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• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Andrei Tchernykh, CICESE Research Center, Mexico
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Yana Kraeva, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia



Contents

Evaluating Performance of Mixed Precision Linear Solvers with Iterative Refinement
B.I. Krasnopolsky, A.V. Medvedev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Fog Computing State of the Art: Concept and Classification of Platforms to Support
Distributed Computing Systems
A.A. Kirsanova, G.I. Radchenko, A.N. Tchernykh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

VaLiPro: Linear Programming Validator for Cluster Computing Systems
L.B. Sokolinsky, I.M. Sokolinskaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Review of Supercomputer Performance Monitoring Systems
K.S. Stefanov, S. Pawar, A. Ranjan, S. Wandhekar, V.V. Voevodin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Administration, Monitoring and Analysis of Supercomputers in Russia: a Survey
of 10 HPC Centers
Vad.V. Voevodin, R.A. Chulkevich, P.S. Kostenetskiy, V.I. Kozyrev, A.K. Maliutin, D.A. Nikitenko,
S.G. Rykovanov, A.B. Shamsutdinov, Yu.N. Shkandybin, S.A. Zhumatiy . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Efficient Implementation of Liquid Crystal Simulation Software on Modern HPC
Platforms
I.V. Afanasyev, D.I. Lichmanov, V.Yu. Rudyak, Vad.V. Voevodin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.



Evaluating Performance of Mixed Precision Linear Solvers

with Iterative Refinement

Boris I. Krasnopolsky1 , Alexey V. Medvedev1
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The solution of systems of linear algebraic equations is among the time-consuming problems

when performing the numerical simulations. One of the possible ways of improving the corre-

sponding solver performance is the use of reduced precision calculations, which, however, may

affect the accuracy of the obtained solution. The current paper analyzes the potential of using

the mixed precision iterative refinement procedure to solve the systems of equations occurring as

a result of the discretization of elliptic differential equations. The paper compares several inner

solver stopping criteria and proposes the one allowing to eliminate the residual deviation and

minimize the number of extra iterations. The presented numerical calculation results demonstrate

the efficiency of the adopted algorithm and show about the decrease in the solution time by a

factor of 1.5 for the turbulent flow simulations when using the iterative refinement procedure to

solve the corresponding pressure Poisson equation.

Keywords: systems of linear algebraic equations, elliptic equations, algebraic multigrid meth-

ods, iterative refinement, mixed precision calculations.

Introduction

The solution of systems of linear algebraic equations (SLAEs) is a typical task when per-

forming most of the high performance computing-related applications. This issue motivates the

researchers to both develop novel mathematical algorithms for solving SLAEs and improve the

implementation aspects to provide better correspondence between the numerical methods and

modern compute platforms hardware.

The use of reduced precision floating-point numbers [4, 8, 14] or lower size integer num-

bers [19] is a well-known way to improve the performance of the calculations, which is discussed

in the literature for some time. The reduced precision floating-point calculations can be bene-

ficial for both memory-bound and compute-bound applications [18]. Decreasing the size of the

data types allows decreasing the amount of memory traffic. Besides, multiple more floating-point

arithmetic operations can be performed per each CPU processor cycle for the vectorized code

sections when performing the calculations.

A new wave of interest in the topic of mixed precision calculations is associated with the

emergence of the compute devices bringing the hardware support for the half-precision floating-

point numbers (e.g., NVIDIA Pascal and Volta GPUs). While the driving force of this innovation

is related to machine learning applications, the potential of fold calculations speed up compared

to the double precision calculations raised the interest in many other areas including numerical

modeling. For example, the use of mixed precision calculations is among the key directions of

improving the performance for the exascale systems and computational codes [2]. The publica-

tion [2] reviews the popular linear algebra algorithms and libraries of numerical methods capable

of using mixed precision calculations and highlights the current achievements and future research

trends.

The iterative methods for solving large sparse SLAEs, which this paper focuses on, belong

to the memory-bound applications with very low compute intensity of the order O(10−1) [7, 18].

Thus, the use of mixed precision can be an attractive way to increase the compute intensity
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and significantly improve the performance of the calculations. Reducing the precision of the

floating-point numbers for the whole linear solver, however, may lead to a significant iterative

process convergence rate degradation or even to divergence. The potential of using the single

(or even lower) precision calculations depends on the properties of the specific SLAE, but for

many practical applications, like structural mechanics problems or incompressible turbulent flow

calculations, the use of single-precision for the whole solver is unacceptable.

The compromise and widely accepted variant is the use of reduced precision floating-point

calculations when performing the preconditioning while preserving operations with the SLAE

matrix and solution vector in the basic precision. This approach does not affect the resulting

solution tolerance and is more robust compared to performing the whole solver with reduced

precision. However, a significant portion of calculations is still performed with the basic precision,

which reduces significantly the potential calculations speedup.

An alternative way of utilizing the mixed precision calculations is the use of the iterative

refinement procedure [17]. Initially developed in the 1940s, this method receives great atten-

tion in the light of recent activity with introducing the mixed precision calculations in iterative

methods for solving SLAEs [3, 5]. These publications show promising results with attractive

speedup numbers. The conjugate gradient (CG) method with adaptive geometric multigrid pre-

conditioner was considered by the developers of the QUDA library, and the combination of the

top-level 64-bit solver with inner 32-bit CG solver and 16-bit preconditioner was analyzed. The

proposed methods combination allowed to speed up the corresponding SLAE solver for NVIDIA

Volta GPUs compared to the basic solver performed in double precision by a factor of 4–6. In [3]

the authors investigated the combination of CG solver with a lightweight plain Jacobi (diagonal)

preconditioner and the top-level iterative refinement procedure. The outer solver calculations

were performed in double precision, and the preconditioned CG solver was performed in the

single precision. The solver was evaluated with 123 SLAEs, and in about 60 % of the cases, the

total energy consumption improvement by a factor of 1.1–1.8 was demonstrated compared to

the preconditioned CG solver performed in double precision.

While the results mentioned above show good potential in using mixed precision calculations,

the numerical methods and test matrices considered have their specific, which hardens the

conclusion on the applicability of the methods proposed to the wider range of applications.

Additionally, the energy consumption results presented in [3] can only give a rough estimate

to the real calculation time improvement by using the mixed precision iterative refinement

procedure. The current paper focuses on the applicability of mixed precision calculations to solve

the elliptic equations, and, specifically, the pressure Poisson equation occurring in incompressible

flow simulations. For example, high-fidelity turbulent flow simulations require multiple solutions

of SLAEs, and the corresponding time to solve these SLAEs typically prevails in the overall

calculation time. This aspect motivates the further tuning of numerical methods applicable for

solving the corresponding SLAEs, and the use of iterative refinement with reduced precision

solvers can be an attractive option.

The rest of the paper is organized as follows. The first section outlines the potential speedup

due to the use of reduced precision calculations. The second section presents the iterative re-

finement procedure and highlights the main algorithm pitfalls. Various residual replacement

strategies used to resolve some of these problems are discussed. The description of the XAMG

library used in the numerical experiments to demonstrate the efficiency of the iterative refine-

ment procedure is presented in the third section. The fourth section discusses the results of the
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numerical experiments and the evaluation of the mixed precision iterative refinement procedure

for modeling incompressible turbulent flows. The conclusion section summarizes the paper.

1. Potential of Mixed Precision Calculations

Before discussing the aspects of the iterative refinement procedure, it is important to esti-

mate the potential performance gain due to reducing the precision of floating-point calculations.

The object of interest is the algorithm combining the Krylov subspace method (specifically,

BiCGStab [15]) with the classical algebraic multigrid preconditioner and Gauss-Seidel smoother.

This combination of the methods represents a robust and scalable solver, which can be effec-

tively used to solve various SLAEs, including the ones derived from the elliptic partial differential

equations.

The methods mentioned above consist of the combination of linear operations with vectors

and matrix-vector multiplications. Accounting that both of these operations are memory-bound,

the expected calculation time reduction would be in proportion with the corresponding reduction

in the amount of memory accesses. The overall execution time, Texec, is a sum of vector operations

time, Tvec, and matrix-vector multiplications time, Tmat:

Texec = Tvec + Tmat =
Σvec + Σmat

B
, (1)

where Σ is the amount of memory traffic when performing the corresponding operations, and

B is the memory bandwidth of the compute system.

Reduction of the floating-point data size, e.g., from 8 to 4 bytes, leads to a twofold decrease

of the amount of memory traffic for the vector operations and the corresponding calculation time.

The matrix-vector operations also demonstrate significant calculation speedup, but it is typically

less than by a factor of 2 due to the use of specialized sparse matrix storage formats and the need

to store additional integer indices. For example, for the CSR data storage format [12], the overall

amount of memory traffic when performing matrix-vector multiplication can be represented as:

Σmat = n I(C + 1) + nF (2C + 1). (2)

Here n is the matrix size, I and F are the sizes of the integer and floating-point data types

respectively, and C is the average number of nonzero elements per each matrix row. The ratio of

the amount of data for 8 and 4 byte floating-point numbers shows the potential of the reduced

precision matrix-vector operations speedup (expecting here that I is equal to 4 bytes):

P =
n 4(C + 1) + n 8(2C + 1)

n 4(C + 1) + n 4(2C + 1)
=

5C + 3

3C + 2
. (3)

In the typical case C � 1 the expression above reduces to P ≈ 1.67.

Using the expression (1), one can expect the overall speedup due to using the reduced

precision floating-point calculations. Generally, the speedup lies in the range of 1.7–1.9 in case

the overall convergence rate is not affected by the round-off errors. The use of mixed precision

calculations for the preconditioner only further decreases the potential speedup, as only a portion

of vector and matrix-vector operations in (1) is performed with reduced precision. In practice,

this speedup depends on the size of the multigrid matrix hierarchy and can be roughly estimated

in the range of 5–30 %.

Evaluating Performance of Mixed Precision Linear Solvers with Iterative Refinement
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Algorithm 1 Mixed precision iterative refinement algorithm.

1: x0 – initial guess (basic precision)

2: r0 = b−Ax0 (basic precision)

3: k = 0

4: while not converged do

5: rk → r̂k (convert to reduced precision)

6: solve Âŷk = r̂k (reduced precision)

7: ŷk → yk (convert to basic precision)

8: xk+1 = xk + yk (basic precision)

9: rk+1 = b−Axk+1 (basic precision)

10: k = k + 1

11: end while

The iterative refinement procedure, discussed in detail in the sections below, requires some

additional calculations compared to the pure 32-bit solver. Even in case the SLAE solver is

not suffering the convergence rate degradation due to lower precision calculations, the expected

speedup will be lower than for the 32-bit solver. In the negative scenario, the overall calculation

time can be even higher than that for the basic precision solver.

Summarizing the discussion above, the following conclusions can be stated:

• performance of iterative refinement procedure combining 64-bit and 32-bit floating-point

calculations is expected to be lower than for the pure 32-bit solver and to not exceed the

range of 1.7–1.9;

• mixed precision iterative refinement procedure can be found useful in case the obtained cal-

culations speedup will exceed the one for the method configuration with the preconditioner

only performed with reduced precision.

2. Iterative Refinement Procedure

The main idea of the mixed precision iterative refinement procedure is to combine two

iterative algorithms, the inner iterative method operating with reduced precision and the outer

method operating with the basic precision. The mixed precision iterative refinement algorithm

is presented in Algorithm 1. The calculations start with computing the initial residual vector r

in basic precision (line 2). The residual is converted to lower precision (line 5) and the reduced

precision solver is used to get the solution update ŷ (line 6). The obtained vector is converted back

to basic precision (line 7) and accumulated with solution vector x (line 8). Finally, the residual

vector is recalculated in basic precision (line 9) and is used to control the overall convergence.

This rather simple algorithm, however, has several pitfalls when used in practice:

1. The outer loop of the iterative refinement procedure performs some additional calculations,

like the calculation of residual vector, requiring matrix-vector multiplication, vector updates,

and floating-point data conversion. These operations provide some overhead compared to

the original solver performed in basic precision, and the number of outer iterations should

be minimized to minimize the corresponding overhead.

2. To compete with the reduced precision preconditioner calculations, the number of inner

solver iterations should not exceed 20–30 %. For the iterative methods considered in this

paper the typical number of iterations of the basic solver is in the range 10–20. This means,
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an increase in the cumulative number of inner solver iterations in the range 3–5 is permissible,

otherwise the use of iterative refinement procedure will lead to the calculations slowdown.

3. The Krylov subspace iterative methods (e.g., CG, BiCGStab) use recurrent expressions to

calculate the residual vector at the next iteration. The long recurrent chains are sensitive

to the accumulation of the round-off errors, and as a result, the deviation of this residual

from the true one, r = b − Ax, may be observed. This issue can lead to the situation

when the convergence of the recurrent residuals will be accompanied by the true residuals

stagnation. The use of reduced precision calculations for the inner solver can even complicate

the situation, as the calculations with reduced precision can accelerate the accumulation of

the round-off errors.

The problem of residuals deviation for the Krylov subspace iterative methods has been

analyzed in the literature, e.g., in [3, 13, 16]. The observed convergence issue in some cases can be

resolved by the correction of the recurrent residuals, which can be done in several ways. In [13, 16]

the authors propose the reliable updates to correct the recurrent residual with the true one and

several criteria when these updates must be performed. Alternatively, in [3] the inner solver

restarts are considered for the mixed precision iterative refinement algorithm. Following [3], the

proper choice of the conditions to perform the restarts allows this approach to outperform the

reliable updates strategy.

It should be noted that the publications mentioned above use for the numerical evaluation

the lightweight iterative methods with the simple preconditioner or even without it. The typical

number of iterations till convergence in the presented results is counted by at least several

hundred, and several additional residual checks or extra iterations do not play a significant role.

The current paper focuses on the algorithms with robust preconditioners performing typically

10–20 iterations. In that case, the penalty for the several extra iterations can be critical, and the

applicability of the corresponding residual replacement algorithms must be analyzed in detail.

To the best of our knowledge, there are no publications discussing the applicability of the mixed

precision iterative refinement algorithms with robust and fast converging iterative methods.

3. XAMG Library

The performance evaluation results presented in this paper are performed with the XAMG

library [9, 10]. The XAMG library is a novel open-source project which implements sparse linear

algebra subroutines and solvers in modern C++. The library provides the implementation of

a set of widely used numerical methods for solving large sparse SLAEs, including the Krylov

subspace iterative methods, classical algebraic multigrid method, and others. The XAMG library

focuses on the optimized implementation for the solve part of the methods and reuses the hypre

library [1] for the multigrid hierarchy matrices construction.

The library design feature is a template-based generalization of basic objects and subrou-

tines. This feature makes it possible to implement a few important design principles. First, the

specialization of the number of right-hand side vectors as a template parameter allows for a

generalization of the subroutines for an arbitrary number of right-hand sides in the solution.

The specialization of the generalized subroutines takes place automatically in compile time, and

the automated vectorization of loops is being done without additional effort. Second, all the data

types for base library objects are also specialized with template parameters, so the features like

the advanced sparse matrix formats and reduced precision storage options can be implemented

with ease.

Evaluating Performance of Mixed Precision Linear Solvers with Iterative Refinement
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The library consists of four major groups of elements: (i) matrices and vectors data struc-

tures, representing basic data objects; (ii) basic sparse linear algebra subroutines gathered in

“blas” and “blas2” groups; (iii) solver classes inherited from an abstract interface, which ex-

poses the main library function “solve()”; (iv) solver parameter classes. The solver classes are

arranged in a structure allowing easy addition of the new numerical methods. The solvers can

be combined with each other as well. The established solver parameters subsystem supports the

solver code extension and code combinations.

An important design feature of the XAMG library is the hierarchical hybrid parallel pro-

gramming model. This model, called MPI+ShM, is integrated into basic data objects and basic

subroutines of the library. The MPI+ShM model implies that MPI ranks, which appear to be

placed on the same compute node, allocate and use the common POSIX shared memory regions

to store the vector data structures. The communication and data access within a single com-

pute node is performed using these shared memory regions. This hybrid approach to parallel

programming improves the productivity and scalability of basic library subroutines compared

to a pure MPI-only parallel programming model. It makes it possible to get leading scalability

figures on modern multicore and manycore HPC systems.

To summarize, the XAMG library is a flexible tool to implement new iterative methods and

their combinations and do experiments with their traits and parameters. On the other hand, the

MPI+ShM hybrid model ensures the good productivity and scalability of the resulting code. It

makes the XAMG library an attractive platform for the research made in this work.

4. Numerical Experiments

The current section presents results of the numerical experiments investigating the appli-

cability of the mixed precision iterative refinement procedure to accelerate the solution of the

SLAEs, and, specifically, the ones obtained as a result of the spatial discretization of the pressure

Poisson equation when modeling incompressible turbulent flows. The investigation is performed

for the SLAE solver comprising the BiCGStab method with algebraic multigrid preconditioner

and symmetric Gauss-Seidel smoother. The four solver configurations with the same numerical

method configurations are considered. The basic solver configuration performs all the calcula-

tions with double precision. The mixed solver configuration assumes the use of reduced precision

for the preconditioning when operating with the constructed multigrid matrices hierarchy. The

IR solver utilizes the mixed precision iterative refinement procedure with the inner solver, cor-

responding to the basic solver, but performed in the single precision. Finally, the reduced solver

configuration performs all the calculations with single precision. All the numerical experiments

are performed on the Lomonosov-2 supercomputer (compute nodes with single 14-core Intel

E5-2697v3 processor); the calculation runs utilize all available 14 physical CPU cores per node.

4.1. Testing Methodology

The evaluation of different approaches of introducing the reduced precision calculations in

the iterative SLAE solvers is performed in several steps. The first test series confirms the po-

tential speedup limits by performing the same calculations in double precision (basic), in single

precision (reduced), and for the double-precision solver with reduced precision precondition-

ing calculations (mixed). The various inner solver stopping criteria, affecting the frequency of

residual replacement in the mixed precision iterative refinement algorithm (IR) and the corre-
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sponding solver convergence rate, are investigated in the second test series. The third group of

tests compares the convergence rates and calculation times for basic, mixed, and IR solver config-

urations. Finally, the turbulent flow simulations are performed with various solver configurations

to demonstrate the potential decrease in the solution time in the real calculations.

The two groups of test SLAEs are used in the tests. The first one corresponds to the

discretization of the 3D Poisson equation in the cubic domain (“cube”) with the uniform grid

and constant right-hand side vector. The size of the grid varies in the range of 1003–5003. The

second group includes the two test systems corresponding to the pressure Poisson equation in the

computational domain used for the simulation of the turbulent flow in a channel with a matrix

of wall-mounted cubes [6] (“channel with cube”; the geometry of the computational domain and

the corresponding computational grid are presented in Fig. 1); the size of the grids is equal to 2.3

and 9.7 million unknowns. The right-hand side vectors are chosen corresponding to the physical

problem statement, and they are defined as the divergence of the random velocity fields. Both

groups of the test matrices are available with the internal data generator of the integration test

application provided with the XAMG library [10].

(a) Computational domain (b) Computational grid

Figure 1. Sketch of the computational domain and the computational grid

4.2. Performance Tests

4.2.1. Performance limitations

The performance evaluation starts with the numerical experiments, demonstrating the real

calculation time reduction with mixed precision calculations and the calculations with the solver

operating in single precision. This test series performs the constant number of iterations and

focuses on the calculation time reduction as an upper bound estimate for the calculation results

that can be observed with the iterative refinement procedure (in case the convergence rate is

not affected by the reduced precision calculations).

The calculations presented in this section are performed with the single node of the

Lomonosov-2 supercomputer for the “cube” test system with 1503 unknowns and the “channel

with cube” system with 2.3 million unknowns, and with 4 compute nodes for the “cube” system

with 5003 unknowns. The obtained calculation results are summarized in Tab. 1. These include

Evaluating Performance of Mixed Precision Linear Solvers with Iterative Refinement
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the single iteration times and the corresponding speedup compared with the basic solver config-

uration performed in double precision. The speedup by a factor of about 1.1 can be expected for

the mixed solver configuration and by a factor of 1.65 – for the reduced solver configuration op-

erating with 32-bit floating-point numbers. The results presented are similar for all test matrices

considered and are in agreement with the proposed theoretical estimates (see, section 1).

The obtained calculation times are also compared with the ones for the well-known open-

source hypre library, which allows using the same numerical method configurations as in XAMG.

The hypre library does not provide the functionality to utilize the mixed precision calculations,

thus only double precision calculations are performed, which correspond to the basic configu-

ration of the XAMG library. The results presented in Tab. 1 demonstrate an advantage of the

XAMG library compared to hypre: the decrease in the execution time is about 10–15 %. Some

more details on comparing the performance of the XAMG and hypre libraries can be found

in [9].

Table 1. The single iteration calculation times for the XAMG and hypre libraries

and the corresponding decrease in the solution time compared to the double precision

solver (speedup) for different solver configurations and test matrices

Test case
basic mixed reduced hypre

time, s time, s speedup time, s speedup time, s

Cube, 1503 0.151 0.143 1.06 0.091 1.66 0.170

Cube*, 5003 1.65 1.51 1.09 1.01 1.64 1.91

Channel with cube, 2M 0.123 0.109 1.12 0.076 1.62 0.139

*The corresponding calculations are performed with 4 compute nodes

4.2.2. Residual replacement

The choice of the inner solver stopping criteria is among the key practical aspects affect-

ing the usability of the mixed precision iterative refinement procedure. The current paragraph

analyzes and compares some of them, including the periodic restarts and the explicit residual

replacement [3]. The corresponding experiments are performed for two test matrices, the “cube”

case with 1503 unknowns and the “channel with cube” case with 2.3 million unknowns and in-

vestigate 8 different combinations of the parameters responsible for stopping the inner solver and

residual replacement. The frequency of the periodic restarts is chosen according to the typical

number of iterations till convergence, which varies in the range 10–20: the experiments with

restarts every 1, 2, 3, and 5 iterations are performed. The explicit residual deviation checks once

in t = 100 iterations with the allowed deviation ratio γ = 10 were used in [3]. In our case, these

values are inapplicable because the periodicity of the residual checks outnumbers significantly

the expected number of iterations till convergence. Alternatively, the residual deviation checks

every t = 2 and 3 iterations with the allowed deviation ratio γ = 1.01 and 2 are considered. The

decrease of the initial residual norm by a factor of ε = 10−8 is used as the convergence criterion.

The obtained calculation results are presented in Tab. 2. The restarts for the inner solver

performed every iteration lead to the convergence degradation due to the loss of the informa-

tion about the already constructed Krylov subspace basis. An increase in the number of inner

solver iterations leads to the overall solver convergence acceleration. However, reduction of the
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frequency of restarts strengthens the residual deviation effect, and for the case with restarts

once in 5 iterations, the overall number of iterations starts to increase. Summarizing the results

presented in the table, the frequency of restarts every 2–3 iterations can be outlined as the

one providing the best convergence rate for the SLAEs and numerical method configurations

considered.

The explicit residual deviation check assumes explicit control of the deviation of the true

and recurrent residuals every t iterations and the inner solver restart only in case the residual

deviation exceeds the limiting value γ. The presented calculation results show that the use of a

high deviation ratio is inefficient: the higher value γ only tightens the inner solver restart, while

performing the inner solver with even slightly deviated residuals reduces the solver efficiency

in terms of the true residual decay. The decrease of the deviation value γ allows reducing in

some cases the overall number of iterations, and, consequently, the calculation time. However,

the obtained calculation times with explicit residual deviation checks are systematically higher

than the ones for the periodic restarts approach, which provides a simple and efficient way to

avoid the residual deviation issue and convergence rate degradation.

Table 2. Comparison of various inner solver stopping criteria

Stopping criteria Cube, 1503 Channel with cube, 2M

Method Parameters Time, s Iter. Time, s Iter.

Periodic restart

t = 1 1.54 15 (15) 1.01 12 (12)

t = 2 1.14 6 (12) 0.79 5 (10)

t = 3 1.13 4 (12) 0.79 4 (10)

t = 5 1.12 3 (12) 0.86 3 (11)

Explicit residuals check

t = 2, γ = 2 1.32 2 (14) 1.04 3 (13)

t = 3, γ = 2 1.22 2 (13) 1.09 3 (14)

t = 2, γ = 1.01 1.24 3 (13) 0.88 3 (11)

t = 3, γ = 1.01 1.22 2 (13) 0.87 3 (11)

4.2.3. Single SLAE tests

The next step of performance evaluation focuses on the investigation of various solver con-

figurations with a set of test matrices. The three solver configurations (basic, mixed, and IR

solvers) with four “cube” SLAEs and two “channel with cube” SLAEs are analyzed. The IR

solver is performed with the inner solver periodic restarts every 3 iterations.

The overall solution times and the number of iterations (for the IR solver – the number

of outer iterations and the cumulative number of inner iterations) are collected in Tab. 3. For

all the test cases considered the observed calculation results, in general, demonstrate similar

behavior. The basic and mixed solver configurations converge in the same number of iterations:

the use of reduced precision for the multigrid hierarchy preconditioning calculations does not

affect the overall convergence rate. The speedup for the mixed solver varies in the range 1.06–

1.13, and these values correspond to the basic theoretical estimates. The IR solver demonstrates

even faster convergence than the basic one, decreasing the number of iterations by 1–3. The

reduction in the number of iterations for the IR solver on par with the lower calculation time
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for the inner solver performed in reduced precision allows obtaining the significant speedup for

all the test systems considered, which varies in the range 1.67–1.88.

Table 3. The calculation times, the number of iterations, and the achieved relative speedup for

the several test matrices and solver configurations

Test case
basic mixed IR

time, s iter. time, s iter. speedup time, s iter. speedup

Cube, 1003 0.53 13 0.50 13 1.06 0.30 4 (11) 1.74

Cube, 1503 2.11 14 1.99 14 1.06 1.12 4 (12) 1.88

Cube, 2003 5.69 15 5.34 15 1.07 3.10 5 (13) 1.83

Cube*, 5003 39.5 24 36.3 24 1.09 22.0 7 (21) 1.80

Channel with cube, 2M 1.35 11 1.20 11 1.13 0.79 4 (10) 1.71

Channel with cube*, 9M 2.12 14 1.88 14 1.13 1.27 5 (13) 1.67

*The corresponding calculations are performed with 4 compute nodes

The calculation times presented in Tab. 3 show a stable tendency in decreasing the number

of iterations for the IR solver configuration. Despite the use of lower precision for the inner

solver calculations, the corresponding number of iterations till convergence is decreased in all

the cases considered by about 10–15 %. To investigate the reasons for this effect, the same

calculations were repeated for the double precision solver with residual replacement. This test

series reproduced the same effect of reducing the number of iterations for the basic solver with

residual replacement, observed for the IR solver configuration (Tab. 4). Despite an additional

amount of calculations to perform the residual replacement and solver restarts, the use of this

technique can be advantageous even for double precision calculations.

Table 4. The calculation times and the number of iterations for the IR and

double precision and solver configurations with residual replacement

Test case
basic + RR IR

time, s iterations time, s iterations

Cube, 1003 0.46 4 (11) 0.30 4 (11)

Cube, 1503 1.87 4 (12) 1.12 4 (12)

Cube, 2003 5.11 5 (13) 3.10 5 (13)

Cube*, 5003 35.5 7 (21) 22.0 7 (21)

Channel with cube, 2M 1.26 4 (10) 0.79 4 (10)

Channel with cube*, 9M 1.85 4 (12) 1.27 5 (13)

*The corresponding calculations are performed with 4 compute nodes

4.2.4. Turbulent flow calculations

The results presented in the previous paragraph demonstrate attractive speedup for the

mixed precision iterative refinement procedure which can be easily incorporated into practical

applications. The final stage of the performance evaluation considers the test runs for the direct

numerical simulation of incompressible turbulent flow with three solver configurations and shows

the practical calculations speedup.
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The turbulent flow simulations are performed with in-house computational code, based on

the second order in space and third order in time computational algorithm, operating with

curvilinear orthogonal coordinates [11]. This algorithm requires three solutions of pressure Pois-

son equation per each time step; the SLAE matrix remains unchanged during the calculations

allowing to perform the construction of the multigrid matrix hierarchy only once at the initial-

ization stage. The calculations are performed for the test case of modeling the turbulent flow in

a channel with a matrix of wall-mounted cubes, described in subsection 4.1, on the grid with

2.3 million unknowns. The test runs are performed with 8 compute nodes and model short time

interval of T = 3 time units, which corresponds to about 1100 time steps.

The results of the three test runs are outlined in Tab. 5. These include the linear solver

calculation times and the overall simulation time. The simulation with the basic solver config-

uration takes 486 seconds, where 455 seconds are spent with the SLAE solver. The cumulative

number of iterations performed by the linear solver is about 30000. The run with the mixed

precision solver takes 452 seconds and shows the speedup by a factor of 1.08. The convergence

rate of the linear solver remains unaffected by the reduction of the preconditioner calculations

precision – the number of iterations to solve the corresponding SLAEs is about the same as for

the basic solver configuration. The lowest calculation times are observed with the IR solver con-

figuration. The overall simulation time takes 323 seconds, which is 1.5 times faster than the one

with the basic solver configuration. The linear solver fraction of the calculation time is reduced

by a factor of 1.56 and takes 292 seconds. The IR solver requires about 9800 iterations for the

outer solver and about 26000 iterations for the inner solver. The overall number of iterations

for the IR solver is about 10 % less than for the basic solver, which indicates that the regular

residual replacement allows to reduce the round-off errors and increase the convergence rate.

Table 5. The calculation times, the total number of iterations, and the achieved speedup for

the direct numerical simulation of turbulent flow performed with several linear solver

configurations

Stage
basic mixed IR

time, s iter. time, s iter. speedup time, s iter. speedup

SLAE solver 455 29978 421 29982 1.08 292 9816 (25687) 1.56

Total 486 452 1.08 323 1.50

Conclusions

The paper investigates the efficiency of the several approaches of introducing the reduced

precision calculations for solving large sparse systems of linear algebraic equations, and, specifi-

cally, the ones occurring when solving the elliptic differential equations. These include the use of

reduced precision calculations for the preconditioning and the mixed precision iterative refine-

ment procedure, combining the outer solver performed with basic precision and the inner solver

operating with reduced precision. The paper reviews the examples of using the mixed precision

iterative refinement procedure known in the literature and significantly extends them with the

obtained calculation results for the numerical methods with robust preconditioners. The various

residual replacement strategies are discussed and the optimal one for the test cases considered

is proposed.
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The results of the numerical experiments performed for several test matrices are presented.

These results show that the use of reduced precision calculations for the preconditioner allows

decreasing the solution time by only about 10 %, while the use of mixed precision iterative

refinement procedure with the proper choice of the residual replacement strategy can provide the

SLAE solver speedup by a factor of 1.8. The proposed residual replacement algorithm is examined

by performing the calculations of incompressible turbulent flow. The several runs performed for

the direct numerical simulation of the turbulent flow in a channel with a matrix of wall-mounted

cubes demonstrate about 1.5 times decrease in the solution time due to acceleration of the

pressure Poisson equation SLAE solver when using the mixed precision iterative refinement

procedure.
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As the Internet of Things (IoT) becomes a part of our daily life, there is a rapid growth in

the connected devices. A well-established approach based on cloud computing technologies cannot

provide the necessary quality of service in such an environment, particularly in terms of reducing

data latency. Today, fog computing technology is seen as a novel approach for processing large

amounts of critical and time-sensitive data. This article reviews cloud computing technology and

analyzes the prerequisites for the evolution of this approach and the emergence of the concept

of fog computing. As part of an overview of the critical features of fog computing, we analyze

the frequent confusion of the concepts of fog and edge computing. We provide an overview of

fog computing technologies: virtualization, containerization, orchestration, scalability, parallel

computing environments, as well as systematic analysis of the most popular platforms that support

fog computing. As a result of the analysis, we offer two approaches to classification of the fog

computing platforms: by the principle of openness/closure of components and by the three-level

classification based on the provided platform functionality (Deploy-, Platform- and Ecosystem as

a Service).

Keywords: big data processing, fog computing, scheduling, cloud computing, edge computing,

Internet of Things.

Introduction

Data is a major commodity today. Having more data and the ability to intelligently ana-

lyze it effectively creates significant value for data-managed enterprises [40]. According to the

International Data Corporation (IDC), the amount of digital data generated in 202 exceeded

59 zettabytes (ZB) of data [5]. Cisco estimated that there will be about 50 billion connected

devices in 2020 [27]. These connected devices form the Internet of Things (IoT) and generate a

vast amount of data in real-time. Modern mobile networks are already being designed consid-

ering the loads that arise in the transmission and processing of such astronomical volumes of

data.

Within the cloud computing concept, most of the data that requires storage, analysis, and

decision making is sent to data centers in the cloud [74]. As the data volume increases, moving

information between an IoT device and the cloud may be inefficient or even impossible in some

cases due to bandwidth limitations or latency requirements. As time-sensitive applications (such

as patient monitoring, autopilot vehicles, etc.) become more common, the remote cloud will not

be able to meet the need for ultra-reliable communications with minimal delay [99]. Moreover,

some applications may not be able to send data to the cloud because of privacy issues.

To solve the challenges of applications that require high network bandwidth, access to

geographically distributed data sources, ultra-low latency, and localized data processing, there

is a specific need for a computing paradigm that provides a one-size-fits-all approach to the

organization of computing, both in the cloud and in computing nodes closer to connected devices.

The concept of Fog computing has been proposed by industry and academia to bridge the gap
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between the cloud and IoT devices by providing computing capabilities, storage, networking,

and data management at network nodes closely located to IoT devices [15, 68]. The research

community has proposed several computing paradigms to address these problems, such as edge

computing, fog computing, and dew computing. A common feature of these concepts is the use

of distributed heterogeneous systems that provide highly scalable clusters of computing nodes

located closely (either networked or geographically) to data sources. In this review, we provide

an analysis of the most popular platforms that support fog computing solutions. Based on

this analysis, we propose two approaches to classify fog computing platforms: by the principle

of openness/closure of components and by the three-tier classification based on the provided

platform functionality (Deploy-, Platform- and Ecosystem as a Service).

The article is organized as follows. Section 1 discusses cloud computing as the basis for new

computing concepts, prerequisites for the emergence, and key characteristics of cloud computing.

Section 2 is devoted to fog and edge computing, their origins, definition, and critical charac-

teristics. Section 3 discusses technologies that support fog computing, including virtualization,

orchestration, security, and computation scalability issues. Section 4 provides an overview of fog

computing platforms: private, public, open-source, and proposes a classification of fog platforms.

In section 5 we focus on the current challenges faced by the fog computing researchers. In con-

clusion, we summarize the results obtained in the context of this study and indicate directions

for further research.

1. Cloud Computing as a Basis for New Computational

Concepts

1.1. The Prerequisites for Cloud Computing

The utility computing concept, originating in the 1960s, is considered to be the earliest

ancestor of cloud technologies [31, 93]. This concept was not generally adopted until the 90s due

to the technical constraints of the deployment and use of this architecture [13, 17, 41, 58, 60, 93].

Improvements in network technology and data transfer rates in the mid-’90s led to a new round

of research in utility computing in the framework of the grid computing concept [33, 41, 58].

These shortcomings have led to further evolutionary development and the emergence of cloud

computing, which often uses the grid computing model to expand computing resources [55].

1.2. Key Features of Cloud Computing

Today, cloud computing systems have become widely used for Big Data processing, provid-

ing access to a wide variety of computing resources and a greater distribution between multi-

clouds [73]. This trend has been strengthened by the rapid development of the Internet of Things

(IoT) concept. Virtualization via virtual machines and containers is a traditional way of orga-

nization of cloud computing infrastructure. Containerization technology provides a lightweight

virtual runtime environment. In addition to the advantages of traditional virtual machines in

terms of size and flexibility, containers are particularly important for integration tasks for PaaS

solutions, such as application packaging and service orchestration.

The National Institute of Standards and Technology (NIST) published a definition of cloud

computing, its main characteristics, and its deployment and maintenance models in 2011. Cloud

computing has been defined as a model for enabling ubiquitous, convenient, on-demand network
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access to a shared pool of configurable computing resources (e.g., networks, servers, storage, ap-

plications, and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction.

The NIST model comprises five essential characteristics, three service models, and four

deployment models for clouds [63]. The following key cloud deployment models can be identified

as: private cloud, public cloud, and hybrid cloud [26, 94].

A private cloud is deployed within a single organization, is available only to internal users,

and does not share its resources outside the organization. The public cloud is developed by third

parties and provides the resources to external users under the terms of the contract on the right

of use. A hybrid cloud combines two types of deployment described above, which allows to build

a balance between private and public computing [26].

Private clouds are commonly deployed as close to the end-user of the cloud as possible.

That reduces the response time of the computing platform and increases the speed of data

transfer between the nodes of the system. However, a private cloud is tightly interconnected

with the computing needs of its owner. Not every organization has enough resources to maintain

its private cloud, which must meet the requirements for availability, reliability, and the law’s

requirements in the country where the cloud is located [44, 78].

On the other hand, public cloud users often lack direct control over the underlying computing

infrastructure. This can lead to several problems, including uncontrolled access by third parties

to the private data hosted in a public cloud; blocking user servers that can be deployed on the

same subnet with hosts banned in a particular country; the uncertainty of the quality of cloud

resources as they are deployed on servers shared with third parties [44]. It is also challenging

to ensure a change of cloud provider, as it is necessary to solve the problem of migration and

conversion of data and computing services.

These features of each type of deployment are the reason why cloud providers that provide

clouds to private organizations often support the ability to create hybrid clouds [84], which can

be configured to a particular mode of operation, depending on the customer’s requirements. This

approach addresses data latency, security, and migration issues while maintaining the flexibility

to customize computing resources for each task.

1.3. Preconditions for New Computing Concepts

Despite all the significant advantages guaranteed by public cloud platforms, problems that

such approaches cannot effectively solve have emerged over the last five years. Thus, a large

number of users of “smart” systems such as “smart home”, “smart enterprise”, “smart city”

and other IoT solutions cannot always be satisfied with the quality of services provided by cloud

solutions, in particular, due to the increase in the amount of data sent between the user/device

and the cloud [46].

The emergence of the smart systems approach, populated with a variety of Internet-

connected sensors and actuators, led to a revision of the architectural concept of data collection

and analysis systems. The Internet of Things concept requires new approaches to storage so-

lutions, fast data processing, and the ability to respond quickly to changes in the state of end

devices [69, 70, 98]. Also, the spread of mobile devices as the main platforms for client applica-

tions makes it difficult to transfer and process large amounts of data without causing problems

with response delays due to the constant movement of mobile devices.
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As the amount of data sent between IoT devices, clients, and the cloud increases, problems

associated with increased response time due to physical bandwidth limitations appear [60]. On

the other hand, there are response time-sensitive applications and devices such as life support

systems, autopilots, drones and others. Under these conditions, a remote centralized cloud has

become unable to meet the ultra-low latency requirements [98]. Also, data transmission through

multiple gateways and subnets raises the issue of sensitive data transmission [51].

In response to these problems, private enterprises and the academic community have raised

the need to develop a computing paradigm that meets new concepts such as IoT [15, 61, 70].

This paradigm had to fill the gap between the cloud and the end devices, providing computing,

storage, and data transfer in intermediate network nodes closest to the end devices. Several

paradigms have been developed and applied to solve this problem, including fog and edge com-

puting [23]. Each of these paradigms has its specific features, but all of them derive from a

common principle – reducing time delays in data processing and transmission by moving com-

puting tasks closer to the final device.

Figure 1. Comparison of the infrastructure of fog computing and its related computing

paradigms from the networking perspective [93]

Figure 1 shows a diagram of the relative distribution of computational resources defined by

edge, fog and cloud computing concepts. Cloud computing is a separate data center (DC) or

a network of data centers located far from the user but providing high computing capabilities.

On the other hand, edge computing is located right at the edge of the computing system and

provides small computing capabilities, but near the consumer of those resources. Fog computing

is located between the edge of the network and the cloud data center, providing significant

computing resources close to the end-user, which, on the other hand, is not comparable to the

total amount of cloud computing resources but can be customized and scale depending on the

objectives of the end-user. This article considers Fog computing as a more general concept that

includes the edge computing paradigm [45].
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2. Fog and Edge Computing

2.1. History and Definition

In 1961 (see Tab. 1), John McCarthy spoke at the MIT Centennial: “If computers of the

kind I have advocated become the computers of the future, then computing may someday be

organized as a public utility just as the telephone system is a public utility... The computer

utility could become the basis of a new and important industry.” [77] His concept was the basis

for the idea of Douglas Parkhill [41, 43, 77, 89] to create a grid computing paradigm that was

described later in 1966 and was a set of computers connected over a grid that take the computing

decisions collectively.

The fog computing approach was one of the first technologies to solve the latency issues of

cloud computing. The “Fog Computing” term was first proposed by CISCO in 2012 [42] and had

been described as “a highly virtualized platform that provides compute storage, and networking

services between end devices and traditional Cloud Computing Data Centers, typically, but not

exclusively located at the edge of the network” [15]. The OpenFog group was established in 2015

to develop standards in the field of fog computing. It included companies and academic organi-

zations such as Cisco, Dell, Intel, Microsoft Corp, and Princeton University. On December 18,

2018, the OpenFog consortium became part of The Industrial Internet Consortium [50].

Table 1. Fog computing timeline

1961 1990’s 2012 2015 2018

John McCarthy.

Utility computing

Definition [76]

Ian Foster et. al.

Definition of

the grid computing [33]

Flavio Bonomi et. al.

CISCO proposed

the definition

of the cloud computing [15]

The OpenFog group

was established [68]

Machaela Iorga et. al.

The NIST published

the definition

of the fog computing [51]

Mell Peter.

The NIST published

the definition

of the cloud computing [63]

Mahmoudi Charid.

The formal definition

of the edge computing

was published [62]

In 2018, the National Institute of Standards and Technology of the United States had for-

mulated an official definition of the fog computing term: “Fog computing is a layered model for

enabling ubiquitous access to a shared continuum of scalable computing resources. The model

facilitates the deployment of distributed, latency-aware applications and services, and consists

of fog nodes (physical or virtual), residing between smart end-devices and centralized (cloud)

services. The fog nodes are context-aware and support a common data management and com-

munication system. They can be organized in clusters – either vertically (to support isolation),

horizontally (to support federation), or relative to fog nodes latency-distance to the smart end-

devices. Fog computing minimizes the request-response time from/to supported applications,

and provides, for the end-devices, local computing resources and, when needed, network con-

nectivity to centralized services” [51].

Bridging the gap between the cloud and end devices through computing, storage, and data

management not only in the cloud but also in intermediate nodes [59] has expanded the scope of

fog computing, which allowed its application in new tasks such as IoT, smart vehicles [47], smart

cities [22], health care [37], smart delivery (including the use of drones) [92], video surveillance,

etc. [100]. These systems benefit significantly from Big Data processing [76], allowing them

to extract new knowledge and decision-making information from the data streams generated by
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clusters of IoT devices. Fog computing supports this challenge by enabling distributed computing

resources for lightweight data processing tasks, including filtering and preprocessing data before

sending it to the cloud. But the geographical distribution, heterogeneity of computing nodes, and

high instability of network communications at the edge level lead to the need to solve complex

problems associated with monitoring, scheduling, and ensuring the necessary quality of service

of such services.

2.2. Key Characteristics of Fog Computing

Due to the late separation of the fog and edge computing concepts, many companies intro-

duced their characteristics [9] and definitions for fog and edge computing, often combining them

into one [59]. Table 2 presents the key characteristics that different authors distinguished for fog

and edge computing.

In 2017, the OpenFog Consortium released a reference architecture for fog computing, which

is based on eight basic principles: security, scalability, openness, autonomy, RAS (reliability,

availability, and serviceability), agility, hierarchy, and programmability [68].

Table 2. Characteristics of Fog Computing [65]
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Bonomi et al. [15] + + +

Cisco Systems [21] + + + +

Vaquero and Rodero-Merino [36] + + +

IBM [49] + + + +

Synthesis [65] + + + +

In [45] and [11], the following key characteristics of fog computing are highlighted.

• Contextual location awareness and low latency. Fog computing offers the lowest-possible

latency due to the fog nodes awareness of their logical location in the context of the entire

system and of the latency costs for communicating with other nodes.

• Geographical distribution. In sharp contrast to the more centralized cloud, the services

and applications targeted by fog computing demand widely but geographically identifiable,

distributed deployments.
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• Heterogeneity. Fog computing supports the collection and processing of data of different

form factors acquired through multiple types of network communication capabilities

• Interoperability and federation. Seamless support of certain services (real-time streaming

services is a good example) requires the cooperation of different providers. Hence, fog

computing components must be able to interoperate, and services must be federated across

domains.

• Real-time interactions. Fog computing applications involve real-time interactions rather

than batch processing.

• Scalability and agility of federated, fog-node clusters. Fog computing is adaptive, at clus-

ter or cluster-of-clusters level, supporting elastic compute, resource pooling, data-load

changes, and network condition variations, to list a few of the supported adaptive func-

tions.

• Cognition. Cognition is responsiveness to client-centric objectives. Fog-based data access

and analytics give a better alert about customer requirements, best position handling

for transmitting, storing, and controlling functions throughout the cloud to the IoT con-

tinuum. Applications, due to proximity, at end devices provide a better conscious and

responsive reproduced customer requirement relation [97].

• Support for Mobility. Mobility support is a vital fog computational advantage that can

enable direct communication between mobile devices using SDN protocols (i.e., CISCO

Locator/ID Separation Protocol) that decouples host identity from location identity with

a dispersed indexing system [102].

• Large Scale Sensor Network. The fog has a feature applicable when an environment mon-

itoring system, in near smart grid applications, inherently extends its monitoring systems

caused by hierarchical computing and storage resource requirements.

• Widespread Wireless Access. In this scenario, wireless access protocols (WAP) and cellular

mobile gateways can act as typical examples of fog node proximity to the end-users.

• Interoperable Technology. Fog components must work in an interoperating environment to

guarantee support for a wide range of services like data streaming and real-time processing

for best data analyses and predictive decisions.

2.3. Fog and Edge Computing Concepts Definitions

Some sources refer to fog computing as edge computing, relying on the critical technology

feature that data collection and analysis is not organized in a centralized cloud, but as close to

the end device as possible, “at the edge of the network” [15, 34, 46, 51].

However, [98] indicates that although fog and edge computing move computation and data

storage closer to the network edge, these paradigms are not identical. Within the Fog Computing

paradigm, fog nodes are located at the edge of the local network, often they are deployed based

on routers and wireless access points (if these devices support the required technologies for

deployment of the fog node) [92]. In contrast to fog computing, edge computing is deployed even

“closer” to the end devices, already inside the local network itself on the intermediate access

points. Sometimes the end devices themselves can act as edge computing nodes. Smartphones,

tablets, and other computing devices with sufficient computing capabilities and support for the

deployment of computing nodes can handle edge computing tasks [88]. However, this also limits

their computational power, and therefore there are some limitations in their application scope.
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So, edge computing is used to solve such tasks as video surveillance, video caching, and traffic

control [98].

The OpenFog Consortium claims that edge computing is often erroneously referred to as

fog computing and determine that the main difference is that fog computing is the overall

architecture of distributing resources across the network, whereas edge computing is specifically

focused on executing compute processes close to end-users outside the core of the network [62].

In [20], the authors note on fog and edge computing that “fog is inclusive of cloud, core, metro,

edge, clients, and things” and “the fog seeks to realize a seamless continuum of computing

services from the cloud to the things rather than treating the network edges as isolated computing

platforms”.

Thus, the term “edge computing” is mainly used in the telecommunications industry and

usually refers to 4G/5G, RAN (Radio Access Network), and ISP (Internet Service Provider) base

stations [20, 56]. However, this term has recently been used in the subject area of IoT [35, 56, 75]

concerning the local network where sensors and IoT devices are located. In other words, “edge

computing” is located within the first of the IoT device of the transit section of the network, for

example, at WiFi access points or gateways.

2.4. Classification of Fog Computing Applications

Fog computing enables new applications, especially those with strict latency constraints

and those involving mobility. These new applications have heterogeneous QoS requirements

and demand Fog management mechanisms to cope efficiently with that heterogeneity. Thus,

resource management in Fog computing is quite challenging, calling for integrated mechanisms

capable of dynamically adapting the allocation of resources. The very first step in resource

management is to separate the incoming flow of requests into Classes of Service (CoS) according

to their QoS requirements. The mapping of applications into a set of classes of service is the

first step in creating a resource management system capable of coping with the heterogeneity

of Fog applications. The authors of [38] proposed the following critical classes of fog computing

applications:

• Mission-critical. Applications in which a component failure would cause a significant in-

crease in the safety risk for people and the environment. Those are healthcare systems,

criminal justice, drone operations, industrial control, financial transactions, military, and

emergency operations. Those applications should implement distribution features to ensure

duplication of functionality.

• Real-time. The speed of response in these applications is critical since data are processed

at the same time they are generated but can tolerate a certain amount of data loss (online

gaming, virtual and augmented reality applications).

• Interactive. Responsiveness is critical; the time between when the user requests and ac-

tions is less than a few seconds. Those are interactive television, web browsing, database

retrieval, server access applications.

• Conversational. Characterized by being delay-sensitive but loss-tolerant with slight delays

(about 100–200 ms). E.g., video and Voice-over-IP (VoIP) applications where losses cause

occasional glitches in audio or video playback.

• Streaming class applications are accessed by users on-demand and must guarantee inter-

activity and continuous playout. The network must provide each stream with an average

throughput that is larger than the content consumption rate. In such a case, data should
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be located as close to the end-user as possible, and new nodes should easily be created

and removed from the environment.

• CPU-bound. Involves complex processing models, such as those in decision making, which

may demand hours, days, or even months of processing. Face recognition, animation ren-

dering, speech processing, and distributed camera networks are examples of this applica-

tions class.

• Best-effort. For these applications, long delays are annoying but not particularly harmful;

however, the completeness and integrity of the transferred data are of paramount impor-

tance. Some examples of the Best-Effort class are e-mail downloads, chats, SMS delivery,

FTP, P2P file sharing.

3. Technologies that Support Fog and Edge Computing

3.1. Virtualization

The key technology that supports cloud and fog computing is virtualization [87], which

allows to use the resources of one physical machine by several logical virtual machines (VMs) at

the level of Hardware Abstraction Layer (HAL). Virtualization technology uses a hypervisor –

a software layer that provides the operation of virtual machines based on hardware resources.

A machine with a hypervisor is called a host machine. A virtual machine running on the host

machine is called a guest machine, on which in turn the guest operating systems (OS) can be

installed. This type of virtualization is called hypervisor-based virtualization.

There is also container-based virtualization [25], representing a packaged, standalone, de-

ployable set of application components that can also include middleware and business logic in

binary files and libraries to run applications.

Authors of [73] present a comparative analysis of both types of virtualization, based on

which we can highlight some of the advantages of container-based virtualization.

• Hardware costs. Virtualization via containers decreases hardware costs by enabling consol-

idation. It enables concurrent software to take advantage of the true concurrency provided

by a multicore hardware architecture.

• Scalability. A single container engine can efficiently manage large numbers of containers,

enabling additional containers to be created as needed.

• Spatial isolation. Containers support lightweight spatial isolation by providing each con-

tainer with its resources (e.g., core processing unit, memory, and network access) and

container-specific namespaces.

• Storage. Compared with virtual machines, containers are lightweight concerning storage

size. The applications within containers share both binaries and libraries.

• Real-time applications. Containers provide more consistent timing than virtual machines,

although this advantage is lost when using hybrid virtualization which uses both types of

virtualization (hypervisor and container-based).

• Portability. Containers support portability from development to production environments,

especially for cloud-based applications.

Thus, two main virtualization technologies are currently used to support fog computing [53]:

hypervisor-based and container-based. Cloud computing mainly uses hypervisor-based virtual-

ization to share limited hardware resources among several virtual machines. Fog computing that

commonly hosted on low-performance hardware prefers container-based virtualization to create
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node instances on new hardware devices. That is why container-based virtualization is becoming

more and more widespread in fog computing. Due to lower hardware performance requirements

to ensure the deployment of computing nodes, intermediate devices may not have high comput-

ing power. This is especially relevant for edge computing nodes because they are not even run

on the IoT devices themselves [71] but on intermediate access points closest to the IoT devices.

3.2. Fog Computing Orchestration

With containerization evolving as one of the technologies to support fog computing, the

challenge arose to manage the computational load to ensure efficient use of geographically dis-

persed resources [52]. Fog computing implementation requires a different level of computing

resource management compared to the cloud, for example [91].

The first complex task that arises when working with fog computing, as opposed to cloud

computing, is managing the distribution of computational load (orchestration) between nodes of

the fog [56, 58] by placing the fog services on them, as well as orchestration of these services, i.e.

ensuring efficient collaboration of computational services for solving tasks assigned to the fog

environment. Authors of [95] formulate that orchestration provides the centralized arrangement

of the resource pool, mapping applications with specific requests and providing an automated

workflow to physical resources (deployment and scheduling); workload execution management

with runtime QoS control; and time-efficient directive generation to manipulate specific objects.

Let us consider the key tasks to be solved by the Fog Orchestrator [24, 91].

• Scheduling. It is necessary to consider how to exploit the collaboration between nodes

to offload applications (which were not used for a long time and should be deleted to

save resources) efficiently in Fog environments. In general, the processing nodes should

be managed by a resource broker in the Orchestrator to perform smart scheduling of the

resource, considering the applications workflows.

• Path computation’s main objectives are: maintaining end-to-end connectivity, adapting to

dynamic topologies, maximizing network and application traffic performance and providing

network resilience.

• Discovery and allocation of the physical and virtual devices in the Fog, as well as the

resources associated with them.

• Interoperability is the ability that distributed system elements are able to interact with each

other. Several factors influence the interoperability of a system, such as the heterogeneity

of its elements.

• Latency. One of the characteristics of Fog environments is that they provide low levels of

latency. This allows the deployment of a different kind of services with real-time and low

latency restrictions that are not necessarily fit for the cloud; but also requires a new set

of mechanisms that guarantee that these low latency levels are met.

• Resilience. To guarantee a smooth work of the complex and diverse environment where the

IoT acts from the resilience perspective, an Orchestrator should be in charge of intelligent

migration and instantiation of resources and services providing a global view on the status

of the IoT.

• Prediction and optimization. Proper management of resources and services in an IoT envi-

ronment, where these are geographically distributed, generating multi-dimensional data in

enormous quantities, is only possible if the orchestration process takes into consideration
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prediction and optimization mechanisms of all overlapping and interconnected layers in

the IoT.

• Security and privacy. From the privacy perspective, the main challenge lies in preserving

the end-user privacy since the Fog nodes are deployed near them, collecting sensitive

data concerning identity and usage patterns. Regarding security, a significant challenge is

how to deal with the massively distributed approach of the Fog to guarantee the proper

authentication mechanisms and avoid massive distributed attacks.

• Authentication, access, and account. To perform activities related to application life cycle

management (i.e. deployment, migration, application of policies), the Orchestrator inter-

acts with the fog nodes in the environment.

Optimization of various metrics (latency, bandwidth, energy consumption etc.) plays a vital

role in fog computing orchestration. The following key tasks related to the distribution of tasks

and data by the level of fog computing are currently being identified [14]:

• Offloading computing tasks from end devices to fog nodes and cloud.

• Scheduling of tasks within a fog node.

• Clustering of fog nodes: how to determine the size of a cluster of fog nodes to handle the

relevant requests.

• Migration of data/applications between fog nodes.

• Geographical distribution of physical resources (before operation).

• Distributing applications/data among fog nodes and cloud.

3.3. Fog Computing and Security Issues

Due to the significant degree of decentralization of the computing process, security in fog

computing differs in some critical aspects from mechanisms used, for example, in cloud comput-

ing. The design of a secure fog architecture must take into account the security features of each

layer of the computing architecture, including the features of lightweight wireless data transfer

at the sensing/edge layer; data transfer over middleware mesh networks; preprocessing of data

using clusters of fog nodes on the application level; possible data transfer over the WAN for

processing in the public cloud [10, 72].

Each of these layers has its security issues and vulnerabilities. The sensing layer is vulnerable

to sensors and devices which are targets of outcoming threats, including device tampering, spoof-

ing attacks, signal attacks, malicious data, etc. At the middleware level, the secure transmission

of sensed data and its storage are the primary concerns. This layer deals with confidentiality,

integrity, and availability issues. The security requirements at the application layer are deter-

mined directly by the application being executed. Figure 2 presents a classification of possible

security issues and their solutions for each of the fog architecture layers listed above [10].

The authors of [96] state that the most promising research directions for security solutions in

fog computing are cryptographic techniques and machine-learning for intrusion detection. Cryp-

tographic processing includes encryption, decryption, key and hash generation, and verification

of hashes used to guarantee data privacy.

As an example of this technique, the Configurable Reliable Distributed Data Storage Sys-

tem [19] was designed to secure data flows in whole fog. Such a system uses the AR-RRNS

(Approximation of the Rank – Redundant Residue Number System) method to encrypt and de-

crypt data using error correction codes and secret sharing schemes. Machine-learning techniques

are proposed to analyze data flow and node states to detect outside intrusion. To implement
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such a traffic analysis, the fog orchestrator can act as a tool to detect an intrusion or data

corruption [29].

Figure 2. The security threats and solutions classifications in fog computing. DDoS: distributed

DoS; TLS: transport layer security; SSL: secure sockets layer; IPsec: Internet Protocol secu-

rity [10]

3.4. Fog Computing and Scalability

Scalability is another essential feature for fog computing systems to adapt workload, system

cost, performance, and business needs. Based on fog computing hierarchical properties, we can

highlight the following key elements of fog architecture that can be scaled [85]:

• Virtual Nodes: through software reconfiguration, specifying if several virtual nodes can be

placed on one physical device;

• Physical Nodes: vertical scalability trough hardware upgrade;

• Networks: horizontal scaling of fog nodes and adapting to environmental changes and

dynamic workloads.

Adding new fog nodes to the fog network affects all three main aspects of scalability discussed

above (the question concerning fog storage resources won’t be reviewed in this paper). However,

this task commonly requires manual workload from network administrators, while it is hard to

effectively identify the location or cluster of the new fog node. In [85] the fog model that helps

to overcome this difficulty was proposed. It automates the introduction of new fog nodes into an

existing network based on the current network conditions and services required by customers.

Concretely, the newly added fog node can detect its geographical location (e.g., using its network

scan capability or via its GPS module) and identify the most suitable cluster to connect with it.

Kubernetes platform is now the de-facto standard for service management in centralized

distributed systems such as clouds. In this regard, its application to the management of fog

infrastructures is of definite scientific interest. Kubernetes has a native mechanism for auto-

scaling that considers only CPU usage. Users can specify the maximal number of application

instances, but the actual number of application instances activated is under the control of
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Kubernetes. Authors of [101] developed a modification of the scheduling algorithm based on

the Kubernetes platform to manage resource autoscaling tasks in fog computing systems. A

fog computing platform has been designed as a collection of physically distributed containers

that are orchestrated by Kubernetes and AS Broker – a service running in a Pod on Master. It

communicates through APIServer with the Controller and Scheduler of Kubernetes to obtain a

list of nodes where application instances are currently running. It then collects node information

from all nodes. If the number of application instances should be adjusted, it sends a request

through APIServer for Pod number adjustment.

Figure 3. Proposed architecture of fog network based on Kubernetes [101]

The scalability experiment in [101] included four independent fog nodes. A stress program

was used to generate CPU and memory load to emulate the processing of requests. Every

request took a 15-second execution time and a 50 MB memory amount. Figure 4 shows tested

application response time with and without AS Broker. Though response time dynamically

changes, the result with AS Broker is better than that without almost at every time point. This

result demonstrates the effectiveness of the proposed scheme.

The authors of [28] also investigate the possibilities of automatic scaling of computing re-

sources of fog platforms developing their own Voilà platform. The objective of their work was

to dynamically scale and place an applications replicas in a cluster of geo-distributed fog nodes

to predominantly minimize the number of slow requests while maintaining efficient resource uti-

lization. As a critical parameter determining the quality of service, the authors use the average

response time parameter whether the latency and the processing capacity requirements are still
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Figure 4. Application response time with and without AS Broker [101]

met. The following methods have been used to improve the quality of service: transferring service

from one node to another, load redirection to the nearest lightly loaded servers, or scaling, by

creating new replicas of computing services. The experimental setup consisted of 22 Raspberry

Pi (RPi) model 3B+ single-board computers acting as fog computing servers. The RPis were or-

ganized with one master node and 21 worker nodes capable of hosting replicas. Node deployment

was controlled with Kubernetes including node status, average number of placement,etc. as part

of its normal operations. Replica placement quality evaluation was presented in [28] as main part

of their experiment evaluations. Figure 5 shows the average number of placements that could

be studied per second for various system sizes with the average number of placements that had

to be evaluated to repair a latency or capacity violation. When the cluster size increased, the

time needed to study any single placement also increased. However, even for a large system with

500 nodes, author’s system evaluated approximately 100 placements per second.

The idea of using fog computing as a computing swarm and architecture of organizing fog

nodes and application was described in [16]. In the proposed architecture, the fog consists of

fog nodes (FNs), fog node controllers (FNCs), applications (Apps) and application controllers

(ACs). FNCs control when FNs can be attached and detached. With the help of ACs FNCs

can scale up and down the set of resources assigned to an App (e.g. by decreasing/increasing

the cores, CPU time, and bandwidth assigned to such App) by simply changing the resources

assigned to the corresponding Docker container. If the computational resources available in a

FN are no more capable of satisfying the requirements of all Apps running on it, the FNC of

the overloaded FN will interact with the other FNCs in the system to decide which Apps can

be migrated and on which FNs.

Attempts to use fog computing with low-power devices to solve resource-intensive compu-

tational problems have been made since the beginning of the concept of fog computing. Authors
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Figure 5. Evalutation of average number of placement that can be studied per second [28]

Figure 6. Different service quality caused by different cutting points: (a) the number of processed

images, (b) the CPU and RAM usages, and (c) the network overhead [86]

of [86] use the resources of low-power Raspberry Pi-based nodes for Machine Learning Data

Analytics using Deep Learning. They took the SCALE (Safe Community and Alerting Net-

work) TensorFlow Application that uses various sensors (movement detection, gas, temperature,

heartbeat, etc.) to build a security system as an example. The authors enhanced this project to
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support two crucial sensors: camera and microphone. They collected sensor data along the path

where the person with the camera passed. Figure 6a shows the number of processed images per

minute when running enhanced application on two devices with eight different cutting points.

The application implemented a 9-layers network, so cuts are made between layers. When the

cutting point went from 1 to 8, more complicated operators were put on the first device. The

first device processed images before the second device. As shown in Fig. 6a, cutting points 4

and 5 resulted in the best performance. It is explained by Fig. 6b, which shows that cutting

an application into smaller operators with similar complexity results in the best performance.

Moreover, Fig. 6c reports the network overhead caused by distributed analytics. It shows that

if more loads were put on the first device, it resulted in lower network overhead. Hence, when

network resources were the bottleneck, equally-loaded splitting decisions were not preferred.

4. Overview of Fog Computing Platforms

While reviewing the existing fog computing deployment platforms, we would consider the

commercial ones as well as open-source platforms. The complexity of the analysis of commercial

platforms is the lack of information about their architecture and the technical solutions used,

which constitute a trade secret. However, the analysis of commercial solutions has shown that

among commercial fog platforms, there are platforms with the full support of fog computing

(computing, analytics, and organization of the transport layer of the fog network) and platforms

that provide only the transport layer of the fog network and do not provide management of

computing nodes and fog computing itself. Platforms that provide only the transport layer of

fog computing will not be considered in this paper.

The following key characteristics of private and public commercial fog platforms can be

highlighted (see Tab. 3 and Tab. 4).

• Supported hardware platforms – the platform can work with any device that supports

virtualization or containerization, or only with a limited list of devices – through drivers or

branded devices. Smartly Fog, ThingWorx, and Cisco IOx only work with their proprietary

hardware.

• Basic development technology – which executable environment is used to create, deploy

and run fog applications.

• Open communication protocols and SDK – is there any restriction on the applications

that can be used in the fog: whether it is necessary to port applications, or in principle

can be executed only applications written using special supplied SDK, as in the case of

ThingWorx, whose fog applications should be written using a proprietary SDK to run in

the fog.

• Deployment technology – which of the technologies is used to deploy fog nodes, if known.

• Integration options – is it possible to integrate with other platforms, such as enterprise

solutions or public clouds?

• Connecting of external data sources – the platform’s ability to connect to third-party

databases and data warehouses physically located outside the central cloud for data storage

and processing.

• Availability of additional services (Machine Learning, Analytics, etc.) – the ability to

connect and use additional services, which provide additional functionality for analysis

and work with data in the fog.
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• Edge support – the ability to connect and use edge devices and edge computing, and further

collect and process information from them.

4.1. Private Fog Platforms

Private fog platforms provide private fog solutions based on computing infrastructure de-

ployed directly on the customer’s resources.

Table 3. Overview of private fog platforms

Feature ClearBlade
Smartiply

Fog
LoopEdge ThingWorx

Nebbiolo

Technologies

Cisco

IOx

Supported

hardware platforms
Universal Own equipment Universal Own equipment Universal Own equipment

Basic

development technology
JavaScript No data Universal (Docker) Java VM Universal (Docker)

Docker,

Linux,

IOx

Open communication

protocols and SDK
+ + + + +

Deployment technology Linux KVM No data Docker No data Docker Linux KVM

Integration opportunities

Oracle,

SAP,

Microsoft,

Salesforce

Microsoft,

Azure IoT,

Hub

Microsoft,

Azure IoT,

Hub

Connecting external

data sources
+ + + + +

Availability of

additional services
No data. + + + +

Edge Support + + + + + +

The Cisco IOx platform was presented by Cisco in 2014 [12] as a network infrastructure

development due to the expected growth of IoT. The platform’s focus is to reduce the labor

costs of porting applications to the fog nodes, achieved through containerization technologies

and based on its operating system based on the Linux OS.

The Cisco IOx is an application environment that combines Cisco IOS (a mini operating

system of Cisco hardware) and Linux. Open-source Linux utilities are used to develop applica-

tions. It uses a single protocol for the interaction of fog applications throughout the network,

organized using Cisco IoT technologies. Both Cisco and its partners supply IOx infrastructure

fog applications. A variety of general-purpose programming languages is supported to develop

Cisco IOx applications.

The Docker is used for deploying applications. Various types of applications are supported,

including Docker containers and virtual machines (if network equipment has such a capability).

It is also possible to use your IOx executable environment to write applications in high-level

programming languages (such as Python).

The Nebbiolo Technologies platform is aimed at the corporate industrial market, sup-

porting the Industry 4.0 concept [67]. Nebbiolo Technologies closely cooperates with Toshiba

Digital Solutions [66] in supplying complete computing solutions for the industrial and IoT

sectors.

The platform consists of fogNode hardware, fogOS software stack, and fogSM system ad-

ministrator, deployed in the cloud or locally [45]. Fog System Manager (fogSM) provides a

cloud-based, centralized management platform that allows you to deploy and configure devices

on the periphery.
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The platform’s key feature is fogOS [45] – a software stack that provides communication,

data management and application deployment at the fog level. Based on a hypervisor, fogOS

provides a set of functions in a virtualized form. It supports a wide range of device connectivity

standards and allows applications to be hosted and managed in real-time.

The ClearBlade Platform is a technology stack that provides fast development and

deployment of enterprise IoT solutions, from edge devices to cloud services. It includes software

components installed on the entire IoT device stack and the ability to connect third-party

systems through the provided API for integration with devices, internal business applications,

and cloud services. The ClearBlade Platform provides a centralized console for managing IoT

applications, with the ability to deploy locally or in the cloud. Platform management functions

are delegated to the edge nodes (or on the end devices themselves or their gateways) using

ClearBlade Edge fog and edge computing [48].

The platform supports a serverless computing approach to the development of services based

on the JavaScript language, which can be configured to implement machine learning and data

analysis methods. The platform provides mechanisms for exporting data and analytics collected

by the system to widely used business systems, applications, and databases through integration

with corporate platform solutions from Oracle, SAP, Microsoft, and Salesforce. ClearBlade also

provides in-house dashboards, business applications, and database management systems for

integrated monitoring and management of the IoT ecosystem.

ClearBlade uses the OAuth model for access control, where each user and device receives a

token that must be authorized to gain access to the system or its node. The data is encrypted

on the devices themselves as well as on network transmissions. Transmitted data is encrypted

using OpenSSL libraries with TLS encryption.

The Smartiply Fog platform is a cloud computing platform that focuses on optimizing

resources and keeping your devices running even without connecting to the cloud. The platform

provides greater reliability for online environments by optimizing resources and computing based

on proprietary hardware [82]. The platform enables point-to-point interaction between devices.

In this way, the node system can continue to operate autonomously to receive, analyze and store

data, up to restoring communication with the external network [83].

The LoopEdge platform from Litmus Automation [4, 6] allows to connect different de-

vices in a single system, collect and analyze data from them. Litmus Automation also provides

a Loop platform allowing to manage the life cycle of any IoT device and export real-time data

to internal analytical and business applications. This platform is widely distributed among well-

known engineering concerns: Nissan, Renault, Mitsubishi Corporation Techno.

The platform developers emphasize that it can work with virtually any device, industrial

and domestic consumers. For example, the platform supports the connection of devices based on

Arduino and Raspberry Pi. Even if some device is not supported, connecting it to the platform

is relatively easy due to the executable packages installed on the device itself, which can be

expanded and created from scratch for a particular device.

The PTC ThingWorx platform [7] is an IoT platform that offers the connection possi-

bility to more than 150 types of devices. However, since devices are connected through drivers

that require installation, this platform is not universal and has limitations on the devices used.

Applications for the platform should be written using the supplied SDKs. Further data

analysis and business process management also go through the tools provided by the platform

itself. The platform has an extensive developer section with instructions, tutorials, and assistance
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from specialists from the company itself to install, configure, and expand the platform. Also “out

of the box” is the possibility of connecting to Microsoft Azure IoT Hub.

4.2. Public Fog Platforms

Table 4. Overview of public fog platforms

Feature
AWS

Greengrass
Azure IoT Google Yandex Mail.ru

Supported

hardware platforms
Universal Universal Universal Universal Universal

Basic

development technology
Universal (Docker) Universal (Docker) Universal Universal Universal

Open communication

protocols and SDK
+ + + + +

Deployment technology Docker Docker Docker Docker Docker

Integration capability
Amazon Elastic

Compute 2

Azure,

via an API

Services of Google

and partners,

through API

Universally

via API

Universally

via API

Connecting external

data sources
+ +

Availability of

additional services

(Machine Learning,

Analytics, etc.).

+ + + + +

Support Edge + + + + +

Today, public fog platforms are the solutions of major players in the fog computing market,

focused on solving data processing tasks from IoT systems linked to the capabilities of the

corresponding cloud platform. The key characteristics of the considered public fog platform are

given in Tab. 4.

The Azure IoT platform provides a platform for fog and edge computing based on

Microsoft’s technology stack. It consists of several extensive subsystems such as IoT Central and

IoT Edge, which base their work on Microsoft Azure cloud technology. Connection of devices

from Microsoft partners is possible without using drivers or software code due to IoT Plug and

Play technology. This approach is possible for devices running any OS, including Linux, Android,

Azure Sphere OS, Windows IoT, RTOS, and others.

Creation, installation, and management of fog applications are performed through the Azure

IoT Hub portal. The IoT Hub is a cloud-based managed service that acts as a central mes-

sage processor for bidirectional communication between an IoT application and the devices it

manages. IoT Hub supports both device-to-cloud and cloud-to-device transfers. The IoT Hub

supports multiple messaging templates, such as telemetry between devices and the cloud, down-

loading files from devices, and query-answer technology for managing devices from the cloud.

To deploy computing closer to the devices themselves or on the devices themselves, Azure

IoT Edge system is used, allowing to deploy applications with their business logic, or already

available in the directory ready-made applications on end devices using containerization tech-

nology.

The Amazon AWS IoT Greengrass platform allows to extend the capabilities of AWS

(Amazon Web Services) to one’s peripherals, enabling them to work locally with one’s data while
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using the cloud to manage, analyze and securely store one’s data. AWS IoT Greengrass allows

connected devices to perform AWS Lambda functions, run Docker containers, generate forecasts

based on machine learning models, synchronize these devices and interact securely with other

devices even without an Internet connection.

AWS IoT Greengrass allows to create IoT solutions that connect different types of devices

to the cloud and each other. AWS IoT Greengrass Core can be used on Linux devices (includ-

ing Ubuntu and Raspbian distributions) that support Arm or x86 architectures. The AWS IoT

Greengrass Core service provides local AWS Lambda code execution, messaging, data manage-

ment, and security. Devices with AWS IoT Greengrass Core serve as portals of the service and

interact with other devices that run FreeRTOS (Real-time operating system for microcontrollers)

or installed SDK package AWS IoT for devices. The size of such devices can be very different:

from small devices based on microcontrollers to large household appliances. When a device with

AWS IoT Greengrass Core loses contact with the cloud, devices in the AWS IoT Greengrass

group can continue to communicate with each other over a local network.

Google, Yandex, and Mail.ru platforms provide their cloud and fog solutions for data collec-

tion, storage, processing, analysis, and visualization. Collected data from devices is integrated

into the public cloud system for deeper processing and analysis (including machine learning and

artificial intelligence) due to the high computing power of the cloud. These platforms support

multiple protocols for connectivity and communication through the provided API. There are

many ready-to-use services available for installation in the platform directory itself, which can

be connected to your cloud solution by combining them.

4.3. Open Source Fog Platforms

During the analysis of existing solutions, we reviewed existing open-source fog platforms.

In contrast to commercial solutions, for open-source platforms, there are complete descriptions

of architectures, requirements to computing resources, as well as technologies used, both on

hardware and software levels (see Tab. 5). Open Source approach often implies that technologies

used to develop, maintain and deploy systems are free and available to contributors.

The FogFrame2.0 is an open-source fog platform [3] aimed at deployment on single-board

computers (Raspberry Pi). Authors designed architecture and implemented a representative

framework to resolve the following challenges [79]:

• enable the coordinated cooperation among computational, storage, and networking re-

sources in the fog [80, 81];

• implement heuristic algorithms for service placement in the fog, namely a first-fit algorithm

and a genetic algorithm;

• introduce mechanisms for adapting to dynamic changes in the fog landscape and for re-

covering from overloads and failures.

To evaluate the behavior of FogFrame, authors apply different arrival patterns of application

requests, i.e., constant, pyramid, and random walk, and observe service placement. The platform

dynamically reacts to events at runtime, i.e. when new devices appear or are disabled when

devices experience failures or overloads, necessary node redeployments are performed.

The FogFlow platform is an open-source fog platform [2]. The developers’ main task was

to provide a flexible and straightforward way of development, deployment, and orchestration of

fog services [15]. The uniqueness of their approach is as follows:

• standard-based programming model for fog computing with declarative hints;
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• scalable context management: to overcome the limitations of centralized context manage-

ment, FogFlow introduces a distributed context management approach.

The data structure of all data flows is described based on the same standardized data model

called the NGSI. Therefore, FogFlow can learn which type of data is created at which edge node.

It then triggers and launches dynamic data processing flows for each edge node based on the

availability of registered context metadata, which gives service developers two advantages:

• fast and easy development of fog computing applications, because the proposed hints hide

configuration and deployment complexity tasks from service developers;

• good openness and interoperability for information sharing and data source integration

with the use of the NGSI – a standardized open data model and API and it has been

widely adopted by more than 30 cities worldwide.

FogFlow is one of the components of FIWARE open infrastructure [32], which provides the

development and implementation of various smart solutions [18, 27, 30]. This infrastructure is

one of the modern cloud frameworks along with Amazon Web Services [39]. A wide library of

ready-made solutions from the developer community and detailed implementation instructions

are available for implementation and use of FogFlow [1].

The FogBus platform (supported by Melbourn Clouds Lab) integrates various hard-

ware tools through software components that provide structured interaction and platform-

independent application execution [88]. FogBus uses blockchain to ensure data integrity when

transmitting sensitive data. The platform-independent architecture of application execution and

interaction between nodes allows to overcome heterogeneity in the integrated environment.

FogBus supports implementing various resource management and scheduling policies to run

IoT applications compiled using parallel programming models such as SPMD (single program,

multiple data).

To evaluate the performance of the FogBus platform, a prototype application system is used

to analyze the Sleep Apnea data. This example illustrates how an application (in the healthcare

sector) built using the SPMD model can be implemented using different FogBus settings to

process IoT data in an integrated computing environment.

This framework makes it easy to deploy IoT applications, monitor and manage resources.

FogBus system services are developed in cross-platform programming languages (PHP and Java).

Thay are used with the Extensible Application Layer Protocol (HTTP), which helps FogBus

overcome heterogeneity in the communication level of the OS and P2P of different nodes of

fog. Besides, the FogBus platform functions as a “Platform as a Service” (PaaS) model for the

Fog Cloud integrated environment, which not only helps application developers create different

types of IoT applications but also supports users to configure services, and service providers to

manage resources according to system conditions without maintaining the infrastructure.

Table 5. Overview of Open Source Fog Platforms

Goal Deployment

FogFrame2.0 Check the conceptual model

FogFlow Simpler and more flexible orchestration of services +

FogBus
Overcome heterogeneity at the communication

level between OS and P2P of different nodes of the fog

A.A. Kirsanova, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 3 37



4.4. Classification Methods for Fog Platforms

To form a unified approach to the classification of fog platforms, we have considered the

key fog platforms and their key characteristics. For example, AWS Greengrass can work without

access to the public cloud4, but it is possible only to store local data in this mode of operation.

Central device management, as well as centralized data collection and processing, becomes

impossible. The Entire platform operation requires access to AWS IoT Core, which acts as a

central service for the management and organization of fog and a public cloud.

Azure IoT can also operate on private networks5, but only if there is a gateway within the

private network that must connect to the central management and data collection node, and

that node is also a public cloud. What distinguishes IoT from a public cloud is that it has a single

point of access to the external network, rather than many different gateways that communicate

with the public cloud.

Other public fog platforms have the same limitations as private and open-source fog plat-

forms, the central control node of which can be deployed on any server in the local network or

not at all (in this case, management and orchestration tasks are separated between intermediate

fog nodes, as is done, for example, in FogFlow2.0).

Therefore, all fog platforms can be classified according to the openness or closedness of the

deployment of the hub, a service that is responsible for connecting, monitoring and managing

devices connected in the fog. In one form or another, almost all commercial fog platforms has the

hub: LoopEdge and Azure IoT call this service – the Hub. ClearBlade and FogHorn platforms

have a service with the same functionality, but it is called Device Manager. At AWS Greengrass,

this service is called AWS IoT Core.

Another criterion for classification may be the requirements for the underlying hardware on

which fog platform services can be deployed. Some of these platforms are tightly bound to a lim-

ited list of supported hardware devices. On the other hand, other platforms allow their services

to be deployed on any end-user hardware as long as it meets the necessary minimum require-

ments for platform deployment. We define this characteristic as an indicator of the classification

of fog platforms according to the openness of the hardware infrastructure.

The same principle is observed when comparing platforms based on openness or closed

software infrastructure: the platform can support open protocols of data exchange between

nodes of fog or fog programs are supplied exclusively by the developers of the platform itself

and licensed partners.

Thus, any fog platform can be classified according to the principle of openness or closeness

of its components (see Fig. 2). It should also be noted that platforms with a public hub are more

likely to be open to their hardware and software infrastructures.

In addition to the openness or closeness of their components, some platforms have focused

on the availability of the various features or services provided by the platform. The Azure

IoT Hub, which is an integral part of the Azure IoT platform, explicitly calls itself PaaS

(Platform as a Service), providing ready-made solutions for the user’s required tasks. It

should be noted that none of the public fog platforms positions their platforms as pure fog.

They provide fog computing as a certain basic functionality, which is the basis for other provided

platform functions and services.

4https://aws.amazon.com/ru/greengrass/faqs/Local_Resource_Access
5https://azure.microsoft.com/en-us/blog/introducing-iot-hub-device-streams-in-public-preview/
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Figure 7. Classification of fog platforms according to the principle of openness or closeness of

its components

Thus, the platforms themselves position some functionality as basic, which should be in any

fog platform, and the user is interested not only in simple deployment and basic management

of fog nodes but also in solving their specific tasks: Industry 4.0, Medicine, Smart City, etc.

Platforms should provide ready-made solutions for each of the user’s tasks as much as possible.

Figure 8. Classification of fog platforms based on provided platform functionality

Among other things, some platforms have allowed users to share their ready-made solutions

created within the platform with the help of “stores” – resources where the user can publish

his readymade fog application. This has led to the emergence of entire fog ecosystems – EaaS
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Table 6. Reviewed platform classification

Classification

“as a service”
Hub

Software

Infrastructure

Hardware

Infrastructure

FogFrame2.0 DaaS No Hub Public Public

FogFlow PaaS Private Public Public

FogBus PaaS Private Public Public

AWS Greengrass EaaS Public Public Public

Azure IoT EaaS Public Public Public

Google EaaS Public Public Public

Yandex EaaS Public Public Public

Mail.ru EaaS Public Public Public

ClearBlade PaaS Private Private Public

Smartiply Fog PaaS Private Private Private

LoopEdge PaaS Private Public Public

ThingWorx PaaS Private Private Private

Nebbiolo PaaS Private Public Public

Cisco IOx PaaS Private Public Private

(Ecosystem as a Service), which allow users to create their fog solution from ready-made

components available on the platform.

This description also includes Open Source solutions that provide only a basic level of

functionality – DaaS (Deploy as a Service): deployment of fog nodes on existing devices,

orchestration, etc. On the other hand, FogFlow has wider functionality and even its ecosystem,

which includes ready-to-install components from both platform developers and the community.

Classification “as a service” can be used as a classification method based on the provided

platform functionality (see Fig. 8).

This classification then can be applied to reviewed in this paper platforms (Tab. 6). Assuming

that term “public” to hub means if the hub can be publicly accessed or “private” if there’s only

an option of deploying your own hub without ability to share your solution with others. ”Private”

software means that platform uses only limited list of applications and “public” if any software

can be installed without publishing your application to some centralized hub. “Private” hardware

if fog nodes can be deployed only on specific hardware and “public” hardware infrastructure can

use a wide range of devices that meet requirements.

5. Fog Computing Challenges

In this section, we discuss several future research directions that are considered to be most

promising for future research in other works and in this research likewise.

Artificial Intelligence Application Management is currently receiving considerable

attention because of its ability to solve complex problems. The data needed to build an AI

system is quickly accumulated in a fog [57]. Artificial Intelligence application management can

help predict future resource requirements, context variations, and node failures more accurately

and manage applications accordingly.
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Fog nodes are limited in resources. Adding more fog nodes to the fog may reduce this

limitation. However, it increases the cost of deployment, complexness of node communication,

and power consumption at the network edge [8]. In this case, it may be helpful to dynamically

consolidate and scale the fog nodes according to computational and storage needs. Fog

computing is developed to execute various complex IoT applications from different domains,

including smart healthcare, city, agriculture, and industry [64]. These IoT applications have

specific requirements and the need for specialized support. Application-specific management

strategies can help deal with them in Fog.

Task and data processing is decentralized in the Fog. The task may begin on one node and

going through several others end on the last one. When an emergency happens in the fog, the

developer and fog designer need access to log information to locate the problem in minimal time.

Thus total logging helps with this task, but then the problem appears to maintain a data lake

supporting storage and analysis of such data. Thats the question of logging and monitoring

of highly-distributed fog applications.

On the other hand, there is also the issue of task sharing and re-usability. Applications

can share a particular task to optimize the computational load on fog nodes [90]. Besides, the

task executables of recently terminated applications can also be reused for other applications.

To perform such operations, shared caching techniques and policies are required to be developed

in the context of fog computing.

The above opens another question. If the fog node faces a software or hardware problem

and shuts down other nodes wont have any information on the checkpoint the node was in. But

most applications are state-dependent and stateful. So there is a challenge to organize state

management and sharing between nodes to support the continuous and flowless work of the

fog.

Most Fog applications do not consider security as part of a system but rather focus on

functionality, which results in many fog platforms being vulnerable [54]. That leads to sensitive

data leakage, user loss of privacy, and other security issues that are very significant in most

IoT domains. Future work could lead towards the development of knowledge-based supplemen-

tary references, which can provide decision support for developers in designing a secure and

performance efficient fog infrastructure. Such decision support would require a large systematic

knowledge acquisition of best practices, known security threats and their solutions, which can

be formalized as either a statistical-based system or rules, policies and facts.

Conclusion

The increase of transferred data volumes and the increased load on the cloud for client

services became a prerequisite for the concept of fog computing. In this paper, the concept of

fog computing, its definition and key characteristics were considered. Also, there were considered,

classified and generalized some fog platforms, which are subjects of research or already used by

business and private clients. In the end, the general architectural characteristics inherent in all

the platforms reviewed were described.

Fog computing is a more flexible and efficient type of computation compared to cloud com-

puting due to the solution of tasks requiring high bandwidth of the computing network, the

ability to work with geographically dispersed data sources, ultra-low latency and providing local

data processing. In this review paper, we not only gave an extended point of view over the fog

computing paradigm but also analyzed the growing diverse number of open source and enterprise
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solutions for deploying fog platforms. On the basis of this review, we proposed a classification

of fog solutions by their cloud layer, hardware and software publicity level and by a provided

service and functionality they grant.
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The article presents and evaluates a scalable algorithm for validating solutions to linear pro-

gramming problems on cluster computing systems. The main idea of the method is to generate a

regular set of points (validation set) on a small-radius hypersphere centered at the solution point

submitted to validation. The objective function is computed at each point of the validation that

belongs to the feasible region. If all the values are less than or equal to the value of the objective

function at the point that is to be validated, then this point is the correct solution. The parallel

implementation of the VaLiPro algorithm is written in C++ through the parallel BSF-skeleton,

which encapsulates all aspects related to the MPI-based parallelization of the program. We provide

the results of large-scale computational experiments on a cluster computing system to study the

scalability of the VaLiPro algorithm.

Keywords: linear programming, solution validator, VaLiPro, parallel algorithm, cluster com-

puting system, BSF-skeleton.

Introduction

The era of big data [1, 2] has generated large-scale linear programming (LP) problems [3].

Such problems arise in economics, industry, logistics, statistics, quantum physics, and other

fields. To solve them, high-performance computing systems and parallel algorithms are required.

Thus, the development of new parallel algorithms for solving LP problems and the revision of

current algorithms have become imperative. As examples, we can cite the works [4–9]. The devel-

opment of new parallel algorithms for solving large-scale linear programming problems involves

testing them on various benchmarks. One of the most well-known benchmark repositories of

linear programming problems is the Netlib-Lp benchmark suite [10]. The solutions to all the

problems from this repository are known. At the same time, in practice, it is often necessary to

test a new algorithm on certain problems with unknown solutions. When testing an LP solver

on such classes of problems, there is a need for validation (certification) and refinement of the

obtained solution.

Several works have been devoted to the problem of certification and refinement of LP solu-

tions. The paper [11] presents the LPlex system, which verifies and repairs a given solution to

an LP problem for feasibility and optimality using exact arithmetic to guarantee the correct-

ness of the results. The LPlex system can solve medium to large LP problems to optimality.

Based on exact arithmetic (integer, rational, or modular), LPlex implements a module to detect

block structures in matrices [12] and supports LU-factorizations of sparse matrices, the Bareiss

method [13, 14], and the Wiedemann method [15]. The main drawback of the approach is that

LPlex fails if the certified solution is not close enough to the optimal one. Koch [16] modified

this approach to computing optimal solutions for the full set of Netlib-Lp instances. Rather

than attempting to repair a nonoptimal basis with rational pivots, Koch recomputes a floating-

point solution using greater precision in the floating-point representations. He employed the

long double type that specifies 128-bit values. In [17], Applegate and co-authors extend Koch’s

methodology with an implementation that dynamically increases the precision of floating-point
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computations until a rational solution satisfying the optimality condition is obtained. They mod-

ify the conventional simplex algorithm by changing every floating-point type into the rational

type provided by the GNU multiple precision arithmetic library (GMP) [18] and replacing every

arithmetic operation in the original code with the corresponding GMP operations. The program

starts with the best native floating-point precision and then increases it by about 50 % at each

iteration (keeping the precision value a multiple of 32 bits to align with the typical word size).

The main drawback of this approach is that the use of the multiple-precision arithmetic in the

case of large and complex LP problems has high overheads. In [19], Panyukov and Gorbik try

to overcome this disadvantage by using parallel computing on distributed memory. In this pa-

per, they utilize rational arithmetic and propose two approaches for parallelizing the simplex

method. The first method is based on the decomposition of the simplex tableau by columns.

The second method is based on the modified simplex method using the inverse matrix and ex-

ploits the decomposition of the original matrix by columns and that of the inverse matrix by

rows. However, the results of computational experiments are not sufficiently convincing for the

following reasons: there is no comparison with the best sequential solutions; the computations

were performed using only three sparse LP problems (the number of nonzero elements did not

exceed 5 %); and, in addition, the scalability bound of the proposed parallel algorithm was only

16 processors. Another original approach is suggested by Gleixner and co-authors in [20]. This

paper describes an iterative refinement procedure for computing extended-precision or exact

solutions to LP problems. Arbitrarily precise solutions can be computed by solving a sequence

of closely related LPs with limited-precision arithmetic. These LPs share the same constraint

matrix as the original problem instance and are transformed only by modification of the objec-

tive function, right-hand sides, and variable bounds. This implementation is publicly available

as an extension of the academic LP solver SoPlex.

All the methods discussed above concentrate on refining the approximate solution that

has already been found. If the found solution is too far from the correct one, which means

that there is an error in the algorithm, then the use of these methods becomes impractical. In

addition, all of these algorithms have high computational complexity and do not allow efficient

parallelization on large cluster computing systems. The method proposed in this article focuses

on debugging and validating new LP algorithms on cluster computing systems. It is implemented

as a parallel program, VaLiPro (Validator of Linear Program), which shows good scalability on

multiprocessor computing systems with distributed memory. The rest of the paper is organized

as follows. Section 1 provides a formal description of the proposed method for validating solutions

to LP problems and presents a sequential version of the VaLiPro algorithm. The parallel version

of the VaLiPro algorithm is discussed in section 2. Section 3 describes the implementation of

the VaLiPro parallel algorithm in C++ using the BSF-skeleton. Here, we present the results

of computational experiments on a cluster computing system, which confirm the efficiency of

the proposed approach. In conclusion, we summarize the obtained results and expose plans for

using the VaLiPro validator in the development of an artificial neural network capable of solving

large-scale LP problems.

1. Method for Validating Solutions to LP Problems

Let the following linear programming problem be given in the Euclidean space Rn:

x̄ = arg max {〈c, x〉 | Ax 6 b, x ∈ Rn} , (1)
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Figure 1. Plotting the points of the validation

set V on a three-dimensional sphere with d = 5

where c is the vector of the objective func-

tion coefficients. Here and below, 〈·, ·〉 stands

for the dot product of vectors. Let us define

M = {x ∈ Rn | Ax 6 b} as the feasible region

of problem (1). By definition, the set M is

convex and closed. From now on, we assume

that M is a nonempty bounded set, i.e., prob-

lem (1) has at least one solution. Let x̃ ∈ Rn

be an approximate solution of problem (1) ob-

tained using some LP solver that must be cer-

tified.

The main idea of the VaLiPro validation

method is to construct a finite set of points V

covering a hypersphere S of small (compared

to the size of the polytope M) radius ρ cen-

tered at the certified solution point x̃:

V ⊂ S =
{
x ∈ Rn

∣∣ ‖x− x̃‖2 = ρ2
}
.

Here and below, ‖ · ‖ denotes the Euclidean norm. Let us compute the maximum of the objective

function on the set V ∩M :

v̄ = arg max
{
〈c, v〉

∣∣ v ∈ V ∩M
}
.

If
∣∣〈c, v̄〉 − 〈c, x̃〉

∣∣ < ε, then the approximation x̃ is considered correct. Otherwise, x̃ is considered

an incorrect solution. Here, ε ∈ R>0 is a small positive constant that is a parameter of the

validation algorithm.

Let us describe the method for constructing the validation set V . It is known [21] that the

coordinates of any point v = (v1, . . . , vn) lying on the surface of the hypersphere S defined by

the equation

‖x− x̃‖2 = ρ2

can be represented as follows:

v1 = ρ cos(φ1);

vj = ρ cos(φj)

j−1∏

i=1

sin(φi) (j = 2, . . . , n− 2);

vn−1 = ρ sin(θ)
n−2∏

i=1

sin(φi);

vn = ρ cos(θ)

n−2∏

i=1

sin(φi),

(2)

where 0 6 φj 6 π (j = 1, . . . , n− 2) and 0 6 θ < 2π. Let us explain the method for generating

the validation set V using a three-dimensional sphere (see Fig. 1). Fix an odd number of parallels

d > 3 (poles are excluded). Set

ϕ = π/d. (3)
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Algorithm 1 Generating points of the validation set

Parameters: d, ρ

a) With duplicates b) Without duplicates

1: ϕ := π/d

2: for jn−1 = 0 . . . (2d− 1) do

3: θ := jn−1ϕ

4: for jn−2 = 0 . . . d do

5: φn−2 := j(n−2)ϕ

6: . . .

7: for j2 = 0 . . . d do

8: φ2 := j2ϕ

9: for j1 = 0 . . . d do

10: φ1 := j1ϕ

11: $ := 1

12: v1 := ρ cos(φ1)

13: for l = 2 . . . n− 2 do

14: $ := sin(φl−1)$

15: vl := ρ cos(φl)$

16: end for

17: vn−1 := ρ sin(θ)$

18: vn := ρ cos(θ)$

19: output v

20: end for

21: end for

22: . . .

23: end for

24: end for

25: stop

1: ϕ := π/d

2: for jn−1 = 0 . . . (2d− 1) do

3: θ := jn−1ϕ

4: for jn−2 = 1 . . . d− 1 do

5: φn−2 := j(n−2)ϕ

6: . . .

7: for j2 = 1 . . . d− 1 do

8: φ2 := j2ϕ

9: for j1 = 1 . . . d− 1 do

10: φ1 := j1ϕ

11: $ := 1

12: v1 := ρ cos(φ1)

13: for l = 2 . . . n− 2 do

14: $ := sin(φl−1)$

15: vl := ρ cos(φl)$

16: end for

17: vn−1 := ρ sin(θ)$

18: vn := ρ cos(θ)$

19: output v

20: end for

21: end for

22: . . .

23: end for

24: end for

25: stop

In the plane (x1, 0, x3), we set the angles 0, ϕ, . . . , (2d − 1)ϕ starting from the axis (0, x). At

the intersection with the sphere, the resulting rays give the set of points {v0, . . . , v2d−1}, which

uniquely define d parallels. Then, on the plane (x1, 0, x2), set the angles 0, ϕ, . . . , (2d − 1)ϕ

from the axis (0, x1) and define d meridians in the same way. The intersections of parallels and

meridians, excluding the poles, give the points that form a validation set on the three-dimensional

sphere.

The described method for generating points of the validation set for n > 3 in the general

case is given in Algorithm 1a. The nested loops with the headers in steps 2, 4, . . . , 7, and 9

generate the following spherical coordinates of a validation point:

(ρ, φ1, φ2, . . . , φn−2, θ) . (4)
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Algorithm 2 Function g (calculat-

ing the point v by its number k)

1: function g(k, d, ρ)

2: un−1 :=
⌊
k/ (d− 1)n−2

⌋

3: un := un−1

4: k := k mod (d− 1)n−2

5: for j = (n− 3) . . . 0 do

6: uj :=
⌊
k/(d− 1)j

⌋
+ 1

7: k := k mod (d− 1)j

8: end for

9: $ := 1

10: ϕ := π/d

11: v1 := ρ cos(u1ϕ)

12: for j = 2 . . . (n− 2) do

13: $ := $ sin(uj−1ϕ)

14: vj := ρ cos(ujϕ)$

15: end for

16: $ := $ sin(un−2ϕ)

17: vn−1 := ρ sin(un−1ϕ)$

18: vn := ρ cos(unϕ)$

19: return (v1, . . . , vn)

20: end function

In steps 11–18, the spherical coordinates are converted

to Cartesian coordinates by Equations (2). Multiplying

the quantities of iterations of for-loops with headers 2,

4, . . . , 7, and 9, we conclude that Algorithm 1a outputs

2d(d+ 1)n−2 validation points. However, there will be

duplicates among the output points. The computational

experiments showed that if one sets the dimension n = 4

and the number of parallels d = 5, then Algorithm 1a

generates 189 duplicates with a total number of points

equal to 360, which is more than 50 %. The duplicates

are generated at iterations in which φi = 0 or φi = π,

which corresponds to ji = 0 and ji = d (i = 1, . . . , n−2).

The reason is that one of the factors sin(φi) in (2) is

equal to zero in this case, and therefore the variations

of other factors cannot change the value of the corre-

sponding coordinate. This issue can be solved without

a major revision of Algorithm 1a, by changing the start

values and end values of the control variables in loop

headers 4, . . . , 7, and 9, as is done in Algorithm 1b.

This algorithm generates a validation set without du-

plicates but, at the same time, it loses a certain number

of unique points. With n = 4 and d = 5, this quantity

is 11, which is less than 7 % of the whole set after re-

moving duplicates. Experiments have shown that such

a loss does not significantly affect the accuracy of the validation algorithm. The number of points

of the validation set V generated by Algorithm 1b is determined by the following equation:

|V | = 2d(d− 1)n−2. (5)

The main drawback of Algorithm 1b is that the number of nested loops depends on the problem

dimension, which does not allow using the dimension as a program parameter. To overcome

this drawback, we use a vector-valued function that calculates the coordinates of a point by

its sequential number k in the point sequence generated by Algorithm 1b (counting starts from

zero). The definition of this function is given in Algorithm 2.

The final implementation of the VaLiPro method, using the vector-valued function g, is

given in Algorithm 3. An additional parameter of this algorithm is the small positive constant

ε (by default, ε = 10−6), which compensates for possible numerical errors when comparing the

values of the objective function in Step 5. Let us make several brief comments on the steps of

Algorithm 3. Step 1 reads the source data of LP problem (1), the algorithm parameters, and the

solution x̃ that is to be certified. Step 2 calculates the angle ϕ according to Equation (3). Step 3

begins the loop that varies the point number k from 0 to 2d(d− 1)n−2 − 1 as per Equation (5).

Using the vector-valued function g (see Algorithm 2), Step 4 computes the next validation

point v. Step 5 checks whether v belongs to the feasible region of problem (1) and compares the

objective-function values at the points v and x̃. If the objective function takes a larger value

at the point v, and this point is feasible, then the control is passed to Step 9, which prints a

message stating that the certified solution is not correct. Otherwise, the next iteration of the loop
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Algorithm 3 Validation of the LP solution x̃

1: input n,A, b, c, d, ρ, ε, x̃

2: ϕ := π/d

3: for k = 0 . . . 2d(d− 1)n−2 − 1 do

4: v := g(k, d, ρ)

5: if Av 6 b & 〈c, v〉 > 〈c, x̃〉+ ε goto 9

6: end for

7: output “Solution is correct”

8: goto 10

9: output “Solution is incorrect”

10: stop

proceeds. If the loop ends naturally, the control is passed to Step 7, which outputs a message

saying that the solution is correct. After that, the control is passed to Step 10, which completes

the execution of the algorithm.

2. Parallel Algorithm for Validating LP Solutions

According to Equation (5), the cardinality of the validation set generated by Algorithm 3

depends exponentially on the space dimension. Therefore, Algorithm 3 has high computational

complexity for large dimensions. To reduce computational overheads, we developed a parallel

version of Algorithm 3, given as Algorithm 4 below. The parallel algorithm is based on the BSF

parallel computation model [22, 23], which exploits the master–slave paradigm [24]. According

to the BSF model, the master node serves as a control and communication center. All slave

nodes execute the same code but on different data. The BSF model assumes the algorithm

representation in the form of operations on lists using the higher-order functions Map and

Reduce defined by the Bird–Meertens formalism [25]. The higher-order function Map transforms

the original list W = [w0, . . . , wK−1] into the list Z = [z0, . . . , zK−1] by applying the function fx̃

to each element:

Z = Map(fx̃,W ) = [fx̃(w0), . . . , fx̃(wK−1)] .

In the case considered here, the elements of the list W are the sequential numbers of the vali-

dation set points, that is,

W = [0, . . . ,K − 1] ,

where K = 2d(d− 1)n−2. The Boolean function fx̃ : {0, . . . ,K − 1} → {true, false} is defined as

follows:

fx̃(w) =

{
true

∣∣ A · g(w) 6 b ∧ 〈c, g(w)〉 6 〈c, x̃〉 ;
false

∣∣ A · g(w) > b ∨ 〈c, g(w)〉 > 〈c, x̃〉 ,
where the vector-valued function g computes the coordinates of the validation point by its

number w. The function fx̃ returns true if the point g(w) belongs to the feasible region and if

the value of the objective function at this point is less than or equal to the value of the objective

function at the point x̃. Otherwise, the function fx̃ returns false. Thus, the list Z = [z0, . . . , zK−1]

contains Boolean indicators for all points of the validation set. If at least one element in this list

has the value false, then the point x̃ is an incorrect solution of problem (1).
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Algorithm 4 Parallel algorithm for validating an LP solution

Master Slave (l=0,. . . ,L-1)

1:

2:

3:

4:

5:

6:

7: RecvFromSlaves [s0, . . . , sL−1]

8: s := Reduce(∧, [s0, . . . , sL−1])

9: if s = true then

10: output “Solution is correct”

11: else

12: output “Solution is incorrect”

13: end if

14: stop

1: input n,A, b, c, d, ρ, ε, x̃

2: L := NumberOfSlaves

3: K := 2d(d− 1)n−2

4: Wl := [lK/L, . . . , (l + 1)K/L− 1]

5: Zl := Map (fx̃,Wl)

6: sl := Reduce(∧, Zl)

7: SendToMaster sl

8:

9:

10:

11:

12:

13:

14: stop

The higher-order function Reduce transforms the list Z = [z0, . . . , zK−1] into a single Boolean

value s by iteratively applying the conjunction operation to all the elements of the list Z:

s = Reduce(∧, Z) = z0 ∧ . . . ∧ zK−1.

In Step 4 of Algorithm 4, the l-th slave sets its own part Wl of the list W :

Wl = [lK/L, . . . , (l + 1)K/L− 1] .

Here, L denotes the number of slaves. For simplicity, we assume that K is a multiple of L. In

Step 5, the slave applies the Map function to its sublist Wl. In Step 6, the resulting sublist of

Boolean values is folded into a single Boolean value sl by applying the Reduce function, taking

the conjunction operation as the first parameter. In Step 7, the l-th slave sends the value sl to

the master. In the same Step 7, the master receives all the calculated values from the slaves. In

Step 8, the master folds the list of received values into a single Boolean value s using the Reduce

function. In steps 9–12, the master examines the calculated Boolean value s and outputs the

corresponding conclusion.

3. Software Implementation and Computational Experiments

We implemented the parallel Algorithm 4 in C++ through the parallel BSF-skeleton [26],

which is based on the BSF parallel computation model [22, 23] and encapsulates all aspects

related to the parallelization of the program using the MPI library [27]. The source code of

the VaLiPro parallel program is freely available at https://github.com/leonid-sokolinsky/

BSF-LPP-Validator. Using this program, we conducted large-scale computational experiments

on the cluster computing system “Tornado SUSU” [28]. The specifications of this system are

given in Tab. 1.
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Table 1. Specifications of the “Tornado SUSU” computing cluster

Parameter Value

Number of processor nodes 480

Processor Intel Xeon X5680 (6 cores, 3.33 GHz)

Processors per node 2

Memory per node 24 GB DDR3

Interconnect InfiniBand QDR (40 Gbit/s)

Operating system Linux CentOS

For experiments, we used random LP problems generated by the program FRaGenLP [29]

with the following parameters: α = 200 (the length of the bounding-hypercube edge), θ = 100

(the radius of the large hypersphere), ρ = 50 (the radius of the small hypersphere), Lmax = 0.35

(the upper bound of near parallelism for hyperplanes), Smin = 100 (the minimum acceptable

closeness for hyperplanes), amax = 1000 (the upper absolute bound for the coefficients), and

bmax = 10 000 (the upper absolute bound for the constant terms). The experiments were con-

ducted for the following dimensions: n = 15, n = 17, and n = 19. The numbers of inequalities

were 46, 52, and 58, respectively. The solutions to the LP problems were obtained using the apex

method [8]. Throughout the experiments, we used the following VaLiPro parameters: d = 5,

ρ = 1, and ε = 10−6. The results of the experiments are shown in Fig. 2. The verification of a

solution for a problem of dimension n = 19 with a configuration consisting of the master node

and one slave node took 17 minutes. The verification of a solution for the same problem with

a configuration consisting of the master node and 310 slave nodes took 4 seconds. The analysis

of the results showed that the scalability bound (the maximum of the speedup curve) of the

algorithm significantly depends on the dimension of the problem. For n = 19, the parallel ver-

sion of the VaLiPro algorithm demonstrated near-linear scalability up to 310 processor nodes.

For n = 17, the scalability bound was approximately 260 nodes, and for n = 15, this bound

decreased to 60 processor nodes. This is because a problem of such a small dimension is not

able to load such a large number of processor nodes: the time spent on data transfer over the

network begins to dominate over the time spent on calculations, and the processors begin to

stand idle.

Conclusions

The article presents the parallel algorithm VaLiPro for validating linear programming solu-

tions on cluster computing systems. The main idea of the validation algorithm is to generate a

regular set of points on a small-radius hypersphere centered at the solution point that is to be cer-

tified. The solution is considered correct if all points of the validation set belonging to the feasible

region have lower values of the objective function than does the solution point being certified. The

implementation of the parallel algorithm VaLiPro was performed in C++ using the parallel BSF-

skeleton, which encapsulates in the problem-independent part of its code all aspects related to

the parallelization of a program using the MPI library. The source code of the developed parallel

program is freely available at https://github.com/leonid-sokolinsky/BSF-LPP-Validator.

The proposed validation method is generic and suitable for linear programming problems of any

kind. The advantage of the parallel VaLiPro algorithm is the near-linear speedup starting with
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Figure 2. Speedup curves of the VaLiPro parallel algorithm for various dimensions

a problem dimension of 19. The main drawback that limits the practical use of the suggested

method is the exponential growth of the number of points in the validation set as the dimension

of the space increases; this results in the exponential growth of the computational complexity. In

practice, the proposed algorithm can be effectively used for LP problems with a space dimension

of no more than 20. The described algorithm was used together with the FRaGenLP generator

and the apex method to prepare a training dataset of 70 000 examples, which will be used to

develop an artificial neural network capable of solving multidimensional linear programming

problems.
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High Performance Computing is now one of the emerging fields in computer science and

its applications. Top HPC facilities, supercomputers, offer great opportunities in modeling di-

verse processes thus allowing to create more and greater products without full-scale experiments.

Current supercomputers and applications for them are very complex and thus are hard to use

efficiently. Performance monitoring systems are the tools that help to understand the efficiency of

supercomputing applications and overall supercomputer functioning. These systems collect data

on what happens on a supercomputer (performance data, performance metrics) and present them

in a way allowing to make conclusions about performance issues in programs running on the super-

computer. In this paper we give an overview of existing performance monitoring systems designed

for or used on supercomputers. We give a comparison of performance monitoring systems found

in literature, describe problems emerging in monitoring large scale HPC systems, and outline our

vision on future direction of HPC monitoring systems development.

Keywords: monitoring, supercomputers, performance monitoring, review.

Introduction

High Performance Computing is now one of the emerging fields in computer science and its

applications. Top HPC facilities, supercomputers, offer great opportunities in modeling diverse

processes thus allowing to create more and greater products without full-scale experiments.

Current supercomputers are very complex, and their efficient usage is very complicated. One of

the tools helping to understand the efficiency of supercomputing applications is the performance

monitoring systems. They collect data on what happens on a supercomputer (performance data,

performance metrics) and present them in a way allowing to make conclusions about performance

issues in programs running on the supercomputer.

In this paper, a performance monitoring system is a software package that continuously

gathers performance metrics for at least compute nodes of an HPC compute system. Data from

other sources may be collected as well. Those data are then used to provide an insight into what

is happening in a supercomputer from a performance viewpoint, for individual nodes, parts or

the whole supercomputer or specific jobs. In this paper we do not consider as a performance

monitoring system a system which is aimed at monitoring the health of the supercomputer, i.e.

that the components of a supercomputer are in a state suitable for running jobs. Nagios [13] is

an example of such a system. We also do not consider systems aimed at profiling and tuning the

specific jobs and which collect performance metrics only for the job in consideration. PTP [53],

Tau [46], and HPCTOOLKIT [23] are the examples.

This paper is organized as follows. In section 1 we give a brief overview of historic and

current performance monitoring systems. In section 2 we compare the features of the systems

described in section 1. In section 3 we try to outline the performance impact of large scale

monitoring systems. In section 4 we focus on design directions of large scale monitoring systems.

And then we give a conclusion.
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1. An Overview of Performance Monitoring Systems

Let us introduce some terms to describe different monitoring systems in a consistent way.

A node agent is a part of a monitoring system that runs on compute nodes of an HPC cluster

and gets data related to that node. If the data related to other parts of the supercomputer (like

network equipment, storage systems, central servers, etc.) are needed, they may be obtained by

some node agents or by some dedicated agents running not on a compute node. Sometimes a

monitoring system is claimed to be agentless. Generally, it means that instead of a custom agent

some standard part of an OS or a hardware being monitored is used, e.g. SNMP agent.

Data from node agents and agents collecting other data flow to a central, or server part of

a performance monitoring system. In the server part, the data are processed and presented to a

user via some interface (not necessarily a GUI).

Another important part of a performance monitoring system is data storage. It is used to

store the performance data and to process them in a case when some past data are needed.

Performance metrics are data about performance. The most frequent type of data is numeric

data. A primary metric is a metric obtained directly from a data source: Operating System,

hardware, etc. CPU loads, free RAM are the examples. A secondary or derived, metric is a

metric which values are calculated based on values of primary and/or other secondary metrics.

For example, a maximum value of free RAM over some period of time is an example of a derived

metric.

Performance data from agents can be transferred to the server part of performance moni-

toring systems in push or pull modes. A push mode is a mode when agents send data to the

server part without a command (by their own schedule). A pull mode is when agents are queried

for data by the server part. There may be mixed cases: for example, node agents work in push

mode while data from network equipment are obtained via SNMP in pull mode. A more elaborate

example of mixing the modes is given in [22].

Concrete performance monitoring systems will be considered further. The performance mon-

itoring systems we selected for this section were chosen with the following guideline in mind.

We selected a specific tool if there is a scientific paper describing it or it is referenced in a paper

describing other tool and has an active website. We do not consider stale systems like CLUMON

although it is referenced in other papers as we did not manage to find a paper describing it and

its website is only available as a copy in the Internet Archive [1].

1.1. PARMON

PARMON [28] was introduced in 1998. It is a tool for monitoring a cluster of UNIX work-

stations. It was used in Center for Development of Advanced Computing (C-DAC) in India for

PARAM 10000, a HPC cluster consisting of nodes with UltraSPARC CPUs working with Solaris

OS.

PARMON includes two main components.

Parmon-server runs on every node (a node agent) and provides information about node

performance metrics on request in a client-server fashion (pull mode).

Parmon-client is a custom Java-based GUI client which connects to parmon-servers running

on nodes, retrieves information and presents it to a user. It can collect and present information

on one specific node or on a set of nodes.

All performance data processing is done by the parmon-client online while running a GUI

session for the user. There is no database for storing data for subsequent analysis.
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1.2. SuperMon

SuperMon [41, 50], introduced in 2001, is described as ’a flexible set of tools for high speed,

scalable cluster monitoring’. It can be considered as one of the first monitoring systems designed

for HPC clusters, or at least the first which gained wide visibility. It was created in the Advanced

Computing Laboratory of Los Alamos National Laboratory and tested on 128 nodes Alpha Linux

cluster. It is not a full performance monitoring system as it provides only the way to obtain and

aggregate performance data; no processing of those data is described.

SuperMon includes a Linux kernel module that produces performance monitoring data,

mon – node level data server and Supermon – several node data concentrators. These components

form a tree-like hierarchical structure in which mon retrieves data from the kernel module on

the same node, Supermon retrieves data from several mons or Supermons.

SuperMon has some interesting features.

All its components (kernel module, mon and Supermon) speak the same text-based protocol.

It uses s-expressions introduced in LISP programming language.

Its components form a hierarchy that can be used for multi-level aggregation of monitoring

data thus making SuperMon scalable.

SuperMon was tested on a heterogeneous cluster. The cluster was composed of nodes with

1, 2 and 4 Alpha CPUs [50]. But this point is not discussed in SuperMon paper. One of the

possible reasons is that the paper does not describe the part which processes monitoring data,

only the means to get the data are described. And the specifics of monitoring a heterogeneous

cluster should be in a data processing part.

SuperMon was tested for extremely high (even for today) data sampling rates up to 3500 Hz.

Somewhat counterintuitive, SuperMon authors claim that the higher the sampling rate the less

the perturbation it causes to user jobs. Unfortunately only the theoretical support for this claim

is given and no experiments have been done.

Despite all those features SuperMon is just a tool for retrieving and aggregating data, no

database that may store the data for future analysis is not described.

1.3. Ganglia

Ganglia is one of the oldest but still widely used cluster performance monitoring systems.

Its description [37] was published in 2004 when Ganglia was quite mature. The oldest release

announcement (http://ganglia.info/?m=200202) found on Ganglia website is the announce-

ment of version 2.0.3 in February 2002. The website [4] shows an impressive list of organizations

using Ganglia.

Ganglia can be used for clusters and federation of clusters. Its components are gmond, agent

running on nodes, and gmetad, which aggregates data from gmonds or other gmetads.

Communication between gmetad and gmond is done via multicast UDP. This allows several

data receivers to operate on data coming from a single data producer or a single set of producers

from several nodes. Gmetad may poll for data and gmonds respond, or gmonds send data by

themselves. Multiple gmetads from a tree hierarchy and communicate via TCP. All data are

transmitted in XDR encoding. A special crafted client library communicates to gmetad. gmetad

store the collected data using RRDtool [20], a tool for storing and visualizing time series data.

Ganglia also has a web front-end that can show collected data for all or part of the nodes.

Ganglia authors provide experimental data for the overhead (they call it local overhead)

incurred by gmond running on compute nodes. They measure the overhead as a percentage
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of CPU load consumed by gmond and its size in physical and virtual memory. The reported

numbers are up to 0.4 % of CPU load, 16 MB of physical RAM and 16.7 MB of virtual memory

(maximum values for different clusters).

1.4. NWPerf

NWPerf [42] was introduced in 2004. At that time it was used on MPP2 [10], 977-node

Linux 11.8 TFLOPS cluster located at Pacific Northwest National Laboratory (PNNL).

Generally, NWPerf data collecting part looks very similar to that of Ganglia. NWPerf uses

agents running on compute nodes that send XDR-encoded data via multicast UDP to data

receivers. Data are stored in PostgreSQL [18] relational database thus allowing using SQL for

data processing.

NWPerf adds data about a job being run on a cluster to that database. By combining per-

formance data and data about jobs it becomes possible to analyze the specific jobs performance

and calculate performance metrics of jobs.

One of NWPerf design goals was to lessen the overhead (perturbation in time of jobs) caused

by the monitoring system. NWPerf authors did quite an extensive experimental evaluation of

such overhead. They used MPI collective operations slowdown as a measure of the influence

of the monitoring system on user jobs. To reduce the overhead they synchronized the moment

when all node agents wake up to collect and transmit performance data. As a result they claim

that they can collect performance data once per minute causing not more than a 1 % slowdown

of user jobs on a 1000+ node cluster.

1.5. Ovis-2

Ovis-2 [26], introduced in 2008, is a redesign of Ovis [16]. Ovis is a monitoring system

with sophisticated analytic tools allowing setting complex conditions on collected metrics as a

trigger for notification and reaction. Ovis-2 is a framework for performance cluster monitoring

and analysis of performance data. It addresses scalability and fault-tolerance.

Ovis-2 contains sheep processes (node agents) that run on components and collect data.

Shepherd is an aggregator which gets data from sheep and stores them in a database.

Sheep, when run, search for a shepherd in mDNS (local multicast name-resolving system)

and register themselves with a random shepherd, which, in turn, may redirect to another shep-

herd. After registering sheep begin to push performance data. Each sheep has all possible data

source library compiled-in and on startup tries to instantiate as many data sources as possible.

Shepherds, in turn, aggregate data and store them into a replicated MySQL [12] database.

Scalability is achieved by distributing the load from many sheep between shepherds. Fault-

tolerance is achieved by many shepherds which may take over other failed shepherd, and by

replicated database storage.

GUI and analytical tools for collected data analysis are mentioned in the paper. They are

oriented on analysis of the whole cluster health. The job-centric view is mentioned in the Future

Work section of [26].

Ovis and Ovis-2 do not seem to be developed further, but one of their component,

Lightweight Distributed Metrics Service (LDMS) became an independent tool (section 1.8).
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1.6. TACC Stats and SUPReMM

TACC Stats [31, 32], introduced in 2011 by Texas Advanced Computing Center, is a package

that collects performance-related data from compute nodes of a cluster and presents them in a

job-centric view. TACC stats consists of four components: monitor, pickler, analysis, and site.

Monitor is a small modular executable aimed to collect performance data. It is run in the

job prolog, every ten minutes, and the job epilog. Monitor stores the collected data locally on

every node.

Pickler runs every 24 hours to collect the data saved by monitors on compute nodes and

stores them in central storage in per-job files. The data are stored in Python pickle format.

Analysis is a set of tests and plotting routines that can be run on a set of jobs to show

possible performance issues in tested jobs.

Site module is a web interface to the data provided by TACC stats.

As a part of SUPReMM project [27], TACC stats was integrated with Open XDMoD [15, 43],

a tool aimed at providing per-job data from cluster scheduler. With such integration, Open

XDMoD is able to enrich its data with the performance data from TACC stats.

To map jobs to software packages and other properties of the executable files used for the

job, a XALT [25] tool is used. XALT can collect the data like the libraries used for build the

binary used for the job, the compiler used to compile it, tries to determine the exact version of

the software package used, etc.

1.7. Dataheap

Dataheap, presented in 2012 paper [33], is focused on combining performance monitoring

data from compute nodes and other, mostly I/O-related, sources like RAID controllers, storage

area networks (SAN) switches, parallel file systems, etc.

It has compute node agents which send performance data from nodes and agents which send

performance data from other sources. All those data are processed to calculate secondary data

and then stored in a database. MySQL and SQLite are mentioned as possible choices. Additional

tools exist for access to stored data like standalone GUI application, PHP-based web interface,

and a command-line tool.

Dataheap authors pay special attention to the calculating of secondary values (or derived

metrics). These are values that are not received directly from some sources like OS and hardware

(primary values) but are calculated based on them. Such secondary metrics can be aggregated

like average over a time interval or updated when a single new value of primary metric arrives.

The latter case is specifically considered by Dataheap authors. Dataheap can calculate such

secondary metrics on-the-fly. A scheme is proposed for updating secondary values based on

interpolation of primary values.

1.8. Lightweight Distributed Metrics Service (LDMS)

Lightweight Distributed Metrics Service (LDMS) [24] is the data collection, transport, and

storage component of Ovis (section 1.5). LDMS, as a separate component, was introduced in

2014. At the time of publication it was used on The National Center for Supercomputing Appli-

cations (NCSA) Cray XE6/XK7 Blue Waters and Sandia National Laboratories Linux cluster

Chama. Blue Waters consists of 24 648 nodes and Chama consists of 1296 nodes.
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LDMS is comprised of ldmsd daemons which can be configured to run in either sampler or

aggregator modes.

A sampler includes sampling plugins each combing a specific set of metrics. Samplers can

run several sampling plugins. The sampling frequency is used-defined and can be reconfigured

on-the-fly.

Aggregators collect data from samplers and/or other aggregators in pull mode. They can

use TCP, InfiniBand RDMA or Crays Gemini RDMA transports. Aggregation frequency is set

on startup and cannot be changed without a restart. Aggregators support failover connection to

samplers to take over data pulling if another aggregator is down.

The collected data are stored by aggregators with storage plugins. Possible storage formats

are MySQL, Comma Separated Value (CSV) files and Scalable Object Store (SOS) [5].

1.9. LIKWID Monitoring Stack

Originally, LIKWID [52] was a set of tools for getting hardware performance counters for

a specific job running on an x86-based compute node. After some development by 2017, it was

transformed to a LIKWID monitoring stack [44] (LMS) which collects performance data from

nodes and presents them in a per-job view.

LMS contains a host agent which uses a component from the original LIKWID to obtain

performance data. The data from nodes or other sources like servers are sent to a central router.

The router receives a signal about job start and finish from the cluster resource management

system. The router is responsible for tagging the performance data with job id tags and storing

them in a database. Another function of the router is to pull performance data from the sources

which do not support push mode of operations like Ganglia gmond and mix that data with the

data received from sources using push mode.

All data are saved in InfluxDB [7] time-series database. The protocol used in communication

between LMS components is the InfluxDB line protocol. The protocol is based on HTTP and is

widely used. Hence adding a filter into the data processing chain should be quite easy.

The performance data stored in InfluxDB are tagged with hostnames and job ids. These

data are used to represent the metrics on all or part of the cluster or specific jobs. Grafana [6]

toolkit is used to create charts and dashboards and show them to a user.

1.10. Performance Co-Pilot

Performance Co-Pilot (PCP) [17, 40] is a performance monitoring toolkit tracing its history

since 1999 and is still being actively developed. While not targeted specifically for HPC clusters

and supercomputers, it is often compared to while describing HPC performance monitoring

systems – that is the reason for including it in this review.

PCP includes a Performance Metrics Collector Daemon (pmcd), an agent running on hosts

to be monitored. Pmcd includes several Performance Metrics Domain Agents (PMDA), which

are dynamically loaded libraries with a specified API. Each PMDA is responsible for collecting

metrics from a performance metric domain like a kernel, a database server, etc. PCP uses pull

mode: a client application connects to pmcd and requests some metrics. Pmcd routes the request

to the appropriate PMDA and returns the response.

One of the client applications included in PCP is pmlogger, which can create performance

metrics archive. One interesting feature of PCP is the ability to replay the archive created by

pmlogger, thus enabling to reproduce the events from the past.
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Other modules of PCP include pmie which can make notification on rules for metric values;

pmie to generate periodic reports and a PCP GUI package.

1.11. Examon

Examon [3, 29], which stands for Exascale Monitoring, is a framework for the performance

monitoring of HPC systems. Its distinctive feature is that it uses MQTT [11] protocol as a

transport for performance data.

Its main executable pmu pub collects performance data and publishes it to the MQTT

broker. Then the data are exported to KairosDB [8] (a NoSQL time-series database built on top

of Apache Cassandra [35]) and can be retrieved or analyzed by other tools which are not part

of the project.

As MQTT uses publish/subscribe model, other clients can use the data in parallel to storing

them in a database to make other services like alerting.

1.12. DiMMon and TASC

Distributed Modular Monitoring (DiMMon) [51], introduced in 2015, is a framework aimed

at creating performance monitoring configurations. It is designed to be modular in all aspects.

It has several types of modules: sensors that collect performance data, processing modules that

make some calculations with the data, communication modules that send or receive data to

components of the system working on other nodes. But this distinction is purely logical: from

the frameworks point of view all modules are the same and developed using the same API. This

modular design allows to create different paths for different data or having several databases for

data aggregated on different periods of time.

DiMMon is used as a data source in TASC [47, 48]. TASC (Tuning Application for Su-

percomputers) is a system for visualizing performance monitoring data and produce advice to

users if there are some performance issues in their jobs. DiMMon pushes data to TASC, which

uses PostgreSQL and MongoDB [21] to store performance data. Redash [19] is used for data

visualization.

1.13. C-CHAKSHU

C-CHAKSHU, a multi-cluster monitoring platform, was introduced as a part of the software

stack for the National Supercomputing Mission (NSM) [14], which is implemented by C-DAC and

supported by the Ministry of Electronics and Information Technology (MeitY) and Department

of Science and Technology (DST), Government of India, in the year 2019. It monitors multiple

HPC/Supercomputing systems, which are geographically separated, from a single dashboard.

Currently, this tool is deployed on HPC systems installed at different scientific institutions and

research organizations across India under the NSM project. C-CHAKSHU designed intelligently

to address and cater to the needs of different users ranging from system administrators, applica-

tion developers, domain scientists, and system architects. It has scalability for the pre-exascale/

Petascale system.

This tool collects real-time system-wide performance metrics, compute nodes health

assessment-related metrics with action, verification of essential service/daemons. In addition,

it also collects job/application execution snapshots and related performance counters, informa-

tion from resource managers, and presents them in a Dashboard.
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In C-CHAKSHU, two major components are used, one is on the server node to pull data

whenever needed. The second component runs on all compute nodes all the time which collects

different system-wide metrics and other subsystems over a network. Furthermore, Compute

Nodes process data on their own and insert it into a NoSQL database whereas the aggregation

of data for system-wide monitoring is carried out by the single server. C-CHAKSHU only causes

a negligible network overhead on the cluster management node, incurs no overhead on the

computing nodes, and reveals insightful knowledge of how HPC components interact with each

other.

C-CHAKSHU has a loosely coupled architecture that supports the integration of any third-

party tool and different back-ends easily. This tool has more capability of analyzing system

performance and identification of bottlenecks.

2. Comparison of Performance Monitoring Systems

In this section we will compare the performance monitoring systems from several points of

view.

First, we will outline data sets available in performance monitoring systems. Second, we will

outline similarities and differences in data path inside monitoring systems and in the modes used

to obtain the data. Next, we will compare the methods used to measure an overhead incurred by

performance monitoring systems. And finally, we will give a table summarizing the comparison.

2.1. Metrics Used for HPC Performance Monitoring

The full list of metrics collected by a monitoring system is generally not easy to obtain: it

is not usually included in a paper. Frequently, the list can be mined from the documentation if

it is available. And still the exact metrics often depend on OS, on the hardware, etc. So we will

not try to provide the full exact lists of metrics. Instead, we will outline the general groups of

metrics used for performance monitoring.

The first group is what NWPerf authors call ‘vmstat like information’: ‘percent of time

spent on kernel processes, percent of time spent on user space processes, swap utilization and

swap blocks in and out, and block device KB in and out’ [42]. In modern Linux-based OS and

some UNIX variants these metrics are available via /proc interface. Generally these metrics

include CPU usage parameters (up to 10 metrics); network interface counters (bytes in/out,

packet in/out, errors), load average for 1, 5, and 15 minutes; various types of memory usage

(free RAM, RAM active, RAM inactive, swap usage, etc.), block device statistics. This group

is basic for any performance analysis, and all performance monitoring systems mentioned in

section 1 provide such data.

The second group is metrics provided by Performance Monitoring Units (PMU), Perfor-

mance Monitoring Counters (PMC), Hardware Monitoring Counters (HMC), or simply hardware

counters. All these are the names for basically the same thing: a set of hardware resources in

modern CPUs that can count hardware events which occur while the program is being executed.

Examples of these metrics are: a number of CPU cycles, a number of executed operations, a

number of floating-point operations, a number of last level cache misses, etc. While a CPU can

support a large number of events (several hundreds) that can be counted in general, a number of

events that can be counted simultaneously is small. For example, CPUs based on Intel Haswell

microarchitecture have three fixed-purpose counters (an event that is tied to that counters can-

not be changed) per thread and four general purpose counters (an event to count on them can
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be programmed) per thread. So a maximum of seven events per thread can be counted simul-

taneously or 11 if HyperThreading is switched off. This limitation can be relaxed with so-called

multiplexing [39]: measuring metrics in a round-robin way and extrapolating the results. This

leads to a loss of accuracy, which is usually tolerable. There are techniques aimed at improving

the accuracy, e.g. [38].

The first mention of metrics from this group in context of performance monitoring we found

is for NWPerf [42]. The mentioned metrics are ‘CPU Performance Counters including: percent

of peak flops (for CPU 0 and 1), memory bytes per cycle (for CPU 0 and 1)’. Then we can

mention TACC stats [32] which collects ’core and socket perf. counters’. Since that we may

assume that every performance monitoring system can collect such data. With regard to PMCs

we must pay special attention to LIKWID. Originally, LIKWID [52] was developed as a set of

tools to deal with hardware performance counters on x86 64 CPUs. Later it was transformed to

a full monitoring system [44].

Taking into account a relatively small number of performance metrics that can be gathered

simultaneously even with multiplexing, it is important not to waste valuable resources and

wisely choose the appropriate metrics to measure. Unfortunately, there is no common view of

what metrics to collect. Hence, a decision should be made for every setup. For example, some

ideas may be borrowed from top-down analysis methodology [54].

And the last group of performance metrics is data from other sources. It may be data from

compute nodes gathered via IPMI. We place IPMI data in this group due to two reasons. First,

it is usually gathered by out-of-band means, not via compute node agent. Second, these data are

more relevant to health monitoring, not the performance monitoring per se. Another source for

data in this group may be sources common for several components of a supercomputer system:

network equipment (usually gathered via SNMP or InfiniBand-specific tools), shared storage,

etc. As these metrics are influenced by several (or all) jobs simultaneously, a separate problem

of correlating these data to jobs behavior arises, see, for example [34].

2.2. Data Paths in Performance Monitoring Systems

In this section we will outline data paths used in performance monitoring systems. A data

path is a way that the performance data traverse in a performance monitoring system. This

includes data being communicated from node agent to a server part, aggregating data, storing

data for subsequent use and presenting the results to a user.

The first step in a data path in a performance monitoring system is passing data from

compute nodes for subsequent processing. As we have said earlier, basically there are two modes

for doing this: push, when the data are sent by compute node agents on its own, without a

request, and pull, when the data are sent as a reply to a request for the data. Generally, push

mode is more efficient and leads to more scalable solutions, as making a request incurs additional

overhead compared to just sending the data. Due to this reason, most of the performance systems

considered in section 1 use push mode. In fact, of the modern systems, only LDMS uses pull

mode. LDMS pulls the data from compute nodes by means of RDMA, which allows to pull

the data with very low overhead and without request-reply type interaction with the agent on

compute nodes. This is achieved by the means of special interconnect hardware supporting such

features like InfiniBand or Cray Gemini. LDMS can also be used in mixed modes [22]. Ganglia

supports both modes. Its main mode is push, the data is sent by gmond working on compute

nodes. Gmetad (server part of Ganglia) can request the data by sending a request. It is done to

get recent data held in memory by gmonds and missed for some reason. When gmetad form a
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tree for serving large-scale clusters, the data between gmetad is transferred with pull mode: the

upper-level gmetad requests the data from lower-level gmetad.

What happens after the data are collected from their sources (compute nodes and others)

differs. PARMON was designed to make online analysis only. Its GUI can show only online data,

no means for data storage and historical data analysis was provided. SuperMon is a set of tools

for retrieving and aggregating data, no data storage is provided, and no tools for presenting

collected data to users are mentioned in its description. All newer performance monitoring

systems or analysis tools built on top of them provide data storage option. Gagnlia storage is

based on RRDtool, which is a library for working with time-series data but cant be called a

full database. Some monitoring systems use relational database management systems (RDBMS)

like MySQL, PostgreSQL or SQLite. While RDMS are not very performant when dealing with

time series data, which are the most part of monitoring data, use of RDBMS is justified because

of their widespread and their familiarity to many developers. Other databases are used as well:

TASC and C-CHAKSHU use MongoDB, LIKWID monitoring stack uses InfluxDB, Examon

uses KairosDB. InfluxDB and KairosDB are specialized databases for time-series data.

Another step in processing monitoring data is calculating derived metrics. The most common

type of derived metrics is one metric aggregated data. The data can be aggregated over a period

of time for reducing data storage volume. Or the data from several nodes can be aggregated

to get an overview of some part of the compute system. This may include a partition with a

specific hardware, e.g. accelerators, or a part in a specific room, rack row, etc. An aggregation

may be done over all nodes occupied by one compute job. In this case the goal of aggregation

is to get the data related to one job or a set of jobs. Most common type of aggregation is the

calculation of average, minimum, and maximum. Another type of metric that is derived from

a single other metric is transforming counters to its derivative with time. Some metrics are

counters, i.e. they only increase when some event happens. An example of such a metric is a

counter of bytes received or sent via a network interface. Absolute values of such metrics are

generally not interesting. What is useful for performance analysis is a time derivative of such a

counter. In case of network interface bytes counter such a derivative will produce an amount of

traffic passing via an interface in a time period (bytes/s).

Other derived metrics are calculated from several primary metrics. An example of such a

metric is an Instructions Per Cycle (IPC) metric. It represents an average number of instructions

a CPU executes in one cycle. It is quite a complex metric. To calculate it, one needs a time

derivative of executed instructions counter, a time derivative of CPU cycles counters and to

divide the former by the latter. In modern CPUs cycle frequency is not constant due to power

saving settings, waiting for RAM access, etc., so the time derivative of CPU cycles counters is

not constant. If both counters are retrieved at the same moment, calculating derivatives is not

needed, one can simply divide differences of counter values. Other examples of metrics derived

from several other metrics are an average network packet size, and FLOPS per Watt ratio.

Another difference between performance monitoring systems is where on the data path the

derived metrics are calculated. We see three distinct places where it can be done. We also should

note that not every derived metric can be calculated at any of these places.

The first possible solution is to calculate derived metrics directly at node agents immediately

after the metrics have been obtained. This is feasible for derived metrics which can be calculated

from primary metrics available at a single node. Such derived metrics include an average over

a specific period of time or an average over all similar metrics from a node (e.g. percentage of

time a core spent in user mode averaged over all cores). This approach is criticized for producing
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greater overhead and thus affecting compute jobs. Still this is used at least while calculating time

derivatives from counters. DiMMon has modules that can calculate derivatives and averages on

node agents.

The second possibility is to calculate derived metrics in a server part of a monitoring system

after receiving data from node agents. This is done by the majority of monitoring systems.

Note that for a big supercomputer this produces a serious requirement in compute power of the

server part. As monitoring systems usually run on dedicated servers, this does not incur overhead

visible to a main, computing part of a supercomputer, this requirement can be fulfilled with a

required number of separate servers and generally is tolerable from a hardware requirements

perspective. As we have already mentioned, sometimes sophisticated techniques are used to

account for different data obtained at different timestamps [33, section 4]. Ganglia, which is

built on RRDtool as data storage, uses RRDtool’s built-in features to calculate derived metrics

while storing data.

The last possibility is to calculate the derived metrics after the data are stored in a per-

manent storage. In this scenario, the data are retrieved from the database, the derived metrics

are calculated, and the results are saved back to the database (or to another database). This

approach is commonly used when calculating metrics related to compute jobs or long periods

of time. C-CHAKSHU uses this approach for derived metrics and uses MongoDB non-relational

database for scaling. From the systems described in section 1, the first paper that proposed such

an approach is the description of NWPerf [42]. After that, all performance systems that produce

per job data use this approach. This solution has a drawback that it incurs much load on a data

storage thus requiring quite a capable storage system to be used for performance monitoring

data.

MRNet [45], a tool for creating overlay networks operating in multicast/reduction manner

and aimed at performing scalable calculations, is often mentioned as a possible solution to

calculating derived metrics in performance monitoring systems. Still we are not aware of any

real monitoring system that uses MRNet.

2.3. An Overhead Caused by Performance Monitoring Systems

In this subsection we will not directly compare the overhead of different performance mon-

itoring systems. It is a very difficult task as no methodology exists to make such a comparison.

We will rather try to describe methods which performance monitoring system authors use to

measure overhead of their systems.

First, we have to admit that most of the monitoring system authors do not give any mea-

surements regarding an overhead of a system. More common is to give general description like

‘insignificant’ or ‘negligible’ or not to say anything at all. Exceptions are the object of this

description.

SuperMon authors make a theoretical study of what they call ‘perturbation’ from a mon-

itoring system [50, section 4.1]. They make a conclusion that a node agent with a high peak

sampling rate is preferable as it causes less perturbation when used with sampling rates much

less than the peak rate. Hence peak sampling rate may be viewed as an indirect metric of moni-

toring system overhead. Unfortunately, SuperMon authors do not provide experimental data to

support their claim.

Ganglia authors measure several value as overhead metrics [37, section 5.2]. They mea-

sure the percentage of CPU time consumed by Ganglia processes and their memory footprint.

A Review of Supercomputer Performance Monitoring Systems

72 Supercomputing Frontiers and Innovations



They also provide data on network bandwidth consumed by communications between Ganglia

components. They present data for different clusters and confederations of clusters.

NWPerf authors try to measure the overhead (‘perturbation effects’) directly [42, section 4].

They run a test which executes a cycle of MPI collective operations (All-to-All and AllReduce

were used) and measure its execution time without NWPerf agent or with it running with dif-

ferent sampling rates. The conclusion made from these results is that in its normal configuration

(data are obtained at 1-minute intervals) NWPerfs effects are ‘immeasurably small’.

The authors of LDMS provide extensive data on influence of LDMS on various bench-

marks [24, section V]. They run more than 10 different benchmarks (artificial tests as well as

real applications) and measure time changes with different LDMS modes. Overall conclusion is

that LDMS obtaining data once per second does not really affect running jobs.

2.4. Comparison Summary

In Tab. 1 we provide a short comparison of different features of performance monitoring

systems. The columns denote the following properties of the performance monitoring system:

• Year – when the system was introduced or when it was mentioned for the first time.

• Cluster size, nodes – a maximum number of cluster the system was tested on (per available

information).

• Heterogeneous – if a system was tested on a heterogeneous cluster.

• PMC – if the system can collect Performance Monitoring Counters data.

• Data Storage – if the system has storage for performance metrics and what type of storage

is used (if the information is available).

• GUI – if the system offers a Graphical User Interface.

• Per-job – can the system correlate the performance data to the jobs executed on the cluster.

• Push/pull – which mode for transmitting data does the system use.

• Reconfig on-the-fly – can the system be reconfigured without restart.

• Overhead measured – if the overhead produced by the system is measured and the results

are available.

An empty cell means that no information was found. Plus and minus signs mean ‘Yes’ and

‘No’, respectively.

3. Problems with Monitoring Large Scale HPC Systems

This section describes the challenges with the current monitoring software.

3.1. Requirement of Multiple Tools

Currently, we are working with many monitoring tools like Ganglia, Nagios, XDMoD, C-

CHAKSHU along with custom scripts in a single HPC facility.

Existing monitoring software can be categorized broadly into the following types.

• Tools that provide job level details through resource manager like XDMoD [15, 43], TACC-

stats [31, 32], VisQueue [49].

• Tools that provide only node level stats that use third-party API/tools to get the metrics

like Ganglia [37], PARMON [28], SuperMON [41, 50]. It may include proprietary tools like

NVIDIA DCGM [2] for monitoring sub-system components like graphics card/storage/

High-performance networks like Infiniband.
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Table 1. A comparison of performance monitoring features
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PARMON 1998 48+ - - - + - Pull - -

SuperMon 2001 128 + - - - - Pull - ±1

Ganglia 20022 + RRDTool + - Mixed - +

NWPerf 2004 1000+ - + PostgreSQL - + Push - +

Ovis-2 2008 920 MySQL + - Push -

SUPReMM

TACC Stats &
2011 6400 + + Pickle + + Pull - -

Dataheap 2012 +
MySQL

SQLite
+ + Push - -

LDMS 2014 24648 + +

MySQL

CSV

SOS

Pull3 + +

Stack

Monitoring

LIKWID

2017 + InfluxDB + + Push

PCP 1999 + Custom + + Pull

Examon 1022 + + KairosDB + + Push

TASC

DiMMon &
2015 6300 + +

PostgreSQL

MongoDB
+ + Push +

C-CHAKSHU 2019 + + MongoDB + - Pull - -
1 Only theoretical study given
2 The first found release announcement date
3 Generally, LDMS uses pull mode, but in some cases the mixed mode can also be used

• Tools like Nagios [13] that provide node component level health metrics and also provide

alerting services and event-based recovery.

As per the study mentioned in section 1 and the broad category mentioned above, there is

no single tool to achieve all aspects of monitoring, analysis, and alerting. Currently, we require

multiple tools along with custom scripts to get comprehensive monitoring of the HPC systems.

3.2. Performance

The monitoring software should not introduce any substantial performance penalty and

unpredictable noises to the HPC system. In-band communication increases overhead on compute

nodes.
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• A higher sampling rate for collecting metrics has a performance penalty on the overall

monitoring system in addition to an effect on application execution and also poses a chal-

lenge on scalability. Many times out-of-band measurements do not enable high-frequency

sampling [30] and we cannot increase the frequency of the measurement.

• Reading metrics from OS and temp files should not introduce any lock to user applications.

3.3. Large Data Storage

Storing the generated log/metrics requires a separate infrastructure. An enormous amount of

data from a few hundreds to thousands nodes generating logs and various performance metrics.

If we want to capture comprehensive metrics and logs data can be of size to the tune of TBs

per day. If we want to save it for off-line analysis and correlations for a few months, data storage

requirements will be huge. Managing multiple databases/structures/formats as every monitoring

tool requires different types. It is challenging to handle multiple databases in a single monitoring

environment.

3.4. Non-dedicated Monitoring Infrastructure

Typically monitoring software deployment is an afterthought. We provision monitoring soft-

ware on master or management servers already having dedicated workloads. As we evolve in

our monitoring requirements, existing infrastructure becomes insufficient for dedicated moni-

toring systems. Traditional HPC facilities do not have dedicated hardware clusters with big

data analytics capability along with deep learning for processing real-time events for monitoring

infrastructure.

3.5. Data Duplication and Redundancy

Multiple monitoring software in the current HPC environment collect similar kinds of data

and store them in different data formats/databases. Similarly, we collect the same kind of logs

from multiple nodes/sources without any incremental information. This redundant data makes

our monitoring infrastructure slow for querying, analyzing and processing. It also consumes

unnecessary space in the storage.

3.6. Data Correlation

Monitoring systems retrieve data from all hardware subsystems and system software. As

observed in the study presented in section 1, there is no correlation provided among different

metrics or logs to capture the HPC system behavior in totality. There are also requirements for

data analysis to be done to find out trends in system behavior over time.

3.7. Limited Metrics Set

Due to multiple limitations like out of band management interface [36], processor [38], or

network, we are monitoring limited metrics. There is no universal set of metrics or standard-

ization to collect specific metrics set from different subsystems of the HPC. Every HPC facility

has its own custom set of metrics as per its need. A large-scale monitoring system requires new

capabilities in metric-gathering.
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4. Future Directions of Monitoring Systems Development

Going forward beyond the petascale systems, we will have thousands of compute nodes

and many more components and subcomponents in a single HPC system. To monitor overall

efficiency and get deep insight into the complete system will be a must.

4.1. Comprehensive Monitoring

Large supercomputing sites require a monitoring framework to get all kinds of monitor-

ing information through simple API-based queries. The visualization of monitored data over a

dashboard is more of a drag and drop type along with the integration of alerting mechanisms.

It should be able to perform proactive actions based on monitoring events to improve system

efficiency and failure. Currently, we are using multiple tools like Nagios, Ganglia, resource man-

ager stats, and many custom scripts to monitor the HPC systems. Typically the same or similar

kind of data across multiple monitoring tools are kept in different data formats/databases. The

framework must remove the need for maintaining multiple copies of the same metric data and

should be available to all the consumers of data through a single provider with redundancy. This

has been further discussed in the data management section below.

We are monitoring many metrics in the isolation. We will see the deployment of methods

for correlating different metrics in real-time to understand the holistic behavior of the system.

It will also help us classify the HPC workload based on similar correlated behaviors.

4.2. Long Term Trend Analysis

As HPC systems are operational for multiple years, trend analysis over a longer period is

necessary to understand behavioral changes in the overall system. They still do not give long-

term statistics for drawing perceptions for policy decisions. Further, almost all of them lack the

decision-making capability based on dynamic system events.

4.3. Scalable and Modular Framework

Creation of a scalable and modular framework for accommodating a large number of nodes

and metrics. We keep on increasing parameters to be monitored as more sensors are available

in the next-gen server and sub-systems.

• Hardware Infrastructure: dedicated cluster for monitoring infrastructure for real and offline

monitoring.

• High Memory servers for In-memory real-time data analysis.

• Broker services: Message broker services for allowing multiple consumers to access the

same data and avoiding data duplications.

• Ability to over-provision and failover capability.

• Lightweight collector daemons at compute side with a minimal performance penalty and

use maximum out-of-band capabilities.

• Support for ingestion of data at variable time-interval with techniques to enable only

meaningful and incremental information flow.

• We need to provision monitoring infrastructure before the establishment of the HPC sys-

tem.
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4.4. Data Management

Furthermore, data mining and reduction techniques will become a necessity in exascale

to perform the on-the-fly information reduction that will be a requirement to deliver scalable,

automated online performance analysis. As the system grows, it generates a large volume of

data from various sub-systems. Identification of data storage and defining optimal data path in

addition to data processing before storing.

4.5. Optimization

As the HPC system becomes bigger and the Monitoring system also becomes complex with

multiple stages of collection, pre-processing, data segregation, aggregation, and multiple con-

sumers of the data. We must perform an iterative way of optimization [36] of all the stages

to remove any performance bottleneck in the overall monitoring systems. Understanding the

overhead of each stage of the monitoring system and reduction of overhead in each stage will

require optimization at each stage in an iterative fashion. Daemons or collectors installed at

compute nodes should not introduce any noise or jitter for the application performance. Large

data collection or spurt due to some event in the HPC system should not introduce any network

overhead.

4.6. Resiliency Mitigation

Exascale systems are likely to experience even higher fault rates due to increased component

count and density. Which component will fail and how it will impact the system is not known

ahead of time which is important nowadays. Triggering resilience-mitigating techniques remains

a challenge due to the absence of well-defined failure indicators. Examination of event logs can

be part of a monitoring feature that can be used with a data mining framework for failure detec-

tion. Desh [30] framework for efficient failure prediction and enablement of proactive recovery

mechanisms to increase reliability.

4.7. Visualization

Representation of meaningful data is also an important aspect to understand that gives

performance statistics of HPC systems. Nowadays easily pluggable and drag and drop visual-

ization technologies are adopted. Grafana [6] and Kibana [9] are tools that will be essential for

the creation of a customized dashboard. Radar [36] kind of view will be useful to understand

the complete picture of applications behavior during the execution.

Conclusion

Unlike other components of the HPC software stack monitoring is an afterthought in HPC

cluster. Each HPC facility has its own list of components to be measured. Every supercomput-

ing facility has expertise in different monitoring tools, and they use a lot of custom methods

to measure cluster efficiency. There is a need for standardization and collaborative effort for

monitoring tools to measure various hardware and different architectures in a similar technique.

Data collection and store format should be compatible across HPC sites and future monitoring

tools should be configurable on the HPC system without much effort.
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Supercomputer technologies are in demand for solving many important and computationally-
intensive tasks in various fields of science and technology. Therefore, it is not surprising that
there are several dozen supercomputer centers only in Russia. However, the goals of creating such
centers, as well as the range of tasks solved in them, can vary greatly, therefore the structure
of supercomputers and the policies for their usage can significantly differ. This leads to the fact
that many supercomputer centers live an isolated life – the administrators of such centers tend to
solve administration-related tasks on their own, despite the fact that solutions for many similar
tasks have already been developed and applied in other centers. This can happen due to different
reasons, but in any case, this situation could and should be improved. To do this, it is worth
establishing a closer connection between supercomputer centers, which will allow more actively
exchanging experience or jointly developing desired system software. In order to understand the
current situation in this area, a survey was conducted of representatives among 10 large super-
computer centers in Russia, and its results are presented in this paper. Two relevant topics about
using monitoring data in practice and real-life examples of supercomputer functioning improve-
ment are also discussed here in more detail. Their vision on these topics is provided by the system
administrators of HSE University, Skoltech and Moscow State University.

Keywords: supercomputer, high-performance computing, administration, survey, monitoring,
performance.

Introduction

The high-performance computing (HPC) area is in great demand in the modern world [19].
There are various important problems in all major subject areas that cannot be solved without
supercomputer technologies, and the number of such problems is constantly growing. For this
reason, the HPC area itself also grows [11]. Each year supercomputers are becoming more pow-
erful and more complex, and there are more and more of them, which contributes to the faster
development of science and technology.

At the same time, the architecture of many supercomputers is noticeably different – in some
cases, it is more important to use accelerators, but for someone a fast memory or a powerful
interconnect is of main interest; in some organizations, a universal system is needed that allows
effectively solving a variety of problems from different scientific areas, in others – a specialized
system designed for extremely efficient solving of one specific class of problems [9]. Therefore,
approaches to dealing with the issues of maintaining, monitoring and ensuring the efficient func-
tioning of supercomputers also often differ.

All this leads to the fact that many supercomputer centers (SC) live a rather isolated life –
if it is necessary to solve a certain administration-related task (e.g., implement new user access
policies or quotas, configure file system or resource manager, monitor different aspects of compute
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nodes utilization, etc.), new solutions are often developed and implemented, despite the fact that
similar solutions have already been proposed in another center. This often happens because either
a previously developed solution was not designed to be portable, or that solution is not directly
suitable and needs to be adapted. In such cases, it is usually easier for administrators to develop
their own solution than to try to adapt an existing one. Also, very often administrators were
simply not aware that such a solution had already been found and implemented by someone.
Moreover, administrators often have to solely struggle with the issues of deciding which system
software is most suitable or how to optimally configure it, although exchange of experience with
other colleagues could significantly simplify this task.

In our opinion, this situation can be improved. It can be achieved by exchanging experience
in organizing the efficient functioning of SCs, as well as using the best practices from various
SCs when developing new software tools and methods. For these purposes, at the end of year
2020, a working group on the analysis and quality assurance of supercomputer center functioning
was created [3]. This group brings together system administrators and analysts from different
Russian supercomputing centers. The circle of major interests of this group can be outlined as
follows:

• efficiency of using supercomputer resources in general and executing HPC applications in
particular;

• technologies for holistic monitoring of a supercomputer functioning as well as its individual
components (both performance and operability issues are of interest);

• methods and system software for a comprehensive performance analysis of supercomputer
applications;

• effective organization of the supercomputer work (project management, access rights, quo-
tas, policies, etc.).

In order to study the current situation with the administration of supercomputers in practice,
this working group has conducted a survey of 10 different Russian supercomputer centers on the
above issues. The results, as well as a more detailed discussion of several questions raised in the
survey, are given in this paper.

At the moment, only one similar work has been discovered [14], which has focused on studying
operational data measurement, collection and analysis in 9 different large centers in the USA,
Germany, Italy and Japan.

The main contribution of this paper is the collection and detailed analysis of various infor-
mation about the current situation with the administration of modern Russian HPC centers.
This information can be primarily useful in practice for system administrators who want to learn
from the experience of others. And it can as well be useful for HPC center management and
common users in order to understand the general picture of what is happening in this area and
the relevance of the issues solved there.

The rest of the paper is organized as follows. Section 1 briefly describes how a survey has been
conducted. In section 2, the most interesting results from the conducted survey are presented
and analyzed. Section 3 discusses two actual topics about using monitoring data in practice
and real-life examples of supercomputer functioning improvement in more detail. In this section,
the vision on these topics is provided by the system administrators of HSE University, Skoltech
(Skolkovo Institute of Science and Technology) and Lomonosov Moscow State University. The
conclusions are made in the last section.
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1. Conducting a Survey

The survey was completed by system administrators of 10 different supercomputer centers.
Brief description of these centers (showing affiliation and the most powerful system in each case)
is presented in Tab. 1. “# in Top50” column refers to the position of the corresponding system
in the Top50 supercomputing rating [6].

Table 1. List of supercomputing centers that participated in the survey and corresponding most
powerful systems with their parameters

# Top HPC sites at each center
Performance,
TFlop/s

Nodes # in Top50

1
Lomonosov-2,
Supercomputing center of
M.V. Lomonosov Moscow State University, Moscow

max: 6669
peak: 8789.76

1696 2

2
Polytechnic RSC Tornado,
Peter the Great St. Petersburg Polytechnic University,
St. Petersburg

max: 910.31
peak: 1309

784 4

3
cHARISMa,
HSE University, Moscow

max: 653.7
peak: 1003.2

48 6

4
Zhores,
Skoltech, Moscow

max: 495.9
peak: 1011.6

82 8

5
Govorun, SKYLAKE component
Joint Institute for Nuclear Research, Dubna

max: 312.62
peak: 463.26

104 12

6
Lobachevsky,
Lobachevsky Nizhni Novgorod State University,
Nizhny Novgorod

max: 289.5
peak: 573

180 13

7
Tornado SUSU,
South Ural State University, Chelyabinsk

max: 288.2
peak: 473.64

384 14

8
Uran,
Krasovskii Institute of Mathematics and Mechanics,
UB RAS, Ekaterinburg

max: 194.77
peak: 326.85

76 18

9
NKS-1P,
SSCC, SB RAS, Novosibirsk

max: 85.45
peak: 136.94

48 37

10

Polus,
M.V. Lomonosov Moscow State University,
Faculty of Computational Mathematics and
Cybernetics, Moscow

max: 40.39
peak: 55.84

5 N/A

The survey was conducted using Google Forms and included 25 questions concerning the
following topics:

• monitoring data collection;
• usage of different system software;
• automation of administrative routines;
• understanding the general behavior of supercomputer systems;
• resource management;
• supercomputer support.
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Most of the questions had multiple predefined options to choose from, but almost always
there was an opportunity to give your own answer. There were cases when several administrators
from one center completed the survey; their answers were combined and presented as one.

2. Analyzing Survey Results

This section discusses the most interesting topics covered in the survey. A presentation with
all questions and answers (in Russian) can be found on the web-site of the working group [5].

The first two questions of the survey were related to the data collection, on the compute
nodes (Fig. 1) and the engineering infrastructure (Fig. 2) correspondingly.

Figure 1 shows that most of the supercomputer centers collect information about CPU load
and file systems usage – 7 out of 10 administrators have chosen these options. A little less (6 out
of 10) centers collect more information about memory usage (DRAM, I/O), network load, power
consumption and temperature. In our opinion, these characteristics are quite expectedly the most
popular ones, since they reflect in general the usage of main supercomputer resources as well as
basic operability characteristics. It is interesting to notice that 6 out of 10 centers can analyze
the performance of user applications since they bind the collected monitoring data to the tasks
launched on compute nodes.

It is also worth noting that not so many supercomputer centers are interested in getting
more detailed information about node and/or task behavior using processor counters. Example
of what data could be of interest and how such data can be used is provided in section 3.1.3.

Figure 1. Answers to the question “What data do you collect on the compute nodes?”

The statistics shown in Fig. 2 are quite expected as well. The most crucial question for
administrators is the condition and operability of the supercomputer, so almost every center
collects data on the temperature (8 out of 10), estimated battery life (7 out of 10) and humidity
(7 out of 10). The security question is less crucial but still important, that is why different centers
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collect indoor video (4 out of 10) as well as information about who entered the room (3 out of 10)
and from motion sensors (1 out of 10).

Figure 2. Answers to the question “What data do you collect about the engineering infrastruc-
ture?”

One of the most interesting topics to investigate was to find out about the usage of different
system software that can help to obtain more insights about the state, behavior and usage of a
supercomputer. For example, it was interesting to study whether there are generally accepted
ready-to-use solutions that are widely used, and what proprietary solutions are used. The survey
included questions about the use of the following software:

• monitoring systems;
• database management systems (DBMS);
• data visualization;
• data stream processing;
• data analysis.
Every question had a predefined list of the most accepted software, with the ability to specify

other solutions as well. For each option, it was necessary to indicate how it is used: 1) as a main
solution; 2) as a supplementary tool; 3) planned to be used in future.

First, let us take a closer look at monitoring systems. Figure 3 provides the distribution of
answers to the following question: “What monitoring systems do you use to collect data on the
work of your supercomputer center?”.

These results were quite surprising for us. As seen, the most popular option is the “propri-
etary solutions”, which means that administrators use their own developed software more often
than any of existing ready-to-use monitoring systems. In our opinion, this is a rather alarm-
ing situation, since the development of your own monitoring system is most often cumbersome.
The question arises why administrators are not satisfied with ready-made solutions and whether
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Figure 3. Information about monitoring systems used in different supercomputer centers

it is possible to simplify the solution of this problem by exchanging experience or sharing the
developed ideas. This issue is further discussed in the section 3.1.

Other results in Fig. 3 show that Nagios and Zabbix are by far the most popular existing
solutions, both mentioned 4 times as being used (2 centers also plan to use Zabbix in future). It
should be mentioned that Telegraf and Icinga were mentioned twice each in the “other existing
software” category, what makes them more popular than statsd and Collectd.

The situation with DBMS used to store data on SC work is shown in Fig. 4. SQL-related
databases are traditionally very popular, with MySQL/MariaDB on the first place (used by 4 out
of 10 centers) and PostgreSQL on the second place (3 out of 10). Time-series databases are used
quite rarely – only 3 centers in total claim to use them, with InfluxDB being the most popular.
This was quite surprising: they were expected to be used more often since most of the collected
data is presented in the form of time series. Also, MongoDB is used by 2 centers, but only as the
supplementary one. The ElasticSearch solution was also expected to be used more often, since
the ELK stack (ElasticSearch, Logstash, Kibana) seemed to be quite famous for solving similar
tasks, but it turned out not to be the case.

The next question was about visualization systems that help to present the information about
different aspects of supercomputer functioning. The situation here is quite expected: Graphana
is by far the most commonly used solution (5 out of 10 centers), followed by Kibana (2 centers).
All other mentioned software – Redash, Jupyter Notebook, and two commercial solutions (IBM
Blue Gene Navigator and HPE CMU) – is used only in one center each. Only one center uses its
own developed solution in this case.

The situation with data stream processing tools is even more expected – most of the centers
do not use such tools. This can be explained by the fact that the collected data streams are
currently not so large and complicated that they can be processed without such tools. Only two
ready-to-use solutions were mentioned – kapacitor and RabbitMQ, used by one center each. Also,
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Figure 4. Information about DBMS systems used in different supercomputer centers

two centers claim to apply their own developed solutions, and in this case it would be interesting
to drill into further details to find out why existing software does not fit their needs.

Interesting answers were received to the question “What software do you use to analyze
data on supercomputer work?”, shown in Fig. 5. By far the most common answer in this case
is “proprietary solutions”, with 4 centers using them as main or supplementary solutions. This
is caused by different reasons, and, in our opinion, one of the main reasons is that there is no
existing solution that can fully address this issue. All existing software mentioned in Fig. 5 help
to process and analyze data, but they require additional work (sometimes a lot) to integrate them
into the whole flow of working with supercomputer data. This shows that this area is currently
the least developed one among those considered, and it is worth paying special attention to the
joint solution of this issue.

The last question we want to discuss in this section is a general one – “What do you lack for
a more complete understanding of the state of your supercomputer center?”. The distribution of
answers is shown in Fig. 6. The most important conclusion from the data presented is that not
a single administrator responded that they had everything they needed to fully understand the
behavior of their supercomputers. This means that the potential for development in this area is
great, and it is worthwhile to join efforts to improve this situation. Otherwise, the distribution of
answers in general is quite natural: many centers are already collecting data on the correctness
of the supercomputer’s operation, so this option received the least number of votes. At the same
time, the main problem that prevents administrators from understanding in more detail the state
of supercomputers is the lack of time and people to help conduct such an analysis. We would
like to point out that many centers also want more “intellectual” data analysis software, which
once again emphasizes the lack of such ready-to-use solutions and their relevance in practice.
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Figure 5. Information about data analysis systems used in different supercomputer centers

Figure 6. Answers to the question “What do you lack for a more complete understanding of the
state of your supercomputer center?”

3. Diving into Details of Supercomputer Administration in
Practice

In this section, the following questions of interest raised in the survey are considered in more
detail:
1. Using monitoring data in practice.
2. Real-life examples of supercomputer functioning improvement.
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In order to get a more complete picture of each of them, their vision on these issues is
provided by the system administrators of HSE Univesity, Skoltech and Moscow State University.

3.1. Using Monitoring Data in Practice

One of the main questions that arises when administering supercomputers is what data to
collect about its health and performance, how to collect this data and what insights can be
obtained from it. We will talk about this in this section.

3.1.1. HSE University

HSE University has developed its own HPC cluster monitoring system. The key feature of
the system is the interactive dashboard, which displays the state of the entire supercomputer on
one screen (see Fig. 7). The system collects data from various sources, processes and logically
combines it. This allows simultaneously visualizing the real load, the distribution of resources
between users, the status of the task queue, and the health of computing nodes. The system’s
dashboard has functionality for managing the task queue. For example, the head of an HPC
department can directly raise an urgent user task in the queue through the web interface, and
the system will automatically recalculate the priorities of tasks and pass them to the task sched-
uler. Also, the system allows centrally changing the resource limits for different types of users
(students, employees), which is convenient during holidays, when the cluster load decreases, and
the restrictions on the number of computing resources used by users can be loosened.

Figure 7. Monitoring system of the HSE university supercomputer facilities

Access to the monitoring system of the HSE University supercomputer center is available
not only to the system administrators of the HPC center but also to the top management of
the university. Different users of the monitoring system receive various functionality. The system
allows managers to create summary graphs and reports on the use of the supercomputer.
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With the help of the developed monitoring system, it was possible to detect and eliminate
many non-optimal settings in the configuration of the supercomputer. As a result, many cluster
optimizations were performed, some of which are listed below.

Running multiple tasks on the same node. The compute nodes in the HSE HPC cluster have
a configuration that differs from many other high-performance installations. Instead of a large
number of nodes with average performance and small memory, cHARISMa has powerful nodes
with a large amount of RAM (up to 1.5 TB). Therefore, the minimum entity available to the
user is not the entire computing node, but 1 processor core, or 1 GPU. As a result, up to 48 tasks
of different users can run simultaneously on one node. Thus, it became possible to significantly
increase the number of simultaneously solved tasks, which greatly increased the efficiency of the
whole computing cluster.

Optimization of the queue system. The fact that the task manager in the HSE HPC cluster
does not allocate the entire node, but specific cores or GPUs, can lead to the high fragmentation
of the computational field. By default, SLURM tries to place new tasks on the least loaded
nodes. As a result, the cluster can be loaded by 30–40 %, but a large number of tasks will wait
in the queue, which requires many processor cores on one node. To reduce resource downtime,
an improved task grouping (sched/backfill + pack-serial-at-end) was configured. Tasks are now
placed in such a way as to maximize a load of already partially occupied dedicated compute
nodes.

Protection of resources from accidental use. Another feature of the system is the protection
from the possible accidental usage of other user’s resources. By default, the control over which
resources on the node are available to the user is carried out using the operating system en-
vironment variables. At the same time, the user can accidentally or intentionally change these
variables and get access to resources that are not allocated to him. To solve this problem, iso-
lation of tasks from each other on a specific compute node (group, etc.) was implemented. As
a result, the executed task process sees only his computing resources and does not imply the
existence of any others.

Fair distribution of computing resources. Monitoring the statistics in the monitoring system
allowed us to discover that some users sometimes abuse the available computing resources, for
example, when one user launches several hundred tasks of the same type, which occupy the
cluster for a long time. As a solution, a limit on the number of resources used simultaneously by
one user was implemented. For the convenience of administrators and managers, the ability to
manage this restriction in the web interface of the monitoring system was added.

Protection against GPU blocking. Another point that the system monitors is the blocking of
graphics accelerators. To perform a task on a graphics accelerator, the user needs at least one
processor core. However, if the tasks of another user have occupied all the available processor
cores on this node, then the graphics accelerators will not be available for allocation. To solve
this problem, an additional task queue plugin was implemented. When a task appears that can
block the graphics accelerator on the node, the plugin issues a warning and slightly changes the
number of resources to avoid blocking.

Script automation. The administration of a cluster complex is usually a time-consuming
process. The complexity is a consequence of the fact that a cluster consists of many compute
nodes and network equipment. Automation of routine processes using scripts allows simplifying
the administration of cluster. An example of script automation is the simple Supercomputer
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Emergency Shutdown System (ESS), developed at HSE University for the cHARISMa HPC
cluster. The system is essential because there are events that require immediate response:

• failure of the cooling system of the compute node;
• failure of the indoor air conditioning system;
• switching the UPS to battery mode;
• low level of battery power of the UPS.
The emergency shutdown system makes asynchronous requests and checks:
• The temperature at the input of the compute node (RedFish REST API). A high temper-

ature indicates a general malfunction of the indoor air conditioning system.
• The temperature at the output of the compute node (RedFish REST API). A high tem-

perature indicates a malfunction of the cooling system of a particular node.
• UPS input status and remaining battery life (SNMP). The lack of input voltage and low

battery charge indicates a possible accident in the power supply system.
The developed ESS has successfully supplemented the local overheating prevention system

built into the firmware of compute nodes. It automated and streamlined the process of shutting
down the supercomputer in the event of an accident, preventing equipment breakdowns. The
system has already been triggered during a power outage and has shown its effectiveness and
usefulness.

3.1.2. Skoltech

The range of tasks that a modern supercomputer solves goes beyond the scope of classical
HPC tasks. In Skoltech researchers and engineers working on fundamental and applied science
are faced with different types of problems. These might be high throughput computing (HTC)
tasks that require a large number of single CPU cores or GPUs running independently, HPC
tasks that require a large fraction of all resources to work on a single problem, or data-intensive
tasks with ML/DL approach applied to solving them. The difficulty is that all types of tasks
have to be solved effectively within a single supercomputer both from the user and from the
economical/environmental perspectives (the latter can be described as the amount of time the
system is running idle and amount of time the system is performing productive calculations).
In Skoltech the task of increasing the “Zhores” supercomputer load efficiency has been gradually
performed since the start of the supercomputing facility late in 2018 [23].

First, the inventory of tools that can obtain data on computing efficiency was performed
giving the profile of typical tasks performed on a supercomputer and an estimate of their average
efficiency in terms of resource utilization. The tools that were used for gathering analyzing data
are the following:

• Slurm workload manager [22];
• Elasticsearch [10] for job properties aggregation;
• Kibana for data visualization;
• Zabbix for infrastructure monitoring;
• a home brewed tool for a more detailed “Zhores” cluster; monitoring [24];
• users surveys and individual interaction.
An example of the heatmap of number of launched jobs as a function of running time and

requested resources for the “Zhores” cluster is presented in Fig. 8. This allowed us to create a
“profile” of an average user, find out the needs of the users and tune the Slurm queues corre-
spondingly (see sec. 3.2.2 for further details). After an initial assessment of the collected data, it
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Figure 8. Heatmaps of the number of jobs launched on the “Zhores” cluster as function of time
spent on the running time (longitudinal axis) and requested resources (number of CPU cores for
upper plot and number of GPUs for the lower plot, vertical axis). Each cell shows the number
of launched jobs

was found that the performance of tasks using GPU accelerators is significantly lower compared
to tasks using exclusively CPU computing resources. For CPU tasks it was 55–60 %, for GPU
tasks – less than 25 %. Three main problems that get in the way of efficient cluster usage were
identified:
1. Tasks interfere with each other, large tasks block the launch of small ones, and vice versa.

The queuing time increases, and large windows of equipment downtime appear.
2. Resources are allocated by the user, but tasks are launched with a long delay or poorly load

the computational resources, which is especially true for GPU tasks for deep learning often
run using Jupyter notebooks [8].

3. Under certain conditions some tasks work inefficiently. For example, they might lack a needed
amount of RAM or are poorly optimized for parallel performance. As a result, the resources
utilization is low while the allocation is high.

Possible solutions to these three identified problems are given below in sec. 3.2.2.
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3.1.3. Moscow State University

Collecting data. Data collection in the Lomonosov-2 supercomputer [21] installed in MSU has
been organized since the beginning and is constantly being improved. At the current moment,
the performance monitoring of compute nodes is conducted using our own DiMMon monitoring
system [18]. We were not satisfied with existing common solutions like Zabbix, Nagios, etc,
because we wanted to have a more flexible and lightweight solution with richer functionality,
such as:

• ability to change data collection interval on-the-fly for certain nodes, e.g., nodes running a
specific job;

• ability to turn off data collection for nodes not running any jobs;
• automatic aggregation of data from nodes running one job;
• ability to turn off data collecting for nodes running a specific job (e.g., to collect data via

trace collector or similar tools).
On each node, we collect the following types of data:
• different types of CPU load (user, iowait, idle, system) and load average;
• GPU usage (GPU load and memory utilization);
• Infiniband usage intensity (amount of bytes/packets sent/received per second);
• Lustre file system usage (number of opened and closed files, amount of read/written bytes

plus service data like page faults);
• performance hardware counters (number of retired instructions and unhalted cycles per

second, number of cache misses to L1 and LLC per second);
• other memory characteristics (ECC errors and free memory).
This data is collected once every second, being aggregated once every minute and stored in

PostgreSQL database. It should be noted that this performance data from compute nodes could
be efficiently stored in time-series DB as well (since it is a set of time series), but PostgreSQL,
initially selected for different reasons, copes without problems with this amount of data (several
GBs per day).

This node performance data is also then binded to the user jobs running on these nodes,
and integral information about each job is stored separately in the MongoDB database, together
with more data describing different features of these jobs: Slurm data with launch parameters,
information about the project and organization for which the user works, data on software
packages and libraries being used on jobs.

Besides monitoring of compute nodes, service servers are also monitored, in order to control
their load and correctness of their work. We check ping as well as load average and disk space on
each server, using Telegraph monitoring, with data being stored in VictoriaMetrics [4] database.
On Lustre servers disks activity, Infiniband stats, CPU system time, Lustre read/writes, Lustre
cache access rate and memory statistics also are collected via Telegraph service and stored in the
VictoriaMetrics database.

How we use the data we collect. There are several different ways all this collected data is
used in practice in order to help us to control and improve the performance of the Lomonosov-2
supercomputer.

One of the obvious and quite efficient ways to analyze job performance based on the collected
monitoring data is to investigate various graphs showing timelines with job behavior according
to a specific characteristic. This idea was implemented in the JobDigest [13] – a software for
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generating web reports presenting different information on the performance of the chosen job.
JobDigest automatically creates such reports for all jobs running on the Lomonosov-2, which are
available both for users (job owners only) and system administrators.

One example of how this data can be used is shown in Fig. 9. It is a heatmap showing the
change of a number of L1 cache misses per second, with distribution among nodes used in the job.
It should be noted that this data is collected using processor counters via PAPI [20]. As seen, most
nodes show very low number of cache misses, while one node constantly shows over 280 million
of misses per second, which is a very high value. In this case, we can assume that a program
uses memory both very intensively and inefficiently on this node. Judging from this graph alone
we cannot be sure that this leads to a decrease in the performance of the program, but this
is definitely a potential bottleneck which should be primarily investigated during performance
analysis.

Figure 9. Distribution of the maximum number of L1 cache misses per second between nodes
during job execution

JobDigest reports can be useful, but it is usually hard for users to properly analyze such
low-level information and get insights from it. To help with this, a software package called TASC
(Tuning Applications for SuperComputers) [17] for more “intellectual” data analysis was devel-
oped at the Moscow State University. Its main purpose is to help administrators and users of a
supercomputer in detecting and eliminating a variety of issues with the performance of a super-
computer in general and individual applications in particular. For this purpose, it provides users
with a detailed information about different performance characteristics of their applications as
well as automatically detects potential performance issues (concerning CPU or memory utiliza-
tion, efficiency of network or I/O usage, optimality and correctness of job launches, etc.) and
notifies users about them.

An example of performance issues automatically detected in a job is shown in Fig. 10. Such
information is available (in Russian) within the Octoshell system for all users of Lomonosov-2
supercomputer about their jobs. For each detected issue, there is a description of what seems
to be the problem, what potentially could cause it and recommendations on its further analysis.
Note that when clicking on the desired type of further analysis, a detailed manual on how to
conduct it and what to look at is provided to a user.

The aforementioned examples show how the collected data can be useful for the supercom-
puter users. But also TASC, by integrating and analyzing together a huge amount of data on
each main aspect of supercomputer behavior, allows system administrators to quickly study any
aspect of interest with the desired level of details, as well as automatically notifies them about
different critical issues automatically detected on the level of the whole supercomputer. Among
such issues that were detected in practice are the inefficient usage of software packages by sev-
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Figure 10. Description of performance issues detected in a user job with recommendations on
its further study (originally available in Russian)

eral users, failures in file system functioning, as well as inefficient job launches with excessively
high load of compute nodes. Another direction of analyzing the collected monitoring data being
of interest for the administrators, which is also studied in MSU, is using data mining methods
for detecting similar jobs in order to get more insights on the structure and peculiarities of
supercomputer job flow [16].

Data on service servers is visualized using Grafana package [2]. Most critical monitored
metrics are controlled using Grafana alerts – in any suspicious or dangerous situation an alert
message is being sent via email and Telegram to the administrators and engineers. We are
planning to change alerting procedure to another service, because of low flexibility of Grafana
alerting abilities – now we are testing the open-source software package “balerter” [1].

Grafana is also used to visualize current and historical supercomputer usage – number of
used, free and disabled nodes, number of running and waiting jobs. Special dashboard shows
current statuses of all nodes and list of reasons for node disabling. Another important dashboard
shows incoming and outgoing water temperatures in the air conditioners and current energy
consumption. Data for these dashboards are collected via SNMP protocol from air conditioners
and power distribution units and stored into VictoriaMetrics database. All these dashboards are
used on a daily basis by our system administrators to monitor and analyze the behavior of the
Lomonosov-2 supercomputer.

3.2. Real-life Examples of Supercomputer Functioning Improvement

This topic is based on the survey question stated as “Please describe examples of real-life
situations when the analysis of data on the supercomputer functioning helped you to distinctly
improve the quality of its work.”. Such examples appeared in three stated supercomputer centers
are provided below.

3.2.1. HSE University

HSE University has a complex task efficiency monitoring system of its own development
on the cHARISMa HPC cluster. It is called HPC TaskMaster. The system allows monitoring
tasks of cHARISMa users, creating reports with task information and dynamic graphs, and
automatically detects inefficient tasks by finding problems related to resource utilization and
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creating conclusions about the work of the task. The system is designed to help cluster users run
their tasks more efficiently, therefore saving expensive supercomputer machine time.

Finding inefficient tasks is an important problem that all large clusters face. To classify a
task as inefficient, it is necessary to rely on its various indicators. Such indicators can be low
or extremely high rates of components utilization and too short or too long task duration. For
many tasks, it is essential to determine their type before analyzing its effectiveness: for example,
Jupyter Notebook and Gromacs will have completely different behavior and their indicators must
be analyzed in different ways.

The principle of operation of HPC TaskMaster is briefly described in Fig. 11. From each
compute node of the cHARISMa cluster, the HPC TaskMaster system collects time series of
such characteristics as usage of CPU, GPU, file system, RAM, InfiniBand network. After that,
the system aggregates the time series, obtaining the average, minimum and maximum values
for the characteristics. The resulting aggregated metrics are stored as a tuple of values, which
is further processed by the indicator definition functions. The resulting tuple contains indicator
levels for each type of processed value from 0 to 1 according to the level of manifestation.

Figure 11. Stages of data processing

After the tuple of indicators is created, it is compared with a list of all possible inferences
specified in the system. When all the indicator values fall within the specified limits, the corre-
sponding inference is assigned to the task.

There are some examples of inferences that can be generated by the system:
• Incorrect launch of jupyter-notebook application. The running task type is detected as a

jupyter-notebook application, and there are indicators of low utilization of CPU or GPU.
• Allocating resources without running computations. The user has allocated resources for the

task, but there are indicators of low resource utilization.
• Running unparallel tasks on multiple nodes. Several nodes are allocated for the task, but

there are indicators of low InfiniBand network usage and low resource utilization.
If the indicator values fit several inferences, the one with the highest priority is selected.

This system allows the administrator to conduct a flexible configuration of inferences for various
types of tasks, without changing the source code of the system and quickly adding new inferences
when new types of tasks appear on the cluster.

The start-up of this system allowed increasing the effective load of the HSE supercomputer
by 16 %. This was made possible by detecting computing tasks with incorrect startup parameters
and notifying users about them. In the near future, when the system is trained to find problems
that are more complicated and issue expanded inferences, it will be possible to achieve even
greater savings in computing resources.
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3.2.2. Skoltech

The collected data and arising problems for the Skoltech supercomputer “Zhores” were de-
scribed above in sec. 3.1.2. First, optimization of resource usage was performed by allowing
out-of-order job launching in Slurm using the backfill method (see Fig. 12) as well as changing
the properties of the queues. Backfill method drastically reduced queuing times and increased
computation density.

Figure 12. Backfill vs FIFO scheduler schematics. Backfill allows us to significantly densify the
task launching (top left row for FIFO scheduler vs top right row for backfill scheduler). Allowing
HTC tasks to be launched in free spots further leads to a more effective supercomputer usage
(bottom left row for backfill scheduler without HTC vs bottom right row for backfill scheduler
with HTC)

“Zhores” cluster has a hybrid architecture and consists of CPU-only nodes as well as nodes
with modern GPUs. That is why the entire flow of computational tasks was divided into classes
according to the required architecture (CPU, GPU and later big memory nodes) as well as
required runtime. Before the majority of users started to use “Zhores” supercomputer the queues
presented in Tab. 2 (only columns with the asterisk) were envisioned.

Later on the queuing scheme evolved into the one presented in Tab. 2 (only columns without
the asterisk) and the following restrictions:

• one can not occupy more than half of all the resources of the queue;
• queues with lower time limit have higher priority;
• there is a minimum amount of RAM per allocated core.
Additionally, HTC tasks can be launched in all queues. HTC tasks are typically short and

not resource-intensive but there is a huge amount of them. By filling all the free slots with HTC
tasks, the utilization of CPU resources was increased by 15 %, and the time spent in the queue
for HTC tasks was reduced by 6 times. Altogether, backfilling and restructuring the queues
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Table 2. Queues distribution in “Zhores” cluster

*Queue name *Time limit Name Queues description DefaultTime MaxTime MaxNodesPerJob
cpu_debug
cpu_small
cpu_big

30 min.
24 hours
6 days

cpu CPU nodes only 24h 6d 22

gpu_debug
gpu_small
gpu_big

30 min
24 hours
6 days

gpu GPU nodes only 24h 6d 6

mem_debug
mem_small
mem_big

30 min
24 hours
6 days

mem Big mem nodes 24h 6d 4

htc
HTC jobs, 1 node per task
all nodes above, less priority

24h 1

helped to reduce queuing times and increase CPU utilization by approximately 20–25 % and
GPU utilization by approximately 5 %.

The next step was to increase the utilization of the most expensive resource – the GPUs.
In the process of supercomputer performance monitoring it was found that users (mostly those
working on ML/DL tasks and using Jupyter notebook environment) use nodes with powerful
NVidia Tesla V100 GPUs for code prototyping and development. This leads to GPU resource
allocation with almost zero utilization during the code development stage that can sometimes
last longer than the actual running time. This is the usual difference between the traditional HPC
workflow and “AI” workflow. To solve this problem, several dedicated servers each containing from
8 to 10 less powerful and lower cost NVidia GPUs (typically NVidia GTX 1080 or 2080 Ti) with
support of the same software libraries that are used for the V100 (CUDA, Torch, Tensorflow, etc.)
were purchased. Thus code prototyping and development zone was established on those servers
with dynamic deployment of the Jupyter Hub environment and a set of all the necessary tools
for using the GPU. By doing this it was achieved that in the vast majority only well debugged
production codes were launched on the Tesla V100 GPUs and their utilization rate raised by
approximately 30 %.

Third of the problems identified in sec. 3.1.2 was tackled by purchasing high-density servers
with four processors and up to 3 terabytes RAM per each node. Such nodes could effectively solve
problems where it was needed to keep a large amount of data in RAM, as well as problems that
were poorly optimized for parallelization to several nodes. This differentiation of tools helped to
solve user problems faster. With an identical load on computing resources, the average CPU task
execution speed increased by 15 %.

Even if there is limited budget for hardware purchase, one can improve the efficiency of the
supercomputer by increasing user awareness. They should not treat the cluster as a black box.
Knowledge of its architecture, strengths and weaknesses enables the developer to create more
efficient code. To increase HPC users knowledge and awareness, regular HPC seminars are held
in Skoltech, an online system of interaction with users has been established, an HPC Wiki has
been developed with examples of best practice. A Telegram channel has been created with news
about the cluster and an overview of new approaches to solving computational problems. To
better prepare students, lectures and laboratory works on basic architecture of a supercomputer
were introduced into the HPC track of the Advanced Computational Science MSc educational
program, within which students receive not only theoretical knowledge, but also build and learn
to administer their own (small scale) supercomputer.
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All the aforementioned steps have lead to the reduction of the difference between resources
allocation percentage and utilization percentage. Average CPU utilization is approximately 90 %

and average GPU utilization is more than 65 %.

3.2.3. Moscow State University

An aforementioned TASC software has been used on the Lomonosov-2 supercomputer for
a couple years, and during this time it has helped to find and eliminate different performance
issues. Let us discuss three of them.

TASC automatically detects different performance issues in all user applications running
on the supercomputer. One of such issues, which is considered as critical, detects suspiciously
low utilization of both CPU and GPU. TASC also provides web reports that allow analyzing
the appearance of such issues among users, and such statistics for the first half of May 2020 has
shown that 95 % of all “suspicious” node-hours belonged to one user. Further analysis of this user
has revealed that he has made only 5 job launches during this time period, but they occupied
12000 node-hours (which is quite a lot) and all of them were “suspicious”. This means that too
many resources are idle, so this user was contacted. It turned out that these jobs were launched
on 50 nodes each, but due to an error in a program only one node was actually involved. The
user was unaware of it; after we contacted him this issue was eliminated.

Another example happened in July 2020. Among other things, TASC-based reports provide
general statistics on overall user activity on Lomonosov-2. Figure 13 shows top 10 users based on
the number of job launches during selected time period. It can be seen that the most active user
has made over 1500 launches (leftmost column), which is almost 6 times more than the second
most active user. At the same time, these jobs occupied only a small amount of node-hours (black
line). Such situation is quite unusual, so it was decided to investigate it further. It appeared that
almost all of the jobs were using Gromacs package [7] and lasted less than 5 minutes, which is
even more unusual, especially for Gromacs users. We contacted this user, and it turned out that
he was using a script that was automatically launching jobs which almost immediately fell with
an error, forcing the script to start new jobs. After our request, the user fixed his script.

Figure 13. Top ten users of Lomonosov-2 supercomputer based on the number of job launches
during beginning of July 2020

Another interesting example concerns the NAMD package [15] for solving molecular dynamics
tasks. The Lomonosov-2 supercomputer has a special partition for GPU-intensive jobs. While
studying the GPU utilization of this partition within year 2020, it was discovered that jobs of
one active user was showing only 7 % of GPU load. Further analysis using TASC-based reports
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allowed us to see that almost all jobs were using NAMD package, while showing less than 10 %
of GPU load each. It was the only user of NAMD package in this partition, but many other
packages launched in this partition were showing much higher GPU load (Gromacs – 57 %,
LAMMPS – 34 %). Next, we discovered that the GPU load in this user jobs when launching
NAMD in another (main) partition was significantly higher – 57 %. This suggested that the
problem was with NAMD build for the GPU-based partition, and it turned out to be so. After
tuning this package and therefore fixing this issue, the GPU load of this package returned to
normal.

Conclusions

This paper shows the results of a survey of system administrators from 10 large super-
computer centers in Russia regarding the issues of maintenance, monitoring and analysis of
supercomputer behavior. This review allows, as a first approximation, to capture the general
picture of the current state in this area. The information collected made it possible to find out
what monitoring data is most interesting in practice, and what information is practically not
collected; what existing systems for monitoring, storing, visualizing and analyzing data are most
often used; etc. Of particular interest are the areas in which you most often have to develop
your own solutions (i.e., data monitoring and analysis) – these are the areas in which there are
no ready-made suitable solutions, and further development of these areas is worthwhile to be
carried out collectively. At the same time, the results of the survey show that in all centers with-
out exception there is a need for a more complete understanding of the state of supercomputers,
which suggests that this area is important and needs to be further developed.

Two important topics are considered separately – using monitoring data in practice and real-
life examples of supercomputer functioning improvement. For each topic, the administrators of
three large centers (HSE University, Skoltech and Moscow State University) describe how they
approach these issues in practice. Such a description helps to better understand the complexities
and challenges in this area, as well as possible approaches to their solution.
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Efficient Implementation of Liquid Crystal Simulation Software
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In this paper we demonstrate the process of efficient porting a software package for Markov

chain Monte Carlo (MCMC) simulations on a finite cubic lattice on multiple modern architectures:

Pascal, Volta and Turing NVIDIA GPUs, NEC SX-Aurora TSUBASA vector engines and Intel

Xeon Gold processors. In the studied software, MCMC methodology is used for simulations of

liquid crystal structures, but it can be as well employed in a wide range of problems of mathematical

physics and numerical methods. The main goals of this work are to determine the best software

optimization strategy for this class of algorithms and to examine the speed and the efficiency of

such simulations on modern HPC platforms. We evaluate the effects of various optimizations, such

as using more suitable memory access patterns, multitasking for efficient utilization of massive

parallelism on the target architectures, improved cache hit-rates, parallel workload balancing,

etc. We perform a detailed performance analysis for each target platform using software tools

such as nvprof, Ftrace and VTune. On this basis, we evaluate and compare the efficiency of the

developed computational kernels on different platforms and subsequently rank these platforms

by their performance. The results show that NVIDIA GPU and NEC SX-Aurora TSUBASA

platforms, although at first glance seem very different, require similar optimization approaches in

many cases due to similarities in data processing principles.

Keywords: NVIDIA GPU, NEC SX-Aurora TSUBASA, liquid crystals, HPC, co-design, per-

formance optimization, Monte Carlo, cubic lattice.

Introduction

The program under study is a software package developed specifically for meso- and macro-

scopic computer simulations of structure and properties of nematic and cholesteric liquid crystal

droplets. Although this software is aimed to solve the specific physical problem, the computa-

tional task beyond it belongs to the one of the most important classes of computational problems.

Optimization of a functional defined on a finite space cubic lattice relates to a wide range of prob-

lems from mathematics and physics to economics and operational research, which require high

efficiency implementations. For example, in mathematics and natural sciences, Markov chain

Monte Carlo (MCMC) simulations on cubic lattice are used in methodological studies of novel

Monte Carlo techniques [13, 14, 37], spin models [9, 17, 44], quantum Monte Carlo [7, 26, 29],

material design [47], bio-chemistry [31], etc. Keeping that in mind, we will focus on both the

current implementation and general approach to the optimization of this type of algorithms.

We believe that the optimization techniques demonstrated below are applicable to a wide range

of computational problems dealing with Markov chain Monte Carlo simulations and stochastic

optimization on finite space cubic lattice.

Liquid crystals (LCs) are the perfect example of soft matter materials that combine the

typical properties of a crystalline solid and a viscous liquid [12]. This gives LCs unique physical

properties and allows many applications of LC materials. LCs are mostly known for their use in

liquid crystal displays, embedded today in almost every device. At the same time, there is a broad

variety of more sophisticated applications nowadays: chemical sensors [38, 40], tunable optical
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devices [11, 22], biomedicine applications [18], and many others [21]. For the most complex

applications, it is crucial to precisely understand the fundamental behaviour of LCs in various

conditions, their orientational structure and properties. While there are theoretical descriptions

for such problems, the analytical solutions are typically unavailable due to the complexity of

the problems. At this point, computer simulation techniques are typically used to solve such

problems.

The program under study implements the extended Frank elastic continuum approach to

describe the energy of the system [34]. Markov chain Monte Carlo simulated annealing is used

to find energy-optimal structures of droplets of liquid crystal (LC droplets) droplet structures.

It previously showed good results for nematic and cholesteric LC [20, 35, 39]. The use of MCMC

stochastic optimization by simulated annealing [10, 30] allows us to almost completely ignore the

problem of the trapping into local minima, in contrast to the Newtonian-like iterative methods.

Moreover, checkerboard decomposition algorithms [45] result in great computational efficiency

and parallelizability, which is critically important for GPU implementation [5, 33]. The original

software package was developed back in 2012 [34] for NVIDIA Fermi GPU architecture. Since

that time, both GPU hardware and software has changed significantly, which makes it reason-

able to update the computational core of the software to fit the abilities of Pascal, Volta and

Turing GPUs. Moreover, it seems promising to try to port this software to vector processor

architectures (VCPUs). VCPUs show significant progress in solving vectorizable problems like

Markov chain Monte Carlo simulations [2, 27, 32, 41]. In particular, massively parallel NEC

SX-Aurora TSUBASA vector processors equipped with high-bandwidth memory (HBM) as well

as the newest Intel Xeon processors with AVX-512 vector instructions may provide significant

acceleration for cubic lattice Monte Carlo problems [16].

In this paper, we use supercomputing co-design approach (i.e., porting the evaluated soft-

ware to multiple target platforms with the subsequent selection of the platform which demon-

strates the highest performance on the particular problem) in order to develop an efficient and

high-performance implementation of the software package for simulation of LC droplets. For

this purpose, three modern target platforms are investigated in this paper: NVIDIA GPUs of

Volta, Pascal and Turing architectures, NEC SX-Aurora TSUBASA vector processors, and Intel

Xeon Skylake multicore CPUs. These platforms belong to a significant and representative sub-

class of modern supercomputing architectures, which provide high-performance computational

units and high-bandwidth memory. For each target architecture we describe implementation

and optimization approaches, typically required to achieve high performance for the studied

class of problems: selecting efficient memory access patterns, using multitasking to efficiently

utilize massive parallelism, improving cache hit-rates, parallel workload balancing, and several

others. Finally, we present a comparative analysis of these implementations for different target

platforms and discuss the efficiency of these platforms for this class of computational problems.

The rest of the paper is organized as follows. Section 1 describes hardware features and

properties of target architectures used in this work. Section 2 explains in detail what kind of

calculations forms the main computationally-intensive part of the program being analyzed and

why the question of its optimization is not trivial but actual. In section 3, we briefly describe a

physical task solved within the entire program package as well as its implementation features.

Section 4 covers a detailed description of a typical computational kernel and its contribution to

a whole program package, while section 5 describes the pipeline of optimizations applied to this

typical kernel on all target architectures. Conclusion summarizes the study and points out the

main results of this work.
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1. Target Architectures

1.1. NVIDIA GPU

Modern NVIDIA GPU consists of a set of identical Streaming Multiprocessors (SM), each

of which has multiple CUDA cores, capable of performing various types of operations. CUDA

(Compute Unified Device Architecture) programming model allows users to define kernels –

special functions, which are executed on GPUs, and grids – configurations of these kernels, which

define the number of threads used by each kernel. NVIDIA GPUs employ Single Instruction

Multiple Thread (SIMT) computational model, in which threads are organized in groups of

size 32 (called warps), and all threads of one warp execute the same instruction at any given

moment of time. Typically each thread performs almost identical computational workflow over

its own data – so called data-driven parallelism.

At the time of this research, the most recent NVIDIA GPU microarchitectures included

Pascal, Volta, Turing and Ampere. For the performance evaluations in this paper, machines

equipped with Pascal (P100), Volta GPUs (V100) and desktop Turing (GeForce RTX 2080 Ti)

are used. Unfortunately, Ampere GPU servers were unavailable to us at the moment of this

writing. An execution model is similar for all recent generations of GPUs, however, they have

different hardware characteristics, the most important for our paper being theoretical peak

performances and the structure of memory hierarchy. Specifications of these GPUs are shown in

Tab. 1.

Table 1. Specifications of the GPU architectures used in this work

Architecture Pascal Volta Turing

Release year 2016 2017 2018

Model P100 V100 RTX 2080 Ti

Memory type HBM2 HBM2 GDDR6

Memory bus, bit 4096 4096 352

Memory size, GB 16 32 11

Theoretical peak memory

bandwidth, GB/s

720 900 616

L1 cache per SM, KB 64 128 64

L2 cache, KB 4096 6144 5632

Peak performance (float),

TFlop/s

9.5 14.3 11.8

1.2. NEC SX-Aurora TSUBASA

The NEC SX-Aurora TSUBASA architecture with dedicated vector processors [19, 46] in-

herits the design concepts of a vector supercomputer and enhances its advantages to achieve

higher sustained performance and higher usability. NEC SX-Aurora TSUBASA mainly consists

of vector engines (VEs), equipped with a vector processor and a vector host (VH) of an x86

node. VE is used as a primary processor for executing applications, while the VH is used as a

secondary processor for executing basic operating system functions that are offloaded from the
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VE. VE has eight powerful vector cores with the total peak performance of 4.91 TFlop/s on

single precision and 2.45 TFlop/s on double precision.

Each SX-Aurora vector core consists of three components: a scalar processing unit (SPU),

a vector processing unit (VPU), and a memory subsystem. The majority of computations are

performed by VPUs, while SPUs provide the functionality of a typical CPU. Since SX-Aurora is

not just a typical accelerator but rather a self-sufficient processor, SPUs are designed to provide

relatively high performance on scalar computations. In order to store the results of intermediate

calculations, each vector core is equipped with 64 vector registers with a total register capacity

equal to 128 KB. Each register is designed to store a vector of 256 double precision elements.

On the memory subsystem side, six HBM modules in the vector processor can deliver up to

1.22 TB/s theoretical memory bandwidth [8] with up to 48 GB total capacity. Parallel programs

for the NEC SX-Aurora TSUBASA architecture are implemented via OpenMP programming

model, while vectorization is performed by NEC compiler (the user inserts specific directives,

which help the compiler to perform automatic vectorization).

1.3. Intel Xeon

Intel Xeon Gold 6126 processors of Skylake microarchitecture have been used in order to

evaluate the performance of modern CPUs in this paper. These 12-core processors achieve the-

oretical peak performance of almost 2 TFlop/s on double precision and 4 TFlop/s on single

precision. Each core has a private L1 data cache of 32 KB size, a private L2 cache of 1 MB

size, while all cores share a 19.25 MB non-inclusive L3 cache. Intel Xeon Gold 6126 processors

support Advanced Vector Extensions 512 (AVX-512), capable of processing 16 single precision

values on each cycle. Theoretical peak DRAM memory bandwidth of these processors is equal

to 125 GB/s in the configuration available to us.

2. Formulation of the Problem

Since the beginning of the era of general-purpose computing on graphics accelerators, various

algorithms of computational physics have been ported to NVIDIA GPUs and thoroughly opti-

mized for this architecture [15, 28]. Mesh methods and particularly cubic lattice methods allow

researchers to utilize the massive parallelizm of GPUs for the two following reasons [6, 23, 42].

First, a parallelization method is natively embedded into the lattice decomposition. Second,

these methods often do not require storing and exchanging any additional data between threads

(in contrast to the molecular dynamics, for example). The most common approaches used for the

physical problems formulated on cubic lattice are solutions of transport equations (for example,

lattice Boltzmann methods used for computational fluid dynamics, CFD [43]), Newtonian-like

function optimization [10], and Monte Carlo methods (used for wide range of statistical physics

problems in soft matter, bio-chemistry and quantum physics [24, 26, 31, 36, 48], and also for

function optimization [30]).

In the case of the software studied in this paper, cubic lattice Monte Carlo methods are used.

At the first glance, it seems that, in terms of optimization approaches, these methods should be

very similar to the stencil calculations typically present in transport equations. For example, in

the problem of liquid crystal structure optimizations, the free energy of the system (the value

to be minimized) is a function of 3D distribution of a director vector (so called “structure”,

which is varied to deliver the minimum to the free energy). The free energy in each sub-volume
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of the lattice is calculated on the basis of the nearest values of director field, effectively forming

3× 3× 3 size stencil for the calculations. And the optimization of stencil calculations for GPUs

is thoroughly studied [25], consisting primarily of the usage of shared memory, utilizing registers

to increase volume of cached data, block tiling, depending on the order of a numerical scheme

(effectively, the size of a stencil) and the form of the used equations.

However, there are critical differences between traditional stencil calculations and Monte

Carlo approach, which also makes the optimization strategies for these methods very different.

Let us take a closer look at the problem to understand these differences.

First, approaches to choosing the optimal stencil size are nearly opposite. In stencil calcula-

tions, the use of numerical scheme of higher order grants higher stability of the numerical scheme

and larger stencil size. In turn, using a larger stencil size increases data reuse without changing

the available degree of parallelism, leading to a more efficient implementation (see Fig. 1, where

stencils are shown as square brackets).

Monte Carlo calculations, for the most of physical problems, require small stencil size. Each

MC step consists of three intrinsic parts: (1) trial change of the state, (2) the update of the energy

function (or other function), and (3) the decision step by probabilistically accepting some trial

changes (mostly favorable) and declining others (mostly unfavorable). MC steps at lattice points

located at a stencil size and beyond can be performed independently in parallel. In this case,

using smaller stencil size increases the available degree of parallelism without changing the data

reuse (which is almost absent in this type of MC calculations), see Fig. 1. This type of space

decomposition-based parallelizm is called checkerboard algorithm [45]. Practically important

stochastic optimization problems often require as many MC steps as possible, which makes the

checkerboard parallelization strategy one of the most useful for this type of problems [3, 5, 33].

Thus, for stencil calculations larger stencil is optimal as it allows better utilizing the limited

data transfer rate, but for Monte Carlo the smaller stencil size is optimal as it allows using

higher number of parallel threads.

Figure 1. Simplified parallelization schemes for stencil-like calculations (left column) and Monte
Carlo with checkerboard decomposition (right column) for 1D problem. Two rows demonstrate
changes in parallelizm with increasing stencil size

Second difference concerns the operations with the data. In traditional stencil calculations,

the data operations are pretty straightforward: the changes in the state turns to the changes

in the function, which turns in the changes in the state on the next iteration. The memory
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operations are similar: read the state, then write the output values after calculations. In Monte

Carlo, each change will be accepted or declined with some probability. It raises the need for

more memory operations: (1) each step starts with copying the current state, its energy and

auxiliary parameters; (2) each step may end with restoring the state if the step is declined,

which effectively is copying back all the data. It results into massive memory operations in the

beginning and the end of each MC step, which is unavoidable due to the nature of Monte Carlo

method.

Third, traditional stencil calculations require relatively low amount of memory per calcu-

lation and produce relatively low number of operations per step. In this case, the processing

power is often limited by the memory bandwidth of the device, and the use of shared memory

improves the situation significantly. In contrast, in our simulations the mathematical equations

lying behind the calculations are rather complex. Calculations in each point require 3 × 3 × 3

values of two 3D vector fields, large number of temporary data for the minimization of recur-

ring calculations, and around 10 auxiliary output values to make the result not just valid but

also meaningful for the end user. This forms a large amount of memory used per lattice point

per step, which is far beyond the capabilities of shared memory of modern GPU devices. For

example, NVIDIA V100 and RTX 2080 Ti contain only 64 KB of L1 cache per SM, while the

suggested numerical scheme requires at least 100 float values per thread.

It can be seen that each iteration of MC calculations in our case requires a lot of compu-

tations as well as intensive memory usage. It should be noted, that the high memory usage for

calculations is not a sequence of non-optimality of the mathematical approach or the technical

implementation. For many real world problems, it turns out the same way due to the contin-

uously increasing complexity of physical phenomena taken into account, even when the basic

equations seem very simple. Clearly, it is applicable for all lattice Monte Carlo problems, not

just for the topic of liquid crystals.

To sum it up, nowadays the arsenal of lattice algorithms is optimized for NVIDIA GPUs for

the two major cases: stencil-type and Monte Carlo calculations with relatively low memory usage

and relatively low computational intensity per step. However, many physical problems require

Monte Carlo calculations with both intense memory usage and computational operations. There

are serious optimization issues with applying traditional optimizations to this class of problems.

Our aim is to study its optimization possibilities. So, we need to seek optimal memory access

patterns inside computational kernels and efficient parallelization scheme.

3. Brief Description of the Evaluated Program Package

The evaluated program package utilizes the cubic lattice approach, in which the whole 3D

volume of an LC droplet is divided into cells by a cubic lattice of a predefined size. A special first-

order scheme is used, thus the calculations utilize the data on the director vector value and its

first spatial derivative. This scheme was optimized for unit length quasi-vector fields [34]. It helps

to efficiently implement highly parallel Monte Carlo simulations with the degree of parallelism

of NxNyNz/8, where Nx, Ny and Nz are the dimensions of the lattice. The program package has

been implemented in CUDA C, with CPU host used only for an initialization and input/output

functions. The original version of the package from 2012 required double precision calculations for

accurate results and has been briefly optimized in terms of mathematical algorithms complexity

and memory consumption.
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When we use the evaluated package to solve real-life physical problems, we typically produce

preliminary, main and precise calculations. Preliminary calculations consist of tens to hundreds

of tasks on small and medium lattices (from 163 to 323). Typically, these calculations are used to

check the physical problem, task parameters and also to find basic physical regimes of the system.

Main calculations consist of hundreds to thousands of tasks on medium and large lattices (323

to 643). These calculations are used to scan the physical system over parameters under study

(for example, application of electric field) and find stable and metastable states of the system.

Precise calculations consist of tens of tasks on large to extra large lattices (from 643 to 2563).

These calculations are used to re-evaluate the energy of the system with higher precision in a

certain state.

It should be noted that each optimization task consists of many similar independent runs

by the nature of stochastic optimization. Usually, each task requires from 4 to 10 runs; however,

in some situations up to 100 runs may be required (for example, when the frustration of the

system between ground and metastable states is studied).

4. Typical Computational Kernel of the Program Package

At the first stage of this research, we selected a primary computational kernel (device func-

tion) of the evaluated program, which has two important characteristics. First, this kernel per-

forms the largest part of computations among other GPU activities in the evaluated program.

Second, this kernel utilizes memory access patterns and computational workflow similar to other

important kernels of the program package. Thus, it is reasonable to apply optimizations and eval-

uate their effects on this specific kernel, and later to generalize and apply them for the remaining

kernels. This kernel will be further referred to as “typical computational kernel” (TCK).

TCK produces a trial change in the director field n̄(r̄) (2D simplification is shown as color

bars in Fig. 2a), then calculates the difference in free energy of interaction between LC and

external electric field (Fext = const×∫V
[(
n̄(r̄) · Ē(r̄)

)]
dr̄) between the new state (trial) and the

previous one, and finally accepts or declines each of these changes (by Metropolis algorithm).

Here V is the droplet volume and E(r̄) is external electric field distribution. Green circles in

Fig. 2a denote the points in which the director field is changed by the trial (so-called pivot

points). This procedure seeks for the optimal distribution of director field n̄(r̄) which delivers

a minimum to Fext, when Monte Carlo is coupled with simulated annealing. According to the

formulation of free energy, we use sparse 3D placement of pivot points to implement checkerboard

decomposition technique. It allows processing these points in parallel, thus producing multiple

independent local MCMC trials at one step.

Figure 2b illustrates the placement of the stored data in 2D simplification. Solid green

squares represent pivot points processed simultaneously. During the next step, the set of pivot

points will be shifted. Eight steps (also called ticks) cover the full 3D lattice, shown in Fig. 2c. On

each step, the tick vector shows the current shift of the first pivot point from the bottom-most

point of the lattice. The tick vector varies from (0, 0, 0) to (1, 1, 1) and cyclically increments from

step to step. Thus, the most of device kernels are launched on a cubic CUDA grid of dimensions

twice smaller than corresponding (physical) lattice size. A technical layer (blue squares in Fig. 2b)

was introduced to make calculations on the border equivalent to the one in the inner part of the

lattice. The zero contribution of technical layer to the total energy is granted by zero volumetric

coefficients Vi in corresponding cells.
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Figure 2. (a) 2D simplification of director field on a cubic lattice. Green circles show pivot points,
to which trial changes of director vectors are applied in parallel. (b) Lattice configuration of the
TCK (2D simplification). Pivot elements (tick.x = tick.y = 0) are solid squares on the picture,
auxiliary elements (tick.x = 1 or tick.y = 1) are marked as checkered squares. Transactions to
global memory from a warp of adjacent threads are shown as magenta rectangles. (c) Sequence
of shifts of pivot points in 3D

In the implemented numerical scheme, the integral over droplet volume V is replaced

with the sum over lattice cells (shown as yellow boxes in Fig. 2a): Fext = const ×∑
i

[〈(
n̄(r̄) · Ē(r̄)

)〉
i × Vi

]
, where Vi is the volume of i-th cell, and 〈...〉i is averaging over i-

th cell. For better scheme convergence, the value
〈(
n̄(r̄) · Ē(r̄)

)〉
i is averaged by 26 points per

cell: cell corners (i.e., lattice points), middles of cell edges (so-called secondary lattice points),

and middles of cell facets (so-called tertiary lattice points). Thus, the calculations of the energy

change require not only the pivot point, but also neighbor points (illustrated by black arrows in

Fig. 2a). It makes the TCK computations heavily memory-intensive.

The software implementation of the TCK consists of three major parts. In the first part

of the typical kernel, each CUDA thread calculates indexes, used to access pivots and adjacent

lattice elements during the following calculation. Since this kernel utilizes the lattice approach,

each CUDA thread operates with a specific pivot element of the three-dimensional lattice and its

neighborhood. Thus, 33 indexes are calculated, including the pivot (central) one. These indexes

are stored on registers of streaming multiprocessors. Figure 2 shows a simplified mapping scheme

of the relation between CUDA threads and data arrays processed by a kernel.

In the second part of the TCK, the data describing the state before the change in the

director field is copied into separate arrays. This operation is necessary since the trial change

can be declined by Metropolis algorithm, and then the previous state should be restored.

In the third part, the kernel calculates the values of Fext for the trial director configuration.

To finalize MCMC step, the Metropolis algorithm should be applied, and trial change of the

director in each pivot point should be accepted or declined probabilistically.

Contribution of the TCK into the whole program package runtime can be evaluated using

nvprof profiling tool. This contribution slightly changes when processing different physical prob-

lems, for example different lattice sizes or the requirement to process the surface of the droplet.
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Our measurments demonstrated that the runtime contribution of the TCK varies between 12 %

and 20 % for most of the tests.

5. Co-design of the Typical Kernel of the Evaluated Software

Package

5.1. Detecting Primary Optimization Techniques

At first it is necessary to highlight primary optimization techniques, which can be imple-

mented to increase the performance of the TCK. As mentioned in the previous section, the TCK

shares various computational properties and features with a vast majority of other kernels of

the evaluated program package, and thus the proposed optimizations can be later easily applied

to the whole program package.

First of all we optimized the TCK for the NVIDIA GPU architecture, since it provides an

extremely convenient profiling toolkit, which allows easily determining performance issues and

bottlenecks of CUDA programs. In this paper we used nvprof and nvvp profiling tools in order

to collect various dynamic characteristics of the program, which are necessary in the process of

the optimization.

The dynamic characteristics and therefore performance and efficiency of the investigated

kernel significantly depend on the grid size, as shown in Tab. 2.

Table 2. Utilization of P100 GPU resources of the TCK for
various problem sizes

Grid parameters Compute utilization Memory utilization

1283 10 % 55 %

643 10 % 35 %

163 15 % 25 %

Table 2 shows that a significant part of kernel runtime is spent on loading information from

various levels of GPU memory (device and caches), and thus memory subsystem bandwidth is

the primary performance bottleneck. Kernels with memory utilization ratio higher than 50 %

are usually called memory-bound. Since the TCK launched on the large grids (1283) is memory

bound, its interaction with memory subsystem needs to be carefully investigated and optimized.

Memory subsystem usage of any kernel highly depends on memory access patterns, which

can be characterized via efficiency of GPU-transactions. GPU-transaction is a process of loading

continuous chunk of data (usually 128 bytes) from memory subsystem. The efficiency of the

transaction can be estimated as the amount of useful data loaded from memory divided by

the transaction size. When the kernel uses a sequential memory access pattern, transactions

efficiency of such kernel is equal to 100 % in the case when the initial transaction addresses are

128-byte aligned. In the worst case (random memory access pattern), each GPU warp needs to

generate the amount of transactions equal to the size of warp, and the transaction efficiency for

such program is roughly equal to 3 %. Figure 2b highlights two transactions for the TCK: the

first one (1) loads elements within vertical offset (by Y-axis), while the second one (2) loads

pivot elements and simultaneously prefetches elements within horizontal offset (by X-axis) into

L1 cache.
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To assist developers in calculating the transaction efficiency of the specific kernel, special

gld efficiency and gst efficiency hardware metrics of nvprof tool can be used. Elements of the

physical lattice are sparsely located in the data arrays, for example pivot elements alternate

with horizontal offset elements, as shown in Fig. 2. Hence, if the warp loads pivot elements from

the global memory, the transactions will contain both pivots and elements within X-axis offsets,

and the latter being redundant to load, resulting in the efficiency of such transactions being

twice lower compared to the case when all required elements are stored densely.

Transaction efficiency also depends on the type of the requested elements. In the original

program, the director field direction in each lattice point is stored in three double precision

variables. Thus unrolling arrays of structures (AoS) into structures of arrays (SoA) allows us to

further increase transaction efficiency and significantly accelerate the investigated kernel.

Despite the fact that transactions to global memory in the TCK have low efficiency, memory

access pattern of the kernel has an important advantage. Elements, which neighbor pivots and

fall into a requested transaction when pivots are loaded (shaded purple-colored elements in

Fig. 2) are prefetched into L1 GPU cache, resulting into further transactions to these elements

being processed significantly faster, since they load the required data from caches instead of

global memory. Due to the fact that a significant amount of elements neighboring pivots reside

in L1 cache (L1 hit rate of the TCK is 72 %), only a small number of transactions will be

directed to L2 cache or device memory.

Another important feature of every CUDA kernel is occupancy. Occupancy is a ratio of active

warps resident on a single streaming multiprocessor to a maximum theoretical value of active

warps supported by a single SM. Occupancy of the TCK launched on the smallest computational

grid of size 16 is very low – only 64 blocks of size 512 are distributed over 56 SMs, while each

SM allows processing up to 4 blocks of similar size simultaneously. Such small number of blocks

can not fully utilize GPU resources, for example global memory bandwidth. On the other hand,

when the kernel is launched on the largest grid (1283), it fully occupies each SM with 512 blocks

launched in total. Occupancy for the TCK launched on small grids can be increased using

multitasking, when two or more independent CUDA-kernels are concurrently launched on a

single GPU.

Occupancy of the investigated kernel is also limited by the number of registers available

on a single SM. Registers are heavily used in the TCK to store both indexes and intermediate

elements of physical lattice, which are accessed multiple times in different parts of the kernel.

Thus, using compiler directives to limit a number of registers used by each thread is another

important direction of further optimization.

5.2. Optimizations for NVIDIA GPU Architecture

Implementing a coalesced memory access pattern to global memory. Figure 2 and

subsection 5.1 explain why the existing memory access pattern used in the initial version of

the TCK has low efficiency of load transactions. To avoid this problem, the lattice storage

configuration has been changed in the following way: the lattice was split into 8 independent

parts, each corresponding to a particular shift in 3D-version of checkerboard algorithm (value of

the tick variable), as shown in Fig. 2c. Figure 3 demonstrates a simplified 2D version of storage

splitting scheme, where checkerboard algorithm supposes the use of four ticks. Here, on each

tick, all pivot points are stored in the same part of lattice. This way load transactions to elements

in different parts of lattice do not contain gaps filled with elements with another offset. As a
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result, memory accesses to elements within different offsets will be coalesced; such optimization

approximately doubles the efficiency of load and store transactions for the investigated kernel,

according to the results from the Tab. 3. Since the described optimization changes the structure

of the kernel significantly, all further optimizations in this paper will be applied to this kernel

with this new memory access pattern.

Figure 3. Lattice configuration in the investigated kernel (2D simplification). Pivot elements
(tick.x=tick.y=0) are solid squares on the picture, auxiliary elements (tick.x 6= 0 or tick.y 6= 0)
are marked as checkered squares. Transactions to global memory from a warp of adjacent threads
are shown as rectangles

Table 3. The comparison of transaction efficiency for different memory
access patterns

Initial memory

access pattern

Improved memory

access pattern

Store transactions efficiency 34 % 80 %

Load transactions efficiency 43 % 70 %

Using shared memory. Shared memory of NVIDIA GPUs is a hand-driven L1 cache. Stencil

kernels can benefit a lot from using this memory, since inner neighbor threads in a warp generate

a transaction with highly reused elements, and with the use of shared memory we can avoid

sending more than 1 transaction to global memory and do not care if required elements reside

in non-programmable L1 cache. Typically each thread copies its central element from global
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to shared memory, allowing other threads to access this element with lower latency and higher

bandwidth.

However, kernels of optimized package (and thus TCK) are not pure stencils and perform

other operations, such as copying energies from previous step and making a Monte-Carlo de-

cision. These parts can not benefit from using shared memory, since they are based on typical

sequential memory access patterns and are memory-bound. This is the first problem of using

shared-memory based optimizations in the kernels of our package: due to Amdal’s law, the

obtained acceleration will be much lower compared to the cases of usual stencil codes [25].

When applying shared memory optimizations to the stencil part of TCK, we face another

problem: it uses a huge amount of input arrays (around 20 float arrays for TCK), required for

stencil computations. Certainly, all these arrays can not be stored in shared memory due to its

limited size of 64KB or 96KB per one SM. A possible solution can be the usage of registers [25],

but according to the nvprof the majority of them is already used for storing other intermediate

data.

A possible solution involves storing arrays in shared memory step-by-step, implementing a

sort of pipeline. Unfortunately, computational-intensive functions operate only with 2 elements

of stencil radius at once to calculate parts of each pivot element, which results in low data reuse.

In addition, the implementation of such pipeline requires frequent thread synchronization. For

these reasons shared memory optimizations can not be applied to TCK and other kernels of the

package, which is confirmed by our implementation experiments.

Changing precision from double to single. Since the initial kernel launched on a large

computational grid is memory-bound, it is reasonable to try to change the type of lattice elements

from double to float in order to significantly reduce the amount of loaded data. We determined

the critical parts of the code, where changing the precision from double to float affected the

results. It corresponds to the parts where exponential functions are taken, and where reduction

over large number of values is produced. It required to remain about 1 % of the variables

in double precision. The other variables were switched to float. After this optimization the

amount of load transactions is 1.3 times lower for single precision compared to double precision

(30.7M transactions for double and 23.2M transactions for float), which is proportional to the

acceleration obtained by this optimization. It is important to notice that physical results of

calculations are correct when obtained via both single and double precision.

Unrolling array of structures into structure of arrays. Unrolling array of structures

(AoS) into structure of arrays (SoA) allows us to further reduce the amount of memory trans-

actions. With this optimization applied, the ratio of the requested data to the required data

loaded from the global memory has doubled – from 24 % to 46 %. However, this optimization

did not lead to the proportional acceleration, since this optimization also decreases the efficiency

of using L1 cache: the accesses to fields of structures occur in the TCK close to each other, and

thus the remaining fields are typically prefetched into L1 cache in the case of using AoS.

Decreasing the transaction size. NVIDIA GPUs allow turning off L1 cache in order to

decrease the size of memory transaction and thus improving the effective bandwidth for non-

coalesed memory access pattern. When L1 cache is disabled, the transaction has 4 times larger

size (128 against 32 bytes). In this paper we evaluated kernel performance with L1 cache both
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turned on and turned off, and the experiments demonstrated a 15 % speedup with L1 cache

turned on.

Increasing the occupancy by limiting the register usage. One of the reasons why oc-

cupancy of the investigated kernel is low is that each CUDA thread uses many GPU registers –

approximately 70 of them, and consequently a block of 512 threads requires 35840 registers.

Each streaming multiprocessor of P100 GPU has only 32768 registers available, which does

not allow running two or more blocks concurrently on the same SM. The launch bounds (max-

ThreadsPerBlock, minBlocksPerMultiprocessor) directive can be used to limit the amount of

registers utilized by a single CUDA-block, which allows running up to 4 blocks of size 512 on

a single P100 SM concurrently (since there is also a hardware thread limit of 2048 threads per

SM). However, applying this directive with a parameter minBlocksPerMultiprocessor=4 turns

the kernel into being more memory-bound, since the ratio of memory operations among the

whole kernel increases from 35 % to 55 % and does not lead to any significant acceleration.

Applying multitasking for small grids. Occupancy values are significantly higher for large

computational grids, since the amount of CUDA threads launched for such grids is also high.

Insufficient number of threads launched on small grids decreases the efficiency of using available

throughput of GPU memory. The achieved global memory throughput can be calculated as a

sum of two nvprof metrics – gld throughput and gst throughput. On computational grids of size

643 this sum is approximately equal to 420 GB/s and remains the same for all larger grids, thus

this value can be viewed as an achievable limit for the investigated kernel on a P100 GPU. This

value is also relatively close to the achieved throughput of 540 GB/s on Stream benchmark [4],

which also has a coalesced access pattern, but transactions of which are aligned (unlike the

TCK).

For smaller grids the investigated kernel achieves throughput equal to 295 GB/s, which is

1.4 times lower compared to throughput on large grids. This gap can be eliminated by using

multitasking: multiple independent instances of kernel can be launched in parallel on a single

GPU, thus utilizing its hardware resources more efficiently. This way GPU occupancy is in-

creased, which in turn allows us to hide latency. We implemented multitasking using OpenMP

directives and CUDA Streams. Table 4 shows that an expected 1.4 times acceleration has been

achieved.

Table 4. Theoretical acceleration which can be achieved by launching
independent kernels (tasks) in parallel

Single task Multiple tasks Theoretical speedup

gst+gld throughput on 643 lattice 975.1 GB/s 1375.82 GB/s 1.41

gst+gld throughput on 1283 lattice 321.414 GB/s 474.97 GB/s 1.47

The overall comparison of effects from applying different types of optimizations to the TCK

(launched on NVIDIA P100 GPU) is shown in Fig. 5.

5.3. Porting the Typical Kernel to NEC SX-Aurora TSUBASA

Since vector architectures and GPUs have a significant number of similar architectural and

computing features [1], the TCK can be ported to the NEC SX-Aurora TSUBASA architecture
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Table 5. The comparison of bandwidth (BW) and execution time values for different
versions of the TCK launched on NVIDIA P100 GPU

lattice

size

initial

version

new

pattern

AoS to

SoA

register

usage

changed

precision

multi-

tasking

643(BW) 319.87 GB/s 551.78 GB/s 569.05 GB/s 576.60 GB/s 409.76 GB/s 594.84 GB/s

643(time) 319.22 s 172.17 s 179.21 s 171.52 s 126.75 s 87.35 s

1283(BW) 479.18 GB/s 710.67 GB/s 716.16 GB/s 558.38 GB/s 460.24 GB/s 754.21 GB/s

1283(time) 678.1 s 457.20 s 453.7 s 581.9 s 352.98 s 339.43 s

in a relatively straightforward way. The investigated CUDA-kernel is transformed into a 3-

dimensional nested loop; at each iteration of the innermost loop the same program code is

executed by each of CUDA threads. Since the initial version of the kernel does not use any

architecture-dependent features of the GPUs (such as shared memory, special instructions, etc.),

the program code can be used on NEC SX-Aurora TSUBASA architecture without any changes.

The number of iterations inside each nested loop is equal to the size of the CUDA grid in one

dimension (x, y, z), and the innermost loop corresponds to X dimension of CUDA grid. This

means that the innermost loop is used to process X-axis elements of lattice shown in Fig. 2. Since

all iterations inside each of the nested loop are independent, computations inside the loops can

be parallelized and vectorized in several different ways. NEC SX-Aurora TSUBASA architecture

does not allow efficient loading information from arrays of structures. Thus, the initial version

of the program was implemented with coordinate data structures unrolled into three separate

arrays.

The following subsections describe the most important optimizations required to obtain a

high-performance version of the TCK for NEC SX-Aurora TSUBASA vector engines. Since the

investigated computational kernel is memory-bound (as demonstrated in the previous sections for

GPUs), the sustained memory bandwidth values will be used during its performance evaluation.

The speedup achieved by implementing each of the further discussed optimizations is listed in

Tab. 7 in the end of this section.

Parallelization and vectorization of the program. When porting algorithms consisting

of multiple nested loops to vector architectures, the innermost loop is usually a subject to the

vectorization. According to the previously discussed kernel transformation, the innermost loop

processes adjacent lattice elements located in adjacent cells, which allows vector instructions to

follow a relatively efficient memory access pattern. The outer loop is parallelized using OpenMP

#pragma omp parallel for clause and schedule (static) mode for distributing iterations.

Improving memory access pattern. Since the investigated kernel is memory-bound, vector

instructions should have a specific vector-friendly memory access pattern. For the NEC SX-

Aurora TSUBASA architecture, the linear dependence between the loop iteration indexes and

the indexes of the accessed arrays is the necessary condition: all arrays indexes should be

represented as i+offset, where i is the index of the innermost (vectorized) loop. If this condition

is satisfied, then vector LOAD and STORE instructions are used, otherwise – GATHER and

SCATTER instructions, which are significantly less efficient. When vectorizing the initial version

of the kernel, memory access indexes can be represented as i∗2+tick+1, as illustrated in Fig. 2.

This pattern leads to the usage of GATHER and SCATTER instructions which significantly
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reduces the performance of the kernel. Thus, proposed in section 5.2 data-layout transformation

is required for the NEC SX-Aurora TSUBASA architecture.

Collapsing nested loops. Vectorizing only the innermost loop has a significant downside:

in the case of small lattices, vector instructions have relatively low length (16–32 compared to

the desirable value of 256, equal to the maximum vector length of NEC SX-Aurora TSUBASA

architecture), since the innermost loop does not have enough iterations to be vectorized with

instructions of maximum length. However, all three-dimensional loops can be collapsed (merged)

into a single linear loop, which typically has enough iterations for simultaneous vectorization

and parallelization. This optimization also allowed us to achieve a significant speedup as shown

in Tab. 7.

For discussed optimizations, Tab. 6 demonstrates the comparison of three important metrics:

average vector length, vector operation ratio and and last level cache hit rate. These values are

received with special tool for NEC Vector architectures called Ftrace.

Table 6. Performance metrics for different versions of the TCK, implemented for
the NEC SX-Aurora TSUBASA architecture

metric

initial

version

vectorisation

and parallelisation

improved memory

access pattern

loops

collapsed

average vector length 1 33.9 249.6 249.6

vector operation ratio 0 % 99 % 99 % 99 %

LLC error rate N/A 86 % 77 % 58 %

Using multitasking for small lattices. Despite applying loop collapse optimization, the

performance of the developed kernel on small lattices is still limited by the insufficient amount

of computational work. Thus, in such cases multitasking optimization can be implemented,

similar as for NVIDIA GPUs: different kernel runs are executed on independent vector cores

of SX-Aurora, while each kernel is vectorized, but not parallelized. However, the acceleration

obtained by this optimization is significantly lower compared to GPUs. The number of runs in

parallel affects neither the average length of a vector operation, nor the ratio of vector operations

in a kernel and LLC hit rate, so obtained values by Ftrace in Tab.6 are sufficient.

Converting precision from double to single. Same as for NVIDIA GPUs, changing the

kernel to operate with single precision instead of double allows halving the amount of data

loaded from memory during kernel execution. However, in case of NEC SX-Aurora TSUBASA,

LOAD and STORE vector instructions for double precision are capable of loading twice the

amount of data compared to single precision, in approximately the same time. This causes a

relatively low speedup when applying this optimization. As the number of elements and strategy

of loading elements from memory remains the same as for previous optimizations, we do not

need to update Tab.6 for such optimization.

The overall comparison of effects from applying different types of optimizations to the TCK

(launched on NEC SX-Aurora TSUBASA) is shown in Fig. 7.

Efficient Implementation of Liquid Crystal Simulation Software on Modern HPC...

118 Supercomputing Frontiers and Innovations



Table 7. The comparison of the sustained bandwidth(BW) and the execution time
for different versions of the TCK ported to the NEC SX-Aurora TSUBASA
architecture

lattice

size

initial

version

vectori-

sation

and paralleli-

sation

improved

memory

access

pattern

loops

collapsed

multi-

tasking

double

to float

precision

323(BW) 0.35 GB/s 38 GB/s 63 GB/s 380 GB/s 391 GB/s 506 GB/s

323(time) - 3.33 s 2.00 s 0.33 s 0.32 s 0.25 s

643(BW) 0.28 GB/s 53 GB/s 129 GB/s 537 GB/s 576 GB/s 638 GB/s

643(time) - 18.9 s 7.8 s 1.8 s 1.7 s 1.5 s

1283(BW) 0.28 GB/s 89 GB/s 249 GB/s 615 GB/s 625 GB/s 673 GB/s

1283(time) - 91.2 s 32.5 s 13.2 s 12.9 s 12.0 s

2563(BW) 0.28 GB/s 134 GB/s 395 GB/s 657 GB/s 690 GB/s 725 GB/s

2563(time) - 482 s 164 s 98 s 95 s 90 s

5.4. Porting the Typical Kernel to Intel Xeon Architecture

Developing CPU version of the TCK is important, since the performance comparison be-

tween CPUs and GPUs (or NEC SX-Aurora TSUBASA) is interesting for many researches.

Frequently, they need to understand if porting their programs or packages to new architectures

is justified. Thus, readers of our paper may be able to obtain this knowledge, in the case when

their programs are based on similar stencil schemes or mathematical algorithms, described in

sections 2–4.

The performance of the developed CPU version was evaluated on the node of Lomonosov-2

supercomputer, which is equipped with Intel Xeon Gold 6126 processors.

Since OpenMP programming model can be efficiently used for modern Intel Xeon CPUs,

the initial version of the typical computational kernel can be obtained in the same way as for the

NEC SX-Aurora TSUBASA architecture, as described in section 5.3. Thus, when porting TCK

to Intel Xeon, three-dimensional nested loop has been collapsed into one big loop, since such

transformation allows achieving better parallelization and using AVX-512 vector instructions of

Intel CPUs.

Next, we have studied what compiler shows better results for our application. We compared

classical GNU gcc compiler to the Intel compiler (icpc), using the same flags in both cases. By

choosing icpc, we managed to obtain a constant 3–4 % speedup, depending on a lattice size.

After that we studied the efficiency of OpenMP parallel instructions, applied to the investi-

gated kernel. Using Intel VTune we have investigated that the whole CPU utilization of parallel

version is 87 %, with the ratio of serial instructions below 1 %. That makes OpenMP directives

quite relevant for investigated kernel.

Furthermore, we implemented a new memory access pattern, described above. The old

version of a kernel had a small ratio of retired micro-ops (which shows the fraction of time

processor was fully utilized by useful work), while ∼80 % of micro-ops were stalled waiting for

data from DRAM (i.e., back-end bound stalls). New memory access pattern increased the ratio

of retired instructions to 45 %, making the ratio of back-end bound micro-ops equal to 17 %.

Finally, a vectorization of investigated kernel was studied. By placing #pragma simd directive

and -qoverride-limits with -qopt-zmm-usage=high compiler flags, we managed to obtain 1.5 faster

version of typical computational kernel.
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Thus, the developed CPU version demonstrates high utilization of hardware resources, is

efficiently parallelized and vectorized, and therefore in our opinion can be used for comparison

with other two evaluated platforms.

6. Comparison of the Typical Kernel Performance on Different

Architectures

After optimizing the TCK on different platforms, we cross-compared the behaviour of each

optimization on each platform. Contributions of individual optimizations on each platform are

given in Tabs. 5, 7, and sec. 5.4.

Multitasking did not lead to any significant acceleration on NEC SX-Aurora TSUBASA and

Intel Xeon architectures, since they both have only a few cores (12 and 8 respectively). It can

be efficiently occupied with calculations even by processing small lattices. Thus, multitasking

of the studied program was found to be unnecessary on these platforms. At the same time,

NVIDIA GPUs have much higher number of cores, which were hard to fully utilize without

multitasking. Thus implementation of multitasking on NVIDIA GPUs resulted in a significant

performance increase. Moreover, newer GPU microarchitecture demonstrated higher acceleration

from multitasking optimization, since the resource of hardware parallelism is constantly growing

with each generation of GPU.

Improving memory access pattern (eliminating arrays of structures and splitting the lattice)

was found to be absolutely crucial for the NEC SX-Aurora TSUBASA architecture, since using

LOAD and STORE instructions leads to 3–4 times acceleration. The same optimization is not

determinative for NVIDIA GPUs, because the initial memory access pattern provides higher

utilization of L1 cache. Still, the new memory access pattern reduces runtime of the TCK by

1.5–2 times. For Intel Xeon processors, the new memory access pattern increases the number of

retired micro-ops and thus reduced a kernel runtime by 1.5 times.

Changing precision demonstrates the highest acceleration (1.35 times) on NVIDIA GPUs,

while practically does not speed up calculations on NEC SX-Aurora TSUBASA architecture due

to the implementation details of LOAD instructions in it.

Figure 4 shows the overall comparison of the TCK performance on target platforms. These

data provide the runtime and the sustained bandwidth values for most optimized versions of the

TCK on each architecture. The sustained bandwidth values for all target architectures are pro-

portional to the theoretical peak bandwidth values. The highest bandwidth (and therefore lower

runtime) is achieved on NVIDIA V100 GPU architecture. NVIDIA RTX 2080 Ti GPU performs

slightly better than NEC on small and medium grids, but on large grids their bandwidths and

runtimes are equal. NVIDIA P100 GPU demonstrated results 15 %–40 % below NVIDIA RTX

2080 Ti GPU and NEC SX-Aurora TSUBASA. In comparison to these architectures, Intel Xeon

Gold 6126 bandwidth are strikingly lower, and runtime is larger, accordingly.

Conclusions

In this paper, we investigated and improved the computational efficiency of simulations

software for liquid crystals on various modern supercomputing architectures. The computa-

tional problem in this software belongs to the class of stochastic optimization of a functional

defined on finite space cubic lattice. Namely, the solver is based on Markov chain Monte Carlo

with Metropolis algorithm, paralleled by sparse checkerboard decomposition. The following plat-
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(a) (b)

Figure 4. The comparison of (a) runtime (in logarithmic scale) and (b) sustained bandwidth
values of the TCK on different platforms

forms were used: NVIDIA GPU (Pascal, Volta and Turing microarchitectures), NEC SX-Aurora

TSUBASA vector engines, and Intel Xeon Gold 6126 processors.

We studied and compared the efficiency of multiple optimization strategies for this software

on each platform. These included the usage of more suitable memory access patterns, implemen-

tation of multitasking for efficient utilization of massive parallelism of the platforms, improving

cache hit-rates, parallel workload balancing and several others.

As a result of the provided research, evaluated platforms can be ranked by the ability to

efficiently solve this discussed class of problems as follows: (1) NVIDIA V100 GPUs, (2) NEC

SX-Aurora TSUBASA, (3) NVIDIA RTX 2080 Ti GPUs, (4) NVIDIA P100 GPUs, (5) Intel

Xeon Gold 6126 CPUs. It should be noted that NVIDIA GPUs and NEC SX-Aurora TSUBASA

showed roughly equal efficiency and performance for this type of computational problems, while

Intel Xeon processors demonstrated significantly lower performance for it.

The optimization techniques demonstrated above are useful not only to the particular pro-

gram of liquid crystals simulations software. Instead, we believe it can be applied to a wide

range of computational problems dealing with Markov chain Monte Carlo simulations on finite

space cubic lattice, including ensemble simulations, aim search, stochastic optimization and

other techniques, aimed to solve problems in mathematics, computational physics, chemistry

and biology, economics and multidisciplinary studies.
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