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Scalability prediction for fundamental performance factors

Claudia Rosas1, Judit Giménez12, Jesús Labarta12

Inferring the expected performance for parallel applications is getting harder than ever;

applications need to be modeled for restricted or nonexistent systems and performance analysts

are required to identify and extrapolate their behavior using only the available resources. Prediction

models can be based on detailed knowledge of the application algorithms or on blindly trying to

extrapolate measurements from existing architectures and codes. This paper describes the work

done to define an intermediate methodology where the combination of (a) the essential knowledge

about fundamental factors in parallel codes, and (b) detailed analysis of the application behavior

at low core counts on current platforms, guides the modeling efforts to estimate behavior at very

large core counts. Our methodology integrates the use of several components like instrumentation

package, visualization tools, simulators, analytical models and very high level information from

the application running on systems in production to build a performance model.

Keywords: parallel efficiency, curve-fitting, exascale computing, analysis and prediction.

Introduction

Within the race toward exascale computing, to infer the scaling capacity of current parallel

codes has become essential [1]. If we are able to identify primary factors that define the efficiency,

we can use them to predict the scalability of the code. Systems and codes are getting more

complex and their performance analysis may result costly in time. At the same time, validation

on current non-existent machines is not an option, and in consequence, scientists must take

advantage of already known techniques and tools to overcome these restrictions. Tools are helpful

to identify, in a short time, the primary factors of real parallel codes executed in the available

machines. Then, collected information can be used to outline potential restrictions on future

computational systems [2].

Different philosophies have been followed to perform prediction studies in the past. The

approaches range from a vision based on first principles on one side to blind fitting of metrics

and extrapolation on the other. An effort to investigate the performance of MPI applications at

large core counts uses parallel discrete event simulations to run the application in a controlled

environment [3]. Most of them demand from specific models or abstractions of the parallel code

(and the system) [4], [5] or massive fittings of time-based metrics to predict performance of

specific functions [6]. However, there is low information about the insights of the real underly-

ing cause of the inefficiencies, and the knowledge about the influence of different architectural

characteristics can be useful to improve the code.

This work further develops the modeling and extrapolation tasks initially presented in [7],

broadening the scope and scale. We consider that the components that represent essential fea-

tures of the program and their evolution may be related to primary models of parallelism such

as Amdahl’s law. This proposal starts by capturing detailed data from traces of very few runs

of the parallel code at low core counts in machines that are in production, i.e. without addi-

tional tunings for exclusivity. From the traces, significant performance components such as load

balance and transfer can be measured, fitted and extrapolated at large core counts.

Our method relies on the detailed preprocessing of available traces to determine appropriate

sections with minimal noise perturbation. Two arguments sustain the use of traces. First, having
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few points to fit, the blind use of functions with many parameters would lead to undetermined

systems with many possible solutions in the explored core count range. These solutions may have

huge differences in performance when extrapolating for large core counts. Second, it is our belief

that low core count runs provide enough information on the fundamental behavior of parallel

code, and can easily complement existent time profiles reports of the different routines.

We provide an automatic framework to produce the models and reports, automatizing the

error-prone task of collection and processing the measurements to increase the availability of the

analyst for observation, interpretation and let him/her focus on the factors or significant interest.

The analyst can perform additional measurements, or what-if predictions, using analysis and

simulation tools (Paraver, Dimemas, Clustering, etc.) to find out outliers and for better under-

standing of the fundamental factors. Collected data is used to model the expected performance

of an application in that specific machine for larger core counts.

The use of fundamental factors is highly informative for developers and can guide opti-

mization efforts in the most productive direction. For example, for an application whose main

problem is load balance it is highly non-productive to spend time and energy re-factoring it

using non-blocking MPI calls, even if the standard time profile indicates that a large fraction of

the time is consumed by MPI. Compared to the first principles approach, our method does not

require prior knowledge from the analyst on the code nor a specific modeling effort for each new

one.

This work combines a set of steps that can be performed semi-automatically to reduce the

total time for data extraction and processing. The main stages are:

• Identify Structure: starting with traces from an instrumented execution of the parallel

application at different core counts identify relevant sections to analyze and extrapolate;

• Phase Performance Analysis: compute fundamental efficiency factors (load balance,

serialization, transfer) for each identified region;

• Scalability Prediction: extrapolate the fundamental efficiency factors computed at low

core counts to infer their evolution at large core counts.

The main contributions of this work are:

• A methodology to extrapolate the efficiency computed at low core counts to large core

counts in the same platform;

• A validation of the methodology on 4 cases corresponding to different applications, plat-

forms and strong or weak scaling runs;

• An extension of the methodology to predict the impact at large core counts of architectural

or system improvements (in particular OS and network noise elimination).

The rest of this paper is organized as follows. Section 1 outlines our approach and describes

the underlying prediction model in detail. Section 2 presents the experiments performed to

evaluate the effectiveness of our method. Related work is discussed in Section 3, and final

remarks and further steps are in Section 4.

1. Description of the methodology

1.1. Identify Structure

Our method begins with a trace for a number of MPI ranks, obtained from executing an

instrumented parallel code or by simulating the execution on a target machine. Then, we visu-

alize the trace to generate clean cuts of the representative regions or phases from the temporal
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structure of the execution. A main phase suggests regions of computation and/or communication

that may show different behaviors or that are independent between them, e.g. separating long

computational regions from communication intensive phases. In this step, we can measure du-

ration of the computation, or number of MPI calls to highlight additional details in the interval

that may suggest additional phases (other regions that may become interesting to analyze). To

reduce potential noise introduced by the machine during the execution, the output of this step

is one or more cuts of the cleanest regions of the trace for each core count. A region may contain

one or more iterations, and it represents a part with potential performance bottlenecks or that

may have significant impact to the execution.

1.2. Phase Performance Analysis

To report a quantitative summary of the performance of identified phases, all the trace cuts

will be processed using our automatic framework. The model decomposes the parallel efficiency

metric as a product of factors with normalized values between 0 (very bad) and 1 (perfect) [7].

The factors correspond to fundamental behavioral aspects of parallel codes and are load balance,

serialization and transfer.

• Parallel Efficiency reflects the performance obtained from executing in parallel the code.

It is expressed as the product of the three fundamental factors: Load Balance, Serialization

and Transfer. Efficiency of the parallelization is presented in expression 1.

η‖ = LB ∗ Ser ∗ Trf (1)

• Load Balance efficiency reflects the potential efficiency loss caused by imbalance in the

total computation time by each process. It is measured as the ratio between the average

computing time (
∑

i ti/P ) and the maximum computation time (max(ti)) from all the

processes i = {0, ..., P}, as shown in expression 2.

LB =

∑
i ti

P ∗max(ti)
(2)

• Serialization efficiency reflects the inefficiency caused by dependencies in the code. It is

measured by simulating an instantaneous communications (ideal) scenario using Dimemas

and collecting the maximum efficiency achieved by a single process (ideal(effi) in expres-

sion 3).

Ser = Max(ideal(effi)) (3)

• Transfer efficiency reflects the performance loss caused by actual data transfer. It is

caused by the MPI overhead plus the interconnection network noise and can be measured

in expression 4, as the maximum efficiency achieved by a single process in the real execution

(Commeff ) and the inefficiency from serialization (Ser).

Trf =
Commeff

Ser
(4)

In this step, we detail the performance of the application based on observations from col-

lected measurements. The model provides a general view of the inefficiencies in the code and

the relative importance of the performance factors. As a first advantage of our proposal, this

type of model provides useful information to suggest the appropriate strategy to improve the
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performance in the application. From a broader point of view, the use of fundamental factors fa-

cilitates a unified modeling approach for strong and weak scaling scenarios, thus providing a fast

and approximate approach to infer the evolution of the parallel code. Expressing performance

in terms of parallel efficiency brings flexibility when selecting the number of iterations for each

cut. In a steady iterative parallel code, a few iterations will typically be sufficient to represent

its behavior. Reporting efficiency instead of absolute time makes the metric essentially insensi-

tive to the number of iterations, eliminating the need to ensure that exactly the same number

of iterations is analyzed for all core counts. The analysis tools (Paraver) provide mechanisms

(for example analyzing histograms of the duration of computation, the cycles counter, among

others) to identify regions of the traces that may be significantly perturbed by noise. Sufficiently

clean cuts of the traces can thus be obtained at different core counts without the constraint of

requiring them to be of exactly the same number of iterations. The advantage of this approach

is that the analysis can be focused on regions with less perturbations.

1.3. Scalability Prediction

To infer the behavior of phases of an application in a specific platform at large core counts,

our extrapolation approach fits the components of the multiplicative model presented in expres-

sion 1. The model is fed with data collected from traces obtained from several, not many runs

using low core counts in the same target platform. We argue that the results of the analysis

phase using a small number of executions for low core counts, combined with the fundamental

underlying system behavior can help us identify the specific scalability model for each compo-

nent of the multiplicative model. By independently extrapolating the individual components of

this model we can observe their evolution; how relevant are they to the overall performance of

the parallel code; potential variations of significant factor as core counts increase, and infer a

potential performance for a core count that has not being executed before.

The original prediction strategy proposed in [7] observed that an extrapolation based on

model factors led to more accurate predictions that extrapolate the overall efficiency. Never-

theless, these observations were based on projections for limited increases in the core counts.

We aim at studying the impacts for much larger core counts. In an intent to use linear models,

results where unacceptable because they get negative with large values of cores.

The basic default model is Amdahl’s law formulation. This is a general and approximate

model that represents a first approach to describe the effect of non-parallel regions, where inef-

ficiencies are caused by an activity that can not be executed concurrently with other activities.

This may be caused by computations being serial, but can also constitute an abstract model

of other serialization behavior such as contentions in the network resources. The formulation of

such an Amdahl based approach in terms of the efficiency model is presented in expression 5.

Amdahlfit =
amdahl0

famdahl + (1− famdahl) ∗ P
(5)

Other possible pattern of concurrency corresponds to pipelined computation. Expression

6 models a behavior of alternating segments of totally parallel computation with perfectly

pipelined segments.

Pipefit =
pipe0 ∗ P

(1− fpipe) + fpipe ∗ (2 ∗ P − 1)
(6)
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Moreover, additional features of the program may suggest a different fitting for each factor, e.g.

a constant behavior when there are no changes in efficiency when scaling may indicate that a

factor can be treated as a constant value at very large scale.

2. Experimental Evaluation

For the experimentation, we use three applications from the CORAL suite: HACC, Nekbone,

and AMG2013; and the CFD application AVBP. The Hardware Accelerated Cosmology Code

(HACC) [8] parallel benchmark is a flexible framework that uses N-body techniques to simulate

the evolution of the Universe from its early times to today and to advance our understanding

of dark energy and dark matter. The Nekbone is a proxy-app from the Nek5000 software [9],

which executes computationally intense linear solvers. Nekbone has been created to be easily

adapted to different platforms, communication structures, and scalability studies. AMG2013 [10]

is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured

grids. AMG2013 is a highly synchronous code and parallelism is achieved by domain decompo-

sition. Parallel efficiency is largely determined by the size of data chunks in the decomposition,

and the speed of communications and computations on the machine. AVBP [11] solves the

three-dimensional compressible Navier-Stokes on unstructured and hybrid grids. AVBP includes

integrated parallel domain partition and data reordering tools. The scaling: weak or strong, and

the number of processes used in the runs of each application are summarized in tab. 1.

CORAL applications have been executed in MareNostrum III, a machine based on Intel

Xeon E5 processors, iDataPlex Compute Racks and Infiniband network. Traces from AVBP

have been obtained in Juropa, a supercomputer based on Intel Xeon X5570 processors, Sun

constellation systems and Infiniband network. The machines operated in normal production

using fully populated nodes, i.e. there is non dedicated network and some potential noise from

OS may be introduced in the runs.

2.1. Identify Structure

To identify the structure of the application we visualized the traces for each execution with

various ranks. A manual process that leads to obtain clean cuts of interesting phases within the

execution. In general, applications present an iterative structure, and a clean cut is a region with

low or none perturbations from the system. The identification process is based on the observation

of metrics of the execution to limit the phases. Metrics as the duration of computational burst,

cycles per microseconds, or the behavior of MPI calls (colored areas in the images shown below,

where each color represents a type of MPI call) result very useful in this task.

In a trace of one iteration of HACC we can observe a large computationally intensive phase

of ≈ 250s. This phase, presented at the left side of fig. 1, shows low communications and some

Table 1. Applications used in for the experiments

Strong Scaling Ranks Weak Scaling Ranks

HACC 16, 32, 64, 128, 256, 512, AMG2013 32, 64, 96, 128, 192, 256, 384

1024, 2048, 4096

Nekbone 2, 4, 8, 16, 32, 64, 128, AVBP 16, 32, 64, 96, 128,192, 256,

256, 512 520, 768, 1024,1040, 1280, 1536

Scalability Prediction for Fundamental Performance Factors
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Figure 1. Phases in one iteration of HACC code

Figure 2. Phases in Nekbone Figure 3. Phases in AMG2013 Figure 4. Iteration in AVBP

imbalances at the end. The iteration has also a small communication phase (≈ 4s) shown at the

right side of the figure. Inside this phase, we could identify sub phases of finer grain, yet for the

scope of our analysis the main two phases are enough.

In Nekbone we identify two phases with an iterative structure, presented in fig. 2. To avoid

the impact of potential noise of the system, we choose iterations with less variations between

the bursts. At the same time, the number of iterations chosen may variate when increasing the

number of core counts. A decision that does not affect the effectiveness of our method as it

measures the parallel efficiency of the total region.

For AMG2013, we focus our analyses in the regions with greater presence of MPI calls,

differentiating one phase dominated by point-to-point communications from a second phase

that presents more collectives calls. These phases, shown in fig. 3, are consecutive within one

iteration of the application.

Finally, we took two outer iterations of AVBP to test the sensitivity of our method using

a coarser grain. In the cut, there are regions of compute with some imbalances (dark areas in

fig. 4), which are followed by point-to-point communications and a subsequent synchronization

step before starting new computations.

2.2. Phase Performance Analysis

We apply the automatic framework for basic analysis to each phase identified to extract

the main performance metrics and factors of the performance model. Below we summarize the

outputs of the efficiency associated to the fundamental factors for all the applications. Values

range from 0 to 1 being those closer to 1 which present greater efficiency.

For phases 1 and 2 of HACC, we can observe the evolution of the performance factors

when changing the number of ranks. In this parallel code, the evolution of all three factors in

the computational phase (fig. 5) describes a highly efficient region with almost no imbalance

or contention. In the analysis of the communication phase (fig. 6), Transfer (Trf) followed by

Serialization (Ser) are dominant factors in the overall performance loss. After 256 ranks, Transfer

reports an efficiency of 0.6 and Serialization reports around 0.8, thus suggesting the presence

of some contention or delay in the communications between processes. The Load Balance in

C. Rosas, J. Giménez, J. Labarta
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fig. 6 seems to remain steady for all number of ranks. To better understand the fundamental

behavior of this metric, we compute the load balance across processes in terms of total number

of instructions they execute rather than the time they take. The result is perfect load balancing

across all the core counts. In addition, after analyzing the trace, processors seem to perform

computations in stages inside phase 2 (similar to a pipeline decomposition), in consequence, we

decide to model the serialization factor by expression 6.

The analysis from the two phases of Nekbone reports regions with an efficiency of above

0.8 (fig. 7 and fig. 8). Load balance shows a slight drop after 32 processes that later seems to

stabilize. An analysis of the cycles per second metric in the traces confirms the existence of a

small level of preemption, thus suggesting that the reduction observed in this factor derives from

noise in the system.

The analysis from the phases of AMG2013, shown fig. 9 and fig. 10, suggest a performance

loss mainly dominated by load imbalances. Both phases present this behavior and by checking

in the trace files, we verified that this is due to preemptions introduced by noise. In addition,

for larger core counts transfer efficiency in phase 1 shows greater degradations. After analyzing

the traces, the inefficiencies are caused by contention in point-to-point communications.

The AVBP executions reported values with an initial steady behavior up to 384 processes

(left side in fig. 11). When increasing the number of cores abrupt variations appear. The trace

files reported that these variations are caused by unexpected noise in the run, further discussion

of this subject is in section 2.4.

2.3. Scalability prediction

2.3.1. Model Fitting

From the collected measurements and performance observed from the analysis of the traces,

we now want to generate a model to infer the expected performance at large core counts. Con-

tention can be one of the main causes of performance loss, and Amdahl’s Law reflects the

presence of this type of restrictions when increasing core counts. In consequence, we propose

to fit all the fundamental factors using the expression 5 by default. Metrics were fitted using

the least square regression model taking as a reference current measurements from executions

with low core counts. The fit considers the dependent variable to be inside the range [0.0, 1.0].

In the results shown below, we use expression 5 to infer the expected parallel efficiency from all

the fundamentals factors for Nekbone, AVBP, AMG2013, and for Transfer and Load Balance

in HACC. For almost all the applications, Amdahl’s function generates a curve that follows the

closest gradient to the measured points (presented from fig. 12 to fig. 17). In addition, it provides

a reasonable fitting with small influence of the number of points used.

2.3.2. Validation of Results

In this section, we compare the efficiencies predicted for a machine from runs using small

core counts with the values collected from real traces using at least runs 3 times larger than the

number of processes used for prediction. In the available machines, we have obtained traces up

to 1536 processes (AVBP in Juropa) and 4096 processes (HACC in MareNostrum III). Predicted

efficiencies and their associated relative error (inside parentheses) are summarized in the tables

below. Prediction results are from the phase of the application that shows the bigger relative

Scalability Prediction for Fundamental Performance Factors
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Figure 15. Fitting second part Nekbone
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error. The error for each fundamental factor shows how optimistic (+) or pessimistic (-) is our

prediction.

For HACC, phase 2 with up to 256 processes were used to project the efficiency for 512,

1024, 2048 and 4096. Results shown in tab. 2, show a low relative error in the predictions of

load balance and serialization. Even for transfer, which reports variable errors, we are able to

predict the expected efficiency for a number of processes 20 times larger loosing around a 25%

of accuracy. With Nekbone, we use traces up to 128 processes to project the efficiency of 256

and 512. Efficiencies reported in tab. 3 show a relative error of less than a 0.1%. We used traces

up to 128 processes to project the efficiency for AMG2013. Results for predicted efficiencies for

256 and 384 processes are reported in tab. 4. These results show a relative error of less than

10%. For AVBP, we used executions with up to 384 processes to project the expected efficiency

for 520, 768, 1024, and 1536 presented in tab. 5, and the differences between the expected and

the real measurement are not greater than 18%.

2.3.3. Projection for large core counts

From collected efficiencies of each fundamental factor our framework extrapolates the ex-

pected total parallel efficiency for up to 106 cores. In weak scaling, phase 1 of HACC shows in

fig. 19 a constant behavior of Serialization and Transfer, and a low degradation of Load Bal-

Table 2. Predicted efficiency and relative error for HACC (phase 2), extrapolated from runs

using 16 to 256 cores

Ranks Load Balance Serialization Transfer Parallel Efficiency

512 0.952(−0.82)% 0.860(+1.81)% 0.517(−6.78)% 0.424(−5.61)%

1024 0.948(−0.17)% 0.857(+2.34)% 0.452(−15.47)% 0.368(−13.64)%

2048 0.943(−0.68)% 0.855(+2.45)% 0.391(−9.39)% 0.315(−7.80)%

4096 0.937(+0.82)% 0.853(+1.83)% 0.333(−27.19)% 0.267(−25.25)%

Table 3. Predicted efficiency and relative error for Nekbone (phase 2), extrapolated from runs

using 2 to 128 cores

Ranks Load Balance Serialization Transfer Parallel Efficiency

256 0.972(−0.003)% 0.985(+0.002)% 0.992(−0.001)% 0.950(−0.002)%

512 0.950(−0.007)% 0.977(+0.004)% 0.989(+0.001)% 0.919(−0.001)%

Table 4. Predicted efficiency and relative error for AMG2013 (phase 2), extrapolated from runs

using 32 to 192 cores

Ranks Load Balance Serialization Transfer Parallel Efficiency

256 0.921(−0.16)% 0.937(+0.95)% 0.941(+0.55)% 0.813(+1.45)%

384 0.908(−3.08)% 0.908(+6.05)% 0.914(+1.94)% 0.754(+4.42)%

Table 5. Predicted efficiency and relative error for AVBP, extrapolated from runs using 16 to

256 cores
Ranks Load Balance Serialization Transfer Parallel Efficiency

520 0.907(−1.42)% 0.925(+3.23)% 0.973(−0.70)% 0.816(+0.93)%

768 0.886(−2.54)% 0.893(−1.00)% 0.961(−0.82)% 0.761(−4.15)%

1024 0.867(−3.66)% 0.862(−4.40)% 0.948(+6.21)% 0.709(−2.16)%

1536 0.830(−5.68)% 0.807(−10.54)% 0.925(−1.45)% 0.620(−16.46)%
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ance, thus resulting in a region that will scale relatively well at very large core counts. For phase

2 (fig. 20), at 2k cores the parallel efficiency is below 0.4, thus suggesting that the problem

will be the communication contention, while a pipelined serialization structure may represent a

secondary but less relevant cause of inefficiency.

Phase 1 of Nekbone shows a total parallel efficiency equal to 0.4 at 2k cores (fig. 21). An

efficiency loss mainly dominated by load imbalances. Although this suggest uneven distribution

of the work, the histogram of instructions reveals that there is no computational imbalance. The

imbalance appears because of IPC differences between process. This behavior would need deeper

analysis. At the same point, parallel efficiency for phase 2 is also dominated by load imbalances

(fig. 22), however, this phase shows a reasonable efficiency (0.7) for 2k processes and reaches the

efficiency of 0.4 at a larger number of cores than phase 1 (around 8k).

In strong scaling, AMG2013 shows similar expected behaviors for both phases (fig. 23 and

fig. 24). Phase 1 is mainly dominated by load imbalances, and shows a parallel efficiency of 0.5

at 2k cores. On the contrary, in phase 2 due to the coupling between all the fundamental factors,

a lower efficiency (0.4) for the same number of cores is reported.

Finally, the extrapolation of parallel efficiency for AVBP shows a performance loss tightly

coupled to all 3 factors. At 2k cores the total efficiency predicted is 0.7, and it is worth mentioning

that the problem size provided by the developers of this application was expected to scale well

up to 1k cores. In addition, for AVBP, and unlike the rest of the applications, there is a shift

between load balance and serialization as the influential factor in loss of efficiency after 10k

(fig. 25). From this observation, the expected dominant factor for a given number of cores may

not result the same when scaling the application for larger core counts. It suggests using different

optimization techniques depending on the scale at which the application will be executed.

2.4. Additional enhancements: Noise reduction

Predictions until now were based on runs of an application in current available machines.

The noise introduced by the system or by the MPI engine is extrapolated and we can thus infer

how the application will behave when scaling the platform. Some interesting questions emerge:

Which is the impact that some characteristics of the system (i.e. noise) may have in the final

prediction?. What would be the behavior if those aspects are improved or worsened?. What is

the influence of noise of the machine, of interconnection network noise, of the bandwidth of

the system, of disturbances introduced by the progression engine of MPI, among others. In this

section, we demonstrate how our approach and infrastructure can be used to address above

questions. We will demonstrate it analyzing the impact of noise in the Juropa platform used for

the AVBP runs.

2.4.1. Impact of noise in communication

Recall that our model uses a simulation with no latencies (ideal) to collect the values of

Serialization and the resulting values are used to calculate Transfer. By using an ideal scenario

potential disturbances within MPI in the original trace are cleaned, and inefficiencies are not

assigned to Serialization but to Transfer. This factor can be read as the cost of data movement

in the machine where the traces have been obtained, but it also captures other inefficiencies,

such as: network noise, issues with the MPI progression engine of preemptions inside MPI calls.

This effect was detected on AVBP where there is a significant difference between the behavior
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Figure 20. Extrapolation phase 2 HACC
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Figure 21. Extrapolation first part Nekbone
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Figure 22. Extrapolation second part Nekbone

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000  100000  1e+06

P
e
rf

o
rm

a
n
c
e

Processes

Extrapolation for large core counts
AMG2013 first phase

Load Balance
Serialization

Transfer
Parallel Efficiency

Figure 23. Extrapolation phase 1 AMG2013
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Figure 25. Extrapolation for large core counts for AVBP
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of the 1024 and 1040 runs. Looking at the traces we detected problems on the MPI progression

engine that can be seen on fig. 26 and affects the exit time of some collectives (Allreduce in this

case).

Our apporach to eliminate the effect of such perturbations within MPI in the final results

starts by generating a Dimemas trace from the original Paraver traces. The Dimemas traces

capture the computation demands from the computation records in the original paraver trace.

A Dimemas simulation with nominal values for the target machine rebuilds the precise time

behavior on a platform without noise in the communication. The methodology presented in

this paper can be applied to the paraver traces resulting from the simulation to extrapolate

the efficiency factors of the application if the network/MPI noise is eliminated. The result of

projecting the factors from traces of AVBP without disturbances in communication is shown in

fig. 27. We can see how the transfer factor has now better scalability. Even if the network noise

had an important impact in the transfer efficiency, the overall applications is still dominated

by load balance and serialization and thus global performance does not significantly improves

eliminating such noise.

2.4.2. Impact of noise in computation

Noise may also affect the computational phases. To eliminate noise from these phases, the

original trace is translated to Dimemas format using the available cycles counter to determine

the duration of the computation burst. As hardware counters are virtualized they do not count

while the process is preempted. By knowing the frequency of the processor and the number of

actual cycles, a very precise computation of the non perturbed duration of computation burst

can be obtained.

Repeating the process described in the previous section with the new conversion mechanism

we obtain the extrapolation results reported in fig. 28. Now the load balance prediction scales

better, thus suggesting that part of the identified unbalance was not originated by the application

but by the system noise. By eliminating the noise from the machine and from communications,

the serialization is now the dominant factor in efficiency loss.

From this additional study, we conclude that when predicting scalability of parallel applica-

tions we must be aware that current machines and interfaces are introducing variations (noise)

in the executions. The design of mechanisms to include these noise factors into the prediction

model may result a necessity.

3. Related Work

The approach based on first principles of [4] requires a deep knowledge of the application

algorithms and parallelization structure to build analytical models directly from such knowledge.

As it may result costly in terms of the deep application knowledge required, is computationally

inexpensive and informative, having proved useful to actually identify problems in machines

that did not get the predicted performance.

The work presented by [12], uses analytical application models to derive the performance

of NAS BT benchmark in future systems. The approach builds a precise model of computation,

memory usage, and communication to evaluate the potential paths to scale an application. The

analysis provides insights of potential bottlenecks but does not formalizes an strategy to predict

the expected performance.
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A multiscale simulation based methodology is introduced by [13]. This work models the

cluster level of parallelism by means of Dimemas, a simulator of a distributed memory target

machine, parametrized by network and overall sequential performance parameters. The appli-

cation characteristics are captured in a trace of a real run with the desired number of processes

on an existing machine. The sequential performance extrapolations fed into Dimemas as part of

the multiscale approach are computed using instruction level simulators, thus a costly process.

In an effort to investigate the performance of Message Passing Interface applications at large

core counts, parallel discrete event simulations have been used to run the application in a con-

trolled environment [3] and observe its behavior. The work of [14] and [15], analyzed the impact

of communications when scaling to a larger number of processors, and the expected degradation

in the network bandwidth, respectively. These works have been focused on the communication

interface and in the hardware rather than in the basic behavior of the applications using them.

The work of [6] proposes to blindly fit metrics (essentially time) measured for the main

routines of a program when running at low core counts on an existing platform. A large number

of fitting functions is tried and the one reporting the best fit is selected as model of that routine.

The approach is useful to identify trends and point to routines that will become bottlenecks at

larger core counts in the same platform. The method, although it is simple and does not require

excessive calculations, offers limited insight about influential factors in the performance loss.

A methodology to extrapolate the computational behavior of large-scale HPC applications

has been presented in [16]. Their method extrapolates application traces as a relevant technique

to understand how an application scales on a particular system, and can be useful to detect the

impact of incremental or major changes in the hardware being used to run the application.

Several efforts to evaluate scalability of parallel applications has been made in [17]. They

present a performance model for an specific phase of the AMG application, exposing existent

bottlenecks and predicting the expected scalability in future machines based on their analytical

model for computation and communication.

Figure 26. Delay in collectives for real trace of AVBP
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4. Conclusions

In this paper, we described a methodology to collect primary components of current parallel

codes and infer their expected behavior when scaled to larger core counts. To extrapolate the

expected parallel efficiency, the approach extracted basic knowledge from traces obtained from

runs using a low number of processes. Traces used in this work were obtained in two different

machines that are currently in production (MareNostrum III and Juropa), and the process of

analysis and estimation was performed by means of available performance tools and a semi-

automatic framework. Our framework collected from the traces three fundamental components

of parallel efficiency: load balance, serialization and transfer. Then, a first general model based

on Amdahl’s law was used to infer the evolution of each factor for large scale executions. We eval-

uated the method using 3 applications from the CORAL suite (HACC, Nekbone and AMG2013)

and a CFD application AVBP. Predictions of expected efficiencies based on executions at low

core counts showed a low relative error. Scalability projections showed interesting behaviors for

strong and weak scaling, such as applications mainly dominated by load imbalances, efficiency

loss caused by coupling of factors, among others. In general, from obtained results our method

provides an inexpensive and useful tool to quickly infer the expected scalability of parallel codes.

As further steps, the method can be easily refined by including additional extrapolation

models to fit different behaviors for new parallel codes. Similarly, to complement the current

model with the potential effect of noise introduced by the machine or inherent noise of running

a parallel code remains as a future work. The methodology can also be enriched by knowledge

obtained from simulations of the parallel code on different architectures, thus providing addi-

tional insights on how the code may evolve in different platforms.

This work has been partially supported by the Intel-BSC Exascale Lab and the DEEP Project.
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Predicting the Energy and Power Consumption of Strong and

Weak Scaling HPC Applications

Hayk Shoukourian1,2,∗ , Torsten Wilde1, Axel Auweter1, Arndt Bode1,2

Keeping energy costs in budget and operating within available capacities of power distribu-

tion and cooling systems is becoming an important requirement for High Performance Computing

(HPC) data centers. It is even more important when considering the estimated power requirements

for Exascale computing. Power and energy capping are two of emerging techniques aimed towards

controlling and efficient budgeting of power and energy consumption within the data center. Im-

plementation of both techniques requires a knowledge of, potentially unknown, power and energy

consumption data of the given parallel HPC applications for different numbers of compute servers

(nodes).

This paper introduces an Adaptive Energy and Power Consumption Prediction (AEPCP)

model capable of predicting the power and energy consumption of parallel HPC applications for

different number of compute nodes. The suggested model is application specific and describes the

behavior of power and energy with respect to the number of utilized compute nodes, taking as an

input the available history power/energy data of an application. It provides a generic solution that

can be used for each application but it produces an application specific result. The AEPCP model

allows for ahead of time power and energy consumption prediction and adapts with each additional

execution of the application improving the associated prediction accuracy. The model does not

require any application code instrumentation and does not introduce any application performance

degradation. Thus it is a high level application energy and power consumption prediction model.

The validity and the applicability of the suggested AEPCP model is shown in this paper through

the empirical results achieved using two application-benchmarks on the SuperMUC HPC system

(the 10th fastest supercomputer in the world, according to Top500 November 2013 rankings)

deployed at Leibniz Supercomputing Centre.

Keywords: adaptive prediction, energy consumption, power consumption, energy capping,

power capping, AEPCP model, energy measurement, node scaling, EtS prediction, HPC.

Introduction

With the ever increasing growth of applications requiring a scalable, reliable, and low cost

access to high-end computing, many modern data centers have grown larger and denser making

power consumption a dominating factor for the Total Cost of Ownership (TCO) of supercom-

puting sites [18, 19]. This increase in power consumption not only converts into high operating

costs, but also to high carbon footprint which affects the environmental sustainability, as well as

straining the capacity limits of current data center’s power delivery and cooling infrastructures.

All these make a well-defined and efficient power management process a necessity for achieving

a sustainable and cost-effective High Performance Computing (HPC) data center. Power and

energy capping are two of the emerging techniques for controlling power and energy consumption

in a data center [7].

Power capping limits the amount of power a system can consume when executing various

applications, thus aiming to keep the system usage within a given power limit and prevent

possible power overloads. Power capping covers a wide range of use cases: from limited power
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deliveries and/or limited cooling capacities; through the handling of power exceptions (e.g.

unexpected peaks in system utilization); to power budgeting and mitigation of ’power-hungry’

or malicious applications capable of generating dangerous power surges. Two interesting possible

scenarios for power capping in a HPC data center are: avoiding runtime power peak, which can

be addressed by new CPU features, such as setting a hardware power bound [27]; and temporary

power constraints due to infrastructure maintenance (as illustrated in Figure 1). Figure 1 shows

the average power consumption behavior (blue solid line) of a given HPC system cooled with

the use of the data center’s cooling towers depicted on the top of the image.
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mpiexec –n 270 ./myJobJ
echo –n "Job J finished"

Figure 1. Power Capping use case scenario

Assume that at time T two of the data center’s cooling towers are in maintenance, introduc-

ing a temporary average power consumption constraint for the system. Now, assume that there

is a queued job (application) J with a utilization requirement of 270 compute nodes/servers,

which needs to be scheduled for execution. In order to determine whether the execution of job

J is possible within the introduced average power consumption constraint, the information on

the potential power consumption of job J with 270 compute nodes is required. Without this

information the scheduling of job J could overload the available cooling capacity.

While power capping is useful, the majority of current techniques (e.g. [8, 13]) that imple-

ment power capping involve dynamic voltage frequency scaling [15], that will, in most cases,

increase the runtime of the application [15], thus increasing the integral of power consumption

over time (energy). Energy capping is another management technique that limits the amount

of energy a system can consume when executing applications for a given time period. In other

words, energy capping limits the integral amount of power consumption over time and, in con-

trast to power capping, it does not limit the amount of power the system can consume at a given

point in time. From a data center perspective, energy capping is currently a more important

approach, since energy consumption equals costs. The knowledge on application potential energy

consumption for a given number of compute nodes will allow for a power-cost optimization by

shifting low priority applications with higher energy/power consumption rates to off-peak hours,

when the cost of electrical power is cheaper. This knowledge will also allow for energy-driven

charging policies as an alternative to currently existing CPU-hour based charging policies.

A typical use case scenario of energy capping is illustrated in Figure 2. The dashed red line

in Figure 2 shows the introduced per month allocated energy budget that a system can consume
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on a monthly basis (this can be for the whole system or on a per user/customer basis), whereas

the blue solid line shows the ongoing energy consumption.

?Can the job J be scheduled
without running over the
available energy budget
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#!/bin/bash
#@ job_type=parallel

#@ node = 360
…
echo –n "Starting job J"
mpiexec –n 360 ./myJobJ
echo –n "Job J finished"

Figure 2. Energy Capping use case scenario

Assume that on day D the system has already an Accumulated Energy Consumption (AEC,

Figure 2) of a given amount. Assume further, that there is a pending job J , with requested 360

compute nodes. In order to understand whether the job J can still be scheduled for execution

within the available energy budget, the resource management system has to have the information

on the potential energy consumption of the job J with 360 compute nodes.

Though power and energy capping for these use case scenarios (as described for Figure 1,

Figure 2) solve different problems, they both require the same knowledge of, potentially un-

known, power and energy consumption profiles of applications to be executed. Without the

access to this knowledge, the implementation of these techniques will be incomplete. This paper

proposes an Adaptive Energy and Power Consumption Prediction (AEPCP) model capable of

predicting the Energy-to-Solution (EtS) [4, 22] and the Average Power Consumption (APC) [37]

metrics for any parallel HPC applications with respect to the given number of compute nodes.

The AEPCP model requires unique identifiers for each application and takes the available ap-

plication historical power/energy data as an input. It is worth noting that this data is, in the

most cases, already available in the current data center energy/power monitoring and resource

management tools. The application can behave differently with different input data sets or if

some system settings are changed (e.g. system dynamic voltage and frequency scaling governor

configurations). Therefor, each substantial change needs to be treated as a different applica-

tion and requires a new unique identifier. The model is validated for strong scaling applications

(i.e. applications with fixed input problem size) as well as for weak scaling applications (i.e.

applications with adjusted input problem size).

The remainder of this paper is structured as follows. Section 1 gives some background

information on application scalability. Section 2 provides a survey on related works. Section 3

illustrates the prediction process and introduces the AEPCP model. Section 4 describes the

application-benchmarks as well as the compute system which were used to validate the suggested

model. Section 5 presents the EtS results for application strong and weak scaling scenarios.

Section 6 shows the APC prediction results, and discusses the benefits of AEPCP based APC

prediction as compared to the usage of vendor provided maximum power boundaries of system

compute nodes. Section 7 looks at the future AEPCP model enhancement directions, and finally

Section 8 concludes the paper.
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1. Background

The scalability of a parallel HPC application shows the relation between application ex-

ecution time and the number of application utilized compute resources, e.g. nodes. Scaling is

referred to as strong when an application input problem size (i.e. the amount of required com-

putation) stays constant independently from the number of compute nodes which are utilized to

solve that problem. This implies that an application demonstrating a strong scaling will have a

smaller execution time, i.e. will solve the computation faster, as the number of compute nodes

increase.

Scaling is referred to as weak when the input problem size of the application is fixed for

each utilized compute node. This indicates that the execution time of an application under weak

scaling will show a constant behavior since the input problem size increases accordingly with

the number of utilized compute nodes. Figure 3 shows the execution-time, i.e. Time-to-Solution

(TtS), behavior for strong and weak scaling scenarios.

Weak Scaling

Strong Scaling

Number of Nodes
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o
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o
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Figure 3. Theoretical TtS curves for strong and weak scaling scenarios

The limits of theoretically possible speedups achieved by parallel HPC applications in the

case of strong and weak scaling and the outline of the theoretical boundaries of APC and EtS

metrics under compute node scaling are presented in Subsection 1.1 and Subsection 1.2. The

following denotations and definitions are used throughout these subsections:

• ts(n) - processing time of the application serial part using n nodes;

• tp(n) - processing time of the application parallel part using n nodes;

• T (1) = ts(1)+ tp(1) - processing time of the application sequential and parallel parts using

1 node;

• T (n) = ts(1)+tp(n) - processing time of the application sequential and parallel parts using

n nodes;

• p = tp(1)
ts(1)+tp(1)

- the non-scaled fraction of the application parallel part [29], i.e. the

parallel portion of computation on a sequential system (0 ≤ p ≤ 1). Thus the non-

scaled fraction of the application sequential part will be (1− p);

• p∗ = tp(n)
ts(1)+tp(n)

- the scaled fraction of the application parallel part [29], i.e. the parallel

portion of computation on a parallel system (0 ≤ p∗ ≤ 1). Thus the scaled fraction of

the application sequential part will be (1− p∗).
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1.1. Strong Scaling - Amdahl’s Law

Strong scaling was first described analytically by Gene Amdahl in 1967 [1]. According to

Amdahl’s law, the possible speedup that a parallel application can achieve using n (n ≥ 1)

compute nodes is:

Speedup(n) =
T (1)

T (n)
=

1

(1− p) + p
n

(1)

The total T (n) processing time of sequential and parallel parts using n compute nodes,

according to Amdahl’s law (Equation 1), can be derived as:

T (n) = T (1) · [(1− p) +
p

n
] (2)

A study by Woo and Lee [37], considering Amdahl’s law, proposes an analytical model for

calculating the average power consumption P (n) of a given application when executed on n

compute nodes.

P (n) =
1 + (n− 1) · k · (1− p)

(1− p) + p
n

(3)

where k is the fraction of power that is consumed by the compute node in idle state (0 ≤ k ≤
1). This further means that when an application demonstrates ideal scalability1, then P (n) = n,

as illustrated in Figure 4 (dashed yellow line). While when an application demonstrates no

scalability2, P (n) = 1 + (n− 1) · k (solid yellow line in Figure 4).

Having Equation 2 and Equation 3, the EtS E(n) of a given application can be derived as

follows:

E(n) = T (n) · P (n) = T (1) · [1 + (n− 1) · k · (1− p)] = O
(
n
)

(4)

which means that in the case of an application demonstrating ideal scalability, the EtS

behavior for that application will be constant with respect to the number n of utilized compute

nodes. Whereas, in the case of an application with no scalability, the corresponding EtS behavior

will be linear. The dashed and solid red lines in Figure 5 illustrate these scenarios. This further

means, that the realistic EtS behavior of applications must be in between these constant and

linear boundary lines.

1.2. Weak Scaling - Gustafson’s Law

The speedup of applications demonstrating a week scaling was first described analytically

by John L. Gustafson [11] as:

Speedup(n) =
T (1)

T (n)
= 1 + (n− 1) · p∗ (5)

Following the same observation proposed in [37], we can state that it takes ts(1) to execute

the sequential portion of the computation and it takes tp(n) to execute the parallel portion of

1In other words the strictly serial (1− p) fraction of the application is 0.
2In other words the computation fraction p that can be parallelized is 0.
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the computation. Assuming that the fraction of power that is consumed by the compute node

in idle state is k (0 ≤ k ≤ 1), the average power consumption P (n) with respect to the number

of utilized compute nodes can be written as:

P (n) =
ts(1) · [1 + (n− 1) · k] + tp(n) · n

ts(1) + tp(n)
= (1− p∗) · [1 + (n− 1) · k] + p∗ · n =

1 + p∗ · (n− 1) + (1− p∗) · (n− 1) · k = O
(
n
) (6)

This further means that in the case of an application that shows ideal scalability3, the

average power consumption P (n) is: P (n) = (n − 1) + 1 = n (Figure 4). Since the execution

time in the case of ideal scalability remains constant as the input problem sizes increases in

parallel with the number of compute nodes, we can further state that the EtS behavior of the

application E(n) with respect to the given n number of compute nodes is of a linear order:

E(n) = P (n) · TtS(n) = n ·O
(
1
)

= O
(
n
)
. The dashed red line in Figure 6 depicts this scenario.

In the case of an application that shows no scalability4, the average power consumption P (n)

(from Equation 6) is: P (n) = 1+(n−1) ·k (Figure 4). Since the execution time of an application

in the case of no scalability increases linearly with the input problem size and the number of

compute nodes, the EtS E(n), in the case of no scalability, will show a quadratic behavior with

respect to the number of compute nodes n: E(n) = P (n)·TtS(n) = [1+(n−1)·k]·O
(
n
)

= O
(
n2
)

(solid red line in Figure 6).

As can be deducted from the above discussion, the average power consumption of an ap-

plication, for both strong and weak scaling applications, is the highest when it demonstrates

ideal scalability. Therefor, an artificial hardware power cap [27] might keep an application from

providing the highest performance and could increase the overall TtS, and subsequently EtS as

well.

Although, it was possible to derive the analytical EtS E(n) and APC P (n) boundary curves

for strong and weak scaling applications with respect to the given n number of compute nodes,

the knowledge of an application’s non-scaled p (in case of strong scaling) or scaled p∗ (in case

of weak scaling) fractions (which are application specific information) is necessary in order to

estimate the energy/power consumption for a given n number of compute nodes. The obtainment

3In other words the scaled fraction of the application sequential part 1− p∗ is 0.
4In other words the scaled fraction of the application parallel part p∗ is 0.
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of this application specific information is not trivial, and might be even impossible, in real-world

scenarios where myriad of different HPC applications are run in a HPC data center.

2. Related Work

An approach aimed towards performance prediction is described by Ipek et al. in [16]. The

authors introduce a similar, adaptive model for predicting the TtS of parallel applications with

respect to the input problem size of the application but with a fixed number of compute nodes.

Even though, it could be possible to derive the energy consumption of an application using the

corresponding knowledge of TtS and vendor provided maximum thermal design power [14] of

a system compute node, this approach will not be applicable for our use case of energy and

power capping, since it does not provide a knowledge on TtS behavior with respect to different

numbers of compute nodes.

A study directed towards cross platform energy usage estimation of individual applications

is found in [6]. The authors suggest a model capable of predicting the energy consumption

of a given application during the application’s execution phase. This model is not applicable

for implementing energy/power capping techniques since it does not provide information on

energy/power consumption of a given application in advance, which is required by the system

resource manager for scheduling applications and preserving the predefined system energy/power

consumption constraints.

Another set of approaches focused on predicting the energy consumption of applications

using analytic models is found in [12] and in [5]. These approaches focus on predicting the power

consumption of a given application with respect to a given CPU frequency. They both require

knowledge of either the application (e.g. scaling properties) and/or the platform characteristics

for different CPU frequencies. Both models are not yet extended/validated for multi-node com-

pute systems and are analytic predictive models, which usually do not completely capture the

interactions between underlying architecture and running software, and often require additional

manual tuning [16].

A technique aimed towards controlling power consumption is found in [13]. It proposes a

model, called “Pack & Cap”, that adaptively manages the number of cores and CPU frequency

depending on the given application characteristics, in order to meet the user-defined power

constraints. “Pack & Cap” model is not applicable for the HPC domain, because, first, “Pack

& Cap” model was validated on a single, quad core server node, and, as authors mention, the

suggested technique is not yet extended/validated for large scale computing systems. Second, it

needs a large volume of application performance data to conduct power/energy capping, which

could not be available in real world scenarios. Third, it does not predict the power/energy

consumption of applications. In the end, the model is targeted specifically for virtual machines,

and might not therefor be easily adapted for HPC systems.

Another set of works focused on application energy/power consumption prediction, given

application in-depth characteristics, is found in [24] and in [32]. [24] presents an energy con-

sumption prediction model requiring application tracing (information on floating point opera-

tion count, memory operation count, etc.) and information on the energy profile of the target

compute system (e.g. average energy cost per fundamental operation), obtained through the use

of several special benchmarks. Although the suggested model could be used for a cross platform

application energy consumption prediction, if the required energy profile data (e.g. achievable

memory bandwidths for each level of the memory hierarchy) of the target system is available,
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their method involves application code instrumentation and attempts to split the application

into “basic blocks” [24]. This would require a lot of effort when dealing with several hundred

different applications, which is typically the case for modern HPC data centers. [32] suggests a

quasi-analytical model, which combines the application analytic description (achieved through

extensive application analysis) with the compute platform parameters (such as per-core power

consumption of a computation unit, and power consumption during inter-processor communi-

cation) obtained through experimental benchmarks. While useful, the validation of a model was

shown using a single benchmark and the suggested method requires a thorough analysis of the

given application, which could be impractical in real-world scenarios, when several applications

with different characteristics are queued for execution.

In summary, none of the aforecited models predicts the application energy/power consump-

tion with respect to the number of compute nodes, and thus none of them can be applied for

implementing power and energy capping techniques for our use case on large scale computing

systems.

3. Framework

This section introduces the Adaptive Energy and Power Consumption Prediction (AEPCP )

process, the AEPCP model, and the monitoring tool which was used to obtain the application

profile data.

3.1. The AEPCP Process

The prediction process of the approach suggested in this paper is outlined in Figure 7. The

AEPCP process has two inputs: the application identifier, which is used to uniquely identify

an application, and the number of system compute resources (e.g. CPU, compute nodes, accel-

erators, etc.), which are planned to be utilized by a given application. The application identifier

is used to query the application relevant history information from the system monitoring tool

(step (1), Figure 7).

Number of ResourcesApplication Identifier

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

Available history data

Monitoring 
Tool

Predicted EtS/APC of the Application 
for a Given Number of Resources

(1)

(2)

(3)

(3)

(4)

Figure 7. Overview of the AEPCP process

Number of NodesApplication Energy Tag

𝐴2𝐸𝑃2

PowerDAM

Available application
EtS/APC history data

Predicted EtS/APC of the Application 
for a Given Number of Nodes

(1)

(3)

(4)

(2)

(3)

Figure 8. Overview of the AEPCP model

This application-relevant history profile data (step 2), together with the number of compute

resources, is passed to the predictor (step 3) for corresponding EtS/APC prediction. Using this
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data, the predictor then reports the predicted EtS/APC value for the application with respect

to the given node number (step 4).

3.2. The AEPCP Model

Figure 8 presents the overview of the AEPCP model based on the prediction process de-

scribed above. The AEPCP model takes as input: (i) the application energy tag as an appli-

cation unique identifier, which is supported by the IBM LoadLeveler [17] resource management

system and is specified by the user on a unique-per-application basis; and (ii) the number of

compute nodes as compute resource number (a compute node is the smallest compute unit

available to an application on the SuperMUC [21] supercomputer which was used to validate

the AEPCP model and is briefly described in Subsection 4.2).

The Adaptive Application Energy and Power Predictor (A2EP 2) is used by the AEPCP

model to estimate the application EtS/APC consumption for any given number of compute

nodes. A2EP 2 requires the application historical EtS/APC data. Figure 9 illustrates the work-

flow of A2EP 2. As can be seen, if the application has already been executed for a given number

of compute nodes (i.e. the EtS/APC consumption for that given number of compute nodes

is known), then A2EP 2 reports the averaged5 value of all the available application history

EtS/APC consumption data for that given number of compute nodes (step Y 1, Figure 9).

Compute node number
in history?

Average all the available
EtS/APC history data for
that node number and

report the averaged one

Take the available EtS/APC 
application history data

Determine predictor-function

Predict for the given number
of compute nodes –

report the predicted one

(Y1)
(N1)

(N2)

(N3)

Figure 9. A2EP 2 workflow

spline/polynomial

linear function

(I) (II)

(III)

(IV)

(V)

Figure 10. A2EP 2 predictor esti-

mation scenarios

If the history data of application EtS/APC consumption for a given number of compute

nodes is not available, then A2EP 2 queries the existing history data (step N1, Figure 9). This

data, in our case, is obtained via a monitoring software toolset called PowerDAM [30, 31]

(steps 1 and 2, Figure 8), which is an energy measuring and evaluating tool aimed at collecting

and correlating data from different aspects of the data center. Once the application EtS/APC

consumption history data is obtained, A2EP 2 tries to determine a predictor-function (step

N2, Figure 9) which will have an allowed, user-specified, percentage Root Mean Square Error

(%RMSE). %RMSE is calculated from RMSE [23] as follows:

%RMSE =

√√√√ 1

n

n∑

i=1

(xmeasured
i − xpredictedi )2 · 100 · n∑n

i=1 x
measured
i

(7)

where

5This can be modified to the maximum or the minimum depending on the use case.
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• n is the number of available real measurements

• xmeasured
i is the ith measured real value

• xpredictedi is the ith predicted value

Several estimation techniques (e.g. ordinary least squares, spline interpolation, etc.) accom-

panied with energy/power consumption specific constraints (e.g. strict positivity) are used by

A2EP 2 for predictor-function determination. Knowing that EtS/APC of both strong and weak

scaling applications is of the order of O
(
n
)

or O
(
n2
)

(Section 1), A2EP 2 analyzes the available

history data and tries to find data points (from the obtained application history EtS/APC data)

which would have a linear dependency. Depending on the found data points, A2EP 2 divides the

available history data set into linear and non-linear segments. A2EP 2 distinguishes five differ-

ent segmentations, as illustrated in Figure 10: linear (case I) is used for tracking the boundary

curves described in Section 1; non-linear (case II) is used to track the transitional scaling phases

between ideal scalability and no-scalability; linear combined with non-linear (case III) is used

when to track the mixture of boundary and transitional scaling behavior; non-linear combined

with linear (case IV) is used to track the mixture of transitional and boundary scaling behavior;

and linear combined with non-linear combined with linear (case V) is used to track the mix-

ture of boundary-transitional-boundary scaling behavior. For each linear segment, A2EP 2 uses

ordinary least squares to find a linear predictor-function which will have an allowed %RMSE

with the available data set in that linear segment. For the non-linear segment, A2EP 2 uses

spline/polynomial interpolations (including also 1st order splines/polynomials) in order to find

a predictor-function which will have an allowed %RMSE rate with the history EtS/APC data

points which are in that non-linear segment. Although, one could argue that there is no need for

estimating higher than 2nd order splines/polynomials because of known theoretical boundary,

our experiments show that in the case of very limited application history EtS/APC consumption

data, the higher order splines/polynomials are helpful and could result in a better prediction

accuracy for a specific range of compute nodes.

Once the predictor-function is obtained from A2EP 2, it is then used to estimate the

EtS/APC values of the application for a given number of compute nodes (steps (4) and (5)).

As can be observed, A2EP 2 implementation is generic and produces individual results for each

unique application. It adapts with each additionally available EtS/APC profile data-point for

improving the accuracy of the determined (application-specific) predictor-function.

In summary, the described AEPCP model: (i) is application neutral - does not need any

knowledge on application type (e.g. communication, computation, or memory intensive), scaling

properties, etc.; (ii) does not require any application code instrumentation; (iii) does not intro-

duce any application performance degradation; (iv) allows for ahead of time EtS/APC prediction

of a given application for a given number of compute nodes (does not require any partial/phase

executions); and (v) automatically captures the complexity of the underlying hardware platform

by taking the input data directly from the system [16], i.e. does not require any manual tuning

of application properties or architectural peculiarities of the target platform.

4. Benchmarks and Compute System

4.1. Benchmarks

This subsection describes the two application-benchmarks which were used to validate the

proposed model.
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Hydro [20] is an application-benchmark extracted from the real world astrophysical code

RAMSES [35]. Hydro is a computational fluid dynamics 2D code, which uses the finite volume

method, with a second order Godunov scheme [9] and a Riemann solver [26] at each interface

on a 2D mesh, for solving the compressible Euler equations of hydrodynamics.

EPOCH is a plasma physics simulation code developed at the University of Warwick as

part of the Extendable PIC Open Collaboration Project [2]. EPOCH is based upon the particle

push and field update algorithms developed by Hartmut Ruhl [28]. It uses the MPI-parallelized

explicit 2nd order relativistic particle-in-cell method, including a dynamic MPI load balancing

option.

In contrast to many kernel and synthetic benchmarks, which are used to measure and test

certain characteristics (e.g. processor power, communication rate, etc.) of the target platform,

Hydro, as well as EPOCH (being application-benchmarks) provide a better measure of a real

world performance. Hydro is part of the PRACE (Partnership for Advanced Computing in

Europe) [25] prototype evaluation benchmark suit and EPOCH is an open-source real world

application used by a large plasma physics community.

4.2. Compute System

SuperMUC (Figure 25), with a peak performance of 3 PetaFLOPS (= 3×1015 Floating Point

Operations per Second), is the 10th fastest supercomputer in the world (according to Top500

[36] November 2013 rankings) and is a GCS (Gauss Center for Supercomputing) infrastructure

system made available to PRACE users. SuperMUC has 155.656 processor cores in 9421 compute

nodes and uses IBM LoadLeveler [17] as a resource management system. It’s active components

(e.g. processors, memory) are directly cooled with an inlet water temperature of up to 40◦

Celsius [21], allowing for chiller free cooling.

Four re-executions of the EPOCH benchmark on SuperMUC using the same set of compute

nodes for the node numbers 20, 90, 180, and 256 showed that the measurement error per node

number does not exceed 1.2%. Therefor, the quality of a single measurement (independently

from the number of utilized compute nodes) is relatively high and there is no strong need for a

re-execution of any benchmark.

5. Predicting Energy-to-Solution

This section presents the EtS prediction results for Hydro and Epoch using the AEPCP

model. The history data points used throughout the paper were chosen on a random basis, since:

(i) the data center has no control on the resource configurations requested by the users; and (ii)

to explicitly show that model is independent from any specific history data.

5.1. EtS of Hydro Under Strong Scaling

Figure 11 shows the execution time of Hydro under strong scaling, which adheres to the

theoretical discussion presented in Section 1 (Figure 3). Assume that there are three EtS data

points in the monitoring history for Hydro (when executed under strong scaling) namely for

compute node numbers: 130 with EtS of 7.6kWh; 135 with EtS of 7.9 kWh; and 220 with

EtS of 7.6 kWh. Assume further, that there is an application in a job queue, which has an

energy tag of strong scaling Hydro, and has a request of 320 compute nodes. The question to
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answer here is: is it possible to predict the energy consumption of Hydro, when executed on 320

compute nodes, with only the knowledge of EtS consumption for compute nodes 130, 135, and

220? Figure 12 shows that the use of AEPCP model leads to a positive answer. The x-axis

in Figure 12 represents the compute node number and y-axis represents the corresponding EtS

in kWh. The red circle points correspond to the available EtS values. The red solid line shows

the predictor-function curve, which was determined by A2EP 2. A spline with smoothing degree

of 1 having an %RMSE of 1% (with the EtS values of node numbers 130, 135, and 220) was

estimated by AEPCP model as a predictor function(red solid line, Figure 12). This estimated

predictor-function estimates a 7.4 kWh energy consumption for compute node number 320. The

green ’x’ point in Figure 12 corresponds to the measured, EtS value (7.5 kWh) of Hydro when

executed on 320 compute nodes. As can be seen, the prediction error rate6 for 320 compute

nodes is 1.3 %.
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Figure 11. Measured TtS of

Hydro under strong scaling

0 100 200 300 400 500
Number of Nodes

0

2

4

6

8

10

12

14

En
er

gy
-to

-S
ol

ut
io

n 
(k

W
h)

Learned EtS Values
Spline with smoothing degree of 1
Real Measurements

Note: available data points are for node
numbers: 130, 135, and 220

Figure 12. EtS prediction

curve and the measured EtS

for node number 320
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Figure 13. EtS prediction

curve of Hydro under strong

scaling

Figure 13 illustrates the case, when in addition to the Hydro EtS consumption data of

compute node numbers 130, 135, 220, the EtS consumption value for already executed 320

compute node number is available to the A2EP 2. In this case, a spline with smoothing degree

of 1 (but with a different angle) having an %RMSE of 1% (the corresponding EtS value of 320

compute nodes was added to the original set of EtS data points for 130, 135, and 220 compute

node numbers) was determined by the A2EP 2 as a predictor-function. The red solid line in

Figure 13 illustrates the curve of the predictor-function. The green ’-x-x-’ curve in Figure 137

corresponds to the measured (and not available to A2EP 2) Hydro EtS values for different

compute node numbers. As can be seen, the determined predictor-function (the red solid line

in Figure 13) shows a relatively small deviation error rate from the measured data (the green

’-x-x-’ curve in Figure 13). Table 1 summarizes the detailed EtS prediction results for a random

set of compute node numbers.

Figure 15 illustrates the real measurements of Hydro, again under strong scaling (Figure 14),

but with a smaller input problem size. As usual, the green ’-x-x-’ points correspond to the real

measured EtS data for different compute node numbers, whereas the red line corresponds to the

determined predictor-function by A2EP 2 using the available EtS values for node numbers: 1,

2, 4, 8, 16, 60, and 165 (red circles in Figure 15). As can be seen, a spline with a smoothing

degree 2 (having an %RMSE of 1% with the available EtS values of node numbers: 1, 2, 4, 8,

6 Calculated as: (| predicted value−measured value | /measured value) ∗ 100.
7Subsequently presented figures adhere to the same denotations.
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Number of Nodes Measured EtS Value (kWh) Predicted EtS Value (kWh) Prediction Error6 (%)

115 7.5 7.7 2.7

200 7.7 7.6 1.3

285 7.5 7.3 2.7

300 7.4 7.5 1.4

340 7.5 7.5 0

400 7.5 7.4 1.3

460 7.7 7.3 5.1

500 7.7 7.3 5.2

Table 1. EtS prediction results for Hydro (strong scaling)

16, 60, and 165) was determined as a predictor-function by A2EP 2. Although this determined

quadratic behavior contradicts the estimated theoretical linear boundary (Equation 4, Figure 5),

it provides an approximation with relative small error rate when compared with the measured

data. On the other hand this estimated quadratic predictor starts to deviate from the real

measurement data when the application approaches the saturation point, by transitioning to

a non-scaling behavior, and thus according to Equation 4, shows a linear behavior of energy

consumption with respect to the number of utilized compute nodes.
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Figure 14. Measured TtS of

Hydro under strong scaling

(smaller input problem size)
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Figure 15. EtS prediction

curve of Hydro under strong

scaling (smaller input problem

size)
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Figure 16. Revisited EtS pre-

diction curve of Hydro under

strong scaling (smaller input

problem size)

One could argue, that there is no reason for executing an application (and thus conducting

a prediction) on a higher number of nodes than the node number on which the saturation point

for a given application was observed, since no performance increase for that application will

be recorded. While true, A2EP 2 tries to capture this behavior when sufficient data is available.

Figure 16 illustrates this option, when EtS values for node numbers 450 and 500 were additionally

available to A2EP 2 for capturing this transitional behavior. As can be seen, the transitional-

boundary behavior is tracked at the node number 450, and the quadratic function (illustrating

the transitional8 behavior) is now combined with the linear function illustrating the boundary

behavior (case IV, Figure 10).

5.2. EtS of Hydro Under Weak Scaling

Figure 17 illustrates the expected (Section 1) execution behavior of Hydro under weak

scaling9. Two Hydro EtS values were available for conducting the prediction (for nodes: 6 with

EtS of 0.54 kWh; and for 32 with EtS of 2.84 kWh).

8In other words from ideal scaling to non-scaling.
9For weak scaling, also in Subsection 5.4, we assume that the problem sizes were uniformly adjusted for each

compute node number.
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Figure 21 shows the measured TtS behavior for EPOCH under weak scaling. As can be seen

it adheres to the theory. A linear function, having an %RMSE of 2.2% with the available data,

was constructed by AEP 2. Figure 22 shows the curve of the constructed predictor-function.
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Figure 21. Measured TtS of EPOCH under

weak scaling
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Figure 22. EtS prediction curve of EPOCH

under weak scaling

6. Predicting Average Power Consumption

Figure 23 shows the Average Power Consumption (APC) prediction results using the avail-

able APC values of four node numbers. As can be seen, the estimated linear predictor-function

shows a relatively small error rate for up to 512 compute nodes. Another observation that can

be inferred from Figure 23 is that the AEPCP model can suggest the maximum compute node

number that can be utilized by the application while preserving the introduced power consump-

tion constraint. Figure 23 illustrates this option in the case of a 50, 000 W power consumption

limit. As can be seen, the maximum allowed compute node for running Epoch on SuperMUC,

in the case of 50, 000 W constraint, is 311 with predicted APC of 49, 869.45 W.
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Figure 23. APC prediction curve for

EPOCH under strong scaling
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Figure 24. Max and Min APC values for

EPOCH under strong scaling

Our observations on SuperMUC supercomputer (Figure 25) show that the average power

draw of the individual compute nodes differ when running the same application. This could be

due to manufacturing tolerances and variations (e.g. processors [27], memory, power supplies,

voltage regulators, etc.). Figure 26 shows the average power draws of different compute nodes
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of one of the SuperMUC’s Islands (which consists of 516 compute nodes) when running a single

MPrime10 [10] benchmark. As can be seen, despite the hardware homogeneity across the Su-

perMUC’s Island, there is a maximum of 41 W difference (nodes i05r05a19-ib with 188 W and

i05r03c28-ib with 229 W) in average power draw of compute nodes.

Compute Node

Figure 25. The SuperMUC Supercomputer
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Figure 26. Power draw of compute

nodes of the SuperMUC Island

The same behavior of compute node average power draw deviation under the same applica-

tion execution was observed on CoolMUC [3] (shown in Figure 27). CoolMUC is a direct warm

water cooled AMD processor based Linux cluster built by MEGWARE [33] and equipped with

178 compute nodes (2× 8-core AMD CPU). It is connected to a SorTech [34] adsorption chiller

allowing the exploration of further possibilities of waste heat reuse of the system. CoolMUC

has closed racks, and therefore does not require room air conditioning (Figure 27). All heat is

removed solely via the chiller-less water cooling loop of the LRZ computer center infrastructure.

Figure 28 shows the power draws of different compute nodes of the CoolMUC Linux clus-

ter when running the same single MPrime benchmark. As can be seen, despite the hardware

homogeneity across the cluster, a maximum of 21 W difference in average power draw of com-

pute nodes was observed (nodes lxa11 with 240 W and lxa46 with 261 W) during the MPrime

benchmark.

If a system compute node power classification (Figure 26, Figure 28) is available, then the

AEPCP model also predicts an application’s possible maximum and minimum APC values for

the scheduler application-assigned “best” and “worst” (in terms of power consumption) compute

nodes. Using the APC history profile data of a given job J , AEPCP normalizes these values to

the usage of the best compute node using Equation 8, and to the usage of the worst compute

node, using Equation 9.

10Mprime is an application-benchmark that searches for Mersenne prime numbers, i.e. prime numbers of form

2p − 1, using Fast Fourier Transform algorithm. It introduces an intense workload to processor and memory, and

because of that reason is usually used for system stability testing.
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Figure 27. The CoolMUC Linux Cluster
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Figure 28. Power draw of com-

pute nodes of the CoolMUC

Linux Cluster

‖ APC(J)i ‖min= APC(J)i −
∑

u utilized node of J

(Pu − Pmin) (8)

‖ APC(J)i ‖max= APC(J)i +
∑

u utilized node of J

(Pmax − Pu) (9)

where

• APC(J)i - is the average mean power draw of job J using i compute nodes

• Pu - is the average power draw of compute node u obtained from the system compute node

power classification (Figure 26)

• Pmin - is the average power draw of the most efficient (in terms of power) system compute

node

• Pmax - is the average power draw of the least efficient (in terms of power) system compute

node

Figure 24 illustrates this option of AEPCP for EPOCH under strong scaling. The dashed ’-

-’ red line illustrates the predicted maximum APC behavior, the bottom dotted ’...’ blue line the

predicted minimum APC behavior, the green ’-x-x-’ line the real measurement data (obtained

from executions on the compute nodes of SuperMUC’s Island Figure 26), and finally the yellow

straight line depicts the AEPCP ’s APC predictions.

Several things can be observed from Figure 24. First, that the real measurements do not

deviate much from the predicted APC values and stay in between predicted maximum and mini-

mum APC values. Second, one could argue that the maximum APC value of an application for a

given number of compute nodes can be derived by multiplying the given compute node number

n by Pone node (maximum APC value of one node obtained from system-vendor provided com-

pute node peak power consumption specification). The cyan ’-.-’ line in Figure 24 illustrates this

n ·Pone node approximation. While correct, this approximation gives a very rough boundary. For

example, the usage of system-vendor provided approximation will lead to 118, 108.47 W power

consumption estimation for 311 compute nodes on SuperMUC. Whereas the AEPCP predicted

maximum power consumption for the same 311 compute nodes, when running EPOCH under
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strong scaling, is 55, 993.13 W. As can be seen, the vendor specification based approximation is

roughly two times larger as compared to the one estimated by the AEPCP model.

Figure 29, Figure 30, and Figure 31 illustrate the APC prediction results for EPOCH weak

scaling, Hydro strong scaling and Hydro weak scaling correspondingly. As can be seen, all the

three predictor-function curves show very small deviation rates from the measured values.
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Figure 29. Max and Min APC

values for EPOCH under weak

scaling
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Figure 30. Max and Min APC

values for Hydro under strong

scaling
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Figure 31. Max and Min APC

values for Hydro under weak

scaling

7. Future Work

As was seen in Section 6, the power draw of the same application on different sets of compute

nodes can differ despite hardware homogeneity across the HPC system. Thus, the possibility

of compute resource set specific prediction, i.e. the support for exact declaration of compute

resources for which the EtS/APC of the given application should be predicted, will produce

more accurate results. It is worth noting that some of the EtS/APC measurements might not be

completely accurate (e.g. due to possible noisy power sensor readings from which EtS/APC are

calculated), and at the same time are not completely false. The specification of measurement

“quality” as a weight in the set of available measurements, will allow for a better accuracy in

prediction.

In addition to these two points, it is planned to develop an interface between the resource

management system(s) and the AEPCP model. This interface will allow to dynamically track

the possible violations of predefined energy and power consumption constraints depending on

(i) the current workload information (obtained from the resource management system) and (ii)

the predicted EtS/APC values for that workload (obtained from the AEPCP model).

This work will be included in a toolset at LRZ in order to support energy efficient super-

computing covering and optimizing the full set of influencing parameters: building and cooling

infrastructure, supercomputer hardware, application and algorithms, systems software and tools.

8. Conclusion

The following contributions have been made in this paper:

• demonstration of the concept applicability for application power/energy consumption pre-

diction for unknown number of compute nodes from previously observed data;

• explanation of how the application power/energy boundary curves can be defined from the

known theoretical works and how this information can be applied in practice;
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• exploration of the potential of the presented Adaptive Energy and Power Consumption

Prediction (AEPCP ) model for HPC data center power and energy capping use-cases;

• discussion on how the differences in HPC system compute node power can be used for

power prediction;

• provision of a process and a generic implementation that provides application-specific

power/energy consumption prediction results without need of the AEPCP model-

implementation changes;

• since the AEPCP model is part of the PowerDAM toolset, this prediction can be done

automatically for each application (queued or running) on the HPC system without any

application specific adjustments.

The presented AEPCP model is a very interesting solution for HPC data centers, since it

requires no application specific knowledge or information. The achieved accuracy is sufficient

for the presented two most important use cases. By validating the model, we are just starting

to scratch the surface for future possibilities. We are particularly looking forward to apply the

model for system/user/data center energy budgeting and system peak power prediction. The

suggested model can be an ideal building block for a real-world implementation of energy-aware

resource management systems. It can also be used to help users/customers to actively take

control over their power/energy budget and can help data centers to move to energy-driven

charging policies alternatively to currently existing CPU-hour based charging policies.
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SLOWER: A performance model for Exascale computing

Thomas Sterling1, Daniel Kogler1, Matthew Anderson1, Maciej Brodowicz1

A performance framework is introduced to facilitate the development and optimization of

extreme-scale abstract execution models and the future systems derived from them. SLOWER

defines a six-dimensional design trade-off space based on sources of performance degradation that

are invariant across system classes. Exemplar previous generation execution models (e.g., vec-

tor) are examined in terms of the SLOWER parameters to illustrate their alternative responses

to changing enabling technologies. New technology trends leading to nano-scale and the end of

Moore’s Law demand future innovations to address these same performance factors. An exper-

imental execution model, ParalleX, is described to postulate one possible advanced abstraction

upon which to base next generation hardware and software systems. A detailed examination is

presented of how this class of dynamic adaptive execution model addresses SLOWER for advances

in efficiency and scalability. To represent the SLOWER trade-off space, a queue model has been

developed and is described. A set of simulation experiments spanning ranges of key parameters is

presented to expose some initial properties of the SLOWER framework.

1. Introduction

As technology advances, the means to effectively benefit from its improved properties

changes, sometimes significantly, in computer architecture, programming models, supporting

system software, and other aspects. Together these reflect a crosscutting execution model, which

must evolve to respond to opportunities and challenges of the emerging enabling technologies.

But the choice space is often large at least in detail as execution model alternatives and system

designs are explored. Guidance is required to govern derivation of new execution models and the

design of underlying systems incorporating their innovative concepts. Currently, the challenge

of realizing extreme-scale operation is one of efficiency and scalability within the constraints of

energy and reliability.

The history of high performance computing is punctuated with dramatic paradigm shifts re-

sulting in a succession of innovative execution models as the device technologies have progressed.

But they share in common a set of key factors to which each has responded. Together these fac-

tors constitute a performance framework, within which past and future execution models can

be analyzed and evaluated as well as compared. Such a performance framework can serve as the

needed guidance of future system development by characterizing the trade-offs in structure, se-

mantics, control, and enabling mechanisms. This paper describes one such performance model,

SLOWER, that is serving in this capacity for research into extreme-scale execution models,

runtime system software, and programming interfaces.

The breakdown of Dennard scaling [8] and the nearing end of Moore’s Law in conjunc-

tion with the dominant limitation of power consumption are posing the greatest challenge to

continued performance growth in two decades. Radical departures from previous conventional

massively parallel processors (MPPs) and commodity clusters now incorporating multicore sock-

ets and graphics processing unit (GPU) accelerators are requiring innovations in system design,

operation, and usage. To optimize these new class of systems requires a performance framework

to guide design evolution in a meaningful and quantifiable trade-off space.

The experimental SLOWER performance framework establishes a six-dimensional space of

consideration; each letter of the acronym reflecting one of the dimensions. Starvation reflects
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an insufficiency of concurrent work to keep all the critical resources engaged. Latency quan-

tifies the response time distance (usually in a measure of time, e.g., cycles) for remote access

and service requests. Overhead distinguishes the work needed to manage parallel resources and

task scheduling but that does not actually contribute to the useful computational work itself.

Delay due to waiting time incurred due to resource access conflicts captures the last of the key

dependencies of performance degradation. But two remaining factors contribute indirectly to

effective system usage. Energy and its rate of consumption (power) is a key parameter in the

raw sequential performance potentially affecting both logic voltage and clock rate. The final

parameter, reliability, directly impacts availability of the system and therefore the percentage

of time the system can be employed for useful work. Together these can expose the dominant

contributors to the effects related to performance degradation.

Unfortunately, at this time, there is no adequate formalization of the SLOWER framework;

no unified set of equations that fully captures the subtle interrelationships among the contribut-

ing factors. To make the situation worse, these parameters are not purely orthogonal; therefore

a perturbation of one may directly alter another. This makes the framework less than ideal for

direct analysis and application to distinguish among possible future systems and programming

models. Recent work on exploring the SLOWER trade-off space is presented and discussed in

this paper. SLOWER is described in detail with quantifiable units of measure. A table is pro-

vided that categorizes the history of multiple execution models over the last forty years in terms

of their response to the SLOWER factors and their respective technology base. An example of

a possible future class of execution models is represented by the experimental ParalleX model.

ParalleX is described in some detail and then how it addresses the SLOWER factors through

the assumption of dynamic adaptive techniques is discussed to show that alternative paradigms

may be possible to enable future extreme-scale computing. To move this exploration from the

qualitative to quantitative, a set of experiments are being conducted through the use of queuing

simulation for parameter sweeps to expose the resulting trade-off space. Early experimental re-

sults are presented that exhibit partial sensitivities among the dominant parameters and inform

consideration of design alternatives. The paper closes with summary conclusions and immediate

future work.

2. Related Work

The most important historical performance model is Amdahl’s law [2] which provides a

simple expression for the maximum expected speedup of an algorithm using multiple processing

units while disregarding issues of latency, overhead, and contention. Among performance mod-

els which do consider the impact of latency and overhead, the LogP [6] and related family of

LogGP [1] and LogGPS [10] models have long formed the core of parallel computation model-

ing. LogP, summarized as Latency, overhead, gap required between two send/receive operations,

and P, the number of processors, enables performance modeling with distributed memory and

communication between processing units. Subsequent extensions of LogP incorporated longer

messages (LogGP) and synchronization costs (LogGPS). These models have been extremely

successful in guiding algorithm development and performance using conventional programming

model approaches such as the Message Passing Interface (MPI). Before LogP, the Parallel Ran-

dom Access Machine, or PRAM, model [9] also functioned as a performance model to guide

parallel algorithm development by examining performance for multiple processors having con-

stant time access to a shared memory. While a simple model, the flat cost of PRAM did not
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closely model real behavior for the multiple layers of communication systems in modern architec-

tures. Vector Random Access Machine [3] (V-RAM), a vector performance model incorporates

instructions for vector operations in the context of sequential random-access memory.

The LogP family of performance models have been used to analyze performance of many

MPI based applications. However, the rise of multi-core architectures has resulted in new perfor-

mance models that recognize multi-threading. The Multi-core LogP (MLogP) model [5] extends

LogP while redefining the P parameter in terms of the amount of computing power available

rather than just the number of processors in order to better model performance of many-tasking

approaches. The LogNP [4] extends LogP to incorporate the impact of memory and middleware

with the capability to model point-to-point communication in clusters of Symmetric Multi-

Processor nodes (SMPs). SLOWER, in contrast, provides a non-LogP based framework for

multi-core architectures with a focus on medium and fine-grained parallelism while also incor-

porating the Exascale relevant issues of energy and resilience.

3. SLOWER

A performance model can serve as a means of evaluating the effectiveness of execution mod-

els, distinguishing among distinct execution models, and devising improved execution models

with respect to available enabling technologies. A useful performance model is capable of de-

scribing sensitivities of performance metrics to contributing factors. The SLOWER performance

model is introduced to provide a framework for evaluation and analysis of execution models.

It guides their development and the implementation of advanced systems the structure and

operation of which they govern. SLOWER is derived from a set of key parameters that con-

tribute to the degradation of performance. The units of each parameter translate to metrics of

time. Throughout the history of high performance computing these factors have been addressed

directly or implicitly in the context of prevailing underlying technologies through the design

of architecture, methods of parallel programming, and the mediation and control of system

software. These foundational parameters have been invariants across the many generations of

supercomputers and are a framework with which to track the transitions in computing systems

and methods.

A formulation gives overall average performance in terms of these parameters is given in

Eqn 1:

P = e(L,O,W ) × s(S) × µ(E) × a(R) (1)

where P is average performance, e is efficiency (0 < e < 1), L is latency, O is overhead, W

are delays resulting from contention for shared objects, s is scalability or concurrency, S is

starvation, µ is the normalized per execution unit per cycle performance, E is the power factor

(energy) that determines clock rate, a is the availability of resources (0 < a < 1), R is the

reliability that determines down-time events.

Equation 1 identifies the critical SLOWER parameters and shows their interrelationships

and contributions to the overall performance. Both the efficiency and availability are fractional.

The availability measure takes into account those operational issues that can detract from a sys-

tem’s ability to perform real work. One of these, R, is the Mean Time Between Failures (MTBF)

of the system. This combined with scheduled downtime and maintenance time (time to recovery)

determines the fraction of the total time a system can actually deliver user computation. This
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parameter can be extended to incorporate scheduling conflicts with other workload in the job

stream.

There is an assumed peak single instruction stream rate of operation, µ, that combines the

register-to-register operation rate with the average load/store memory access time, which is ad-

mittedly application and cache hierarchy dependent. Here, however, is exposed the relationship

between the clock rate and the power consumption, E. Within a restricted range, clock rate and

therefore µ is proportional to the rate of energy consumption (power).

Scalability, s, is the amount of concurrency or number of execution units (e.g., cores) that are

allocated to a computation at the same time. Starvation, S, is the inverse reflecting the absence

of work to be performed through concurrency. Starvation is either due to an insufficiency of

pending or available work to be performed or an imbalance of the work distribution across

computing resources (some have too much while others too little).

The efficiency, e, of usage of the system is the ratio of the sustained rate of operation

execution to the peak rate. As shown in this relationship a number of factors contribute to the

efficiency. Latency, L, is the time to make a remote access or service request (not including the

overhead of doing so) of an unloaded system. Latency can be measured in clock cycles. The

delay, W (waiting for delayed access) incurred for access contention to shared logical or physical

resources takes into consideration the effects due to a loaded system. Such access conflicts can

occur for networks, memory banks, or synchronization objects (e.g., barriers). Overhead, O,

is the additional work required to manage parallel resources and task scheduling beyond the

actual useful work of the computation itself. Overhead consumes resources (and cycles) that

could otherwise be employed for useful work thus reducing the relative efficiency of system

operation. From these parameters is derived the SLOWER performance model framework.

While the performance relationship is valid for any particular operating point on average, it is

imperfect in deriving a deeper understanding through sensitivity analysis because the dominant

parameters are not orthogonal. One trivial case is that parameters measured in cycles may vary

depending on the energy consumption rate, E, that causes the clock rate to change and therefore

the cycle time. More significant is that the efficiency, e, and the scalability, S, are interrelated.

Usually over part of the range of system scale, as S increases, generally e decreases. More subtly,

overhead not only wastes cycles, it imposes a lower bound on the effective granularity that can

be employed. For fixed size work (strong scaled), this puts an upper bound on parallelism and

therefore an asymptotic limit on delivered performance. In spite of these shortcomings, SLOWER

allows developers of parallel execution models and system (hardware and software) architectures

to reason formally about design choices, sensitivities, and projected capabilities.

SLOWER does not directly reflect one other important quality metric, productivity. This

parameter is poorly understood and not formally defined. Nonetheless, notionally it not only

embodies the issues associated with SLOWER, it also combines the other life cycle issues such

as programmability, generality, performance portability, and their trade-offs with delivered per-

formance. Productivity is outside the scope of this work but crucial to establishing long term

strategies and direction of future extreme-scale computing systems and methods.

4. Experimental Setup

To demonstrate the viability of the SLOWER execution model, a simulation tool called

“JaamSim” [11], developed by Ausenco, was used to simulate abstract machines with a variety

of parameters. The parameters considered included network latency, instruction mix, overhead
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Figure 1. This JaamSim model builder diagram expresses the general flow of work in simulations.

There are three types of components present: cores, the network, and memory. Each gear-

component represents a core, and the cores are labeled from 1 to n for some n declared in the

simulation parameters. The components with a three-way branch symbol (i.e. the network and

memory components) indicate that any task arriving at that component is sent back to its place

of origin after the branch component’s processing is completed. Each component with a triangle

next to it indicates that the component makes use of a queue data structure for handling work

(in this case, lightweight tasks). Only one task may be worked on per core at a time. Likewise,

only one memory request can be serviced by the shared memory at a time. Additionally, if a

core sends a task to the memory unit, that core halts processing of any further tasks in its queue

until the task returns from memory.

for context switching and network interaction, available parallelism per core, and number of

cores per node. Here, available parallelism per core is represented by the number of lightweight

tasks ready to run waiting on that core. Effectively, starvation, latency, overhead, and some

effects of contention are modeled in these simulations, while energy and reliability are left out.

Each simulation assumed a single shared memory unit across all cores, and unlimited net-

work bandwidth. Additionally, the lightweight tasks are assumed to never complete. In other

words, available parallelism is held constant throughout each simulation and context switching

overhead is only encountered when tasks switch due to a network operation.

For all simulations, the performance gain of programs using non-blocking protocols for

network operations over programs using blocking protocols is measured. To compare the relative

performance, each set of simulations was run twice. The first time using the parameters as

described above with a non-blocking protocol, and the second time using identical parameters

(except for overhead) while using a blocking protocol. The simulations of programs using a

blocking protocol were all given an overhead of zero for context switching on network operations,

as the program waits for the network operation to complete rather than changing tasks. An

example simulation diagram can be seen in Figure 1.

In the context of this work, programs following blocking protocols temporarily cease perform-

ing useful work whenever a network operation is encountered. Work is resumed upon completion

of the network operation. Note that only the core on which the network operation is invoked
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stalls during the network operation. No context-switching occurs for these programs except upon

task completion (which these simulations assume does not happen).

Non-blocking programs also temporarily cease performing useful work upon encountering

a network operation, but do not wait until the network operation completes before resuming

work. Rather, once the network operation has been invoked, the program performs a context-

switch if there are other tasks in the program able to work. If no tasks are ready, then the

program switches to the task that will be ready the soonest and then stalls until that task is

ready to proceed with useful computations. The program will always perform a context-switch

upon encountering a network operation, even if the context-switch overhead is greater than the

network latency. This is because the program is assumed to not have knowledge of the time

required to perform a context-switch nor of the network latency.

Performances of different simulation setups were compared via the total number of oper-

ations each setup completed in a given constant amount of time. This constant time was set

to be the time required for 217 register operations (reg-ops) to complete in the simulation. All

durations in the simulation are normalized based on the time required for a register operation

to complete. The choice for using 217 reg-ops was made because this number proved sufficiently

large to hide any significant noise in the performance results of simulations with network latencies

of 8192 reg-ops (the largest latency simulated).

In all simulation models, the access time for local memory (excluding effects of contention)

was set to 200 reg-ops. However, not every memory operation access the shared local memory.

The simulations also take into account the effects of cache performance. The cache performance

of all simulations is defined such that the programs run with a 90% L1-cache hit rate and a

90% L2-cache hit rate, and the hardware has L1-cache access times of 1 reg-op and L2-cache

access times of 10 reg-ops. Additionally, the instruction mixes for all simulation models always

include exactly 68% register instructions (excluding network and context-switching overheads).

The remaining instructions are divided between memory accesses and network operations.

Four sets of simulations were run. The first set examined the effects of varying the overheads

on the overall performance of the system. For these simulations, the model applied a constant

overhead for each network access that represented the cost of context switching and network

communication. The overheads applied ranged from 1 to 8192 reg-ops. The number of cores used

in the simulation ranged from 1 to 32. All other parameters were kept constant. The network

latency was set to 8192 reg-ops; each core was provided 64 tasks; and the instruction mix

contained 8% network operations and 24% memory operations.

The second set of simulations explored the effects of having differing numbers of lightweight

tasks available per core for various numbers of cores per node. The purpose of these simulations

was to visualize the relative effects of available parallelism versus memory contention. For each

of these simulations, the network latency was held constant at the equivalent of 8192 reg-ops;

context-switching overhead was set to 16 reg-ops; and the instruction mix contained 8% network

operations and 24% memory operations.

The third set of simulations examined the effects of changing the amount of contention

experienced by an application (albeit limited to memory contention) with respect to various

network latencies. This was accomplished by varying the number of cores present in the system.

For these simulations, the number of cores was varied from 1 to 32. Network latency was ranged

between 64 and 8192 reg-ops. All other parameters were kept constant. Overhead was set to 16
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reg-ops; each core was given 64 lightweight tasks; and the instruction mix contained 8% network

operations and 24% memory operations.

The final set of simulations examined in more detail the interrelationship of latency and

starvation given a variety of instruction mixes. Because one form of starvation is the lack of

parallelism (the other form being poor load-balancing), starvation’s effects are examined by

varying the number of available lightweight tasks per core. The network latency ranged from

only 64 reg-ops to 8192 reg-ops, the number of available tasks ranged from 1 task per core to

128 tasks per core, and the instruction mixes contained anywhere from 0% to 16% network

operations. Context switching overheads were kept constant at 16 reg-ops.

5. Experimental Results

The first set of simulations looked into the effects of overhead on the performance of an

abstract machine running a program with a particular instruction mix. The results of this set

of simulations can be seen in Figure 2. The graph presented shows the performance gain of a

program using a non-blocking protocol when performing network operations as compared to a

program that blocks on network operations.

As the graph indicates, there is a clear plateau in the performance gain of non-blocking

programs over blocking programs. This plateau occurs when two conditions are met. The first

condition is with regards to the effect of the overhead of context-switching and the number

of available tasks waiting on each core. When the number of tasks multiplied by the overhead

of a single context switch is less than the network latency, then we can achieve little further

performance gain by continuing to decrease the overhead. This is because at this point, further

decreasing the overhead increases the probability that all tasks on that core will end up waiting

on network operations. The second condition relates to memory contention, which increases as

the number of cores sharing the memory increases.

In order to further explore the plateau phenomenon, the second set of simulations was run.

The difference in this set of simulations is that the tasks per core is varied and the overhead is

held constant, whereas the previous set held a constant availability of tasks but with different

levels of overhead. What is gathered from these experiments is that both decreasing the overhead

and increasing the available parallelism lead to an exponential increase in the performance gain,

up until the point where the product of the two equals the network latency. At this point, a

plateau is reached. What is interesting is that in the former case the product is decreasing yet

in the latter case the product is increasing.

This may seem contradictory to the previous results at first. After all, the previously men-

tioned effect reached its plateau when the latency was greater than the product of overhead and

number of tasks. Closer examination reveals that these are in fact different scenarios. In Figure

2, the limiting factor in the performance gain was the lack of available parallelism, i.e. starva-

tion. Decreasing overhead would not negate the effects of starvation. In Figure 3, the limiting

factor is this time the overhead of context-switching. Adding more tasks to the system will not

decrease the limiting effects of the overhead.

The results of the third set of simulations can be seen in Figure 4. The same plateau as

in Figure 2 is visible here as well, though here the effect can be seen as limited to the higher

latencies. This is because for lower latencies it is no longer possible for all tasks of a single

core to be waiting on the network simultaneously. However, this does not explain the sudden

decrease in performance gain that occurs as the number of cores is increased. The expected trend
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Figure 2. The performance gain of programs that do not block on network operations over

those that do. This plot assumes a network latency equivalent to 8192 register operations.

The number of parallel tasks available on each core is 64. The instruction mix consists of 68%

register operations, 24% memory operations and 8% network operations. Overhead is measured

with respect to the number of register operations that could complete in the same elapsed time.

This figure demonstrates the deterioration in performance gain as both context-switch overheads

increase and the number of cores increases. The latter decrease is due to increased contention

for memory resources experienced by the non-blocking programs. The plateau in performance

gain begins to occur where the product of the overhead and the number of tasks available equals

the network latency ( 128 × 64 = 8192 ). At this point the available parallelism begins to be

exhausted.
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Figure 3. The performance gain of several simulations using non-blocking computations as

compared to identical simulations that block computations upon accessing the network. All

simulations were given an instruction mix consisting of 68% register operations, 8% network

operations, and 24% memory operations. The network latency is equivalent to 8192 register

operations. The overhead for context-switching in non-blocking simulations is equivalent to 16

register operations. Whereas Figure 2 plateaued when the available parallelism was insufficient,

this plot plateaus when the overhead (with respect to the latency) limits how much parallelism

can be taken advantage of.
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Figure 4. The performance gain of several simulations using non-blocking computations as

compared to identical simulations that block computations upon accessing the network. All

simulations were given an instruction mix consisting of 68% register operations, 8% network

operations, and 24% memory operations. The overhead for context-switching in non-blocking

simulations is equivalent to 16 register operations. Contention is also represented here; the

likelihood for contention increases as the number of cores increases. For higher latencies,the

probability of contention is lower, and its effects are less noticeable. Each core in the non-

blocking simulations was assumed to have 8 tasks available for work. The number of tasks

available for work (8) provides the upper bound for performance gain. The upper bound is

slightly exceeded for higher latency cases on one core per node; the contributing factors to this

are under investigation. This graph illustrates the trend that as network latency increases, the

ability to overlap communication and computation also increases for non-blocking programs.

The highest latencies maintain a relatively constant performance gain, consistent with Figure 2.

is that more cores present would cause a steady decrease in performance gain due to increased

contention. Indeed, for most of the latency curves this behavior is observed. For the highest

latencies, however, this effect is suppressed by the lack of available work (i.e. more tasks will

spend more time on the network). This helps suppress the effects of contention because this

decreases the probability that multiple tasks will be attempting to access the shared memory

resource simultaneously. The sudden drop-off from the plateaus occurs at the point that the

detrimental effects of contention become greater than the suppression of the performance gain

due to starvation.

A portion of the results of the final set of simulations can be seen in Figure 5. The plot

provided demonstrates trends with a constant latency of 1024 reg-ops. The results of simulations

with different latencies all took on a similar appearance; higher latencies would merely shift the

plot to the right while scaling up the performance gain.

This plot of this specific latency reveals several trends in the performance gain for non-

blocking computational models. The first trend is the plateau in performance gain upon reaching

a certain level of parallelism. This is the same effect as seen in Figure 3. Specifically, this plateau
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Figure 5. This figure represents the performance gain of a non-blocking program over a blocking

program. Each graph plots the effects of changing the number of available tasks per core for

various instruction mixes (each mix contains 68% register operations; the percentage of network

operations is listed and the remaining percentage is memory operations). The network latency

is equivalent to 1024 register operations representing a very fast network. The context switching

overhead for non-blocking simulations is consistently 16 register operations. Only single core

data were used for this plot. Each curve approaches an asymptote in performance gain near the

point where the product of the number of available tasks and the context-switching overhead

equals the network latency. This asymptote is consistent with Figure 3.

occurs when the product of the context-switch overhead and the number of available tasks is

greater than the network latency. Even if all operations were network operations, at this point

no further gain could be achieved by adding more available tasks to the system.

However, as indicated by the curves in Figure 5, there is an additional factor at play in

determining where exactly this plateau begins. This factor is the instruction mix. For instruction

mixes with fewer network operations, the gain curve appears to flatten earlier. This is because

the probability that network operations will occur is low and thus the system is less likely to

benefit from having more tasks ready to be run. In fact, it is the instruction mix that determines

how rapidly the curves taper off to a plateau in all of Figures 2, 3, 4, and 5. Additionally, the

instruction mix also determines the number of cores per node at which the contention for shared

memory becomes noticeably detrimental. In general, however, it is the combination of the effects

of starvation, latency, and overhead that determine the value of the plateau in performance gain.

6. How Do Major Execution Models Address SLOW

Table 1 examines several established execution models in terms of the SLOWER performance

model but without energy and reliability (SLOW). Each entry of the table describes specific

paradigm each execution model employs to addresses the corresponding source of performance

degradation.
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Table 1. A comparison of different execution models in terms of SLOW

Starvation Latency Overhead Contention

Sequential

issue

Restricted to

single instruction

stream

Memory hidden

by cache

hierarchy

Avoidance; no

parallelism to

control

Only one request

at a time

Vector Fine grain scalar

operations

making up vector

Hide latency

through

pipelining

Amortize control

across vector

elements

Pipelined data

flow movement

SIMD† Data parallelism Accesses of

separate ALUs*

to local data

Control

amortized

through

broadcast

Overlap out of

phase memory

bank access

CSP‡ Process level

parallelism

Coarse

computation

phases offset the

effects of

communication

Minimized by

static scheduling

One request at a

time for local

data

† Single Instruction, Multiple Data.
‡ Communicating Sequential Processes.
* Arithmetic Logic Units.

As enabling technologies evolve, different approaches to their use must be developed to ex-

ploit the new opportunities they afford and to address the challenges they impose. The history

of high performance computing is punctuated with a series of such paradigm shifts reflected

by a succession of execution models, each responsive to the changes in technology properties

as characterized by the factors of the SLOWER performance model. In the current decade of

the post-VLSI (Very Large Scale Integration) era the technology demands system architectures

comprising multiple cores per socket as the principal means of enhancing scalability either as a

homogeneous array of cores or in compound throughput structures for specific favorable data

flows. In addition to the need for medium grain parallelism, eventually at the billion-way level

for the Exascale performance regime, the new architectures will require deep memory hierar-

chies, high and varying communication latencies, limitations on energy consumption, asynchrony

of operation, and dynamic adaptive methods of resource management and task scheduling to

exploit runtime information for improved efficiency. Other aspects of future execution models

need to work effectively with lower average memory capacity per core and efficient lightweight

communication access patterns.

A class of emerging experimental execution models has been evolving to address these tech-

nology challenges through the synthesis of a number of complementary semantic constructs. The

ParalleX execution model [7], briefly discussed below, is representative of these models although

it is, by no means, the only example.

ParalleX is an experimental many-tasking execution model that supports message-driven

computation and uses dynamic adaptive methods to manage asynchrony and enable scalable

operation on large systems. It achieves that by exploring synergistic effects arising from inter-

actions of its primary semantic components, which include:
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• Locality - an encapsulation of resources in a synchronous domain that guarantees bounded

access and service request time as well as compound atomic sequences of operations;

• Global Name Space - provides the semantic means of accessing any first class objects in a

physically distributed application;

• ParalleX Processes - an abstraction of distributed context hierarchy integrating data ob-

jects, actions, task data, and mapping data;

• Compute Complex - a generalization of thread concept;

• Local Control Objects - provide synchronization, management of parallelism, and migration

of continuations;

• Parcels - implement message-driven computing that combines data transfer and event-

based information using a variant of active messages to permit the management of dis-

tributed flow control in a context of asynchrony.

7. How ParalleX Addresses SLOW

The development of the ParalleX execution model is driven to a significant degree by the

factors incorporated in the SLOWER performance model. ParalleX is intended, as were previous

models before it, to mitigate the causes of performance degradation to improve both efficiency

and scalability. In addition, ParalleX is being extended to respond to energy and reliability

concerns. These latter two factors are not discussed in this paper to any extent and are only

included for sake of completeness. Here each is considered in terms of the ParalleX strategy

employed to mitigate it.

7.1. Starvation

Starvation is perhaps the principal limiting condition for extreme-scale computing. It is

the insufficiency of concurrent available application work to fully utilize the physical processing

resources. It is made more complicated by the distribution of the pending work across the

separate system resources. Even with sufficient total concurrency, starvation can occur due to

poor local allocation of work to resources. ParalleX addresses the challenges contributing to

starvation by increasing the amount of parallelism available and facilitating work distribution.

To expose and exploit more parallelism than conventional practices in a single unified model

ParalleX incorporates coarse, medium, and fine grain parallelism semantics.

Coarse-grained parallelism is represented as ParalleX processes, which can span multiple

localities (nodes), share nodes with other processes, and migrate if necessary. Processes provide

the hierarchical framework for work and state dynamic distribution across system resources.

Processes can have descendant processes in a dynamic tree of parent-child relationships, by

which they provide coarse parallelism.

ParalleX organizes the actual work it performs as medium grain compute complexes, which

often are performed as threads. The use of medium grained threads can expose much more

parallelism than pure coarse grain models and permits context switching for non-blocking of

physical resources. Local Control Objects provide declarative constraint based synchronization

and scheduling to increase parallelism by permitting sophisticated control relationships and

support dynamic adaptivity.

Fine grain parallelism is given in terms of static data flow control semantics within the

context of a compute complex. This is a generalization of the myriad ad hoc approaches currently
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used for Instruction Level Parallelism and permits translation to efficient forms of ILP for

individual core architectures. Near fine grain parallelism is also exposed for usually remote

compound atomic sequences of operations to exploit Remote Direct Memory Access (RDMA)

techniques and smart networks.

Parallelism is sometimes simplistically described as either data parallelism or control par-

allelism. ParalleX treats these as aspects of a more general continuum in which a combination

of these two can lead to runtime parallelism discovery based on meta-data for such structures

as time varying irregular graphs. As discussed shortly, the reduction of overheads permitted

by ParalleX allows finer granularity to be effectively exploited increasing the total amount of

parallelism available, even for fixed size (strong scaled) applications. By providing powerful but

focused synchronization methods (LCO), ParalleX largely eliminates over constraining global

barriers, enabling overlap of successive phases of an evolving computation and exposing this

additional form of parallelism. Together these principles embodied within the ParalleX model

provide generality and flexibility both in size and form to maximize scalability.

7.2. Latency

Latency is the time for remote access and service requests resulting from distance of data

movement. The primary effect of latency to performance is the blocking of the use of physical

resources waiting for responses to remote data access requests and services. ParalleX addresses

latency throught both introduction of mechanisms to reduce its magnitude and hiding its ef-

fects. ParalleX compute complexes are dynamic and can be exchanged in their use of physical

resources. This context switching permits a thread that is waiting for a long latency request to

be replaced by a pending task ready to do work, overlapping computation with communication.

Multithreading of work trades parallelism for latency hiding. Parcels move work to the data,

not always requiring data to be gathered to a fixed location of control. This allows migration

of continuations (control state) to places where data access will be most intense, significantly

reducing the latencies of the data accesses through the reduction of number and size of global

messages. The use of local control objects provides mechanisms for event-driven control simulta-

neously addressing latency of action at a distance and managing the uncertainty of asynchrony

of long latency operation.

7.3. Overhead

Overhead is the extra work performed to manage resources and support task scheduling. It

is wasteful of time and energy compared to sequential execution. ParalleX within the constraints

of hardware capability reduces the overheads and their effects found with conventional practices.

It does this through the definition of focused control conditions, LCO, that support event driven

computation control to minimize wasted work and avoid overly constraining semantics. Chief

among these is the global barrier, which is almost all but eliminated through ParalleX. LCOs,

benefitting from prior art, express rich semantics which has a powerful effect on parallel control

state with minimum amount of overhead work. ParalleX encourages lightweight user threads in

lieu of heavy weight OS threads (e.g., Pthreads) that are optimized to the needs of a specific

application runtime to reduce the overhead of context switching time. To further avoid overheads,

for very lightweight remote operations, ParalleX allows these to be specified and performed

without incurring the overheads of compute complex instantiation.
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7.4. Waiting Due to Contention

When more than one action requires access to a logical or physical resource at the same

time, contention for the resource causes delays to all of the activities not given immediate access.

ParalleX supports dynamic adaptive means by which, when viable, the runtime can allocate a

different available resource with similar capabilities. Examples include allocation of memory

banks, rerouting of network traffic where multiple paths exist, distribution of synchronization

elements, multiple physical threads for task execution. The event-driven distributed flow control

eliminates polling and reduces the number of sources of synchronization delays.

8. Conclusions

A performance framework has been introduced to facilitate development and optimization of

extreme-scale abstract execution models and the future systems derived from them. SLOWER

defines a six-dimensional design trade-off space based on sources of performance degradation

that are derived from the physics of the underlying hardware systems and the control software.

They are invariant across system classes in that they apply broadly and are shown here to in-

voke different system responses to changing enabling technologies. Looking forward, the new

technology trends, which are leading to nano-scale and the end of Moore’s Law, demand fu-

ture innovations to address these same performance factors. An experimental execution model,

ParalleX, is described to postulate one possible advanced abstraction upon which to base next

generation hardware and software systems. A detailed examination is presented of how this class

of dynamic adaptive execution models addresses each of the performance factors of SLOWER,

opening a new path to highly efficient and scalable system design. There is not yet a unified

formal analytical relation of the SLOWER performance framework, although it is an objective

of this work to lead to such a theory. An alternative approach is to represent the trade-off space

through a queue model and employ simulation methods spanning ranges of key parameters to

expose the properties of the SLOWER framework. While this research path is still in progress,

early results shown here demonstrate aspects of the parameterized design regime consistent with

real world experience. These promising results also suggest a means to empirically derive the

sensitivities of the interrelated factors. The immediate future work is to more extensively explore

the SLOWER trade-offs through enhanced versions of the queuing simulation and use this to

derive and validate an analytical formalism.
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Energy, Memory, and Runtime Tradeoffs for Implementing

Collective Communication Operations

Torsten Hoefler1 and Dmitry Moor1

1. Introduction

Collective operations are among the most important communication operations in shared- and

distributed-memory parallel applications. In this paper, we analyze the tradeoffs between energy,

memory, and runtime of different algorithms that implement such operations. We show that

existing algorithms have varying behavior and that no known algorithm is optimal in all three

regards. We also demonstrate examples where of three different algorithms solving the same

problem, each algorithm is best in a different metric. We conclude by posing the challenge to

explore the resulting tradeoffs in a more structured manner.

The performance of collective operations often directly affects the performance of parallel ap-

plications significantly. Thus, many researchers designed fast algorithms and optimized imple-

mentations for various collective communication operations. The newest version of the Message

Passing Interface (MPI) standard [30], the de-facto standard for distributed-memory parallel

programming, offers a set of commonly-used collective communications. These operations cover

most use-cases discovered in the last two centuries and we thus use them as a representative

sample for our analyses. In general, collective patterns reflect key characteristics of parallel al-

gorithms at large numbers of processing elements, for example, parallel reductions are used to

implement parallel summation and alltoall is a key part of many parallel sorting algorithms and

linear transformations.

Recent hardware developments in large-scale computing increase the relative importance of other

features besides pure execution time: energy and memory consumption may soon be key char-

acteristics. Minimizing energy consumption is especially important in the context of large-scale

systems or small battery-powered devices. Memory consumption is important in systems that

offer hardware to support the execution of collective operations. Here, we assume state-of-the-

art offloaded execution models (e.g., [23]) where communication schedules are downloaded into

the network device that operates with severely limited resources. The increasing availability of

such offload architectures motivates us to model the memory consumption of offloaded collective

communications.

In this work, we provide an overview and a classification of state-of-the-art algorithms for various

collective operations. Our report is not meant to cover all possible algorithms for implementing

collective operations of which there are far too many to fit in the space limitations of this

short article. Instead, our classification and analysis shall establish a discussion basis for the

fundamental tradeoffs between runtime, energy, and memory consumption. For each algorithm,

we derive analytic models for all three key metrics. Our theoretical study shows, for example,

that reducing the number of messages sent may reduce the performance but, at the same time,

decrease energy and memory consumption. Furthermore, our analysis of existing algorithms

allows us to point out gaps and define future research topics. In general, we argue for a more

general design mechanism that considers the multi-objective optimization problem for time,

energy, and memory.
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2. Architectural Energy, Runtime, and Memory Models

Good architectural models strike the balance between minimizing the number of parameters and

modeling the architecture’s main effects accurately. A small number of parameters facilitates

reasoning about algorithms and algorithm design and simplifies the optimization problems in

the context of real applications. However, models need to capture the main parameters that

determine the performance of the implementation on the target architecture. Several such models

for the performance of communication algorithms have been designed. The most prominent ones

belong to the LogP family while many other models can either be expressed as subsets of LogP

(e.g., alpha-beta) or have a similar character but increase the complexity of the parameters,

(e.g., PlogP [25]). For the purpose of this paper, we use LogGP [1] as a model for the execution

time because we believe that it expresses the most relevant architecture parameters while still

allowing elegant formulations of optimization problems.

We now proceed to discuss several communication technologies and mechanisms in the context

of collective algorithms and the LogGP model.

Message Passing Message Passing is the basis of the design of LogGP. Here, L denotes

the maximum communication latency between two endpoints. The parameter o represents the

constant CPU overhead for sending or receiving a single message, e.g., the call to the message

passing library. The parameter g is the equivalent overhead for sending or receiving a message

caused by the network interface. The maximum of o and g limits the small-message injection

rate, an important parameter of current interconnection networks. The model also implies that

only L/g messages can be in flight between two processes at any time. The parameter G models

the cost per injected Byte at the network interface, this is the reciprocal bandwidth. Finally,

the number of processes is represented by P.

Noncoherent Shared Memory Noncoherent shared memory systems as used in remote

direct memory access (RDMA) communications or for the data transfer between CPUs and

GPUs are similar to message passing systems. The typical programming interface to such systems

are put and get operations that store into or load from remote memory. The main difference to

message passing is that the receiver is not explicitly involved and thus o is not charged at the

destination. However, all other parameters remain. For the purpose of this article, we ignore this

discrepancy with the traditional LogGP model.

Coherent Shared Memory Coherent memory systems are slightly more complex. Coherence

between multiple caches is often guaranteed by a cache coherence protocol operating on blocks

of memory (e.g., cache lines). The protocol ensures that each block always holds exactly one

value in the whole system. Such protocols often allow for multiple readers (i.e., multiple identical

copies of the block) but each write access requires exclusive ownership. Since all communication

is implicitly performed during standard load/store accesses, performance characteristics are more

complex and LogGP is only an approximate model for such transfers in the general case. Yet, if

the amount of sharing is low (i.e., data is transferred from each writer to a single reader), then

LogGP can model the performance characteristics accurately. Ramos and Hoefler [35] provide a

detailed explanation of the intricacies of modeling for cache-coherent systems and related work.
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Network Offload Architectures Some newer network architectures such as Portals IV [7]

or CORE-Direct [14] allow to offload collective operations to the network device. This enables

faster execution (messages do not need to travel to the CPU) and isolation (computations on

the CPU and collective communications do not interfere and can progress independently). This

reduces the impact of small delays on the CPU, often called system noise [20, 47] and allows

asynchronous execution of nonblocking collective operations [18]. Communications are performed

using messages and can thus be modeled using the LogGP model. Offload devices have limited

resources to store communication schedules and we model the memory consumption of each

algorithm in such devices.

Runtime Models We will use LogGP to model the approximate runtime of the algorithms

on all target systems. Furthermore, in order to keep the models interpretable, we set o > g and

assume that the LogGP CPU overhead o is also charged in offloading devices so that we never

need to charge g (o for offloading devices is most likely much smaller than o on a general-purpose

CPU). We also assume that the cost to transmit a message of size s is Tmsg = L+ 2o+ sG. We

report the maximum finishing time that any process needs.

Energy Models Energy consumption can generally be split into two components: dynamic

and static energy [28, 29]. The static energy is the leakage energy during the operation of an

electronic device, regardless of the device’s activity. Dynamic energy represents the energy that

is consumed by activities such as computation, sending and receiving messages, or memory

accesses. For the purpose of our analysis, we assume that computation and local memory oper-

ations (e.g., shuffling data) are free. These assumptions are similar to the LogGP model which

also only considers network transactions. To model the energy for communication, we assume

that each message consumes a fixed energy e. This represents the setup cost to send a zero-byte

message and is similar to o and g in the LogP model, we do not separate CPU and network

costs because energy consumption is additive and can thus be captured by a single parameter.

Furthermore, we denote the energy required to transport each byte from the source’s memory

to the destination’s memory as E, similar to LogGP’s G parameter. This model assumes a fully

connected network such that the energy consumption does not depend on the location of the

source and destination. Thus, ignoring local computations, the total energy consumption of a

collective operation is L = T ·P +D where T is the runtime (e.g., modeled by LogGP), P is the

leakage power, and D is the dynamic energy model. In our analysis, we derive dynamic energy

models for the overall operation (the sum of all dynamic energies consumed at each process).

Memory Models Similarly, we derive a simple model for capturing memory overheads for

offloading devices. To offload a collective operation to a network device, one copies some state

(e.g., a set of triggers [7] or a set of management queue entries [14]) that models the execution

schedule to the device. The device then generates messages based on arriving messages from

other processes and the local state without CPU involvement. Here, we assume that each sent

message has to be represented explicitly as a descriptor in the offloaded operation. We assume

that these descriptors have the constant size d. This descriptor size does not depend on the size

of the actual message to be sent or received. We report the maximum memory needed by any

process.
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3. Implementation Strategies for Collective Operations

Instead of describing algorithms for specific collectives, we discuss common algorithms to im-

plement collective operations. For each of these algorithms, we develop runtime, energy, and

memory overhead models. We then proceed to briefly describe each of MPI’s collective oper-

ations and discuss how the algorithms can be used to implement it. This method reflects the

state-of-the-art in which collective libraries often implement a set of algorithm skeletons and

match them to particular collective implementations [12].

3.1. Existing Collective Algorithms

Each collective algorithm exploits a particular virtual topology, i.e., a directed graph representing

message propagation between processes. We distinguish between three classes of collective algo-

rithms: (1) trees in various shapes and forms, (2) distribution algorithms, and (3) specialized

algorithms.

Trees can be used to implement any collective communication. In these algorithms, processes are

arranged in a tree shape and messages are flowing from parents to children or vice versa, depend-

ing on the collective operation. Some collectives require personalized data (e.g., scatter/gather)

such that the messages grow or shrink as they are sent along the tree while other operations

either replicate or reduce the data (e.g., reduce, broadcast) leading to constant-size messages.

Trees are often used for communicating small messages because in most cases, leave processes

only receive messages and are thus not able to use their own send bandwidth. Simple pipelines

(i.e., degenerated regular trees) that minimize the number of leaves often provide excellent and

simple solutions for very large message sizes. We will also discuss double-tree algorithms that

improve the latency over such simple pipelines.

While trees can be used to implement any collective, they may incur a higher cost if they need

to be combined. For example, unrooted collectives where all processes receive the result (e.g.,

allreduce) require communication up and down a tree. These communications can be efficiently

implemented using distribution patterns that can also be seen as intertwined trees rooted at

each process. A third class of specialized algorithms takes advantage of either specific hardware

properties such as topology or multicast semantics or specific semantics of the collective problem.

We now proceed to describe existing tree algorithms followed by distribution patterns. We

conclude this subsection by referencing several specialized algorithms. A simple lower bound

for the runtime of all algorithms is Ω(o logP ) + sG because data needs to reach all processes

and data must be sent at least once. Similarly, a lower bound to the energy consumption is

(P − 1)(e + sE) and a lower bound for the memory consumption is d because each process

must receive the data once. We will provide exact and simplified models for each algorithm; the

simplified models use mixed asymptotic notation for s → ∞ and P → ∞ to facilitate highest

intuition.

3.1.1. Flat Tree Algorithms

We start with the simplest algorithm for collective operations—a flat tree (FT) [25] in which a

single processor sends messages to all destinations directly. Figure 1a provides an example of such

a tree for a non-personalized or personalized operation. The gray squares at communication edges

denote the communicated data of size s. The annotations in this and the following figures denote

the finishing times of the processes in the example. In all figures, we assume that data is sent to
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the children of a process in the order drawn, beginning with the leftmost. Though simplicity of
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Figure 1. Flat and binary trees (k = 2) with seven processes (P = 7) in personal and non-

personal configurations.

the algorithm is a clear advantage, its sequential communication limits performance. The time to

perform such an operation (personalized or not) is TFT = L+oP+sG(P−1) = (o+sG)P−O(s) in

the LogGP model. The dynamic energy consumption of such a communication can be estimated

as DFT = (P − 1)(e + sE) = P (e + sE) − O(s). The maximally needed storage at the root of

the tree is MFT = d(P − 1).

3.1.2. Regular Trees

A widely used topology for rooted collective operations is based on regular trees. In such trees,

processes perform communications concurrently and thus achieve better performance than flat

trees. Trees are called regular when each inner process has the same number of child nodes. We

call trees with k such children per process k-ary trees; in this sense, flat trees can be seen as

regular trees with k = (P − 1).

To illustrate the concept, Figures 1b and 1c show non-personalized and personalized communi-

cations along a binary tree, respectively. General k-ary trees (KT) require logk(P ) total parallel

communication steps. In particular, the time of a k-ary tree algorithm for a non-personalized

operation is TKT = (L+ k(o+ sG) + o)blogk P c = (L+ ko+ ksG) logk P −O(s) + logk P · O(1).

The dynamic energy model for the same algorithm is DKT = (P−1)(e+sE) = P (e+sE)−O(s).

The storage requirements for k-ary trees are MKT = kd because each process sends to at most

k children.

For personalized communications on full trees (which we mark with a tilde above the virtual

topology type, e.g., K̃T), the communication time can be modeled with T
K̃T

= blogk P c(L+o(k+

1))+sG
∑blogk P c

i=0 (blogk P c−i)ki = (L+ko) logk P+sGP ·O(1)+O(logP−s). Here, one can sim-

ply count the packet along the rightmost path assuming that messages are sent to each left child

first. The dynamic energy consumption is D
K̃T

= e(P −1)+sE ·kblogk P c∑blogk P c−1
i=0 (blogk P c−

i) 1
ki ≈ P (e+ sE logk P ) +O(sP ) (for large k) and the memory consumption is M

K̃T
= kd as in

the non-personalized case.

Pjesivac-Grbovic et al. [33] use splitted binary trees (SB) to accelerate non-personalized com-

munications. They use a normal binary tree but instead of distributing the whole message along

each tree edge, the message is divided into two parts. The first part is sent to the nodes of the

left subtree of the root, while the second part is distributed among nodes of the right subtree of

the root. Once a node received the data and sent it on to its children, it also sends it to its own

counterpart in the other subtree. The approximate time of the splitted binary tree algorithm

is a combination of the normal binary tree non-personalized algorithm with s
2 data and a full
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Figure 2. Optimal Fibonacci trees and binomial trees with eight processes (P = 8) in personal

and non-personal configurations.
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Figure 3. Non-personalized pipelined trees and double trees with seven or eight processes.

exchange: TSB = (L+2(o+ s
2G)+o)blog2 P c+2o+L+ s

2G = log2 P (L+3o+sG)+s log2 P ·O(1).

The estimated dynamic energy for this algorithm is DSB = 2(e+ s
2E)(P−1) = P (2e+sE)−O(s)

while the memory model is MSB = 3d.

3.1.3. Irregular Trees

While simplicity of regular tree algorithms is a strong advantage and they are asymptoti-

cally optimal for small messages, they are generally not strictly optimal. For example, Karp

et al. [24] demonstrate that Fibonacci trees are optimal for single-item broadcasts and thus

non-personalized tree communication in the LogP model. Figure 2a shows the optimal tree con-

struction, each node is labeled with its arrival time and the best broadcast tree for P processes

is constructed from the P nodes with the smallest labels. Karp et al. also state that, if fn and

fn+1 are the consecutive members of the generalized Fibonacci sequence s.t. fn < P − 1 < fn+1,

the lower bound for broadcasting s items is n + 1 + L + (s − 1) − b∑t
ft

P−1c [24] (assuming

g = 1, o = 0, G = 0). For personalized tree communication, Alexandrov et al. [1] as well as

Iannello [22] show that in the LogGP model the usage of irregular trees for virtual topologies

allows to achieve better performance. Both algorithms are hard to derive and have not been

used in practice to the best of the authors knowledge.

A much simpler class of irregular trees that improves over regular trees are k-nomial trees. Here,

we discuss the most-used binomial tree (BT) (k = 2) as example and we assume that P is a

power of two. The runtime of non-personalized binomial trees is TBT = (L + 2o + sG) log2 P ,

their dynamic energy consumption is DBT = (P − 1)(e + sE) = P (e + sE) − O(s), and their

memory use is MBT = d log2 P at the root process. The runtime of personalized binomial trees

is T
B̃T

= (2o + L) log2 P + sG(P − 1) = (2o + L) log2 P + sGP − O(s), their dynamic energy

consumption is D
B̃T

= e(P − 1) + sE P
2 log2 P = Pe + sE P

2 log2 P − O(1), and their memory
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Figure 4. Different distribution algorithms for unrooted collectives. Only one data packet is

shown at each stage for readability.

consumption is M
B̃T

= d log2 P . Figures 2b and 2c show examples for personalized and non-

personalized binomial trees.

Binomial tree algorithms are commonly used for small messages; for larger messages, more

complex algorithms provide better results (see, for example, various algorithms proposed by

Van de Geijn et al. [6, 41, 44]). We will now discuss pipelined trees that have a similar goal to

improve bandwidth.

3.1.4. Pipelined Tree Algorithms

Pipeline algorithms are based on the idea to divide a large message into multiple small pieces

and to distribute these pieces among processors in a pipeline fashion [33, 38]. Here, different

virtual topologies can be utilized for transmitting the data. Linear pipelines as illustrated in

Figure 3a are simplest while tree pipelines as illustrated in Figure 3b allow to reduce latencies.

As before, our models assume that data is sent down the left pipe first and then alternating. We

also assume in this case that the send and receive overheads (o) can be charged simultaneously

(e.g., in a multicore environment). Pipelines are often used as building blocks for more complex

algorithms [40]. For example, in a non-personalized setting, the runtime of a pipelined binary

tree (PBT) algorithm can be estimated as TPBT = 2(o + s
NG)N + L + o + (o + 2(o + s

NG) +

L)(blog2 P c − 1) = log2 P (L + 3o + sG
N ) + O(N + s), where N is the number of pieces into

which the message is divided and it typically depends on s. The corresponding dynamic energy

model is DPBT = (P − 1)(e + s
NE)N = P (Ne + sE) − O(s) and the storage requirement is

MPBT = 2dN . For personalized communications, the runtime is T
P̃BT

= o + (o + (2blog2 P c −
1) s

NG)2N +L+ (o+L)(blog2 P c − 1) + 2(o(blog2 P c − 1) + s
NG(2(2blog2 P c−1 − 1)− (blog2 P c −

1))) = (L + 3o) log2 P + sG(PO(1) − 2
N log2 P ) + NO(1) , the dynamic energy consumption is

D
P̃BT

= N(2e(2blog2 P c − 1) + sE
N 2blog2 P c(1 + 2(blog2 P c − 1) + (21−blog2 P c − 1))) = NPO(1)e+

sEPO(1)(log2 P + 1
PO(1) −O(1)), and the memory overhead is M

P̃BT
= 2Nd.

3.1.5. Double Trees

While pipelined trees improve the overall bandwidth utilization, they are still not optimal. The

reason for this is that the leaves in the tree never transmit messages and thus do not contribute

their bandwidths. To use the leaves’ bandwidth, one can employ two trees with different structure

(leave nodes) such that each node sends eventually. Sanders and Träff [39, 40] demonstrate

such a two-tree virtual topology that achieves full bandwidth, extending and simplifying an

earlier algorithm [45]. The authors utilize two trees so that the interior nodes of the first tree

correspond to the leaf nodes of the second tree and vice versa (see Figure 3c). They also describe
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a scheduling algorithm to define from which parent node the data should be received at the

current step and to which child node the data should be forwarded. The approach only applies

to non-personal communications. The runtime of this double tree (DT) algorithm is TDT =

(L + 3o + sG) + TPBT

(
s
2

)
. Its dynamic energy consumption is DDT = 2(e + s

2E) + 2DPBT

(
s
2

)

and the memory consumption for this approach is MDT = 2dN .

This algorithm concludes our treatment of successively more complex algorithms for rooted

collective communications. We now proceed to discuss distribution patterns such as direct send,

dissemination, and butterfly algorithms for unrooted collective communications.

3.1.6. Direct Sends

In unrooted collectives, typically all processes receive some data from every other process, either

personalized or reduced. This can be achieved by a direct send (DS) topology among all processes.

This is similar to a flat tree rooted at each process. The runtime for the personalized as well

as the non-personalized variant is TDS = L + (P − 1)(o + sG) = P (o + sG)−O(s), the energy

consumption is DDS = P (P − 1)(e+ sE) = P 2(e+ sE)−O(Ps), and the memory consumption

at each process is MDS = (P − 1)d. Figure 4a illustrates the DS scheme.

3.1.7. Dissemination and Butterfly Algorithms

The well-known Butterfly (BF) graph [8] implements a binary scheme to quickly exchange data

among all processes which can be applied if P is a power of two. The dissemination approach [15]

generalizes this scheme to arbitrary numbers of processes. Here, we limit ourselves to the simpler

case where P is a power of two. In the Butterfly pattern, data is communicated between processes

with exponentially growing distances, i.e., in the k-th step, nodes at distance 2k from each other

exchange data. Thus, log2 P steps are required to complete the communication.

The non-personalized version of butterfly executes in time TBF = (2o + sG + L) log2 P , with a

dynamic energy consumption of DBF = (e + sE)P log2 P , and with a memory consumption of

MBF = d log2 P .

The well-known recursive doubling algorithm [44] as well as the Bruck algorithm [9] implement a

personalized variant of the Butterfly pattern. If we ignore local data shuffles, then the runtime of

this personalized algorithm is T
B̃F

= (2o+L) log2 P +Gs(P −1) = (2o+L) log2 P +sGP −O(s).

Its energy consumption can be modeled as D
B̃F

= eP log2 P + sE(P − 1)P = P (e log2 P +

sEP ) − O(sP ) and its memory requirement is M
B̃F

= d log2 P . Each model increases with a

multiplicative constant if the number of processes is not equal to a power of two [44]. Figures 4b

and 4c illustrate the Butterfly pattern with eight processes in non-personalized and personalized

configurations, respectively.

3.1.8. More Specific Algorithms

Several researchers developed algorithms that are tuned to particular properties of the machine.

For example, several algorithms that specialize to the network topology exist. Some others

utilize special hardware features. We provide some examples here but this list is not meant to

be complete.

Hardware-specific algorithms Ali et al. [2] provide algorithms for collective communica-

tions on the Cell B.E. chip, Panda et al. demonstrate a series of algorithms tuned to InfiniBand
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networks and RDMA systems [27, 42], and Almasi et al. [3] show optimization techniques for

the BlueGene/L Torus network.

Topology-aware algorithms There is a class of algorithms that take the network topology

and congestion into account. For example, Sack and Gropp [36, 37] introduce a congestion-

aware model for network communication. In the same articles they propose a recursive-doubling

distance-halving algorithms for the allgather and reduce scatter collectives for Clos and Torus

networks. Payne et al. [32] describe several algorithms on how to implement some reduction op-

erations on a 2-dimensional mesh and Barnett et al. [5] develop a broadcasting algorithm for the

mesh topology. Watts and Van de Geijn [48] show a pipelined broadcast for mesh architectures

and Chan et al. [10] show how to utilize all available links in Torus networks.

Using Unreliable Multicast Hardware Other algorithms base on special hardware fea-

tures such as multicast [11]. Multicast packets can be lost and in order to guarantee reliable

transmission, recovery algorithms are necessary. One such recovery protocol is presented by

Hoefler et al. [19]. Their protocol combines InfiniBand (or Ethernet) unreliable multicast with

reliable point-to-point messages to achieve a with high probability constant-time (O(1) com-

plexity) broadcast operation. Using these special hardware features allows us to circumvent the

logarithmic lower bound.

3.2. Implementing Collective Operations

We now briefly discuss how the modeled algorithms can be combined to implement collective

operations. We follow our previous categorization into rooted collectives implemented by per-

sonalized or non-personalized trees and unrooted collectives implemented by personalized or

non-personalized distribution algorithms.

3.2.1. Rooted Collectives

Table 1 shows an overview of the tradeoffs in various personalized and non-personalized tree

algorithms. We use the previously introduced subscripts as abbreviation: FT for flat trees, KT

for k-ary regular trees, BT for binomial trees, PBT for pipelined binary trees, and DT for double

trees. Abbreviations with a tilde on top, e.g., F̃T, denote personalized versions of the algorithms.

FT, F̃T KT K̃T BT B̃T PBT P̃BT DT

T P (o+ sG)
(L+ ko+
ksG) logk P

(L+ ko) logk P
+sGP

(L+ 2o
+sG) lgP

(L+ 2o) lg P
+sGP

(L+ 3o+
sG
N

) lg P
sG(P − 2

N
lg P )+

(L+ 3o) lg P

(L+ 3o+ sG)
+TPBT

(
s
2

)

D P (e+ sE) P (e+ sE)
P (e+
sE logk P )

P (e+ sE) P (e+ sE
2

lgP )
P (Ne+
sE)

P (Ne+
sE lg P )

2(e+ s
2
E)

+2DPBT

(
s
2

)

M Pd kd kd d lgP d lgP 2dN 2dN 2dN

Table 1. Overview of tree algorithms for rooted collectives

(minor terms are dropped, lg stands for log2).
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Broadcast/Reduce Broadcast and reduce are structurally similar but very different in their

semantics. In a broadcast, a single message of size s is distributed (copied) from a designated

root process to all other P − 1 processes. In a reduction, each process contributes a message

of size s. The associative (and often commutative) operator ⊕ combines all P messages into a

single result of size s at a designated root process: r = m1 ⊕m2 ⊕m3 ⊕ · · · ⊕mP .

Both collectives can be implemented with non-personalized tree algorithms. Binomial and binary

trees are commonly used for implementations of small-message broadcast and reduction [43, 44].

Large-message operations can be implemented with double trees. Our models in Table 1 show

that, for non-personalized communications, double-trees are the best contenders in terms of

runtime (for all s and P ). However, they require more dynamic energy and memory due to the

pipelining of messages. The exact number of additional messages sent depends on the number

of pipeline segments N , which in turn is chosen based on the LogGP parameters and s. If

the memory is constrained, then pipelining would be limited, possibly leading to suboptimal

performance. All non-pipelined algorithms are work-optimal and thus consume the minimal

energy. Regular k-ary trees have only constant memory overhead and are thus best for execution

in very limited offload settings.

Scatter/Gather In a scatter, a designated process (root) sends personalized messages, each

of size s, to P − 1 other processes. In a gather, the root process receives different messages, each

of size s, from P − 1 processes and stores them locally. Both collectives can be implemented

using personalized tree algorithms. For example, Binomial trees have been used to perform both,

scatter and gather [4].

Our models in Table 1 show that, for personalized communications with small P , flat trees are

best. Other regular and irregular trees reduce the latency to a logarithmic term and thus benefit

large P but they are not work-optimal and send multiple messages multiple times and thus

harm large s. For large s and small P one can use linear pipelines to utilize the bandwidth of all

processes as discussed before. Alexandrov et al. [1] formulate the condition for an optimal gather

tree in LogGP but to the best of the authors’ knowledge, no practical algorithm is known that

achieves this bound. In terms of energy, we remark that all tree algorithms increase dynamic

energy consumption significantly in comparison to a flat tree. Memory consumption is similar to

the non-personalized algorithms where the pipelining versions may dominate and k-ary regular

trees are minimal for small k.

3.2.2. Unrooted Collectives

Table 2 shows an overview of various distribution algorithms and trees that can be used for

unrooted collectives. We use the previously defined abbreviations for distribution algorithms: DS

for direct send and BF for Butterfly. We compare these to implementations with two combined

trees, such as a k-ary tree to reduce data towards a root followed by a second k-ary tree to

broadcast data to all processes, which we denote as 2xKT. We only combine trees of similar

nature and show some select examples even though combinations of any two trees can be used

in practice.

Allreduce/Barrier Allreduce is similar to reduce in that all processes contribute a message

of size s and r = m1⊕m2⊕m3⊕· · ·⊕mP is computed. However, as opposed to reduce, the final

r will be distributed to all processes. The Barrier collective guarantees that no process completes
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DS, D̃S BF B̃F 2xKT 2xK̃T 2xPBT 2xP̃BT

T P (o+ sG) (L+ 2o+ sG) log2 P
log2 P (2o+ L)
+sGP

2(L+ ko+
ksG) logk P

2(L+ ko) logk P
+2sGP

2(L+ 3o
+ sG

N
) lg P

2sG(P − 2
N

lg P )+
2(L+ 3o) lg P

D P 2(e+ sE) P log2 P (e+ sE) eP log2 P+
P 2sE

2P (e+ sE) 2P (e+ sE logk P ) 2P (Ne+ sE)
2P (Ne+
sE lg P )

M Pd d log2 P d log2 P 2kd 2kd 4dN 4dN

Table 2. Overview of algorithms for unrooted collectives

(minor terms are dropped, α = L+ o+ sG).

the operation before all processes called it. It is similar to allreduce with a zero-sized message and

is commonly implemented using the same algorithms. Both collectives can be implemented using

two trees, a reduction to a root followed by a broadcast to all processes as in [21]. However, a

more time-efficient implementation would be non-personalized distribution such as the Butterfly

pattern [31, 34, 49].

The models in Table 2 suggest that, for non-personalized communication, Butterfly patterns are

fastest for all s and P . However, their dynamic energy consumption is asymptotically higher

than the combination of two trees. Combining two pipelined trees can improve tree performance

for large messages. Butterfly consumes logarithmically growing memory at each node, two k-ary

trees could reduce this memory consumption to a constant.

Allgather/Alltoall Allgather is similar to a gather but the result is distributed to all pro-

cesses. A simple but slow implementation would be a gather followed by a broadcast. In alltoall,

each process has P messages of size s. Each of these messages is sent to another target process,

so that each process sends and receives P − 1 messages (and an implicit message to itself).

Direct send or Bruck’s algorithm (using a personalized Butterfly communication) can be used

to implement such collective operations. In addition, these operations can be implemented using

personalized trees that gather the result to a single node and broadcast it to all nodes.

The models in Table 2 suggest that, for personalized communication, Butterfly patterns are

fastest for all small s and large P but quickly become inefficient with growing s. Direct sends

are most efficient for large s and small P . Tree patterns are always more expensive in terms

of runtime and energy consumption than distribution patterns. However, tree patterns can

provide a constant memory consumption while other patterns have linear or logarithmic memory

requirements in P .

3.2.3. Other Collectives

Scans/Reduce Scatter In prefix scan operations, each process specifies a message of size s

and received the partial sum of all messages specified by processes with a lower id than itself.

I.e., the process with id k receives rk = m1 ⊕m2 ⊕m3 ⊕ · · · ⊕mk (assuming k > 3). A reduce

scatter performs a reduction of a message of size Ps specified at each process. Then, messages

of size s are scattered to each P process. Both steps are performed together so that algorithms

can optimize them as a single step. Reduce scatter can be implemented by a simple reduce

followed by a scatter and scans can be implemented by rooting a different reduction tree at
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each process. However, merging the trees can lead to substantial performance improvements for

reduce scatter [22] as well as scans.

Neighborhood Collectives MPI-3 introduces neighborhood collective operations [16] where

the programmer can specify any communication pattern and in this way build his own collective

communication operation. For example, one can express all non-reduction collective operations

as neighborhood collectives. However, the expressiveness of this operation comes at the cost of

optimizability. Thus, there are no generic optimization algorithms for these operations yet.

For the purpose of the analyses in this paper, we ignore irregular/vector collective operations.

4. Discussion and Open Problems

We now conclude our theoretical analyses with a brief summary of the lessons learned followed by

an outlook to important open problems and future research directions in the area of optimizing

collective communications.

4.1. Approaching the Optimal

Some systems combine existing algorithms using an auto-tuning approach for algorithm selec-

tion [46]. Pjesivac-Grbovic et al. [33] for example utilize decision trees to select the best algorithm

at runtime while Faraj and Yuan [13] use collective building blocks to tune them to a particular

network topology. Yet, all these approaches are not strictly optimal. Selecting different algo-

rithms and parameters for them automatically may yield significant speedups over any single

algorithm. However, the problem of attaining the best bounds in terms of latency and band-

width in the full spectrum of possible datasizes s and process numbers P remains open for many

personalized communication algorithms.

Problem 1: Runtime-optimal collective algorithms We identified four essential classes

of algorithms that need to be developed to attack this problem: trees with personalized and

non-personalized data and dissemination mechanisms with personalized and non-personalized

data. While several discrete algorithms exist for both, we expect that a general latency- and

bandwidth-optimal solution will significantly improve upon the state-of-the-art.

4.2. Energy, Memory, and Runtime Tradeoffs

In our analysis, we identified several problems where algorithms with a smaller runtime consume

more energy than algorithms with a larger runtime and vice-versa. In addition, we found that

the best algorithms are generally not space optimal. This means that offloading devices with

strictly limited resources may not be able to use the best known algorithms. To illustrate the

tradeoff, we plot our models for a set of parameters chosen to represent an InfiniBand network

architecture. These parameters are approximate and vary across installations, however, they

provide insight into the tradeoffs between energy consumption and runtime.

As LogGP parameters, we use previously reported values measured for InfiniBand using MPI:

L = 6 µs, o = 4.7 µs, G = 0.73 ns/B [17]. Kim et al. [26] model the memory read and write power

consumption per MTU packet (2048 B) per switch as 8.1 pJ. We use this data to approximate

the NIC power consumption assuming that each Byte in a packet is read and written once and

a single packet is needed to send a 0-Byte messages. Thus, we assume e = 16.5 pJ, E = 8.1
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Figure 5. Example for the tradeoff between runtime, energy, and memory for non-personalized

distribution (e.g., allreduce) of 8 Bytes for 2-ary regular trees (RT), binomial trees (BT), and

Butterfly (BF).

nJ/B, and a static NIC chip power of P = 0.5 W for our model. For the memory overhead, we

assume that each descriptor stores a pointer, an offset, a trigger counter, and a target address.

We assume that each of these fields is represented by a 64-Bit number, thus d = 32 B.

Figure 5 shows one particular example for a non-personal distribution communication that could

be used to implement allreduce. We compare only three different options: two 2-ary trees, two

binary trees, and Butterfly to instantiate the intuition from Table 2 with real-world parameters.

The runtime model shows that the Butterfly algorithm is by far the best option followed by the

binomial tree and the binary tree. However, in the energy model, Butterfly is far worse than both,

binomial and binary trees for large numbers of processes. In fact, its dynamic energy consumption

is always higher than the trees but for small process counts, the performance advantage reduces

the static energy consumption in comparison to the trees. The memory model shows that the

regular binary tree has the lowest, even constant memory consumption per process followed by

Butterfly and binary tree. We observe that depending on the target metric, each of the three

algorithms can perform best: Butterfly has the best performance, binomial trees use the least

energy, and binary trees require the least memory in the network interface.

Problem 2: Energy-optimal collective algorithms Finding the energy-optimal algorithm

for a given set of parameters (the dynamic energy consumption with e and E and the static

power consumption P ) for each collective operation remains an open and challenging topic as

it requires to optimize time to minimize static energy in combination with the dynamic energy

consumption. The optimal algorithm in terms of dynamic energy is often the simple linear

algorithm that would result in excessive static energy consumption. The exact tradeoff between

these algorithms is determined by the energy and runtime models as well as the energy and

runtime parameters.

Problem 3: Pareto-optimum for energy and runtime If both previous problems are

attained, one could phrase the Pareto-optimal region for the energy consumption versus the

runtime. This allows to optimize the runtime in energy-constrained systems as well as the en-

ergy consumption in real-time systems. In power-constrained settings, one could also limit the

dynamic energy consumption to stay within certain limits.

Problem 4: Optimal neighborhood collective operations The problem of optimizing

neighborhood collectives is not well understood. Since they can represent any arbitrary collective

Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication...
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operation, an optimal solution (in terms of energy consumption or runtime) would also yield

optimal solutions for all MPI collectives.

4.3. Tradeoffs for Offload Architectures

Collective offload architectures often offer limited space on the device. The optimization problem

(in terms of power and energy) can now be formulated under the restriction of limited space on

the device. Our models show that each algorithm can be implemented with constant space per

device. However, we also show that the necessary algorithms are slower than the best known

algorithms. Interestingly, the slowdown of the constant-space algorithms seems to be limited to

a factor of two compared to the best known practical algorithm. The difference may be higher

when compared to close-to-optimal solutions such as Fibonacci trees and optimal personalized

schedules.

We also found that many best known algorithms utilize pipelining, a technique where the memory

consumption grows with the size of the sent data. Designers of offload architectures may consider

to support pipelining of N messages with a constant-size operation. In addition, one could allow

to offload simple programs to the network card that generate sends on the fly without pre-

programming everything at initialization time.

Problem 5: Optimal memory-constrained collectives The problem to determine the

runtime- or energy-optimal schedule under the constraint of space on the offloading device may

be important to support future collective offload architectures.

5. Conclusions

This study provides an overview of existing collective algorithms and implementations. We de-

scribe the most common algorithms for implementing collective operations in practice. However,

our list is not meant to be exhaustive. We classify these algorithms into three groups: tree-

shaped algorithms, distribution algorithms, and optimized schedules. The first two groups base

on virtual topologies which can be used in a personalized and non-personalized setting. The last

group includes optimized and specialized messaging schedules for particular cases.

We derive runtime, energy, and memory consumption models for each algorithm and compare the

algorithms within each group. Our models and comparisons provide fundamental insights into the

nature of these algorithms and various tradeoffs involved. For example, we show that runtime-

optimal algorithms always exhibit non-optimal dynamic energy consumption. In the case of

non-personalized distribution, the energy consumption of the fastest algorithm is asymptotically

higher than the consumption of an algorithm that is only a slower by a constant. We also show

that optimal algorithms always require more memory in offload devices than other algorithms

that are only slower by a constant. This provides interesting optimization problems to find the

best tradeoffs between runtime, energy, and memory consumption in offload devices.

In our theoretical study, we identified several research problems and open questions. We believe

that it is most important to understand the tradeoff between energy and runtime and possibly

memory consumption in offload devices. It is also interesting to design offloading protocols

and devices that require minimal storage in the network architecture. In addition, a generic

framework to design close-to-optimal schedules for predefined as well as neighborhood collective

operations would be a valuable contribution to the state of the art.
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Data Compression for the Exascale Computing Era – Survey

Seung Woo Son1, Zhengzhang Chen1, William Hendrix1, Ankit Agrawal1,

Wei-keng Liao1, and Alok Choudhary1

While periodic checkpointing has been an important mechanism for tolerating faults in high-

performance computing (HPC) systems, it is cost-prohibitive as the HPC system approaches

exascale. Applying compression techniques is one common way to mitigate such burdens by re-

ducing the data size, but they are often found to be less effective for scientific datasets. Traditional

lossless compression techniques that look for repeated patterns are ineffective for scientific data in

which high-precision data is used and hence common patterns are rare to find. In this paper, we

present a comparison of several lossless and lossy data compression algorithms and discuss their

methodology under the exascale environment. As data volume increases, we discover an increasing

trend of new domain-driven algorithms that exploit the inherent characteristics exhibited in many

scientific dataset, such as relatively small changes in data values from one simulation iteration to

the next or among neighboring data. In particular, significant data reduction has been observed

in lossy compression. This paper also discusses how the errors introduced by lossy compressions

are controlled and the tradeoffs with the compression ratio.

Keywords: Fault tolerance, checkpoint/restart, lossless/lossy compression, error bound, data

clustering.

1. Introduction

The future extreme scale computing systems [13, 35] are facing several challenges in ar-

chitecture, energy constraints, memory scaling, limited I/O, and scalability of software stacks.

As the scientific simulations running on such systems continue to scale, the possibility of hard-

ware/software component failures will become too significant to ignore. Therefore, a greater

need is emerging for effective resiliency mechanisms that consider the constrains of (relatively)

limited storage capability and energy cost of data movement (within deep memory hierarchy

and off-node data transfer). The traditional approach to storing checkpoint data in raw formats

will soon be cost-prohibitive. On the other hand, storing the states of simulations for restart

purposes will remain necessary. Thus, in order to scale resiliency via the checkpoint/restart

mechanism, multiple dimensions of the problem need to be considered to satisfy the constraints

posed by such an extreme-scale system.

A popular solution to reduce checkpoint/restart costs is to apply data compression. How-

ever, because scientific datasets are mostly floating-point numbers (in single or double precision),

a naive use of compression algorithms can merely bring a limited improvement in terms of the

amount of data reduced while bearing a high compression overhead to perform compression.

To tackle such problem of hard-to-compress scientific data, recently-proposed compression al-

gorithms start to explore data characteristics exhibited in specific domains and develop ad-hoc

strategies that perform well on those data. The motivation comes from the fact that most of the

simulations calculates values on points (nodes, particles, etc.) in a discretized space to solve its

own mathematical models and continues along the temporal dimension until a certain stop con-

dition is met. One can potentially exploit the patterns exhibited along both spatial and temporal

dimensions in improving effectiveness of existing compression algorithms because the variance

of data in the neighborhood tends to be small in many cases. Existing compression algorithms

seldom consider such data patterns.
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Lossy compressions [11, 15] often produce better compression ratios than the lossless coun-

terpart, but the error rates are not easy to bound, and, in large scale simulations, unbounded

error could introduce significant deviation from the actual values, leading to impact the out-

come of the simulation. In other words, lossy compressions could make compressed data useless.

Lossy compression on checkpointing implies several challenges for large-scale simulations, e.g.,

guaranteeing point-wise error bounds defined by the user, reducing a sufficiently large amount

of storage space, performing compression in-situ (to reduce data movement), and taking advan-

tages of data reduction by potentially being able to use locally-available non-volatile storage

devices. In this paper, we survey a set of compression techniques and discuss whether they can

achieve the above goals. We also describe ideas of making use of machine learning techniques to

discover temporal change patterns, designing a data representation mechanism to capture the

relative changes, and solutions to meet the user request on tolerable error bound.

We anticipate that checkpointing will continue to be a crucial component of resiliency and

lossy compressions will become an acceptable method to reduce the data size at the runtime. The

critical point is whether the data can be significantly reduced given a controlled error bound.

Such an error tolerance will be specified by the user as an input parameter. For example, a user

can indicate that maximum tolerable error per point of 0.1%, and lossy compression algorithms

must guarantee that bound. Overall, applying data compression at runtime for checkpointing

will become appealing to large-scale scientific simulations on future high-performance computing

systems, as it can reduce storage space as well as save the energy resulted from data movement.

The remainder of this paper is organized as follows. The discussion of lossless compres-

sion algorithms for traditional checkpointing mechanisms is described in Section 2. Section 3

presents several studies to apply lossy compression algorithms on scientific applications. Finally,

we conclude the paper in Section 4.

2. Lossless Compression

Compression has two advantages. At first, it can reduce the space required to store the data.

Secondly, it can improve I/O bandwidth (disk or network communication), as the time spent on

data checkpointing is reduced. However, compression comes with the CPU and memory overhead

to compress and decompress the data. Thus, the effectiveness of applying data compression is

determined by the achievable compression ratio of the selected compression algorithm and the

time to compress the data. The future exascale systems are expected to exhibit a trend that

the data movement among memory hierarchies and off-node data transfer will become relatively

expensive in terms of time and energy, compared to the ever-increasing compute power. If

the selected compression algorithm can produce a reasonable compression ratio, the benefit of

applying data compression shall become more significant for the scientific applications running

on those systems.

When it comes to compression, scientists often face the dilemma of choosing lossless com-

pression and lossy compression. The former preserves data fidelity but can be slow and produce

a poor compression ratio, whereas the latter introduces a cumbersome validation process on

the approximated data. In this section, we first compare several existing lossless compression

methods and their effectiveness when applied on the scientific datasets.
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2.1. Integration within Checkpointing Framework

Welton et al. [36] have integrated and evaluated several lossless compression algorithms

within the context of IOFSL, an I/O middleware. They evaluate their framework on using

commonly-used compression algorithms on synthetic and real datasets. The experimental results

show about 1.6x of compression ratio for the air/sea flex data from NCAR data archive. The

framework could potentially serve as a baseline I/O utility for HPC systems; however, the

algorithms they selected performed rather poorly on scientific data. Ibtesham et al. [17] also did

a viability study that compares several lossless compression algorithms with the Berkeley Lab

Checkpoint/Restart (BLCR) [14] framework. They essentially observed up to 2x compression

ratio for several scientific datasets.

Islam et al. [18] present mcrEngine, a software framework that first merges compatible data

in terms of data type (double, float, other) between checkpoint files and compresses the output

of the merged data with an existing compression algorithm. The authors tested mcrEngine

on five different codes that exhibited this type of compatibility between checkpoint files and

compressed the checkpoint data by a factor of about 1.2. While this checkpoint-level similarity

may not be applicable to every simulation code, the technique of combining this data before

compression clearly improves compressibility.

Several high-level I/O libraries provide a compression capability in a transparent manner.

HDF5 requires users to use chunking to create a compressed dataset. Currently HDF5 provides

two predefined compression filters (zlib and szip). All other compression filters must be regis-

tered with HDF5 before they can be used [34]. ADIOS [27] also provides a similar compression

capability as a data transformation mechanism in file-based I/O. ADIOS provides three common

compression algorithms (zlib, gzip, and szip) as well as ISOBAR [30], which could potentially

yield higher compression ratio on scientific datasets.

There are recent studies about exploiting compute power in SSDs to perform in-situ op-

erations including compression. Active Flash by Boboila et al. [7] is such an example where

the compression is performed within SSDs in the context of data analytic pipelines. Since their

main objective is to determine feasibility of performing in-situ on SSDs, they also simply use

existing lossless compression algorithm, LZO, on common HPC datasets: atmospheric and geo-

sciences (NetCDF format) and bioinformatics (text format). Active Flash achieved about 1.96x

of compression ratio for both datasets.

2.2. Increasing Compressibility through Transformations

Bicer et al. [6] propose a novel compression algorithm for climate data, CC (climate com-

pression), that takes advantage of the spatial and temporal locality inherent in climate data to

accelerate the storage and retrieval of data. Their methodology uses an exclusive or (xor) of

adjacent or consecutive data to reduce the entropy in the data, which is analogous to taking a

difference or ratio in the sense that similar data values will neutralize to form easily compressed

datasets.

Schendel et al. propose the ISOBAR [29, 30] framework where it first divides the data into

compressible and incompressible segments before applying lossless compression to reduce data

size. PRIMACY [31] and ALACRITY [19] applied similar data transformation methods on byte

columns in order to identify compressible byte segments. We note that ISOBAR used FPC [8],

a fast and effective lossless compression algorithm designed for double-precision floating point
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Table 1. Comparison of lossless compression schemes.

Scheme
Transformation

Applied
Algorithm

Compression
Ratio

FPC [8] not used

it first predicts values sequentially using two predic-
tors (FCM and DFCM), and subsequently selects the
closer predicted value to the actual. Lastly, it XORs
the selected predicted value with the actual value, and
leading-zero compresses the result.

1.02x∼1.96x

ISOBAR [30]

divide
byte-columns into
compressible and
incompressibles

apply zlib, bzlib2, (fpzip, FPC) on all compressible (af-
ter discarding noisy byte-columns). zlib is the main com-
pression algorithm; others are for comparison purposes

1.12x∼1.48x

PRIMACY [31]
frequency based

permutation of ID
values

apply zlib on transformed data 1.13x∼2.16x

ALACRITY [19]

split
floating-point

values into sign,
exponent, and

significands

unique-value encoding of the most significant bytes (as-
suming high-order bytes (sign and exponents) are easy
to compress); low-order bytes are compressed using ISO-
BAR

1.19x∼1.58x

CC [6]

XOR on ∆ of
neighboring data
point in the same

iteration

apply zero-filled run length encoding up to 2.13x

IOFSL [36] not used
integration of LZO, bzip2, zlib within the I/O forward-
ing layer

∼1.9x

Binary Masking [5]
bit masking

(XOR)
apply zlib on bit masked data in order to partially de-
creases the entropy level

1.11x∼1.33x

MCRENGINE [18]
variable merging

in the same group
apply parallel gzip on the merged variables across pro-
cesses

up to 1.18x

numbers. FPC first predicts values sequentially using predictors, and subsequently selects the

closer predicted value to the actual. It then XORs the selected predicted value with the actual

value such that more leading zeroes in the predicted values, which helps improve compression

ratios.

Bautista-Gomez and Capello [5] propose an algorithm related to ISOBAR in that both

are lossless compression algorithms that seek to identify low-entropy segments of floating-point

data and compress them separately. Bautista-Gomez and Capello, however, transform the data

by applying a bit masking (xor) to the original data in order to reduce its entropy before

compression. They present results for a number of scientific datasets (GTC dataset in single-

precision and climate dataset in double-precision), achieving a maximum of around 40% data

reduction.

2.3. Comparison

Table 1 summarizes the comparison of lossless compression schemes surveyed in this paper.

Since lossless algorithms do not incur any loss of information in the uncompressed data, we

mainly compare the compression ratio achieved by each method. The compression ratio R for

data D of size |D| reduced to size |D′ | is denoted as: R = |D|
|D′| . We note that scientific simulations

use predominantly double-precision floating-point variables. Therefore, the compression ratio

presented in Table 1 is for those only, though the algorithm can be applied to floating point

numbers of different precision or other types of data. The main takeaway from Table 1 is that

the data reduction by lossless compression is limited; the maximum achievable compression

ratio is just above 2x, which is also possible after additional data transformation is applied. As
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described in the second column of Table 1, most compression algorithms apply some sort of data

transformations in order to increase the effectiveness of data compression.

3. Lossy Compression

The intuition behind using lossy compression algorithms stems from the following three

observations. First, scientific simulation data, like climate CMIP5 rlus data, are considered

as one type of high entropy data [12, 28]. Such data often exhibits randomness without any

distinct repetitive patterns in one single timestamp or iteration (see Figure 1 (a) or (b)). Thus,

traditional lossless compression approaches, as described in Section 2, cannot achieve appreciable

data reduction. Second, in many scientific applications, relative changes in data values are often

not very significant either spatially (among neighboring data points) or temporally (from one

simulation iteration to the next). As an example for this temporal similarity, more than 80%

of climate rlus data remains unchanged or only change with a percentage less than 0.1% (see

Figure 1 (c)). Third, unlike observational data, many scientific simulation codes can tolerate

some error-bounded loss in their simulation data accuracy. Thus, lossy compression methods

can offer some attractive features for data reduction.

The effectiveness of lossy compression however heavily depends on the domain knowledge

to select the right compression algorithms, and it is very difficult to get compression beyond

a small factor with desired accuracy, not to speak of guaranteeing that the compression error

will be smaller than a certain error rate, preferably specified by a user. Figure 1(c) shows the

change in data values between two iterations (checkpoints) instead of individual iteration because

representing data in change ratio could minimize coding space during compression. For example,

a checkpoint with 100 million data points where there are potentially 100 million changes. Two

data points where one changes from 10 to 11 and the other from 100 to 110 have the identical

relative changes, which can be represented as the same 10 percent change. Therefore, data points

with the same change percentage can be indexed by one number. The idea of considering the

data changes along temporal domain transforms the data where individual checkpoint seldom

exhibits repeated patterns into a space where common patterns in change percentages are easier

to find. To ensure the quality of reduced data, one challenge of this approach is to select a

set of change values that can represent a large number of neighbors within a small radius, a

tolerable error rate specified by the user. This will potentially address the challenge of lossy

compression in maintaining the quality of compressed data, which will be discussed in later

sections. Furthermore, simulation parameters are often calibrated using data that are themselves

subject to measurement error or other inaccuracies. Therefore, very small deviations (< 1%) in

restart fidelity are unlikely to hurt normal scientific simulations as long as such deviations are

bounded.

3.1. Transformation Schemes

There are handful of prior works studied about applying lossy compression on scientific

datasets. Lakshminarasimhan et al. [22] described ISABELA, a lossy compression technique

based on applying B-splines to sorted data. By transforming the data, ISABELA was able to

achieve high compression on data that was previously regarded as “incompressible,” while losing

minimal data fidelity (≥0.99 correlation with original data). Lakshminarasimhan et al. did not
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Figure 1. Data representation of rlus, a variable from the CMIP5 climate simulation dataset:

(a) original data distribution at iteration 1. (b) original data distribution at iteration 2. (c)

the changing percentage of data values between two iterations, and (d) compression ratio

( original size
compressed size) for the clustering-based algorithm on the CMIP5 simulation datasets [33].

Out of the dozens variables available in CMIP5 [1], we randomly chose five, namely mrsos,

mrro, mc, rlds, and rlus. The resolution for these data is 2.5◦ by 2◦. mc is a monthly simulation

data, while other four are daily data. We note that all approximated data point is within the

user-specified error bound, which is 0.1%. The approximation precision used is 8 bits (or 1 byte).

The parallel K-means clustering algorithm [3, 20, 25] is used on the temporal change ratios ∆

to get 2B − 1 clusters, where B is the number of bits.

consider applying ISABELA to checkpoint data because they assume checkpoint data do not

permit approximation.

As an another transformation approach, we have also studied a data transformation idea

similar to video compression algorithms especially MPEG [24], which stores the differences

between successive frames using temporal compression. Similar to MPEG’s forward predictive

coding where current frames are with reference to a past frame, we code the current checkpoint

data based on the previous checkpoint. In order to this, the relative change (or change ratio)

is calculated as ∆ = Dc−Dp

Dp
, where Dc and Dp is the data point in the current and previous

iteration, respectively. A potential problem with this approach is that Dp cannot be zero. If Dp

is zero, Dc cannot be compressible. This transformation technique is applied to our clustering-

based algorithm.
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3.2. Approximation Algorithms

Several recent studies [4, 16, 23] have evaluated Samplify’s APplication AXceleration

(APAX) Encoder along with other lossy compression algorithms on scientific datasets, mostly

climate dataset. The APAX algorithm encodes sequential blocks of input data elements with

user-selected block size between 64 and 16,384. The signal monitor tracks the input dataset’s

center frequency. The attenuator multiplies each input sample by a floating-point value that, in

fixed-rate mode, varies from block to block under the control of an adaptive control loop that

converges to the user’s target compression ratio. The redundancy remover generates derivatives

of the attenuated data series and determines which of the derivatives encodes using the fewest

bits. The bit packer encodes groups of 4 successive samples using a joint exponent encoder

(JEE). JEE exploits the fact that block floating-point exponents are highly correlated, which is

commonly observed in many lossless compress techniques [8, 19, 29, 30, 31].

fpzip quantizes the significant bits while leaving the values in their floating-point format.

fpzip fixes the quantization level to be a power of two, thereby effectively truncating (zeroing) a

certain number of significant bits. Designed such, fpzip can be lossless if the quantization level is

the same as the original data representation. ISABELA, on the other hand, applies the B-splines

curve fitting (interpolation) to the sorted data. A B-splines curve is a sequence of piecewise lower

order parametric curves joined together via knots. Specifically, they used the cubic B-splines for

faster interpolation time and producing smooth curves [22].

The clustering-based approach, on the other hand, uses machine learning techniques once

the change ratios for all data points are calculated. Once the change ratios of all data points have

been calculated, using machine learning techniques, we first calculate the distributions of changes

and then approximate them into an indexed space to achieve the goals of maximal data reduction.

In our preliminary implementation, we use histogram for learning distribution of the change

ratios obtained. Histogram is a popular method to learn the data distribution. For example,

data shown in Figure 1(c) can be easily converted into a histogram. Histogram estimates the

probability distribution by partitioning the data into discrete intervals or bins. The number of

data points falling in a bin indicates the the frequency of the observations in that interval. Like

other lossy compression algorithms, the clustering-based algorithms controls the precision of the

approximation using B bits. B bits are used to store the index of a transformed data point.

Since B bits can represent 2B different values and if the number of different change ratios in

∆, |∆Di|, is larger than 2B, then some of ∆ must be grouped together and approximated by a

representative ratio in the same group. We compute such approximation to fit all representative

change ratios into a index table of size 2B.

While one can use rather simpler methods like equal-width or log-scale binning than the

clustering-based binning, they may not perform well for cases where the distribution is highly

irregular. One such example would be when there are several densely packed bins and those

dense bins are spread unevenly. Neither the equal-width nor the log scheme is known to be

capturing such an irregularity well. Data clustering is a technique to partition data into groups

with a similarity (in terms of distance) while maximizing the difference among groups. Several

prior studies [10, 21, 37] also have been used clustering techniques in compression, mostly for

multimedia data (images, sounds, and videos). The idea behind those techniques based on the

following characteristics on multimedia data. First, the data objects are highly similar from one

time frame to another, that is, small temporal changes. Second, a certain amount of information

loss is acceptable in their applications. Lastly, as described in [32], a substantial data reduction
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is highly desired. In many senses, many scientific simulation runs exhibit very similar behaviors

as the multimedia data. This is the reason why the cluster analysis technique achieves better

binning results for irregularly distributed datasets.

3.3. Error Bounding Methods

The main challenge when applying lossy compression is assessing its effect on simulation

accuracy. Lossy compression is commonly used for multimedia data (photographs and videos)

where errors need only to meet human perceptual requirements. Key-frames in videos period-

ically reset the error to zero. The scientific simulation codes solve time-dependent differential

equations where errors may accumulate over time. The changes in the solution due to the use of

compression may grow more rapidly if compression errors at one time step are strongly corre-

lated with errors at the next time step. The changes due to the use of compression are thus likely

to be functions of both the compression ratio and the error characteristics of the compression

algorithm.

However, the fact that lossy compression may change simulation results is not necessarily a

show-stopper. In many cases, a slight change in one simulation parameter also can change the

simulation output. For example, scientists may choose a mesh resolution based on a trade-off

between more accurate answers and the computational cost of the simulation. Computational

scientists usually make these choices based on the desired accuracy of various physical quantities,

not by comparing differences in per grid point basis like the mean square error between two

simulations. For example, Laney et al. [23] have proposed to use the same integral physical

quantities to assess the impact of compression.

ISABELA and fpzip bound errors using the accuracy metric that measures factors between

the original and approximated values. For example, ISABELA uses Pearson correlation of ≥0.99,

which implies that 99% of approximated data is within the error bound. Since this metric

measures the strength and direction of the linear relationship between two, the error bound is

relative, thus no absolute error guarantee outside the defined range. fpzip also allows the similar

relative error bound because of its use of the non-uniform quantization [23].

In contrast to traditional lossy compression algorithms, the clustering-based scheme is de-

signed to process data under the condition that the compressed data is guaranteed with a

user-specified absolute error bound or a user tolerance error rate E. The value of E is usually

determined based on the application domain knowledge. For each point in ∆, if abs(∆) < E, the

clustering-based algorithm uses 0 as its approximation value because it already meets the user

tolerance error threshold. Otherwise, it uses the clustering algorithm to learn the distribution

of ∆ and partitions the data in ∆ based on their similarity in order to meet the user tolerance

error-bound E. The compression ratio shown in Figure 1(d) was obtained while the error rate

and the approximation precision are fixed at 0.1% and 8 bits, respectively. In terms of the mean

error rate, all variables show less than 0.025% of error rates, guaranteeing the user-specified

error rate. Similar to the clustering-based algorithm, APAX also allows the absolute error to be

bounded within each APAX block. Quantization is the only source of loss in APAX, which can

be tunable by the user [23].
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3.4. Tradeoffs Approximation Precision and Error Rate

One obvious advantage of using lossy compression techniques is that users can tradeoff

between the approximation precision and compression ratio. In order to demonstrate this, we

varied the number of precision bits to see how the clustering-based lossy compression algorithm

performs in terms of compression ratio and error rate. In this set of experiments, we fix the

user-defined tolerable error rate at 0.1%. As one can expect, increasing the approximation bits

improved the compression ratio significantly. For instance, the compression ratio increases dra-

matically when the number of bits changed from 8 to 9 bits, 40% to 80% while the mean error

rate is increased only by 0.02%. Furthermore, if the approximation precision is 10 bits, then

all data points became compressible, resulting in compression ratio of 8x with the mean error

rate less than 0.05%. Other approximation schemes like log-scale or equal-with binning achieved

similar results on rlds and other variables.

Lossy compression algorithms can perform differently depending on the amount of infor-

mation loss. For example, when we vary the user tolerable error rate from 0.1% (default error

bound) to 0.5%, the average compression ratio by the clustering-based scheme increased from

2.1x up to 4.7x. The mean error rate is also increased from 0.02% to 0.12% as the user tolerable

error rate is increased 5 times. We however note that they are still much smaller than the user

tolerable error rate. For example, we could maintain the mean error rate of 0.1% even with the

user tolerable error rate of 0.4%.

3.5. Comparison

Table 2 gives a comparison of lossy compression algorithms described so far. Each scheme

uses different transformation methods in order to increase compressibility, and then apply dif-

ferent approximation algorithms on those transformed data. As compared with Table 1, one can

clearly see that lossy compression algorithms achieve much higher compression ratios; up to 8x

depending on how compressible data is. Another important observation from Table 2 is that

data transformation helps increase the compression ratio significantly. fpzip achieved only 1.29x

of compression ratio because it uses only prediction mechanism based on data traversal without

applying any transformation on the actual data. ISABELA and the clustering-based scheme

achieved the highest compression ratio because both schemes first transform original data into

a compression-friendly format.

We note that each data point (assuming 64-bit) in lossy compression algorithm is divided

into two categories: compressible and incompressible. All the compressible data is represented

as an approximation bit number (e.g., 8 bits) whereas the incompressible data is stored as

the original bit number (i.e., 64-bit). Since the compressible portion is essentially represented

as integer streams, we can further increase the compression ratio by applying one of existing

lossless compression techniques like zlib [2], bzlip2, or LZO to the index data. As discussed in

[22], indices, which are integer values, are easy to compress with standard lossless compressions,

resulting in about 75%–90% of additional compression ratio.

While not extensively discussed in this paper, there are studies where data is encoded not

at system-level but at application-level to tolerate faults. A recent study by Chen [9] describes

an alternative technique, called Algorithm-Based Fault Tolerance (ABFT), that eschews tra-

ditional checkpointing techniques to incorporate error recovery into algorithmic design. Chen

demonstrates essentially overhead-free recovery mechanisms for the Jacobi method and conju-
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gate gradient descent, algorithmic error recovery mechanisms are by necessity specific to the

code being run. Moreover, they are potentially vulnerable to compound or cascading failures,

which periodic checkpointing would help to alleviate, even in cases where such techniques are

applicable.

Table 2. Comparison of lossy compression schemes.

Scheme
Transformation

Applied
Approximation Algorithm

Compression
Ratio

Error
bound

ISABELA [22] sorting apply B-spline on sorted data up to 5x
≥0.99 of

correlation

fpzip [26] not used

traverse data in a coherent order and then uses
the corresponding n-dimensional (where n is the
dimensionality of the data) Lorenzo predictor to
predict the subsequent values. It next maps the
predicted values and actual values to their integer
representations, and encodes the XORd’ residual
between these values.

1.29x relative

APAX [30] not used
encodes sequential blocks of input data elements
with user-selected block size between 64 and
16,384

1.33x∼4x absolute

Clustering-
based

change ratios
between

consecutive
iterations

approximate on change ratios; full checkpoint ini-
tially and when the error rate is close to user-
specified bound

2.98x∼8x
<0.1%

absolute

4. Conclusion

This paper argues that while the traditional checkpointing continues to be a crucial mecha-

nism to tolerate system failures in many scientific applications, it is also becoming challenging in

the exascale era mainly because of limited I/O scalability and associated energy cost. This paper

describes several efforts to use lossless compression on checkpoint data to relieve such overheads

and shows that they are limited because of inherent randomness in scientific datasets. This paper

then describes several lossy compression algorithms that radically change how checkpoint data

is stored with tunable error bounding mechanisms. Hence, we predict the lossy compression to

be a promising way to reduce checkpoint overheads without compromising the quality of dataset

that scientific simulation operates on.

For lossy compressions to be actually deployed in the exscale computing era, several future

challenges remain. The first challenge would be reducing the memory requirements to perform

in-situ compression. This is especially challenging because of two facts: (1) per-core memory

is expected to continue to decrease in the exascle systems, and (2) transformation techniques

to improve the effectiveness of compressions typically require extra memory, making memory

a scarce resource. Second, given the amount of increasing data volumes and number of CPU

cores, the compression should be performed in parallel. A couple of current parallel I/O libraries

support data compression, but the compression is performed individually, in order words, com-

pression is locally optimized without knowing what others do. Lastly, compression algorithms

must take advantages of several emerging techniques to be used in future exascale systems such

as SSD, PCRAM, etc., as they will significantly impact future memory hierarchy.
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Extreme Big Data (EBD): Next Generation Big Data

Infrastructure Technologies Towards Yottabyte/Year
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Our claim is that so-called “Big Data” will evolve into a new era with proliferation of data

from multiple sources such as massive numbers of sensors whose resolution is increasing expo-

nentially, high-resolution simulations generating huge data results, as well as evolution of social

infrastructures that allow for “opening up of data silos”, i.e., data sources being abundant across

the world instead of being confined within an institution, much as how scientific data are being

handled in the modern era as a common asset openly accessible within and across disciplines. Such

a situation would create the need for not only petabytes to zetabytes of capacity and beyond, but

also for extreme scale computing power. Our new project, sponsored under the Japanese JST-

CREST program is called “Extreme Big Data”, and aims to achieve the convergence of extreme

supercomputing and big data in order to cope with such explosion of data. The project consists of

six teams, three of which deals with defining future EBD convergent SW/HW architecture and

system, and the other three the EBD co-design applications that represent different facets of big

data, in metagenomics, social simulation, and climate simulation with real-time data assimilation.

Although the project is still early in its lifetime, started in Oct. 2013, we have already achieved

several notable results, including becoming world #1 on the Green Graph 500, a benchmark to

measure the power efficiency of graph processing that appear in typical big data scenarios.

Keywords: Big Data, Supercomputing, Extreme Computing and Big Data Convergence, Data

Intensive Computing, Non-Volatile Memory.

1. Introduction

“Big Data” has become a hot topic in mainstream IT; although large scale databases as well

as data intensive computing has existed from the past, amassing petabytes to even zetabytes of

data is becoming a reality, as overall data generation rate and its traffic, both on the Internet as

well as dedicated instrumentation networks, are exploding at exponential ratio as Moore’s law

continues to speed up processing, enlarge memory, and increase sensor resolution, etc.

However, to most common people “Big Data” is almost synonymous to “mining people’s

private data (such as purchase history, credit card spending, location tracking, etc.) for market-

ing purposes”. Such a definition is not only extremely narrow, limiting the potential application

impact to the global society in areas such as medicine, energy, climate, manufacturing, etc., but

also imposes unnecessary underestimation of the infrastructure necessary for future Big Data,

causing unnecessary divide between traditional IDCs whose present-day “Big Data Infrastruc-

ture” often being a group of re-purposed web-server connected by at best 10GbE or even 1GbE

endpoint speeds; this is in contrast with interconnects of supercomputers today offering a few

orders of magnitude faster interconnects for massive data exchange for sophisticated processing

of data.
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As such, many instances of big data are not so “big” in terms of capacity nor processing

complexity, the latter often being simple mining to detect simple statistical trends, and/or

associativity with a small number of classes of silo’d datasets within an organization. This is

why simple data processing abstractions on simple hardware, such as Hadoop[1] running on

commodity servers, is widely employed. However, the future of big data is not expected to be

the case. There are various predictions on “breaking down of silos” where organizations will open

up their data for public consumption, either for free or for a fee, along with immense increase in

varieties of data sources driven by technologies such as IoT[12]. There, meaningful information

would be extracted from unstructured and seemingly uncorrelated data spanning exabytes to

zetabytes, utilizing higher-order O(n×m) algorithms on irregular structures such as graphs, as

well as conducting data assimilations with massive simulations in petaflops to even exaflops. This

is already happening in data-intensive science, in areas such as particle physics[2], cosmology[8],

life science[13], where sharing of large capacity research data as “open data” has become domain

practice; there is strong likelihood that this will proliferate to the common Internet, just as the

Web, which was originally envisioned to share scientific hypertext, took over the world as the

mainstream information sharing IT infrastructure.

We refer to such evolved state of big data as “Extreme Big Data”, or EBD for short, as a

counterpart to extreme computing. An IT infrastructure supporting EBD will involve massive

requirements of compute, capacity and bandwidth of resources throughout the system, as well

as co-existence of efficiency and real-time resource provisioning, as well as flexible programming

environment and adaptability of compute to data locations to minimize the overall data move-

ment Moreover, they have to be extremely power and space efficient, as those factors are the

principle parameters nowadays that limit the overall capacity of a given IT system.

Given such requirements, our claim is that, neither existing supercomputers, nor traditional

IDC Clouds, are appropriate for the task; rather, we believe that the convergence of the two are

necessary, based on the upcoming technology innovations as well as our own R&D to actually

achieve such effective convergence. These include extensive and hierarchical use of new genera-

tions of non-volatile memory (NVM) as well as processor-in-memory technologies to achieve high

capacity in memory and processing with very low power; high-bandwidth many-core processors

that can make use of such memory composed in a deep and hierarchical fashion; low latency

access of elements of such memory hierarchy, especially NVMs, from all parts of the machine

via a scalable, high-bandwidth, hi-bisection network; management of memory objects dispersed

and resident throughout the system across application boundaries as EBD Objects in the hi-

erarchy, as well as their automated performance tuning and high resiliency; various low-level

big-data workload algorithms such as graph algorithms and sorting of various types of keys;

various libraries, APIs, languages, as well as other programming abstractions for ease-of-use

by the programmer, hiding the complexity of such a large and deep system; finally, resource

management to accommodate complex workflows of both batch and real-time processing, being

able to schedule tasks balancing the processing requirements versus minimizing data movement.

With such comprehensive overhaul of the entire system stack, coupled with advances in

both computing and storage, we expect that we could amplify the EBD processing power of

existing Cloud datacenters by several orders of magnitude. Our latest project titled “Extreme

Big Data”, sponsored by the Japan Science and Technology Agency (JST), under the research

area program “Advanced Core Technologies for Big Data Integration” of the Strategic Basic

Research Program (CREST), embarked on a 5-year research to develop such EBD technologies
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during the period of Oct. 1st, 2013 to Sep. 30th, 2018. The project involves six internal teams,

three being in EBD systems area and the other three in EBD applications, in order to pursue

co-design of the EBD system stack. Figure 1 describes the overall scheme of the convergence

of the HPC and the big data architecture, and the necessity of the co-design with EBD grand

challenge applications.

In the project we plan on developing individual technological elements of EBD as mentioned

above, such as designing the future HPC – Big Data convergent architecture, including memory

hierarchy and network designs, as well as various algorithms and programing frameworks, along

with acceleration of system-wide data and resource management. The co-design applications

include life sciences, social simulations, and data assimilation in climate modeling, each with

different system-level as well as API requirements for EBD. We will also pursue attaining top-

level performance in big data benchmarks, such as the Graph 500[5], which measures the absolute

performance of graph processing, as well as the Green Graph 500[6], which ranks the power

efficiency of machines when processing the graphs under the Graph 500 rule. In fact, on the

November 2013 edition of the Green Graph 500, we achieved No.1 and No.4 in the world, the

latter result attained while offloading most of the graph data structures onto a Flash NVM.

Sorting is another important benchmark, where we aim to challenge Petabyte sorting speeds

on modern many-core processors such as GPUs and Xeon Phis. Finally, we plan on integrating

results from other groups working on large-scale big data hardware/software stack. Some of the

candidate systems include the Berkeley Spark[9] and ORNL Adios[4]. Figure 2 describes the

overall scheme, which instantiates some of the details from Figure 1

The intermediate results of the EBD project will be implemented on our next generation

TSUBAME3.0 supercomputer, the successor to the highly successful TSUBAME2.0[24], to be

commissioned in the first half of 2016. In the current design of TSUBAME3.0 is being done as

the phase 2 of the overall evolution of EBD architecture, and in that sense, TSUBAME3.0 could

be the first EBD convergent architecture in production.

The rest of the paper provides an overview of each element of our EBD project, focusing on

the candidate architecture, followed by synopsis of the system and application groups and their

status quo as of June, 2014, 9 months into the 5-year project.

Figure 1. Overview of EBD project Figure 2. EBD software stacks
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2. EBD Architecture

We will first discuss the envisioned EBD architecture. We will construct a series of EBD

architecture prototypes, either by adding additional resources to existing machines such as the

TSUBAME-KFC, or by building one entirely new. For both types of machines, the intent is

to assess the behavior of EBD applications of the future; for this purpose, we will identify

the various EBD benchmarks, as well as the EBD co-design applications, in order to model

the performance requirements of several classes of EBD applications running on the prototype

hardware.

At the same time, we will work with various vendors we have relationships with in our

TSUBAME project. Of particular importance is the design of the overall memory hierarchy

in relationship to the massively parallel, many-core processors such as the GPU or Xeon Phi

that are representative of the current generation of hardware. Non-volatile memory will be used

judiciously in order to attain large memory and storage capacity while preserving performance

as much as possible. The four phases of the prototypes are being planned as follows: the first

phase will involve standard mSATA SSD devices; second generation will involve much faster M.2

flash devices and large number of I/O channels directly utilizing fast I/O busses such as PCI-e;

the third generation will incorporate next generation NVM directly connected to memory or

some type of coherent bus such as HyperTransport or NVIDIA NV-Link; the third generation

will involve placing flash memory or preferably newer generations of NVM on the memory bus

of the CPU along with the DRAM, greatly enhancing the bandwidth and lowering the latency;

finally, the future, forth generation hardware will integrate NVM, DRAM, and the lightweight

data-centric processing core on the same 3-D die-stacking configuration, possibly integrated

with heavyweight scalar-centric core that provides for performance in low-threaded workloads

(Figure 3). For the last architecture, the traditional I/O bandwidth will equal the memory

bandwidth on 3-D.

For each generation, we will be building a prototype, and/or creating a simulation environ-

ment to investigate their performance implications.

• Phase1 (2010- TSUBAME2.0-2.5 generation — Flash SSD local burst buffer): Each node

will embody one or more server-grade SSD in place of HDDs, resulting in capacity of

100GB-1TB range. Although such configuration is becoming more commonplace, in 2010

the durability of SSDs were substantially questioned under heavy generalized HPC work-

load for TSUBAME2.0, which for the first time for a petascale supercomputer embodied

60GB × 2 sever-grade SLC SSDs per each node. Fortunately, such a concern has been dis-

proven, for the nearly 3,000 SSDs in TSUBAME2.0 has seen very small number of failures,

despite many of the localized and thus heavy I/O workloads being delegated to the SSDs.

The aggregate capacity of SSDs in TSUBAME2.0 was 190 Terabytes, with approximately

400-500GB/s of I/O Bandwidth.

• Phase2 (2015- TSUBAME3.0 generation — large capacity flash with small embedded SSD

modules): Each node will be designed from ground-up to embody multiple small high-

bandwidth SSD modules such as the M.2 module with PCI-e connection. This will allow

for pseudo-direct DMA access of the flash modules, and allows for global management of

all the SSDs aggregated as a single namespace entity. Aggregate capacity can be as high as

10 Petabytes, with 10 Terabyte/s I/O bandwidth, which is several times faster compared

to all the Top500 machines, whose I/O bandwidth does not exceed 2 Terabytes/s.
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• Phase3: (2017-2020 Non Volatile Memory Modules): By placing the non-volatile memory

modules onto the memory bus, in the form of DIMM or other modules, will allow for great

increase in bandwidth and capacity while lowering the latency considerably, with DIMM

modules affording bandwidths of 25 Gigabyte/s or greater. However, since the system

will have to be composed of both DRAM and NVM DIMMs due to durability as well as

performance issues, effective algorithms to make use of each memory region according to

the access characteristics of memory objects must be devised. I/O bandwidth can become

as high as Petabyte/s range depending on the NVM technology.

• Phase4: (2020-): (3-D integration of NVM and DRAM and PIM) The ultimate evolution

of the architecture is 3-D stacking of NVM and DRAM on a low power processor, which is

in effect a PIM (Processor-In-Memory) in modern incarnation3. Optionally, large cores can

be integrated using 2.5D interposer technology for low latency, low-threaded processing.

Such an architecture will totally unify NVM with DRAM, with tremendous bandwidth

while being low power with 3-D stacking. I/O bandwidth, which is essentially on par with

the memory bandwidth, can reach 10s to 100s of Petabytes/s, achieving a Yottabyte/year

data processing capability.

As such, the evolution of the I/O bandwidth can be high as 4-5 orders of magnitude in 10 years,

from hundreds of Gigabytes/s for TSUBAME2.0 in 2010, to 10s of Petabytes/s for the 2020-

fourth generation EBD machine. The issue then, is what are the system software, programming

paradigms, basic EBD algorithms, and applications that could best utilize such immense and

rapid increase in performance.

Figure 3. EBD architecture

3. EBD System Software

As described in previous section, EBD machines are based on various novel technolo-

gies derived from extreme-scale supercomputing, such as many-core parallel processing, ultra

high bandwidth/low latency networks, non-volatile memory techniques, and high performance

database techniques, etc.. Therefore, we have to develop completely redesigned new software

stacks that support EBD architecture, since existing conventional system software can not sup-

port such new hardware device technologies.
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3.1. Many-core I/O

Many-core processors such as GPU can provide extremely fast computational power and

high memory bandwidth; however, the capacity of memory on GPU devices are limited in size

to accommodate EBD applications. In order to mitigate the GPU capacity problem, we have

designed a novel I/O prototype machine that consist of multiple GPU accelerators and multiple

mini SATA (mSATA) SSD devices. In particular, aggregation of multiple mSATA SSDs and

strategy for utilization the GPU and NVM devices are essential to perform high bandwidth,

high IOPS as well as large capacity and low energy consumption. Our preliminary results based

on basic I/O bandwidth to the prototype with 16 of mSATA SSD devices by fio I/O benchmarks

exhibit that the sequential read bandwidth achieves 7.69GB/s (92.4% of theoretical peak), and

the write bandwidth achieves 3.8GB/s (90.2% of theoretical peak). The results also exhibit

that using multiple mSATA SSDs performs 3.20 to 7.60 times faster than a common PCI-e

attached flash memory device, and 11.1 to 17.8 times faster than conventional SSDs attached on

a local compute node of TSUBAME 2.5. We also measure the performance of a matrix-vector

multiplication benchmark that overlaps file I/O from/to NVMs, memory copy between host

and GPUs, and computation on GPUs. The results using 280MB to 140GB of input matrices,

which exceed the GPU memory capacity, exhibit that our prototype can achieve 3.06GB/s from

8 mSATA SSDs to a GPU device by using the RAID0 configuration with appropriate stripe

size. We also found that using pinned memory and setting small chunk size for overlapping

significantly affect data transfer performance.

3.2. Programming Framework

EBD architecture with deep memory hierarchy is encapsulated as EBD objects. In order to

operate EBD architecture from applications, we provide a programming framework for the EBD

objects based on the system-level programming model and the user-level programming model.

The system-level programming model provides specific interfaces and concrete implementations

for EBD objects to collect hardware information and to control data layout, while the user-level

programming model provides several features to control EBD objects from applications.

As an example of ongoing work on the EBD programming framework, we have developed

a MapReduce-style programming framework, called HAMAR (Highly Accelerated MapReduce)

for massively data parallel processing on EBD machines with deep hierarchical memory [26].

Our framework automatically handles memory overflows from GPUs by dynamically dividing

data into multiple chunks and overlaps CPU-GPU data transfer and computation on GPUs as

much as possible. Our experimental results for PageRank graph applications on TSUBAME2.5

using 1024 nodes (12288 CPU cores, 3072 GPUs) exhibit that our GPU-based implementation

performs 2.10x faster than running on CPU when the size of graph exceeds the capacity of

GPU’s device memory.

3.3. Basic Algorithms

Based on novel features of of massively parallel many-core processors and nonvolatile mem-

ory devices, we develop basic algorithms, such as indexing, multi dimensional array matching,

sorting, unstructured graph search, spatial clustering, etc., to support EBD applications.

As an instance of implementation to overcome deepening memory hierarchy in extreme-scale

computing systems, we have developed a fast graph processing implementation with a novel
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graph offloading technique using NVMs for Hybrid BFS (Breadth-First Search) algorithm that

is widely used in the Graph500 benchmark [21]. Hybrid BFS uses a mixture of two approaches,

a conventional top-down approach and a bottom-up approach by changing search directions

using parameters. Based on the DRAM-based NUMA-optimized Hybrid BFS implementation

called NETAL (NETwork Analysis Library), which achieves 10.5 GTEPS on the Graph500 list

(November 2012), we carefully offload infrequent accessed graph data to secondary semi-external

memory devices such as NVMs and directly read the data on the devices on demand. The results

using Graph500 problems shows that our approach with highly localized data access can achieve

competitive performance with the conventional DRAM only approach, although we aggressively

extend memory footprints onto NVMs. Using the implementation with some improvements, we

have also achieved 4.35MTEPS/Watt on a Scale 30 problem and ranked the 4th position in the

big data category in the Green Graph500 (November 2013), which is the 1st position using a

single commodity server in the big data category.

Large-scale distributed sorting is another instance for EBD basic algorithms. Splitter-based

parallel sorting algorithms are known to be highly efficient for distributed sorting due to their

low communication complexity. Although using GPU accelerators could help to reduce the com-

putational cost in general, their effectiveness in distributed sorting algorithms on large-scale

heterogeneous GPU-based systems have not been well studied. We accelerate the existing Hyk-

Sort algorithm by offloading costly computation phases to GPU devices. Preliminary investi-

gations show that the local sort phase is dramatically accelerated by GPUs, while the merge

phase achieves negligible performance improvement. We then evaluate the performances of our

implementation with only local sort acceleration on the TSUBAME2.5 supercomputer that com-

prises over 4000 NVIDIA K20x GPUs. Performance evaluation of weak scaling shows that we

achieve 389 times speedup with 0.25TB/s throughput when sorting 4TB 64bit integer on 1024

nodes compared to running on 1 node; on the other hand, for CPU vs. GPU comparison, our

implementation achieves only 1.40 times speedup using 1024 nodes.

4. Distributed Object Store for EBD Applications

Extreme big data (EBD) applications may involve parallel access from handreds of thousands

of processes, which requires not only scalable performance of bandwidth but also I/O operations

per seconds (IOPS) to the number of processes. Important issue for scalable I/O bandwidth is to

maximize access locality to read and write data, and to accomodate parallel access of metadata

such as location of the data, from hundreds of thousands of clients. To improve the read access

locality, data location aware process scheduling is essential, which assigns processes depending

on the input data location. Regarding the write access, it is necessary to find a space to maximize

the locality that may depend on successive processes that read the data as an input.

This approach is adopted by Google file system [18] and MapReduce [15]. The Google file

system stores data blocks at local storage on compute nodes. The data blocks are replicated

to improve reliability and availability. Jobs of the MapReduce are allocated on compute nodes

considering the data block locations. Open source Apache Hadoop [1] implements the design

of Google file system and MapReduce, and plenty of research follows [14, 39, 40]. The Gfarm

file system [35] and the Pwrake workflow system [33] cover general workflow execution using

this locality aware approach. The Gfarm file system also stores data at local storage on compute

nodes. The Pwrake workflow system executes a workflow written in Rakefile in parallel assigning

processes on a compute node where the input data is stored. The Pwrake, moreover, allocates
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processes to minimize data transfer size among compute nodes during a whole workflow execution

by multi-constraint graph partitioning [34], which can reduce data transfer size of intermediate

data generated during the workflow execution.

EBD applications do not really require posix file system interface. It requires rather key-value

interface but having additional features. The first additional feature is specifying a collection

of key-value pairs. We call this collection a bag. The second feature is a range query of keys to

form a bag. How to form a bag is still under discussion, but the range query is considered to be

a basic operation to select key-value pairs. The third feature is to specify parallel operations for

one or two bags. When one bag is specified, the operations will be applied to each key in the

specified bag in parallel. When two bags are specified, they will be applied to all combinations

of two keys in each bag in parallel, which supports O(mn) complexity computation when bags

include m and n keys, respectively. The forth feature is a parallel query to analyze the output

data.

Figure 4. EBD distributed object store

We are designing an EBD distributed object store that has the above features, which consists

of distributed metadata server and local object stores (Figure 4). Regarding a local object

store, we assume flash storage device and non-volatile storage class memory in which the I/O

performance is improved by parallel data access. Hard disk drives have been a major storage

device, which performs well for sequential contiguous access, but not for parallel random accesses.

On the other hand, in case of flash storage and non-volatile storage class memory, the I/O

performance is improved by accessing in parallel. We design a nonblocking local object store that

does not require a lock for concurrent accesses using the OpenNVM API [3]. The OpenNVM API

provides a sparse address space and an atomic write operation. Traditional file system design

manages blocks of file data using multi-level indirect reference. Instead, our design is based on a

large-size region using the sparse address space, which avoids the overhead of indirect references.

A preliminary evaluation shows scalable IOPS performance when the number of thread increases.

When using 16 threads, it achieves 190 Kops/sec, while IOPS of existing directFS and XFS is

not improved and stays at 61 and 16 Kops/sec, respectively.

Regarding a range query of keys, we are currently designing in-memory lock-free concurrent

B+Tree. Supported operations are search, insert and delete. Dynamic rebalancing of the tree,

i.e. tree nodes merge and split, is also supported. Nodes to be split or merged are frozen until

replaced by new nodes. Search is not delayed by rebalancing. Search could access old (frozen)

and new nodes. New Nodes may be modified for insert or delete only after replacement took
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place. Insert and delete operations help finalize the replacement of encountered frozen nodes.

Currently the design is under the validation.

5. EBD Interconnection Networks

5.1. Objective

Extreme big data (EBD) processing would generate different access patterns from tradi-

tional stencil and uniform communications in parallel scientific applications and lightweight

communications in datacenters. It sometimes becomes access to remote flash devices, while tra-

ditional HPC applications rely on remote direct memory access. In this section we will design

interconnection networks for such EBD processing. Figure 5 shows our quantitative goals of

EBD interconnection networks. Our main challenges are (1) communication to remote flash in

low latency, i.e. less than 10µs for 4kB transfer, and (2) optimization of non-regular access that

may be determined by each execution. In this context we will attempt to make a new network

topology and its custom deadlock-free routing, and fine-grain direct communication mechanism

to storage. It is free from TCP/IP basis and we will support native communication, e.g. IBverb

on InfiniBand.

5.2. Existing Datacenter and Supercomputer Networks

Existing interconnection networks for massively parallel computing can be classified into

datacenter and supercomputer networks. Typical datacenter networks (DCNs) are built with a

hierarchical structure with so-called top-of-rack (ToR) switches, aggregation switches, cluster

routers, and border routers [10]. Since Ethernet has a good economy especially for 1Gbps and

10Gbps links and switches, it commonly used in DCNs. Fat tree or tree topologies are commonly

used in DCNs, because they fit with its layered structure and user partitioning. By contrast,

supercomputer networks use high-bandwidth links, such as 40Gbps, with custom routing on

regular tightly-coupled topologies, such as k-ary n-cubes. Since InfiniBand is frequently used

in supercomputer networks, it can support arbitrary topologies with their custom routings. Su-

percomputer networks are well optimized to regular communication patterns, such as stencil

or uniform access by making the best use of regular structure. Our EBD interconnection net-

works should be different from both DCNs and supercomputer networks, because non-regular

unpredictable access patterns are essential for EBD processing (see Figure 5).

5.3. Preliminary Design of EBD Interconnection Networks

5.3.1. Network Topology

Our preliminary design focuses on network topology. We attempt to make a metatopology

in order to minimize jitter of network latency and average network latency for EBD direct

storage communication that includes little regularity. For a given switch degree, we already

propose a design framework of network topology[17]. The proposed topology introduces random

connections to achieve low latency, but does so in a way that accounts for the physical layout

of the topology so as to lead to further cable length and latency reductions[17]. Figure 6 is an

example of the proposed topology and its layout. Graph analysis results[17] showed that the

proposed topology has good properties in terms of latency, cable length, and throughput, when
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compared to traditional low-degree torus and moderate-degree hypercube topologies, to high-

degree fully-connected Dragonfly topologies[22], to the HyperX[11] topology, and to recently

proposed fully random topologies[23].

Non-uniform 

access

Low latency write/read 

10μs for 4KB

Low-jitter topology 

w/ random shortcuts

TCP/IP bypassing

direct comm. to flash

Supercomputers:

• Dedicated to neighboring

and uniform access

Typical Datacenters:

• Poor scalability

• 1GbE  + 10GbE

• TCP/IP basis  

Extreme Big Data Flow

EBD interconnect

Figure 5. An overview of EBD

interconnection networks
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Figure 6. An example of the proposed network

topology

5.3.2. Low-jitter Routing

Our key challenge for the network topology that has a little regularity, such as one in

the previous subsection, is to minimize the jitter of end-to-end latency for arbitrary pair of

compute nodes. Historically a minimal or shortest-path deadlock-free routing has been used

for interconnection networks. By contrast, in EBD interconnection networks, to minimize the

variation of end-to-end network latency, our design allows to have non-minimal paths. We are

also planning to use a quality-of-service (QoS) mechanism for this purpose.

A potential scalability issue is the computational cost of path computation for topology-

agnostic deadlock-free routing, which is more complex than when routing on structured topolo-

gies (see the survey in [16]). However, this computation needs to be performed only when initially

deploying the system and after a change in system configuration (e.g. due to link/switch failure).

Consequently, concerns about path computation should arise only at extremely large scale[23].

5.3.3. Preliminary Evaluation

We use a cycle-accurate network simulator written in C++ [23]. A header flit transfer

requires at least 60 ns delay for a switch, including routing, virtual-channel allocation, switch

allocation, and flit transfer from an channel to an output channel through a crossbar. Link delay

is assumed to be 5 ns/m on an optical cable and the length of each cable is computed based

on the cabinet layout. We use deadlock-free low-jitter routing for the proposed topology. We

use three synthetic traffic patterns that determine source-and-destination pairs, namely random

uniform.

Figure 7 shows latency (averaged over all messages) vs. accepted traffic (the load that is

injected into the network in Gbps/host) for all three traffic patterns, for networks with 256

switches located in 64 cabinets. Our EBD interconnection networks, named as “Skywalk” in the

figures, achieves latency lower than that of Random for the same degree. Only Dragonfly, resp.

HyperX, has latency lower than Skywalk but with a much higher degrees of 19, resp. 17, when

compared to Skywalk’s degree of at most 11 in these results[17].
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Figure 7. Average latency vs. throughput (results are taken from our previous work [17]). “Sky-

walk” is the design for our EBD interconnection networks.

6. Proxy EBD Applications

6.1. Metagenome Analysis

Today, the production of biological and medical data has been rapidly increased year by

year. Particularly, the increase of genomic data is outstanding because of the improvement of

DNA sequencers, which are generally called next-generation sequencers. The latest sequencer,

Illumina’s HiSeq 2500, can produce several hundred billions of base pairs (bp) of sequence data on

a single run of the machine. The throughput of the system is approximately 10,000 times higher

than that of previous sequencers. However, current most sequencers only produce information

in short fragments of DNA sequences called reads. Thus, it is necessary to perform various

analyses based on the DNA reads on a computer for obtaining biologically useful information.

The current genome analyses require not only computation power but also huge storage and I/O

performance because the analyses have to read huge amount of queries and a large reference

sequence database and write the results whose size is often equal to or more than that of queries.

6.1.1. Emerging requirements on metagenome analysis

Metagenome analysis is the study of the genomes of uncultured microbes obtained directly

from microbial communities in their natural habitats. The analysis is useful for not only under-

standing symbiotic systems but also watching environment pollutions [36]. However, the analysis

has to deal with multiple organisms simultaneously and thus the size of the query sequences be-

come extremely big data. It is often hundreds times larger than that of general genome analysis.

In addition, metagenome analysis requires comparisons of sequence data obtained from a se-

quencer with sequence data of remote homologues in databases. Therefore, sensitive sequence

homology searches and huge reference sequence database, which contains genome sequences of

all known organisms, are required in metagenome analysis. As a result, comparison of EBD

(queries) versus EBD (reference databases) is required, and there are serious problems both in

the requirement of computation power and I/O performance.

For dealing the requirement of computation power on metagenome analysis, we have al-

ready developed several novel sequence search algorithms and tools for metagenome analysis.

GHOSTM is a GPU-accelerated homology search tool and achieved calculation speeds that

were 130 times faster than BLAST [28]. GHOSTX employs suffix array-based fast algorithm

and achieved approximately 131-165 times acceleration over BLAST at similar levels of sensi-
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tivity [29]. However, by using the fast search algorithm, the problem of I/O performance had

become more serious. Figure 8 shows the speedup of the GHOSTM-based metagenome analysis

on TSUBAME2.0 of Tokyo Institute of Technology. The speedup drastically deceases at 2,520

GPUs because of insufficient load balancing and I/O performance of the system [27]. The result

indicated the more sophisticated system especially for I/O handing is required for large-scale

metagenome analysis.

Now, we are developing a novel metagenomic data analysis pipeline on TSUBAME2.5 and

K computer at the RIKEN Advanced Institute for Computational Science. To improve the

load balancing and I/O processes, we avoided using a simple batch job system, and developed

“mpidp” that is a versatile job distribution framework based on Master-Worker model. The

system, GHOST-MP, has already showed clearly better scaling than the previous system on

TSUBAME2.5 (Figure 9)

Figure 8. Speedup of GHOSTM-based

pipeline on TSUBAME2.0
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Figure 9. Speedup of GHOST-MP based

pipeline on TSUBAME2.5

6.1.2. Metagenome analysis of human oral microbiome

We are now analyzing huge amount of human oral microbiome metagenome data released by

human microbiome project (HMP) [19] on K computer. The data consists of 418 samples from

various parts of human oral cavity, and includes approximately 26 billion reads, which is more

than 5Tb (base pairs) (Table 1). For every query read sequences, we have performed sensitive

sequence homology searches to well-annotated reference sequence database (KEGG genes) and

revealed evolutionally related proteins. Several biological analyses of the results, which include

analysis of active genes on metabolic pathways (Figure 10), have been finished but the most of

analyses are now ongoing.

6.1.3. Novel APIs for EBD processing

Through the large-scale metagenome analysis on K computer and TSUBAME2.5, the bot-

tlenecks of the pipeline have been gradually emerged. In addition, the “mpidp” is a simple

tool and is not encapsulated. To use the current “mpidp”, the users have to write additional

codes and instruct the disk accesses. Therefore, we are now designing novel APIs for process-

ing EBD such as metagenome data. Currently, we focus on metagenome analysis. However, the

other applications such as protein-protein interaction prediction [25] and in silico screening of
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Table 1. The detail of human oral metagenome data used in the

analysis

Subsite # samples # M reads # base pairs (Gb)

Saliva 5 278 56

Keratinized gingiva 6 361 73

Buccal mucosa 121 7478 1485

Hard plate 1 54 11

Palatine tonsils 6 373 74

Subgingival plaque 8 517 104

Supragingival plaque 128 7965 1595

Throat 7 393 79

Tongue dorsum 136 8708 1743

Total 418 26131 5220
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Figure 10. Active pathways in whole supragigival plaque samples

drug compounds also have to read and write huge amount of data, and importantly require a

cross matching between EBD (query) versus EBD (reference). We will also perform requirement

analysis for these applications in order to make the APIs be more universal.

6.2. Large-Scale Graph Analytics and Billion-Scale Social Simulation

This section introduces some of the example applications handling extremely big data with

supercomputers such as large-scale network analysis, X10-based large-scale graph analytics li-

brary, Graph500 benchmark, and billion-scale social simulation.

6.2.1. ScaleGraph: X10-Based Large-Scale Graph Analytic Library

Recently, large-scale graph analytics has become a very popular topic owing to the emergence

of gigantic graphs whose number of vertices and edges is in millions, billions or even trillions.

Many graph analytics libraries and frameworks have been proposed with various computational

models and programming languages to deal with such graphs. X10 programming language is a

PGAS language that aims at both software performance and programmer’s productivity. We

introduce ScaleGraph library [7] developed using X10 programming to illustrate the use of X10

for large-scale graph analytics. ScaleGraph library provides XPregel framework that is inspired

by Google’s Pregel computation model, serving as a building block for implementing graph

kernels. We also optimized X10 runtime in some parts such as collective communication, String
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data representation, data structure, and file IO, to achieve further performance. As of this

writing, the library supports varous parallel and distributed graph kernels such as PageRank,

spectral clustering, degree distribution, betweenness centrality, HyperANF, strongly-connected

component, maximum flow, single source shortest path, and breadth first search.

We evaluated the performance and scalability of all graph kernels available in ScaleGraph

libraries on top of the TSUBAME 2.5 supercomputer with up to 128 nodes. The result shows

that most kernels could solve billion-scale artifical data following social network structures and

also achieve moderate scalability. We also performed the evaluation using the Twitter network

as 2012/10 whose graph is composed of 496 millions of users and 28.5 billions of following

relationships. The library successfully handles such a gigantic graph on 128 of machine nodes.

To the best of our knowledge, ScaleGraph is the first X10-based library to address performance,

scalability and productivity issues in dealing with large-scale graph analytics.

6.2.2. Graph500 Benchmark

As an alternative to Linpack, Graph500 [5] was recently developed. We conducted a thor-

ough study of the algorithms of the reference implementations and their performance in an

earlier paper [32]. Based on that work, we implemented a scalable and high-performance im-

plementation of an optimized Graph500 benchmark for large distributed environments [37][38].

In contrast to the computation-intensive benchmark used by TOP500, Graph500 is a data-

intensive benchmark. It does breadth-first searches in undirected large graphs generated by a

scalable data generator based on a Kronecker graph. There are six problem classes: toy, mini,

small, medium, large, and huge. Each problem solves a different size graph defined by a Scale

parameter, which is the base 2 logarithm of the number of vertices. For example, the level Scale

26 for toy means 226 and corresponds to 1010 bytes occupying 17 GB of memory. The six Scale

values are 26, 29, 32, 36, 39, and 42 for the six classes. The largest problem, huge (Scale 42),

needs to handle around 1.1 PB of memory. As of this writing, Scale 40 is the largest that has

been solved by a top-ranked supercomputer. Our work [37] proposed an optimized method based

on 2D partitioning and other methods such as communication compression and vertex sorting.

Our optimized implementation can handle BFS (Breadth First Search) of a large graph with

Scale 35 with 462.25 GE/s while using 1366 nodes and 16,392 CPU cores. This competition

is greatly challenging since new scalable algorithms have been proposed rapidly. We have been

continuously enhancing the scalable algorithm and implementation on various supercomputers.

6.2.3. Billion-Scale Social Simulation

We introduce billion-scale social simulation [30][31] in this section. Towards the contribution

to the human society, global economy, ecology, the analysis of human brain characteristics and

our daily life, the research in multi-agent simulation is entering into the era of simulating billion-

scale agents. Although prior arts tackle distributed agent simulation platform to achieve this

goal, it is not sufficient to simulation billion-scale agent behaviors. Based on this observation, we

report the first effort for building such an infrastructure platform that handles billion-scale agent

simulation platform. In our previous work, we introduce X10-based agent simulation platform

for such a purpose and presents its application to traffic simulation. We were able to handle

only at maximum 10 millions of agents, but the performance was not scalable due to various

reasons such as work load imbalance, global synchronization. Our work in [31] present the
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work of purely implementing the whole simulation stack including both the simulation runtime

and the application layer such as traffic simulation by the use of the state-of-the-art PGAS

language. By implementing the system in such a manner and evaluating the system in highly

distributed systems, it is observed that the system can be close to handle billion-scale agents

in near real-time. The first experimental result is that the performance scalability is greatly

achieved by simulating 1 millions of agents on 1536 CPU cores and 256 nodes in the TSUBAME

2.5 supercomputer. By compiling fully X10-based agent simulation system into C++ and MPI,

it only takes 77 seconds for 600 simulation steps which is nearly 10 times faster than real-time.

Moreover, by using the entire whole country-wide network of India as the agents underlying

infrastructure, we successfully simulated 1 billion agents with 400 nodes. This is the first attempt

to deal with such a gigantic number of agents and we believe that this infrastructure would be

the basis of large-scale agent simulation in various fields.

6.3. Big Data Assimilation in Weather Forecast Applications

Contemporary weather forecasting relies on numerical simulations, and the accuracy of

numerical weather prediction (NWP) is very sensitive to the accuracy of initial conditions or

estimates of the current state of the atmosphere. Data assimilation provides the optimal com-

bination of numerical simulations and observational data based on statistical mathematics and

finds accurate initial conditions for more accurate forecasts.

The EBD issue arises in NWP due to the rapid increase of data volume in numerical simula-

tions and observations. With leading-edge high-performance computing and sensing technologies,

we may design an extremely demanding NWP system by a factor of 100 or more, that is what we

call the “Big Data Assimilation (BDA)” revolution. We foresee that the future of NWP would

be directed to the BDA, that is considered to be an important EBD application.

The rapid development of high-performance computing technologies enables higher-

resolution simulations, which in turn enable an effective use of dense and frequent observations

that have not been used well previously. In fact, dense observations from satellites are thinned

if the numerical simulations cannot represent the small-scale phenomena captured by satellites.

Also, new sensing technologies enable new types of sensors that produce data at a rate greater by

two orders of magnitude than the current sensors. For example, the phased array weather radars

(PAWR) implemented at Osaka and Kobe provide three-dimensional scanning of raindrops ev-

ery 30 seconds at a 100-m resolution with 100 elevation angles, these numbers compared with

about 15 elevation angles in 5 minutes or so in conventional Doppler radars. The next-generation

geostationary satellite “Himawari-8” of the Japan Meteorological Agency (JMA) is capable of

scanning a few limited areas in 30 seconds, compared with the current rapid scan in 5 minutes.

The data produced by the new types of sensors are extremely rapid and useful for capturing

smaller-scale phenomena. Severe weather events may be caused by a single cumulonimbus cloud

at a few km scale with lifetime of the order of 10 minutes. For such short phenomena, the

linear tangent assumption made in most data assimilation methods would be valid only in the

order of less than a minute. This motivates us to design a super-rapid NWP system using

the every-30-second data from the new types of sensors. At this moment, only the leading-

edge supercomputers can run simulations at a 100-m or higher resolution to make use of the

dense and frequent data. About 2 Peta floating point operations are required to run 100 30-

second simulations at a 100-m resolution. 100 simulations provide an approximate representation

of the forecast uncertainties in the local ensemble transform Kalman filter [20], an advanced

S. Matsuoka, H. Sato, O. Tatebe, F. Takatsu, M. Amin Jabri, M. Koibuchi, I. Fujiwara...

2014, Vol. 1, No. 2 103



data assimilation algorithm. We may spend only 10 seconds for the 100 simulations for timely

forecasts, requiring 200 TFLOPS effective performance; this is possible using a quarter of 10-

Peta-FLOPS “K computer” if we assume relatively optimistic 10 % efficiency.

The 100 simulations produce 200 GB data, that are transferred to the data assimilation

module in a few seconds. Data assimilation merges the 200 GB forecast data with observations

in the past 30 seconds, and produces another 200 GB data for the next 30-second forecasts. The

tandem forecast-assimilation procedure are repeated every 30 seconds as new data keep coming

so frequently.

To build the revolutionary rapid-update NWP system with high reliability, a co-design of

software and hardware is essential. The rapid data transfer between forecast and data assimi-

lation modules requires sufficient hardware capacity with specialized software design. Also, we

expect that massively parallel high-performance EBD hardware would fail at a certain rate, while

the data will keep coming every 30 seconds. In case of hardware failure, we may be forced to skip

several steps of data assimilation. We could take advantage of four-dimensional LETKF [20], in

which the past data are treated simultaneously in a single data assimilation step. Namely, we

could skip several steps during the hardware failure, but still keep all data used effectively.

The BDA system with 30-second update cycles is two orders of magnitude more rapid than

the currently used NWP systems. The operational global NWP is updated typically every 6

hours for synoptic weather at 2000 km scale. At the highest frequency for mesoscale weather

at 20 to 200 km scale, forecasts are updated every hour in regional NWP systems including

the Rapid Refresh (RAP) at the National Centers for Environmental Prediction (NCEP) and

the Local Forecasting Model (LFM) at JMA. The 100-times more rapid processing of BDA is

extremely demanding, but it is worth exploring such a rapid system to prevent and mitigate

disasters caused by local severe weather such as heavy rainstorm and tornadoes.

7. Conclusions

We have introduced and gave an overview of our latest EBD (Extreme Big Data) project,

which aims to achieve future convergence of big data and extreme supercomputing. By utiliz-

ing existing as well as future technologies gearing towards exascale, such as massively parallel

processors, non-volatile memory, 3-D memory stacking, as well as high-bandwidth optics net-

work, a new EBD convergent architecture can be constructed with which exabytes of data can

be effectively processed. On top, a new system software stack that maximizes the underlying

hardware to allow for massive data to be processed fast, including components such as bottom-

level communication layer, distributed object management, basic algorithmic and programming

frameworks, resource management, etc., is being developed, with considerations for exploiting

other big data software framework. In order to assure that the EBD application requirements

are being properly reflected, the system group is engaged in a co-design activity with three EBD

application groups, each encompassing different type of application area as well as requirements.

The results of the research will be deployed not only onto prototype hardware, but also pro-

duction machines such as TSUBAME3.0, which is slated to be deployed in the first half of 2016

as one of the first “EBD” convergent production machine. As mentioned the project has only

begun, still in its first year, but we have already achieved some notable results such as being

world #1 on the Green Graph 500 list.

This research was supported by JST, CREST.
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Scalable parallel performance measurement and analysis tools –

state-of-the-art and future challenges

B. Mohr1

Current large-scale HPC systems consist of complex configurations with a huge number of

potentially heterogeneous components. As the systems get larger, their behavior becomes more

and more dynamic and unpredictable because of hard- and software re-configurations due to

fault recovery and power usage optimizations. Deep software hierarchies of large, complex system

software and middleware components are required to operate such systems. Therefore, porting,

adapting and tuning applications to today’s complex systems is a complicated and time-consuming

task. Sophisticated integrated performance measurement, analysis, and optimization capabilities

are required to efficiently utilize such systems. This article will summarize the state-of-the-art of

scalable and portable parallel performance tools and the challenges these tools are facing on future

extreme-scale and big data systems.

Keywords: parallel programming, performance tools, extreme scale computing.

Introduction

Current large-scale HPC systems consist of complex configurations with a huge number

of components. Each node has multiple multi-core sockets and often one or more additional

accelerator units in the form of many-core nodes (e.g., Intel Xeon Phi), GPGPUs or FPGAs,

resulting in a heterogeneous system architecture. Caches, memory and storage are attached

to the components on various levels and are shared between components in varying degrees.

Typically, there is a (huge) imbalance between the computational power of the components

and the amount of memory available to these components. Thus, deep software hierarchies of

large, complex system software and middleware components are required to efficiently use such

systems.

Therefore, porting, adapting and tuning applications to today’s complex systems is a com-

plicated and time-consuming task. Sophisticated integrated performance measurement, analysis,

and optimization capabilities are required to efficiently utilize such systems. However, designing

and implementing efficient and useful performance tools is extremely difficult because of the

same reasons. While the system and middleware software layers are designed to be transparent,

they are typically not transparent with respect to performance. This performance intransparency

will result in escalation of unforeseen problems to higher layers, including the application. This is

not really a new problem, but certain properties of current large-scale and future extreme-scale

systems significantly increase its severity and significance:

• At extreme-scale scale, there always will be failing components in the system, which has

a large impact on performance. A real-world application will probably never run on the

exact same configuration twice.

• Load balancing issues limit the success even on moderately parallel systems, and the

challenge of data locality will become another severe issue which has to be addressed by

appropriate mechanisms and tools.

• Dynamic power management, e.g., at hardware level inside a CPU or accelerator, will result

in performance variability between cores, nodes, and across different runs. The alternative

to run at lower but system-wide consistent speed without dynamic power adjustments may

not be an option in the future.
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• The challenge of predicting application performance at extreme scale will make it difficult

to detect a performance problem if it is escalated undetected to the application level.

• The ever growing higher integration of components into a single chip and the use of more

and more hardware accelerators makes it more difficult to monitor application performance

and move performance data out of the system unless special hardware support will be

integrated into future systems.

Altogether this will require an integrated, collaborative, and holistic approach to handle

performance issues and correctly detect and analyze performance problems. In the following, we

will summarize the state-of-the-art of scalable and portable parallel performance tools. Next, we

discuss the various methods and approaches regarding tool portability, scalability, and integra-

tion. The article closes with an outlook on the challenges tools will face on future extreme-scale

and big data systems.

1. Overview of state-of-the-art parallel performance tools

Research on parallel performance tools has a long history. First tools appeared at the same

time as the first parallel computer systems back in the 1980s and early 90s [1]. Meanwhile,

many performance instrumentation, measurement, analysis and visualization tools exist, and

summarizing and listing all major methods, approaches and tools is impossible in a short journal

paper. Therefore, in the following section we concentrate on the major tool sets that are (i)

portable, i.e., they can be used on more than one of today’s dominating architectures: Cray, IBM

BlueGene, Fujitsu K computer, and Linux/UNIX clusters, (ii) scalable, i.e., it was demonstrated

that they can be successfully used for an application executing on a couple of thousand nodes,

(iii) versatile, i.e., they allow the performance analysis of all levels of today’s HPC systems:

message passing between nodes, multi-threading and multi-tasking inside nodes, and offloading

to accelerators, and (iv) supported, i.e., there are well-established groups or organizations behind

them which maintain and further develop them.

The structure of the following subsections is modelled after and re-uses excerpts from the

VI-HPS Tools Guide [2], which also includes descriptions of further tools.

1.1. TAU

TAU [3, 4] is a comprehensive profiling and tracing toolkit that supports performance eval-

uation of programs written in C++, C, UPC, Fortran, Python, and Java. It is a robust, flexible,

portable, and integrated framework and toolset for performance instrumentation, measurement,

analysis, and visualization of large-scale parallel computer systems and applications. TAU sup-

ports both direct measurement as well as sampling modes of instrumentation and interfaces with

external packages such as PAPI [25] or tools like Score-P, Scalasca, and Vampir (all described

in the following sections). TAU is available under a BSD-style license.

Typical Workflow

TAU allows the user to instrument the program in a variety of ways including rewriting

the binary using tau rewrite or runtime pre-loading of shared objects using tau exec. Source-

level instrumentation typically involves substituting a compiler in the build process with a TAU

compiler wrapper. This wrapper uses a given TAU configuration to link in the TAU library. At
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runtime, a user may specify different TAU environment variables to control the measurement

options chosen for the performance experiment. This allows the user to generate call-path pro-

files, specify hardware performance counters, turn on event-based sampling, generate traces, or

specify memory instrumentation options.

Figure 1. TAU main profile window. Each line shows a flattened histogram of a selected perfor-

mance metric for a specific thread or task. The different colors represent the different program

regions (e.g., functions, loops, parallel sections, etc.). The display allows to get a quick overview

via comparing the differences/commonalities of the different threads/tasks. Clicking on a line

label brings up more detailed information about the selected thread or task. Clicking on a col-

ored region brings up more detailed information about the selected program region. The menu

bar allows to choose the performance metric shown or to launch further, more detailed displays

like a call-graph or communication matrix display. Results from larger performance experiments

can be more easily analyzed with the 3D displays of TAU, see fig. 2.

Performance-analysis results may be stored in TAUdb, a database for cross-experiment

analysis and advanced performance data mining operations using TAU’s PerfExplorer tool [5]. It

may be visualized using ParaProf, TAU’s profile browser that can show the extent of performance

variation and compare executions, see fig. 1.

Supported platforms

IBM Blue Gene/P/Q, NVIDIA and AMD GPUs and Intel MIC systems, Cray

XE/XK/XC30, SGI Altix, Fujitsu K Computer (FX10), NEC SX-9, Solaris & Linux clusters

(x86/x86 64, MIPS, ARM), Windows, Apple Mac OS X.

Supported Runtime Layers

MPI, OpenMP (using GOMP, OMPT, and Opari instrumentation), Pthread, MPC Threads,

Java Threads, Windows Threads, CUDA, OpenCL, OpenACC.

Scalable Parallel Performance Measurement and Analysis Tools — State-of-the-Art and...

110 Supercomputing Frontiers and Innovations



Figure 2. TAU 3D profile view. It displays the distribution of two selected performance metrics

(encoded via height and color) over the axes program regions and threads/tasks.

1.2. HPCToolkit

HPCToolkit [6, 7] is an integrated suite of tools for measurement and analysis of program

performance on computers ranging from multi-core desktop systems to the largest supercomput-

ers. HPCToolkit provides accurate measurements of a program’s work, resource consumption,

and inefficiency, correlates these metrics with the program’s source code, works with multilingual,

fully optimized binaries, and has very low measurement overhead. HPCToolkit’s measurements

provide support for analyzing a program’s execution cost, inefficiency, and scaling characteristics

both within and across nodes of a parallel system.

Typical Workflow

HPCToolkit works by sampling an execution of a multi-threaded and/or multiprocess pro-

gram using hardware performance counters, unwinding thread call stacks, and attributing

the metric value associated with a sample event in a thread to the calling context of the

thread/process in which the event occurred. Sampling has sometimes advantages over instru-

mentation for measuring program performance: it requires no modification of source code and

it avoids potential blind spots (such as code available in only binary form). Sampling using per-

formance counters enables fine-grained measurement and attribution of detailed costs including

metrics such as operation counts, pipeline stalls, cache misses, and inter-cache communication in

multi-core and multi-socket configurations. HPCToolkit also supports computing derived metrics

such as cycles per instruction, waste, and relative efficiency to provide insight into a program’s

shortcomings. HPCToolkit is available under a BSD-style license.

HPCToolkit assembles performance measurements into a call-path profile that associates

the costs of each function call with its full calling context. A unique capability of HPCToolkit is
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its nearly flawless ability to unwind a thread’s call stack (which is often difficult and error-prone

with highly optimized code). In addition, HPCToolkit uses binary analysis to attribute program

performance metrics to full dynamic calling contexts augmented with information about call

sites, source lines, loops and inlined code. Measurements can be analyzed in a variety of ways,

see fig. 3: top-down in a calling context tree, which associates costs with the full calling context

in which they are incurred; bottom-up in a view that apportions costs associated with a function

to each of the contexts in which the function is called; and in a flat view that aggregates all

costs associated with a function independent of calling context.

Figure 3. HPCToolkit main window (hpcviewer) showing a top-down calling context analysis.

Selecting a specific program region in the call tree at the bottom displays the corresponding

source code in the upper part.

By working at the machine-code level, HPCToolkit accurately measures and attributes costs

in executions of multilingual programs, even if they are linked with libraries available only in

binary form. HPCToolkit supports performance analysis of fully optimized code; it even measures

and attributes performance metrics to shared libraries that are dynamically loaded at runtime.

HPCToolkit also helps pinpointing scaling losses in parallel codes, both within multi-core

nodes and across the nodes in a parallel system. Using differential analysis of call path profiles

collected on different numbers of threads or processes enables one to quantify scalability losses

and pinpoint their causes to individual lines of code executed in particular calling contexts.

Supported platforms

IBM Blue Gene/P/Q, Cray XE/XK/XC30, Linux clusters (x86/x86 64).
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Supported Runtime Layers

HPCToolkit allows measuring and analyzing codes which span multiple processes (within

and across nodes) and/or use multi-threading (e.g., OpenMP, Pthreads, etc.). As the tool collects

data on the binary level, it is programming-model agnostic; the “translation” from binary objects

(e.g., a runtime system function call) to programming model user-level constructs (e.g., OpenMP

critical region directive) has to be done by the user.

1.3. Extrae/Paraver

Paraver [8–10] is a performance analyzer based on event traces with a great flexibility to

explore the collected data, enabling detailed analysis of metrics variability and distribution with

the objective of understanding the applications’ behavior. Paraver has only two types of views,

but a lot of flexibility to define and correlate them. Timelines provide the evolution with time

(see fig. 4) and tables (histograms, profiles) a measurement of the metrics distribution.

Figure 4. Paraver timeline window

To facilitate extracting insight from detailed performance data, during the last years new

modules have been added implementing advanced performance analytics techniques. Clustering,

tracking and folding allow the performance analyst to identify the program structure, study its

evolution and look at the internal structure of the computation phases.

Typical Workflow

First, event traces are collected with the parallel program instrumentation and measure-

ment package Extrae in a Paraver-specific format (PRV). It uses different mechanisms to insert

measurement probes that vary from static interception of the runtime calls linking with the

Extrae library to dynamic instrumentation using Dyninst [11]. The most frequent scenario is

to use LD PRELOAD to intercept runtime system calls of production binaries at loading time.

The information collected by Extrae includes entry and exit to the programming model runtime,
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hardware counters (via PAPI), call stack references, user functions, periodic samples and user

events. Extrae and Paraver are available under a LPGL license.

Once the necessary trace(s) are collected, the analyst drives the full process generating and

validating his/her hypothesis about the application behavior within Paraver. The initial steps

would be similar for all the analyses and are provided as a basic methodology tutorial, the results

of these steps would allow to decide the path to follow. The tool provides an extensive list of

pre-conceived configuration files. Paraver offers a very flexible way to combine multiple views,

so as to generate new representations of the data and more complex derived metrics. Once a

desired view is obtained, it can be stored in a configuration file to apply it again to the same

trace or to a different one.

Platform support

Linux clusters (x86/x86 64, ARM, Power), IBM Blue Gene/P/Q, Fujitsu FX10, SGI Altix,

Cray XT, Intel Xeon Phi, GPUs.

Supported Runtime Layers

MPI, OpenMP, OmpSs, Pthread, CUDA, OpenCL.

1.4. Vampir

The Vampir [12–14] event trace visualizer allows to study a program’s runtime behavior at a

fine level of detail. This includes the display of detailed performance event recordings over time

in timelines and aggregated profiles. Interactive navigation and zooming are the key features of

the tool, which help to quickly identify inefficient or faulty parts of a program.

Typical Workflow

Before using Vampir, an application program needs to be instrumented and executed with

the community-developed parallel program instrumentation and measurement package Score-P

(see section 1.6). Running the instrumented program produces a bundle of trace files in OTF2-

format [16]. Earlier versions of Vampir were relying on an internal instrumentation and measure-

ment package called VampirTrace which produced traces in OTF-Format [15]. Both VampirTrace

and Score-P are available under a BSD-style license.

After a trace file has been loaded by Vampir, the Trace View window opens with a default

set of charts as depicted in fig. 5. Vampir accepts traces in OTF, OTF2, and EPILOG [17] (a

format used by earlier versions of the Scalasca tool, see next section). The Vampir visualizer is

a commercial package.

Platform support

IBM Blue Gene/P/Q, AIX (x86 64, POWER6), Cray XE/XK/XC30, SGI UV/ICE/Altix,

Linux clusters (x86/x86 64), Windows, Apple Mac OS X.

Supported Runtime Layers

MPI, OpenSHMEM, OpenMP, Pthread, CUDA, OpenCL, OpenACC.
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Figure 5. Vampir event trace browser. The charts shown can be divided into timeline charts and

statistical charts. Timeline charts (left) show detailed event based information for arbitrary time

intervals while statistical charts (right) reveal accumulated measures which were computed from

the corresponding event data of the selected time interval in the timeline charts. Informational

charts provide additional or explanatory information regarding timeline- and statistical charts.

On top of the charts, two toolbars are available. The Charts Toolbar (top left) allows to add

further charts to study I/O, inter-process communication and synchronization, and hardware

performance metrics of the depicted program run. An overview of the phases of the entire

program run is given in the Zoom Toolbar (top right), which can also be used to zoom and pan

to the program phases of interest.

1.5. Scalasca

Scalasca [18, 19] supports the performance optimization of parallel programs by measur-

ing and analysing their runtime behavior. The tool has been specifically designed for use on

large-scale systems including IBM Blue Gene and Cray XE, but is also well suited for small-

and medium-scale HPC platforms. The analysis identifies potential performance bottlenecks

– in particular those concerning communication and synchronization – and offers guidance in

exploring their causes. Scalasca is available under a BSD 3-Clause license.

The user of Scalasca can choose between two different analysis modes: (i) performance

overview on the call-path level via profiling and (ii) the analysis of wait-state formation via

event tracing. Wait states often occur in the wake of load imbalance and are serious obstacles

to achieving satisfactory performance. The latest versions also includes a scalable critical path

analysis [20] and root-cause analysis [21]. Performance-analysis results are presented to the user

in an interactive explorer called Cube (fig. 6) that allows the investigation of the performance

behavior on different levels of granularity along the dimensions metric, call path, and process.
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Figure 6. Scalasca’s result explorer Cube. It allows interactive exploration of performance be-

havior along the dimensions performance metric (left), call tree (middle), and process topology

(right). Selecting a metric displays the distribution of the corresponding value over the call tree.

Selecting a call path again shows the distribution of the associated value over the machine or

application topology. Expanding and collapsing metric or call tree nodes allows to investigate

the performance at varying levels of detail.

Typical Workflow

Before any Scalasca analysis can be carried out, the target application needs to be in-

strumented. For this task, Scalasca leverages now the community-driven instrumentation and

measurement infrastructure Score-P (see section 1.6). Earlier versions of Scalasca (version 1)

used an internal instrumentation and measurement package called EPIK which provided the

same functionality. First, a call-path profile is collected and analyzed. After an optimized mea-

surement configuration has been prepared based on initial profiles, a targeted event trace in

EPILOG format (Scalasca version 1) or in OTF2 format (Scalasca version 2 or later) can be

generated, and subsequently analyzed by Scalasca’s automatic event trace analyzer after mea-

surement is complete. This scalable analysis searches for inefficiency patterns and wait states,

collects statistics about the detected instances, and identifies the critical path of the application.

The analysis result can the be examined using the interactive performance report explorer Cube.

Platform support

IBM Blue Gene/P/Q, Cray XT/XE/XK/XC, SGI Altix (incl. ICE + UV), Fujitsu FX-10

& K Computer, Tianhe-1A, IBM AIX clusters, Solaris & Linux clusters (x86/x86 64, ARM)

Supported Runtime Layers

MPI, OpenSHMEM, OpenMP, OmpSs, HMPP, Pthread, CUDA.
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1.6. Score-P

The Score-P [22, 23] instrumentation and measurement infrastructure is a highly scalable

and easy-to-use tool suite for profiling, event tracing, and online analysis. It supports a wide

range of HPC platforms and programming models. Score-P provides core measurement services

for a range of specialized analysis tools, such as Vampir, Scalasca, TAU, and Periscope [24].

Further insights can be gained by employing additional tools on Score-P measurements. Score-P

is available under a BSD 3-Clause license.

Figure 7. Score-P architecture

Typical Workflow

The overall Score-P architecture is shown in fig. 7. To create measurements, the target

program must be instrumented. Score-P offers various instrumentation options. User functions

can be instrumented automatically with compiler support or source-to-source instrumentation

(PDT) or manually. MPI functions are monitored via library interposition (PMPI). OpenMP

constructs are instrumented with the source-to-source instrumenter OPARI2.

For measurement, the instrumented program can be configured to record an event trace

in OTF2 format or produce a call-path profile in CUBE4 format. Optionally, PAPI hardware

counters [25] can be recorded. Filtering techniques allow precise control over the amount of data

to be collected. Call-path profiles can be examined in TAU (see section 1.1) or the Cube profile

browser (see section 1.5). Event traces can be examined in Vampir (see section 1.4) or used

for automatic bottleneck analysis with Scalasca (see section 1.5). Alternatively, on-line analysis

with Periscope is possible.

Platform support

IBM Blue Gene/P/Q, Cray XT/XE/XK, SGI Altix, K Computer, Fujitsu FX10, NEC SX-9,

Solaris & Linux clusters (x86/x86 64, ARM)
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Supported Runtime Layers

MPI, OpenSHMEM, OpenMP, OmpSs, HMPP, Pthread, CUDA.

2. Challenges for today’s parallel performance tools

In this section, we discuss the basic challenges parallel performance tools face on today’s

large-scale systems: portability, scalability, and integration between tool components.

2.1. Portability

Although there was some consolidation in regard to operating systems for HPC clusters and

high-end systems in the past decade – most of them are running some variant of Linux or at

least Linux-compatible micro-kernels now – providing performance tools for these systems did not

became much easier due to the openness and the lack of standardization of the Linux operating

system. Basically no Linux cluster is exactly alike another one and each system provides a

different set of compilers (e.g., GNU, Intel, PGI, IBM XL, Clang, SUN, Pathscale and others)

and a different set of MPI libraries (e.g., MPICH, OpenMPI, Intel, LAM, HP, Scali, BullXMPI,

SUN, IBM POE, Platform and more) in different versions. Depending on the compiler version,

a different version of the OpenMP standard needs to be handled and supported by the tools;

the same is true for the version of the MPI standard supported by the MPI library.

2.2. Scalability

The very large number of nodes and cores available to applications in future extreme-scale

systems will be of course a severe challenge to tools, but the size of today’s large-scale systems

poses already problems now. In the November 2013 list of the TOP500 supercomputers, only four

systems have less than 4,096 processor cores and the average is at almost 41,500 cores, which is

an increase of 10,000 in just one year. Even the median system size is already over 17,400 cores.

So tools must be able to handle at least tens of thousands cores and threads; ideally of course

much more. Top 5 systems have multiple millions of cores. Various methods and approaches are

employed by current performance tools to be able to handle the measurement and analysis of

applications executing on large numbers of cores:

Scalable data collection and reduction: All tools listed in section 1 collect performance

data in parallel either per process or even per thread and then use MPI to combine and

merge the data either at the end of the execution or in a separate phase after the program

measurement. Various I/O virtualization mechanisms (e.g., SIONlib [26]) are used to effi-

ciently store process- and thread-local data in files. Scalasca’s EPIK measurement system

and Score-P no longer merge local traces into a global trace but use parallel I/O to access

the separate traces concurrently and use MPI at the end of the program measurement

to perform an efficient unification of measurement object identifiers and timestamp syn-

chronization and correction. Another approach is used by Paraver: Automatic clustering,

tracking and folding of trace events allows the performance analyst to identify the pro-

gram structure, study its evolution and then only look at instances of the most important

computation phases one at a time.
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Scalable parallel data analysis: It is clear that the huge amount of performance data col-

lected with a large-scale measurement can only be analyzed efficiently if the performance

analysis components are parallelized themself. The Vampir toolset employs a distributed

client/server model where the trace data is read and analyzed by a multi-node, multi-

threaded server running on the target HPC system connected to a simple visualization

client running on the workstation or laptop of the performance analyst. This way, the

huge traces never have to be copied off the HPC system. The interactivity of the analy-

sis process can be controlled by using more or less processes and threads for the parallel

server process. The Scalasca trace analyzer also features a parallel and highly efficient per-

formance bottleneck pattern search [18] and delay [21] and critical path [20] analysis. The

algorithm is designed in a way that it uses the same number of MPI ranks and threads as

the application under investigation, so the measurement and the subsequent trace analysis

can be run in the same batch job. Time-consuming analysis modules from the Paraver

analyzer and visualizer also have been parallelized with OmpSs.

Scalable visualizations: However, with an efficient parallel performance data collection and

analysis, the bottleneck in the performance analysis process was just shifted to the result

presentation phase. TAU uses 3D-displays to effectively display large amounts of data (see

fig. 2) and Scalasca’s report explorer Cube utilizes 2D and 3D displays to show performance

data mapped on system hardware or application topologies (see fig. 6). Cube also uses

hierarchical tree displays to allow browsing of performance data on various levels of detail.

More research and new methods (e.g., visual data analytics) are needed here.

2.3. Integration

It is clear that only an integrated tool (environment) which can handle more than one

level of parallelization – including the communication and synchronization aspects on the inter-

node level, the multi-threading and multi-tasking issues at the intra-node level, and the data

transfers, scheduling, and kernel invocations for attached accelerators – is a prerequisite for

an efficient performance analysis process. This not only allows to investigate all performance

relevant aspects of a program execution within one environment but also the influences and

dependencies between the different parallelization levels. All tools listed in section 1 fall into

this category. A big obstacle here is the current “zoo” of programming models available for

multi-threading and off-loading; it is very hard for tools to support all of them and equally well.

However, it is just as important that performance measurement tools are integrated in some

way with performance prediction and modeling tools. This way performance models can be au-

tomatically generated and/or calibrated with performance measurements and then can be much

more successfully used to predict the application performance for other systems or configura-

tions. A good example here is the Dimemas simulator which reconstructs the time behavior of a

parallel application using a Paraver event trace that captures the time resource demands (CPU

and network) of a parallel application as input. The target machine is modelled by a reduced set

of key factors influencing the performance that model linear components like the point-to-point

transfer time as well as non-linear factors like resources contention or synchronization. Using

this simple model, Dimemas allows to simulate parametric studies in a very short time frame.

Dimemas can generate a modified Paraver trace file as part of its output, enabling the user

to conveniently examine the simulated run and understand the behavior. Another approach is
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used in the DFG SPPEXA Catwalk project, where a series of profile measurements collected

with Score-P, representing a scaling or parameter study, is input to a special model-generation

component which automatically approximates the scaling behavior for selected metrics for all

kernels of the analyzed program [30]. The generated performance model can then be used to

easily locate program parts with a bad scaling behavior, e.g., program parts that will become

bottlenecks on future systems with either higher core counts or less memory capacity.

Finally, even integrated and powerful tool environments cannot fulfill all requirements. Dif-

ferent tools have different strength and weaknesses and provide different views on the same

performance behavior. Ideally, profile and trace data can easily be imported and exported by

the various tools via open interfaces to make it easy to compare the results between tools and

to move from one tool to another if necessary. In the first decade of the current millennium, the

international tools community worked hard to achieve this goal, see fig. 8 which actually only

shows the result for a selected portion of the tool landscape.

Figure 8. Tool integration efforts. The diagram shows the basic performance analysis workflows

of the different tools around the year 2011. Rectangles represent tool components, boxes with

round corners profile or trace data files. Lines labeled with an ”X” in a circle indicate a conversion

tool between the connected file formats. Lines labeled with an ”R” in a circle describe Cube’s

ability to remotely control Vampir and Paraver [27].

.

Although kind of impressive, it quickly became clear that this complex situation is more con-

fusing than helping for the typical tool user. This lead in the end to the community-developed

performance instrumentation and measurement package Score-P which replaced the internal

packages from Vampir, TAU, and Scalasca (see section 1.6), simplifying the resulting perfor-

mance analysis workflow considerably. The use of common file formats like CUBE4 and OTF2

shared between a wide a range of tools allowed the definition of a well-defined and sophisticated

performance analysis workflow in the EU-Russia research project HOPSA (see fig. 9). Beyond

the tools described in this article, it also includes the commercial memory and threading analysis

tool ThreadSpotter [28] and the system monitoring framework LAPTA [29]. For more details,

especially more information about the implemented tool interactions, see [27].
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Figure 9. HOPSA workflow

3. Challenges for parallel performance tools for future

extreme-scale and big data systems

A large number of approaches for performance analysis exist that have successfully applied

at small and medium scale. The large amount of performance data may seem to impede the

use at extreme scale. However, this is not the case as long as features like memory size and

I/O capabilities scale with compute power. An instrumented application is nothing but an

application with modified demands on the system executing it. This makes current approaches

for performance analysis still feasible in the future as long as all involved software components

are parallel and scalable. In addition to increased scalability, techniques like automatic analysis,

advanced filtering, on-line monitoring, clustering, and analysis as well as data mining will be of

increased importance. A combination of various techniques will have to be applied. The following

considerations are key for a successful approach to performance analysis at extreme scale:

• Failover or operation with failed components in general should be performance neutral.

• An extreme scale system has to be capable to monitor the performance of components,

not just the functionality.

• Hardware and software components need to provide sufficient performance details for the

analysis if a performance problem unexpectedly escalates to higher levels.

• Metrics beyond FLOPs need to be developed to identify and quantify bottlenecks, to

measure the sustained performance and the gap to the attainable peak performance.

• Programming models should be designed with performance analysis in mind. Part of that

could be a (standardized) hidden control mechanism in the runtime system that will be
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able to dynamically control – in time and space – the generation of performance data if

requested.

• Performance analysis in the presence of noise requires inclusion of appropriate statistical

descriptions.

• Performance analysis needs to incorporate techniques from the areas of signal processing,

data mining, and visual data analytics.
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D. Lorenz, A.D. Malony, W.E. Nagel, Y. Oleynik, C. Rössel, P. Saviankou, D. Schmidl, S.S.
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