasevich, E.M. Volodin
	I.G. Okladnikov
	E.V. Mortikov, A.V. Debolskiy
	A.S. Antonov
	A.V. Chaplygin, A.V. Gusev, N.A. Diansky
	V.V. Drobot, E.M. Kirilin, K.E. Kopylov, V.K. Švedas
	A.V. Glazunov, A.V. Debolskiy, E.V. Mortikov

