
Supercomputing
Frontiers

and Innovations
2021, Vol. 8, No. 2

Scope

• Future generation supercomputer architectures

• Exascale computing

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Novel approaches to computing targeted to solve intractable problems

• Convergence of high performance computing, machine learning and big data technologies

• Distributed operating systems and virtualization for highly scalable computing

• Management, administration, and monitoring of supercomputer systems

• Mass storage systems, protocols, and allocation

• Power consumption minimization for supercomputing systems

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Scientific visualization in supercomputing environments

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA
• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany

• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• Victor Gergel, University of Nizhni Novgorod, Russia
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Andrei Tchernykh, CICESE Research Center, Mexico
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Yana Kraeva, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia

Contents

Special Issue on Advance Methods and Technologies on Vector Computing
and Data-Processing Using NEC SX-Aurora TSUBASA
H. Kobayashi, S. Momose . 4

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations
on NEC SX-Aurora TSUBASA
Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes . 6

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector
Computer
L. Solis-Vasquez, E. Focht, A. Koch . 27

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using
the SX-Aurora TSUBASA
S. Yoshida, A. Endo, H. Kaneyasu, S. Date . 43

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora
TSUBASA Vector Engine
T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller . 59

Performance and Power Analysis of a Vector Computing System
K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato, H. Kobayashi 75

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora
TSUBASA Systems
I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi . 95

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation
on a Vector Supercomputer
O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi . 114

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.

Guest Editors’ Introduction for Special Issue on

Advance Methods and Technologies on Vector Computing

and Data-Processing Using NEC SX-Aurora TSUBASA

Hiroaki Kobayashi, Tohoku University

Shintaro Momose, NEC Corporation

Contemporary high-performance computing is based on diverse architectures. Some of them

like using heterogeneous systems have become trends of nowadays, but some are not so widely

used, still providing significant advantage in a number of use cases. Vector machines are one

of those. The key principles of such systems have a long history, and some these principles

implementations could be definitely welcome to the hall of fame of supercomputing, if one

existed. This issue is devoted to the latest achievements in the field of development and using

vector machines, having a special focus on NEC SX-Aurora TSUBASA.

SX-Aurora TSUBASA is the most recent generation of NEC’s supercomputer having vector

processors. The vector processor is implemented onto a PCIe card as Vector Engine (VE) and it

works on an x86/Linux environment. The VE processor uses a combination of powerful vector

cores and high-bandwidth memory and it executes whole application code on VE with avoiding

frequent transactions between VE and X86 host processors. This allows SX-Aurora TSUBASA to

achieve high sustained performance even in applications that require high memory performance,

which significantly extends the class of problems, suitable for this architecture.

The objective of this special issue is to allow researches working with SX-Aurora TSUBASA

vector architecture to present and discuss methodologies, approaches and solutions of using the

potential of vector data processing both for the design of promising high-performance computing

systems and for development of various classes of applications. Seven papers have been selected

for this special issue.

Yuxi Hong, Hatem Ltaief, Matteo Ravasi, Laurent Gatineau, David Keyes in their work

“Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on SX-Aurora TSUB-

ASA” report on accelerating expensive operators by using Tile Low-Rank (TLR) approximations

to perform one of the most time-consuming computational kernels, i.e., the Matrix-Vector Mul-

tiplication (MVM) operation, on the NEC vector computing SX-Aurora TSUBASA hardware

solution.

Leonardo Solis-Vasquez, Erich Focht, Andreas Koch in “Porting and Optimizing Molecu-

lar Docking onto the SX-Aurora TSUBASA Vector Computer” present their methodology for

efficiently porting and optimizing AutoDock onto the SX-Aurora TSUBASA.

Shinji Yoshida, Arata Endo, Hirono Kaneyasu, Susumu Date in “First experience of accel-

erating a field-induced chiral transition simulation using the SX-Aurora TSUBASA” show how

acceleration of the FICT (field-induced chiral transition simulation) is achieved as well as how

much the efforts of users is required.

Tim Cramer, Boris Kosmynin, Simon Moll, Manoel Rmmer, Erich Focht, Matthias S. Mller

in “Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA Vec-

tor Engine” give scientific programmers new opportunities and flexibilities for the development

of scalable OpenMP offloading applications for SX-Aurora TSUBASA.

Kazuhiko Komatsu, Akito Onodera, Erich Focht, Soya Fujimoto, Yoko Isobe, Shintaro Mo-

mose, Masayuki Sato, Hiroaki Kobayashi in “Performance and Power Analysis of a Vector Com-

4 Supercomputing Frontiers and Innovations

puting System” discuss the potential through the optimization of two benchmarks, the Himeno

and HPCG benchmarks, for the latest vector computing system SX-Aurora TSUBASA.

Ilya Victorivich Afanasyev, Kazuhiko Komatsu, Hiroaki Kobayashi, Vadim Voevodin in

their paper “Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora

TSUBASA Systems” describe distributed implementations of three widely-used graph algo-

rithms: Page Rank (PR), Bellman-Ford Single Source Shortest Paths (further referred as SSSP)

and Hyperlink-Induced Topic Search (HITS), evaluating their performance and scalability on

SX-Aurora TSUBASA 8 system.

Osamu Watanabe, Kazuhiko Komatsu, Masayuki Sato, Hiroaki Kobayashi in “Optimizing

Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation on a Vector Super-

computer” give an overview of the Numerical Turbine code and characteristics of the code in

MPI parallel execution and propose a method for reducing load imbalance using hybrid paral-

lelization.

These works give a clear vision of the architecture capabilities and demonstrate some strong

use cases for real life applications. We thank authors and reviewers for their contributions to

this special issue and wish all the teams further frontier achievements in the rapidly advancing

field of high-performance computing.

We also thank Prof. Voevodin for providing us with the opportunity of this special issue and

Dr. Nikitenko for his assist to make this issue a success. We hope readers will enjoy this special

issue and find the potential of the modern vector system.

H. Kobayashi, S. Momose

2021, Vol. 8, No. 2 5

Accelerating Seismic Redatuming Using Tile Low-Rank

Approximations on NEC SX-Aurora TSUBASA

Yuxi Hong1, Hatem Ltaief1, Matteo Ravasi1, Laurent Gatineau2,

David Keyes1

c© The Authors 2021. This paper is published with open access at SuperFri.org

With the aim of imaging subsurface discontinuities, seismic data recorded at the surface of the

Earth must be numerically re-positioned inside the subsurface where reflections have originated, a

process referred to as redatuming. The recently developed Marchenko method is able to handle full-

wavefield data including multiple arrivals. A downside of this approach is that a multi-dimensional

convolution operator must be repeatedly evaluated to solve an expensive inverse problem. As such

an operator applies multiple dense matrix-vector multiplications (MVM), we identify and leverage

the data sparsity structure for each frequency matrix and propose to accelerate the MVM step

using tile low-rank (TLR) matrix approximations. We study the TLR impact on time-to-solution

for the MVM using different accuracy thresholds whilst at the same time assessing the quality of the

resulting subsurface seismic wavefields and show that TLR leads to a minimal degradation in terms

of signal-to-noise ratio on a 3D synthetic dataset. We mitigate the load imbalance overhead and

provide performance evaluation on two distributed-memory systems. Our MPI+OpenMP TLR-MVM

implementation reaches up to 3X performance speedup against the dense MVM counterpart from

NEC scientific library on 128 NEC SX-Aurora TSUBASA cards. Thanks to the second generation

of high bandwidth memory technology, it further attains up to 67X performance speedup compared

to the dense MVM from Intel MKL when running on 128 dual-socket 20-core Intel Cascade Lake

nodes with DDR4 memory. This corresponds to 110 TB/s of aggregated sustained bandwidth for

our TLR-MVM implementation, without suffering deterioration in the quality of the reconstructed

seismic wavefields.

Keywords: seismic redatuming, tile low-rank approximations, matrix-vector multiplication,

load balancing, high bandwidth memory, NEC SX-Aurora TSUBASA.

Introduction

Exploration geophysics is an applied branch of geophysics that uses several physical mea-

surements at the surface of the Earth (e.g., seismic, gravity, electromagnetic) to estimate the

physical properties of the first few kilometers of the subsurface. Originally developed with the

aim of mapping anomalies corresponding to mineral or hydrocarbon accumulations, these meth-

ods are nowadays also used in the context of geothermal exploration, carbon capture, and storage

evaluation and monitoring, as well as to assess the integrity of the near subsurface for offshore

wind farms.

Seismic reflection is a popular remote sensing technique that utilizes reflected seismic waves

to produce high-resolution images of the geological structures as well as estimates of elastic

properties of the subsurface. Its success is motivated by the fact that the waves propagating in

the subsurface and being recorded at the surface of the Earth are governed by the well known

elastic wave equation; various techniques have been developed during the years to harness the

information contained in such recordings – see [35] for a detailed treatise. With the aim of

imaging subsurface discontinuities, seismic data recorded at the surface of the Earth must be

numerically re-positioned at locations in the subsurface where reflections have originated, a

process generally referred to as redatuming by the geophysical community [7]. Historically, this

1King Abdullah University of Science and Technology, Kindom of Saudi Arabia
2NEC Deutschland GmbH, HPC Division

DOI: 10.14529/jsfi210201

6 Supercomputing Frontiers and Innovations

process has been carried out by numerically time-reversing the data recorded along an open

boundary of surface receivers into the subsurface. Despite its simplicity, such an approach is

only able to handle seismic energy from primary arrivals (i.e., waves that interact only once

with the medium discontinuities) failing to explain multi-scattering in the subsurface. As a

result, seismic images are contaminated by artificial reflectors if data are not pre-processed

prior to imaging such that multiples are removed from the data. In the last decade, a novel

family of methods has emerged under the name of Marchenko redatuming [12, 30, 33]. Such

methods allow for accurate redatuming of the full-wavefield recorded seismic data including

multiple arrivals. This is achieved by solving an inverse problem, the adjoint modeling of which

can be shown to be equivalent to the standard single-scattering redatuming method of [7].

Whilst being more accurate, this new approach calls for solution of an inverse problem that

requires repeated application of the so-called multi-dimensional convolution (MDC) operator

and its adjoint. Mostly because of the extremely expensive nature of these operators in terms

of complexity and memory footprint, the Marchenko redatuming method has not been widely

adopted by the geophysical community yet. It also shows poor scalability due to their inherent

memory-bound behavior.

In this paper, we report on accelerating these expensive operators by using Tile Low-Rank

(TLR) approximations to perform one of the most time-consuming computational kernels, i.e.,

the Matrix-Vector Multiplication (MVM) operation, on the NEC vector computing SX-Aurora

TSUBASA hardware solution. In fact, MVM is the workhorse of Marchenko redatuming for

seismic imaging since it is repeatedly applied for hundreds of frequencies at each step of the iter-

ative process. Instead of operating the MVM on the original dense data structure, our numerical

technique consists in (1) splitting it into tiles with elements contiguously stored in memory,

(2) compressing the tile matrix using TLR approximations (e.g., using randomized SVD [21])

up to an application-dependent accuracy threshold, and (3) performing the MVM directly on the

compressed TLR data storage. This translates into a reduction of the number of floating-point

operations, while further saving memory footprint. The latter is especially critical when working

with large 3D seismic datasets. This TLR algorithmic redesign of the MVM introduces load

imbalance when processing low and high frequencies that does not occur with the traditional

dense MVM. Indeed, TLR matrices associated with high frequencies reveal higher ranks than

those from low frequencies. We design and implement a load balancing technique to map process-

ing units into frequencies so that the overall application’s idle time is limited. Our MPI+OpenMP

TLR-MVM implementation saturates the second generation of high bandwidth memory (HBM2)

from the SX-Aurora TSUBASA cards and maintains a decent scalability when increasing the

number of vector engines. We assess the accuracy of TLR-MVM and demonstrate its numer-

ical robustness on representative 3D seismic datasets. We benchmark our TLR-MVM on two

distributed-memory systems. It reaches up to 3X performance speedup against the dense MVM

counterpart from NEC scientific library on 128 NEC SX-Aurora TSUBASA cards. Thanks to

HBM2, it further attains up to 67X performance speedup in time compared to the dense MVM

from Intel MKL (i.e., the CGEMV kernel) when running on 128 dual-socket 20-core Intel Cas-

cade Lake nodes with DDR4 memory. This corresponds to 110 TB/s of aggregated sustained

bandwidth for our TLR-MVM implementation.

The contributions of this paper are as follows. We democratize the Marchenko redatuming

method for seismic imaging simulations by integrating TLR-MVM as the core computational

engine for solving the inverse problem. We conduct performance profiling of our TLR-MVM code

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 7

using NEC Ftrace profiler tool and identify hot spots and room for improvement. In particular,

we mitigate the load imbalance engendered by TLR-MVM when operating matrices from several

frequencies in an embarrassingly parallel fashion. We highlight the performance advantage of

TLR-MVM over the traditional dense MVM on Intel x86 and NEC vector computing hardware

solution, without suffering deterioration in the image quality. We evaluate our implementation

using the roofline model [34] and show how TLR-MVM is able to leverage HBM2 technology.

The remainder of the paper is as follows. Section 1 presents related work on low-rank matrix

approximations. Section 2 describes the seismic Marchenko redatuming method. Section 3 recalls

the general TLR-MVM algorithm. Section 4 provides implementation details of multiple inlined

TLR-MVM calls and introduces the necessary load balancing strategies. Section 5 shows the TLR

impact on numerical accuracy using proxy 3D seismic datasets. Section 6 reports on performance

analysis and experimental results of TLR-MVM on two distributed-memory systems composed

of x86 and vector computing architectures. Section 7 discusses potential future work along this

herein research direction, and we conclude in Section 7.

1. Related Work

Low-rank matrix approximation is a class of algebraic compression methods, that permits to

exploit the data sparsity of large matrices. This becomes critical when performing linear algebra

operations on these large operators since the algorithmic complexity and the memory footprint

can be reduced [9, 18].

While the literature is rich in the theory of low-rank approximations, e.g., hierarchical

matrix (H-matrix) low-rank format [17, 20], supporting weak [16, 31] and strong [8] admissibility,

or flat tile low-rank (TLR) matrix approximations [5], there exist only a few works on HPC

implementations targeting x86 [2–4, 13, 24] and GPU hardware accelerators [10, 14, 23].

For instance, in the context of wave-equation-based seismic processing methods, the esti-

mation of primaries by sparse inversion [22] (EPSI) suggests that low-rank approximations of

the integral operators may be utilized to reduce the storage and computation cost of the MVM.

This work is however only applied as a proof-of-concept to 2D datasets using the Hierarchical

Semi-Separable (HSS) compression data format. While HSS provides linear complexity, it may

face challenges in compressing 3D datasets resulting in an increase of the arithmetic complexity.

Moreover, one of the main reasons that slows down the wide adoption of low-rank approxi-

mations in scientific applications on current petascale supercomputers is the lack of support for

advanced numerical kernels from the vendor numerical libraries. Indeed, H-matrix computations

require the development of new kernels that are versatile enough to effectively support a range of

arithmetic intensity, while exhibiting low overheads during kernel launch. On the contrary, flat

TLR matrix approximations is a pragmatic approach, which represents a compromise between

algorithmic complexity and software development/deployment on emerging HPC platforms.

Referred as batched matrix operations [1, 10, 15], the idea behind these advanced numerical

kernels is to simultaneously execute many linear algebra kernels accessing different matrices

so that one may achieve high hardware occupancy. While the support from optimized vendor

libraries has improved over the last few years, developers may still have to implement their own

kernels (e.g., on GPUs) or simply fall back to the OpenMP for loop pragma to execute kernels in

batched mode. The former raises concerns on software sustainability while the latter may not

extract performance of the underlying hardware architecture.

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

8 Supercomputing Frontiers and Innovations

The authors in [26] have introduced the algorithm of a single TLR-MVM to enhance real-

time performance when identifying the atmospheric turbulence for ground-based telescopes.

Based on batched MVM, their TLR-MVM implementations rely on OpenMP due to standard-

ization constraints required in the computational astronomy community for code sustainability

and portability purposes. Performance results have been reported on several cutting-edge archi-

tectures.

In this paper, we extend this previous work [26] to process multiple TLR-MVM (i.e., a batch

of batched MVM) required by the seismic redatuming method and deploy the application to

distributed-memory systems equipped with x86 nodes and vector computing engines. Given the

few but strong cores (i.e., eight cores) on NEC SX-Aurora TSUBASA cards compared to x86

architectures, NEC hardware solution makes up the low core count with vectorizations and high

bandwidth memory (HBM2) to achieve high performance. This is quite different than GPU

architectures that promote massive parallelism via the single instruction, multiple data (SIMD)

paradigm. Therefore, porting on NEC vector engines represents a similar effort than deploying

on x86, i.e., with high user productivity, with the favorable exception that HBM2 may provide

a significant performance boost to memory-bound kernels compared to x86’s DDR4 memory

technology. And to further maximize performance on NEC vector engines, it is also paramount

to fully utilize the vector units. All in all, the hardware design of NEC SX-Aurora TSUBASA

cards facilitates the deployment of these advanced numerical kernels, which intrinsically drives

the performance of low-rank matrix approximations.

To our knowledge, this is the first time TLR-MVM is successfully applied to 3D datasets

using NEC vector computing hardware solutions in the context of seismic redatuming.

2. Seismic Redatuming

Seismic redatuming is the process of numerically re-positioning seismic data physically

recorded at the surface of the Earth to any location of interest in the subsurface. Whilst his-

torically able to target only so-called primary arrivals in the recorded data, recent theoretical

advances have led to the creation of so-called Marchenko redatuming, which is capable of han-

dling full-wavefield seismic data including any order and type of internal scattering. This entails

an inverse problem to be solved that can be expressed concisely as the following system of

equations [27]:

[
ΘRf+d

0

]
=

[
I −ΘR

−ΘR∗ I

][
f−

f+m

]
, (1)

where R and R∗ are so-called convolution and correlation integral operators, Θ is a time-

space window, I is the identity operator, f− and f+m are the up-going and the coda of the

down-going focusing functions to invert for, and f+d on the left-hand side of Eq. 1 is the direct

component of the down-going focusing function that can be obtained by numerical modelling in

a reference velocity medium. Finally, the overall down-going focusing function can be created

as f+ = f+d + f+m. For simplicity, Eq. 1 can be written compactly as d = Mf , where d, f and M

are the overall data, model, and Marchenko operator of the problem we wish to solve.

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 9

Once the focusing functions are retrieved, the up- and down-going separated Green’s func-

tions g− and g+ can be computed to be evaluating the following equations:

[
−g−
g+∗

]
=

[
I −R
−R∗ I

][
f−

f+

]
. (2)

Note that due to the extremely large size of these matrices, whilst the problem is written

in a compact matrix-vector formulation, its numerical solution is performed using matrix-free

operators and iterative solvers such as conjugate gradient least-squares (CGLS) or LSQR [29].

Focusing now our attention on the multi-dimensional convolution (MDC) integral operator,

which represents the most expensive computations in the overall chain of operations, its inner

working can be written more explicitly as follows:

y = Rx : y(t,xB,xA) = F−1ωmax

(∫

δD
R(ω,xB,xR)Fωmax

(x(t,xR,xA))dxR

)
. (3)

Similarly, the adjoint of such an operator can be written as:

x = RHy : x(t,xR,xA) = F−1ωmax

(∫

δD
R∗(ω,xB,xR)Fωmax

(y(t,xB,xA))dxB

)
, (4)

where F and F−1 represent the forward and inverse Fourier transforms, ω is the angular fre-

quency, xA, xB and xR represent spatial locations with the latter two spanning the integration

domain δD. ωmax is used to indicate that the output of the forward Fourier transform is truncated

to contain only frequencies where the signal spectrum resides. Finally, R(ω,xB,xR) represents

the kernel of the integral operator in the frequency-space domain and can be created upfront

by applying the Fourier transform along the time axis of the physically recorded seismic data

R(t,xB,xR). Moreover, once the spatial integral is discretized, the kernel simply becomes a

stack of matrices (one for each frequency ω within the specified frequency spectrum of the seis-

mic data) and the integral can be interpreted as a batched matrix-vector multiplication (MVM)

operations. This is true for both the forward and adjoint computations, with the main difference

that the latter requires such matrices to be transposed and complex conjugated. Finally, in order

to validate our statement that the operators R and RH represent the most expensive compu-

tations in the solution of the inverse problem in Eq. 1, a single iteration of CGLS is evaluated

and the overall computational time is divided into atomic contributions (Fig. 1). A single-node

implementation of the Marchenko redatuming equations is used in this example as provided by

the PyLops framework for large-scale inverse problem [28]. More specifically, since an iteration

of CGLS requires the application of both a forward (M) and adjoint (MH) passes, we observe

that almost ninety percent of the time is spent on evaluating the R (and R∗) and their adjoints,

while the remaining time percent of the time is roughly split between other computations in-

volved in the M operator and vector-vector operations in the CGLS step. Finally, we observe

here a slight time difference in the computation of the forward and adjoint passes; this results

from the transposition of the matrix stack in the adjoint step. Moreover, complex conjugation

must be performed on each element of the kernel. In practice, as explained in more detail in [29],

complex conjugation is applied to the input and output vectors, which are much smaller than

the kernel, so the kernel itself is not transposed. Nevertheless, since the matrices in the stack are

stored in a row-major order in main memory, the timing of the forward step is more favourable.

Alongside with advances in processing algorithms, the size and scale of seismic surveys

have increased since the late 20th century. Nowadays, large-scale high-resolution 3D surveys

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

10 Supercomputing Frontiers and Innovations

Figure 1. Task profiling for a single iteration of CGLS during the solution of the inverse problem
in Eq. 1

are routinely acquired where the recorded data can easily be on the order of several Terabytes.

Recently, the implementation of the 3D Marchenko equations has been discussed in [29] and [11].

In both cases, special attention has been placed on the implementation of the integral operator

and the handling of kernels that cannot directly fit in the main memory of single compute node.

In the former approach, the embarrassingly parallel nature of the batched MVM is leveraged by

reading different frequency batches in the main memory of multiple compute nodes only once

prior, to solving the inverse problem in Eq. 1. The latter approach, on the other hand, utilizes

the ZFP-based compression algorithm of [25] to reduce the size of the reflection response to be

stored on disk and the read-in time to memory. Authors report a compression factor of four

for this lossless compression when applied to their frequency-space reflection seismic data. In

fact, even when the data is compressed, on-the-fly decompression is still required to be able to

perform the computations in Eqs. 3 and 4. In both implementations, however, no attempt is

made to expedite the dense MVM required in both the forward and adjoint processes.

Whilst the redatuming Eq. 1 is relatively new to the field of geophysics, integral operators

of the kind of R (Eq. 3) and RH (Eq. 4) are common to a number of other wave-equation-

based seismic processing methods, such as surface-related multiple elimination (SRME – [32]),

estimation of primaries by sparse inversion (EPSI – [19]), and up/down deconvolution [6] just to

name a few. This work may therefore have a broader impact beyond the Marchenko redatuming

technique.

3. Background on TLR-MVM

We briefly recall here the algorithmic design of the tile low-rank matrix-vector multiplica-

tion (TLR-MVM) kernel [26]. While the traditional dense MVM stores the matrix elements in

column-major data layout format, TLR-MVM first splits the dense matrix into tiles in which

elements are now contiguous in memory. This tiling technique is important in terms of memory

access as it shortens the strided memory access to better fit in the high levels of the mem-

ory subsystem. Once the tile matrix data structure is constructed, TLR-MVM compresses each

dense tile in an embarrassingly parallel fashion using an algebraic method of choice (e.g., rank-

revealing QR, randomized SVD, etc.). The numerical lossy compression depends on the accuracy

threshold required by the application to sustain its numerical robustness.

Figure 2 represents the TLR-MVM operation A× x = y, with A ∈ Rm×n, x ∈ Rn, y ∈ Rm.

The matrix A is split into 6-by-7 tiles with a tunable tile size parameter nb. After compression

using the accuracy threshold ε, each tile is decomposed into U and V bases containing the

k most significant singular values Σi,j and their associated singular vectors, as defined by the

following formula based on the Frobenius norm: ||Ai,j − U εi,jΣε
i,jV

Tε
i,j ||F ≤ ε||A||F . The selected

singular values Σi,j may be absorbed by one of the bases after applying corresponding scaling

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 11

Figure 2. TLR-MVM data structure

operations, which facilitates the MVM implementation. Once compressed, the tiles may have

different ranks k, which may create load imbalance situations.

Moreover, Level-2 BLAS MVM kernels are inherently memory-bound and their performance

solely depends on the memory bandwidth. Therefore, it is critical to optimized memory access

to avoid additional data motion between main memory and the last-level cache. While tiling

technique helps for the traditional dense MVM, TLR-MVM ends up dealing with several new

compressed U and V data structures that may not be stored contiguously in memory. As intro-

duced in [26], we stack the U bases together and the V bases together and design a new MVM

algorithm that leverages the TLR data structure.

The actual TLR-MVM operation can then proceed with the following three successive com-

putational phases: (1) we multiply the stacked V bases to the vector x, (2) we project the result

from phase 1 to the V bases, and (3) we multiply the stacked U bases with the result from the

reshuffling phase 2 and compute the final result vector y.

In this paper, we extend the real precision arithmetic used for computational astronomy [26]

to complex precision arithmetic in order to support seismic imaging applications. Furthermore,

we implement a driver to launch several TLR-MVM kernels, i.e., one for each frequency ω,

coming from the discretization of the spatial integral R(ω,xB,xR) (see Section 2), as explained

in the next section.

4. Launching Multiple TLR-MVM Kernels for Seismic

Redatuming

In this section, we describe the implementation of a driver that launches multiple TLR-

MVM kernels to support the workload of seismic redatuming. We first identify the challenges

introduced by TLR-MVM on 3D seismic datasets and propose optimization techniques to address

them.

4.1. Challenges with 3D Seismic Datasets

The 3D seismic dataset used in this study contain stacked matrices for 150 frequencies. This

is representative of the workload of seismic redatuming, although the number of frequencies may

be further increased to include higher frequencies to produce seismic wavefields and images of

higher resolution. The size of each matrix is m = n = 9801. The matrices considered herein

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

12 Supercomputing Frontiers and Innovations

0 20 40 60 80 100 120 140
Rank

0

100

200

300

400

500

600

700

800
Oc

cu
re

nc
es

Frequency 0
Frequency 50
Frequency 100
Frequency 149
Half of nb: 128

(a) Rank distribution

0 30 60 90 120 150
Frequencies

103

104

105

106

To
ta
l R

an
k
Su

m

Total Rank Sum
linear curve

(b) Rank summation for each frequency matrix

Figure 3. Rank analysis of the 3D seismic dataset using nb = 256 and ε = 0.001

are square, but rectangular matrices are also supported. The relationship between the frequency

index Fi and the value of the frequency is given by fFi
= i

dtnt
, where dt = 0.0025 and nt = 1201.

Figure 3 shows the rank analysis of the 3D seismic datasets. In particular, Fig. 3a highlights

the rank distribution of Fi matrices for i = 0, 50, 100 and 149. We set nb = 256 and ε = 0.001.

As expected, the figure captures how the rank distribution shifts to the right with higher ranks

for matrices corresponding to higher frequency components of the data. The red vertical line

in Fig. 3b shows the rank limit nb/2 = 128. If the rank distribution goes beyond this red line,

the accumulated sizes of the bases for a single tile will be higher than the size of the original

dense tile. On the contrary, if the rank distribution stays on the left of the red line, as pictured

in Fig. 3a, TLR-MVM remains competitive compared to dense MVM. Figure 3b reports the

summation for all ranks for a given frequency matrix. The total rank summation is a good metric

to evaluate the algorithmic complexity. We observe an increase in rank for higher frequencies,

which corroborates the analysis of the rank distribution in Fig. 3a. For this particular 3D seismic

dataset, we can observe from Fig. 3b that the log-scale of the number of floating-point operations

(FLOPS) of TLR-MVM has a near-linear relationship with the frequency matrix index. This

relationship provides insights on how to orchestrate the TLR-MVM scheduling for all frequencies,

given the workload heterogeneity. It is now clear that one of the main challenges is the load

imbalance introduced by TLR-MVM within and across all frequency matrices, compared to

the homogeneous dense MVM. We implement two optimizations techniques and present their

corresponding pseudo-codes in Fig. 4. The codes are written in C and rely on MPI+OpenMP

programming models.

We address in subsequent sections how these techniques mitigate the load imbalance over-

head.

4.2. Merge-Phase Strategy for Intra-Node Load Balancing

Figure 4a pictures the Merge-Phase strategy (in orange color) proposed for our TLR-MVM

reference implementation (in blue color).

The Merge-Phase strategy is designed to achieve intra-node load balancing by evenly dis-

tributing the computation on each thread (or processing units). Processing a collection of fre-

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 13

quencies F is not performed one by one anymore. Instead, the strategy fuses each individual

phase across all frequencies. This increases the workload per OpenMP loops within each phase,

engenders a larger amount of computational tasks, and reduces the scheduling overheads. The

default static scheduling mode of operation may increase data locality, especially when dealing

with small datasets. For large datasets, static scheduling may lose its performance advantage

and may create idle time while work is available. We further enable the OpenMP dynamic schedul-

ing so that the runtime has opportunities to prevent idle time situations by scheduling tasks

as soon as they enter ready state. While this strategy alleviates the intra-node load imbalance

bottleneck, the inter-node load imbalance remains an issue, as observed in Fig. 3b.

(a) The Merge-Phase strategy

(b) The ZigZag mapping strategy using eight

vector engines (VE) and 150 frequency matrices

Fi with i = 0 , ... , 149

Figure 4. Pseudo-codes of the Merge-Phase and the ZigZag mapping strategy

4.3. ZigZag Mapping Strategy for Inter-Node Load Balancing

To leverage performance on distributed-memory systems, we evenly allocate frequency ma-

trices across computational nodes. Dynamic load balancing on distributed-memory systems is a

challenging approach that may require data movement to compensate the for the idle time. How-

ever, we have identified some relationship between the frequency index and the corresponding

FLOPS, as explained in Section 4.1. The ZigZag mapping strategy is used to achieve inter-node

load balancing. We design the ZigZag mapping strategy to statically map frequencies to pro-

cessing units and achieve inter-node load balancing. Figure 4b highlights the ZigZag pattern for

frequency mapping using 150 frequencies on eight Vector Engines (VE).

In the first sweep of VEs, we map the frequencies in increasing index order. We continue

mapping the next set of frequencies in decreasing index order for the VEs. We repeat the above

ZigZag pattern until all frequencies are mapped to the VEs. This strategy has several advantages.

Not only does it exploit the linear relationship between frequency index and FLOPS, it also bal-

ances the memory footprint per VE. For instance, given that the on-chip memory capacity is

limited to 48 GB on NEC VEs, the ZigZag mapping strategy allows to scale memory-intensive

applications. Furthermore, this mapping is performed offline and does not incur runtime over-

heads. Although it is important to mention that this linear relationship may not be characteristic

of all seismic datasets. Network interconnect congestions may even further exacerbate the load

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

14 Supercomputing Frontiers and Innovations

imbalance even if the load is properly distributed. Therefore, we believe dynamic load balancing

is an interesting research direction and we leave it as future work.

4.4. Algorithmic Complexity and Code Balance

As discussed in [26], the number of floating-point operations (FLOPS) of the dense MVM

is 2mn and the memory bandwidth can be calculated as B(mn+n+m)
t , with B(W) the number of

bytes of W elements (stored in single complex precision) and t the execution time. The FLOPS

and memory bandwidth of TLR-MVM are 4K × nb and B(2K×nb+4K+m+n)
t , respectively, with

K the sum of the ranks across all tiles of any single frequency matrix (see Fig. 2) and nb the

tile size.

In seismic application, suppose there are F frequency matrices, the overall FLOPS and

memory bandwidth of dense MVM is F × 2mn and F × B(mn+n+m)
t , respectively. The overall

FLOPS and memory bandwidth of TLR-MVM for all frequency matrices F is 4KF × nb and
B(2KF×nb+4KF+m+n)

t , where KF is the sum of all ranks across all frequencies. According to the

FLOPS calculation of TLR-MVM, the rank sum K of the frequency matrix plays an important

role. If the rank sum K is not large enough, the algorithm may not saturate the memory

bandwidth due to a suboptimal hardware occupancy.

5. Numerical Accuracy Assessment

0 2000 4000 6000 8000

0

2000

4000

6000

8000

(a)

0 100 200 300

0

100

200

300

(b)

0 100 200 300

0

100

200

300

(c)

Figure 5. (a) Original Matrix of reflection response frequency slice at 33 Hz (R(ω =
33Hz,xB,xR), Insert is zoomed-in version on the first 400 rows and columns (b) and (c) show
the same zoomed-in version of TLR compression error in (a), nb is tile size, ε is accuracy

To begin with, we consider the same synthetic geological model used in [29] (their Fig. 3)

and compare the reconstruction of the total Green’s function g = g+ + g− obtained using the

original R kernel and the TLR compressed R kernel with different combinations of tile size and

accuracy. The observation that seismic data in the frequency domain can be compressed in a

low-rank form is not surprising when considering the form of matrices representing seismic data

in the frequency domain as shown in Fig. 5a. Such a matrix represents the seismic data at a

single frequency (f = 33 Hz) with sources placed along the rows and receivers along with the

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 15

columns. In other words, the element i, j of this complex-valued matrix contains the frequency

at 33 Hz coefficient of the seismic recording at i− th source and j − th receiver. Looking at the

insert in Fig. 5a, we can see how the entire matrix is composed of smaller diagonally dominant

submatrices. This is due to the fact that we are dealing with 3D seismic data and each submatrix

represents the responses of a single source line to a single receiver line. Moving from one source

line to the next leads to the block pattern of this matrix in the row space, whilst moving from

one receiver line to the next leads to the block pattern in the column space. Another important

observation that was made by [22] is that within the available seismic bandwidth, kernel matrices

at higher frequencies are of higher rank, i.e., require more basis functions to be approximated

at the selected accuracy. Whilst not discussed by the authors in [22], this imbalance in the rank

of the different matrices inevitably leads to a load imbalance in the computation of the batch

matrix-vector multiplications (MVM), as explained in Section 4.1. The effect of solving the

inverse problem in Eq. 1 using different TLR compressed R kernels is presented in Fig. 6. More

specifically, Fig. 6a shows the reconstructed Green’s function along eight different receiver lines,

as shown in the insert using the original uncompressed reflection response. Such an estimate has

been shown in [29] to be very accurate and is used here as our benchmark. Figures 6b-d show

the reconstructed Green’s function using TLR-MVM with different compression parameters. We

choose nb = 256, ε = 0.001, 0.005, 0.01. Figure 6e shows element-wise absolute value difference

between Fig. 6a and Fig. 6b. Figure 6f is 10× of the value in Fig. 6e. Figures 6g-h are also

10× the element-wise absolute value difference with Fig. 6a using corresponding compression

parameters.

We use Signal-to-Noise Ratio (SNR) to quantify the error shown in Fig. 6. The formula is

SNR = −20 ∗ log10
‖Rorg−Rapprox‖2
‖Rapprox‖2 : the larger the SNR, the better the approximation.

0.0

0.2

0.4

0.6

0.8

1.0

t

(a) Original

t

(b) TLR com pressed
(nb= 256, �= 0.001)

t

(c) TLR com pressed
(nb= 256, �= 0.005)

t

(d) TLR com pressed
(nb= 256, �= 0.01)

0 200 400 600 800

xR

0.0

0.2

0.4

0.6

0.8

1.0

(e) Com pression error
(nb= 256, �= 0.001)

0 200 400 600 800

xR

(f) Com pression error x10 clip
(nb= 256, �= 0.001)

0 200 400 600 800

xR

(g) Com pression error x10 clip
(nb= 256, �= 0.005)

0 200 400 600 800

xR

(h) Com pression error x10 clip
(nb= 256, �= 0.01)

Figure 6. Green’s function estimates (t2 gain applied to all panels), with nb tile size and ε the
accuracy threshold

Next, we investigate the impact of compression on the SNR for various tile sizes and accuracy

thresholds, as shown in Fig. 7a. We compute the ratio between the FLOPS executed by dense

MVM versus TLR-MVM. This ratio of FLOPS savings corresponds to how much fewer FLOPS

are performed by TLR-MVM compared to dense MVM. For instance, TLR-MVM achieves an

SNR around 30 while performing 2.4 fewer FLOPS than dense MVM when using nb = 128 and

ε = 0.001. We use colormap to show the corresponding SNR value. There is a general trend

that one needs a more restrictive accuracy threshold in cases with smaller tile sizes. Figure 7b

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

16 Supercomputing Frontiers and Innovations

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
FLOPS Saving

0

10

20

30

40

50

Si
gn

al
-to

-N
oi
se
 R
at
io
 (S

NR
)

Threshold SNR

nb=512
nb=256
nb=128

(b)

Figure 7. (a) Heat map plot of Signal-to-Noise Ratio (SNR), against tile size nb, accuracy
threshold ε, and FLOPS saving (b) Line plot of SNR versus FLOPS savings for different tile
sizes

shows the relationship of FLOPS savings with SNR. We choose a threshold SNR value of 40

that satisfies the quality requirement of the application. We observe two sets of compression

parameters (nb = 256, ε = 0.001 and nb = 512, ε = 0.001), which satisfy this requirement.

Indeed, under these two compression parameters, TLR-MVM algorithm does not affect the final

image quality.

Once we complete the assessment on the numerical accuracy with the identification of this

couple of sets of parameters, we can now study their impact on performance with the hardware

systems studied in this paper.

6. Experimental Results

This section reports the performance results of our TLR-MVM implementation, compares

it against dense MVM, and highlights the impact of the optimization techniques introduced in

Sections 4.2 and 4.3.

6.1. Environment and Compilation Settings

The experiments are carried out on two x86 systems. The first system is a 16-node NEC

B300-8 cluster, where each node is equipped with 8 NEC SX-Aurora TSUBASA-20B Vector

Engines (VE). The memory capacity of each VE is 48GB. The second system is a single x86

node with a dual-socket 20-core Intel Cascade Lake. We refer to this shared-memory node to

CSL in the subsequent sections. The memory capacity of the Intel server is 350 GB. The OS

of both systems is Linux RedHat 7.7. We use OpenMPI as the MPI implementation. For the

NEC server, we use NEC Compilers tools to compile the code and rely on the NEC Numeric

Library Collection for the vendor optimized BLAS implementation. For the Intel server, we use

Intel Parallel Studio 2019 to compile the code and link it against Intel Math Kernel Library for

the vendor optimized BLAS implementation. We use -fopenmp -O3 for both compilations. To

analyze the performance results, we rely on NEC Ftrace profile analysis tool. All experiments

are run in single complex precision arithmetics.

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 17

6.2. Performance Results on Synthetic Datasets

CSL VE
0

250

500

750

1000

1250

1500

1750

2000

Ti
m
e
(m

icr
o
se
co
nd

s)

Best nb
nb=128
nb=256
nb=512

(a) Time to solution

CSL VE
0

200

400

600

800

1000

1200

1400

Su
st
ai
ne
d
Ba
nd
wi
dt
h
(G
B/
s)

232 GB/s

1230 GB/sSTREAM Benchmark
nb=128
nb=256
nb=512

(b) Memory bandwidth

CSL VE
0

1000

2000

3000

4000

5000

Ti
m

e
(m

icr
o

se
co

nd
s)

8.94x

15401

1.58x

Dense MVM
TLR-MVM Phase 1
TLR-MVM Phase 2
TLR-MVM Phase 3

(c) Time breakdown

Figure 8. Performance analysis of TLR-MVM on synthetic datasets

We first study TLR-MVM on synthetic datasets to demonstrate the robustness and software

capabilities of our TLR-MVM implementation. We randomly generate U and V bases in single

complex precision. Without loss of generality, we employ square matrices with m = n = 10000

because it is closer to the real seismic datasets. The rank k is set to nb/4 and is constant across

all tiles. This specific rank translates into a theoretical FLOPS saving factor of 2, i.e., TLR-

MVM performs twice fewer FLOPS than dense MVM. Figures 8a and 8b show the time to

solution and memory bandwidth using the synthetic datasets, respectively, on the single Intel

CSL node and one NEC VE. We test three tile sizes, i.e., nb = 128, 256, 512. We also show

the memory bandwidth obtained by STREAM Benchmark. This is the upper limit of sustained

memory bandwidth from DDR4 memory (i.e., Intel CSL) and HBM2 (i.e., NEC VE). For Intel

CSL, we run one MPI process per socket with 20 OpenMP threads. For the single NEC VE, we

run one MPI process with 8 OpenMP threads. We see that a single NEC VE is much faster than

Intel CSL thanks to HBM2 technology with up to 85 % of bandwidth saturation. On NEC VE,

the configuration with the best time / bandwidth (annotated with a star) runs in less than

375 micro seconds and exceeds 1 TB/s.

Figure 8c shows the time breakdown of the three phases in TLR-MVM on Intel CSL and

one NEC VE. As expected, the computational phases 1 and 3 are the most time-consuming with

the batched MVM capturing most of the elapsed time. We also compare TLR-MVM with dense

MVM, as implemented in the Level-2 BLAS CGEMV kernel in the vendor optimized libraries.

TLR-MVM reaches 8.94 and 1.58 performance speedups compared to dense MVM on Intel CSL

and one NEC VE, respectively. Compared to the theoretical FLOPS saving factor of 2, our

TLR-MVM implementation gets higher performance speedup on Intel CSL thanks to a full

saturation of the memory bandwidth. The dense MVM implementation from Intel MKL may

not saturate the bandwidth enough and it seems to be poorly optimized. On the NEC VE card,

our TLR-MVM implementation achieves less performance speedup when compared against the

dense vectorized MVM from NEC NLC. As shown in Fig. 8b, there may still be some room for

improvement for our TLR-MVM implementation in further saturating the main memory.

6.3. Performance Results on 3D Seismic Datasets

In this section, we run against 3D seismic datasets and conduct experiments using 150 fre-

quencies. Each frequency matrix is of size 9801×9801. As identified in Section 5, we use nb = 256

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

18 Supercomputing Frontiers and Innovations

and ε = 0.001 to compress the dense matrix into a tile low-rank (TLR) matrix, while delivering

application’s accuracy and performance on the NEC VE-based system.

6.3.1. Performance analysis over all frequencies

Figure 9a compares the time to solution for each frequency matrix on Intel CSL and NEC

VE systems when running the dense MVM and TLR-MVM. The time for dense MVM is con-

stant across all frequencies on both systems. However, the time for TLR-MVM increases with

the frequency index. This trend confirms the outcome of the rank statistics analysis made in

Section 4.1, where the ranks (i.e., the workloads) grow with the index of the frequency matrix.

For high frequencies, TLR-MVM on NEC VE outperforms its counterpart on Intel CSL by up to

a factor 4, which is aligned with results on synthetic datasets from Section 6.2. Figure 9b shows

the same performance analysis but with the sustained bandwidth obtained for each frequency

matrix on the two systems. The TLR-MVM bandwidth increases with the frequency index and

achieves more than 1 TB/s for high frequencies. On Intel CSL, the dense MVM implemented

in CGEMV kernel from MKL shows limited sustained bandwidth while TLR-MVM on the same

system is able to saturate the bandwidth, as already demonstrated for synthetic datasets in

Section 6.2. However, there is a clear load imbalance issue when looking at all frequencies and

their respective makespan.

0 30 60 90 120 150
Frequencies

101

102

103

104

105

Ti
m
e
(m

icr
o
se

co
nd

s)

Intel CSL TLR-MVM
NEC VE TLR-MVM
Intel CSL Dense MVM
NEC VE Dense MVM

(a) Load imbalance in time

0 30 60 90 120 150
Frequencies

0

250

500

750

1000

1250

1500

1750

2000

Su
st

ai
ne

d
Ba

nd
wi

dt
h
(G

B/
s)

Intel CSL TLR-MVM
NEC VE TLR-MVM
Intel CSL Dense MVM
NEC VE Dense MVM

(b) Load imbalance in bandwidth

Figure 9. Performance analysis (time and bandwidth) for all frequency matrices (stored in dense
and TLR) on Intel CSL and NEC VE systems, using nb = 256 and ε = 0.001 for compression

6.3.2. Performance impact of optimization techniques

In this section, we assess the performance impact of the two previously introduced opti-

mization techniques from Sections 4.2 and 4.3. We investigate four scenarios to solve the load

imbalance issue: the reference TLR-MVM, the Merge-Phase TLR-MVM, the reference TLR-

MVM with ZigZag mapping strategy and the Merge-Phase TLR-MVM with ZigZag mapping

strategy. We conduct experiments on the 3D seismic dataset with 150 frequencies on 8 NEC

VEs. We use NEC Ftrace analysis to get the FLOPS count of each OpenMP thread to illustrate

how the various strategies can mitigate the load imbalance overhead. The default mode of NEC

Ftrace is Vector Operation profiling. We need to set the environment variable VE PERF MODE

to VECTOR-MEM to get the FLOPS count. Figure 10 reports the FLOPS count of each thread

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 19

for the aforementioned scenarios. Figure 10b shows how the Merge-Phase strategy improves the

load balancing among threads within each VE. Figure 10c highlights how the ZigZag mapping

strategy further distributes evenly the workload between NEC VE cards. Figure 10d pictures

the performance impact when both strategies are activated. It permits to achieve inter-node and

intra-node load balancing. It is also noteworthy to mention that the workload among threads

0 1 2 3 4 5 6 7
VE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FL
OP

 C
ou

nt

1e11
VE 0, 8 threads
VE 1, 8 threads
VE 2, 8 threads
VE 3, 8 threads

VE 4, 8 threads
VE 5, 8 threads
VE 6, 8 threads
VE 7, 8 threads

(a) Reference

0 1 2 3 4 5 6 7
VE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FL
OP

 C
ou

nt

1e11
VE 0, 8 threads
VE 1, 8 threads
VE 2, 8 threads
VE 3, 8 threads

VE 4, 8 threads
VE 5, 8 threads
VE 6, 8 threads
VE 7, 8 threads

(b) Merge-Phase

0 1 2 3 4 5 6 7
VE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FL
OP

 C
ou

nt

1e11
VE 0, 8 threads
VE 1, 8 threads
VE 2, 8 threads
VE 3, 8 threads

VE 4, 8 threads
VE 5, 8 threads
VE 6, 8 threads
VE 7, 8 threads

(c) ZigZag mapping

0 1 2 3 4 5 6 7
VE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FL
OP

 C
ou

nt

1e11
VE 0, 8 threads
VE 1, 8 threads
VE 2, 8 threads
VE 3, 8 threads

VE 4, 8 threads
VE 5, 8 threads
VE 6, 8 threads
VE 7, 8 threads

(d) both (b) and (c)

Figure 10. FLOPS count of different load balancing optimization technique for all threads when
running against 150 frequencies using 8 VEs, (d) uses both Merge-Phase and ZigZag Mapping
optimization

from VE 0 to VE 5 is higher than VE 6 and 7. This is because the number of frequencies (i.e.,

150) is not divisible by the number of VEs (i.e., 8). Therefore, the first 6 VEs end up having

one more frequency matrix to process.

Figure 11a compares time to solution of our TLR-MVM implementation with various op-

timization techniques against vendor optimized dense MVM on the overall application using

one single Intel CSL node and a single NEC VE. TLR-MVM achieves up to 16X performance

speedup against dense MVM on Intel CSL. This speedup factor is due to a suboptimal im-

plementation of MKL multithreaded CGEMV kernel. Moreover, TLR-MVM scores up ot 3.3X

performance speedup compared to dense MVM on a single NEC VE. This result is on par with

the theoretical FLOPS saving factor of 3.9 reported in Fig. 7a. The optimization techniques do

not impact significantly the TLR-MVM performance variants on the single NEC VE since the

number of OpenMP threads is limited to 8. However, they do impact the TLR-MVM performance

on the Intel CSL system, due to the large thread count, i.e., a total of 40 threads.

Figure 11b shows the roofline performance model using a single NEC VE, while combining

Merge-Phase + ZigZag mapping strategies. We select frequency indices 1, 50, 100, and 150 and

show how TLR-MVM performance increases with the frequency index and gets near the HBM2

sustained bandwidth. Although the gain in time is important, the fine-grained computation

of TLR-MVM may prevent matrices with low frequencies from getting closer to the sustained

bandwidth on the NEC VE system due to low vector units utilization.

Figures 12a and 12b show the bandwidth (left y-axis) and time to solution (right y-axis) for

the overall simulation with 150 frequency matrices. The figures report performance for each of

the four strategies on Intel CSL and 8 NEC VEs. By combining the Merge-Phase + Zigzag strate-

gies, we achieve the best time to solution and over 85 % memory bandwidth of the STREAM

Benchmark for both systems, thanks to a better hardware occupancy. Our TLR-MVM achieves

around 9 TB/s aggregated bandwidth on 8 NEC VEs: this bandwidth score is approximately

equivalent to 36 Intel CSL nodes. This result highlights the performance advantage of HBM2

over DDR4 memory technology.

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

20 Supercomputing Frontiers and Innovations

CSL VE
0.0

0.5

1.0

1.5

2.0

2.5

Ti
m
e
(s
ec
on
ds
)

10.3x 11.0x 16.0x

2.89x 3.29x 3.29x

Intel CSL Dense MVM
Intel CSL Reference TLR-MVM
Intel CSL Merge-Phase TLR-MVM
Intel CSL Both TLR-MVM
NEC VE Dense MVM
NEC VE Reference TLR-MVM
NEC VE Merge-Phase TLR-MVM
NEC VE Both TLR-MVM

(a) TLR-MVM Vs Dense-MVM

0.125 0.25 0.5 1 2 4 8 16 32 64
Operational Intensity (Flops/Byte)

32

64

128

256

512

1024

2048

4096

8192

16384

GF
lo

ps
/s

Theoretical Peak Performance SP

HBM Bandwidth 1.2 TB/s

L3 Bandwidth 3.0 TB/s

Freq 150 Bandwidth: 1051.9 GB/s
Freq 100 Bandwidth: 1006.2 GB/s
Freq 50 Bandwidth: 856.9 GB/s
Freq 1 Bandwidth: 533.0 GB/s

(b) Roofline performance model

Figure 11. Performance comparison and assessment of TLR-MVM on Intel CSL node and single
NEC VE

CSL
0

50

100

150

200

250

300

350

400

Su
st

ai
ne

d
Ba

nd
wi

dt
h

(G
B/

s)

STREAM Benchmark
Reference
Merge Phase
ZigZag Mapping
Merge Phase + ZigZag Mapping

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Ti

m
e

(s
ec

on
ds

)

Time

(a) Bandwidth/time on Intel CSL

8 VEs
0

2

4

6

8

10

12

14

16

18
Su

st
ai
ne
d
Ba

nd
wi
dt
h
(T
B/
s)

STREAM Benchmark
Reference
Merge Phase
ZigZag Mapping
Merge Phase + ZigZag Mapping

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Ti
m
e
(s
ec
on
ds
)

Time

(b) Bandwidth/time on 8 NEC VEs

Figure 12. Performance impact of optimization techniques on TLR-MVM

6.3.3. Performance scalability

We scale up the number of VEs as well as the problem size to study the performance scala-

bility of our TLR-MVM implementation with both Merge-Phase and ZigZag mapping strategies

activated. In order to prove the scalability of our algorithm even beyond the 150 frequency

matrices previously used, 3 additional fictitious matrices are created in between each of the

available matrices by means of linear interpolation. This leads to an augmented dataset com-

posed of 596 frequency matrices, which is on par with real seismic applications that deal with

broadband data (i.e., data spanning a broad range of frequencies). Figure 13a shows scalability

results on 596 frequency matrices up to 128 NEC VEs. Our TLR-MVM implementation reaches

67 % of the sustained bandwidth and 77.7 % of linear scalability when using 128 NEC VEs.

Figure 13b is a close-up view for up to 32 VEs. Note that the reference and Merge-Phase strate-

gies can only run starting from 5 VEs because there is not enough memory on the VEs to host

all frequency matrices. The ZigZag mapping strategy alleviates this bottleneck and permits to

balance the memory allocation as well. Figure 13c shows time to solution comparison of vendor

optimized dense MVM CGEMV kernel against TLR-MVM on up to 128 VEs. The average accel-

eration of TLR-MVM over dense MVM is 3.13× on NEC VEs. This number is again on par

with the theoretical FLOPS saving factor of 3.9 reported in Fig. 7a, since the interpolation used

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 21

to extend the 3D seismic datasets is linear. Comparing against CGEMV from MKL on 128 dual-

socket 20-core Intel Cascade Lake nodes with DDR4 memory, our TLR-MVM implementation

achieves 67X performance speedup when using the same number of NEC VEs, i.e., 128 cards.

This corresponds to an aggregated bandwidth around 110 TB/s.

0 20 40 60 80 100 120
of VEs

0

25

50

75

100

125

150

175

200

Su
st
ai
ne
d
Ba

nd
wi
dt
h
(T
B/
s)

STREAM Benchmark
Linear Scalability
Reference
Merge Phase
ZigZag Mapping
Merge Phase + ZigZag Mapping

(a) Performance scalability

0 5 10 15 20 25 30
of VEs

0

10

20

30

40

50

Su
st
ai
ne

d
Ba

nd
wi
dt
h
(T
B/
s)

STREAM Benchmark
Linear Scalability
Reference
Merge Phase
ZigZag Mapping
Merge Phase + ZigZag Mapping

(b) Zoom-in

100 101 102
VEs / Nodes

10−4

10−3

10−2

10−1

100

Ti
m
e
(s
ec
on
ds
)

A)era e accelera(ion: 3.13x

128 Nodes Vs 128 VEs accelera(ion: 67.19x

NEC VE Dense MVM
NEC VE TLR-MVM
Intel CSL Dense MVM

(c) Performance comparisons

Figure 13. Performance scalability up to 128 NEC VEs

7. Discussions and Future Work

In this work, our attention has primarily focused on reducing the memory footprint of the

kernel of the multi-dimensional convolution operator as well as improving its computational

efficiency. Both goals have been largely achieved by means of the proposed TLR-MVM im-

plementation. Given the nature of the inverse problem that we wish to solve (Eq. 1), several

questions remain to be answered in our future endeavors. First, whilst we currently focus on

improving the inner working of the R operator, the algorithm requires four slightly different

computations to be implemented, namely R, R∗, R∗, (R∗)H = RT . The latter three compu-

tations call for the application of the transpose and/or complex conjugate kernel to the input

vector. Similar to its dense counterpart [29], we envision a TLR-MVM implementation where

complex conjugation is applied to the input and output vectors instead of to the kernel itself.

Moreover, given that the overall kernel is divided into tiles, the application of the transposed

kernel is expected to benefit from the fact that elements of different rows of the U and V bases

are closer in memory than their dense counterparts. Whilst this suggests a similar workload for

the forward and adjoint passes, numerical validation is required. Moreover whilst our focus has

so far not included the forward and inverse FFTs that comprise part of the operator in Eq. 3,

future research will investigate the possibility to begin their computations as soon as some of

the TLR-MVM have been executed without waiting for the computations over the entire fre-

quency range to be finalized. Another opportunity lies in the fact that the inverse problem we

wish to solve can be slightly modified to include more than one spatial coordinates xB at the

time [29]; in other words, our batched TLR-MVM can be replaced by a batched tile low-rank

matrix-matrix multiplication (TLR-MMM) where each column of the input matrix represents

the wavefield originated from a different virtual source.

Conclusion

In this paper, we investigate and deploy the Tile Low-Rank (TLR) Matrix-Vector Mul-

tiplication (MVM) performance to accelerate 3D seismic application workloads using vector

computing hardware solutions based on NEC SX-Aurora TSUBASA architecture. We propose

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

22 Supercomputing Frontiers and Innovations

and implement strategies to mitigate the load imbalance overheads that inherently emerge from

such workloads. Our TLR-MVM implementation not only improves the overall performance but

also permits to scale up in terms of memory footprint. Thanks to its fine-grained computations

and memory-friendly data layout, our TLR-MVM implementation can leverage the HBM2 tech-

nology of NEC vector engines, which translates into a performance boost compared to Intel CSL

architecture with DDR4 memory technology. We assess accuracy of our TLR matrix approxima-

tions and demonstrate the numerical robustness of our method by investigating the impact of

compression on the subsurface image quality using signal-to-noise ratio as a qualitative metric.

We then employ the roofline performance model to show how TLR-MVM is able to effectively

extract performance from the underlying architecture. On distributed-memory environment, our

TLR-MVM implementation reaches around 110 TB/s of aggregated bandwidth on 128 NEC vec-

tor engines, which converts to 67X perfromance speedup in time against vendor optimized dense

MVM (i.e., MKL CGEMV kernel) with the same number of Intel CSL nodes. We believe these

results are promising in the context of 3D seismic imaging. TLR-MVM may enable to increase

the problem sizes further and eventually improve the quality of 3D land surveys.

Acknowledgements

For computer time, this research used the Ibex system hosted at the Supercomputing Lab-

oratory at KAUST.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.J.: Performance, design, and autotun-

ing of batched GEMM for GPUs. In: Kunkel, J.M., Balaji, P., Dongarra, J.J. (eds.) High

Performance Computing. ISC High Performance 2016. Lecture Notes in Computer Science,

vol. 9697, pp. 21–38. Springer (2016). https://doi.org/10.1007/978-3-319-41321-1_2

2. Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D.: Tile Low Rank Cholesky Factorization for

Climate/Weather Modeling Applications on Manycore Architectures. In: High Performance

Computing. ISC 2017. Lecture Notes in Computer Science, vol. 10266, pp. 22–40. Springer

(2017). https://doi.org/10.1007/978-3-319-58667-0_2

3. Akbudak, K., Ltaief, H., Mikhalev, A., et al.: Exploiting data sparsity for large-scale ma-

trix computations. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) High Performance

Computing. ISC High Performance 2016. Lecture Notes in Computer Science, vol. 11014,

pp. 721–734. Springer (2018). https://doi.org/10.1007/978-3-319-96983-1_51

4. Al-Harthi, N., Alomairy, R., Akbudak, K., et al.: Solving Acoustic Boundary Integral

Equations Using High Performance Tile Low-Rank LU Factorization. In: High Perfor-

mance Computing. ISC High Performance 2020. Springer (2020). https://doi.org/10.

1007/978-3-030-50743-5_11

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 23

https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1007/978-3-319-58667-0_2
https://doi.org/10.1007/978-3-319-96983-1_51
https://doi.org/10.1007/978-3-030-50743-5_11
https://doi.org/10.1007/978-3-030-50743-5_11

5. Amestoy, P., Ashcraft, C., Boiteau, O., et al.: Improving Multifrontal Methods by Means

of Block Low-Rank Representations. SIAM Journal on Scientific Computing 37(3), A1451–

A1474 (2015). https://doi.org/10.1137/120903476

6. Amundsen, L.: Elimination of Free-surface Related Multiples Without Need of a Source

Wavelet. Geophysics 66, 327–341 (2001). https://doi.org/10.1190/1.1444912

7. Berryhill, J.R.: Wave-equation Datuming Before Stack. Geophysics 49, 2064–2066 (1984).

https://doi.org/10.1190/1.1441620

8. Börm, S.: Efficient Numerical Methods for Non-Local Operators: H2-matrix Compression,

Algorithms and Analysis, vol. 14. European Mathematical Society (2010). https://doi.

org/10.4171/091

9. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to Hierarchical Matrices with Ap-

plications. Engineering Analysis with Boundary Elements 27(5), 405–422 (2003). https:

//doi.org/10.1016/S0955-7997(02)00152-2

10. Boukaram, W.H., Turkiyyah, G., Ltaief, H., Keyes, D.E.: Batched QR and SVD Algorithms

on GPUs with Applications in Hierarchical Matrix Compression. Parallel Computing 74(C),

19–33 (2018). https://doi.org/10.1016/j.parco.2017.09.001

11. Brackenhoff, J., Thorbecke, J., Koehne, V., et al.: Implementation of the 3D Marchenko

method (2020). https://doi.org/10.1190/geo2017-0108.1

12. Broggini, F., Snieder, R., Wapenaar, K.: Focusing the Wavefield Inside an Unknown 1D

Medium: Beyond Seismic Interferometry. Geophysics 77(5), A25–A28 (2012). https://

doi.org/10.1190/geo2012-0060.1

13. Cao, Q., Pei, Y., Akbudak, K., et al.: Extreme-Scale Task-Based Cholesky Factorization

Toward Climate and Weather Prediction Applications. In: Proceedings of the Platform for

Advanced Scientific Computing Conference. pp. 2:1–2:11. ACM (2020). https://doi.org/

10.1145/3394277.3401846

14. Charara, A., Keyes, D., Ltaief, H.: Tile Low-Rank GEMM Using Batched Operations

on GPUs. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018: Parallel

Processing. Lecture Notes in Computer Science, vol. 11014, pp. 811–825. Springer (2018).

https://doi.org/10.1007/978-3-319-96983-1_57

15. Charara, A., Keyes, D., Ltaief, H.: Batched Triangular Dense Linear Algebra Kernels for

Very Small Matrix Sizes on GPUs. ACM Transactions on Mathematical Software 45(2)

(2019). https://doi.org/10.1145/3267101

16. Corona, E., Martinsson, P.G., Zorin, D.: An O(N) Direct Solver for Integral Equations on

the Plane. Applied and Computational Harmonic Analysis 38(2), 284–317 (2015). https:

//doi.org/10.1016/j.acha.2014.04.002

17. Goreinov, S., Tyrtyshnikov, E., Yeremin, A.Y.: Matrix-Free Iterative Solution Strategies

for Large Dense Linear Systems. Numerical Linear Algebra with Applications 4(4), 273–294

(1997)

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

24 Supercomputing Frontiers and Innovations

https://doi.org/10.1137/120903476
https://doi.org/10.1190/1.1444912
https://doi.org/10.1190/1.1441620
https://doi.org/10.4171/091
https://doi.org/10.4171/091
https://doi.org/10.1016/S0955-7997(02)00152-2
https://doi.org/10.1016/S0955-7997(02)00152-2
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1190/geo2017-0108.1
https://doi.org/10.1190/geo2012-0060.1
https://doi.org/10.1190/geo2012-0060.1
https://doi.org/10.1145/3394277.3401846
https://doi.org/10.1145/3394277.3401846
https://doi.org/10.1007/978-3-319-96983-1_57
https://doi.org/10.1145/3267101
https://doi.org/10.1016/j.acha.2014.04.002
https://doi.org/10.1016/j.acha.2014.04.002

18. Grasedyck, L., Kressner, D., Tobler, C.: A Literature Survey of Low-Rank Tensor Approxi-

mation Techniques. GAMM-Mitteilungen 36(1), 53–78 (2013). https://doi.org/10.1002/

gamm.201310004

19. van Groenestijn, G.J., Verschuur, D.J.: Estimating Primaries by Sparse Inversion and Ap-

plication to Near-offset Data Reconstruction. Geophysics 74(3), 1MJ–Z54 (2009). https:

//doi.org/10.1190/1.3111115

20. Hackbusch, W.: A Sparse Matrix Arithmetic Based on H-matrices. Part I: Introduction to

H-Matrices. Computing 62(2), 89–108 (1999). https://doi.org/10.1007/s006070050015

21. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding Structure with Randomness: Probabilis-

tic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review 53(2),

217–288 (2011). https://doi.org/10.1137/090771806

22. Jumah, B., Herrmann, F.J.: Dimensionality-reduced Estimation of Primaries by Sparse

Inversion. Geophysical Prospecting 62(5), 972–993 (2014). https://doi.org/10.1111/

1365-2478.12113

23. Keyes, D.E., Ltaief, H., Turkiyyah, G.: Hierarchical Algorithms on Hierarchical Architec-

tures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences 378(2166), 20190055 (2020). https://doi.org/10.1098/rsta.2019.0055

24. Kriemann, R.: H-LU Factorization on Many-Core Systems. Computing and Visualization

in Science 16(3), 105–117 (2013). https://doi.org/10.1007/s00791-014-0226-7

25. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Transactions on Visu-

alization and Computer Graphics 20(12), 2674–2683 (2014). https://doi.org/10.1109/

TVCG.2014.2346458

26. Ltaief, H., Cranney, J., Gratadour, D., et al.: Meeting the Real-Time Challenges of Ground-

Based Telescopes Using Low-Rank Matrix Computations (2021), http://hdl.handle.net/

10754/669813

27. van der Neut, J., Thorbecke, J., Wapenaar, K., Slob, E.: Inversion of the Multidimensional

Marchenko Equation. In: 77th Conference and Exhibition, EAGE, Extended Abstracts.

vol. 2015, pp. 1–5. European Association of Geoscientists & Engineers (2015). https://

doi.org/10.3997/2214-4609.201412939

28. Ravasi, M., Vasconcelos, I.: PyLops – A Linear-operator Python Library for Scalable Alge-

bra and Optimization. SoftwareX 11, 100361 (2020). https://doi.org/10.1016/j.softx.

2019.100361

29. Ravasi, M., Vasconcelos, I.: An Open-source Framework for the Implementation of Large-

scale Integral Operators with Flexible, Modern HPC Solutions - Enabling 3D Marchenko

Imaging by Least Squares Inversion. Geophysics pp. 1–74 (2021). https://doi.org/10.

1190/geo2020-0796.1

30. Ravasi, M., Vasconcelos, I., Kritski, A., et al.: Target-oriented Marchenko Imaging of a

North Sea Field. Geophysical Journal International 205(1), 99–104 (2016). https://doi.

org/10.1093/gji/ggv528

Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes

2021, Vol. 8, No. 2 25

https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1190/1.3111115
https://doi.org/10.1190/1.3111115
https://doi.org/10.1007/s006070050015
https://doi.org/10.1137/090771806
https://doi.org/10.1111/1365-2478.12113
https://doi.org/10.1111/1365-2478.12113
https://doi.org/10.1098/rsta.2019.0055
https://doi.org/10.1007/s00791-014-0226-7
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2014.2346458
http://hdl.handle.net/10754/669813
http://hdl.handle.net/10754/669813
https://doi.org/10.3997/2214-4609.201412939
https://doi.org/10.3997/2214-4609.201412939
https://doi.org/10.1016/j.softx.2019.100361
https://doi.org/10.1016/j.softx.2019.100361
https://doi.org/10.1190/geo2020-0796.1
https://doi.org/10.1190/geo2020-0796.1
https://doi.org/10.1093/gji/ggv528
https://doi.org/10.1093/gji/ggv528

31. Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A Distributed-memory Package for Dense Hi-

erarchically Semi-separable Matrix Computations Using Randomization. ACM Transactions

on Mathematical Software (TOMS) 42(4), 27 (2016). https://doi.org/10.1145/2930660

32. Verschuur, D.J.: Surface-related Multiple Elimination in Terms of Huygens Sources. Journal

of Seismic Exploration 1, 49–59 (1992)

33. Wapenaar, K., Thorbecke, J., van der Neut, J., et al.: Marchenko Imaging. Geophysics

79(3), WA39–WA57 (2014). https://doi.org/10.1190/geo2013-0302.1

34. Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Performance

Model for Multicore Architectures. Communications of the ACM 52(4), 65–76 (2009).

https://doi.org/10.1145/1498765.1498785

35. Yilmaz, O.: Seismic Data Analysis. Society of Exploration Geophysicists (2001)

Accelerating Seismic Redatuming Using Tile Low-Rank Approximations on NEC...

26 Supercomputing Frontiers and Innovations

https://doi.org/10.1145/2930660
https://doi.org/10.1190/geo2013-0302.1
https://doi.org/10.1145/1498765.1498785

Porting and Optimizing Molecular Docking onto the SX-Aurora
TSUBASA Vector Computer

Leonardo Solis-Vasquez1 , Erich Focht2 , Andreas Koch1

c© The Authors 2021. This paper is published with open access at SuperFri.org

In computer-aided drug design, the rapid identification of drugs is critical for combating
diseases. A key method in this field is molecular docking, which aims to predict the interactions
between two molecules. Molecular docking involves long simulations running compute-intensive
algorithms, and thus, can profit a lot from hardware-based acceleration. In this work, we investigate
the performance efficiency of the SX-Aurora TSUBASA vector computer for such simulations.
Specifically, we present our methodology for porting and optimizing AutoDock, a widely-used
molecular docking program. Using a number of platform-specific code optimizations, we achieved
executions on the SX-Aurora TSUBASA that are in average 3.6× faster than on modern 128-core
CPU servers, and up to a certain extent, competitive to V100 and A100 GPUs. To the best of our
knowledge, this is the first molecular docking implementation for the SX-Aurora TSUBASA.

Keywords: application porting, performance optimization, molecular docking, AutoDock, vec-
tor computing, SX-Aurora.

Introduction
In recent years, the NEC SX-Aurora TSUBASA computer system has been introduced to

the High Performance Computing (HPC) landscape. Besides its core technologies, i.e., vector-
based processing and high memory bandwidth (1.53 TB/s), the SX-Aurora TSUBASA offers a
programming framework based on standard C/C++, which eases the porting of existing programs.
Simulations in computational dynamics, electromagnetism, and other fields have been accelerated
on this platform [6, 13, 21], and thus, the SX-Aurora TSUBASA has become an alternative
accelerator platform in HPC.

The applicability of the SX-Aurora TSUBASA in other scientific areas is yet to be investi-
gated. An example is the field of computer-aided drug design, which leverages compute-intensive
molecular docking simulations. Basically, molecular docking predicts close-distance interactions of
two molecules: the receptor and the ligand, both of known three-dimensional structure. A receptor
models a biological target, while a ligand acts as a drug candidate. Identifying new ligands can be
done by screening large databases of small molecules, aiming to find those that interact favorably
with a given receptor [9]. This process, called virtual screening, typically requires thousands of
molecular docking executions. However, it enables using only promising (and fewer!) ligands in
the subsequent costly and slow wet lab experiments. Software tools for molecular docking have
become relevant at combating diseases. One of these is the widely-used AutoDock, which has been
used as the docking engine in world-wide community grid projects such as Fight-AIDS@Home [1]
as well as OpenPandemics: COVID-19 [3]. In algorithmic terms, AutoDock explores several spa-
tial geometrical arrangements between a receptor and a ligand (i.e., poses) using nested loops
and divergent control flows. Moreover, AutoDock computes a score for each pose, and in turn,
performs millions of score evaluations per execution.

In this paper, we present our methodology for efficiently porting and optimizing AutoDock
onto the SX-Aurora TSUBASA. The code developed in this work, termed AutoDock-Aurora, has
been ported from an existing OpenCL version of AutoDock. For achieving higher performance,
1Technical University of Darmstadt, Darmstadt, Germany
2NEC Deutschland GmbH, Stuttgart, Germany

DOI: 10.14529/jsfi210202

2021, Vol. 8, No. 2 27

https://orcid.org/0000-0001-6896-9879
https://orcid.org/0000-0003-0655-7136
https://orcid.org/0000-0002-1164-3082

platform-specific coding styles (e.g., loop pushing, data compression, predication) as well as op-
timization practices (e.g., those based on compiler technologies) were applied. With AutoDock-
Aurora, we aim to expand the applicability of the SX-Aurora TSUBASA to solving a wider range
of scientific problems. The organization of this paper is as follows. Section 1 provides background
information on the target platform and application under analysis. Section 2 describes our porting
and optimization methodology. Section 3 discusses the results of evaluating AutoDock-Aurora on
the SX-Aurora TSUBASA as well as on modern high-end GPUs and CPUs. Section 4 reviews the
related work. Finally, our conclusions and future work are presented.

1. Background
1.1. SX-Aurora Vector Engine

The SX-Aurora TSUBASA Vector Engine (VE) is an accelerator in the shape of a full profile
dual-slot PCI card. The VE1 and VE2 generation processors have 6 × 8 GB HBM2 stacks for a
total of 48 GB RAM with up to 1.53 TB/s memory bandwidth. The regular VEs that we used
have only eight cores connected to a 16 MB Last Level Cache (LLC) through a fast 2D network-
on-chip. Each core consists of a scalar processing unit with RISC instruction set, out-of-order
execution, L1 and L2 caches, that is attached to a vector processing unit with 64 long vector
registers of 256 × 64 bit words and several vector execution units. Unlike normal SIMD or SIMT
architectures, the vector units are implemented as a combination of 32 × 64 bit wide SIMD units
with 8-cycle deep pipelines. A vector length register controls the number of elements processed in
vector operations, and 16 vector mask registers enable predication.

The VE’s normal mode has uniform memory access (UMA), with all cores being able to access
and use any part of the LLC and HBM2 memory. It can be reconfigured to partitioned mode with
non-uniform memory access (NUMA), where cores are split into two equally sized groups, and by
default access only their segment of LLC and HBM2 memory. NUMA mode reduces memory port
and memory network conflicts, and can bring performance benefits for certain classes of programs.

VEs need to run inside a normal Linux system usually called Vector Host (VH). The VH
runs the VE Operating System (VEOS) which manages VE resources, schedules processes, and
manages physical and virtual memory of VEs. Programs can run natively on the VEs, with system
calls offloaded to the VH and processed on behalf of their user. They behave as if running under
Linux on the host, although the VE itself runs as “bare metal”, without any kind of on-board
operating system. Native VE programs can call functions that run on the VH, in a pattern called
reverse offloading.

Vector Engine Offloading (VEO) [8] is a programming model which executes the main program
on the VH and offloads kernels to the VEs. While the API somewhat resembles OpenCL, it differs
from it due to the SIMD/vector nature of kernels, and due to their ability to execute almost
any Linux system call. VEO is the lowest-level API for accelerator style programming and is the
technique used for this project.

Alternative hybrid programming approaches include VEDA [4], which implements a CUDA-
alike device API on top of VEO, neoSYCL [12], OpenMP target offloading [5] integrated with the
LLVM compiler, HAM [20], and NEC Hybrid MPI.

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

28 Supercomputing Frontiers and Innovations

A B

C D

E
H

I

J

K

L
M

O

N

FG

Translation (x, y, z)

Orientation (φ, θ, α)

Torsion (ψ1)
Torsion (ψ2)

(a)

x y z φ θ α ψ1 . . . ψNrot

1
gene

2
gene

3
gene

4
gene

5
gene

6
gene

7
gene . . .

Nrot + 6
gene

Ligand pose

Genotype

(b)

Figure 1. (a) Degrees of freedom of a theoretical ligand composed of atoms A, B, C, . . . , O.
Bonds between atoms are depicted as connecting lines. Each rotatable bond such as E–H and
I–J corresponds to a torsion, i.e., rotation of affected ligand atoms around the rotatable-bond
axis. (b) Mapping between a ligand pose (a set of degrees of freedom) and a genotype (set of
genes). The number of rotatable bonds in a ligand is denoted as Nrot

1.2. Molecular Docking

Molecular docking consists of solving an optimization problem that explores the poses adopted
by a ligand with respect to a receptor. It is based on the lock and key concept by Fischer [7], in
which a perfect binding between a ligand and receptor occurs when they have exactly comple-
mentary geometric shapes. The two main aims of molecular docking are: first, to predict the
ligand poses within a certain binding site of a receptor; and second, to estimate the affinity of
their corresponding interactions. As shown in Fig. 1a, a ligand pose can be represented by the
degrees of freedom (i.e., translation, rotations, and torsions) experienced during interaction. As
such representation typically involves many degrees of freedom, the docking optimization problem
suffers from a combinatorial explosion. To cope with that, molecular docking performs a system-
atic exploration via heuristic search methods (e.g., genetic algorithms, simulated annealing, etc.),
which are assisted by scoring functions that estimate the binding affinity. Extensive discussions
on the categories of search methods and scoring functions are available in [15, 29].

Particularly, AutoDock [16] is one of the most-cited software tools in molecular docking. It is
implemented in C++, and provided as open source. The main computation engine in AutoDock
is a Lamarckian Genetic Algorithm (LGA), which hybridizes two methods: a Genetic Algorithm
and a Local Search.

A Genetic Algorithm (GA) is inspired by the Darwinian evolution theory, and hence, it
maps the docking search into a biological evolution process. In this context, each of the ligand’s
degrees of freedom corresponds to a gene. A ligand pose, composed of the entire set of degrees of
freedom, corresponds to an individual, which in turn is represented by its genotype (i.e., full set
of genes) as shown in Fig. 1b. Individuals experience genetic modifications such as crossover and
mutation. Moreover, the population of individuals undergoes a selection procedure that chooses
the stronger ones for the next generation. An individual’s strength is quantified with its score,
which is evaluated with a scoring function.

In the context of molecular docking, a score enhancement implies a minimization of its value.
In other words, the lower the scores, the stronger the ligand-receptor interactions. In AutoDock,
the Local Search (LS) aims to improve the scores of the poses already generated via the GA.
For that purpose, AutoDock subjects a population subset of randomly-chosen individuals (LSrate,

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 29

default: 6 %) to the method of Solis-Wets [24]. Basically, this is an adaptive-iterative method that
takes a genotype as input, and generates a new one by adding small changes (constrained random
amount) to each of the input genes. Then, the scores of these two genotypes are computed and
compared. If the score is not minimized, a second genotype is generated by subtracting (instead
of adding) small changes to the input genes. Afterwards, a second score comparison is performed.
The termination criterion is adapted at runtime according to the number of successful or failed
attempts at minimizing the score. In each generation, the poses which could actually be improved
by the LS are then re-introduced into the LGA population.

Furthermore, AutoDock uses the scoring function (SF) in Eq. 1, which computes the bind-
ing affinity as a semi-empirical free-energy force field (kcal/mol) [10]. The first terms involve the
summation of four interaction types (Van der Waals, hydrogen bonding, electrostatics, and des-
olvation) over all the ligand and receptor atoms. The fifth term represents the (unfavorable) loss
of ligand entropy upon binding due to the Nrot rotatable bonds. All terms are characterized by
constant weights (Wvdw, Whb, Wel, Wds, Wrot) and look-up tables (Aij , Bij , Cij , Dij , S, V), as
well as by other parameters. Most importantly, the score is determined by the interatomic distance
rij . The value of rij is calculated at runtime from the atomic coordinates of atoms i and j, and
depends entirely on a genotype (generated either via GA or LS), that in turn encodes a respective
ligand movement.

SF =
∑

i,j

[
Wvdw

(Aij

r12
ij

− Bij

r6
ij

)
+Whb E(t)

(Cij

r12
ij

− Dij

r10
ij

)
+

Wel
(qiqj

ε(rij)rij

)
+Wds

(
SiVj + SjVi

)
e

−r2
ij

2σ2

]
+Wrot Nrot

(1)

The block diagram in Fig. 2 depicts the functionality of AutoDock, along with the default
values of LGA parameters. The generation of genotypes via GA is parameterized with the ratios
of crossover (Rcross), mutation (Rmut), and selection (Rsel), while the termination of LS is con-
trolled by the maximum number of iterations (NMAX

LS-iters), as well as by the minimum change step
(stepMIN). A single LGA-run optimizes the scores of a population (of Npop-size individuals) until
reaching the maximum number of score evaluations (NMAX

score-evals) or generations (NMAX
gens), whichever

comes first. An AutoDock docking job consists of the execution of several LGA runs, typically
NLGA-runs = 50, which are completely independent from each other. Furthermore, evaluating the
score of an individual involves three steps. First, the generated pose (expressed as genotype) is
transformed into its corresponding atomic coordinates. Then, intermolecular (ligand-receptor) and
intramolecular (ligand-ligand) interactions are calculated using Eq. 1. Note that the interactions
between receptor atoms are not calculated, as this molecule is treated as rigid [27].

2. Methodology
2.1. Porting

As reported in Section 4, AutoDock has been ported to other accelerators such as GPUs
and FPGAs. In this work, we used ocladock-fpga [27] (OpenCL implementation for FPGAs) as
the starting point of our development for SX-Aurora. Compared to AutoDock-GPU [23] (OpenCL
implementation for GPUs/CPUs), ocladock-fpga is intuitively close to the programming model of
the VE and thus should allow for easier code porting.

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

30 Supercomputing Frontiers and Innovations

AutoDock DOCKING JOB
[

NLGA-runs : 50
]

Step 1
GA generation

GENETIC ALGORITHM (GA)
[

Rcross : 0.80 | Rmut : 0.02 | Rsel : 0.50
]

Step 2-3-4
Individual scoring

Step 1
LS generation

Step 2-3-4
Individual scoring

Iterating over selected individuals

LOCAL SEARCH (LS)
[

LSrate : 0.06 | stepMIN : 0.01 | NMAX
LS-iters : 300

]
Iterating over GA generations

LAMARCKIAN GENETIC ALGORITHM (LGA)
[

Npop-size : 50 | NMAX
score-evals : 2,500,000 | NMAX

gens : 27,000
]

Iterating over independent LGA runs

Input processing

Output processingStep 2
Pose

calculation

Step 3
Ligand-receptor

interaction

Step 4
Ligand-ligand

interaction

< 1 %Typical runtime distribution < 10 % > 90 %

Figure 2. AutoDock block diagram [26] with default values of LGA parameters

For instance, like any other OpenCL/CUDA program for GPUs, AutoDock-GPU follows a
SIMT programming style, where data to be processed is accessed through a grid of threads indexes,
e.g., those obtained via the OpenCL get_global_id()/get_local_id() built-in functions. In
contrast, each of the component kernels of ocladock-fpga was coded as a single-threaded task. This
implementation approach keeps most of the loop structures shown in Fig. 2 intact, and thus,
allows porting such loops with only minor effort, as well as allowing the use of vectorization for
loop-level acceleration.

In AutoDock-Aurora, we use the same host and device code partitioning already defined in
ocladock-fpga. Thus, we adopt the VEO programming model, where the overall program manage-
ment is assigned to the host, and the independent LGA runs are offloaded onto the VE. Regarding
the host code, we kept most of it intact, except for the calls to OpenCL APIs that we replaced
with their VEO counterparts. For adapting the device code, we removed all language-specific
qualifiers, so that OpenCL kernels were transformed into plain standard C++ functions. In par-
ticular, the baseline code in ocladock-fpga uses OpenCL pipes (on-chip FIFO-like structures) to
pass data between kernels without resorting to any external memory. Hence, we removed the calls
to OpenCL read_pipe()/write_pipe(), and replaced them with required function calls. While
the porting just described might appear to require a little effort, it was not a trivial task. In
fact, the non-determinism (due to randomness) in the GA heuristics was a major cause of masked
errors. Consequently, we had to spend significant development times verifying AutoDock-Aurora’s
functionality, so that the resulting ligand poses and scores actually reach the expected level of
convergence.

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 31

In an initial optimization pass, we followed the compiler hints, as well as the NEC performance
tuning guidelines [18]. Examples of code optimizations applied here include the removal of data
dependencies, and the usage of more suitable data types (e.g., four-byte int instead of single-
byte char) for index and loop-control variables. As a result, we achieved a full vectorization of
the time-consuming functions computing the ligand-receptor and ligand-ligand scores (Fig. 2).
Furthermore, by adding the directive #pragma omp parallel for to the outermost loop of the
device code, we were able to parallelize the independent LGA runs, and hence, to distribute them
among the eight VE cores.

2.2. Optimization

While the ported version already ran correctly, was vectorized and parallelized, its perfor-
mance was not quite satisfactory yet, executing slower by a factor of ∼2.2× compared to the host
CPU. Each thread of the OpenCL-derived SIMT code being mapped to one VE core was using
the vector pipes only for the innermost loops, which are generally quite short. They iterate over
the number of atoms of the ligand, or over the number of rotational degrees of freedom of the
ligand. For the examples tested, both loop lengths were of the order of magnitude O(10), leading
to vector lengths of just 1/10th (or even less!) of the maximum vector length of the VE.

The main optimization approach for increasing the vector lengths of the device kernels was
to switch from mapping one SIMT thread to one VE core, to mapping one SIMT thread to one
vector lane. As depicted in Fig. 2, there is no obvious outer loop in the LGA that starts with
a genetic population and evolves it while selecting the best scoring individuals. Step 2, Step 3,
Step 4 (individual scoring) are the most computationally intensive parts of the algorithm, and
can be rewritten so that they handle a large number of individuals at once, in parallel. For each
of the individuals, the operations in the scoring functions are basically the same. Thus, we can
express this convergent code as either an outer loop over individuals calling the three steps inside,
or as three functions which handle, each, the entire set of individuals. The loop over individuals
can be pushed into each of the functions in such a way that it then becomes the innermost, data
parallel, and easily vectorizable loop (Fig. 3). For optimal performance, this well-known loop-
pushing technique must be paired with changes in the data layout, such that the vectorized code
accesses data with unit-strides as much as possible.

The Local Search part of the LGA algorithm is computationally divergent code because each of
the genetic individuals in the population evolves differently, can mutate with various parameters
into different directions, or might already have converged. We were able to perform the loop-
pushing optimization within the Local Search part by using predication, and compressing the data
for the non-converged part of the population (Fig. 4). This aims to keep the compute-intensive
scoring functions working with unit-stride accesses and without additional predication. During
Local Search, already-converged individuals are removed from the computation, thus reducing
the length of the innermost loop. A large population size is thus beneficial for performance,
because it increases the average loop length, and thus, the performance during Local Search.

In order to vectorize the Local Search code performing the generation of individuals ac-
cording to Solis-Wets [24], we needed to replace the linear congruential random generator that
was originally employed. The reason for this is that each of the generated random values in the
aforementioned scheme depends on the previous one, i.e., Xn+1 = f(Xn), thus hindering vector-
ization/parallelization. Instead, we used a 64-bit Mersenne Twister pseudorandom generator [19]
implemented in the NEC NLC libraries.

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

32 Supercomputing Frontiers and Innovations

Original Optimized

1 Genet ic Algor i thm (individuals) {
2
3 f o r all (Npop -size genotypes) {
4 Step1 (genotype)
5
6 // Pose calculation
7 Step2 (genotype) {
8 f o r all (Nrotations) {
9 ...

10 }
11 r e t u r n coords
12 }
13
14 // Ligand - receptor interaction
15 Step3 (coords) {
16 f o r all (Natoms) {
17 ...
18 }
19 r e t u r n score_lig -rec
20 }
21
22 // Ligand - ligand interaction
23 Step4 (coords) {
24 f o r all (Natomic - pairs) {
25 ...
26 }
27 r e t u r n score_lig -lig
28 }
29 }
30 }

1 Genet ic Algor i thm (individuals) {
2
3 Step1 (Npop -size genotypes)
4
5 // Pose calculation
6 Step2 {
7 f o r all (Nrotations) {
8 f o r all (Npop -size genotypes) {
9 ...

10 }
11 }
12 r e t u r n coords [Npop -size]
13 }
14
15 // Ligand - receptor interaction
16 Step3 {
17 f o r all (Natoms) {
18 f o r all (Npop -size genotypes) {
19 ...
20 }
21 }
22 r e t u r n score_lig -rec [Npop -size]
23 }
24
25 // Ligand - ligand interaction
26 Step4 {
27 f o r all (Natomic - pairs) {
28 f o r all (Npop -size genotypes) {
29 ...
30 }
31 }
32 r e t u r n score_lig -lig [Npop -size]
33 }
34 }

Loop pushing

Loop
pushing

L
oop

pushing

Figure 3. Optimization in Genetic Algorithm (GA): pushing the outer loop into the three com-
ponents of the scoring function (Step 2, Step 3, Step 4)

Previous work ocladock-fpga [27] has shown that reducing the numerical precision from dou-
ble to single floating-point does not impact the ability of the Genetic Algorithm to localize min-
imal energy configurations. This has been further exploited in AutoDock-GPU [23] by replacing
the single precision functions like expf(), sinf(), sqrtf() by native_exp(), native_sin(),
native_sqrt(), etc. . . ., which provide less numerically-accurate implementations, but with
higher performance. We followed this path here as well, but replaced only the single precision
functions sqrtf() and expf() by simplified implementations, yielding reduced-accuracy results,
but also requiring fewer floating-point operations.

Furthermore, vectorization of single precision computations on the SX-Aurora VE can be
done in two ways: (1) by using vector instructions with up to 256 single-precision elements that
are located either in the upper or lower half of the vector register; or (2) by using packed vector
instructions where each 64-bit vector element of a vector register contains two 32-bit float entities.
The later case is called packed vectorization, and effectively allows vector lengths of up to 512,
with twice the performance of (1).

Unfortunately, packed vectorization has limitations and is more complex to implement in a
compiler backend. The vector length must be even, predicated packed vector instructions need
two vector mask registers instead of one, and memory access requires several instructions instead
of one to account for possible misalignments. Moreover, all operations inside a packed vectorized
loop must be executed in single-precision packed mode, otherwise the stream of vector instructions
could be disturbed and the performance benefit is lost. Therefore, double-to-float casts, or calls to
double-precision mathematical builtin functions (e.g., ceil() instead of ceilf()), would break
packed vectorization. Recent work on the LLVM-VE project [2] has focused on enabling and
improving packed vectorization on the VE, and AutoDock’s energy_ia.c (ligand-ligand) scoring
function was used as a benchmark for the progress. Since LLVM-VE’s performance using packed
vectorization (2) exceeds that of the NEC ncc compiler using the traditional approach (1) for the

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 33

Original Optimized

1 w h i l e ((it < it_MAX) && (step > step_MIN)) {
2 ...
3
4 // Updating counts
5 i f (score_lower) {
6 succ ++;
7 fail = 0;
8 direction = positive ;
9 } e l s e {

10 i f (direction == negative) {
11 succ = 0;
12 fail ++;
13 direction = positive ;
14 } e l s e {
15 direction = negative ;
16 }
17 }
18 } // End of while

1 w h i l e (num_active_ls > 0) {
2 ...
3
4 // Building compressed list of active indexes
5 act_pop_size = 0;
6 f o r (j = 0; j < pop_size ; j++) {
7 i f (ls_is_active [j]) {
8 active_idx [act_pop_size] = j;
9 it_compr [act_pop_size] = it[j];

10 step_compr [act_pop_size] = step[j];
11 succ_compr [act_pop_size] = succ[j];
12 ...
13 act_pop_size ++;
14 }
15 }
16
17 ...
18
19 // Updating array - based counts
20 // Scoring leverages loop pushing
21 f o r (jj = 0; jj < act_pop_size ; jj ++) {
22 i f (score_lower [jj]) {
23 succ_compr [jj]++;
24 ...
25 } e l s e {
26 i f (dir_compr [jj] == negative) {
27 succ_compr [jj] = 0;
28 ...
29 } e l s e {
30 ...
31 }
32 }
33 }
34
35 ...
36
37 // Predicating on termination condition
38 num_active_ls = act_pop_size ;
39 f o r (jj = 0; jj < act_pop_size ; jj ++) {
40 i f ((it_compr [jj] > it_MAX) ||
41 (step_compr [jj] <= step_MIN)) {
42 ls_is_active [active_idx [jj]] = 0;
43 num_active_ls --;
44 }
45 j = active_idx [jj];
46 it[j] = it_compr [jj];
47 step[j] = step_compr [jj];
48 succ[j] = succ_compr [jj];
49 ...
50 }
51 } // End of while

Predication

Compression

Compression

Figure 4. Optimization in Local Search (LS): usage of predication and compression. In the opti-
mized code, predication updates the number of active individuals. An example of compression-
based optimization is the replacement of the succ scalar variable with the succ_compr[] array
counterpart. In both cases, the number of successful search attempts is counted. In the optimized
code, however, the array compresses data for all active individuals

performance-critical function energy_ia.c, we compiled this function with LLVM-VE, while using
ncc for the rest of the code.

3. Results and Discussion
For validating the docking functionality, we selected a total of 31 ligand-receptor inputs from

the list used for validation in [14]. Table 1 shows a dataset subset. The maximum number of
rotatable bonds (Nrot) in any of our inputs is eight, as recommended when using the Solis-Wets
method as Local Search [23].

For profiling executions on the VE, we used the PROGINFO and FTRACE [17] utilities, both
providing a large set of performance counters as well as derived performance metrics. The former
provides program execution information, while the latter focuses on functions and user regions. As
discussed in Section 2.2, the first major optimization was based on loop pushing. Table 2 compares
relevant execution metrics for the 1ig3 input, and is used here to analyze the performance impact
of this technique. First, the real time represents the wall-clock elapsed time, while the user time

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

34 Supercomputing Frontiers and Innovations

Table 1. Subset of ligand-receptor inputs with their respective number of
rotatable bonds (Nrot) and atoms (Natom)

Input 1ac8 1hnn 1yv3 1owe 1p62 1n46 1ig3 1t46 2bm2 1mzc
Nrot 0 2 2 3 4 5 6 6 7 8
Natom 8 18 23 27 22 28 21 40 33 38

accounts for the time spent by all eight cores in the VE. Since the independent LGA runs are
distributed among all VE cores via #pragma omp parallel for (Section 2.1), the user time is
∼8× that of the real time. Moreover, it can be noted that both real and user times were improved
by a factor of ∼21.3, while the execution time for vector instructions was reduced ∼4.9×.

Interestingly, the number of all instruction executions (Inst. Count) was reduced ∼51×, while
the FLOP count is almost the same. The program does roughly the same number of floating point
operations because it computes the same problem as before, but many of the formerly scalar
loops are now vectorized with large vector length (> 200), thus the instruction count reduction
in the order of 50×. The formerly shorter vector loops with the average vector length of 72 are
now executed in longer loops, with the average length of 217, reducing the number of vector
instructions approximately by a factor of 3.8×.

The streamlined vectorized execution, visible in the heavily increased vector operation ratio
from 66.4 % to 99.2 %, and the grown average vector length of 217, lead to an increase of
the number of overall operations per second (MOPS), and floating-point operations per second
(MFLOPS) by 12.5× (1/0.08) and 20.4× (1/0.049), respectively. While the optimal average vector
length would be 256, the value could not be reached in practice due to code divergence in the Local
Search section. A further significant improvement of the changed code is shown in the reduction of
the Level 1 Cache Miss time, from 44.2 s to 2.1 s. A L1 Cache Miss can only occur in scalar code,
and the lowered value reflects the significantly reduced number of scalar instructions executed in
the optimized version.

Table 3 summarizes the impact of further optimizations as relative time changes of the total
evaluation. Experiments were performed on one VE using the 1ig3 input with NLGA-runs = 100.
The relative time change was computed as the percentage of the time change compared to the
unoptimized case: 100 × (toptimized − tunoptimized)/tunoptimized. The first line reflects the gains de-
scribed by Tab. 2 that lead to the reduction of the compute time by 95.3 %. The following lines
show further optimizations of the loop pushing code.

When the VE was switched to NUMA partitioned mode, the multi-process code benefits from
the reduced memory network contention and CPU port conflicts. As this problem only impacts
the ligand-receptor energy calculation that is dominated by indirect memory accesses, the impact
is small (–6.9 %) and depends a lot on the specific problem. As NUMA measurements force us to
use two processes (on a VE) with 4 cores each, the values in Tab. 3 are compared against similar
runs on non-NUMA VEs. Using two processes in non-NUMA mode has a higher overhead than
running just one process with 8 cores. Since the NUMA benefits are in the range of this overhead,
2 × 4 cores with NUMA and 1 × 8 cores UMA timings are practically the same. A significant
improvement could be achieved by the packed vectorization, that in turn, could only be achieved
with the LLVM-VE compiler using the RegionVectorizer RV. This change almost doubled the
execution speed of the ligand-ligand interaction scoring function, and led to an evaluation time
reduction of 36.2 %. At this point, it is important to indicate that, we opted to use a single input

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 35

Table 2. Execution metrics of AutoDock-Aurora for the 1ig3 input, before and
after applying loop pushing. Information was obtained using NEC PROGINF [17]

Metric Optimization: loop pushing Ratio
Before After Before / After

Real Time [sec] 307.5 14.5 21.3
User Time [sec] 2,458.1 115.0 21.4
Vector Time [sec] 510.2 104.0 4.91
Inst. Count 5,085,000,001,257 98,888,607,313 51.4
Vec. Inst. Count 120,865,697,285 32,136,492,289 3.76
FLOP Count 4,982,577,754,822 4,826,280,301,843 1.03
MOPS 6,012.0 75,174.3 0.08
MOPS (Real) 48,082.1 597,857.0 0.08
MFLOPS 2,027.0 41,960.7 0.048
MFLOPS (Real) 16,211.5 333,711.3 0.049
Avg. Vec. Length 71.5 216.9 0.33
V. Op. Ratio [%] 66.4 99.2 0.67
L1 Cache Miss [sec] 44.2 2.1 20.4

(i.e., 1ig3) in order to provide a simple but yet reasonable analysis. Using the full dataset for
such analysis would be ideal, but not strictly necessary. The reason is that, e.g., for ligands with
larger Nrot and Natom, the length of compute-intensive loops is in turn larger, and thus, we can
safely expect larger benefits than those for 1ig3 in Tab. 3. Finally, the use of reduced-precision
replacements for sqrtf and expf inside the ligand-ligand interaction scoring function led to a
gain of 25.4 % with LLVM-VE, but to a time loss (slowdown!) with the ncc compiler, a sign that
the NEC ncc compiler provides fast implementations for these functions.

Table 3. Overview of improvements obtained through various
optimizations on one VE using the 1ig3 input. Larger negative values for
the relative time change are better. All optimizations below the loop
pushing line show additional gains (or losses) on top of this vectorized
code

Optimization Rel. time change
Loop pushing and vectorized random generator –95.3 %
VE in NUMA partitioned mode –6.9 %
Packed vectorization of energy_ia.c with llvm-ve –36.2 %
Reduced precision sqrtf and expf with ncc 29.5 %
Reduced precision sqrtf and expf with llvm –25.4 %

Finally, the execution runtimes of AutoDock-Aurora are compared against those of AutoDock-
GPU [23], the state-of-the-art OpenCL-based implementation of AutoDock for GPUs/CPUs.
Table 4 lists the accelerator devices equipping the systems employed. We used version v1.1 of
AutoDock-GPU, in order to ensure a fair comparison, aiming for having equivalent functionality in
both GPU and VE implementations. For all executions of both AutoDock-Aurora and AutoDock-
GPU, we set the LSrate to 100 % instead of the default 6 %, as real-world experiments with

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

36 Supercomputing Frontiers and Innovations

AutoDock-GPU typically use the highest practical LSrate value. In this configuration, all mem-
bers of a population undergo Local Search, and thus, the program has higher chances to produce
more-accurate molecular predictions.

Table 4. Technical characteristics of the SX-Aurora VEs, GPUs and CPUs used in the
evaluation: base clock frequency (Freq), number of cores (Ncores), FP32 performance (Perf),
memory bandwidth (MemBW). GPUs are composed of independent Streaming Multiprocessors
(SM). Both CPU platforms posses two sockets each

Characteristics SX-Aurora GPU CPU
10B 20B RTX2070 V100 A100 EPYC 7502 EPYC 7742

Freq [GHz] 1.4 1.6 1.61 1.23 0.76 2.5 2.25
Ncores 8 8 2560 5120 6912 32 × 2 64 × 2
Perf [TFLOPS] 4.3 4.9 9.1 14.1 19.5 2.6 4.6
MemBW [GB/s] 1220 1530 448 897 1555 204.8 × 2 204.8 × 2

L1 Cache 32 kB (SPU I$) 64 kB 128 kB 192 kB 96 kB 96 kB
32 kB (SPU O$) (per SM) (per SM) (per SM) (per core) (per core)

L2 Cache 256 kB (SPU) 4 MB 6 MB 40 MB 512 kB 512 kB
128 kB (VPU) (shared) (shared) (shared) (per core) (per core)

L3 Cache 16 MB - - - 128 MB 256 MB
LCC (shared) (shared) (shared)

As shown in Fig. 5, larger population sizes increase the performance on the VE, but do not
impact it as much on any other architectures. We attribute the different performance behavior
of AutoDock-GPU to the workload distribution strategy used in OpenCL. In AutoDock-GPU, the
population size directly affects the number of spawned OpenCL work-groups (NWG = Npop-size ×
NLGA-run), but has no impact on the execution time of a score evaluation. As described in Sec-
tion 1.2, the LGA terminates when the number of score evaluations reaches an upper bound (i.e.,
NMAX

score-evals). As a consequence, processing larger populations requires fewer iterations per LGA
run, and thus compensates for the seemingly bigger workload imposed by the need for more indi-
viduals to be processed. The slight increase of runtimes on GPUs/CPUs for the larger populations
is likely due to the synchronization overhead introduced by the additional OpenCL work-groups.
On the other hand, in AutoDock-Aurora, larger populations positively impact the performance of
the pushed-in loops, enabled by their longer vector lengths (Section 2.2). Since the purpose of
molecular docking with genetic algorithms is to test larger number of genetic individuals, we see
no disadvantage for other architectures when choosing a large population size that is optimal for
the VE.

For the sake of clarity, Fig. 6 shows only the results when using Npop-size = 2048. It can be
observed that the VE 20B significantly outperforms the dual socket state-of-the-art AMD EPYC
nodes by average factors of 6.5× (= 44.3/6.8) and 3.6× (= 25.1/6.8).

In terms of the underlying semiconductors, the VEs are at the same 16nm-node as the V100
GPU, but have a lower peak performance of 2.8× (= 14.1/4.9, Tab. 4) compared to the GPU. The
performance of our implementation is slower than the V100 by a factor of 2.4× (= 6.8/2.8, Fig. 6)
and thus comes very close to the theoretical peak performance ceiling. Comparing to the A100
GPU, while its peak only increased by ∼1.4× (= 19.5/14.1, Tab. 4) over the V100, the A100’s
average execution time shows much better performance than the latter: ∼2.5× (= 3.8/1.5). We

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 37

VE 20B RTX2070 V100 A100 2×EPYC-7502 2×EPYC-7742
0

20

40

60

12.7
5.5 3.2 1.5

42.3

24.2

8.5 5.9 3.3 1.4

42.4

24.3

7.3 6.6
3.5 1.4

42.8

24.4

6.8 7.7
3.8 1.5

44.3

25.1

Ru
nt

im
e

(s
)

256 512 1024 2048

Figure 5. Geometric mean of execution runtimes over 31 inputs, comparing the impact of the
chosen population size: Npop-size = {256, 512, 1024, 2048}. AutoDock-Aurora was executed on the
VE 20B, while AutoDock-GPU v1.1 on the GPUs and CPUs. In all executions: NLGA-runs = 100,
LSrate = 100 %. Other parameters were left at default values

VE 20B RTX2070 V100 A100 2×EPYC-7502 2×EPYC-7742
0

20

40

60

6.8 7.7 3.8 1.5

44.3

25.1

Ru
nt

im
e

(s
)

Figure 6. Geometric mean of execution runtimes over 31 inputs. AutoDock-Aurora was exe-
cuted on the VE 20B, while AutoDock-GPU v1.1 on the GPUs and CPUs. In all executions:
Npopsize = 2048, NLGA-runs = 100, LSrate = 100 %. Other parameters were left at default values

assume that the higher performance and bandwidth capabilities of the A100 are the main reason
for the fastest executions on this platform.

As reported in [23], AutoDock-GPU achieves faster executions on GPUs than on CPUs, which
is attributed to the more suitable mapping of OpenCL elements onto the underlying hardware. On
CPUs, each OpenCL work-group is executed by a single CPU core, and thus, work-items (threads)
are executed serially [11]. On GPUs, work-groups and work-items are executed in parallel by the
fine-grain GPU streaming multiprocessors.

4. Related Work
Studies on benchmarking the performance of the SX-Aurora using various applications are

reported as follows. Komatsu et al. used standard benchmarks and a tsunami numerical simula-
tion code [13]. These authors introduced a performance model based on different Byte per FLOP
(B/F) rates to analyze the bottleneck causes in applications. Onodera et al. optimized the Himeno
benchmark, which solves the Poisson’s equation using the Jacobi iteration method. The vector
systems used in Onodera et al.’s evaluation were configured with a single and up to eight VEs [21].
While experiments in [13] and [21] were performed on SX-Aurora Type 10B, Egawa et al. used
second-generation Type 20B devices to benchmark their optimization strategies on different sci-
entific applications [6]. Moreover, Egawa et al. refined the model introduced by Komatsu et al.
in [13]. This newly-proposed model considers a possible peak performance (FLOP/s), which can
be determined by the FMA instruction rate of applications and sustained memory bandwidth
(B/s), instead of employing their peak values.

Furthermore, Takizawa et al. proposed an OpenCL-like offload programming framework for
SX-Aurora [28]. As the OpenCL execution model (originally designed for GPUs) does not fit well

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

38 Supercomputing Frontiers and Innovations

for all compute architectures (e.g., FPGAs, VEs), this framework allows the usage of different
programming languages for implementing the host and device code. Particularly, the host code
can be written in OpenCL C/C++, while the device code in standard C++. In general, using
such a framework would potentially reduce the porting effort from existing OpenCL code as in
our case. However, we opted to implement both host and device code in standard C++, by
explicitly invoking VEO APIs to interact with the VE, and writing vectorizable loops. In this
manner, we avoided relying on external APIs, and exploited the compiler’s capability of automatic
vectorization.

To the best of our knowledge, our work here on AutoDock-Aurora is the first one leveraging
vector computing for molecular docking. The closest studies related to ours are the hardware-
accelerated implementations reported in [25]. From these studies, accelerator devices such as
CPUs, GPUs, and even FPGAs, have been used in single computing nodes. Moreover, paralleliza-
tion strategies are not only based on the docking algorithm under analysis, but also on hardware-
specific aspects of the target device. Here, we report previous studies describing AutoDock.

Regarding GPUs, AutoDock has its official release rebranded as AutoDock-GPU. It has been
originally written in OpenCL [23], and afterwards, ported from the original OpenCL to CUDA [14].
This CUDA implementation was used as the docking engine for COVID-19 research on the Summit
supercomputer, where OpenCL was not supported. Furthermore, AutoDock has been ported to
FPGAs as well, where various efforts differ in the design approaches they adopted. Pechan et
al. followed the traditional development (for FPGAs) by describing the docking functionality in
terms of low-level transfers between hardware registers and synchronous logic design [22]. On the
other hand, Solis-Vasquez et al. followed a high-level design approach based on OpenCL to develop
ocladock-fpga [27]. In contrast to AutoDock-GPU, which parallelizes over multiple data items (i.e.,
genotypes), ocladock-fpga executes multiple tasks concurrently. Furthermore, it relies on pipelined
hardware logic and custom memory hierarchies. In terms of performance, ocladock-fpga on an
Arria-10 FPGA runs ∼2× faster than the original AutoDock on a CPU, but it is still significantly
slower compared to AutoDock-GPU. Hence, it is not being deployed for realistic docking problems.

Conclusions and Future Work
In this work, we have ported and optimized AutoDock onto the SX-Aurora TSUBASA plat-

form. The molecular docking application consists of a Genetic Algorithm coupled with a Local
Search part, which has a divergent flow with frequent calls to compute-intense score evaluations.
To the best of our knowledge, this is the first molecular docking and Genetic Algorithm imple-
mentations for the SX-Aurora TSUBASA.

Regarding the porting process, the programming framework provided by NEC enabled a
smooth experience. However, the optimization was much more involved, requiring the combination
of a number of different strategies. Of these, loop pushing improved the performance significantly,
but required more code refactoring in the Local Search part. Basically, the original SIMT nature
of the Local Search, treating individuals in different threads, is now expressed in an explicit,
vectorizable loop. Regarding the floating-point arithmetic, the computations offloaded to the VE
were expressed using single-precision only, and in turn, were vectorized in packed mode for higher
performance. Furthermore, we explored mixed compilation, employing both LLVM-VE and NEC
compilers for the scoring-function components. As a result, our implementation is in average 3.6×
faster than 128-core CPU servers, while being competitive to V100 and A100 GPUs.

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 39

As a future work, we will incorporate alternative methods for the Local Search part. Namely,
ADADELTA [30], which compared to the Solis-Wets method examined here performs more com-
plex computations, but yields molecular predictions of higher quality [23]. Moreover, we plan to
analyze the achieved efficiency using performance models, e.g., those based on Byte/FLOP ratios,
as proposed in [6, 13].

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References
1. FightAIDS@Home. https://www.worldcommunitygrid.org/research/faah/overview.

do (2021), accessed: 2021-06-01

2. LLVM-VE project GitHub repository. https://github.com/sx-aurora-dev/
llvm-project (2021), accessed: 2021-05-31

3. OpenPandemics: COVID-19. https://www.worldcommunitygrid.org/research/opn1/
overview.do (2021), accessed: 2021-06-01

4. VEDA GitHub repository. https://github.com/SX-Aurora/veda (2021), accessed: 2021-
05-19

5. Cramer, T., Römmer, M., Kosmynin, B., et al.: OpenMP Target Device Offloading for
the SX-Aurora TSUBASA Vector Engine. In: Wyrzykowski, R., Deelman, E., Dongarra,
J.J., et al. (eds.) Parallel Processing and Applied Mathematics - 13th Int. Conf., PPAM
2019, Bialystok, Poland, Sept. 8-11, 2019, Revised Selected Papers, Part I. Lecture Notes in
Computer Science, vol. 12043, pp. 237–249. Springer (2019). https://doi.org/10.1007/
978-3-030-43229-4_21

6. Egawa, R., Fujimoto, S., Yamashita, T., et al.: Exploiting the potentials of the second gen-
eration SX-Aurora TSUBASA. In: 2020 IEEE/ACM Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Systems, PMBS@SC 2020, Atlanta,
GA, USA, Nov. 12, 2020. pp. 39–49. IEEE (2020). https://doi.org/10.1109/PMBS51919.
2020.00010

7. Fischer, E.: Einfluss der Configuration auf die Wirkung der Enzyme. II. Berichte der
deutschen chemischen Gesellschaft 27(3), 3479–3483 (1894). https://doi.org/10.1002/
cber.189402703169

8. Focht, E.: VEO and PyVEO: Vector Engine Offloading for the NEC SX-Aurora Tsubasa. In:
Resch, M.M., Kovalenko, Y., Bez, W., et al. (eds.) Sustained Simulation Performance 2018
and 2019. pp. 95–109. Springer (2020). https://doi.org/10.1007/978-3-030-39181-2_9

9. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: An overview of
search algorithms and a guide to scoring functions. Proteins: Struct., Funct., Bioinf. 47(4),
409–443 (2002). https://doi.org/10.1002/prot.10115

10. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy force
field with charge-based desolvation. J. Comput. Chem. 28(6), 1145–1152 (2007). https:
//doi.org/10.1002/jcc.20634

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

40 Supercomputing Frontiers and Innovations

https://www.worldcommunitygrid.org/research/faah/overview.do
https://www.worldcommunitygrid.org/research/faah/overview.do
https://github.com/sx-aurora-dev/llvm-project
https://github.com/sx-aurora-dev/llvm-project
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://github.com/SX-Aurora/veda
https://doi.org/10.1007/978-3-030-43229-4_21
https://doi.org/10.1007/978-3-030-43229-4_21
https://doi.org/10.1109/PMBS51919.2020.00010
https://doi.org/10.1109/PMBS51919.2020.00010
https://doi.org/10.1002/cber.189402703169
https://doi.org/10.1002/cber.189402703169
https://doi.org/10.1007/978-3-030-39181-2_9
https://doi.org/10.1002/prot.10115
https://doi.org/10.1002/jcc.20634
https://doi.org/10.1002/jcc.20634

11. Kaeli, D., Mistry, P., Schaa, D., Zhang, D.P.: Heterogeneous Computing with OpenCL 2.0.
Morgan Kaufmann, 3 edn. (2015)

12. Ke, Y., Agung, M., Takizawa, H.: neoSYCL: a SYCL implementation for SX-Aurora TSUB-
ASA. In: Hwang, S., Yeom, H.Y. (eds.) HPC Asia 2021: The Int. Conf. on High Performance
Computing in Asia-Pacific Region, Virtual Event, Republic of Korea, Jan. 20-21, 2021. pp.
50–57. ACM (2021). https://doi.org/10.1145/3432261.3432268

13. Komatsu, K., Momose, S., Isobe, Y., et al.: Performance Evaluation of a Vector Super-
computer SX-Aurora TSUBASA. In: SC18: Int. Conf. for High Performance Computing,
Networking, Storage and Analysis. pp. 685–696. IEEE (2018). https://doi.org/10.1109/
SC.2018.00057

14. LeGrand, S., Scheinberg, A., Tillack, A.F., et al.: GPU-Accelerated Drug Discovery with
Docking on the Summit Supercomputer: Porting, Optimization, and Application to COVID-
19 Research. In: BCB ’20: 11th ACM Int. Conf. on Bioinformatics, Computational Biology
and Health Informatics, Virtual Event, USA, Sept. 21-24, 2020. pp. 43:1–43:10. ACM (2020).
https://doi.org/10.1145/3388440.3412472

15. Liu, J., Wang, R.: Classification of Current Scoring Functions. J. Chem. Inf. Model. 55(3),
475–482 (2015). https://doi.org/10.1021/ci500731a

16. Morris, G.M., Goodsell, D.S., Halliday, R.S., et al.: Automated docking using a Lamarck-
ian genetic algorithm and an empirical binding free energy function. J. Comput. Chem.
19(14), 1639–1662 (1998). https://doi.org/10.1002/(SICI)1096-987X(19981115)19:
14<1639::AID-JCC10>3.0.CO;2-B

17. NEC: PROGINF/FTRACE User Guide. https://www.hpc.nec/documents/sdk/pdfs/
g2at03e-PROGINF_FTRACE_User_Guide_en.pdf (2018), accessed: 2021-05-31

18. NEC: SX-Aurora TSUBASA Performance Tuning Guide. https://www.hpc.nec/
documents/guide/pdfs/AuroraVE_TuningGuide.pdf (2020), accessed: 2021-05-29

19. Nishimura, T.: Tables of 64-bit Mersenne Twisters. ACM Trans. Model. Comput. Simul.
10(4), 348–357 (2000). https://doi.org/10.1145/369534.369540

20. Noack, M., Focht, E., Steinke, T.: Heterogeneous active messages for offloading on the
NEC SX-Aurora TSUBASA. In: IEEE Int. Parallel and Distributed Processing Symposium
Workshops, IPDPSW 2019, Rio de Janeiro, Brazil, May 20-24, 2019. pp. 26–35. IEEE (2019).
https://doi.org/10.1109/IPDPSW.2019.00014

21. Onodera, A., Komatsu, K., Fujimoto, S., et al.: Optimization of the Himeno benchmark
for SX-Aurora TSUBASA. In: Wolf, F., Gao, W. (eds.) Benchmarking, Measuring, and
Optimizing - Third BenchCouncil Int. Symposium, Bench 2020, Virtual Event, Nov. 15-16,
2020, Revised Selected Papers. Lecture Notes in Computer Science, vol. 12614, pp. 127–143.
Springer (2020). https://doi.org/10.1007/978-3-030-71058-3_8

22. Pechan, I., Fehér, B., Bérces, A.: FPGA-based acceleration of the AutoDock molecular dock-
ing software. In: Proc. of the 6th Conf. on Ph.D. Research in Microelectronics Electronics.
pp. 1–4. IEEE (2010), https://ieeexplore.ieee.org/document/5587139

L. Solis-Vasquez, E. Focht, A. Koch

2021, Vol. 8, No. 2 41

https://doi.org/10.1145/3432261.3432268
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1145/3388440.3412472
https://doi.org/10.1021/ci500731a
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/guide/pdfs/AuroraVE_TuningGuide.pdf
https://www.hpc.nec/documents/guide/pdfs/AuroraVE_TuningGuide.pdf
https://doi.org/10.1145/369534.369540
https://doi.org/10.1109/IPDPSW.2019.00014
https://doi.org/10.1007/978-3-030-71058-3_8
https://ieeexplore.ieee.org/document/5587139

23. Santos-Martins, D., Solis-Vasquez, L., Tillack, A.F., et al.: Accelerating AutoDock4 with
GPUs and Gradient-Based Local Search. J. Chem. Theory Comput. 17(2), 1060–1073 (2021).
https://doi.org/10.1021/acs.jctc.0c01006

24. Solis, F.J., Wets, R.J.B.: Minimization by Random Search Techniques. Math. Oper. Res.
6(1), 19–30 (1981). https://doi.org/10.1287/moor.6.1.19

25. Solis-Vasquez, L.: Accelerating Molecular Docking by Parallelized Heterogeneous Comput-
ing - A Case Study of Performance, Quality of Results, and Energy-Efficiency using CPUs,
GPUs, and FPGAs. Ph.D. thesis, Technical University of Darmstadt, Germany (2019).
https://doi.org/10.25534/tuprints-00009288

26. Solis-Vasquez, L., Koch, A.: A performance and energy evaluation of opencl-accelerated
molecular docking. In: McIntosh-Smith, S., Bergen, B. (eds.) Proc. of the 5th Int. Workshop
on OpenCL, IWOCL 2017, Toronto, Canada, May 16-18, 2017. pp. 3:1–3:11. ACM (2017).
https://doi.org/10.1145/3078155.3078167

27. Solis-Vasquez, L., Koch, A.: A Case Study in Using OpenCL on FPGAs: Creating an
Open-Source Accelerator of the AutoDock Molecular Docking Software. In: Proc. of the 5th
Int. Workshop on FPGAs for Software Programmers (FSP). pp. 1–10. VDE Verlag (2018),
https://ieeexplore.ieee.org/document/8470463

28. Takizawa, H., Shiotsuki, S., Ebata, N., Egawa, R.: An OpenCL-like offload programming
framework for SX-Aurora TSUBASA. In: 20th Int. Conf. on Parallel and Distributed Com-
puting, Applications and Technologies, PDCAT 2019, Gold Coast, Australia, Dec. 5-7, 2019.
pp. 282–288. IEEE (2019). https://doi.org/10.1109/PDCAT46702.2019.00059

29. Wang, Z., Sun, H., Yao, X., et al.: Comprehensive evaluation of ten docking programs on
a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and
scoring power. Phys. Chem. Chem. Phys. 18(18), 12964–12975 (2016). https://doi.org/
10.1039/C6CP01555G

30. Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method. arXiv abs/1212.5701
(2012)

Porting and Optimizing Molecular Docking onto the SX-Aurora TSUBASA Vector...

42 Supercomputing Frontiers and Innovations

https://doi.org/10.1021/acs.jctc.0c01006
https://doi.org/10.1287/moor.6.1.19
https://doi.org/10.25534/tuprints-00009288
https://doi.org/10.1145/3078155.3078167
https://ieeexplore.ieee.org/document/8470463
https://doi.org/10.1109/PDCAT46702.2019.00059
https://doi.org/10.1039/C6CP01555G
https://doi.org/10.1039/C6CP01555G

First Experience of Accelerating a Field-Induced Chiral

Transition Simulation Using the SX-Aurora TSUBASA

Shinji Yoshida1, Arata Endo2, Hirono Kaneyasu3, Susumu Date2

© The Authors 2021. This paper is published with open access at SuperFri.org

An analysis method based on the Ginzburg-Landau equation for the superconductivity is

applied to the field-induced chiral transition simulation (FICT). However, the FICT is time con-

suming because it takes approximately 10 hours on a single SX-ACE vector processor. Moreover,

the FICT must be repeatedly performed with parameters changed to understand the mechanism

of the phenomenon. The newly emerged SX-Aurora TSUBASA, the successor of the SX-ACE pro-

cessor, is expected to provide much higher performance to the programs executed on the SX-ACE

as is. However, the SX-Aurora TSUBASA processor has changed its architecture of compute nodes

and gives users three different execution models, which leads to users’ concerns and questions in

terms of how three execution models should be selectively used. In this paper, we report the first

experience of using the SX-Aurora TSUBASA processor for the FICT. Specifically, we have devel-

oped three implementations of the FICT corresponding to the three execution models suggested

by the SX-Aurora TSUBASA. For acceleration of the FICT, improvement of the vectorization

ratio in the program execution and the efficient transfer of data to the general purpose processor

as the vector host from the vector processor as the vector engine is explored. The evaluation in

this paper shows how acceleration of the FICT is achieved as well as how much effort of users is

required.

Keywords: SX-Aurora TSUBASA, OS Offload, VH Call, VEO, vectorization ratio.

Introduction

The simulation based on the Ginzburg-Landau equation [4] is the standard way to analyze

the superconductivity in an external magnetic field. The analysis method is also applied to

study a field-induced chiral phenomenon in the superconductivity [6, 7, 12], that is, the field-

induced chiral transition simulation (FICT). In the chiral superconductivity, the superconducting

electron pairs have the orbital magnetization [14], which makes the spontaneous intrinsic fields.

The chiral orbital magnetization paramagnetically couples with the external magnetic

field, and it induces a field-induced chiral transition with generating the paramagnetic super-

current [6, 7]. The field-induced chiral phenomena do not occur in the non-chiral state which

generates the screening supercurrents diamagnetic to the external field with breaking the super-

conducting electron pairs. Thus, the field-induced chiral phenomena appear by the paramagnetic

coupling of the orbital magnetization with the external field, as the chiral nature.

Such field-induced chiral phenomena are expected in candidates of chiral superconductors [5,

9, 16], such as the ruthenium oxide Sr2RuO4 (SRO) [11]. The field-induced chiral phenomena

are theoretically clarified in the inhomogeneous superconductivity arising in SRO near interfaces

of the micro-meter size Ru-metal inclusions embedded in the eutectic SRO-Ru [10], by using the

field-induced chiral transition simulation (FICT) [6, 7].

However, the FICT is time consuming and furthermore has to be repeatedly performed

with its parameters changed. Moreover, reducing the differential width in the Ginzburg-Landau

equation is needed to analyze the dependence of the superconducting order parameter and the

vector potential on distances in more detail, and then more computation is required. In addition

1Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
2Cybermedia Center, Osaka University, Osaka, Japan
3Department of Science, University of Hyogo, Hyogo, Japan

DOI: 10.14529/jsfi210203

2021, Vol. 8, No. 2 43

to this, the lowering of temperature makes the superconductivity spread far away from the

interface in the FICT. It needs the increase of mesh-number for the distance to analyze the chiral

stability in the lower temperatures. At this point, the reduction of real time by the acceleration

is effective for the analysis extended to the lower temperature. Thus, the acceleration makes it

possible to clarify the field dependence of chiral phenomena in the lower temperatures in detail.

Until now, the SX-ACE system [3] has been used for performing the FICT, because the SX-

ACE system gives a higher performance in comparison with general purpose processors. However,

the newly-emerged SX-Aurora TSUBASA [2, 8], the successor of the SX-ACE, has changed

the architecture of the compute node. The system architecture of the SX-Aurora TSUBASA

consists of vector engines (VEs), which accelerate computation using vectorization and a vector

host (VH), which is a standard x86 server and executes the operating system’s tasks. This

system architecture provides researchers with three types of execution models which differ in

terms of how a program is executed on VE and VH. The FICT is accelerated on the SX-Aurora

TSUBASA compute node by modifying the FICT that conforms to the best model that makes

the FICT the fastest. However, the best execution model for the FICT is not clarified. Also,

what operations are needed to modify the FICT that conforms to each execution model has

not been clarified. From the perspective above, we report the first experience of accelerating

the FICT using the SX-Aurora TSUBASA. We believe that the contribution of this paper is to

present a case study of comparing the FICT based on the three execution models.

The rest of this paper is organized as follows. Section 1 shows our approach to accelerate

the FICT after briefly explaining the FICT and the SX-Aurora TSUBASA. Section 2 presents

our methods for accelerating the FICT. In Section 3, we evaluate the FICT accelerated with our

acceleration approach on the SX-Aurora TSUBASA. In Conclusion, this paper is concluded.

1. Approach to Accelerate the FICT

This section first describes an overview of the FICT and the SX-Aurora TSUBASA. Sec-

ondly, we present our approaches to accelerate the FICT on the SX-Aurora TSUBASA.

1.1. Overview of the FICT

The chiral superconducting state is denoted with two components of the superconducting

order parameter, while the non-chiral state is represented with one component [14]. The chiral

transition corresponds to the transition to the two components state by yielding the second

component in the addition to the one component. Thus, the field-induced chiral transition occurs

by inducing the second component in the application of the external field [6, 7].

The FICT computes both the two order parameter components and the vector potential.

Moreover, paramagnetic and screening supercurrents are calculated from the order parameter

and the vector potential which are obtained as results of the equation. In the FICT, the strength

of an external magnetic field is increased to simulate how the strength of the external magnetic

field affects the superconducting state at the fixed temperatures respectively. The supercon-

ducting is computed at each strength of the external magnetic field at the fixed temperatures.

That is, the dependence of two order parameter components and the vector potential on the

distance is calculated iteratively under varying parameters for an external magnetic field and a

temperature.

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

44 Supercomputing Frontiers and Innovations

Figure 1 shows a flow chart of the FICT. When the FICT starts, the initial parameters

regarding the superconducting order parameter are given. Next, the Ginzburg-Landau equation

is computed, and then the result of the equation is written to a file, which repeats until the

strength of the external magnetic field reaches a set value. After that, the parameters regarding

the superconducting order parameter are initialized to the initial parameters and the strength

of the temperature increases. When the strength of the external magnetic field and that of the

temperature reach their values which we set, the FICT finishes.

Figure 1. Flow chart of the FICT

1.2. Overview of the SX-Aurora TSUBASA

Figure 2 shows an example system architecture of the SX-Aurora TSUBASA system. A

compute node where the SX-Aurora TSUBASA processor is hosted is composed of vector host

(VH) and vector engine (VE). In the inside of the compute node, VE and VH are connected to

a PCI Bus as shown in Fig. 2. In this architecture, the computation is performed on VE and

VH works supplementarily with VE. For example, when VE requires I/O-related system calls,

VH performs such system calls instead of VE.

Figure 2. An example system architecture of the SX-Aurora TSUBASA system (A300-8)

S. Yoshida, A. Endo, H. Kaneyasu, S. Date

2021, Vol. 8, No. 2 45

Accompanied the change in the architecture, the SX-Aurora TSUBASA offers three exe-

cution models. In this paper, we refer to these three models: standard (OS Offload) execution

model, VH Call execution model, and Vector Engine Offload (VEO) execution model. Figure 3

compares these three execution models.

• In the standard execution model, a program is started on VH. After that, however, it is

mostly executed on VE. Only when the program needs to accomplish operating system

tasks, system calls are automatically offloaded to VH from VE. The advantage of this

execution model is that when researchers write the program, they do not need to know the

system architecture of the SX-Aurora TSUBASA. Furthermore, most of programs which

are executed on the SX-ACE system can be easily ported to the SX-Aurora TSUBASA

system without much modification. On the other hand, the disadvantage might be that

researchers have no way of explicitly using VH when researchers use this model.

• In the VH Call execution model, a program is initially started on VH. After that, it

is mainly executed on VE. Basically, this execution model is the same as the standard

execution model explained above but it allows users to explicitly invoke the VH Call for

requesting the processing of some program portion on VH. Thus, the system calls are

automatically offloaded to VH. In addition, some portion of calculations can be offloaded

explicitly by users to VH from VE. The merit of the VH Call execution model is that a

program containing scalar-friendly calculations is executed faster in the VH Call execution

model than in the standard execution model. On the other hand, the disadvantage of this

execution model is that researchers must have a fairly detailed knowledge of the SX-

Aurora TSUBASA composed of VH and VE as well as the program semantics regarding

this execution model.

• In the VEO execution model, a program is initially started and mainly executed on VH.

Researchers can explicitly offload some portion of the program to VE from VH. The

advantage and disadvantage of the VEO execution model are almost the same as the VH

Call execution model. Regarding the disadvantage, the program to be executed on VH

must be written in C unlike the VH Call execution model.

(a) Standard (b) VH Call (c) VEO

Figure 3. Three execution models of the SX-Aurora TSUBASA

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

46 Supercomputing Frontiers and Innovations

1.3. Computational Characteristics of the FICT

We first describe the computational characteristics of the FICT as obtained through the

program execution analysis. Next, we analyze the code that outputs the result of the Ginzburg-

Landau equation.

1.3.1. FICT execution analysis information

Analysis information on program execution is obtained with a performance analysis tool

named PROGINF [13], which is shipped with the SX-Aurora TSUBASA. Table 1 contains

Real Time (the program execution time), Vector Time (the total time taken to execute vector

operations in the program execution) and V. Op. Ratio (the vectorization ratio which is the ratio

of vector operations in the program to all operations in the program) obtained as the analysis

information on the FICT execution.

Table 2 shows the analysis information on each function composing the FICT with a perfor-

mance analysis tool named FTRACE [13] for the SX-Aurora TSUBASA, which shows Frequency

(the call count of each function in program execution), EXCLUSIVE TIME (the execution time

of each function), V. Op. Ratio (the vectorization ratio), REQ. B/F (the B/F rate (the mem-

ory bandwidth per the performance) needed by the program) and PROC.NAME (the function

name). In the case that SYS. B/Y (the rate of the highest observed memory bandwidth of

the system to the observed peak performance of the system) is smaller than REQ. B/F of the

program, the performance of the system does not achieve the peak performance of the system.

Although SYS. B/F of SX-Aurora TSUBASA is under REQ. B/F of the FICT, SYS. B/F of

SX-Aurora TSUBASA is higher than SYS. B/F of scalar processors [2]. Therefore, the FICT

is suited for SX-Aurora TSUBASA. Also, according to the results, the vectorization ratio of

the GRAD subroutine that computes the Ginzburg-Landau equation is lower than the MAIN

function. Also, the execution time of the GRAD subroutine itself is approximately five times

longer than the execution time of the MAIN program.

Table 1. FICT execution analysis

information from PROGINF

Topic Value

Real Time (sec) 1413.805725

Vector Time (sec) 418.584454

V. Op. Ratio (%) 94.480496

Table 2. FICT execution analysis information from FTRACE

Frequency EXCLUSIVE TIME [sec] (%) V. Op. Ratio REQ. B/F PROC.NAME

474965635 1416.492 (82.9) 92.43 1.86 GRAD

1 291.970 (17.1) 98.22 1.52 MAIN

474965636 1708.462 (100.0) 94.00 1.76 total

S. Yoshida, A. Endo, H. Kaneyasu, S. Date

2021, Vol. 8, No. 2 47

1.3.2. I/O characteristic of the FICT

Figure 4 shows an I/O-intensive portion contained in the FICT. The FICT is written in

Fortran. When WRITE at line 10 is executed, the data written at lines 11–14 is transferred to VH

from VE (data transfer) and then outputted to a file on VH. Data transfer occurs every time

WRITE is executed. When the FICT is executed, a loop at lines 1–17 is executed 2 times, a loop

at lines 3–16 is executed 51 times and a loop at lines 5–15 is executed 240 times. Therefore,

when the FICT is executed, data transfer occurs 24,480 times.

1 DO nt=ntmin ,ntmax ,ndt

2 ... etc. ...

3 DO nh=nhmin ,nhmax ,ndh

4 ... computing the Ginzburg -Landau equation ...

5 DO nx=1,N

6 x=dx*0.5d0*(dble(nx)+dble(nx -1))

7 ... etc. ...

8 ua=0.5d0*(ay(nx)+ay(nx -1))

9 da=(ay(nx)-ay(nx -1))/dx

10 WRITE (1110000000+100000* nt+nh ,*)

11 & x,x0 ,x1

12 & ,ev(nx -1),et(nx -1),dabs(ev(nx -1)),dabs(et(nx -1))

13 ... etc. ...

14 & ,DABS(g*(-k4*uv*dt))

15 END DO

16 END DO

17 END DO

Figure 4. A portion of I/O operations in the FICT code

2. Acceleration Approach

To understand which execution model is effective for the acceleration of the FICT, we have

modified this original FICT code to conform to the three execution models suggested by the SX-

Aurora TSUBASA architecture. In this section, we summarize how we attempted to accelerate

the original FICT code, by focusing just on the improvement of the vectorization ratio and the

efficiency improvement of I/O operations from VE to VH.

2.1. Improving the Vectorization Ratio

The vectorization ratio is an important criterion in achieving higher performance on vector

processors. Figure 5 is the portion of the original GRAD subroutine. As shown, the loop from

lines 1–4 and the loop from lines 7–10 seem to be easily combined as a single loop. According to

the developer of the FICT, lines 5 and 6 remained on purpose to keep the readability and main-

tainability of the FICT code. There sometimes exits code structures that prevent the acceleration

of execution codes in actual users’ programs and sometimes researchers as users do not want the

code to be modified because the code itself could lose the readability and maintainability.

In the FICT code, from a developer’s perspective, two loop structures exist that prevent

vectorization. In this paper, each of the two loop structures was combined so that the vectoriza-

tion ratio was improved. This acceleration approach was commonly conducted in all our three

different implementations based on the standard, VH Offload and VEO execution models.

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

48 Supercomputing Frontiers and Innovations

1 DO nx=1,N

2 fv(nx)=0.0d0

3 ... etc. ...

4 END DO

5 uv=0.5d0*(ev(1)+ev(0))

6 ... etc. ...

7 DO nx=1,N

8 uv=0.5d0*(ev(nx)+ev(nx -1))

9 ... etc. ...

10 END DO

Figure 5. A portion of the original GRAD subroutine code

2.2. Efficiency Improvement of Data Transfer

Under the SX-Aurora TSUBASA system architecture composed of VH and VE, the I/O

operations heavily affect the total performance of the application execution. This is because

the vector processor as VE is expected to be the main processor for the application execution

and the general purpose processor as VH is considered a helper processor. More specifically,

I/O operations from the code running on VE trigger I/O-related system calls in the operating

system running on VH. At the same time, VE must wait for the completion of system calls on

VH. For this reason, performing the efficient I/O operations from the code running on VE by

reducing the number of I/O operations helps developers shorten the total execution time of their

application codes.

A possible approach to realize such efficient I/O operations for acceleration is to simply

reduce the number of data transfers from VE to VH. In Fig. 7, which shows a portion of

the original FICT code, an I/O operation at lines 10–13 triggers an I/O-related system call

(Fig. 6a). We must modify this procedure as shown in Fig. 6b so that many I/O operations are

not triggered by an I/O-related system call. For this modification, we moved the I/O operations

part at lines 10–13 to the inside of the loop at lines 1–17 as shown in Fig. 4.

In the following subsections, how the reduction of data transfers is realized is explained in

each execution model in addition to the above modification.

(a) A portion of the FICT code before modification (b) A portion of the FICT code after modification

Figure 6. Procedures of I/O operations

S. Yoshida, A. Endo, H. Kaneyasu, S. Date

2021, Vol. 8, No. 2 49

1 DO nt=ntmin ,ntmax ,ndt

2 ... etc. ...

3 DO nh=ntmin ,ntmax ,ndt

4 ... computing the Ginzburg -Landau equation ...

5 DO nx=1,N

6 x=dx*0.5d0*(dble(nx)+dble(nx -1))

7 ... etc. ...

8 ua=0.5d0*(ay(nx)+ay(nx -1))

9 da=(ay(nx)-ay(nx -1))/dx

10 WRITE (1110000000+100000* nt+nh ,*)

11 & ,x

12 ... etc. ...

13 & ,DABS(g*(-k4*uv*dt))

14 END DO

15 END DO

16 CLOSE (1110000000+100000* nt+nh)

17 END DO

Figure 7. A portion of the FICT code before modification

1 DO nt=ntmin ,ntmax ,ndt

2 ... etc. ...

3 DO nh=nhmin ,nhmax ,ndh

4 ... computing the Ginzburg -Landau equation ...

5 DO nx=1,N

6 x=dx*0.5d0*(dble(nx)+dble(nx -1))

7 ... etc. ...

8 ua=0.5d0*(ay(nx)+ay(nx -1))

9 da=(ay(nx)-ay(nx -1))/dx

10 w(1,nx,nh)=x

11 ... etc. ...

12 & ,w(63,nx ,nh)=DABS(g*(-k4*uv*dt))

13 END DO

14 END DO

15 ... outputting the results ...

16 END DO

Figure 8. A portion of the FICT code after modification

2.2.1. Modification in the standard execution model

The OS Offload execution model is the standard execution model of the SX-Aurora TSUB-

ASA architecture. The merit of this standard execution model is that it is designed to be executed

as the as-is code running on the SX-ACE system without requiring developers to be aware of the

complex architecture composed of VH and VE. However, the demerit of this execution model is

that it does not allow developers to directly touch the underlying low-level I/O mechanisms. In

the standard execution model, further efforts could not be carried out.

2.2.2. Modification in the VH Call execution model

To utilize the VH Call programming semantics, the developers must write each function to

be executed on VH and VE in a separate file. Also, the developers must write such functions on

VH and VE conforming to the program semantics regarding the VH Call execution model. A

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

50 Supercomputing Frontiers and Innovations

suite of dedicated functions as shown in lines 15–18 in Fig. 10 are prepared so that the developers

utilize the VH Call execution model. The files executed on VE and written in Fortran must be

complied with nfort, and the ones on VH with gfortran. Figure 9 shows an example of Makefile

for this execution model.

Figure 10 is the code fragmentation to be executed on VE, and Fig. 11 on VH. In lines 15–18

in Fig. 10, results of computing the Ginzburg-Landau equation are transferred to VH from VE.

After that, these results are output to files on VH (Fig. 11). The result of executing this code

portion is the same result when lines 10–13 in Fig. 7 are executed.

all: VE VH

VE: a fortran file name executed on VE

nfort -o $@ $^ -lvhcall_fortran -w -report -all

VH: a fortran file name executed on VH

gfortran -o $@ $^ -fpic -shared

Figure 9. Makefile in the VH Call execution model

1 ... configuration for using VH Call ...

2 DO nt=ntmin ,ntmax ,ndt

3 ... etc. ...

4 DO nh=nhmin ,nhmax ,ndh

5 ... computing the Ginzburg -Landau equation ...

6 DO nx=1,N

7 x=dx*0.5d0*(dble(nx)+dble(nx -1))

8 ... etc. ...

9 da=(ay(nx)-ay(nx -1))/dx

10 w(1,nx,nh)=x

11 ... etc. ...

12 w(63,nx,nh)=DABS(g*(-k4*uv*dt))

13 END DO

14 END DO

15 ir=fvhcall_args_set(ca,fvhcall_intent_inout ,1,w)

16 ir=fvhcall_args_set(ca,fvhcall_intent_inout ,2,nt)

17 ir=fvhcall_invoke_with_args(sym , ca)

18 CALL fvhcall_args_clear(ca)

19 END DO

Figure 10. A portion of the FICT code on VE in the VH Call execution model

1 SUBROUTINE vh_write(w,nt)

2 DO nh=nhmin ,nhmax ,ndh

3 DO nx=1,N

4 W R I T E (1110000000+100000* nt+nh ,*)

5 & ,w(1,nx ,nh)

6 ... etc. ...

7 & ,w(63,nx ,nh)

8 END DO

9 CLOSE (1110000000+100000* nt+nh)

10 END DO

11 END SUBROUTINE vh_write

Figure 11. A portion of the FICT code on VH in the VH Call execution model

S. Yoshida, A. Endo, H. Kaneyasu, S. Date

2021, Vol. 8, No. 2 51

2.2.3. Modification in the VEO execution model

Likewise in the case of the VH Call execution model, to utilize the VEO programming

semantics, the developers must write each function to be executed on VH and VE in a separate

file. Unlike the VH Call execution model, the files to be executed on VH must be written in

C. Also, the developers must write such functions on VH and VE conforming to the program

semantics regarding the VEO execution model. A suite of dedicated functions as shown in

lines 4–8 in Fig. 13 are prepared so that the developers utilize the VEO execution model. The

files executed on VE and written in Fortran must be complied with nfort, and the ones on VH

and in C with gcc. Figure 12 shows an example of Makefile for this execution model.

Figure 13 is the code fragmentation to be executed on VH, and Fig. 14 is on VE. In lines 4–8

in Fig. 13, parameters which are required to compute the Ginzburg-Landau equation and store

results of this computation are transferred to VE. After that, the Ginzburg-Landau equation is

calculated on VE (Fig. 14). The result of executing this code portion is the same result when

lines 10–13 in Fig. 7 are executed.

all: vefortran fortran

vefortran: a fortran file name executed on VE

nfort -c -o libvefortran.o $^ /opt/nec/ve/bin/mk_veorun_static -o $@
libvefortran.o

fortran: a C file name executed on VH

gcc -o $@ $^ -I/opt/nec/ve/veos/include -L/opt/nec/ve/veos/lib64 -Wl ,-

rpath=/opt/nec/ve/veos/lib64 -lveo

Figure 12. Makefile in the VEO execution model

1 int main(){

2 ... configuration for using VEO ...

3 for(nt=ntmin; nt <= ntmax; nt=nt+ndt){

4 veo_args_set_stack(argp ,VEO_INTENT_OUT ,0,(char *)&w,sizeof(w));

5 veo_args_set_stack(argp ,VEO_INTENT_IN ,1,(char *)&nt ,sizeof(nt));

6 id = veo_call_async_by_name(ctx ,handle ,"veo_",argp);

7 veo_call_wait_result(ctx ,id ,& retval);

8 veo_args_clear(argp);

9 ... outputting the results ...

10 }

11 }

Figure 13. A portion of the FICT code on VH in the VEO execution model

2.3. Approach Summary

We have applied seven implementations of the FICT based on the above approach by fo-

cusing on the improvement of the vectorization ratio and the efficiency improvement in I/O

operations. Table 3 shows what tuning efforts are done in each implementation. OR indicates

the original code of the FICT.

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

52 Supercomputing Frontiers and Innovations

1 SUBROUTINE veo(w,nt)

2 ... etc. ...

3 DO nh=nhmin ,nhmax ,ndh

4 ... computing the Ginzburg -Landau equation ...

5 DO nx=1,N

6 x=dx*0.5d0*(dble(nx)+dble(nx -1))

7 ...etc. ...

8 w(1,nx ,nh)=x

9 ... etc. ...

10 w(63,nx ,nh)=DABS(g*(-k4*uv*dt))

11 END DO

12 END DO

13 END SUBROUTINE veo

Figure 14. A portion of the FICT code on VE in the VEO execution model

Table 3. The FICT codes we have implemented

Execution model ID
Vectorization improvement

(Section 2.1)

I/O improvement

(Section 2.2)

Standard
OR no no

A1 yes no

VH Call

B1 yes no

B2 no yes

B3 yes yes

VEO

C1 yes no

C2 no yes

C3 yes yes

3. Evaluation

As summarized in Section 2.3, we have developed seven implementations of the FICT based

on three execution models suggested by the SX-Aurora TSUBASA by focusing on the improve-

ment of the vectorization ratio and the efficiency of the I/O operations. In this section, we

compare these three execution models in terms of performance and ease of programming. In all

evaluations, we used a single core of processors because the maximum loop length in the FICT,

240, was smaller than the vector length of SX-Aurora TSUBASA, 256.

3.1. Experimental Environments

For the evaluation purpose, the SX-Aurora TSUBASA system the detail specification of

which is shown in Tab. 4 and Tab. 5 was used. “Vector length” is the number of elements

that VE can perform per instruction. The system is composed of 2 Intel Xeon Gold 6126 [15]

with 96 GB memory as VH and SX-Aurora TSUBASA processor Type 10B as 8 VEs. Figure 2

illustrates the inside architecture of the system (A300-8). The Intel processors as VH and VEs

are connected with PCI (Gen 3)16. In this experiment, a pair of VH and VE were used.

S. Yoshida, A. Endo, H. Kaneyasu, S. Date

2021, Vol. 8, No. 2 53

Table 4. Spec. of VE

VE type Type 10B

Vector length 256

Number of cores 8

Frequency 1.4 GHz

Performance / core (DP) 268.8 GFlops

Performance / core (SP) 537.6 GFlops

LLC capacity 16 MB

Memory bandwidth 1.2 TB/s

Memory capacity 48 GB

Table 5. Spec. of VH

Processor
Intel Xeon Gold 6126

× 2 socket

Number of cores 12 × 2

Frequency 2.6 GHz

Performance / core (DP) 83.2 GFlops

Performance / core (SP) 166.4 GFlops

LLC capacity 19.25 MB × 2

Memory bandwidth 128 GB/s × 2

Memory capacity 96 GB × 2

3.2. Performance of the SX-Aurora TSUBASA

First, we measured the execution time of the original FICT code (OR) on the SX-ACE

system, the SX-Aurora TSUBASA system and a compute node of the OCTOPUS system (the

Xeon 6126 system) [1], which has the same processors as the VH of the SX-Aurora TSUBASA

system. The specification of the SX-ACE is shown in Tab. 6. Figure 15 shows the execution

time of the FICT on the SX-ACE system, the SX-Aurora TSUBASA system and the Xeon

6126 system. The graph indicates that the execution time of OR on the SX-Aurora TSUBASA

system was 1413.81 seconds, on the SX-ACE system the execution time was 2451.61 seconds

and on the Xeon 6126 system was 7828.43 seconds. According to this result, the SX-Aurora

TSUBASA system delivers 1.7 times higher performance to the FICT than the SX-ACE system.

Moreover, this result indicates that SX-Aurora TSUBASA is more suited for the FICT than

scalar processors. Although the performance per core of SX-Aurora TSUBASA is almost four

times that of SX-ACE, the execution time of the FICT is reduced by only about 40 % on the SX-

Aurora TSUBASA system. As stated in Section 1.3.1, since SYS. B/F of SX-Aurora TSUBASA

is smaller than REQ. B/F of the FICT, the performance of SX-Aurora TSUBASA does not

achieve the theoretical performance of SX-Aurora TSUBASA.

Table 6. Spec. of the SX-ACE system

Vector length 256

Number of cores 4

Performance / core (DP) 64 GFlops

Memory bandwidth 256 GB/s

Memory capacity 64 GB

Figure 15. The execution time of OR on the SX-ACE

system, the SX-Aurora TSUBASA system and the Xeon

6126 system

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

54 Supercomputing Frontiers and Innovations

3.3. Effect of Improving the Vectorization Ratio

Next, we observed and compared how the vectorization ratio and the execution time were

improved with the improvement of the vectorization ratio. Figures 16 and 17 show the vectoriza-

tion ratio and the execution time of OR and A1. The vectorization ratio of the FICT increased

from 94.4 % to 99.4 %. The execution time of A1 was reduced to 447.02 seconds. This result

indicates that the improvement of the vectorization ratio reduced the execution time of A1 by

68.4 % compared to the original code of the FICT (OR).

Figure 16. The vectorization ratio of the FICT Figure 17. The execution time with improve-

ment of the vectorization ratio

3.4. Effect of the Efficiency Improvement of Data Transfer

Next, we observed and compared how the number of data transfers was reduced and the

execution time was improved with the approach summarized in Section 2.2. Table 7 shows the

number of data transfers of OR, B2 and C2. The number of data transfers of OR was 24,480 and

that of B2 and C2 was 2. Figure 18 shows the execution time of OR, B2 and C2. The execution

time of B2 was 1372.26 seconds and that of C2 was 1320.19 seconds. This result indicates that

reduction of data transfers in the VH Call and VEO execution models slightly reduced the

execution time of the FICT compared to that of the original FICT on the standard execution

model.

Table 7. The number of data transfers

ID
The number of

data transfers

OR 24480

B2 2

C2 2

Figure 18. Execution time with reduction of data trans-

fers

S. Yoshida, A. Endo, H. Kaneyasu, S. Date

2021, Vol. 8, No. 2 55

3.5. Performance Acceleration of the Three Execution Models

Next, we measured the execution time of OR, A1, B3 and C3 to investigate the three imple-

mentations based on the three execution models by focusing on the improvement of vectorization

and I/O operational efficiency. Figure 19 shows the result of this measurement. The execution

time of A1 was reduced to 447.02 seconds. On the other hand, the execution time of B3 was

446.07 seconds and that of C3 was 443.29 seconds. This result indicates that the implementa-

tions of the FICT based on the VH Call and VEO execution models were slightly superior in

performance to that based on the standard execution model as the result of our tuning effort

that focused on the improvement of the vectorization ratio and the I/O operational efficiency.

Figure 19. The execution time of the FICT with acceleration approaches

3.6. Code Modification for Acceleration

We investigated how many lines must be modified to implement seven FICT codes in Tab. 8.

The number of lines modified to implement A1, B1 and C1 is the same. In the VH Call and

VEO execution models, the number of lines modified to implement B2 and C2 was approximately

4.2 times larger than A1. To implement C3, we had to rewrite the code written in Fortran to be

executed on VH to C.

Table 8. Modification for the FICT code

Execution model ID
The number of

modified lines
Programming language modification

Standard
OR 0 no

A1 42 no

VH Call

B1 42 no

B2 175 no

B3 217 no

VEO

C1 42 no

C2 180 no

C3 222 yes

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

56 Supercomputing Frontiers and Innovations

Conclusion

In this paper, we reported the experience of accelerating the FICT using the newly emerged

SX-Aurora TSUBASA. Specifically, we applied seven implementations focusing on the three

execution models which the SX-Aurora TSUBASA suggested as well as the improvement of

vectorization and I/O operations as tuning methods. Hopefully, this will alleviate the FICT users’

concerns and questions about how the three execution models are to be selected. Our evaluation

showed that the execution time of the implementation conforming to the VEO execution model

was 0.83 % shorter in comparison with the implementation conforming to the standard execution

model (OS Offload), which we suggested as the standard execution model. On the other hand,

we also showed that the VEO and VH Call execution models require us to write or modify

the code by recognizing the structure of the SX-Aurora TSUBASA system, while the standard

execution model allows us to easily accelerate the FICT running on the SX-ACE system, which

focuses on the improvement of the vectorization and I/O operations. In the case of the FICT,

the VEO execution model is the best if researchers respect performance. However, the standard

execution model would be the best if researchers respect readability and maintainability of the

FICT.

Acknowledgements

We thank the Cybermedia Center (CMC) of Osaka University which provided the SX-ACE

system and the SX-Aurora TSUBASA system. This research is partly supported by the Joint

Usage and Research (No. jh200032) of JHPCN. Also, we thank the technical team of the NEC at

CMC for useful advice and direction. We are grateful to Kouki Otsuka for valuable discussions

on the theoretical aspects of chiral superconductivity. This work is supported by the JSPS

Core-to-core program No. JPJSCCA20170002.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Cybermedia Center of Osaka University: OCTOPUS. http://www.hpc.cmc.osaka-u.ac.

jp/octopus/, accessed: 2021-08-08

2. Egawa, R., Fujimoto, S., Yamashita, T., et al.: Exploiting the Potentials of the Second Gen-

eration SX-Aurora TSUBASA. In: 2020 IEEE/ACM Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems (PMBS). pp. 39–49. IEEE (2020).

https://doi.org/10.1109/PMBS51919.2020.00010

3. Egawa, R., Komatsu, K., Momose, S., et al.: Potential of a modern vector supercomputer for

practical applications: performance evaluation of SX-ACE. The Journal of Supercomputing

73(9), 3948–3976 (2017). https://doi.org/10.1007/s11227-017-1993-y

4. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Journal of Experimen-

tal and Theoretical Physics 20, 1064–1082 (1950), English translation in: L.D. Landau:

S. Yoshida, A. Endo, H. Kaneyasu, S. Date

2021, Vol. 8, No. 2 57

http://www.hpc.cmc.osaka-u.ac.jp/octopus/
http://www.hpc.cmc.osaka-u.ac.jp/octopus/
https://doi.org/10.1109/PMBS51919.2020.00010
https://doi.org/10.1007/s11227-017-1993-y

Collected papers. Oxford: Pergamon Press, 546–568 (1965). https://doi.org/10.1016/

B978-0-08-010586-4.50078-X

5. Grinenko, V., Ghosh, S., Sarkar, R., et al.: Split superconducting and time-reversal

symmetry-breaking transitions in Sr2RuO4 under stress. Nature Physics 17(6), 748–754

(2021). https://doi.org/10.1038/s41567-021-01182-7

6. Kaneyasu, H., Enokida, Y., Nomura, T., et al.: Features of Chirality Generated by Para-

magnetic Coupling to Magnetic Fields in the 3 K-Phase of Sr2RuO4. In: JPS Conference

Proceedings 30, 011039-1-6 (2020). https://doi.org/10.7566/JPSCP.30.011039

7. Kaneyasu, H., Enokida, Y., Nomura, T., et al.: Properties of the H-T phase diagram of the

3-K phase in eutectic Sr2RuO4-Ru: Evidence for chiral superconductivity. Physical Review

B 100(21), 214501 (2019). https://doi.org/10.1103/PhysRevB.100.214501

8. Komatsu, K., Momose, S., Isobe, Y., et al.: Performance Evaluation of a Vector Super-

computer SX-Aurora TSUBASA. In: SC18: International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis. pp. 685–696. IEEE / ACM (2018).

https://doi.org/10.1109/SC.2018.00057

9. Luke, G.M., Fudamoto, Y., Kojima, K.M., et al.: Time-reversal symmetry-breaking super-

conductivity in Sr2RuO4. Nature 394(6693), 558–561 (1998). https://doi.org/10.1038/

29038

10. Maeno, Y., Ando, T., Mori, Y., Ohmichi, E., et al.: Enhancement of Superconductivity

of Sr2RuO4 to 3 K by Embedded Metallic Microdomains. Physical Review Letters 81(17),

3765–3768 (1998). https://doi.org/10.1103/PhysRevLett.81.3765

11. Maeno, Y., Hashimoto, H., Yoshida, K., et al.: Superconductivity in a layered perovskite

without copper. Nature 372(6506), 532–534 (1994). https://doi.org/10.1038/372532a0

12. Matsumoto, M., Sigrist, M.: Quasiparticle States near the Surface and the Domain Wall in

a p x± ip y -Wave Superconductor. Journal of the Physical Society of Japan 68, 994–1007

(1999). https://doi.org/10.1143/JPSJ.68.994

13. NEC: PROGINF/FTRACE Users Guide. https://www.hpc.nec/documents/sdk/pdfs/

g2at03e-PROGINF_FTRACE_User_Guide_en.pdf, accessed: 2020-12-07

14. Sigrist, M., Ueda, K.: Phenomenological theory of unconventional superconductivity. Re-

views of Modern Physics 63(2), 239–311 (1991). https://doi.org/10.1103/RevModPhys.

63.239

15. Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large

Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomputing Fron-

tiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

16. Xia, J., Maeno, Y., Beyersdorf, P.T., et al.: High Resolution Polar Kerr Effect Measurements

of Sr2RuO4: Evidence for Broken Time-Reversal Symmetry in the Superconducting State.

Physical Review Letters 97(16), 167002 (2006). https://doi.org/10.1103/PhysRevLett.

97.167002

First Experience of Accelerating a Field-Induced Chiral Transition Simulation Using the...

58 Supercomputing Frontiers and Innovations

https://doi.org/10.1016/B978-0-08-010586-4.50078-X
https://doi.org/10.1016/B978-0-08-010586-4.50078-X
https://doi.org/10.1038/s41567-021-01182-7
https://doi.org/10.7566/JPSCP.30.011039
https://doi.org/10.1103/PhysRevB.100.214501
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1038/29038
https://doi.org/10.1038/29038
https://doi.org/10.1103/PhysRevLett.81.3765
https://doi.org/10.1038/372532a0
https://doi.org/10.1143/JPSJ.68.994
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1103/PhysRevLett.97.167002
https://doi.org/10.1103/PhysRevLett.97.167002

Evaluating the Performance of OpenMP Offloading on the NEC
SX-Aurora TSUBASA Vector Engine

Tim Cramer1 , Boris Kosmynin1 , Simon Moll2, Manoel Römmer1,
Erich Focht2 , Matthias S. Müller1

c© The Authors 2021. This paper is published with open access at SuperFri.org

The NEC SX-Aurora TSUBASA vector engine (VE) follows the tradition of long vector pro-
cessors for high-performance computing (HPC). The technology combines the vector computing
capabilities with the popularity of standard x86 architecture by integrating it as an accelerator.
To decrease the burden of code porting for different accelerator types, the OpenMP specification
is designed to be single parallel programming model for all of them. Besides the availability of
compiler and runtime implementations, the functionality as well as the performance is impor-
tant for the usability and acceptance of this paradigm. In this work, we present LLVM-based
solutions for OpenMP target device offloading from the host to the vector engine and vice versa
(reverse offloading). Therefore, we use our source-to-source transformation tool sotoc as well as
the native LLVM-VE code path. We assess the functionality and present the first performance
numbers of real-world HPC kernels. We discuss the advantages and disadvantage of the different
approaches and show that our implementation is competitive to other GPU OpenMP runtime
implementations. Our work gives scientific programmers new opportunities and flexibilities for the
development of scalable OpenMP offloading applications for SX-Aurora TSUBASA.

Keywords: HPC, OpenMP, offloading, reverse offloading, vector computing, performance.

Introduction
Nowadays, computer simulations form together with theory and experiment the third pillar

of scientific research. The resulting on-growing demand for large compute capabilities led to wide
use and acceptance of accelerator technologies. The NEC SX-Aurora TSUBASA vector engine
(VE) is one promising solution for the acceleration of compute-intensive simulation codes. The
technology integrates long vector computing into a x86 environment as a PCIe card.

However, in order to make this compute power accessible for scientific applications, support
for a great range of scalable parallel programming paradigms is required. OpenMP [24] is one
of these powerful solutions, which is in addition very convenient due to the compiler directive
approach, which allows incremental application porting. The NEC compiler is a specialized cross-
compiler for the VE, it can only produce VE code that runs natively on the device and lacks
support for x86_64 compilation. It comes with native OpenMP 4.5 support for the VE but lacks
support for OpenMP target device offloading. Since not all parts of an application might deliver
a good performance on a vector engine (e.g. file IO, data initialization), a programmer might
want to offload only the compute-intensive and vectorizable parts of the code, which is in general
supported by the OpenMP target device constructs. In order to enable this functionality we
presented a first implementation in [12]. Although this approach is functional and shows a good
performance (as we will show in this paper), there are some disadvantages. Thus, we will also
present a LLVM-VE path which uses a native VE backend which is integrated into LLVM.

Even in large real-world HPC applications there are typically only a couple of hotspots which
consume most of the time. When comparing runtime profiles on different architectures, a perfor-
mance engineer might identify different hotspots for the same application and data set. On the
1IT Center, RWTH Aachen University, Germany
2NEC Corporation, Stuttgart, Germany

DOI: 10.14529/jsfi210204

2021, Vol. 8, No. 2 59

https://orcid.org/0000-0002-6928-1766
https://orcid.org/0000-0002-4273-9212
https://orcid.org/0000-0003-0655-7136
https://orcid.org/https://orcid.org/0000-0003-2545-5258

VE this is especially true for those code regions or functions which do not vectorize. This means
that a single not-well suited function can limit the overall performance of an application signif-
icantly. To avoid such cases and give the programmer the opportunity to run poorly vectorized
functions on the x86 vector host (VH), we also present the possibility of reverse offloading. This
means we start the entire program on the VE and only parts are offloaded back to the VH. All
our implementations and documentations are open source and freely available [4].

To summarize, in this paper we describe the following contributions:
• We present a native LLVM-VE path to enable OpenMP target device offloading to the VE.
• We present the first OpenMP reverse offloading from the VE to the VH.
• We discuss the advantages and disadvantages of the different approaches.
• We evaluate the functionality of all approaches.
• We assess the performance of OpenMP offloading kernels to the VE with relevant benchmark

suites and compare them to current GPU implementations.
The paper is organized as follows: the remaining section gives a brief overview on the SX-

Aurora TSUBASA vector engine and the basic concepts of OpenMP target device offloading.
Section 1 explains the basic concepts of the different approaches. These concepts are evaluated
in detail in Section 2 in terms of functionality and performance. Section 3 gives an overview on
related work, before we conclude our work.

SX-Aurora TSUBASA Vector Engine

The Vector Engine (VE) was released in 2018 in the form factor of a PCIe card containing
a processor with on-chip memory built of six HBM2 stacks, four or eight layers high, with a
total of 24 or 48GB RAM and a total memory bandwidth of either 750GB/s (24GB model) or
1.2TB/s [29]. The second generation VE20 released in 2020 has an increased memory bandwidth
of 1.53TB/s. The VEs re-implement the long vector processors ISA of the NEC SX architecture
that combines a 2048 bit SIMD unit with an 8 cycle deep pipeline resulting in vector registers
with a length of 256 ∗ 64 bits = 16384 bits. Unlike classical SIMD units the VE ISA contains a
vector length register that controls how many elements of a vector register will be processed in
a vector instruction. The vector processor has either eight or ten cores with a scalar processing
unit (SPU) and a vector processing unit (VPU) featuring 64 architectural vector registers, three
FMA, two integer ALU and a SQRT/DIV vector pipeline. The cores share a common 16MB four-
way skewed associative last level cache that acts as a vector cache, while each core has private
L1 and L2 caches dedicated for their SPUs. The clock frequency of the VE is either 1400 or
1600MHz resulting in the peak performance of 3TFLOPS in double precision and 6TFLOPS in
single precision with ten cores. For this paper we used the vector engine models VE10B.

The VEs are hosted in x86_64 servers fitting up to eight accelerator cards. They can be linked
to large clusters by EDR Infiniband interconnects which are used by the VEs in a PeerDirect
manner. The vector host (VH) runs Linux while the VE Operating System (VEOS) functionality
is offloaded to the host and implemented as a user space daemon. The core programming models
are: (1) native VE programs written in C, C++, Fortran and running entirely on the VEs while
offloading their system calls to the VH; (2) native VE programs executing parts of the program
on the VH through reverse offloading; (3) host programs offloading kernels to the VE; (4) hybrid
MPI programs running processes on both VEs and VH. Fine grained parallel execution on the VE
is achieved through vectorization, at coarse, core level programmers can use OpenMP, pthreads
or multiple MPI processes.

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

60 Supercomputing Frontiers and Innovations

OpenMP Target Device Offloading

OpenMP [24] is known as de-facto standard for shared memory parallel programming. In
addition, target device offloading for compute-intense code parts to accelerators is possible since
version 4.0. In order to be generic, the OpenMP specification does not define the concrete hardware
architecture for such target devices. Thus, a target device may be a GPU, a DSP, an Intel Xeon
Phi, a x86 system, a vector engine or a logical execution engine running on the same physical
processor. Although threads can not migrate between devices, a target device may or may not
share the hardware resources like the memory or cores. An OpenMP implementation requires
both compiler and runtime library support.

Offloading regions are explicitly expressed by target constructs in the code (i.e., user direc-
tives). Since the target device may have a different instruction set architecture (ISA), all static
variables used and all functions called within the scope of target region have to be declared by
using declare target directives. Within a target device region, all other OpenMP directives are
allowed (e.g., for parallel regions). In order to address the specific hardware architecture hierarchy
of typical target devices like GPUs, OpenMP offers the teams construct, which creates multi-
ple teams of threads. The distribute construct allows scheduling a set of teams for execution
of a loop. While the threads within a thread team can be synchronized by barrier constructs,
no such primitive exists to synchronize multiple thread teams (similar to CUDA threadblocks in
NVIDIA GPUs). Since the performance for target devices like the SX-Aurora TSUBASA is driven
by vector instructions, OpenMP offers the simd construct in order to signal the compiler that the
corresponding loop is data parallel and can be vectorized. The iterations of two or more nested
loops can be collapsed into one larger logical iteration space with the collapse clause, which
might increase the performance due to a bigger vector length. For convenience reasons, OpenMP
defines a set of combined constructs as shortcuts for specifying one construct nested inside another
one (e.g. the target teams distribute parallel for simd directive). A standard-compliant
OpenMP implementation has to implement all these combined constructs.

To ensure data consistency between target host and the target device data environment,
the map clause can be added to different target-related constructs. Furthermore, the target data
construct maps variables to the data environment without executing any user code. Data transfers
to the target device memory and allocations in the target device memory are issued according
to a reference count mechanism. Corresponding map-type-modifiers or constructs like target
update can make those data operations explicit. The target enter data and target exit data
constructs explicitly map variables to the target device data environment without using a data
region (i.e. a scope).

1. OpenMP Target Device Offloading Designs
In [12] we presented a first solution realizing OpenMP Target Device Offloading from a vector

host (VH) to the SX-Aurora TSUBASA vector engine (VE) by leveraging the LLVM infrastruc-
ture. One of the main concepts of this approach is to make use of the Clang compiler frontend of
the base language (e.g., C/C++) and the x86 backend in order to generate the code parts for the
VH. Furthermore, the frontend can pass the LLVM Intermediate Representation (LLVM IR) to
the VE backend in order to generate the code parts for the VE (see Fig. 1). In general, the frontend
parses the code, generates LLVM IR, optimizes the IR and passes the code to a corresponding
backend. This backend generates the code for the target platform. For OpenMP Target Device

T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller

2021, Vol. 8, No. 2 61

LLVM Optimizer
ARM

Backend

X86
Backend

PowerPC
Backend

PTX
Backend

PTX

Power
PC

ARM

x86

Clang C/C++
Frontend

CUDA C/C++
Frontend

LLVM IR

LLVM IR

Cuda
C/C++

C/C++

VE
Backend

VE

Figure 1. High level view of the LLVM toochain

Fat Binary

LLVM
generated
host code

Data

Xeon Phi Code
GPU Code

DSP

Aurora Code

libomptarget
library

DSP
offload RTL

Aurora
offload RTL

GPU
offload RTL

Xeon Phi
offload RTL

Xeon
Phi

GPU

DSP

Aurora

Figure 2. The LLVM Offloading Infrastructure, based on [7, 12]

Offloading this process is more complex, because the driver needs to invoke different tool chains
for the same set of input files [7]. Parts of the codes will be processed multiple times in order to
generate the code for all OpenMP target devices and the host device. Furthermore, corresponding
code for all dependencies to required data structures, types and functions will be generated for
each device. All these partial outputs of each tool chain will be integrated as separated code paths
into the same fat binary (see Fig. 2). In addition to the compiler support, a runtime library is
required in order to execute the integrated code on the target device. In LLVM this is handled
by the libomptarget library, which selects at runtime a target device for the execution of the of-
floaded code. We developed a corresponding plugin based on the NEC VE Offloading (VEO [15])
interface. However, our current implementation benefits from the new AVEO [16] implementation,
which shows a better performance compared to our original library.

Since the development of compiler backends is a complex task, no LLVM backend for VEs was
available at first. In order to enable OpenMP Target Device Offloading early our first approach
was a source-to-source transformation technique (see Section 1.1). Meanwhile, a LLVM backend
for VE is available, which enables also OpenMP target device offloading on a native path for the
first time (see Section 1.2). Furthermore, we discuss an approach for reverse offloading from VE
to a x86 VH (see Section 1.3).

1.1. Source-To-Source Transformation with sotoc

For target devices which do not have an LLVM backend available, an additional compiler is
required for the code generation. In our source-to-source approach [12] we outline all OpenMP

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

62 Supercomputing Frontiers and Innovations

libomptarget
(LLVM)

AVEO
OpenMP

(NEC)

Target Kernel
(ncc compiled)

Target Kernel
(ncc compiled)

Host
VE

Application
(Clang compiled)

(a) VH to VE offloading with sotoc

libomptarget
(LLVM)

AVEO
libOpenMP

(LLVM)

Target Kernel
(Clang compiled)

Target Kernel
(Clang compiled)

Host
VE

Application
(Clang compiled)

(b) LLVM-VE code path for VH to VE offloading

libomptarget
(LLVM)

VHCall
libOpenMP

(LLVM)

Target Kernel
(Clang compiled)

Target Kernel
(Clang compiled)

VE
Host

Application
(Clang compiled)

(c) LLVM-VE code path for VE to VH offloading

Figure 3. Comparison of the different offloading opportunities

target regions as well as all functions, types and global variables required on the target device by
using our Clang-based tool sotoc. An example for the function outlining is shown in Fig. 4. These
outlined code fragments are passed to the external compiler (e.g., the NEC compiler) such that
only the required parts are compiled for the target device. Figure 3a provides an overview of an
application that was compiled with sotoc offloading. The target kernels are extracted with sotoc
from the original source code and compiled with the official NEC C compiler (ncc). The VE code
uses the proprietary OpenMP implementation of NEC that comes with the compiler. The x86
host application itself is compiled with Clang.

One advantage of this approach is that it is very generic and completely vendor-independent.
In general, it can be applied for any target device type which has a C compiler and a native
OpenMP runtime available. Thus, the existing infrastructure is leveraged and a corresponding
LLVM toolchain with a LLVM backend is not required. Furthermore, this approach benefits from
the optimization capabilities of the existing compiler and delivers good code performance.

A disadvantage of this approach is that it does not fit well into the LLVM workflow. Since our
source-to-source tool relies on the internal abstract syntax tree representation (AST) which is not
fully exposed to external tooling via a stable interface, it is error-prone and might break with any
LLVM internal update. In this context, we encountered one limitation in our code transformation.
C11 allows so-called anonymous enums and structs, which means that we can never refer to these
anywhere else in the code by their type name. However, we need to pass data to the outlined
function as shown in Fig. 5, for which we need the data’s type name. Due to the Clang’s AST

T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller

2021, Vol. 8, No. 2 63

pragma omp declare target
int n = 10240;
pragma omp end declare target
void saxpy (){

float a = 42.0f; float b = 23.0f; float *x, *y;
// Allocate and init x, y
// ...
pragma omp target map(to:x[0:n], a) map(tofrom :y[0:n])
pragma omp parallel for
for (int i = 0; i < n; ++i){

y[i] = a*x[i] + y[i];
}

}

sotoc

int n = 10240;
void __omp_ofld_b73b_saxpy_l4 (int n, float * y, float * __sotoc_var_a , float * x) {

float a = * __sotoc_var_a ;
pragma omp parallel for
for (int i = 0; i < n; ++i) {

y[i] = a * x[i] + y[i];
}
* __sotoc_var_a = a;

}

Figure 4. Basic function outlining with our source code transformation technique [12]

void foo () {
enum { VAL1 = 1, VAL2 , VAL3 , VAL4} scalar_enum = VAL1;
pragma omp target map(tofrom : scalar_enum)
{

scalar_enum = VAL4;
}
printf ("%d",scalar_enum);

}

sotoc

enum { VAL1 = 1, VAL2 , VAL3 , VAL4} scalar_enum = VAL1;
void __omp_ofld_b73b_foo_l5 (< ANOM_ENUM_TYPE > * __sotoc_var_scalar_enum)
{

enum <ANOM_ENUM_TYPE > scalar_enum = * __sotoc_var_scalar_enum ;
scalar_enum = VAL4;
* __sotoc_var_scalar_enum = scalar_enum ;

}

Figure 5. Limitation in our source-to-source approach: Anonymous enum

representation, the fact that we have to hand over the data as pointer and that we can not name
<ANOM_ENUM_TYPE>, we do not have a solution to generate valid C-code in this case. Although,
a programmer can work around this limitation by naming the struct or enum, not all codes
will compile out of the box. Another minor disadvantage is that the compilation time might be
slightly slower, because we add the source-to-source transformation and the compiler analysis in
two different compiler frontends. Due to these downsides, LLVM-VE code generation is preferable
in the long term, when the performance is as good as for the source-to-source approach.

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

64 Supercomputing Frontiers and Innovations

1.2. LLVM-VE Code Generation

The standard way to implement OpenMP target device offloading with LLVM is to use
LLVM IR and a regular LLVM backend for target code generation. This is what we call the
LLVM-VE code path in contrast to the source-to-source sotoc path described in Section 1.1. The
LLVM-VE path also relies on the open source OpenMP runtime of LLVM for constructs running
on the target, such as parallel for. Both code paths use the VE plugin of libomptarget.

Figure 3b shows an overview of an OpenMP target application that is compiled with the
LLVM-VE native code path. All code is generated by LLVM, and the LLVM OpenMP runtime is
running on the device. Only AVEO, the actual offloading library of NEC, is not part of the LLVM
stack.

The LLVM-VE code path has two core advantages: First, it relies on LLVM IR and so any
frontend of LLVM, for example the upcoming Flang [2] Fortran frontend, can immediately use it
for target offloading. Second, the LLVM OpenMP runtime is used by many different targets. This
means the implementation of the OpenMP constructs have a lot of exposure to testing, which
makes the implementation very compliant. We show this quantitatively on the OMPVV test suite
in Section 2.1.

The main disadvantage of LLVM-VE is that LLVM is not tuned for the VE. This shows
the comparison to the official NEC compilers for VE, which are specifically tailored for this
architecture.

1.3. Reverse Offloading

The VE ecosystem provides offloading from the VE to the host machine with the VHCall [3]
reverse offloading library. We provide this as a standard LLVM offloading path with another
libomptarget plugin for reverse offloading. This setup is contrary to the usual offloading paradigm,
in reverse offloading the application runs on the accelerator and kernels are offloaded to the host
machine. However, regarding OpenMP this is standard-compliant, because the specification does
not define the concrete heterogeneous architecture. In this case the host machine becomes the
target device with the accelerator being the host device.

Figure 3c gives an overview of the OpenMP target reverse offloading structure. All code is
generated by LLVM, and the LLVM OpenMP runtime is running on the device. Only VHcall, the
actual offloading library is not part of the LLVM stack. In essence, except for its use of VHCall
instead of AVEO, this is the same as in Fig. 3b with the use of VH and VE swapped.

2. Evaluation
In this section we evaluate the performance of the SX-Aurora TSUBASA and validate the

completeness and correctness of the source-to-source, the LLVM-VE and the reverse offloading
approaches. We perform comparative measurements on three systems. All VE measurements have
been executed on a NEC SX-Aurora TSUBASA Type 10B with 8 cores running at 1.4GHz and
a memory bandwidth of 1.2TB/s. Those measurements are hereafter referred to as SX. The
accompanying base system consists of two Intel Xeon Silver 4108 CPUs at 1.8GHz with 16 cores
in total. Measurements referring to x86 were performed on the same system, with the exception
of runs including a GPGPUs. For those measurements, referred to as V100, a dual-socket system
with two Intel Xeon Platinum 8160 CPUs at 2.1GHz with 48 cores in total, and two Nvidia Volta
V100 GPUs was used. One of those V100s is actually used for the benchmarks.

T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller

2021, Vol. 8, No. 2 65

2.1. OMP Validation & Verification Suite

The OMP Validation & Verification Suite [13, 14] is used to evaluate the completeness and
OpenMP specification adherence of the source-to-source, the LLVM-VE and reverse offloading
approach for OpenMP code offloading. The suite was developed by researchers at the University of
Delaware and the Oak Ridge National Laboratory, and published in 2018 as part of the Exascale
project. Since its publication it continues to be well maintained and to receive additions and
fixes [5]. Even though the suite is comprised of C, C++ and Fortran tests, only C and C++ tests
were used for the following evaluation, as Fortran code is not supported by either implementation.

Table 1 shows the results of the evaluation, as a sum total of tests passed and tests failed
with errors at compile and runtime, separated for the C and C++ tests. We can see that both
x86→SX paths behave comparably. The LLVM native path, however, has no compile errors, as
this path allows for syntax-agnostic transformation of the code. As sotoc does not support C++
code, none of the tests compile. The native LLVM-VE path, however, does support C++ code
compilation and runs all but one C++ tests. The test_enter_data_classes_inheritance test fails.
Clang warns at compile time that incorrect mapping may occur in this test because the mapped
object is a class with a non-trivial copy constructor. This SOLLVE test may be unsound.

In the following we discuss the main roots of the failures. Due to the limited scope of this
publication, we will focus on all runs pertaining to the SX-Aurora. For the source-to-source im-
plementation we can ascribe all errors to one of three main reasons, not counting the lack of
C++ support. The first one, which covers all compile-time errors, are the so called anonymous
structs. Those are unnamed structs, and our implementation is unable to properly process them,
as we describe in Section 1.1 and one can see in Fig. 5. Since we do not have a solution for this
issue, it will stay as a limitation for the source-to-source approach. The second reason, responsi-
ble for most of the runtime errors, is memory miss-management. This fault occurs mainly when
dealing with multiple devices, and/or with asynchronous code execution. However, multi-device
and asynchronous execution support is available and does generally work properly. This problem
is also present in the LLVM-VE native path, which suggest an issue with the OpenMP plugin,
rather than any specific implementation. The third reason is limited construct or clause support in
OpenMP 4.5. As per the method described in Section 1.1, we split combined target constructs up
and discard the target. This method leaves, in very rare cases, a vital construct or clause unable
to be used any further, as some constructs are not allowed to be used in an stand-alone fashion.
Furthermore, clauses pertaining to those constructs also have to be discarded.

2.2. EPCC Syncbench Microbenchmark

All parallel programming paradigms introduce some additional overhead in terms of compute
cycles (e.g., for the communication, synchronization or data management). In order to achieve
good performance and scalable applications, it is important to reduce this overhead to a minimum.
The overhead introduced with OpenMP constructs does not rely on the paradigm itself, but more
on the quality of the compiler and runtime implementation and the optimization for the target
architecture. In order to assess the state of the different runtime implementations of selected key
OpenMP constructs, we used the syncbench benchmark, which is part of the EPCC OpenMP
Microbenchmark Suite [9] and measures those constructs requiring synchronization. We focused on
the syncbench, because these would show limited scalability and include the most common used
constructs. In addition to the benchmarks in the original suite we used an extension as presented

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

66 Supercomputing Frontiers and Innovations

Table 1. Test summary for the OMP Validation and Verification Suite (total of 109 C
and 14 C++ tests), where “A→ B” means offloaded from target host A to target
device B. The source-to-source path is marked in brackets. All other tests are using
the native LLVM / LLVM-VE path

x86→SX x86→SX x86→V100 x86→x86 SX→x86
(sotoc)

C Passed 91 98 105 97 101
Compile Error 7 0 0 0 0
Runtime Error 11 11 4 12 8

C++ Passed 0 13 14 13 12
Compile Error 14 0 0 1 0
Runtime Error 0 1 0 0 2

start = omp_get_wtime ();
pragma omp target
int j;
for (j=0; j< innerreps ; j++){

delay (delaylength);

}
t_ref = (omp_get_wtime () - start);

(a) Reference time tref of innerreps executions
with a delay

start = omp_get_wtime ();

int j;
for (j=0; j< innerreps ; j++){

pragma omp target
{

delay (delaylength);
}

}
t_ofld = (omp_get_wtime () - start);

(b) Offloading time tofld of innerreps target
regions with a delay

Figure 6. EPCC-like kernels to determine the overhead of a target construct

in [11] in order to assess the overhead of the target construct. Here, we applied the same procedure
as it is done for the other constructs. Basically, we compare the measured reference time tref of
an offloaded run including a delay function with the measured time tofld of multiple offloaded
functions with the same delay (see Fig. 6). The overhead O of a target region is determined as

O = tofld − tref

innerreps . (1)

Furthermore, we ported the benchmarks into an offload version in order to measure the overheads
of the selected constructs nested into a target region. Here, the expectation is that the over-
head between the offloaded and original version is not significant for the same OpenMP runtime
implementation.

Table 2 shows the results, where we used the median of 20 repetitions. Depending on the
target device, a different number of threads has been used: 8 threads on the SX-Aurora, 16
on the x86 system and the implementation default on the V100. Since the expected overhead
increases with growing numbers of threads, we only make qualitative comparison between the
different devices and implementations. However, this can be done best by using all available
cores of the underlying hardware, because this is the most typical use case. As expected, we can
see that the overheads of the NEC OpenMP runtime for a parallel for (6.77µs vs. 7.08µs), a
barrier (3.74µs vs. 3.79µs) and a reduction (7.01µs vs. 7.51µs) are comparable when executing
on the SX-Aurora with and without a target region (s. rows SX (NEC) and x86→SX (NEC)).

T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller

2021, Vol. 8, No. 2 67

The same holds for the LLVM OpenMP runtime on x86 (x86 vs. x86→x86) and the LLVM
OpenMP runtime on SX-Aurora (SX (LLVM) vs. x86→SX(LLVM)), especially considering the
order of magnitude (microseconds). This shows that the runtime implementations do not introduce
additional overhead due to the nesting of OpenMP constructs into target regions.

Table 2. EPCC Syncbench and target construct overhead in µs. Columns
without a “→” show the results of the original benchmarks without any
target region. Columns with a “→” show the results for the modified version
with constructs nested into a target region, where “A→ B” means offloaded
from target host A to target device B. The measured OpenMP runtime
implementation is denoted in brackets

target parallel for barrier reduction
SX (NEC) - 6.77 3.74 7.01
SX (LLVM) - 724.4 309.8 608.5
SX→x86 (LLVM) 173.47 14.34 4.36 6.83
x86 (LLVM) - 7.27 1.87 7.50
x86→x86 (LLVM) 96.45 7.97 2.47 8.94
x86→SX (NEC) 163.34 7.08 3.79 7.51
x86→SX (LLVM) 124.99 815.24 339.07 663.55
x86→V100 (LLVMa) 130.18 4242.64 2.35 34.73

Furthermore, we see that the NEC OpenMP runtime on SX-Aurora is very competitive,
compared to the LLVM OpenMP runtime on x86. However, the overheads of the LLVM OpenMP
runtime on the SX-Aurora are two orders of magnitudes higher than the overheads of the NEC
OpenMP runtime. This clearly shows that the LLVM runtime was optimized for x86 architectures,
but not for vector engines. The main reason here is that the LLVM OpenMP runtime internally
uses fast user-space locking (futex). On the VE this is executed as a system call. Due the fact
that the VE does not run an operating system on the device, a call back to the VH has to be done,
which is expensive. To fix this performance issue, one has to replace each futex by a mechanism
which uses hardware synchronization registers instead. This limits the performance especially for
small regions, because the overhead is constant for a given number of threads. Since the influence
for bigger regions is smaller, the LLVM OpenMP runtime can still provide a good performance
for many applications.

The comparison to the LLVM OpenMP runtime on a Nvidia V100 shows that the NEC
runtime has comparable overheads for barrier constructs and reduction clauses. The overhead
for a parallel for construct is about three orders of magnitudes higher (∼ 4242µs vs. ∼ 7µs)
which limits the performance for OpenMP programs using this combined construct. In contrast
to the LLVM runtime on the SX-Aurora, the LLVM runtime on V100 is not just a cross-compiled
version of the original runtime, but a special implementation which is integrated into LLVM. The
comparison of the overhead for the target constructs shows that all runtime implementations
are comparable. Furthermore, one has to keep in mind that the order of magnitude is small
given the fact that a context switch between host and target device is done. The overhead for
the first target construct might be much higher in all cases. However, for typical OpenMP

aSpecial OpenMP runtime implementation for the GPU which is integrated into LLVM.

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

68 Supercomputing Frontiers and Innovations

applications with either multiple target regions or one long running target region this will not
limit the performance significantly.

2.3. SPEC Accel Benchmarks

The SPEC Accel Benchmark Suite [17, 18] provides a set of benchmarks for hardware acceler-
ators using different programming paradigms like OpenCL, OpenACC and OpenMP for C/C++
and Fortran. We selected the benchmarks written in C and OpenMP in order to assess
1. the functionality of real-world kernels in addition to the pure construct evaluation as presented

in Section 2.1;
2. the performance of different implementations on different systems.

We measured the offloading configurations listed in Tab. 3 with the appropriate number of threads
and systems as mentioned in Section 2. Since the LLVM-VE implementation is still under devel-
opment and thus not competitive in terms of performance at the moment, we do not consider this
approach here.

Functionality All benchmarks but the 504.polbm run successfully when offloading from x86
to x86. Since this implementation is meant as reference implementation only (i.e., uses a logical
unit as target device on the same host) the usability is not limited in general. However, it still
shows some interesting results. Furthermore, the table clearly shows full functionality for our
source-to-source transformation-based approach and the LLVM GPU implementation. All seven
benchmarks run successfully. For benchmark 554.pcg to compile and run successfully with the
GNU implementation on the Nvidia V100, the size of the arrays had to be included in the map
clause. This was done by defining the SPEC_NEED_EXPLICIT_SIZE compatibility macro. Although,
the benchmark 514.pomriq compiles successfully, it crashes during the runtime (GNU).

The SPEC Accel Benchmark Suite is not a typical use case for reverse offloading from the
SX-Aurora back to the x86 vector host, because the most compute-intensive parts of the codes
are offloaded from the vector engine to the vector host. However, the results show that this
feature is also usable for real-world kernels. To the best of our knowledge this is the only available
implementation which enables such a functionality with OpenMP. Codes which vectorize, but for
some exceptions (e.g., IO code parts), can benefit from this convenience.

Performance For all the results we used different configuration files in order to get the best
performance for the given compiler, OpenMP runtime and target device. For instance we set the
USE_INNER_SIMD compatibility macro when using the NEC compiler. This flag ensures that
the innermost loop gets vectorized as shown in Fig. 7. Here, a different (combined) constructs
without simd is used on the outer loop. Both code snippets are semantically identical, but the
performance differs, because in some of the more complex loops the NEC compiler will not vec-
torize the code with the outer SIMD directive and thus only delivers scalar performance. The
performance for 503.postencil and 557.pcsp is increased by one order of magnitude by applying
this modification.

The comparison between the source-to-source transformation-based approach (which uses the
NEC compiler for the target device code) shows good performance results in comparison to the
V100 GPU. Five of the benchmarks reach a better or similar performance on the SX-Aurora. The
504.polbm benchmark is at least twice as fast as on a V100 and the 570.pbt about one order of
magnitude. However, the benchmarks 514.pomriq, 552.pep are one to two orders of magnitude

T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller

2021, Vol. 8, No. 2 69

Table 3. Execution time of the SPEC Accel benchmarks in seconds, where
“A→ B” means offloaded from target host A to target device B and runtime
errors are marked with “RE”. The used compiler version is denoted in brackets, or
LLVM upstream otherwise

Benchmark x86→SX x86→V100 x86→V100 x86→x86 SX→x86
(NEC 3.0.8) (LLVM 12) (GCC 9)

503.postencil 21.31 16.8 145 103 137
504.polbm 18.8 36.7 60.1 RE 94.4
514.pomriq 3211 31.4 RE 11822 11976
552.pep 1923 71.1 140 639 667
554.pcg 91.6 88.6 80.2 124 240
557.pcsp 81.6 101 232 167 253
570.pbt 19.6 486 122 114 154

pragma omp target teams distribute \
parallel for simd

for (...) {

for (...) {
// Parallel code

}
}

(a) Outer SIMD

pragma omp target teams distribute \
parallel for

for (...) {
pragma omp simd
for (...) {

// Parallel code
}

}

(b) Inner SIMD

Figure 7. Example of inner SIMD usage

slower. The reason for that is the fact that 552.pep does not vectorize due to dependencies in the
innermost loops. In one of the hotspots of the code three inner loops are nested into an outer
parallel loop. In the first inner (short) loop we have in addition to the dependencies between the
loop iterations a function call and some conditionals which complicate the vectorization further.
In the second inner loop we have also unresolvable loop dependencies. The third inner loop at
least vectorizes partially. However, we have a non-consecutive access depending on a conditional
to an array structure which makes a scatter instruction necessary. The 514.pomriq uses an array
of structures with four single precision scalar values such that the vectorization is also not optimal
due to the memory access pattern. As consequence, these two benchmarks do not fit to the SX-
Aurora architecture, because vectorization is the key for a good performance.

The comparison between the two different compiler / runtime implementations for the V100
shows, that the LLVM compiler outperforms the GNU compiler in most cases. For 503.postencil
this is even an order of magnitude. However, 570.pbt is a factor of 4 faster with the GNU compiler.
As before the x86 to x86 measurements are meant as a reference only. However, although the
comparison of two Intel Xeon Silver CPU to a V100 or SX-Aurora are not completely fair, we see
that especially 503.postencil, 514.pomriq and 570.pbt benefit from OpenMP offloading to a GPU
or vector engine.

1Measured with a deviating configuration: NEC 2.5.1

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

70 Supercomputing Frontiers and Innovations

3. Related Work
Besides OpenMP target device offloading, other approaches exist in order to execute compute-

intensive code parts on a SX-Aurora TSUBASA vector engine. The direct use of the low-level APIs
VEO [15], AVEO [16] or VHCall [3] gives the programmer full control of the data transfers and
the kernel execution. Noack et al. [23] built on top of the portable Heterogeneous Active Messages
(HAM) a high-level C++-only framework for SX-Aurora TSUBASA offloading. While all of the
previous approaches are non-standard, Takizawa et al. present a OpenCL-like [26] programming
framework [27]. Ke et al. recently presented a first SYCL implementation [19] for SX-Aurora
TSUBASA, which also allows kernel offloading with a single-source programming model.

OpenMP Target device offloading infrastructures, prototypes and implementations exist also
for other devices like the Intel Xeon Phi [22], the Texas Instruments Keystone II [21], Nvidia
GPUs [8] or AMD GPUs [1]. Parts of the LLVM infrastructure work presented by Bertolli et al. [8]
form the basis for parts of our results. In [25], Sommer et al. presented an implementation for
OpenMP offloading to FPGA accelerators. Their proof-of-concept implementation is similar to our
approach, although the technical realization slightly differs. Furthermore, we also support all kinds
of target-related constructs (e.g., teams and combined directives), while their prototype focuses on
the target construct. Another FPGA prototype implementation has been presented by Knaust
et al. [20]. In their approach they are using the OpenCL backend for the bitstream generation
instead of function outlining or IR code generation. Álvarez et al. [6] present an infrastructure
which allows to embed the source code in addition to the device-specific code in the fat binary.
This work describes an alternative offloading methodology, which only requires little support from
the host compiler similar to our approach.

In a recent experience report Tian et al. [28] presented the idea of a portable GPU runtime
in order to have support for Nvidia and AMD GPUs. This replacement library can be shipped
in Linux distributions LLVM packages, which lowers the entry barrier for OpenMP offloading,
because no vendor-specific SDKs are required. Although implementations for reverse offloading
for heterogeneous systems are available [10], we presented, to the best of our knowledge, the first
OpenMP implementation which gives the programmer full flexibility for target device offloading
from the host system to the accelerator card or vice versa. The OpenMP Offloading evaluation
suite presented in the work of Diaz et al. [13] was a great support for us in order to improve and
validate our offloading implementations for SX-Aurora TSUBASA.

Conclusion
The heterogeneity trend in modern supercomputers is driven by the requirement for large

compute capabilities and led to a broader range of accelerator types. From the users perspec-
tive performance portability of HPC applications is mandatory for the usability and acceptance
of those different types. Due to the portability and convenient use, OpenMP is known as the
de-facto standard for shared memory parallel programming. For the same reasons it can also be-
come more popular for applications which require target device offloading to different kinds of
accelerators. However, this assumes a broad support and availability of corresponding OpenMP
implementations for many accelerator architectures.

In this paper, we presented three different LLVM-based approaches which enable OpenMP
target device offloading from the x86 vector host to the SX-Aurora TSUBASA vector engine or
vice versa. The source-to-source approach shows already a very convenient usability and a very

T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller

2021, Vol. 8, No. 2 71

good performance on the VE for many real-world kernel applications. Furthermore, the approach
is very competitive compared to available GPU OpenMP target device offloading implementations.
This approach has the potential to be generic and compiler-independent for other devices with
a C compiler available. The native LLVM-VE approach is still under development and requires
some more performance improvements. However, we have shown that it already has a very good
usability, because it generates correct code for most of the tests. Furthermore, this approach can
overcome the current limitations of our source-to-source solution. Especially, it already enables
the usage of C++ programs and will allow Fortran code generation in future. The third approach
is the first full functional OpenMP implementation which allows reverse offloading from the VE
to x86 VH.

Since all of these approaches are available open source and as pre-compiled packages, we
believe that we provide flexible solutions for scientists who want to use the SX-Aurora TSUBASA
vector engine with OpenMP target device offloading. As a future step we will improve the im-
plementations in order to complete the offloading infrastructure and make it even more reliable,
efficient and portable to arbitrary target device architectures.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References
1. AOMP GitHub repository. https://github.com/ROCm-Developer-Tools/aomp, accessed:

2021-06-24

2. Flang GitHub repository. https://github.com/flang-compiler/f18-llvm-project, ac-
cessed: 2021-06-24

3. Getting Started with VH Call - libsysve. https://www.hpc.nec/documents/veos/en/
libsysve/md_doc_VHCall.html, accessed: 2021-06-24

4. NEC & RWTH Aachen University GitHub repositories. https://github.com/sx-aurora-dev,
https://github.com/RWTH-HPC, https://rwth-hpc.github.io/sx-aurora-offloading,
accessed: 2021-06-24

5. Sollve_vv GitHub repository. https://github.com/SOLLVE/sollve_vv, accessed: 2021-06-
24

6. Álvarez, Á., Ugarte, Í., Fernández, V., Sánchez, P.: OpenMP Dynamic Device Offloading in
Heterogeneous Platforms. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.)
OpenMP: Conquering the Full Hardware Spectrum. Lecture Notes in Computer Science, vol.
11718, pp. 109–122. Springer (2019). https://doi.org/10.1007/978-3-030-28596-8_8

7. Antao, S.F., Bataev, A., Jacob, A.C., et al.: Offloading Support for OpenMP in Clang
and LLVM. In: Proceedings of the Third Workshop on LLVM Compiler Infrastructure in
HPC, Salt Lake City, UT, USA, Nov. 14, 2016. pp. 1–11. LLVM-HPC, IEEE (2016). https:
//doi.org/10.1109/LLVM-HPC.2016.006

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

72 Supercomputing Frontiers and Innovations

https://github.com/ROCm-Developer-Tools/aomp
https://github.com/flang-compiler/f18-llvm-project
https://www.hpc.nec/documents/veos/en/libsysve/md_doc_VHCall.html
https://www.hpc.nec/documents/veos/en/libsysve/md_doc_VHCall.html
https://github.com/sx-aurora-dev/llvm-project/tree/hpce/develop
https://github.com/RWTH-HPC/llvm-project/tree/aurora-offloading-prototype
https://rwth-hpc.github.io/sx-aurora-offloading
https://github.com/SOLLVE/sollve_vv
https://doi.org/10.1007/978-3-030-28596-8_8
https://doi.org/10.1109/LLVM-HPC.2016.006
https://doi.org/10.1109/LLVM-HPC.2016.006

8. Bertolli, C., Antao, S.F., Bercea, G.T., et al.: Integrating GPU Support for OpenMP Offload-
ing Directives into Clang. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. ACM (2015). https://doi.org/10.1145/2833157.2833161

9. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proc. of
the 1st European Workshop on OpenMP. pp. 99–105. Lund, Sweden (1999)

10. Chen, C., Yang, W., Wang, F., et al.: Reverse Offload Programming on Heterogeneous
Systems. IEEE Access 7, 10787–10797 (2019). https://doi.org/10.1109/ACCESS.2019.
2891740

11. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: OpenMP Programming on Intel Xeon
Phi Coprocessors: An Early Performance Comparison. In: Proceedings of the Many-core
Applications Research Community (MARC) Symposium at RWTH Aachen University. pp.
38–44 (2012)

12. Cramer, T., Römmer, M., Kosmynin, B., et al.: OpenMP Target Device Offloading for the SX-
Aurora TSUBASA Vector Engine. In: Wyrzykowski, R., Deelman, E., Jack Dongarra, K.K.
(eds.) Parallel Processing and Applied Mathematics: 13th International Conference, PPAM
2019. Theoretical Computer Science and General Issues, vol. 12043, pp. 237–249. Springer
(2020). https://doi.org/10.1007/978-3-030-43229-4_21

13. Diaz, J.M., Pophale, S., Friedline, K., et al.: Evaluating Support for OpenMP Offload Fea-
tures. In: Proceedings of the 47th International Conference on Parallel Processing Companion.
pp. 31:1–31:10. ICPP ’18, ACM (2018). https://doi.org/10.1145/3229710.3229717

14. Diaz, J.M., Pophale, S., Hernandez, O., et al.: OpenMP 4.5 Validation and Verification Suite
for Device Offload. In: Evolving OpenMP for Evolving Architectures, IWOMP 2018. Lecture
Notes in Computer Science, vol. 11128, pp. 82–95. Springer (2018). https://doi.org/10.
1007/978-3-319-98521-3_6

15. Focht, E.: VEO and PyVEO: Vector Engine Offloading for the NEC SX-Aurora Tsubasa. In:
Resch, M.M., Kovalenko, Y., Bez, W., et al. (eds.) Sustained Simulation Performance 2018
and 2019. pp. 95–109. Springer (2020). https://doi.org/10.1007/978-3-030-39181-2_9

16. Focht, E.: Speeding Up Vector Engine Offloading with AVEO. In: Resch, M.M., Wossough,
M., Bez, W., et al. (eds.) Sustained Simulation Performance 2019 and 2020. pp. 35–47.
Springer (2021). https://doi.org/10.1007/978-3-030-68049-7_3

17. Juckeland, G., Brantley, W.C., Chandrasekaran, S., et al.: SPEC ACCEL: A standard ap-
plication suite for measuring hardware accelerator performance. In: Jarvis, S.A., Wright,
S.A., Hammond, S.D. (eds.) High Performance Computing Systems. Performance Modeling,
Benchmarking, and Simulation - 5th International Workshop, PMBS 2014. Lecture Notes
in Computer Science, vol. 8966, pp. 46–67. Springer (2014). https://doi.org/10.1007/
978-3-319-17248-4_3

18. Juckeland, G., Hernandez, O.R., Jacob, A.C., et al.: From Describing to Prescribing Par-
allelism: Translating the SPEC ACCEL OpenACC Suite to OpenMP Target Directives. In:
Taufer, M., Mohr, B., Kunkel, J.M. (eds.) High Performance Computing. ISC High Perfor-
mance 2016. Lecture Notes in Computer Science, vol. 9945, pp. 470–488. Springer (2016).
https://doi.org/10.1007/978-3-319-46079-6_33

T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller

2021, Vol. 8, No. 2 73

https://doi.org/10.1145/2833157.2833161
https://doi.org/10.1109/ACCESS.2019.2891740
https://doi.org/10.1109/ACCESS.2019.2891740
https://doi.org/10.1007/978-3-030-43229-4_21
https://doi.org/10.1145/3229710.3229717
https://doi.org/10.1007/978-3-319-98521-3_6
https://doi.org/10.1007/978-3-319-98521-3_6
https://doi.org/10.1007/978-3-030-39181-2_9
https://doi.org/10.1007/978-3-030-68049-7_3
https://doi.org/10.1007/978-3-319-17248-4_3
https://doi.org/10.1007/978-3-319-17248-4_3
https://doi.org/10.1007/978-3-319-46079-6_33

19. Ke, Y., Agung, M., Takizawa, H.: NeoSYCL: A SYCL Implementation for SX-Aurora TSUB-
ASA. In: The International Conference on High Performance Computing in Asia-Pacific Re-
gion. p. 50–57. HPC Asia 2021, ACM (2021). https://doi.org/10.1145/3432261.3432268

20. Knaust, M., Mayer, F., Steinke, T.: OpenMP to FPGA Offloading Prototype Using OpenCL
SDK. In: 2019 IEEE International Parallel and Distributed Processing SymposiumWorkshops
(IPDPSW). pp. 387–390. IEEE (2019). https://doi.org/10.1109/IPDPSW.2019.00072

21. Mitra, G., Stotzer, E., Jayaraj, A., Rendell, A.: Implementation and Optimization of the
OpenMP Accelerator Model for the TI Keystone II Architecture. In: Using and Improving
OpenMP for Devices, Tasks, and More, IWOMP 2014. Lecture Notes in Computer Science,
vol. 8766, pp. 202–214. Springer (2014). https://doi.org/10.1007/978-3-319-11454-5_15

22. Newburn, C.J., Dmitriev, S., Narayanaswamy, R., et al.: Offload Compiler Runtime for the
Intel R© Xeon Phi Coprocessor. In: 2013 IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and Phd Forum, Cambridge, MA, USA, May 20-24, 2013.
pp. 1213–1225. IEEE (2013). https://doi.org/10.1109/IPDPSW.2013.251

23. Noack, M., Focht, E., Steinke, T.: Heterogeneous Active Messages for Offloading on the
NEC SX-Aurora TSUBASA. In: 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). pp. 26–35. IEEE (2019). https://doi.org/10.1109/
IPDPSW.2019.00014

24. OpenMP Architecture Review Board: OpenMP Application Program Interface, Version 5.0
(2018)

25. Sommer, L., Korinth, J., Koch, A.: OpenMP device offloading to FPGA accelerators. In:
2017 IEEE 28th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), Seattle, WA, USA, July 10-12, 2017. pp. 201–205. IEEE (2017). https:
//doi.org/10.1109/ASAP.2017.7995280

26. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A Parallel Programming Standard for Het-
erogeneous Computing Systems. Computing in Science Engineering 12(3), 66–73 (2010).
https://doi.org/10.1109/MCSE.2010.69

27. Takizawa, H., Shiotsuki, S., Ebata, N., Egawa, R.: An OpenCL-Like Offload Programming
Framework for SX-Aurora TSUBASA. In: 2019 20th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT). pp. 282–288. IEEE (2019).
https://doi.org/10.1109/PDCAT46702.2019.00059

28. Tian, S., Chesterfield, J., Doerfert, J., Chapman, B.: Experience Report: Writing a Portable
GPU Runtime with OpenMP 5.1 (2021)

29. Yamada, Y., Momose, S.: Vector Engine Processor of NEC’s Brand-New Supercomputer
SX-Aurora TSUBASA. Hot Chips Symposium on High Performance Chips (2018), accessed:
2021-06-24

Evaluating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUBASA...

74 Supercomputing Frontiers and Innovations

https://doi.org/10.1145/3432261.3432268
https://doi.org/10.1109/IPDPSW.2019.00072
https://doi.org/10.1007/978-3-319-11454-5_15
https://doi.org/10.1109/IPDPSW.2013.251
https://doi.org/10.1109/IPDPSW.2019.00014
https://doi.org/10.1109/IPDPSW.2019.00014
https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/PDCAT46702.2019.00059

Performance andPowerAnalysis of aVectorComputing System∗

Kazuhiko Komatsu1 , Akito Onodera2, Erich Focht3 , Soya Fujimoto4,

Yoko Isobe4, Shintaro Momose4, Masayuki Sato2 , Hiroaki Kobayashi2

c© The Authors 2021. This paper is published with open access at SuperFri.org

The performance of recent computing systems has drastically improved due to the increase in

the number of cores. However, this approach is reaching the limitation due to the power constraints

of facilities. Instead, this paper focuses on a vector processing with long vector length that has a

potential to realize high performance and high power efficiency. This paper discusses the potential

through the optimization of two benchmarks, the Himeno and HPCG benchmarks, for the latest

vector computing system SX-Aurora TSUBASA. The architecture of SX-Aurora TSUBASA owes

the high efficiency to making good of its long vector length. Considering these characteristics,

various levels of optimizations required for a large-scale vector computing system are examined

such as vectorization, loop unrolling, use of cache, domain decomposition, process mapping, and

problem size tuning. The evaluation and analysis suggest that the optimizations improve the sus-

tained performance, power efficiency, and scalability of both benchmarks. Therefore, it is clarified

that the SX-Aurora TSUBASA architecture can achieve higher power efficiency due to its high

sustained memory bandwidth paired with the long vector computing.

Keywords: SX-Aurora TSUBASA, optimization, vector computing, power efficiency, Himeno

benchmark, HPCG.

Introduction

The performance of recent high-performance computing (HPC) systems has been remarkably

improved. One of the main factors is the increase in the number of nodes. A large number of nodes

are clustered into an HPC system. For example, Supercomputer Fugaku, the top 1 system in the

TOP500 ranking as of November 2020, is equipped with 158,976 computing nodes and 7,630,848

cores [5]. The large number of nodes brings the improvement of the peak performance. The other

factor is the improvement of a core in a processor. The improvement of a core performance is

mainly due to the improvement of vector processing. Vector processing has been adopted by

various recent processors in shape of SIMD units, AVX-512 instruction architecture (ISA) for

Intel Xeon, AVX-2 ISA for AMD EPYC. GPUs from NVIDIA and AMD support vectorization

in the SIMT manner, while Fujitsu A64FX implements the ARM SVE as SIMD units with a

vector ISA. The NEC SX dedicated vector processors implement a long vector ISA combining

SIMD with pipelining.

The performance growth comes with a considerable increase in the power consumption of

HPC systems. Due to the limitation of the power supply capacity of each system, the conventional

approach to improve the performance by simply increasing the number of nodes is reaching the

limit. For the design of future HPC systems, a paradigm shift to another new approach is

essential to maximize performance within limited power constraints.

∗This paper is an extended version of the following two papers, A. Onodera, et al., “Optimization of the Himeno

Benchmark for SX-Aurora TSUBASA,” Proceedings of International Symposium on Benchmarking, Measuring

and Optimizing (Bench20), 2020, and K. Komatsu, et al., “Performance Evaluation of a Vector Supercomputer SX-

Aurora TSUBASA,” Proceedings of the International Conference for High Performance Computing, Networking,

Storage, and Analysis (SC18), 2018, by adding optimizations of HPCG and evaluations of the Himeno and HPCG

benchmarks on large vector computing systems.
1Cyberscience Center, Tohoku University, Miyagi, Japan
2Graduate School of Information Sciences, Tohoku University, Miyagi, Japan
3NEC Deutschland GmbH, Germany
4NEC Corporation, Japan

DOI: 10.14529/jsfi210205

2021, Vol. 8, No. 2 75

https://orcid.org/0000-0003-4463-8359
https://orcid.org/0000-0003-0655-7136
https://orcid.org/0000-0002-4186-5014
https://orcid.org/0000-0002-3350-1413

This paper focuses on a computing system that uses a long vector ISA, which is one of the

most promising technologies for high power efficiency. To exploit the potential of the computing

system, this paper takes an approach to the enhancement of the sustained performance by

the optimizations for not only a single node but also multiple nodes on a vector computing

system. So far, there have been many efforts for the single node optimizations for a long vector

ISA to accelerate HPC applications [10, 13, 19, 20]. Especially, focusing on a high data supply

capability to cores in a vector processor, many memory-intensive HPC applications such as

computational fluid dynamics simulation [22] have been accelerated. This paper examines NEC’s

latest vector system named SX-Aurora TSUBASA that adopts commodity interconnects such

as InfiniBand for inter-node communication [24, 30]. Since multiple node optimizations as well

as the single-node optimizations are important, this paper optimizes, two benchmark programs,

the Himeno [1] and HPCG [2, 9, 17] benchmarks by applying not only the single optimizations

such as vector optimizations, loop unrolling, and efficient use of the cache, but also the multiple

node optimizations such as appropriate process mapping, tuning of domain decomposition. By

performance evaluation and analysis in terms of sustained performance, scalability, and power

consumption, the power efficiency of a large-scale SX-Aurora TSUBASA is investigated.

The contributions of this paper are the following.

1. The potential of a large-scale vector computing system SX-Aurora TSUBASA is investi-

gated. By applying optimizations to the Himeno and HPCG benchmarks, the effectiveness

of the optimizations is discussed using evaluations on two generations of SX-Aurora TSUB-

ASA.

2. The power efficiency of the vector computing system SX-Aurora TSUBASA is quantitatively

discussed by detailed power analysis.

The rest of this paper is organized as follows. Section 1 explains a large-scale vector com-

puting system of SX-Aurora TSUBASA. Section 2 describes optimizations of the Himeno and

HPCG benchmarks for SX-Aurora TSUBASA. Section 3 discusses the effectiveness of the op-

timization and investigates the power efficiency of SX-Aurora TSUBASA through evaluation.

Section 4 introduces related work. Section 4 describes the conclusions of this paper.

1. Overview of Vector Computing Systems

1.1. SX-Aurora TSUBASA Vector Computing System

NEC SX is a series of vector supercomputer systems that has been continuously developed

since 1983. SX-Aurora TSUBASA is the latest vector computing system based on not only

the long term experience and accumulated knowledge but also new strategies that improve the

flexibility and usability.

Figure 1 shows two generations of SX-Aurora TSUBASA. Figure 1a sketches the first gen-

eration of SX-Aurora TSUBASA called an A300-8 model. One Vector Host (VH) node consists

of one VH and eight Vector Engines (VEs). Eight of the first generation VEs are connected to

one VH through two 16-lane PCI Express (PCIe) generation 3.0 switches. The eight VEs are

divided into two VE groups. Four VEs in each VE group and one InfiniBand EDR HCA are

connected to each PCIe switch.

Figure 1b depicts the second generation of SX-Aurora TSUBASA called a B401-8 model.

Eight of the second generation of VEs are used in the B401-8 model. The eight VEs are divided

Performance and Power Analysis of a Vector Computing System

76 Supercomputing Frontiers and Innovations

(a) An A300-8 model (b) A B401-8 model

Figure 1. Two generations of SX-Aurora TSUBASA

into four VE groups. Two VEs in a VE group are connected to a PCIe generation 3.0 switch.

The two InfiniBand HDR HCAs are connected to a CPU through 16-lane PCIe generation 4.0.

There are four paths to communicate among processes on SX-Aurora TSUBASA: com-

munication within a VE node, communication within a VE group, communication among VE

groups, and communication among VHs. Since each path has different bandwidth and latency, it

is necessary to optimize parallel computing considering the difference of communication paths.

A VH is a common x86 Linux node equipped with an x86 processor such as Intel Xeon and

AMD EPYC. A VE is a dedicated vector processor attached to a VH through PCI Express.

An application is basically executed on a VE as a primary processor responsible for main cal-

culations. A VH mainly manages VEs and performs OS-related tasks such as system calls from

a VE. The OS-related tasks are transparently offloaded to a VH from a VE. This transparent

offload enables a programmer to use the vector processor without any special effort such as the

specifications of computational kernels and OS-related tasks. Furthermore, this execution model

of SX-Aurora TSUBASA can reduce frequent data transfers between a VE and a VH. Such data

transfers become one of the major bottleneck factors on an ordinary accelerator.

Moreover, SX-Aurora TSUBASA supports two explicit offload mechanisms: VH call and

VEO (VE offload). VH call can offload scalar-friendly computations such as serial computation

and system calls to a VH from a VE by explicitly specifying a part of an application to be

offloaded. On the other hand, VEO is used for programs executed on a VH as a primary processor.

By VEO, a part of an application is offloaded to a VE, and the VE acts as a secondary processor,

which is close to the execution model of an ordinary accelerator. Using VEO, vector-friendly

computations such as main computations are explicitly offloaded to a VE from a VH. These

offloading mechanisms allow the SX-Aurora TSUBASA to support various execution models.

This flexibility contributes to improvements of usability and effective usage of the computational

resources by considering characteristics of applications and processors.

1.2. Vector Engine

A VE is a vector processor that mainly contributes to the system performance based on its

vector computing capability. Figure 2 shows an architecture of a VE. The architecture of two

generations of VE is the same. The VE is equipped with eight vector cores. As the core perfor-

mance of VE Type 10B called VE 10B is 537.6 Gflop/s for single-precision (SP) floating-point

calculations, the socket performance reaches 4.30 Tflop/s. In the case of the second generation

of VE Type 20B called VE 20B, the core performance is 614.4 Gflop/s (SP), resulting in the

socket performance of 4.92 Tflop/s. The vector length of each vector core is 256 double-precision

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 77

Figure 2. Architecture of a VE

floating-point elements. It is much longer than that of recent x86 processors which have the

SIMD length of 8 double-precision words in 512-bit SIMD units. The eight vector cores share a

total 16 MB last level cache (LLC). Each core and the LLC are connected by a two-dimensional

mesh network. Furthermore, six High Bandwidth Memory (HBM) modules work together as

the main memory [18]. VE 10B and VE 20B use HBM2 [7] and HBM2E [26], respectively. As a

result, their memory bandwidths reach 1.22 TB/s and 1.53 TB/s, which are much higher than

those achieved with conventional DDR memory modules.

An optional configuration mode of the VE is the partitioning mode. In partitioning mode,

vector cores, LLC, and main memory are virtually partitioned into two same capability segments.

A VE can be treated as two independent partitioning nodes. Since these nodes are isolated from

each other, conflicts of the communication between LLC and vector cores can be reduced. Thus,

the partitioning mode is useful for an application whose bottleneck is the LLC bandwidth. On

the other hand, one vector core can use only the half of memory bandwidth and capacity of

the VE processor. Because of this trade-off, the partitioning mode should be used considering

characteristics of target applications.

1.3. Multiple Levels of Bandwidths of SX-Aurora TSUBASA

In order to examine the various memory levels bandwidths of SX-Aurora TSUBASA, pre-

liminary evaluations are conducted. Figure 3a shows the peer-to-peer network bandwidths of

the four communication paths using the osu bw kernel of the OSU Micro-Benchmarks [3]. The

vertical axis shows the bandwidth when the message size is 512 KB. The horizontal axis shows

the communication paths on the B401-8 systems. This figure shows that the network bandwidth

is fast in the order of communication within a VE, within a VE group, with different VE groups,

and between a VH node. Therefore, to efficiently exploit the potential of a system, it is nec-

essary to take care of the differences in the communication bandwidths. Since the bandwidths

are different among various paths, the communication that requires high bandwidth should use

high bandwidth paths, e.g., by localizing communication as much as possible.

Figure 3b shows the memory bandwidth using the triad kernel of the STREAM bench-

mark [4]. The vertical axis shows the stream memory bandwidth. The horizontal axis shows

the tested processor types. VE 10B, VE 20B, two sockets of Intel Xeon Gold 6126, called Xeon

6126, and two sockets of AMD EPYC 7702 are used as x86 processors. Nvidia TESLA V100 and

A100 are used as GPUs. This figure shows that VE 20B and A100 achieve the highest memory

bandwidths. Although the memory bandwidths of VE 10B and V100 are lower than those of VE

20B and A100, they are higher than those of two sockets of Xeon 6126 and two sockets of EPYC

Performance and Power Analysis of a Vector Computing System

78 Supercomputing Frontiers and Innovations

1

10

100

1000

within VE between VEs

in the same PCIe SW

between VEs

in different PCIe SW

between VHs

B
an

d
w

id
th

 (
G

B
/s

)

(a) Peer-to-peer communication bandwidth

0

200

400

600

800

1000

1200

1400

1600

VE 10B VE 20B Xeon 6126 EPYC 7702 V100 A100

S
T

R
E

A
M

 b
an

d
w

id
th

 (
G

B
/s

)

(b) STREAM memory benchmark

Figure 3. Bandwidth of SX-Aurora TSUBASA

7702. The main reason for the differences in the bandwidth comes from the memory subsystems

that each processor adopts. VE 20B and A100 are HBM2E memory modules, VE 10B and V100

are the HBM2 memory modules, and Xeon 6126 and EPYC 770 are the DDR4 memory DIMMs.

These differences affect the stream memory bandwidths. To take a close look at the figure, the

stream memory bandwidth of A100 is about 8.0 % higher than that of VE 20B. The efficiency

to the peak memory bandwidth of A100 is higher than that of VE 20B. The efficiencies of A100

and VE 20B are 88.2 % and 82.7 %, respectively. The operational frequency of HBM2E and

the efficiencies lead to the differences in the memory bandwidths between VE20B and A100.

As a result of the preliminary evaluation, it is essential for the optimization of applications to

fully exploit the various bandwidths considering the characteristics of a single node and multiple

nodes.

2. Optimization Techniques for a Vector Computing System

To exploit the potential of a vector computing system, optimizations for a single node and

multiple nodes are essential. For target computations, this paper chooses important kernels

frequently used in memory-bound HPC applications: a stencil computation and a conjugate

gradient (CG) computation. There are two famous benchmark programs including these types

of the kernels, the Himeno and HPCG benchmarks. In this section, by briefly investigating the

characteristics of the benchmarks, optimizations such as vectorization, exploitation of mem-

ory and LLC bandwidths, domain decomposition, and process mapping are applied to these

benchmark programs.

2.1. Optimizations for Stencil Computations

Stencil computations are one of the important kernels in the field of HPC and data sciences.

The Himeno benchmark is one of the benchmark programs that measures the performance of the

stencil computations. The Himeno benchmark solves the Poisson equation by the Jacobi method

in the incompressible fluid analysis [1]. The main kernel named Jacobi requires high memory

bandwidth because it performs stencil calculations that continuously update grid points using the

values of adjacent grid points. In the Jacobi kernel, 19-point stencil calculations are performed

for an array p of the pressure term. By updating the array p in a triple loop in the i, j, and

k directions, 19 references of array p occur in one iteration.

First, to understand the characteristics of the Himeno benchmark, its code is briefly analyzed

using four Bytes/Flop (B/F) ratios: required B/F, actual B/F, memory B/F, and LLC B/F [11,

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 79

24]. The required B/F ratio is defined as the ratio of bytes of the number of load and store

instructions to the number of floating-point operation instructions. The required B/F ratio of

the Himeno benchmark is 3.33. The actual B/F ratio is calculated from the number of actual

memory accesses that take into account the actual behavior of LLC divided by the number of

actual floating-point operation instructions. The actual B/F ratio of the Himeno benchmark is

2.24 in VE 10B and VE 20B. The memory and LLC B/F ratios are defined as the ratios of the

peak memory and LLC bandwidths to the peak computing performance. The memory B/F ratios

of VE 10B and 20B are 0.28 and 0.31, respectively. The LLC B/F ratios of VE 10B and 20B are

0.62 and 0.61, respectively. By comparing with the four B/F ratios, the Himeno benchmark is

judged as a memory bandwidth-bound application even on vector computing systems equipped

with high memory bandwidth.

To exploit the bandwidth of SX-Aurora TSUBASA, the optimizations for improving utiliza-

tion of the LLC, loop unrolling, domain decomposition, and process mapping are applied [27].

The first optimization is the efficient use of the LLC. Since each element in an array p is used

19 times in the Jacobi kernel, 18 times of memory accesses can be reduced if the element is

stored in the LLC. For the 19-point stencil calculation, three planes need to be stored in LLC

to reuse an element 18 times if the size of three planes can fit the LLC. Therefore, the priority

of the cache retention for array p sets to be high by using a dedicated compiler directive.

The next optimization is loop unrolling to reduce the loop overhead. As the Jacobi kernel

is the triple nested loop and the number of loop iterations is large, the cost of controlling the

loop such as loop condition tests and increments of loop indices cannot be ignored, especially on

vector computing systems. By applying loop unrolling, the overhead is reduced. As the innermost

loop is used for the vectorization and the outermost loop is used for parallelization, the second

loop is unrolled. As VE has more vector registers than a general-purpose processor, the number

of unrolls can be large, which is more effective in general. This paper selects the best parameter

of the number of unrolls by the brute-force search in the range of 20 to 26.

The third optimization is the tuning of the domain decomposition. For the MPI version of

the Himeno benchmark, it is necessary to decompose the three-dimensional domain for parallel

processing. To keep a sufficiently large vector length for the computation, the innermost loop

should be carefully selected. Thus, the length in the k direction should be at least 256. Moreover,

the decomposed domain in the j direction should be smaller than that in the i direction as the

memory accesses to the i direction are sequential. The appropriate domain decomposition is

searched by brute-force as the patterns of the domain decomposition are not so large.

The last optimization is process mapping. A halo communication between two processes

that calculate adjacent domains is one of the most bandwidth-bound communication parts in

the Himeno benchmark. As there is a bandwidth difference of each communication path shown in

Fig. 3a, adjacent processes are carefully assigned in the same VE and the same VE group rather

than the VH-VH communication and the VH groups communication. Furthermore, considering

the balance of the communication load in each communication path, the process assignment is

equally distributed.

2.2. Optimizations for the Conjugate Gradient Method

The CG method is one of algorithms to solve linear equations. The CG method is generally

used for large sparse systems that are difficult to handle by direct numerical methods. The

HPCG benchmark [2, 9, 17] is one of the benchmark programs that measures the performance

Performance and Power Analysis of a Vector Computing System

80 Supercomputing Frontiers and Innovations

of the CG computation. The HPCG solves a linear equation Ax = b with a symmetric sparse

matrix discretized by the finite element method using a multi-grid preconditioned conjugate

gradient (CG) method with a symmetric Gauss-Seidel smoother. According to the CG method,

the linear equation Ax = b results in finding x that minimizes f(x) = 1
2x

TAx− bTx + c. The

CG method solves simultaneous linear equations by the iterative method. The method is often

used in large-scale sparse matrix coefficients that would require a huge number of calculations

and memory in direct methods like Gauss elimination. The required B/F ratio of the reference

version of the HPCG benchmark is 8.31, making it a very realistic benchmark for memory-bound

applications and an ideal candidate for exploiting the large memory bandwidth of the VE.

By using the B/F ratios, the characteristics of the HPCG benchmark is briefly analyzed.

The required and actual B/F ratios of the HPCG benchmark are 7.62 and 5.80, respectively.

The memory B/F ratios of VE 10B and 20B are 0.28 and 0.31, respectively. The LLC B/F ratios

of VE 10B and 20B are 0.62 and 0.61, respectively. By comparing with the four B/F ratios, it

is clarified that the HPCG benchmark is an LLC bandwidth-bound program.

This paper uses the code optimized for SX-Aurora TSUBASA [16]. The code is based on a

vectorized version of the reference algorithm that has achieved 11.2 % efficiency for the SX-ACE

processors [12, 14, 21] by the following important optimizations: ELLPACK data format for the

sparse matrix, hyperplanes or level scheduling ordering for vectorization, and cache retention

control for variables in the SX-ACE advanced data buffer (ADB) for data reuse. Instead of the

cache retention control for ADB on SX-ACE, the priority of the cache retention for the LLC on

VE is controlled by the dedicated compiler directive.

Besides vectorization and optimal data access, the highest impact on the performance is

reformulating the Gauss-Seidel smoother implementation to significantly reduce the number of

operations. When storing the matrix A in three parts, strictly lower and upper matrices L and

U as well as the diagonal D, a symmetric Gauss-Seidel step can be expressed as follows.

(L + D)x(k+1/2) = b− Ux(k) (forward substitution) (1)

and

(U + D)x(k+1) = b− Lx(k+1/2) (backward substitution) (2)

with x(k) being the kth iteration of x. After computing the temporary vector r = Ux(k) through

a sparse matrix-vector multiplication (SpMV), the value of x(k+1/2) is computed through a

triangular solve (TRSV) operation by fulfilling the following equation.

(L + D)x(k+1/2) = b− r. (3)

Thus, the right-hand side of (2) can be computed as follows.

b− Lx(k+1/2) = r + Dx(k+1/2), (4)

which leads to compute x(k+1) from Eq. 2 as the result of a backward triangular solve. A matrix

forward and backward substitutions are replaced by the forward and backward substitutions

of only the L + D and U + D matrices while saving almost half of the loads and operations

with the expense of one fast SpMV, fast vectorizable element-wise product Dx, and vector

additions/subtractions. Additionally, operations in the first, fine-grained smoother step of the

V-shaped multi-grid are saved by using the zero initial guess x(0) = 0 that leads to r = 0. This

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 81

algorithm is also applied by other architectures such as Intel optimized HPCG provided with

the MKL library and GPU HPCG implementations like rocHPCG [25, 28, 29].

In the MPI parallelized version, the matrix can be decomposed into a purely local part and

a halo matrix containing domain boundary elements. This separation allows for some extent of

overlap between computation and communication that improves scalability.

Furthermore, the matrix size should be appropriately specified. To perform efficient vector

computing by keeping an enough long vector length, the y-axis and z-axis sizes need to be long.

As the matrix size affects the convergence of the calculation results, the matrix size should be

carefully selected considering the residual. This paper searches for the optimum matrix size.

To reduce the search space, the matrix size suitable for a single node is searched. For a single

node, (nx, ny, nz) = (56, 216, 376) achieves the highest performance. Then, based on the suitable

matrix size for a single node, the size for multiple nodes is searched. By fixing the value of nz

to 376 in order to keep the vector length, nx and ny are searched.

This paper also uses the partitioning mode to further exploit the potential of LLC. As the

HPCG benchmark is an LLC bandwidth-bound program, the partitioning mode that reduces

the contention to LLC is more suitable than the normal mode.

3. Evaluation

3.1. Evaluation Environments

Table 1. Computing systems used for the evaluations

Systems A300-8 B401-8 Xeon EPYC V100 A100

Host 2×Xeon 6126 EPYC 7402P 2×Xeon 6126 2×EPYC 7702 2×Xeon 6126

Accelerator VE 10B VE 20B - - V100 A100

of nodes 8 VE nodes 576 VE nodes 1 node 68 nodes 1 node 1 node

Compiler NEC 3.2.1 NEC 3.2.0 Intel 19.1.3.304 Intel 19.1.2.254 PGI 21.2-0

For the evaluation, six various computing systems, SX-Aurora TSUBASA A300-8, SX-

Aurora TSUBASA B401-8, Xeon, EPYC, V100, and A100, are used as shown in Tab. 1. The

specifications of the processors used in the systems, VE 10B, VE 20B, two sockets of Xeon 6126,

two sockets of EPYC 7702, V100, and A100, are shown in Tab. 2.

For the compiler, the proprietary NEC compiler for VEs is used. The compile option “-O4

-msched-block” is used, which allows the compiler to automatically optimize and schedule the

instruction in a basic block. For the general-purpose processors such as Xeon and EPYC, the

Intel compiler collection is used. For V100 and A100, the PGI compiler is used.

For the Himeno benchmark, the MPI versions are used. For the evaluation on multiple nodes,

the weak scale version is developed. For Xeon 6126 and EPYC 7702, only the optimization for

the domain decomposition is applied to the reference codes. For V100 and A100, the parameter

tuning of system parameters is optimized [23].

For the HPCG benchmark on Xeon 6126 and EPYC 7702, only the optimization for the

size tuning is applied to the reference codes. For A100, the HPCG code in the NVIDIA HPC-

Benchmark 21.2 is used.

To measure the power consumption of processors, Vector Engine MMM-Command, Intel

SoC Watch, and NVIDIA SMI are used. For the power consumption of the whole system,

Performance and Power Analysis of a Vector Computing System

82 Supercomputing Frontiers and Innovations

Table 2. Specification of processors used for evaluation

VE 10B VE 20B Xeon 6126 EPYC 7702 V100 A100

Number of cores 8 8 12 64 5120 6912

Peak SP (Tflop/s) 4.30 4.92 1.766 4.096 14 19.5

Peak DP (Tflop/s) 2.15 2.46 0.883 2.048 7 9.7

Memory 6×HBM2 6×HBM2E 6×DDR4 8×DDR4 4×HBM2 6×HBM2E

Mem. BW (GB/s) 1228 1536 128 204.8 900 1555

Mem. Cap. (GB) 48 48 192 256 32 40

LLC BW (TB/s) 2.66 3.00 - - 2.70 6.88

LLC Cap. (MB) 16 16 19.25 256 6 40

Supermicro IPMICFG is used. The execution times of the Himeno and HPCG benchmark are

set to 10 minutes and two minutes, respectively.

3.2. Evaluation Results

3.2.1. Evaluation of the Himeno benchmark

0

50

100

150

200

250

300

350

400

Original + LLC utilization + unrolling + decomposition

H
im

en
o

 p
er

fo
rm

an
ce

 (
G

fl
o

p
/s

) VE 10B VE 20B

(a) Effects of the optimizations on a VE

0

100

200

300

400

500

600

VE 10B VE 20B Xeon 6126 EPYC 7702 V100 A100

H
im

en
o

 p
er

fo
rm

an
ce

 (
G

fl
o

p
/s

)

(b) Performance of various processors

Figure 4. Performance of the Himeno benchmark on a single node

First, to examine the effects of the optimizations on a single VE node, Fig. 4a shows the

performance on VE 10B and VE 20B. The vertical axis represents the Himeno performance.

The horizontal axis represents each optimization. “+LLC utilization”, “+unrolling”, and “+de-

composition” indicate that each optimization is applied in the order of LLC utilization, loop

unrolling, and tuning of decomposition parameters from “Original”. In the original code, the

decomposition parameter is set to (i, j, k) = (2, 2, 2).

Figure 4a shows that each optimization improves the Himeno performance. In particular, the

loop unrolling has a great impact on the performance improvement. The loop unrolling achieves

about 23.9 % and 24.9 % performance improvements on VE 10B and 20B, respectively. This is

because the loop unrolling reduces loop overheads that is one of the large overheads. Moreover,

the tuning of the decomposition parameters improves about 9.0 % and 8.7 % on VE 10B and

VE 20B, respectively. The sequential memory access along the i direction by the tuning of the

domain decomposition contributes to the performance improvement. As a result, the single-

node optimizations achieve about 37.3 % and 38.3 % sustained performance improvements on

VE 10B and VE 20B compared to the original code, respectively. Figure 4a also shows that the

performances of VE 20B are higher than those of VE 10B. This performance improvement is

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 83

0.1

1

10

100

1000

8 16 32 64 128 256 512 1024 2048 4096 4608

H
im

en
o

 w
ea

k
 p

er
fo

rm
an

ce
 [

T
fl

o
p

/s
]

Number of processes

original optimized

(a) Performance

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000

S
p

ee
d

u
p

 r
at

io
 t

o
 o

n
e

V
E

Number of processes

optimized original ideal

(b) Scalability

Figure 5. Weak scale performance of the Himeno benchmark on the B401-8 system

mainly brought by the improvement of the computational capability and the memory bandwidth

of VE 20B.

To compare the Himeno performance of VE 10B and VE 20B with other processors, Fig. 4b

shows the Himeno performance on various processors. This figure shows that A100 achieves the

highest performance. A100 achieves about 43.3 % higher performance than VE 20B even though

the peak memory bandwidth of VE 20B and A100 are almost the same. One of the reasons is that

the reduction operation is heavy for vector computing. Since the vector length of a VE is long,

the cost for the vector reduction becomes large. The other reason is that the high bandwidth

of VE cannot be exploited due to the single-precision floating-point data. A packed memory

load operation that treats two single-precision floating-point elements in a one load operation

is not efficiently performed. Thus, A100 achieves higher performance compared with VE 20B.

Compared with Xeon, EPYC, and V100, VE 10B and VE 20B achieve high performance. Since

the memory and LLC bandwidths of VEs are the highest among them, VEs can achieve the

highest performance.

In the aspect of the efficiency, the ratio of the sustained performance to the peak perfor-

mance, VE 10B, VE 20B, Xeon 6126, EPYC 7702, V100, and A100 are 7.7 %, 7.7 %, 2.2 %,

1.7 %, 2.2 %, and 2.8 %, respectively. VE 10B and VE 20B achieve the highest efficiencies. Since

VEs are carefully designed considering a balance between the sustained memory performance

and sustained computational performance for memory-intensive applications, VEs can achieve

the highest performance.

Next, the performance and weak scalability on a large-scale SX-Aurora TSUBASA are

examined. Figure 5a shows the Himeno performance of the weak scaling on the B401-8 system.

The problem size assigned to each process is fixed to the L size of 256×256×512. This size is the

maximum size for the memory capacity when eight processes are assigned to a VE. The vertical

axis shows the sustained performance in the log scale. The maximum number of processes is

4608 that is equivalent to 576 VE nodes or 72 VH nodes. This figure shows that the optimized

version achieves higher performance than that of the original version. About 43 % on average

and about 53 % at maximum performance improvements are obtained by the optimizations.

These results indicate that the proposed optimizations are essential to exploit performance on

the large-scale vector computing system.

Figure 5a also shows that the increase in the number of processes improves the weak-scale

performance. To examine the weak scalability in detail, Fig. 5b shows the weak scalability of

the Himeno benchmark on the B401-8 system. The vertical axis shows the speedup ratio to

a single VE node. The horizontal axis shows the number of processes. This figure shows that

Performance and Power Analysis of a Vector Computing System

84 Supercomputing Frontiers and Innovations

1

10

100

64 128 256 512 1024 2048 4096 4608

H
im

en
o

 s
tr

o
n

g
 p

er
fo

rm
an

ce
 [

T
fl

o
p

/s
]

Number of processes

original optimized optimized 3L

Figure 6. Strong scale performance of the Himeno benchmark on the B401-8 system

0

200

400

600

800

1000

1200

1400

1600

1800

original optimized ×2 ×4 ×8 original optimized ×2 ×4 V100 A100

VE 10B VE 20B

A
v
er

ag
e

p
o
w

er
 (

W
)

VE 10B VE 20B V100 A100 Xeon Others

(a) Average power consumption

0

2000

4000

6000

8000

10000

12000

14000

16000

0

100

200

300

400

500

600

700

800

900

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

F
A

N
 (

R
P

M
)

P
o

w
er

 (
W

),
 T

em
p

 (
C

)

Elapse time

Power 10B Power 20B Temp 10B

Temp 20B FAN 10B FAN 20B

(b) Power consumption, fans, and temperature

Figure 7. Power consumption of the Himeno benchmark

good scalabilities are obtained in the original and optimized versions. Although the collective

communication for residual in the Himeno benchmark leads to the decrease in scalabilities, the

parallel efficiencies of the original and optimized versions reach 85.4 % and 83.7 % even when

the number of processes is 4608.

The strong scalability on a large-scale SX-Aurora TSUBASA is examined. Figure 6 shows

the Himeno performance of the strong scaling on the B401-8 system. The problem size is the XL

size of 512×512×1024 and the 3L size of 1024×1024×2048. The vertical axis shows the sustained

performance. This figure shows that the optimized version achieves higher performance than the

original version. This is because the optimizations contribute to the performance improvements.

In particular, when the number of processes is large, multi-node optimizations such as domain

decomposition and process mapping impact the sustained performance.

Moreover, the performance of the 3L size is much higher than that of the XL size, especially

when the number of processes is large. This is because the parallelisms for vectorization and

parallelization in the XL size are not enough for the large-scale execution. As the number of

processes increases, the performance differences between the XL size and the 3L size become

large. Even the 3L size is not enough when the number of processes is large. To exploit the full

potential of the system, the larger size needs to be selected according to the system size.

To clarify the power efficiency, the power consumption of SX-Aurora TSUBASA is exam-

ined. Since one of the limiting factors in the scale of computing systems is power consumption

of each system, power efficiency and/or sustained performance per power is very important to-

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 85

day and future. Figure 7 shows the power consumption when the weak scale performance of

the Himeno benchmark is measured. Figure 7a shows the breakdown of the average power con-

sumption of VEs, Xeon, GPUs, and “Others.” “Others” includes the power consumption of the

cooling fans, the memory modules of a VH, the power units, and the other server components.

“Others” is calculated by subtracting the power consumption of the processor from the total

power consumption. The horizontal axis represents the various processors of the original and

optimized versions.

First, taking look at single VE cases, the power consumptions of the optimized version

increases by comparing the original and optimized versions on VE 10B and VE 20B. This is

because the cores and memory in VEs are fully operated by the optimizations. Moreover, VE

20B consumes about 13.4 % more power than VE 10B. This is due to the difference in the

operating frequency of VE 20B and VE 10B. As the operating frequency of VE 20B is 1.6 GHz

while it is 1.4 GHz in VE 10B, VE 20B is running at about 14.2 % faster frequency than VE

10B. As the power consumption is in proportion to the frequency, VE 20B consumes more power

than VE 10B.

Compared with A100, the power consumptions of VE 10B and VE20B are low. However,

the total power consumption of the A100 system is lower than those of the VE 10B and VE 20B

systems. This is because the fine-grain fan control can be performed in the A100 system. Thus,

the power consumption by the cooling fan in the A100 system becomes low.

The power consumption of “Others” in cases of a single VE occupies about 60 % of the total

power consumption. One of the power consuming components is the cooling fans, especially

when the fans rotate at very high speed when the temperature of VEs increases. The power

consumption of “Others” on VE 20B is higher than that on VE 10B. This is because the

temperature of VE 20B easily increases compared with VE 10B due to the high frequency of

VE 20B.

To investigate the relationship between the power consumption and the cooling fans, Fig. 7b

shows the total power consumption, the number of rotations of fans, and the temperature on VE

10B and VE 20B. The vertical axis in the left shows the power consumption and the temperature

of VEs. The vertical axis in the right shows rotations per second of the cooling fan. The horizontal

axis shows the elapsed time. This figure suggests that the cooling fan runs at the high speed

from when the temperature of VEs rises to 70 degrees until when it drops to 60 degrees. This

figure also shows that the fan of VE 10B often runs high rotations compared to VE20. This

result implies that VE10 is easier to be cold enough to stop the fans than VE20 because the

operating frequency of VE 10B is lower than that of VE 20B.

Second, in the cases of multiple VEs, the power consumption of VEs almost proportionally

increases as the number of VEs increases in both cases of VE 10B and VE 20B. Since most

computation is performed on VEs, the power consumption increases according to the number

of VEs while those of Xeon and others slightly increase.

Figure 8 shows the power efficiency that divides the sustained performance by the average

power. “Processor” indicates the power efficiency of the processor, i.e., the performance divided

by the average power of only the processor. “System” indicates the power efficiency of the

whole system. First, taking look at single node cases, this figure shows that the optimizations

contribute to the power efficiencies as well as the sustained performance. The efficiencies of VE

10B and VE 20B are improved by about 18.0 % and 18.7 %, respectively. Since the increase in the

power consumption can be amortized by the increase in the sustained performance, the power

Performance and Power Analysis of a Vector Computing System

86 Supercomputing Frontiers and Innovations

0

0.5

1

1.5

2

2.5

original optimized ×2 ×4 ×8 original optimized ×2 ×4 V100 A100

VE 10B VE 20B

P
o
w

er
 e

ff
ic

ie
n
cy

 (
G

fl
o
p

/s
/W

)

VE 10B VE 20B V100 A100 system

Figure 8. Power efficiency

0

20

40

60

80

100

120

140

160

Original + optimized + size tuning + partitioning

H
P

C
G

 p
er

fo
rm

an
ce

 (
G

fl
o

p
/s

)

VE 10B VE 20B

(a) Effects of the optimizations on a VE

0

50

100

150

200

250

VE 10B VE 20B Xeon 6126 EPYC 7702 A100

H
P

C
G

 p
er

fo
rm

an
ce

 (
G

fl
o

p
/s

)

(b) Performance of various processors

Figure 9. Performance of the HPCG benchmark on a single node

efficiencies can be improved. Moreover, the power efficiencies of VE 10B, VE 20B, and A100 are

similar. Even the previous generation of VE 10B achieves high power efficiency. Although the

performances of VE 10B and VE 20B are lower than that of A100, the power consumption of

VE 10 and VE 20B are lower than that of A100. As a result, VE 10B and VE 20B achieve a

similar power efficiency to A100.

In the cases of multiple VEs, the power efficiencies of “processors” in VE 10B and VE 20B

gradually decrease as the number of VEs increases. This is because the sustained performance

does not ideally scale according to the number of VEs, although the power consumption increases

according to the number of VEs. On the other hand, the power efficiencies of “system” increase

as the number of VEs increases. As the total power consumption does not proportionally increase

to the number of VEs, the increase in the total power consumption can be amortized by the

increase in the sustained performance.

The process technologies used in VE 10B and VE 20B are TSMC 16 nm while the process

technology of A100 is TSMC 7 nm. Even though VEs use the two-generation old process tech-

nology, the power efficiencies of VEs are similar to A100 that uses the latest process technology.

If VEs use the same process technology, the power efficiencies should be much higher than that

of GPUs. This result clarified that the vector architecture is a power efficient architecture that

is one of important features as the power constraints become stricter in the future.

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 87

3.2.2. Evaluation of the HPCG benchmark

To examine the effects of the optimizations, Fig. 9a shows the performance of the optimiza-

tions on VE 10B and VE 20B. The vertical axis represents the sustained performance of the

HPCG benchmark. The horizontal axis represents each optimization. “Original” indicates the

reference version of HPCG. “+ optimized” indicates the version for the vector optimizations.

“+ size tuning” indicates tuning of the problem size to (56×216×376) from the initial problem

size of (104×104×104). “+ partitioning” uses the partitioning mode. The optimizations are ap-

plied in the order of the vector optimizations, the tuning of the matrix size, and the partitioning

mode from left to right in the figure.

This figure shows that each optimization improves the HPCG performance. The optimized

version that applies the ELL data format, hyperplanes or level scheduling ordering for vector-

ization, and cache retention for the LLC, and reduction in the instructions significantly improve

the performance. The main reason is due to the increase in the vectorization ratio and the av-

erage vector length. By the optimizations, the vectorization ratio is improved to 99.2 % from

73.7 % and the average vector length is drastically improved to 236.2 from 27.9. Therefore, the

performance improves by 86.8 times compared with the original version.

Figure 9a also shows that the tuning of the matrix size further improves the performance

by about 9 %. As the matrix size affects the size of hyperplane slices, the average vector length

is improved to 241.2.

Furthermore, the partitioning mode further improves the performance. By the partitioning

mode, the execution time of the load instruction becomes about 10 % shorter than that of the

normal mode. The short execution time of the load instruction by the reduction in the network

conflicts between LLC and the memory further results in about 19 % performance improvement.

Moreover, Fig. 9a shows that the performances of VE 20B are about 15 to 17 % higher than

those of VE 10B. The main reason for the improvement is that the LLC bandwidth of VE 20B is

higher than that of VE 10B. Since the LLC bandwidth of VE 20B is improved by about 12.8 %,

it contributes to the higher performance.

Compared with the other processors, Fig. 9b shows the performance on VE 10B, VE 20B,

two sockets of Xeon 6126, two sockets of EPYC 7702, and A100. The horizontal axis represents

processors. This figure shows that A100 achieves the highest performance. The performance of

A100 is 1.56 times faster than that of VE 20B. Compared with Xeon and EPYC, VE 10B and

VE 20B achieve much high performance. One of the reasons is that the LLC bandwidth of A100

is higher than that of VE 20B. The theoretical LLC bandwidth of A100 is 6.88 TB/s [8], while

it is 3.00 TB/s on VE 20B. As the LLC bandwidth of A100 is more than 2.29 times higher,

the LLC bandwidth improves the HPCG performance on A100. The other reason is that VE

20B cannot fully exploit its high memory bandwidth due to the memory latency by the indirect

memory accesses. As a result, the difference of the HPCG performance between VE 20B and

A100 becomes larger than that in the case of the stream memory bandwidth.

On the other hand, the efficiencies of VEs are the highest. The efficiencies of VE 10B, VE

20B, Xeon 6126, EPYC 7702, A100 are 5.9 %, 6.1 %, 1.3 %, 1.0 %, and 2.4 %, respectively. Due

to the balanced architecture of SX-Aurora TSUBASA for bandwidth-bound applications, VE

10B and VE 20B achieve higher efficiencies than the other processors.

Figure 10 shows the scalability of the HPCG benchmark on the B401-8 and EPYC systems.

The vertical axis represents the speedup ratio to single process performance. The horizontal

axis represents the number of processes. This figure shows that a good scalability of VE 20B

Performance and Power Analysis of a Vector Computing System

88 Supercomputing Frontiers and Innovations

0

50

100

150

200

250

300

0 50 100 150 200 250 300

H
P

C
G

 s
p

ee
d

u
p

 r
at

io
 t

o
 o

n
e

p
ro

ce
ss

Number of processes

VE 20B optimized EPYC 7702 ideal

Figure 10. Scalability of the HPCG benchmark

0

200

400

600

800

1000

1200

1400

1600

1800

original optimized ×2 ×4 ×8 original optimized ×2 ×4 A100

VE 10B VE 20B

A
v
er

ag
e

p
o
w

er
 (

W
)

VE 10B VE 20B A100 Xeon Others

(a) Average power consumption

0

2000

4000

6000

8000

10000

12000

14000

16000

0

100

200

300

400

500

600

700

800

900

1000

00:00 01:00 02:00 03:00 04:00

F
A

N
 (

R
P

M
)

P
o

w
er

 (
W

),
 T

em
p

 (
C

)

Elapse time

Power 10B Power 20B Temp 10B

Temp 20B FAN 10B FAN 20B

(b) Power consumption, fans, and temperature

Figure 11. Power consumption of the HPCG benchmark

is obtained. When the number of processes is 256, the parallel efficiency is about 71.6 %. As

the HPCG benchmark is weak scaling, the performance scales fine even when the number of

processes is large.

In the case of EPYC 7702, the scalability is not good compared with VE 20. The memory

bandwidth of EPYC 7702 scales up to 32 processes, and then, the memory bandwidth is satu-

rated when the number of processes is 64 or more, As the HPCG performance on EPYC 7702 is

limited by the memory bandwidth, the scalability of EPYC 7702 also becomes saturated when

the number of processes is 64 or more.

To examine the power consumption, Fig. 11a shows the breakdown of the average power

consumption. This figure shows that the power consumption of a VE 10B and a VE 20B increases

by the optimizations. As the optimized version with the partitioning mode efficiently uses VEs,

the power consumption increases. On the other hand, as the original version cannot exploit the

performance of VEs, the power consumption is low.

Furthermore, the power consumption of A100 is higher than those of VE 10B and VE 20B

although the total power consumption of the A100 system is lower than those of the VE 10B

and VE 20B systems. This is because of the difference of the fan control mechanism between

the A100 system and the VE systems, which is also discussed in the Himeno benchmark. As

the fine-grain fan control can be performed in the A100 system, the power consumption by the

cooling fan becomes low.

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 89

0

0.2

0.4

0.6

0.8

1

1.2

original optimized ×2 ×4 ×8 original optimized ×2 ×4 A100

VE 10B VE 20B

P
o
w

er
 e

ff
ic

ie
n
cy

 (
G

fl
o
p
/s

/W
)

VE 10B VE 20B A100 system

Figure 12. Power efficiency

Figure 11a also shows the power consumption on VE 20B is higher than those on VE 10B.

To investigate the reason, Fig. 11b shows the total power consumption, the number of rotations

of fans, and the temperature on VE 10B and VE 20B. The vertical axis in the left shows the

power consumption and the temperature of VEs. The vertical axis in the right shows rotations

per second of the cooling fan. The horizontal axis shows the elapsed time. This figure shows that

the total power consumption of VE 20B becomes high because the cooling fans of VE 20B rotate

more often than that of VE 10B. This is because VE10 is easier to be cold enough to reduce the

number of rotations of the fan than VE20. Furthermore, the fan in the HPCG benchmark runs

at the high rotation more often than that in the Himeno benchmark. Since the characteristics of

the benchmarks differ from each other, it affects the frequency of the high rotations of the fan.

Figure 12 shows the power efficiency of the HPCG benchmark. The power efficiencies of a

VE 10B and a VE 20B are almost the same even though the performance of VE 10B is lower

than that of VE 20B even in the HPCG benchmark as well as the Himeno benchmark. As the

power consumption of VE 10B is lower than that of VE 20B, the power efficiency of VE 10B

equals to that of VE 20B. Moreover, the power efficiency of A100 is higher than those of VE

10 and VE 20B. Although the power consumption of VE 10 and VE 20B is lower than that of

A100, the sustained performance of A100 is much higher than those of VE 10B and VE 20B. As

a result, A100 achieves higher power efficiency than VE 10B and VE 20B. The reason is that

the process technologies used in VE 10B and VE 20B are two-generation old compared with

A100. If VEs use the same process technology, it is expected that VEs can achieve higher power

efficiency than A100.

In the cases of multiple VEs, the power efficiencies of VE 10B and VE 20B gradually decrease

as the number of VEs increases. This is because the sustained performance does not ideally scale

according to the number of VEs, although the power consumption increases according to the

number of VEs. On the other hand, the power efficiencies of “system” increase as the number of

VEs increases. As the total power consumption does not increase in proportion to the number

of VEs, the increase in the total power consumption can be amortized by the increase in the

sustained performance.

4. Related Work

The performance optimization and evaluation of vector computing systems have been con-

tinuously conducted [11, 12, 15, 24]. Komatsu et al. have evaluated the first generation of SX-

Performance and Power Analysis of a Vector Computing System

90 Supercomputing Frontiers and Innovations

Aurora TSUBASA using benchmarks including the Himeno benchmark. From the evaluation, it

is clarified that the first generation of SX-Aurora TSUBASA has advantages of memory-intensive

benchmark compared with Xeon Skylake and SX-ACE. However, the performance on multiple

nodes is not evaluated. This paper extends the optimization of the Himeno benchmark for mul-

tiple nodes such as domain decomposition and processing mapping considering the bandwidth

and clarifies the performance and scalability on multiple nodes of SX-Aurora TSUBASA.

Furthermore, the performance evaluation on the second generation of SX-Aurora TSUBASA

has been reported [11]. It clarifies that the performance and power efficiencies of HPCG and

HPL of VE 20B are higher than those of Xeon and EPYC. However, the detailed analysis of

performance and power efficiency is not conducted. This paper further optimizes the HPCG

benchmark for the large-scale vector computing systems by the size tuning. Moreover, this

paper deeply evaluates and analyzes the Himeno and HPCG benchmark performances on the

large-scale vector computing systems in terms of the effects of optimizations, scalability, average

power consumption, power efficiency. As a result of the evaluation and deep analysis, it can be

clarified that the power efficiency of a vector architecture is high and promising for the future

HPC systems.

Hartwig et al. have evaluated the memory bandwidth of the A100 and the performance

of sparse and batched computations [6]. This paper evaluates the performance and the power

efficiency of V100 and A100 with the Himeno benchmark. It shows higher performance of A100

than that of V100. By comparing the performance of GPUs and VEs, this paper clarifies the

characteristics of these processors.

Conclusions

The peak performance of recent HPC systems has been remarkably improved by the increase

in the number of nodes. This approach to improve the performance has also brought the increase

in the power consumption of the HPC systems. However, due to the limitation of the power

budget for each facility, the conventional approach of simply increasing the number of nodes to

improve the performance is not realistic in near future. Therefore, a paradigm shift to a new

approach is essential to keep improving the performance within the limited power constraints

for the design of future HPC systems.

This paper focuses on a vector computing system adopting a long vector processing that

has a potential to realize high performance with high power efficiency under the strict power

constraints. To achieve high power efficiency, this paper improves the sustained performance by

the optimizations for vector computing system. As the target programs, this paper selects two

benchmark programs, the Himeno and HPCG benchmarks, and applies vector optimizations for

a vector computing system in aspect of a single node and multiple nodes.

By deep analysis through the performance evaluation, the sustained performance, the scal-

ability, and the power consumption, the power efficiency of a large-scale SX-Aurora TSUBASA

are clarified. For the Himeno benchmark, VE 10B and VE 20B achieve about 37.3 % and 38.3 %

performance improvements by a single node optimizations compared to the original code, re-

spectively. VE 10B and VE 20B achieve about 7.7 % efficiency, which is the highest efficiency

among various processors. For the HPCG benchmark, VE 10B and VE 20B can achieve about

112 and 113 times performance improvements by single node optimizations compared to the

reference code, and about 5.9 % and 6.1 % efficiencies, respectively, which also are the highest

efficiencies among various processors. Furthermore, it is clarified that SX-Aurora TSUBASA

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 91

could achieve the highest power efficiencies among the latest processors such as an Intel pro-

cessor, an EPYC processor, and a GPU even though VEs adopt the previous generation of the

process technology. This fact suggests that the vector computing with a long vector length can

achieve a high power efficient computing and the vector architecture could be most efficient if

it used the latest process technology. Therefore, this paper clarified that the vector computing

is one of the promising ways to survive in the design of the future computing system with the

strict power constraints.

Acknowledgements

The authors would like to thank Christie Alappat from the University of Erlangen-

Nuremberg for the assistance and inspiring discussions on HPCG algorithm tuning. The au-

thors also thank large-scale HPC challenge of Cyberscience Center, Tohoku University for the

large-scale executions of the supercomputing systems. This research was partially supported by

MEXT Next Generation High-Performance Computing Infrastructures and Applications R&D

Program, entitled “R&D of A Quantum-Annealing-Assisted Next Generation HPC Infrastruc-

ture and its Applications,” Grants-in-Aid for Scientific Research (A) #19H01095, Grants-in-Aid

for Scientific Research (C) #20K11838, and Japan-Russia Research Cooperative Program be-

tween JSPS and RFBR, Grant number JPJSBP120214801.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Himeno benchmark. http://i.riken.jp/en/supercom/documents/himenobmt/, accessed:

2021-05-31

2. HPCG benchmark. https://www.hpcg-benchmark.org/, accessed: 2021-05-31

3. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE. http://

mvapich.cse.ohio-state.edu/benchmarks/, accessed: 2021-05-31

4. STREAM: Sustainable Memory Bandwidth in High Performance Computers. https://www.

cs.virginia.edu/stream/, accessed: 2021-05-31

5. TOP500 Supercomputer Sites, http://www.top500.org/

6. Anzt, H., Tsai, Y.M., Abdelfattah, A., et al.: Evaluating the performance of NVIDIAs

A100 ampere GPU for sparse and batched computations. In: 2020 IEEE/ACM Performance

Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS).

pp. 26–38. IEEE (2020). https://doi.org/10.1109/PMBS51919.2020.00009

7. Cho, J.H., Kim, J., Lee, W.Y., et al.: A 1.2V 64Gb 341GB/S HBM2 stacked DRAM

with spiral point-to-point TSV structure and improved bank group data control. In: 2018

IEEE International Solid - State Circuits Conference - (ISSCC). pp. 208–210. IEEE (2018).

https://doi.org/10.1109/ISSCC.2018.8310257

Performance and Power Analysis of a Vector Computing System

92 Supercomputing Frontiers and Innovations

http://i.riken.jp/en/supercom/documents/himenobmt/
https://www.hpcg-benchmark.org/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
http://www.top500.org/
https://doi.org/10.1109/PMBS51919.2020.00009
https://doi.org/10.1109/ISSCC.2018.8310257

8. Choquette, J., Gandhi, W.: NVIDIA A100 GPU: Performance innovation for GPU com-

puting. In: 2020 IEEE Hot Chips 32 Symposium (HCS). pp. 1–43. IEEE (2020). https:

//doi.org/10.1109/HCS49909.2020.9220622

9. Dongarra, J., Heroux, M.A., Luszczek, P.: High-performance conjugate-gradient benchmark:

A new metric for ranking high-performance computing systems. The International Journal

of High Performance Computing Applications 30(1), 3–10 (2016). https://doi.org/10.

1177/1094342015593158

10. Egawa, R., Komatsu, K., Takizawa, H.: Designing an open database of system-aware

code optimizations. In: 2017 Fifth International Symposium on Computing and Network-

ing (CANDAR). pp. 369–374. IEEE Computer Society (2017). https://doi.org/10.1109/

CANDAR.2017.102

11. Egawa, R., Fujimoto, S., Yamashita, T., et al.: Exploiting the potentials of the second gen-

eration SX-Aurora TSUBASA. In: 2020 IEEE/ACM Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems (PMBS). pp. 39–49. IEEE (2020).

https://doi.org/10.1109/PMBS51919.2020.00010

12. Egawa, R., Komatsu, K., Isobe, Y., et al.: Performance and power analysis of SX-ACE using

HP-X benchmark programs. In: 2017 IEEE International Conference on Cluster Computing

(CLUSTER). pp. 693–700. IEEE Computer Society (2017). https://doi.org/10.1109/

CLUSTER.2017.65

13. Egawa, R., Komatsu, K., Kobayashi, H.: Designing an HPC refactoring catalog toward the

exa-scale computing era. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Patel, N.

(eds.) Sustained Simulation Performance 2014. pp. 91–98. Springer (2015). https://doi.

org/10.1007/978-3-319-10626-7_8

14. Egawa, R., Komatsu, K., Momose, S., et al.: Potential of a modern vector supercomputer for

practical applications: performance evaluation of SX-ACE. The Journal of Supercomputing

73(9), 3948–3976 (2017). https://doi.org/10.1007/s11227-017-1993-y

15. Egawa, R., Momose, S., Komatsu, K., Isobe, Y., Musa, A., Takizawa, H., Kobayashi, H.:

Early evaluation of the SX-ACE processor. In: The poster at International Conference for

High Performance Computing, Networking, Storage and Analysis (SC14) (2014)

16. Focht, E.: HPCG Performance Efficiency on VE at 5.99%. https://sx-aurora.github.

io/posts/hpcg-tuning/ (2019), accessed: 2021-06-09

17. Heroux, M.A., Dongarra, J., Luszczek, P.: HPCG benchmark technical specification (2013).

https://doi.org/10.2172/1113870

18. Hou, S.Y., Chen, W.C., Hu, C., et al.: Wafer-level integration of an advanced logic-memory

system through the second-generation CoWoS technology. IEEE Transactions on Electron

Devices 64(10), 4071–4077 (2017). https://doi.org/10.1109/TED.2017.2737644

19. Komatsu, K., Egawa, R., Hirasawa, S., et al.: Migration of an atmospheric simulation code

to an OpenACC platform using the Xevolver framework. In: 2015 Third International Sym-

posium on Computing and Networking (CANDAR). pp. 515–520. IEEE Computer Society

(2015). https://doi.org/10.1109/CANDAR.2015.102

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato...

2021, Vol. 8, No. 2 93

https://doi.org/10.1109/HCS49909.2020.9220622
https://doi.org/10.1109/HCS49909.2020.9220622
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1109/CANDAR.2017.102
https://doi.org/10.1109/CANDAR.2017.102
https://doi.org/10.1109/PMBS51919.2020.00010
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1007/978-3-319-10626-7_8
https://doi.org/10.1007/978-3-319-10626-7_8
https://doi.org/10.1007/s11227-017-1993-y
https://sx-aurora.github.io/posts/hpcg-tuning/
https://sx-aurora.github.io/posts/hpcg-tuning/
https://doi.org/10.2172/1113870
https://doi.org/10.1109/TED.2017.2737644
https://doi.org/10.1109/CANDAR.2015.102

20. Komatsu, K., Egawa, R., Hirasawa, S., et al.: Translation of large-scale simulation codes for

an OpenACC platform using the Xevolver framework. International Journal of Networking

and Computing 6(2), 167–180 (2016). https://doi.org/10.15803/ijnc.6.2_167

21. Komatsu, K., Egawa, R., Isobe, Y., et al.: An approach to the highest efficiency of the

HPCG benchmark on the SX-ACE supercomputer. In: Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis (SC15), Poster. pp. 1–2

(2015)

22. Komatsu, K., Egawa, R., Takizawa, H., et al.: Exploring system architectures for next-

generation CFD simulations in the postpeta-scale era. Journal of Fluid Science and Technol-

ogy 9(5), JFST0073–JFST0073 (2014). https://doi.org/10.1299/jfst.2014jfst0073

23. Komatsu, K., Kishitani, T., Sato, M., et al.: An appropriate computing system and its

system parameters selection based on bottleneck prediction of applications. In: 2019 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp.

768–777. IEEE (2019). https://doi.org/10.1109/IPDPSW.2019.00127

24. Komatsu, K., Momose, S., Isobe, Y., et al.: Performance evaluation of a vector super-

computer SX-Aurora TSUBASA. In: Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis. pp. 54:1–54:12. SC ’18, IEEE

Press (2018). https://doi.org/10.1109/SC.2018.00057

25. Liu, Y., Yang, C., Liu, F., et al.: 623 Tflop/s HPCG run on Tianhe-2: Leveraging millions

of hybrid cores. The International Journal of High Performance Computing Applications

30(1), 39–54 (2016). https://doi.org/10.1177/1094342015616266

26. Oh, C.S., Chun, K.C., Byun, Y.Y., et al.: 22.1A 1.1V 16GB 640GB/s HBM2E DRAM with

a Data-Bus Window-Extension Technique and a Synergetic On-Die ECC Scheme. In: 2020

IEEE International Solid- State Circuits Conference - (ISSCC). pp. 330–332. IEEE (2020).

https://doi.org/10.1109/ISSCC19947.2020.9063110

27. Onodera, A., Komatsu, K., Fujimoto, S., et al.: Optimization of the himeno benchmark

for SX-Aurora TSUBASA. In: Wolf, F., Gao, W. (eds.) Benchmarking, Measuring, and

Optimizing. Lecture Notes in Computer Science, vol. 12614, pp. 127–143. Springer (2021).

https://doi.org/10.1007/978-3-030-71058-3_8

28. Park, J., Smelyanskiy, M., Vaidyanathan, K., et al.: Optimizations in a high-performance

conjugate gradient benchmark for IA-based multi- and many-core processors. The In-

ternational Journal of High Performance Computing Applications 30(1), 11–27 (2016).

https://doi.org/10.1177/1094342015593157

29. Phillips, E., Fatica, M.: Performance analysis of the high-performance conjugate gradient

benchmark on GPUs. The International Journal of High Performance Computing Applica-

tions 30(1), 28–38 (2016). https://doi.org/10.1177/1094342015599239

30. Yamada, Y., Momose, S.: Vector engine processor of NEC’s brand-new supercomputer

SX-Aurora TSUBASA. In: International symposium on High Performance Chips (Hot

Chips2018) (2018)

Performance and Power Analysis of a Vector Computing System

94 Supercomputing Frontiers and Innovations

https://doi.org/10.15803/ijnc.6.2_167
https://doi.org/10.1299/jfst.2014jfst0073
https://doi.org/10.1109/IPDPSW.2019.00127
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1177/1094342015616266
https://doi.org/10.1109/ISSCC19947.2020.9063110
https://doi.org/10.1007/978-3-030-71058-3_8
https://doi.org/10.1177/1094342015593157
https://doi.org/10.1177/1094342015599239

Distributed Graph Algorithms for Multiple Vector Engines

of NEC SX-Aurora TSUBASA Systems

Ilya V. Afanasyev1,2, Vadim V. Voevodin1,2, Kazuhiko Komatsu3,

Hiroaki Kobayashi3

c© The Authors 2021. This paper is published with open access at SuperFri.org

This paper describes the world-first attempt to develop distributed graph algorithm imple-

mentations, aimed for modern NEC SX-Aurora TSUBASA vector systems. Such systems are

equipped with up to eight powerful vector engines, which are capable to significantly accelerate

graph processing and simultaneously increase the scale of processed input graphs. This paper

describes distributed implementations of three widely-used graph algorithms: Page Rank (PR),

Bellman-Ford Single Source Shortest Paths (further referred as SSSP) and Hyperlink-Induced

Topic Search (HITS), evaluating their performance and scalability on Aurora 8 system. In this pa-

per we describe graph partitioning strategies, communication strategies, programming models and

single-VE optimizations used in these implementations. The developed implementations achieve

40, 6.6 and 1.3 GTEPS performance on PR, SSSP and HITS algorithm on 8 vector engines, at

the same time achieving up to 1.5x, 2x and 2.5x acceleration on 2, 4 and 8 vector engines of

Aurora 8 systems. Finally, this paper describes an approach to incorporate distributed graph pro-

cessing support into our previously developed Vector Graph Library (VGL) framework – a novel

framework for graph analytics on NEC SX-Aurora TSUBASA architecture.

Keywords: vector computers, graph algorithms, graph framework, VGL, optimisation.

Introduction

Developing efficient graph algorithm implementations is an extremely important problem of

modern computer science, since graphs are frequently used in various real-world applications,

such as social network and web-graph analysis, navigation, and many others. Due to the fact

that graph algorithms belong to the data-intensive class (since they typically load from memory

a large amount of data, at the same time performing almost no floating point arithmetic), mod-

ern architectures with high-bandwidth memory potentially allow solving many graph problems

significantly faster compared to modern multicore CPUs. Among other supercomputer architec-

tures, NEC SX-Aurora TSUBASA vector processors [26, 36] are equipped with high-bandwidth

memory, what makes them a very promising architecture for graph processing.

In our prior research, we have proposed a Vector Graph Library (VGL) [3, 4, 6] – a novel

high-performance graph-processing framework, which is so far the only known graph processing

library for the NEC SX-Aurora TSUBASA architecture. As we have previously demonstrated,

VGL is capable to outperform both modern Intel multicore CPUs and NVIDIA GPUs on several

graph algorithms.

However, at the current moment VGL supports graph processing only within a single vector

engine of NEC SX-Aurora TSUBASA system. At the same time, modern NEC SX-Aurora

TSUBASA systems, such as the A300-8 (Aurora8) [1], consist of up to 8 vector engines, connected

to a single vector host. Such systems are similar to well-known multi-GPU systems, such as

DGX or DGX-2, thus in the following paper, we will refer to them as “multi-VE” systems.

Implementing graph processing only within a single vector engine has two important drawbacks.

First, (1) memory of single vector engine is limited to 48 GB, thus large-scale graphs can not be

1Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
2Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
3Tohoku University, Sendai, Miyagi, Japan

DOI: 10.14529/jsfi210206

2021, Vol. 8, No. 2 95

processed (without using out-of-core processing techniques, which have been shown to be rather

slow on NVIDIA GPUs [15]). Second, (2) eight vector engines of the Aurora8 system working

in parallel are capable of significantly accelerating many graph algorithms.

Similar to developing efficient vector graph algorithm implementations for a single vector

engine of NEC SX-Aurora TSUBASA, approaches to developing efficient multi-VE implemen-

tations are not studied well enough at the moment of this writing. Due to a certain similarity

of multi-VE to multi-GPU systems, some existing graph partitioning or inter-GPU commu-

nication methods can be used, but this requires a detailed verification due to the differences

between vector engines and GPUs. Examples of such differences include using different graph

storage formats and optimization techniques within single-GPU or single-VE, different proper-

ties of host-device interconnect, different programming models used for developing distributed

multi-VE and multi-GPU implementations, and so on.

In this paper, we develop multi-VE implementations of three widely-used graph problems:

Page Rank, Single Source Shortest Paths and Hyperlink-Induced Topic Search. We discuss in

details which graph partitioning strategies, communication strategies, programming model, and

single-VE optimizations have been applied to these implementations in order to achieve good

scalability and performance. The performance and scalability of the developed implementations

have been evaluated on Aurora 8 system, installed in Tohoku university. Finally, we discuss how

programming multi-VE systems can be implemented in VGL framework4.

1. NEC SX-Aurora TSUBASA Architecture

NEC has developed vector computing systems called SX series since SX-2 released in 1983

to SX-9 [33], and SX-ACE [13]. So far, many optimizations have been conducted on NEC SX

series not only for the benchmark programs [11, 25] but also for various applications such as

HPC simulation codes [12, 14, 23, 24] and graph algorithms [5, 7].

The latest vector computer NEC SX-Aurora TSUBASA [26, 36] with dedicated vector pro-

cessors is the primary target architecture of graph algorithm implementations, proposed in this

paper. NEC SX-Aurora TSUBASA has been developed according to the design concepts of vec-

tor supercomputer based on the long-term experiences and novel innovations to achieve higher

sustained performance and higher usability. Different from the previous generations of the SX

vector supercomputer series, the system architecture of SX-Aurora TSUBASA mainly consists

of vector engines (VE), equipped with a vector processor and a vector host (VH) of an x86 node.

The VE is used as a primary processor for executing applications, while the VH is used

as a secondary processor for managing the VE and executing a basic operating system (OS)

functions that are offloaded from the VE.

1.1. Vector Engine

The VE has eight powerful vector cores. As each core provides 537.6 GFlop/s of single-

precision performance at 1.40 GHz frequency, the peak performance of the VE reaches

4.3 TFlop/s.

Each SX-Aurora vector core consists of three components: scalar processing unit (SPU),

vector processing unit (VPU), and memory subsystem. Most computations are performed by

VPUs, while SPUs provide the functionality of a typical CPU. Since SX-Aurora is not just a

4VGL is available for free download at vgl.parallel.ru

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

96 Supercomputing Frontiers and Innovations

Figure 1. SX-Aurora TSUBASA A300-8

typical accelerator, but rather a self-sufficient processor, SPUs are designed to provide relatively

high performance on scalar computations. VPU of each vector core has its own relatively sim-

ple instruction pipeline aimed at decoding and reordering vector instructions incoming from

SPU. Decoded instructions are executed on vector-parallel pipelines (VPP). In order to store

the results of intermediate calculations, each vector core is equipped with 64 vector registers

with a total register capacity equal to 128 KB. Each register is designed to store a vector of

256 double-precision elements (DP). On the memory subsystem side, six HBM modules in the

vector processor can deliver the 1.22 TB/s memory bandwidth with up to 48 GB total capacity.

1.2. SX-Aurora TSUBASA A300-8 System

Figure 1 is the SX-Aurora TSUBASA A300-8 model. One VH node consists of one Vector

Host (VH) and eight Vector Engines (VEs). Four VEs are grouped into a VE island. Each VE

island and one Infiniband EDR host channel adapter (HCA) is connected to PCI Express switch.

Two PCI Express switch is connected into one of CPUs.

As shown in the figure, there are multiple hierarchies of communications. As the communi-

cation bandwidth is different among network hierarchies, it is necessary to consider the network

hierarchies to exploit the potential of multiple VEs.

1.3. Programming Aurora Systems

Parallel programs for the NEC SX-Aurora Vector Engines are implemented using the

OpenMP programming model, while vectorization is performed by the NEC compiler: a devel-

oper inserts compiler-specific directives, which help the compiler to perform automatic vectoriza-

tion. When utilizing multiple Vector Engines of Aurora systems is required, MPI parallelization

has to be implemented. At each vector engine an MPI process is started, while data transfers

are implemented via MPI send, recv, gather, scatter, bcast and other functions.

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 97

2. State of the Art

In this section we will describe previously conducted research, related both to developing

distributed graph algorithms and implementing graph algorithms on NEC SX-Aurora TSUBASA

vector system.

2.1. Distributed Graph Algorithm Implementations

As already mentioned, NEX SX-Aurora TSUBASA systems equipped with multiple vector

engines have multiple similarities to modern multi-GPU system. Developers of Gunrock [35]

framework, which targets both single and multi-GPU, have recently published a comprehensive

survey on approaches used for developing multi-GPU implementations [32].

There are multiple large scale distributed memory based graph processing systems for CPU

clusters, such as GraphX [18], Pregel [28] or Giraph [20]. However, communication models and

methods of those systems will very likely be under heavy pressures when local computation is

much faster, as in the case when GPU or SX-Aurora vector engines are involved.

Regarding GPU, the most well-known multi-GPU frameworks are Enterprise [27],

Medusa [37], Gunrock [35] and NVGRAPH [2]. These frameworks use important implemen-

tation techniques, referred through our paper: graph partitioning strategies (how graph vertices

and edges are distributed among processors), such as 1D, 2D, Metis [21] partitioning, vertex

duplication strategies (how graph remote graph vertices are stored), such as duplicate-1-hop,

duplicate-all, and communication strategies (which information to transfer between GPUs), such

as broadcast or selective-communicate. In addition, in these framework different programming

techniques are used for inter-GPU communication, such as MPI, unified memory, peer-to-peer

access.

2.2. VGL (Vector Graph Library) Framework

As previously mentioned in the introduction, we are primary developers of Vector Graph

Library (VGL) – a novel graph processing framework, designed to operate on NEC SX-Aurora

TSUBASA vector system. A detailed description of VGL is provided in [4]. VGL is designed

to implement iterative graph algorithms, and thus uses Bulk synchronous parallel(BSP) [34]

model. All graph algorithms in VGL are represented as a sequence of 4 computational ab-

stractions: Advance, Compute, Reduce and Generate New Frontier abstractions (GNF). The

Advance abstraction is responsible for processing graph edges, Compute and Reduce – graph

vertices, while GNF allows to create working subsets of vertices, which can be processed by other

abstractions. These abstractions operate over Graph, Frontier, VerticesArray and EdgesArray

data-structures. VGL includes a large variety of optimizations required to operate efficiently

within a single vector engine of NEC SX-Aurora TSUBASA, such as parallel workload balanc-

ing, using vector instructions with the maximum vector length, improving LLC usage, and many

others. In addition, VGL provides an architecture-independent API, which allows it to support

computations on different architectures, such as modern NVIDIA GPUs and multicore CPUs

without having to change implemented algorithms. This is achieved by object oriented program-

ming, which allows to develop different implementations of each computational abstraction,

however, providing identical interfaces for each target architecture [3].

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

98 Supercomputing Frontiers and Innovations

2.3. VGL Graph Storage Format

A central point of VGL framework is an optimized graph storage format, called VectCSR.

This format is described in details in [4]. VectCSR is based on a combination of CSR (Compressed

Sparse Row) and Sell-C-Sigma [17] formats. In the following paragraph, we will provide a brief

description of VectCSR format, since understanding it is frequently required in the following

subsections of the paper.

Vect CSR graph storage format scheme is provided in Fig. 3. Its main idea is based on

splitting graph vertices into 3 groups based on their outgoing (or incoming) degrees. Vertices

with “large degree” (> 256 ∗ 8) are processed using all cores of vector engine, each vertex with

“medium degree” – using a single vector core, while a group of 256 “small degree” vertices

is processed collectively by a single vector core. In addition, edges of “small-degree” vertices

are stored in memory in 2 different representations: CSR, which allows to process only a few

vertices in sparse algorithms (for example final iterations of BFS), and representation similar

to Sell-C-Sigma format, where all edges are reordered in a way shown in Fig. 3. In order to

simplify splitting vertices in such groups, as well as to improve memory access pattern for

power-law graphs, graph vertices are preliminary sorted based on their degree, and renumbered

afterwards.

According to our experience [4], using VectCSR Graph Storage format is mandatory for

achieving high performance of graph processing on a single vector engine. This is mostly related

to the fact that CSR format does not allow to process graph vertices with a degree lower than

vector length efficiently. At the same time VectCSR format provides enough flexibility to allow

processing specific subsets of graph vertices and their adjacent edges, which is required in many

sparse graph algorithms, such as BFS. Our experiments during VGL development demonstrated

that using VectCSR format provides approximately 4–5 times acceleration compared to using

traditional CSR format on various synthetic and real-world graphs. This forces us to investigate

graph partitioning strategies taking into account the requirement of storing graph in VectCSR-

like format within a single vector engine.

3. Evaluating MPI Benchmarks on Aurora8 System

In the beginning of our research, we wanted to estimate transfer speed and scalability of

two communication patterns frequently used in graph processing: send/receive point-to-point

and all gather.

3.1. MPI Ping-Pong

MPI ping pong benchmark can be used to evaluate transfer speed of send/receive point-to-

point communication. “Ping-pong” benchmark is based on performing a sequence of MPI Send

and MPI Recv operation between two MPI processes. This communication pattern is used in

graph algorithm when MPI processes are doing cycle exchange in order to update some ver-

tices arrays, as will be described further in the paper. We executed “ping-pong” benchmark

on MPI processes, attached to different Vector Engines of Aurora8 system (Fig. 2). As shown

in Fig. 2, the transfer bandwidth slightly decreases in the case when communicating processes

are attached to different switches of aurora8 system (e.g., vector engines 0 and 7). To achieve

close to theoretical peak bandwidth values, sending messages of ≥ 16 MB size is needed. Finally,

point-to-point communication bandwidth is relatively low due to the fact that different vector

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 99

engines are communicating through PCI express, one-directional bandwidth of which does not

exceed 12 GB/s. On the contrary, multi-GPU systems equipped with NVLINK 3.0 and A100

GPU are capable of transferring data with 300 GB/s one-directional bandwidth. This means

that graph partitioning and communication strategies have to be chosen much more carefully

for vector engines, since MPI transfers between different Vector Engines can quickly become a

significant bottleneck.

Figure 2. The transfer bandwidth of MPI ping-pong (left) and all gather (right) benchmarks on

Aurora8 system

3.2. MPI Allgather

Next we evaluated transfer bandwidth of MPI Allgather operation, which together with

MPI Allgatherv will be frequently used in our implementations. Transfer bandwidth of

MPI Allgather is calculated as |N |/time, where |N | is the size of array, which is distributed

among |P | MPI processes. As shown in Fig. 2, MPI Allgather communication between two ad-

jacent vector engines (0/1, 1/2, etc.) can be up to two times faster, compared to four and eight.

This is explained by the (1) increase of communication rate (amount of data transferred between

all processes) and (2) that while communication of 2 and 4 vector engines is handled by one

PCIe SW, but two PCIe SW are used for 8 vector engine communication. In the context of

developing graph algorithms this means that the developed implementations will demonstrate

the best scaling among two vector engines when MPI Allgather is used.

4. Implementing Multi-VE Graph Algorithms

4.1. Deciding on Graph Partitioning Strategy

The first important thing to take into an account is how graph vertices and edges need to

be partitioned among MPI processes. When selecting graph partitioning strategy, the following

factors need to be considered:

1. each MPI process should process approximately equal amount of graph edges;

2. edge processing rate should be approximately equal among different MPI processes;

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

100 Supercomputing Frontiers and Innovations

3. the amount of communications (number of vertices, information about which is required to

be sent to other processors) should be minimized;

4. graph processing inside a single vector engine should include optimizations, implemented in

VGL (primary VectCSR format should be supported);

5. graph partitioning process should not be very complex and should be vectorizable in order

to allow graph partitioning right on vector engines (to avoid exchanging data with vector

host).

Thus, we considered three possible graph partitioning strategies between different MPI

processes.

Successive distribution of VectCSR edges between MPI processes

First, let us denote the total amount of graph edges as |E|, total amount of graph vertices

as |V |, and total amount of MPI process (and thus vector engines, because each MPI process

is bound to a separate vector engine) as |P |. The most basic partitioning strategy, which can

be applied to VectCSR format is illustrated in Fig. 3 (left), where each MPI process stores a

successive region of |E|/|P | edges. This approach has the following advantages:

1. such partitioning allows efficient graph processing inside single vector engine, since no re-

ordering of vertices data or strided memory accesses to vertices and edges arrays is required

(unlike in other approaches, which we will discuss further in the section);

2. each MPI process storing approximately equal amount of edges.

However, this approach also has several crucial disadvantages:

1. as shown in our previous paper [4], edge processing rate among different groups of vertices

in VectCSR format (“large-degree”, “medium-degree”, “small-degree”) can be different for

some algorithms and input graphs. For example, on RMAT [10] graphs and shortest paths

algorithm “small-degree” vertices are processed with a rate of 518 GB/s sustained band-

width rate, while group of “medium-degree” vertices – with 350 GB/s sustained bandwidth

rate. This causes uneven load balancing between different vector engines, since each engine

processes equal amount of |E|/|P | edges, but with different processing rate.

2. vector extension, required for fast processing of vertices with low-degree, is stored together

with CSR representation. Thus several MPI processes (MPI Proc 3 in Fig. 3), which store

information about vertices with low degree, are forced to store approximately twice the

amount of edges, which leads to a significant difference in memory consumption between

different processes.

3. finally, for many scale-free graphs with uneven distribution of vertex degrees, each MPI

process does not necessary store |V |/|P | vertices. In the case when communication between

processes is based on sending “local” vertices, communication time will be different for each

MPI process resulting in a significant imbalance of time spent on communication.

Distribution of VectCSR edges between MPI processes inside separate vertex

groups Disadvantages (1) and (2) of previously discussed partitioning strategy can be relatively

easily solved by doing partitioning inside each vertex group (“small-degree”, “medium-degree”,

etc.) instead of the whole graph, as shown in Fig. 3 (right). According to our experiments, edge

processing rates are roughly equal inside different parts of vector groups, while vector extension

is distributed among all working processes, instead of only last ones. However, disadvantage

(3) still exists, since low rank processes store information about lower number of vertices in

scale-free graphs. In order to solve this issue to some extent, we reversed distribution of vertices

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 101

Figure 3. Two strategies of distributing VectCSR graph between MPI processes: spliting

VectCSR edges between MPI processes successively and splitting graph edges inside each vector

group. Three MPI processes used in this example: MPI process 0 stores graph edges are marked

as “x”, MPI process 1 – as “///”, MPI process 2 – as “|||”

inside vector core and collective groups, as shown in Fig. 3 (right): low rank processes store

high-degree vertices of vector core group, and small-degree vertices of collective group.

Specific distribution of graph vertices between processes Despite previously dis-

cussed graph partitioning strategies lack significant disadvantages, strategies which allow better

load-balancing and lower amount of communications between MPI processes exist. These strate-

gies are based on distributing graph vertices and edges between different processor according

to some vertex partitioning function. However, a more complex graph storage format should be

used in order to incorporate VectCSR format into such approaches, due to each vector engine

storing non-consecutive vertices. This format (illustrated in Fig. 4) will be further referred to

as ShardedCSR format. Vertices in ShardedCSR graph are distributed between different shards

(segments) using a specific partitioning function, some of which will be described in the further

paragraphs. In our implementation, each vertex belongs only to a single shard, however, this

can be relatively easily changed.

Vertex partitioning function is a crucial factor, which defines quality of load-balancing and

the amount of communication in ShardedCSR graph. A particularly good strategy, used in Gun-

rock, is random partitioning of vertices between GPUs (vector engines in our case). Each vertex

is assigned with an equal probability to a particular GPU, together with all its neighbouring

edges. If the size of processed graph is large, this approach results in |E|/|P | edges and |V |/|P |
vertices being stored by each VE.

Another well-known approach is using graph partitioning systems, which are designed to

minimize the amount of communications between different MPI processes, such as Metis [21].

Metis provides multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning

schemes. Unfortunately, Metis can not be executed on vector engines, and thus requires doing

preliminary graph partitioning on vector host. According to our experiments this approach is

rather disadvantageous, since (1) graph partitioning time on CPU is huge and (2) it is accom-

panied by a large transfer time graph VH to VE through PCIe, which results in very significant

pre-processing overheads, in many situations larger than distributed graph processing time.

At the same time, previously mentioned methods allow vectorized graph partitioning and pre-

processing directly on vector engines, which allows them to significantly outperform Metis-based

approach.

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

102 Supercomputing Frontiers and Innovations

Conclusions Thus, further in the paper we will use two most promising graph partition-

ing strategies: (1) Distribution of VectCSR edges between vector engines inside separate vertex

groups and (2) random distribution of graph vertices between vector engines.

4.2. Deciding on Communication Strategy

Communication strategy is another important trait of distributed graph algorithm imple-

mentations. All the discussed graph partitioning strategies are based on splitting graph edges

between MPI processes to make sure that all the required for the computations edges are stored

locally (on the process itself). Thus, MPI processes need to exchange only information about

vertices (for example current distances in shortest paths, rank values in page rank, etc). Infor-

mation about graph vertices can be exchanged in several different ways, depending on the prop-

erties of algorithm and graph partitioning schemes. The comparative characteristics of multiple

communication strategies, such as additional space required for communication buffers, commu-

nication cost (the amount of data transferred between all processes) and pre-/post-processing

complexity are provided in Tab. 1. Pre-/post-processing complexity is the total number of oper-

ations, required to prepare data for MPI communication (for example, copy information about

scattered vertices into exchange buffers), and to receive it afterwards. The communication cost

provided in Tab. 1 takes into account only the amount of data exchanged, however, the actual

communication time additionally depends on the performance of MPI communication functions,

shown in Fig. 2.

Table 1. The comparative characteristics of communication strategies. |V | – number of

vertices in graph, |N | – number of MPI processes, |Ki| – number of updated vertices on each

MPI process

Strategy

Additional space

for communication

buffers

Communication

cost

Pre-/post-processing

complexity

(1)all-to-all (bcast based) |V | ∗ |N | |V | ∗ |N |2 |V | ∗ |N |

(2)all-to-all

(cycle exchange based)
|V | |V | ∗ |N | ∗ log|N | |V | ∗ log|N |

(3)all-to-all

recently changed only
|V | (

∑|N|
i=1

Ki) ∗ |N | ∗ log|N | (
∑|N|

i=1
Ki) ∗ log|N |

(4)all gather 0 |V | ∗ |N | 0

(5)all gather recently

changed only
|V | (

∑|N|
i=1

Ki) ∗ |N | Ki +
∑|N|

i=1
Ki

All-to-all This communication scheme involves each MPI process broadcasting vertices ar-

ray of size |V | to all other processes. This can be achieved by using 2 communication algorithms.

(1) Each MPI process broadcasts information about |V | graph vertices to all other processes,

while receiving information about |V | ∗ |N | vertices. After communication each process updates

its private vertices arrays using provided in the algorithm update criteria, such as computing

minimal distances to each vertex or calculating a sum of ranks for each vertex, obtained on

different processes. In Tab. 1 this strategy is referred to as “all-to-all bcast based”. Another

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 103

possible strategy (2) requires each MPI process to send information about |V | graph vertices to

rank+1 process and simultaneously receive information about |V | vertices from rank−1 process.

After communication, each process updates local vertices arrays using update criteria and the

received information. After that, newly calculated information is sent to rank + 2 process, and

so on using log|N | steps. In Tab. 1 this strategy is referred to as “all-to-all cycle exchange

based”. This approach requires significantly less additional space and has lower communication

cost compared to “all-to-all bcast based” strategy (1).

All-to-all recently changed only This strategy is based on slightly modified all-to-all

strategy. However, information only about |K| vertices, values of which have been changed during

the last algorithm iteration (for example only recently updated distances or ranks) is sent to other

processes. This reduces the amount of transferred data depending on the algorithm properties,

however, at the cost of increased pre-processing and post-processing, since each process is now

required to generate lists of recently updated vertices before communication (using copy if or

parallel prefix sum algorithm), and afterwards to place received data to the correct places of

local vertices arrays using scatter operation. Similarly to “all-to-all” strategy, cycle exchange

communication pattern can be used instead of broadcast here.

All gather Two previously discussed strategies can be used both for pull- and push-

based [9] algorithms. In pull-based algorithms each MPI process updates only its locally stored

vertices, while for push-based algorithm any graph vertices can be updated. Since pull-based

algorithms update only their local vertices during computations, it is possible to use communi-

cation strategy based on MPI all gather operation, when each process broadcasts only its local

vertices.

All gather recently changed only This strategy is aimed to further reduce communica-

tion cost of all gather strategy, similar to “all-to-all recently changed only”. Each process gener-

ates a list of recently updated local vertices, and then uses all gatherv operation to communicate

lists of potentially smaller size, but, similarly, at the cost of additional pre- and post-processing.

Conclusions Table 1 demonstrates that each strategy can potentially be useful for different

graph algorithms, due different strategies having different trade-offs: larger communicating cost

or pre-/post-processing complexity, etc. In addition, all these strategies can be implemented on

vector engines, since they do not require complex data structure and support all the required

optimizations, applied withing a single VE. In the following section we implemented all these

strategies for single source shortest paths algorithm, comparing execution time, performance

and scalability of each approach, and afterwards selecting the most fitting approach for NEC

SX-Aurora TSUBASA architecture.

4.3. Bellman-Ford Shortest Paths Algorithm

The single-source shortest paths problem involves finding paths between a given source

vertex and all other graph vertices, such that all weights on the path between source and

destination vertices are minimized. Multiple parallel shortest paths algorithms exist, including

delta-stepping [29] and Bellman-Ford [16], the latter being implemented in VGL, and thus being

a subject of our research. Two different variations of Bellman-Ford algorithm exist: push-based

and pull-based. Pull-based variation updates distance to each vertex based on the distances to

vertices, connected via incoming edges to the processed vertex. Push-based algorithm propagates

distance of current vertex to its neighbouring vertices via outgoing edges. Both these variations

are suitable for implementation within a single vector engine [4].

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

104 Supercomputing Frontiers and Innovations

We implemented the following variations of shortest paths algorithms based on vectCSR

partitioning inside separate vector groups:

1. push-based algorithm using “all-to-all” communication strategy;

2. push-based algorithm using “all-to-all recently-changed only” communication strategy;

3. pull-based algorithm using “all-to-all recently-changed only” communication strategy;

4. pull-based algorithm using “all-gather” communication strategy;

5. pull-based algorithm using “all-to-all recently-changed only” communication strategy.

In addition, we implemented two variations of algorithm based on ShardedCSR graph stor-

age format and random vertex partitioning:

1. pull-based algorithm using “all-gather” communication strategy;

2. push-based algorithm using “all-to-all recently-changed only” communication strategy.

Scalability of these implementations is evaluated in Fig. 4. Here (as well as in the following

section) synthetic RMAT [10] of scale 25 with edge factor 32 are used as input data. Thus such

graph contains 33 million vertices and 1 billion edges. RMAT graphs are scale-free, which means

that they have power law distribution of vertex degrees. Thus, they successfully model social

networks and web graphs, which are used in various application fields. As could be expected,

scalability of all-to-all implementations is very limited due to a very large amount of transferred

data coupled with low bandwidth of PCIe interconnect.

The highest performance and best scalability has been achieved when using VectCSR par-

titioning inside separate vertices groups together with “push all to all recently changed” and

“pull all gather” communication policies. However, scalability of both these implementations

is still far away from the linear: only 2 and 2.6 times acceleration is achieved when using 8

vector engines. In order to further investigate these issues, we have collected profiling data,

which is provided in Tab. 2 and Tab. 3. Table 2 provides information about main computational

components of the developed implementations, such as execution time spent inside Advance

(which processes graph edges) and Compute (which processes graph vertices) VGL abstractions,

MPI pre-process and post-process functions (when sent data is prepared and received data is

analysed), and MPI communication time (of MPI send, MPI recv, MPI allgather, MPI bcast

functions). Table 2 demonstrates that while time, spent on processing of graph edges (Advance)

scales nearly linearly, the primary reason of limited scalability of both implementations is the

increase of MPI communications and MPI pre-/post-processing time. While on single VE no

time is required on these activities, 16 % of program execution time is spent on communication

and pre-/post-processing on 2 VE, 42 % on 4 VE and 61 % on 8 VE for push-based algorithm.

Similar situation can be observed on pull-based algorithm. As demonstrated in Tab. 3, time

spent on communications is roughly equal between different MPI processes.

On the final note, we would like to discuss reasons standing behind poor scalability of imple-

mentations, based on ShardedCSR format. Despite the fact it provides more equal distribution

of graph edges and vertices between different processes, this format requires reordering of ver-

tices arrays of size |V |, after obtaining information from other processes, since vertices inside

each sharded can be sorted differently to support VectCSR format inside each shard. Despite the

fact that this reordering has O|V | complexity, its efficiency is lower compared to edge processing

in advance, which has O(|E|/|N |)| complexity. With the increase of number of MPI processes

used (|N |), and taking into the account that for many real-world graphs |E| = C ∗ |V |, with |C|
being a constant in 8–64 range, such reordering has a comparable time with Advance execution

time, and the scalability of ShardedCSR implementaion being limited by Amdahl’s law [19]. A

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 105

Figure 4. Scalabilty of the shortest paths algorithms (left), ShardedCSR graph storage format

scheme (right). ShardedCSR graph consists of different shards (0, 1, 2 in this example). Each

shard is a subgraph in VectCSR format, demonstrated in details in Fig. 3, which includes CSR

and vector extension

Table 2. Main computational components of shortest paths implementations on RMAT graph

of scale 25, multiple algorithm iterations

Activity

SSSP,

push,

1 VE

SSSP,

push,

2 VE

SSSP,

push,

4 VE

SSSP,

push,

8 VE

SSSP,

pull,

1 VE

SSSP,

pull,

2 VE

SSSP,

pull,

4 VE

SSSP,

pull,

8 VE

Advance 3540 s 1999 s 1122 s 602 s 3795 s 1467 s 737 s 387 s

Compute 23 s 31 s 29 s 32 s 28 s 30 s 32 s 32 s

MPI communication - 81 s 224 s 139 s - 294 s 407 s 774 s

MPI preprocess

and postprocess
- 324 s 598 s 834 s - 40 s 17 s 21 s

possible solution to this problem is using CSR format instead of VectCSR inside each shard,

which removes the requirement of reordering vertices after each communication, however, these

increase Advance time in 3–4 times for various graph algorithms, which is an unacceptable trade

off.

4.4. Page Rank Algorithm

The page rank [31] algorithm assigns a numerical weighting to each element of a hyper-

linked set of documents, (for example, web-graph), with the purpose of quantifying its relative

importance within the set. Similarly to shortest paths, page rank algorithm has pull-based or

push-based variations. Push-based algorithm requires using atomicAdd operations (since 2 ver-

tices processed in parallel can possibly try to update the same adjacent vertex). Despite vector

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

106 Supercomputing Frontiers and Innovations

Table 3. Profiling of shortest paths implementations using Ftrace tool

Algorithm and

MPI rank ELAPSED time COMM TIME

COMM TIME

/ELAPSED time AVER.LEN

sssp pull, rank 0 2.229 s 1.392 s 62 % 4 MB

sssp pull, rank 1 2.227 s 1.300 s 58 % 4.1 MB

sssp pull, rank 2 2.227 s 1.047 s 47 % 4.5 M

sssp pull, rank 3 2.226 s 0.423 s 19 % 7 MB

sssp push, rank 0 2.039 s 0.340 s 16 % 3.1 MB

sssp push, rank 1 2.037 s 0.373 s 12 % 3.1 MB

sssp push, rank 2 2.037 s 0.333 s 11 % 3.0 MB

sssp push, rank 3 2.036 s 0.248 s 6 % 3.0 MB

engines having support of atomic operations, code including them can not be vectorized, thus

pull-based variation must be used on NEC SX-Aurora TSUBASA.

Based on the research provided for shortest paths algorithm, for page rank algorithm we

implemented vectCSR partitioning inside separate vector groups and all gather communication

model. Scalability of the developed implementation is provided in Section 5.

4.5. HITS

Hyperlink-Induced Topic Search (HITS) is also a link analysis algorithm that rates Web

pages [22], however, quite differently compared to page rank. The main idea of HITS algorithm

is based on each graph vertex having authority and hub scores. Both scores are consequently up-

dated on each iteration; authority score of each node is updated based on incoming edges, while

hub score – based on incoming. This means that when using VectCSR graph storage format, two

reorderings of vertices arrays are required on each iteration, when traversal direction is changed.

According to the profiling data the reordering process on large graphs (vertices arrays of which

do not fit into LLC cache) take up to 45 % of program execution time, while the remaining 55 %

are spent on Advance (processing edges), Compute and Reduce (communications are excluded).

At the same time increasing the number of vector engines reduces Advance time linearly, but

does not reduce reordering time at all, since each process is required to reorder |V | vertices no

matter how many vector engines are used. Thus scalability of such implementation is limited

due to Amdahl’s law, similarly to shortest paths implementation when using shardedCSR graph

partitioning. Scalability of the developed HITS implementation is provided in Fig. 5 and Tab. 4.

The provided analysis allows to make a conclusion that VectCSR-based format is not suitable

for distributed graph processing when algorithm frequently switches traversal direction, such as

HITS or direction-optimizing BFS [8].

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 107

4.6. Implementing Distributed Graph Processing Support in VGL

The provided research allowed us to include support of distributed graph processing inside

VGL5. This has been achieved by implementing a special method exchange vertices array, which

is aimed to update vertices on each vector engine according to remote data and is called after

each graph algorithm iteration. In addition, we slightly modified VectCSR and ShardedCSR

graph storage formats in order to support distributed graph storage, as well as inner representa-

tion of Advance abstraction. However, since all computational and data abstractions have their

interfaces unchanged, many implemented in VGL algorithms can be turned into distributed

versions by simply adding exchange vertices array calls into the correct places.

5. Evaluating Scalability of All Developed Implementations

Figure 5 and Tab. 4 demonstrate scalability of the developed implementations of page rank,

HITS and shortest paths (pull and push) algorithms. The performance comparison of VGL-based

implementations working on a single vector engine with their GPU and Intel CPU counterparts

can be found in [4] or at VGL website6 in the “performance” section. In general, for SSSP

and PR algorithms VGL-based implementations are up to 14 times faster compared to Ligra,

Galois and GAPBS multicore CPU frameworks and libraries, and up to 3 times faster compared

to Gunrock and NVGRAPH implementations for various synthetic and real-world graphs [4].

Thus, in this section we will only evaluate MPI scalability of the developed implementations.

During these experiments we used 1, 2, 4 and 8 vector engines of Aurora 8 systems. When

using 2 and 4 vector engines, MPI processes were bound to the adjacent vector engines in the

same PCIe SW group. The main performance characteristics used is TEPS (Traversed Edges

Per Second) [30], equal to the amount of graph edges processed divided by algorithm execution

time. For page rank and HITS algorithms the performance is calculated for a single iteration.

Table 4. Scalabilty of all the developed

distributed graph algorithm implementations

Algorithm 1 VE 2 VE 4 VE 8 VE

page rank 1 1.53 2.0 2.38

sssp (push) 1 1.41 1.75 1.82

sssp (pull) 1 1.74 1.97 2.34

hits 1 0.89 1.00 1.07

Finally, we can compare scalability of our implementations with multi-GPU scalability

of Gunrock [35]. According to the research [32] on SSSP problem Gunrock achieves 1.5 and

2.92 times acceleration when using 2 GPUs and 6 GPUs, while on PR Gunrock achieves 2.8 and

4.1 times acceleration on 2 and 6 GPU. Comparing these values to Tab. 4 indicates that VGL

achieves lower scalability, which is explained by differences in bandwidth of interconnect used

in modern GPUs (NVLINK, 80–300 GB/s) and NEC SX-Aurora TSUBASA (PCIe, 12 GB/s).

5Distributed graph processing is currently available in VGL on NEC-MPI git branch.
6https://vgl.parallel.ru/performance.html

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

108 Supercomputing Frontiers and Innovations

Figure 5. Scalabilty of the developed distributed implementations of page rank, HITS and

shortest paths (pull and push) graph algorithms

We hope that future generations of NEC SX-Aurora TSUBASA architecture will be based on

higher bandwidth interconnect, which can greatly improve scalability of our implementations.

Conclusion and Future Plans

In this paper we have proposed world first distributed graph algorithms for modern NEC

SX-Aurora TSUBASA systems. In this paper we have discussed multiple attributes of these

implementations: graph storage format, graph partitioning schemes, communication strategies,

optimizations within single vector engine. Our experiments demonstrated that partitioning of

VectCSR graph storage format inside separate vertex groups coupled with all gather and all-

to-all recently changed only strategies communication provide the best scalability. Our imple-

mentations achieve 40, 6.6 and 1.3 GTEPS performance on PR, SSSP and HITS algorithm on

8 vector engines, at the same time achieving up to 1.5x, 2x and 2.5x acceleration on 2, 4 and

8 vector engines of Aurora 8 systems. In addition, the developed distributed implementations

allowed us to process 8 times larger graphs using Aurora 8 system at the same time obtaining

reasonable (up to 2.6 times acceleration), which is crucial in many real-world applications.

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 109

Finally, using the example of HITs algorithm we have demonstrated that algorithms, which

require switching between push and pull traversal on each iteration do not scale well with the

proposed approaches on Aurora systems. Solving this problem is an important direction of our

future work. Our other future plans include developing distributed versions of graph algorithms,

which require working with sparse frontiers of active vertices, such as breadth-first search.

Acknowledgements

The research is carried out using the equipment of the shared research facilities of HPC

computing resources at Lomonosov Moscow State University and the computational resources

of Cyberscience Center at Tohoku University.

The reported study presented in all sections excluding 5 was funded by RFBR and JSPS

according to the research project No. 21-57-50002 and Grant number JPJSBP120214801. The

work presented in Section 5 is supported by Russian Ministry of Science and Higher Education,

agreement No. 075-15-2019-1621.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. NEC SX-Aurora TSUBASA A300-8. https://www.nec.com/en/global/solutions/hpc/

sx/A300-8.html, accessed: 2021-04-06

2. NVGRAPH. https://developer.nvidia.com/nvgraph, accessed: 2021-06-28

3. Afanasyev, I.V.: Developing an architecture-independent graph framework for modern vec-

tor processors and NVIDIA GPUs. Supercomputing Frontiers and Innovations 7(4), 49–61

(2021). https://doi.org/10.14529/jsfi200404

4. Afanasyev, I.V., Voevodin, V.V., Komatsu, K., Kobayashi, H.: VGL: a high-performance

graph processing framework for the NEC SX-Aurora TSUBASA vector architecture.

The Journal of Supercomputing 77(8), 8694–8715 (2021). https://doi.org/10.1007/

s11227-020-03564-9

5. Afanasyev, I.V., Voevodin, V.V., Komatsu, K., Kobayashi, H., et al.: Developing efficient

implementations of Bellman–Ford and Forward-Backward graph algorithms for NEC SX-

ACE. Supercomputing Frontiers and Innovations 5(3), 65–69 (2018). https://doi.org/10.

14529/jsfi180311

6. Afanasyev, I.V., Voevodin, V.V., Komatsu, K., Kobayashi, H., et al.: Analysis of rela-

tionship between SIMD-processing features used in NVIDIA GPUs and NEC SX-Aurora

TSUBASA vector processors. In: International Conference on Parallel Computing Tech-

nologies. Lecture Notes in Computer Science, vol. 11657, pp. 125–139. Springer (2019).

https://doi.org/10.1007/978-3-030-25636-4_10

7. Afanasyev, I.V., Voevodin, V.V., Komatsu, K., Kobayashi, H., et al.: Developing efficient

implementations of shortest paths and page rank algorithms for NEC SX-Aurora TSUBASA

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

110 Supercomputing Frontiers and Innovations

https://www.nec.com/en/global/solutions/hpc/sx/A300-8.html
https://www.nec.com/en/global/solutions/hpc/sx/A300-8.html
https://developer.nvidia.com/nvgraph
https://doi.org/10.14529/jsfi200404
https://doi.org/10.1007/s11227-020-03564-9
https://doi.org/10.1007/s11227-020-03564-9
https://doi.org/10.14529/jsfi180311
https://doi.org/10.14529/jsfi180311
https://doi.org/10.1007/978-3-030-25636-4_10

architecture. Lobachevskii Journal of Mathematics 40(11), 1753–1762 (2019). https://doi.

org/10.1134/S1995080219110039

8. Beamer, S., Asanović, K., Patterson, D.: Direction-optimizing breadth-first search. Scientific

Programming 21(3-4), 137–148 (2013). https://doi.org/10.1109/SC.2012.50

9. Besta, M., Podstawski, M., Groner, L., et al.: To push or to pull: On reducing communica-

tion and synchronization in graph computations. In: Proceedings of the 26th International

Symposium on High-Performance Parallel and Distributed Computing. pp. 93–104. ACM

(2017). https://doi.org/10.1145/3078597.3078616

10. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph mining.

In: Proceedings of the 2004 SIAM International Conference on Data Mining. pp. 442–446.

SIAM (2004). https://doi.org/10.1137/1.9781611972740.43

11. Egawa, R., Komatsu, K., Isobe, Y., et al.: Performance and power analysis of SX-ACE using

HP-X benchmark programs. In: 2017 IEEE International Conference on Cluster Computing

(CLUSTER). pp. 693–700. IEEE Computer Society (2017). https://doi.org/10.1109/

CLUSTER.2017.65

12. Egawa, R., Komatsu, K., Kobayashi, H.: Designing an HPC refactoring catalog toward the

exa-scale computing era. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Patel, N.

(eds.) Sustained Simulation Performance 2014. pp. 91–98. Springer (2015). https://doi.

org/10.1007/978-3-319-10626-7_8

13. Egawa, R., Komatsu, K., Kobayashi, H., et al.: Potential of a modern vector supercomputer

for practical applications: performance evaluation of SX-ACE. The Journal of Supercom-

puting 73(9), 3948–3976 (2017). https://doi.org/10.1007/s11227-017-1993-y

14. Egawa, R., Komatsu, K., Takizawa, H.: Designing an open database of system-aware

code optimizations. In: 2017 Fifth International Symposium on Computing and Network-

ing (CANDAR). pp. 369–374. IEEE Computer Society (2017). https://doi.org/10.1109/

CANDAR.2017.102

15. Gharaibeh, A., Reza, T., Santos-Neto, E., et al.: Efficient large-scale graph processing on

hybrid CPU and GPU systems. arXiv preprint arXiv:1312.3018 (2013)

16. Goldberg, A., Radzik, T.: A heuristic improvement of the Bellman-Ford algorithm. Tech.

rep., Stanford Univ CA Dept of Computer Science (1993)

17. Gómez, C., Casas, M., Mantovani, F., Focht, E.: Optimizing sparse matrix-vector multipli-

cation in NEC SX-Aurora Vector Engine. Tech. rep., Technical Report, Barcelona Super-

computing Center (2020)

18. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx:

Graph processing in a distributed dataflow framework. In: 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14). pp. 599–613 (2014)

19. Gustafson, J.L.: Reevaluating Amdahl’s law. Communications of the ACM 31(5), 532–533

(1988). https://doi.org/10.1145/42411.42415

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 111

https://doi.org/10.1134/S1995080219110039
https://doi.org/10.1134/S1995080219110039
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1007/978-3-319-10626-7_8
https://doi.org/10.1007/978-3-319-10626-7_8
https://doi.org/10.1007/s11227-017-1993-y
https://doi.org/10.1109/CANDAR.2017.102
https://doi.org/10.1109/CANDAR.2017.102
https://doi.org/10.1145/42411.42415

20. Han, M., Daudjee, K.: Giraph unchained: Barrierless asynchronous parallel execution in

pregel-like graph processing systems. Proceedings of the VLDB Endowment 8(9), 950–961

(2015). https://doi.org/10.14778/2777598.2777604

21. Karypis, G., Kumar, V.: Metis: A software package for partitioning unstructured graphs,

partitioning meshes, and computing fill-reducing orderings of sparse matrices (1997), https:

//hdl.handle.net/11299/215346

22. Kleinberg, J.M., Kumar, R., Raghavan, P., et al.: The web as a graph: Measurements,

models, and methods. In: International Computing and Combinatorics Conference. Lecture

Notes in Computer Science, vol. 1627, pp. 1–17. Springer (1999). https://doi.org/10.

1007/3-540-48686-0_1

23. Komatsu, K., Egawa, R., Hirasawa, S., Takizawa, H., Itakura, K., Kobayashi, H.: Migration

of an atmospheric simulation code to an OpenACC platform using the Xevolver framework.

In: 2015 Third International Symposium on Computing and Networking (CANDAR). pp.

515–520. IEEE Computer Society (2015). https://doi.org/10.1109/CANDAR.2015.102

24. Komatsu, K., Egawa, R., Hirasawa, S., Takizawa, H., Itakura, K., Kobayashi, H.: Trans-

lation of large-scale simulation codes for an OpenACC platform using the Xevolver frame-

work. International Journal of Networking and Computing 6(2), 167–180 (2016). https:

//doi.org/10.15803/ijnc.6.2_167

25. Komatsu, K., Egawa, R., Isobe, Y., et al.: An approach to the highest efficiency of the

HPCG benchmark on the SX-ACE supercomputer. In: Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis (SC15), Poster. pp. 1–2

(2015)

26. Komatsu, K., Watanabe, O., Musa, A., et al.: Performance evaluation of a vector super-

computer SX-Aurora TSUBASA. In: Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis, Dallas, TX, USA, Nov. 11-16,

2018. pp. 54:1–54:12. SC ’18, IEEE (2018). https://doi.org/10.1109/SC.2018.00057

27. Liu, H., Huang, H.H.: Enterprise: breadth-first graph traversal on GPUs. In: Proceedings

of the International Conference for High Performance Computing, Networking, Storage and

Analysis. pp. 1–12. ACM (2015). https://doi.org/10.1145/2807591.2807594

28. Malewicz, G., Austern, M.H., Bik, A.J., et al.: Pregel: a system for large-scale graph process-

ing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management

of data. pp. 135–146. ACM (2010). https://doi.org/10.1145/1807167.1807184

29. Meyer, U., Sanders, P.: δ-stepping: a parallelizable shortest path algorithm. Journal of

Algorithms 49(1), 114–152 (2003). https://doi.org/10.1016/S0196-6774(03)00076-2

30. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph 500. Cray

Users Group (CUG) 19, 45–74 (2010)

31. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing

order to the web. Tech. rep., Stanford InfoLab (1999)

32. Pan, Y.: Multi-GPU Graph Processing. Ph.D. thesis, University of California, Davis (2019)

Distributed Graph Algorithms for Multiple Vector Engines of NEC SX-Aurora...

112 Supercomputing Frontiers and Innovations

https://doi.org/10.14778/2777598.2777604
https://hdl.handle.net/11299/215346
https://hdl.handle.net/11299/215346
https://doi.org/10.1007/3-540-48686-0_1
https://doi.org/10.1007/3-540-48686-0_1
https://doi.org/10.1109/CANDAR.2015.102
https://doi.org/10.15803/ijnc.6.2_167
https://doi.org/10.15803/ijnc.6.2_167
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1016/S0196-6774(03)00076-2

33. Soga, T., Musa, A., Okabe, K., et al.: Performance of SOR methods on modern vector and

scalar processors. Computers & Fluids 45(1), 215–221 (2011). https://doi.org/10.1016/

j.compfluid.2010.12.024

34. Tiskin, A.: The design and analysis of bulk-synchronous parallel algorithms. Ph.D. thesis,

Citeseer (1998)

35. Wang, Y., Davidson, A., Pan, Y., et al.: Gunrock: A high-performance graph processing

library on the GPU. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. pp. 1–12. ACM (2016). https://doi.org/10.1145/

2851141.2851145

36. Yamada, Y., Momose, S.: Vector engine processor of NEC brand-new supercomputer

SX-Aurora TSUBASA. In: Intenational symposium on High Performance Chips (Hot

Chips2018) (2018)

37. Zhong, J., He, B.: Medusa: Simplified graph processing on GPUs. IEEE Transactions

on Parallel and Distributed Systems 25(6), 1543–1552 (2013). https://doi.org/10.1109/

TPDS.2013.111

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 113

https://doi.org/10.1016/j.compfluid.2010.12.024
https://doi.org/10.1016/j.compfluid.2010.12.024
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1109/TPDS.2013.111
https://doi.org/10.1109/TPDS.2013.111

Optimizing Load Balance in a Parallel CFD Code

for a Large-scale Turbine Simulation on aVector Supercomputer

Osamu Watanabe1, Kazuhiko Komatsu2, Masayuki Sato2,

Hiroaki Kobayashi2

c© The Authors 2021. This paper is published with open access at SuperFri.org

A turbine for power generation is one of the essential infrastructures in our society. A turbine’s

failure causes severe social and economic impacts on our everyday life. Therefore, it is necessary

to foresee such failures in advance. However, it is not easy to expect these failures from a real

turbine. Hence, it is required to simulate various events occurring in the turbine by numerical

simulations of the turbine. A multiphysics CFD code, “Numerical Turbine,” has been developed

on vector supercomputer systems for large-scale simulations of unsteady wet steam flows inside

a turbine. To solve this problem, the Numerical Turbine code is a block structure code using

MPI parallelization, and the calculation space consists of grid blocks of different sizes. Therefore,

load imbalance occurs when executing the code in MPI parallelization. This paper creates an

estimation model that finds the calculation time from each grid block’s calculation amount and

calculation performance. It proposes an OpenMP parallelization method for the load balance of

MPI applications. This proposed method reduces the load imbalance by considering the vector

performance according to the calculation amount based on the model. Moreover, this proposed

method recognizes the need to reduce the load imbalance without pre-execution. The performance

evaluation shows that the proposed method improves the load balance from 24.4 % to 9.3 %.

Keywords: turbine simulation code, MPI, OpenMP, hybrid parallelization, vector supercom-

puter, load balance.

Introduction

Thanks to advances in large-scale simulations, various phenomena in the real world can

be reproduced more realistically by using supercomputer systems. On the other hand, there

are still many problems with social infrastructures to be solved in the real world, and the

impact of these issues on our society is immeasurable [1]. Therefore, there is no doubt that

preventing these problems is beneficial for promoting a safe society. For example, gas and steam

turbines are used to generate thermal power. Their failures will have a severe social and economic

impact. Therefore, it is necessary to foresee such failures in advance. However, it is difficult to

predict these failures from a real turbine [10]. Consequently, it is needed to simulate various

phenomena occurring in the turbine by a numerical simulation using a computer to predict

the failures. Moreover, the use of supercomputers is indispensable for simulating complex and

diverse phenomena that occur in turbines.

Internally, these turbines consist of multiple stages of stator cascades and rotor cascades,

and the total number of blades exceeds one thousand. It is difficult from the expense and time

to realize the designs of these turbines in the short term in practical ways. To design highly

reliable advanced gas turbines and steam turbines, it is necessary to concurrently solve various

physical phenomena that occur in parallel with the heat flow phenomena (e.g., adhesion of fine

particles to a blade, condensation of water vapor, erosion due to collision of large droplets with a

blade, melting of a blade by high-temperature thermal fluid, corrosion of a blade by supercritical

water, etc.). Therefore, to design a highly efficient and reliable turbine, it is necessary to develop a

multiphysics CFD technology capable of numerically analyzing mathematical models simulating

1NEC Corporation, Tokyo, Japan
2Tohoku University, Sendai, Japan

DOI: 10.14529/jsfi210207

114 Supercomputing Frontiers and Innovations

this multiphysics in conjunction with governing equations of thermal flows [11, 19]. However,

mutual interference of multiphysics in the turbine is due to problematic mutual interference with

all heat flow fields in the turbine. For this reason, it is complicated to solve this multiphysics

without thoroughly analyzing the total internal heat flow of the turbine simultaneously.

A multiphysics CFD code, “Numerical Turbine,” has been developed for large-scale sim-

ulations of unsteady wet steam flow with non-equilibrium condensation inside a turbine [14].

The Numerical Turbine code has been developed on vector supercomputer systems [3, 4, 9], and

the code has been optimized so that high computing performance can be obtained with vector

supercomputers [7, 20]. The code can be used to analyze the unsteady wet steam flow in the

final multi-stage cascade of a real steam turbine. The code also applies numerical solutions for

analyzing the complex thermal flow generated inside the final stage of a steam turbine. The code

incorporating these mathematical models can numerically elucidate the multiphysics interaction

of the thermal flow inside the turbine. It is possible to determine in advance a catastrophic

situation leading to turbine instability and blade destruction.

To accurately simulate such various phenomena into the turbine, it is essential to do a whole

circumference simulation that analyzes the entire turbine. The number of computational grids

to be calculated exceeds 500 million. The amount of calculation and memory used is enormous

in doing the full annulus simulation. Moreover, to use analysis results practically, it is necessary

to complete calculations within a required time.

The Numerical Turbine code is a block-structured CFD code, and the domain decomposition

is chosen for the MPI parallelization of the Numerical Turbine code. Each MPI process is in

charge of one or more grid blocks exchanging information with the neighbor ones. The difference

in the number of grid points of the grid blocks causes the difference in the calculation amount of

the MPI process of each grid block. Consequently, the calculation time of these MPI processes

is also different. Thus, executing this code in MPI parallelization causes a load imbalance.

An MPI process with a short calculation time needs to wait for other MPI processes with a

long calculation time in such a situation. Additionally, an increase in the number of MPI parallels

with load imbalance adversely affects scalability. This situation indicates that the computational

resources of the supercomputer are not being used effectively.

Therefore, to execute the Numerical Turbine code on a vector computer, this paper creates

an estimation model that finds the calculation time from each grid block’s calculation amount

and calculation performance. It proposes a method for reducing the load imbalance by con-

sidering the vector performance according to the calculation amount based on the model. For

parallelization of the grid blocks, thread parallelization using OpenMP is applied, and load

balance is improved by hybrid parallelization. However, in the vector architecture, the length

of the vectorized loop has a significant effect on the performance. Because of this, the vector

performance according to the calculation amount needs to be considered for improving the load

imbalance. Moreover, this proposed method recognizes the need to reduce the load imbalance

without pre-execution.

The outline of this paper is as follows. In Section 1, this paper gives an overview of the

Numerical Turbine code and characteristics of the code in MPI parallel execution. This paper

proposes a method for reducing load imbalance using hybrid parallelization in Section 2. In

Section 3, this paper discusses the performance results and concludes the paper and future work

in Section 3.3.

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 115

1. Numerical Turbine Code

The Numerical Turbine code can simulate unsteady flows with wetness and shocks in ac-

tual gas and steam turbines and perform full annulus simulations of the turbines to reproduce

unsteady wet-steam moist-air flows in these turbines.

1.1. Numerical Procedure

The Numerical Turbine code solves equations consisting of a mass conservation equation of

steam considering momentum phase change, a momentum conservation equation, an energy con-

servation equation, a droplet mass conservation equation, a droplet number density conservation

equation, and an equation of turbulence kinetic energy along with its specific dissipation rate as

a fundamental equation of compressible flow with condensation. It is assumed that the gas-liquid

two-phase flow is a homogeneous flow with a sufficiently small mass fraction of droplets. The

equation of the state of wet steam and the equation of the speed of sound are calculated from

the equation formulated by Ishizaka et al. [8]. The mass production rate of liquid droplets by

condensation is expressed by the sum of condensation nucleation and mass growth by droplet

growth based on classical condensation theory. In the Numerical Turbine, the droplet growth is

further approximated by the equation with the number density of droplets as a function [8]. The

condensation nucleation rate is calculated from the equation of Frenkel [12], and the growth rate

of droplets is calculated from the model of Gyarmathy [6]. As the numerical solution, Roe’s flux

difference separation method [17] and the fourth-order compact MUSCL TVD scheme [22] are

used for the spatial difference. The second precision central difference is used for the viscosity

term, and the SST model [13] is used for the turbulent flow model. The lower-upper symmetric

Gauss-Seidel (LU-SGS) method [23] is used for time integration.

1.2. Computational Space and Grid

As shown in Fig. 1a, the actual turbine is calculated in the grid-structured calculation space

shown in Fig. 1b in the Numerical Turbine code. Figure 2 is a schematic diagram of Fig. 1b.

In the figure, the stator-blade rows and the rotor-blade rows are marked as 1S, 1R, 2S, 2R, 3S,

and 3R, where S is a stator-blade row and R is a rotor-blade row. A pair of a stator-blade row

and a rotor-blade row is called a stage. In addition to a stator-blade row and a rotor-blade row,

there are an inlet region in front of the first stage, an outlet region in back of the last stage,

and intermediate regions in between neighboring blade rows. Each stator- and rotor-blade row

consists of grid blocks for each blade passage. Similar to the rows, the other regions consist of

grid blocks for each passage. Figure 3 illustrates a schematic diagram of the definition of the

computational grid number of a grid block. In the Numerical Turbine, the axial grid number is

defined as I, the circumferential grid number as J, and the radial grid number as K. The number

and the grid size of these grid blocks vary depending on the rows or the regions.

1.3. Load Imbalance in MPI Parallel Execution

The computational space of the Numerical Turbine code is divided into these grid blocks by

MPI parallelization. Therefore, each process in MPI parallelization handles its associated grid

block. However, as described in the previous sub-section, since the grid block size is not uniform,

load imbalance occurs when the Numerical Turbine code runs in MPI parallelization.

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

116 Supercomputing Frontiers and Innovations

(a) Photograph of five-stage stators and rotors (b) Overall perspective view of computational grid

frames of three-stage stators and rotors

Figure 1. Multi-stage stators and rotors of turbine

Figure 2. Schematic of the stator and rotor
blades of the three stages

Figure 3. Calculation grid number definition per
grid block

Here, the situation of this load imbalance is shown using actual simulation data. The datum

is for a full annulus simulation of the first stage of a compressor, and the total number of the

grid blocks is 174. Therefore, the maximum number of MPI processes is 174. Table 1 shows the

number of the grid blocks and the number of the grid points in each row of the full annulus

simulation data of the first stage of the compressor. As shown in this table, this datum has three

types of grid points: 91×91×91, 45×91×91, and 16×91×91. In this datum, the grid blocks of

Inlet 2, Rotor, Stator, and Outlet 1 have the largest number of grid points at 91×91×91. The

grid blocks of Inlet 1 and Outlet 2 have the number of grid points at 45×91×91. The grid blocks

of Intermediate 1 and Intermediate 2 have the smallest number of grid points at 16×91×91.

Table 1. Number of grid blocks and grid number of the full annulus data of the first stage of
the compressor

Inlet 1 Inlet 2 Rotor
Inter- Inter-

Stator Outlet 1 Outlet 2
Total

mediate 1 mediate 2 number

of blocks 16 16 32 16 16 46 16 16 174

Grid
number

I 45 91 91 16 16 91 91 45 –

J 91 91 91 91 91 91 91 91 –

K 91 91 91 91 91 91 91 91 –

Figure 4 shows the cost distribution of the calculation time, the communication time, and

the waiting time when the Numerical Turbine code using this simulation datum runs at 174 MPI

processes. In the graph of this figure, the horizontal axis shows the rank number of each MPI

process, and the vertical axis shows the execution time. The blue, orange, and gray parts respec-

tively indicate the calculation time, the communication time, and the waiting time. As shown

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 117

0

100

200

300

400

500
0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

1
2
8

1
3
2

1
3
6

1
4
0

1
4
4

1
4
8

1
5
2

1
5
6

1
6
0

1
6
4

1
6
8

1
7
2

E
xe

cu
ti
o
n
 T

im
e
 (

se
c.

)

Rank Number Calculation Communication Wait

Inleat 1 Inlet 2 Rotor

Inter-

mediate
1

Inter-

mediate
2

Stator Outlet 1 Outlet 2

Number

of total
blocks

Number of blocks 16 16 32 16 16 46 16 16 174

Computational
grid number

I

J

K

45 91 91 16 16 91 91 45 -

91 91 91 91 91 91 91 91 -

91 91 91 91 91 91 91 91 -

Figure 4. Cost distribution of the compressor in pure MPI and grid number of each grid block

in the figure, the MPI processes of the grid blocks with larger grid points take more time for

the calculation than the MPI processes of the grid blocks with fewer grid points. Therefore, the

MPI processes of the grid blocks with fewer grid points have a longer waiting time.

In parallel execution with such load imbalance, high-performance simulations with effective

use of computational resources are not possible. For realizing parallel execution with effective use

of computational resources, the computational load must be leveled. It is necessary to uniform

calculation time by parallelizing grid blocks with a larger number of grid points for realizing

such execution.

1.4. Related Work

For performing large-scale simulations, parallel execution of simulation codes is indispens-

able. However, to realize efficient parallel execution, it is necessary to reduce the load imbalance

that occurs during parallel execution as much as possible. Research to reduce such load imbal-

ance has been widely conducted.

Musa et al. [15] demonstrated that the workload of each process needed to be as equal

as possible for achieving efficient parallelization. Their tsunami simulation program was paral-

lelized by the domain decomposition method using MPI. In the simulation program, calculation

amounts in the land areas differed from those in the sea areas. Hence, they adjusted the grid

point number of each process to coincide with roughly the same calculation amount. First, the

calculation amounts of each MPI process were measured with the same number of grid points

per MPI process. Then the grid point number on each MPI process was adjusted to coincide

with the almost equal calculation amount by using the previous measurement. As a result, they

showed that the load balance in each MPI process handling the nearly even calculation amounts

was better than the load balance in each MPI process with the same number of grid points.

However, in the vector architecture, the length of the vectorized loop has a significant effect

on the performance. Therefore, increasing and decreasing both the calculation amount and the

vector length need to be considered for improving the load balance. In addition, the method of

Musa et al. [15] needs to be executed in advance to equalize the amount of calculation, even

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

118 Supercomputing Frontiers and Innovations

though the tsunami simulation program causes static load imbalance. The method is not suitable

for the Numerical Turbine code that targets various simulation data.

Simmendinger et al. [18] explained how further splitting the block into smaller parts for a

block-structured CFD solver was often impractical. They mentioned that smaller MPI domains

came with high overhead in terms of communication and decreased convergence rates for implicit

solvers. Therefore, they implemented a hybrid parallelization model based on pthreads and

MPI. Their implementation showed a significant speed-up when using more cores than domains

existing in the mesh.

Giovannini et al. [5] proposed exploiting vectorization capability for serial optimization of

a 3-D multi-row, multi-block CFD solver. They also proposed implementing hybrid paralleliza-

tion (MPI+OpenMP) for the parallelization of the CFD solver. They described that more finely

partitioning does not necessarily result in higher scalability. Furthermore, they mentioned that

a high domain decomposition could have a detrimental effect on some convergence accelerating

techniques (e.g., residual smoothing, multi-grinding, etc.). For these reasons, they did not imple-

ment further domain partitioning and pursued code flexibility adopting a hybrid parallelization

strategy. The Numerical Turbine code is also a CFD code with a block structure that consti-

tutes a 3-D multi-row and multi-block structure. As shown in Fig. 4, there are processes with a

large ratio of communication time. Therefore, further dividing the blocks in MPI parallelization

may lead to increasing the communication time and to an increase in execution time. Hence,

as Simmingender et al. and Giovannini et al. mention, applying thread parallelization such as

OpenMP is suitable for dividing the blocks.

Rabenseifner et al. [16] discussed that a hybrid parallelization model of MPI+OpenMP had

several advantages, and the benefits include improving the load balance. They indicated that

one of the significant advantages of OpenMP over MPI is the possible use of loop scheduling.

They also showed that no additional programming work or data movement is required for using

these loop scheduling. Moreover, they explained that simple static load imbalance at the external

level (MPI) and OpenMP loop scheduling could be used as a compromise for the hybrid case.

As Rabenseifner et al. [16] described, by applying hybrid parallelization to an MPI program, it

is possible to realize to reduce a load imbalance of the program with easy implementation.

Based on these related studies, a way to improve the load balance of the Numerical Turbine

code, a block-structured CFD code, is to apply OpenMP parallelization for dividing the grid

blocks further and adjusting the workload. Thereby, the computation time among grid blocks can

be equalized. However, when running a program on a vector computer, the load imbalance cannot

be solved by simply equalizing the calculation amount since the computational performance

depends on the loop length of the vectorized loop. Therefore, this paper proposes a method

to achieve good load balance by considering the trade-off between calculation amount and the

effect of vector length. A significant point to determine the number of parallelization is to

perform appropriate domain dividing and mapping of computational resources among different

calculation amounts and computational characteristics for each condition, such as the size and

number of grid blocks and the number of blade rows in various turbine simulation. Thus, it is

not realistic to execute the program in advance for each simulation condition to determine the

number of parallelization for improving the load balance. Hence, the proposed method describes

a way to reduce the load imbalance without pre-execution.

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 119

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Number of grid points Calculation amount Calculation time

R
at

io
o

f
in

cr
ea

se

(/
N

u
m

b
er

 o
f

g
ri

d
 p

o
in

ts
 i

n
 I

 d
ir

ec
ti

o
n
:1

6
)

16 45 91 16 45 91 16 45 91

Figure 5. Ratio of calculation amount and calculation time according to the number of grid

points

2. Optimizing Load Balance Using Hybrid Parallelization

As mentioned in the previous section, the computational amount of each grid block is

different because the Numerical Turbine code is block-structured, and the number of grid points

in each grid block is non-uniform. As a result, there is a difference in the calculation time of the

MPI process in charge of each grid block. The difference causes load imbalance in MPI parallel

execution of the Numerical Turbine code. This paper creates an estimation model that finds

the calculation time from each grid block’s calculation amount and calculation performance to

reduce such load imbalance. It proposes a method of assigning threads to the MPI process in

charge of each grid block based on the estimation model.

As shown in Fig. 4, it is clear that the main factor of the load imbalance is the unevenness of

the calculation time. In general, the calculation time depends on the calculation amount. If the

calculation time is proportional to the calculation amount, the number of threads based on the

ratio of the grid points can be assigned to each MPI process. However, in vector processing, the

length of the vectorized loop also greatly affects the performance. Figure 5 respectively shows

the grid point ratio, calculation amount ratio, and calculation time ratio in the simulation data

for a full annulus simulation of the first stage of a compressor shown in the previous section.

There are three types of grid points for each grid block in this simulation data. However, these

three types of grid points differ only in the number of grid points in the I-direction. Therefore,

this figure shows the number of grid points in the I-direction as the number of grid points. In

this figure, each number of grid points in the I-direction is 16, 45, and 91. This figure shows

values normalized by the case where the number of grid points in the I-direction is 16. As shown

in this figure, the calculation amount ratio is almost the same as the grid point ratio, whereas

the calculation time ratio is smaller than the grid point ratio. This is because the loop length

of the vectorized loop becomes longer as the number of the grid points increases so that the

calculation performance by vector processing is improved.

For this reason, it is suitable for vector supercomputers to assign the number of threads

based on the calculation time ratio. For finding the calculation time ratio, it is necessary to

perform pre-execution. However, since the Numerical Turbine code computes simulation data of

various problem sizes, it is not suitable in terms of usability to perform pre-execution for each

simulation data. Therefore, this paper focuses on the fact that the computation performance

is the same if the grid points are the same since the same Numerical Turbine code is used to

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

120 Supercomputing Frontiers and Innovations

calculate different simulation data. It creates the estimation model to obtain the calculation

time from each grid block’s calculation amount and calculation performance. This paper finds

the number of threads assigned to each MPI process without pre-execution based on this model.

The following describes the details of the model.

• The following relational equation estimates the calculation time ratio as:

calculation time ratio =
calculation amount ratio

calculation performance ratio
. (1)

• The calculation amount ratio can be found in advance because the ratio is equivalent to

the grid point ratio.

• The calculation performance can be identified according to the number of grid points be-

cause the same Numerical Turbine code is used even for different simulation data. There-

fore, the calculation performance ratio can be determined in advance.

Hence, the ratio of the number of threads according to the calculation time ratio can be found

in advance by the following equation. According to this ratio, it is possible to determine the

number of threads assigned to each MPI process without pre-execution. The ratio of the number

of threads is written as:

thread number ratio =
grid point ratio

calculation performance ratio
. (2)

The following describes the details of the proposed method based on the above model. To

obtain the calculation time ratio without pre-execution, it is necessary to mathematize the rela-

tionship in Eq. 1. Hence, the relationship between the number of grid points and the calculation

performance in the Numerical Turbine code was clarified by a performance evaluation.

Figure 6 shows the relationship between the number of grid points and the calculation

performance in the Numerical Turbine code. To find this relationship, varying the calculation

performance was confirmed according to vary the number of grid points using an evaluation code

that extracted the calculation parts of the Numerical Turbine code. The calculation parts do

not include the communication parts. In this evaluation, only the grid points in the I-direction

were varied because the number of grid points in the J- and K-directions of the grid block is

the same for all grid blocks.

In this figure, the horizontal axis shows the number of grid points in the I-direction, and

the vertical axis shows the calculation performance ratio. The calculation performance ratio on

the horizontal axis is a normalized value for the calculation performance when the number of

grid points in the I-direction is 10. The number of grid points in the I-direction used is at

least two-digit or more in actual simulations. As this figure shows, the calculation performance

ratio increases as the number of grid points increases. The relationship is not proportional, and

the calculation performance ratio increases significantly until the number of grid points in the

I-direction changes from two digits to three digits. When the number of grid points in the I-

direction is about 10, the loop length of the vectorized loops is short, and the vector arithmetic

unit cannot fully exhibit its calculation performance. As the number of grid points in the I-

direction increases, the loop length increases, and the vector arithmetic unit comes to show its

high calculation performance.

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 121

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

C
al

cu
la

ti
n

p
er

fo
rm

an
ce

ra

tio
(/

th
e
 p

e
rf

o
rm

a
n

c
e
 w

h
e
re

 t
h

e
 n

u
m

b
e
r

o
f

g
ri

d
 p

o
in

ts
 is

 1
0
)

Number of grid points (I-direction)

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

C
aa

lc
u

la
ti

o
n

 p
er

fo
rm

an
ce

 r
at

io
(/

th
e
 p

e
rf

o
rm

a
n

c
e
 w

h
e
re

 t
h

e
 n

u
m

b
e
r

o
f

g
ri

d
 p

o
in

ts
 is

 1
0
)

Number of grid points (I-direction)

Calculation performance ratio

Polynomial approximation

Figure 6. Relationship between the number of grid points and the calculation performance ratio

Table 2. Values of the polynomial coeffi-
cients

Coefficient Value

a 3.62772E-07

b –0.000272569

c 0.072582348

d 0.412525894

Find the grid point ratio

Find the calculation performance ratio

Find the thread number ratio from the grid point

ratio and the calculation performance ratio

Find the number of threads to assign to each process

from the thread number ratio and the scalability of

the thread parallelization

Figure 7. Procedure of finding the number of threads
to assign to each process

However, as described in Section 1.4, the calculation amount differs depending on the con-

ditions in the actual simulation. Therefore, it is not appropriate to obtain the calculation per-

formance ratio under various conditions from the graph in terms of accuracy and convenience.

Hence, an approximate curve is obtained from the measurement data shown in Fig. 6. In the

actual simulation, the calculation performance ratio is obtained from an equation of the ap-

proximate curve. Equation 3 is the equation of this approximate curve. The equation of an

approximate curve can express the relationship between the number of the grid points in the

I-direction and the calculation performance ratio shown in Fig. 6.

y = a ∗ x3 + b ∗ x2 + c ∗ x + d, (3)

where x is the number of grid points in the I-direction, and a, b, c, and d are the polynomial

coefficients. Table 2 shows the values of each polynomial coefficient.

Figure 7 shows the procedure of the proposed method, which is roughly composed of four

steps. The first step is to calculate each grid point ratio based on the maximum number of grid

points (gN) as shown in Tab. 3, where g1 <g2 <g3 . . .<gn < . . .<gN − 2 <gN − 1 <gN (1≤n≤N). As

shown in this table, the grid point ratio at grid point gn is gn/gN .

The second step is to calculate each calculation performance ratio based on the calculation

performance of the maximum number of grid points (yN) as shown in Tab. 3. As shown in

this table, the calculation performance ratio at grid point gn is yn/yN . Here, the calculation

performance (yn) is obtained from Fig. 6.

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

122 Supercomputing Frontiers and Innovations

Table 3. Three kinds of ratios

of grid points g1 g2 g3 · · · gn · · · gN − 2 gN − 1 gN

Grid point ratio g1

gN
g2

gN
g3

gN
· · · gn

gN
· · · gN − 2

gN
gN − 1

gN

gN
gN

(= 1)

Calculation

performance ratio
y1

yN
y2

yN
y3

yN
· · · yn

yN
· · · yN − 2

yN
yN − 1

yN

yN
yN

(= 1)

Thread number ratio G1

Y1

G2

Y2

G3

Y3
· · · Gn

Yn
· · · GN − 2

YN − 2

GN − 1

YN − 1

GN

YN

(= 1)

0.217

0.395

0.547

0.677

0.751

0.871

0.961

1.000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8

S
ca

la
b
il
it
y
 (
/S

ca
la

b
il
it
y

fo
r

e
ig

h
t
th

re
a
d
s)

Number of threads

Figure 8. Scalability of the thread parallelization of the calculation part

At this point, since the grid point ratio and the calculation performance ratio have been

obtained, the calculation time ratio can be obtained by dividing the grid point ratio by the

calculation performance ratio at each number of grid points. In the third step, the calculation

time ratio is used as the ratio of the number of threads assigned to each grid block because the

ratio of the number of threads corresponds to the calculation time ratio. As shown in Tab. 3,

Gn = gn
gN

and Yn = yn
yN

.

The thread number ratios obtained in Tab. 3 are real numbers less than or equal to 1.0. Since

each number of threads is an integer value, it is necessary to determine each number of threads

by converting the ratio into an integer value considering performance. Hence, in the final step,

each number of threads is determined based on the scalability of thread parallelization in the

calculation part of the Numerical Turbine code. Here, the scalability of thread parallelization

in the calculation part is obtained as the ratio of the number of threads with the maximum

number of the scalability as 1.0. Figure 8 shows the scalability of thread parallelization in the

calculation part. This figure identifies the number of threads of the closest scalability to the

ratio of the number of threads obtained in Tab. 3. Then, the number of threads is assigned to

the grid block of the corresponding number of grid points. Thereby, it is possible to obtain the

number of threads according to the actual performance.

Through these four steps, it is possible to determine in advance the number of threads to

be assigned to each MPI process based on the ratio corresponding to the calculation time ratio.

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 123

Table 4. Specification of Vector Engine:
Type 10AE

Peak performance of core (GFLOPS) 304

Number of cores per VE 8

Peak performance of VE (TFLOPS) 2.43

Memory bandwidth of VE (TB/s) 1.35

Cache capacity of VE (MB) 16

Memory capacity of VE (GB) 48

Table 5. Software environment of SX-Aurora TSUB-
ASA

NEC Fortran compiler for VE nfort (NFORT) 3.0.8

NEC MPI NEC MPI 2.10.0

3. Results and Discussions

This section evaluates the effectiveness of the proposed method to improve the load balance

of the Numerical Turbine code by using actual simulation data.

3.1. Input Data Set

This experiment uses the full annulus data of the first stage of the compressor as the input

dataset. Table 1 shows the number of grid blocks in each row of full annulus data for the first

stage of the compressor and the number of grid points in the grid blocks. As shown in the

table, there are a total of 174 blocks and three types of grid points: 91×91×91, 45×91×91, and

16×91×91. The total number of grid points is about 100 million. The number of iterations is

1,000, which is the minimum number required for performance analysis. The total number of

grid blocks is 174, so the maximum number of MPI processes is 174.

3.2. Computing Environment Setup

A supercomputer used for this evaluation is the modern vector supercomputer system called

SX-Aurora TSUBASA, which was released in 2017 [9, 21], for evaluating the performance of the

Numerical Turbine. As described in the previous section, the Numerical Turbine is well optimized

for vector architectures. Therefore, to accurately evaluate the overall performance, it is suitable

for the performance evaluation on a vector supercomputer. Here, an overview of SX-Aurora

TSUBASA is described.

SX-Aurora TSUBASA architecture contains the Vector Engine (VE) and Vector Host (VH),

as shown in Fig. 9. The VE executes complete applications, and the VH mainly provides OS

functions for connected VEs. The VE consists of one vector processor with eight vector cores,

using High Bandwidth Memory modules (HBM2) for uppermost memory bandwidth. The imple-

mentation of one CPU LSI with six HBM2 memory modules leads to high memory bandwidth.

The VE is connected to the VH, a standard x86/Linux node, through PCIe. This architecture

executes an entire application on the VE and the OS on the VH [2].

As shown in Tab. 4, the peak performances of a vector core and a VE are 304 Gflop/s and

2.43 Tflop/s, respectively, and the memory bandwidth of a VE is 1.35 TB/s. Figure 10 shows

the configuration of one VH that contains eight VEs, two InfiniBand interfaces, and two Xeon

processors. Moreover, SX-Aurora TSUBASA can compose an extensive system by connecting

the VHs via the InfiniBand switch. As mentioned in the above explanation, the number of cores

per VE of SX-Aurora TSUBASA is eight. Therefore, the maximum number of threads assigned

to each MPI process in hybrid parallelization is eight. Regarding the software, Tab. 5 lists the

environment of SX-Aurora TSUBASA used in this evaluation.

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

124 Supercomputing Frontiers and Innovations

Figure 9. Architecture of SX-Aurora
TSUBASA

Figure 10. Configuration of SX-Aurora TSUBASA

3.3. Assigning Threads to MPI Processes

This section obtains the number of threads assigning to each MPI process following the

method proposed in Section 2 using the full annulus data of the first stage of the compressor

and validates the effectiveness of the proposed method.

Each grid point ratio based on the maximum number of grid points is calculated as the

first step. As described in Section 3.1, the full annulus data of the first stage of the compressor

comprises three types of grid blocks with grid points in the I-direction of 16, 45, and 91. Table 6

is obtained by calculating the grid point ratio according to Tab. 3.

Table 6. Three kinds of ratios in the full annulus data of the first stage
of the compressor

of grid points 16 45 91

Grid point ratio
0.176

(= 16
91)

0.495

(= 45
91)

1

(= 91
91)

Calculation performance

ratio

0.299

(= 1.506
5.033)

0.628

(= 3.260
5.033)

1

(= 5.033
5.033)

Thread number ratio
0.588

(= 0.176
0.299)

0.788

(= 0.495
0.628)

1

(= 1
1)

As the second step, according to Tab. 3, the calculation performance ratio is obtained based

on the calculation performance of the maximum number of grid points. Here, the calculation

performance corresponding to each number of grid points is obtained from Fig. 6. Table 6 shows

the results of the calculated calculation performance ratios.

The ratio of the number of grid points and the calculation performance ratio in the full

annulus data of the first stage of the compressor has been obtained. As the third step, the ratio

of the number of threads in each number of grid points is obtained based on Tab. 3. Table 6

shows the ratio of the number of threads obtained.

As the final step, to determine the number of threads in a way that takes performance into

account, Fig. 8 is used to find the number of threads with the closest scalability to the ratio of

the number of threads obtained in Tab. 6. The ratio of the number of threads in the number of

grid points 16 is 0.564. The scalability nearest to this number is 0.547 from Fig. 8, and there are

three corresponding threads. Similarly, in the number of grid points 45, the ratio of the number

of threads is 0.774, and the scalability of the nearest neighbor to this number is 0.751. Thus,

there are five corresponding threads. Since the number of grid points 91 is the maximum number

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 125

of grid points, the maximum number of threads is assigned, which is eight. The final number of

threads obtained is as shown in Tab. 7.

Table 7. The number of threads obtained by the proposed method

of grid points 16 45 91

Ratio of the number of threads 0.588 0.788 1

The closest scalability to the above ratios 0.547 0.751 1

of threads assigning to each MPI process 3 5 8

This section makes a comparison between hybrid parallelization based on the proposed

method and the actual calculation time. Table 8 shows the number of threads obtained based

on the actual calculation time. Compared to Tab. 7, the number of threads assigned to the grid

block with 45 grids is four in the case based on the proposed method, while it is five in the case

based on the actual calculation time. On the other hand, the number of threads is the same for

the other grids. Therefore, the proposed method can obtain almost the same number of threads

as the number of threads obtained based on the actual calculation time. Moreover, the execution

time is 144.9 seconds in the case based on the proposed method, and is 144.6 seconds in the case

based on the actual calculation time. Hence, the proposed method can obtain the execution time

equivalent to hybrid parallelization based on the actual calculation time without pre-execution.

Table 8. The number of threads decided by the actual calculation
time

of grid points 16 45 91

Calculation time (sec.) 216.0 278.1 405.5

Ratio of the number of threads 0.533 0.686 1

The closest scalability to above ratios 0.547 0.677 1

of threads assigning to each MPI process 3 4 8

Figure 11 shows the execution results by assigning the obtained number of threads to the

MPI process in charge of the grid block corresponding to each grid point. To clear the efficiency

of the load balance improvement, the vertical axis of this figure is set to the same scale as

in Fig. 4. As can be seen from the comparison between Figs. 4 and 11, the hybrid parallelization

applying the number of threads obtained by the proposed method equalizes the computation

time and achieves good load balance.

For verifying the improvement effect of the load balance by the proposed method, the

improvement in the variation between the pure MPI and the proposed hybrid parallelization is

confirmed. The coefficient of variation is used to indicate the degree of variation. Table 9 shows

the coefficient of variation for the calculation time in the pure MPI and the proposed hybrid

parallelization. This table shows that the load balance is improved from 24.4 % to 9.3 % by the

hybrid parallelization using the proposed method.

For verifying the efficiency of the computational resource utilization, the proposed hybrid

parallelization is compared with the maximum number of threads assigned to all processes. The

maximum number of threads assigned to each process is eight because the maximum number

of cores per VE is eight, as shown in Tab. 4. Table 10 shows the execution time and the

number of cores used for the execution in both cases. As this table shows, the proposed hybrid

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

126 Supercomputing Frontiers and Innovations

0

20

40

60

80

100

120

140

160

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

1
2
8

1
3
2

1
3
6

1
4
0

1
4
4

1
4
8

1
5
2

1
5
6

1
6
0

1
6
4

1
6
8

1
7
2

E
x
e
c
u
ti
o

n
 T

im
e
 (

s
e
c
.)

Rank Number
Calculation Communication Wait

Figure 11. Cost distribution of the compressor in hybrid parallelization reducing load imbalance

Table 9. Coefficient of variation (CV) of the calculation time in each case

Calculation Time (sec.)

minimum maximum average CV

Pure MPI 205.83 441.99 348.42 24.4 %

Proposed hybrid parallelization 63.74 85.92 71.39 9.3 %

parallelization has the same execution time using 82 % of the computational resources of the

maximum number of threads assigned to all processes. This section demonstrates the above

verification results to reduce the load imbalance by hybrid parallelization, assigning the number

of threads in advance based on the proposed method. As a result, the Numerical Turbine code

can calculate simulations faster with efficient use of computational resources.

Table 10. Execution time and computational resources used

Execution time (sec.) # of cores used

Proposed hybrid parallelization 144.9 1,136

Hybrid parallelization using
145.4 1,392

the maximum number of threads

Conclusions

This paper demonstrates that a way to improve the load balance of the Numerical Turbine

code, a block-structured CFD code, is to apply OpenMP parallelization for dividing the grid

blocks further and adjusting the workload. Thereby, the calculation time among grid blocks

can be equalized. For executing the Numerical Turbine code on a vector computer, this paper

creates an estimation model that finds the calculation time from each grid block’s calculation

amount and calculation performance. This proposed method reduces the load imbalance by

considering the calculation amount and the effect of vector length based on the model. Moreover,

the Numerical Turbine code has a static load imbalance and treats various simulation data.

Hence, this proposed method can find suitable numbers of threads to reduce the load imbalance

without pre-execution. As a result, the proposed method can improve the load balance from

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 127

24.4 % to 9.3 %, and realize 3.32 times speed-up of the Numerical Turbine code with effective

usage of the computational resources.

As mentioned above, the Numerical Turbine code treats various simulation data. Some

of these data have more grid blocks and more stages than the full annulus data of the first

stage of the compressor used for this evaluation. Our future work will verify the effectiveness

of the proposed method in these various simulation data treated by the Numerical Turbine

code. In addition, the proposed method has been developed for vector supercomputers. This

method may be effective for modern scalar supercomputers because the SIMD mechanism has

been strengthened, and multi-core has been advanced in such scalar supercomputers. Therefore,

our future work will also verify the effectiveness of this method for scalar supercomputers and

improve it to a general-purpose method.

Acknowledgements

This research was supported in part by MEXT as “Next Generation High-Performance

Computing Infrastructures and Applications R&D Program,” entitled “R&D of A Quantum-

Annealing-Assisted Next Generation HPC Infrastructure and its Applications.” The authors

thank Satoru Yamamoto, Takashi Furusawa, and Hironori Miyazawa of Tohoku University for

their fruitful discussions and variable comments.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Society 5.0. https://www8.cao.go.jp/cstp/english/society5_0/index.html, accessed:

2021-07-02

2. Vector Supercomputer SX Series SX-Aurora TSUBASA. https://www.nec.com/en/

global/solutions/hpc/sx/docs/SX-Aurora_e.pdf, accessed: 2021-06-13

3. Egawa, R., Komatsu, K., Isobe, Y., et al.: Performance and power analysis of SX-ACE using

HP-X benchmark programs. In: 2017 IEEE International Conference on Cluster Computing

(CLUSTER). pp. 693–700. IEEE Computer Society (2017). https://doi.org/10.1109/

CLUSTER.2017.65

4. Egawa, R., Fujimoto, S., Yamashita, T., et al.: Exploiting the Potentials of the Second Gen-

eration SX-Aurora TSUBASA. In: 2020 IEEE/ACM Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems (PMBS). pp. 39–49. IEEE (2020).

https://doi.org/10.1109/PMBS51919.2020.00010

5. Giovannini, M., Marconcini, M., Arnone, A., Dominguez, A.: A Hybrid Parallelization

Strategy of a CFD Code for Turbomachinery Applications. In: 11th European Conference on

Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2015, Madrid, Spain, March

23-27, 2015 (2015)

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

128 Supercomputing Frontiers and Innovations

https://www8.cao.go.jp/cstp/english/society5_0/index.html
https://www.nec.com/en/global/solutions/hpc/sx/docs/SX-Aurora_e.pdf
https://www.nec.com/en/global/solutions/hpc/sx/docs/SX-Aurora_e.pdf
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1109/CLUSTER.2017.65
https://doi.org/10.1109/PMBS51919.2020.00010

6. Gyarmathy, G.: Zur Wachstumsgeschwindigkeit kleiner Flüssigkeitstropfen in einer

übersättigten Atmosphäre. Zeitschrift für angewandte Mathematik und Physik ZAMP 14(3),

280–293 (1963). https://doi.org/10.1007/BF01601066

7. Hougi, Y., Komatsu, K., Watanabe, O., et al.: A hierarchical wavefront method for LU-

SGS on modern multi-core vector processors. In: 32nd International Conference on Parallel

Computational Fluid Dynamics (2020)

8. Ishizaka, K.: A High-Resolution Numerical Method for Transonic Non-Equilibrium Con-

densation Flow through a Steam Turbine Cascade. Proc. of the 6th ISCFD, 1995 1, 479–484

(1995)

9. Komatsu, K., Momose, S., Isobe, Y., et al.: Performance Evaluation of a Vector Super-

computer SX-Aurora TSUBASA. In: SC18: International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis. pp. 685–696. IEEE (2018). https:

//doi.org/10.1109/SC.2018.00057

10. Komatsu, K., Miyazawa, H., Yiran, C., Sato, M., Furusawa, T., Yamamoto, S., Kobayashi,

H.: Detection of machinery failure signs from big time-series data obtained by flow simula-

tion of intermediate-pressure steam turbines (2021)

11. Lindner, F., Totounferoush, A., Mehl, M., et al.: ExaFSA: Parallel Fluid-Structure-Acoustic

Simulation. In: Software for Exascale Computing - SPPEXA 2016-2019. Lecture Notes in

Computational Science and Engineering, vol. 136, pp. 271–300. Springer (2020). https:

//doi.org/10.1007/978-3-030-47956-5_10

12. MacDougall, F.H.: Kinetic Theory of Liquids. By J. Frenkel. The Journal of Physical and

Colloid Chemistry 51(4), 1032–1033 (1947). https://doi.org/10.1021/j150454a025

13. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications.

AIAA Journal 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

14. Miyake, S., Koda, I., Yamamoto, S., et al.: Unsteady Wake and Vortex Interactions in

3-D Steam Turbine Low Pressure Final Three Stages. Turbo Expo: Power for Land, Sea,

and Air, vol. Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines;

Steam Turbines (2014). https://doi.org/10.1115/GT2014-25491

15. Musa, A., Watanabe, O., Matsuoka, H., et al.: Real-time tsunami inundation forecast system

for tsunami disaster prevention and mitigation. Journal of Supercomputing 74(7), 3093–3113

(2018). https://doi.org/10.1007/s11227-018-2363-0

16. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming on

clusters of multi-core SMP nodes. In: 2009 17th Euromicro International Conference on

Parallel, Distributed and Network-based Processing, Weimar, Germany, Feb. 18-20, 2009.

pp. 427–436. IEEE (2009). https://doi.org/10.1109/PDP.2009.43

17. Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J.

Comput. Phys. 135(2), 250–258 (1997). https://doi.org/10.1006/jcph.1997.5705

18. Simmendinger, C., Kuegeler, E.: Hybrid Parallelization of a Turbomachinery CFD Code:

Performance Enhancements on Multicore Architectures pp. 14–17 (2010)

O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

2021, Vol. 8, No. 2 129

https://doi.org/10.1007/BF01601066
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1007/978-3-030-47956-5_10
https://doi.org/10.1007/978-3-030-47956-5_10
https://doi.org/10.1021/j150454a025
https://doi.org/10.2514/3.12149
https://doi.org/10.1115/GT2014-25491
https://doi.org/10.1007/s11227-018-2363-0
https://doi.org/10.1109/PDP.2009.43
https://doi.org/10.1006/jcph.1997.5705

19. Soga, T., Musa, A., Shimomura, Y., et al.: Performance evaluation of NEC SX-9 using real

science and engineering applications. In: Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis. pp. 1–12. ACM (2009). https://doi.org/

10.1145/1654059.1654088

20. Watanabe, O., Hougi, Y., Komatsu, K., et al.: Optimizing memory layout of hyperplane

ordering for vector supercomputer SX-Aurora TSUBASA. In: 2019 IEEE/ACM Workshop

on Memory Centric High Performance Computing (MCHPC), Denver, CO, USA, Nov. 18,

2019. pp. 25–32. IEEE (2019). https://doi.org/10.1109/MCHPC49590.2019.00011

21. Yamada, Y., Momose, S.: Vector engine processor of NEC’s brand-new supercomputer

SX-Aurora TSUBASA. In: International symposium on High Performance Chips (Hot

Chips2018) (2018)

22. Yamamoto, S., Daiguji, H.: Higher-order-accurate upwind schemes for solving the com-

pressible Euler and Navier-Stokes equations. Computers & Fluids 22(2), 259–270 (1993).

https://doi.org/10.1016/0045-7930(93)90058-H

23. Yoon, S., Jameson, A.: Lower-upper Symmetric-Gauss-Seidel method for the Euler and

Navier-Stokes equations. AIAA Journal 26(9), 1025–1026 (1988). https://doi.org/10.

2514/3.10007

Optimizing Load Balance in a Parallel CFD Code for a Large-scale Turbine Simulation...

130 Supercomputing Frontiers and Innovations

https://doi.org/10.1145/1654059.1654088
https://doi.org/10.1145/1654059.1654088
https://doi.org/10.1109/MCHPC49590.2019.00011
https://doi.org/10.1016/0045-7930(93)90058-H
https://doi.org/10.2514/3.10007
https://doi.org/10.2514/3.10007

	H. Kobayashi, S. Momose
	Y. Hong, H. Ltaief, M. Ravasi, L. Gatineau, D. Keyes
	L. Solis-Vasquez, E. Focht, A. Koch
	S. Yoshida, A. Endo, H. Kaneyasu, S. Date
	T. Cramer, B. Kosmynin, S. Moll, M. Römmer, E. Focht, M.S. Müller
	K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato, H. Kobayashi
	I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi
	O. Watanabe, K. Komatsu, M. Sato, H. Kobayashi

