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Modern high-performance computing (HPC) systems consist of a large number of nodes fea-

turing multi-core processors. Many computational fluid dynamics (CFD) codes utilize a Message

Passing Interface (MPI) to exploit the potential of such systems. In general, the MPI commu-

nication costs increase as the number of MPI processes increases. In this paper, we discuss per-

formance of the code in which a core is used as a dedicated communication core when the core

cannot contribute to the performance improvement due to memory-bandwidth limitations. By

using the dedicated communication core, the communication operations are overlapped with com-

putation operations, thus enabling highly efficient computation by exploiting the limited memory

bandwidth and idle cores. The performance evaluation shows that this code can hide the MPI

communication times of 90% on the supercomputer SX-ACE system and 80% on the supercom-

puter SX-Aurora TSUBASA system, and the performance of the successive over-relaxation (SOR)

method is improved by 32% on SX-ACE and 20% on SX-Aurora TSUBASA.

Keywords: Thermal plasma flows, SOR method, MPI, OpenMP, Performance tuning, SX-

ACE, SX-Aurora TSUBASA.

Introduction

Recently, high-performance computing (HPC) systems have been attaining higher arithmetic

operation performance. According to the latest Top500 ranking [1], the highest performance of

an HPC system is 513 petaflop/s (Pflop/s). HPC systems consist of a large number of nodes

with multi-core processors. An application on these systems has to be divided into parallel com-

putation operations and is executed on the multiple cores in parallel. In these cases, a core

cannot directly access the data on other nodes; rather, it has to access other nodes by using the

data communication provided by the MPI library, which enables point-to-point communication

among cores (processes) and collective communication with all cores (processes). In general, par-

allelization of programs is expected to enable their faster executions by increasing the number of

cores. However, with an increased amount of parallelization performed, the decrease in data com-

munication operation time is often small compared with the decrease in computation operation

time. Therefore, decreasing the communication time in large-scale simulations is required.

Research studies have explored the combining MPI and OpenMP models (MPI+OpenMP

models) to enable overlapping between computation and communication operations, and new

features on OpenMP and MPI have been utilized. Sergent et al. studied task scheduling using the

OpenMP Tools interface in OpenMP 5.0 and leveraged idle periods of computational threads to

progress MPI communications [13]. Castillo et al. presented a mechanism for exchanging event

information between MPI and task-based runtime through the MPI tools interface (MPI T)

in MPI 3.0 and enhanced a task scheduler for improving the performance of overlapping of
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computation with communication [3]. The MPI+OpenMP models have also been evaluated on

various HPC systems. Gorobets et al. developed a parallel CFD algorithm of turbulent flows

with a multilevel MPI+OpenMP+OpenCL parallelization and evaluated the performance of the

CFD code on Intel Xeon, Xeon Phi, and Xeon with NVIDIA K80 GPU systems [5]. Oyarzun

et al. also evaluated the performance of a thermo-fluid code with the similar parallelization on

ARM-based CPUs and GPUs fused in a System-on-Chip (SoC) architecture [12]. Idomura et al.

evaluated plasma turbulence with MPI+OpenMP parallelization on K-computer [6]. However,

the performance of the MPI+OpenMP models on vector supercomputers SX-ACE and SX-

Aurora TSUBASA has rarely been evaluated. Therefore, in this paper we clarify the potential

of the models on SX-ACE and SX-Aurora TSUBASA using only the basic function of OpenMP,

which is the schedule clause of the work-sharing constructs.

In Section 1, we present our simulation code and the specifications of the evaluation systems.

Section 2 describes evaluated overlapping models using a dedicated communication core. In

Section 3, we evaluate the performance of the models on the systems. The last section concludes

this paper.

1. Modern Vector Supercomputers and Target Application

1.1. SX-ACE

The SX-ACE supercomputer system is composed of up to 512 nodes interconnected by a

custom network switch. Figure 1 depicts an overview of the SX-ACE processor with four powerful

vector-architecture cores. A node of SX-ACE consists of one processor and a local memory. The

processor can provide a double-precision floating point operating rate of 256 Gflop/s with a

memory bandwidth of 256 GByte/s, and its memory capacity is 64 GBytes. In order to achieve

a high sustained performance, the ratio of memory bandwidth to floating-point operation (flop/s)

rate (Bytes per Flop, B/F) is a key factor. The system B/F per processor of SX-ACE is 1.0,

which represents a good balance between performance and memory bandwidth. Each core is

composed of a scalar processing unit (SPU), a vector processing unit (VPU), and a vector on-chip

cache called Assignable Data Buffer (ADB) implemented with Miss Status Handling Register

(MSHR) [4, 10, 11]. VPU is a fundamental component of the SX-ACE vector architecture with

its performance of 64 Gflop/s. SX-ACE can process up to 256 vector elements, eight bytes each,

by a single vector instruction. The vector architecture works in a single instruction multiple

core core core

Memory controller

MSHR

SPU

ADB

VPU

256 GB/s

256 GB/s

4 GB/s x2

256 GB/s

RCU

Crossbar switch

Memory (DDR3 2000)

Interconnect

Vector processing unitScalar processing unit

core

Figure 1. Overview of SX-ACE processor
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data (SIMD) manner. The ADB with MSHR avoids redundant data transfers for vector load

operations by keeping reusable data on a chip. SPU mainly works as a VPU controller and

inherits the architecture of 64-bit RISC processors. The SX-ACE nodes are connected via a

custom inter-connect network at a 4 GB/s bandwidth per direction.

The operating system (OS), SUPER-UX, is a production-proven environment based on

UNIX System V with several extensions for performance and functionality.

The Fortran and C/C++ compilers support automatic vectorization and parallelization, and

parallelization using OpenMP (OpenMP Version 2.5). NEC MPI is implemented in accordance

with MPI-3.0 [2].

The Fortran compiler, FORTRAN90/SX, and the C/C++ compiler, C++/SX, support

functions of automatic optimization, automatic vectorization, automatic parallelization, and

OpenMP (OpenMP Version 2.5). NEC MPI is implemented in accordance with MPI-3.0 [2].

Here, Tab. 1 lists specifications of SX-ACE and SX-Aurora TSUBASA and options of each

Fortran compiler.

Table 1. Specifications of SX-ACE and SX-Aurora TSUBASA

SX-ACE SX-Aurora TSUBASA

Core Theoretical performance 64 Gflop/s 304 Gflop/s

Memory bandwidth 256 GB/s 405.5 GB/s

B/F 4.0 1.33

CPU Number of cores 4 8

Theoretical performance 256 Gflop/s 2.43 Tflop/s

LLC capacity 1 MB (private) 16 MB (shared)

LLC bandwidth 1000 GB/s 3244 GB/s

Memory bandwidth 256 GB/s 1.35 TB/s

B/F 1.0 0.55

Node Number of CPUs 1 8

Memory capacity 64 GB 384 GB

Network bandwidth 8 GB/s 25 GB/s

Fortran Version Rev.537 Rev.3.0.6

compiler Options -Popenmp, -pi, -EP -fpp, -finline-functions, -fopenmp

1.2. SX-Aurora TSUBASA

SX-Aurora TSUBASA is the newest vector supercomputer released in 2018 [8, 17]. It consists

of one or more card-type vector engines (VEs) and a vector host (VH). The VE is the main

part of SX-Aurora TSUBASA and contains a vector processor, a 16 MB shared last-level cache

(LLC), and six High Bandwidth Memory 2 (HBM2) memory modules, as shown in Fig. 2.

The vector processor has eight vector cores. As shown in Tab. 1, the peak performances of a

vector core and a vector processor are 304 Gflop/s and 2.43 Tflop/s, respectively. The memory

bandwidths are 405.5 GB/s per vector core and 1.35 TB/s per VE. The B/F rates are 1.33

per vector core and 0.55 per vector processor, respectively. The VH is a standard x86 Linux

Effects of Using a Memory Stalled Core for Handling MPI Communication Overlapping...

6 Supercomputing Frontiers and Innovations



core core

core core

core core

core core

L
L
C
 8

M
B

L
L
C
 8

M
B

H
B
M

2
 I

/
F

H
B
M

2
 I

/
F

H
B
M

2
 I

/
F

H
B
M

2
 I

/
F

H
B
M

2
 I

/
F

H
B
M

2
 I

/
F

HBM2

HBM2

HBM2

HBM2

HBM2

HBM2

Figure 2. Block diagram of a vector engine

Infiniband Network

Figure 3. Block diagram of SX-Aurora TSUB-

ASA system

server and executes the OS of the VE. While the conventional SX series runs the OS on a vector

processor, SX-Aurora TSUBASA offloads OS-related processing to the VH. The VH consists

of up to two Xeon processors and can handle up to eight VEs as shown in Fig. 3. Moreover,

SX-Aurora TSUBASA can compose a large system by connecting the VHs via the InfiniBand

switch.

The SX-Aurora TSUBASA system supports Red Hat Enterprise Linux and CentOS, and the

VH provides OS functions such as process scheduling and handling of system calls invoked by the

application running on the VEs. The programming environment includes NEC MPI and NEC

Software Development Kit for Vector Engine (NEC SDK). NEC SDK contains an NEC Fortran

compiler, NEC C/C++ compiler, NEC Numeric Library Collection, NEC Parallel Debugger,

and NEC Ftrace Viewer. The Fortran and C/C++ compilers support functions of automatic op-

timization, automatic vectorization, automatic parallelization, and OpenMP (OpenMP Version

4.5). NEC MPI is implemented in accordance with MPI-3.1.

1.3. Thermal Plasma Flow Code

An evaluated code simulates the 3D turbulence on thermal plasma flow. This code solves the

conservation that is simulated by solving the conservation equations of mass, momentum, and

energy [14]. It uses the Hybrid Upwind K-K scheme and the Adams-Moulton method with third-

order accuracy to discretize the convection terms and the time derivative terms, respectively.

The discretized equations are numerically solved using the Successive Over-Relaxation (SOR)

method. The simulation needs to be magnified in order to accurately reproduce the phenomenon

in this code, and our target is the large scale simulation of 2.7 billion grids.

The code uses a Cartesian coordinate system and consists of triple loops. The two outer

loops, Y-axis and Z-axis, are parallelized by the domain decomposition method, and the outer-

most loop, Z-axis, is also parallelized by OpenMP. The sub-routine with the SOR method has

an unvectorizable loop structure, and the red-black parallelization method [7] is utilized to vec-

torize it on the SX-ACE supercomputer [16]. However, the computation cost of the sub-routine

with the SOR method is the largest. The data sizes of the evaluated code are listed in Tab. 2.

The SOR method is an iterative method that executes a convergent calculation of the

residual error. To perform this process, a collective communication operation for summing up

residual values and a point-to-point communication operation for exchanging the boundary data

are required. It takes longer to perform the point-to-point communication than the collective

T. Soga, K. Yamaguchi, R. Mathur, O. Watanabe, A. Musa, R. Egawa, H. Kobayashi
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Table 2. Data sizes of evaluated code

Model Data size Number of grids

X Y Z

Small data 516 204 204 21,473,856

Medium data 1280 512 512 1,342,177,280

Large data 2560 1024 1024 2,684,354,560

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32 64 128 256 512

Computation operation Communication operation Total time

Number of nodes

P
er

ce
n
ta

ge
 o

f 
co

m
p
u
ta

ti
o
n
 a

n
d
 

co
m

m
u
n
ic

at
io

n
E
x
ecu

tio
n

tim
e

(sec)

Figure 4. Breakdown of execution time

communication in this code. Therefore, the execution time for the point-to-point communication

should be shortened.

Figure 4 shows the breakdown of execution time for the large data with 2.7 billion grids on

the evaluation code when increasing the number of nodes. The blue and red parts of the bars

indicate the execution times for the computation and communication on SX-ACE, respectively.

When this code is executed on the 128-node SX-ACE, the computation operation takes up more

time than the communication operation. However, when we increase the number of nodes to 512,

the communication operation becomes dominant. As a result, the communication operation time

becomes dominant in the entire operation time as the number of nodes increases.

Figure 5. Relationship between execution time and number of cores on SX-ACE

Effects of Using a Memory Stalled Core for Handling MPI Communication Overlapping...
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Figure 6. Diagram of the computation and communication operations of the SOR method

We evaluate the execution time (arithmetic time, memory time, and communication time)

with changing the number of OpenMP threads per processor from one-thread to four-thread

on SX-ACE. Figure 5 shows the relationship between the execution time and the number of

OpenMP threads using four SX-ACE nodes with the small data. The memory time indicates

the stall time of the core due to data load from the memory. The actual B/F [8] is 5.2 from the

hardware counter of instructions on SX-ACE and indicates that the code is memory intensive

for SX-ACE. The arithmetic time decreases with increasing the number of threads. However,

the memory time increases from the two-thread case to the four-thread case. Therefore, the data

transfer between the processor and the main memory becomes a bottleneck.

As mentioned above, even if the memory-intensive program uses all cores for computation

operation, it cannot achieve a highly parallelized performance. Therefore, in our overlapping

strategy, one core is assigned for the communication operation and the other cores for the

computation operation. We examine the effect of the overlapping model from the viewpoint of

hiding the communication operation time in memory-intensive applications such as those using

the SOR method.

2. Evaluated MPI+OpenMP Models

Figure 6 shows the diagram of the parallel execution of the SOR method by MPI using

OpenMP. This parallelization cannot overlap the computation operation with the communica-

tion one. Specifically, a thread on each core executes the calculation of the computation area

that is divided by OpenMP, and then thread 0 starts processing of the communication opera-

tions after all the threads for computation have been completed. The communication operation

gathers/scatters the boundary data for MPI communications.

The overlap of the computation operation and the communication operation is necessary to

decrease the execution time. Figure 7 shows the basic concept of overlapping in the SOR method.

First, the computation of the boundary data, which is sent by MPI communications, is executed

for the communication operation. In the next step, both the computation of the non-boundary

data and the communication of the boundary data are executed in parallel. Eventually, the time

for the communication operation can be hidden.

Figure 8 shows the diagram of the overlapping model using the “schedule” clauses on

OpenMP. First, all cores execute the computation of the boundary data. It then executes the

T. Soga, K. Yamaguchi, R. Mathur, O. Watanabe, A. Musa, R. Egawa, H. Kobayashi
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communication operation. After that, thread 0 begins to execute the non-boundary data, which

is parallelized on four threads. Meanwhile, the other threads calculate the non-boundary data

after the calculation of the boundary data. Therefore, the communication operation is over-

lapped with the calculation of the non-boundary data. When the communication operations are

completed, thread 0 begins the execution of the computation operations for the non-boundary

data. These operations are controlled automatically by OpenMP. The “schedule (static)” clause

is used in this implementation because it has a smaller overhead for OpenMP than that of the

“schedule (dynamic)” clause [9]. Although the overlapping can be achieved simply by using the

directive statement, there is still an overhead of OpenMP.

In this study, we focus on the memory-intensive code that cannot effectively use all cores

in a processor. Figure 9 shows the diagram of our execution model [15]. In the first step, all

threads execute the computation operation of the boundary data. Then, thread 0 is used as a

dedicated communication thread and executes the communication operation. At the same time,

other threads simultaneously execute the computation operation of the non-boundary data. Each

thread executes the prearranged DO loop as shown in Fig. 9, where the program calculates the

starting and ending point of the DO loop on each thread.

3. Performance Evaluation

We evaluate three kinds of execution models: the non-overlapping model (Fig. 6), called

“Original”, the overlapping model (Fig. 8), called “Schedule”, and our model (Fig. 9), called

“Manual”. This evaluation measures the calculation time of the SOR method in 20 time steps

using three data sets in the code. First, the performance on SX-ACE is evaluated using the small

and large data sets. The next evaluation uses the small and medium data sets on SX-Aurora

TSUBASA. We will evaluate the performance on SX-Aurora TSUBASA using a large data set

when a large system for it can be constructed.

3.1. Evaluation Results on SX-ACE

Figure 10 shows the execution times with the small data set using four and 16 nodes of SX-

ACE. Here, computation time contains arithmetic time and memory time. Each node executes

one MPI process and four OpenMP threads. Figure 10 (a) shows the case of using four nodes. The

communication time includes the operation times for gathering and scattering of boundary data.

For “Original”, the computation time is 742 seconds and the communication time is 145 seconds,

resulting in the total time of 887 seconds. “Manual” hides 121 seconds in the communication

Computation of boundary data

Communication of
Computation of 
non-boundary

data

Overlap

Computation of boundary 

and non-boundary data

Communication of 
Shorten

Non-overlapping Overlapping

Figure 7. Basic concept of overlapping
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Figure 8. Diagram of implementation using “schedule” clauses on OpenMP

time, and it coresponds to 83% of the communication time. “Schedule” hides 40 seconds. The

overlapping effect of “Schedule” is smaller than that of “Manual” because the OpenMP overhed

of “Schedule” is larger. Figure 10 (b) shows the result for the 16-node case. The computation

time for “Original” decreases from 742 seconds to 208 seconds compared with the four-node case.

On the other hand, the communication time for “Original” decreases by only 13 seconds, and the

percentage of communication time to the total operation time becomes about 40%. “Manual”

Thread 0
Thread 1           2          3 

1 !$omp parallel
2       numth = omp_get_num_threads()
3 !$omp end parallel
4       length = (ked - 1) - (kst + 1) + 1
5       nodd = mod(length,numth-1)
6       if(nodd.ne.0) then
7        kst2(0) = kst + 1
8        ked2(0) = kst + nodd
9       else

10        kst2(0) = 0
11        ked2(0) = 0
12       endif
13       do i = 1,numth - 1
14        ndiv = length / (numth-1)
15        kst2(i) = Ked2(i-1) + 1
16        ked2(i) = Kst2(i)   + ndiv - 1
17      enddo

Figure 9. Diagram of our overlapping model

(a) 4-node case (b) 16-node case

Figure 10. Evaluation results with small data set on SX-ACE
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(a) 256-node case (b) 512-node case

Figure 11. Evaluation results with the large data set on SX-ACE

hides the communication time of 88 seconds, which coresponds to 67% of the communication

time of “Original”. “Schedule” hides 36 seconds in the communication time of “Original”.

Figures 11 (a) and (b) show the results of the 256-node and 512-node cases with the large

data set, respectively. Each node of SX-ACE uses one MPI process and four OpenMP threads

in this evaluation. In Fig. 11 (a), “Manual” hides the communication time of 746 seconds,

which coresponds to 90% of the communication time of “Original”, and “Schedule” hides 469

seconds in the communication time of “Original”. When the number of nodes increases from

256 to 512, the percentage of communication time to the total time becomes large. However,

“Manual” in Fig. 11 (b) is able to hide 547 seconds in the communication time of “Original”,

which represents a 90% decrease in the communication time. Meanwhile, the hidden time on

“Schedule” decreases to only 233 seconds. Our overlapping model “Manual” can hide a great

part of the communication time, and the execution times for the 512-node decreases by about

32%. On the basis of the above results, we show that SX-ACE has a potential to improve the

performance of MPI+OpenMP models for the memory-intensive code.

3.2. Evaluation Results on SX-Aurora TSUBASA

Figure 12 shows the execution times with the small data set using two and four VEs of

SX-Aurora TSUBASA. Each VE is combined via a PCIe switch and executes one MPI process

and eight OpenMP threads. Figure 12 (a) shows the results using two VEs. The communication

time of “Original” in Fig. 12 (a) is 43 seconds. “Manual” hides 29 seconds, which represents a

(a) 2-VE case (b) 4-VE case

Figure 12. Evaluation results with small data set on SX-Aurora TSUBASA

Effects of Using a Memory Stalled Core for Handling MPI Communication Overlapping...
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(a) 16-VE case (b) 32-VE case

Figure 13. Evaluation results with medium data set on SX-Aurora TSUBASA

roughly 67% decrease in the communication time. Figure 12 (b) shows the results using four

VEs. The communication time of “Original” is nearly the same as that in Fig. 12 (a), although

increasing the number of MPI processes. “Manual” also hides 25 seconds, which coresponds to

roughly 60% of the communication time. However, “Schedule” in the case of two and four VEs

has little overlapping effort.

We utilize 16 and 32 VEs of SX-Aurora TSUBASA for evaluation in the medium data

set. The 16-VE and 32-VE systems contain two VHs and four VHs, respectively. Each VH is

connected via an InfiniBand switch, and executes one MPI process and eight OpenMP threads.

Figures 13 (a) and (b) show the evaluation results for 16 VEs (2 VHs) and 32 VEs (4 VHs). The

computation time in “Original” on 32 VEs decreases from 848 seconds to 473 seconds compared

with the case of 16 VEs, and the ratio of the communication times to the total time on the

16 and 32 VEs are about 30% and 27%, respectively. In both cases, “Manual” can hide a part

of the communication time: on 16 VEs, it hides about 251 seconds among the communication

time of 355 seconds, which coresoponds to roughly 70% of the communication time, and 32 VEs,

it hides about 140 seconds among the communication time of 171 seconds, which represents a

roughly 80% in the communication time. Then, the overall execution times on each case can

decrease by about 20%. Meanwhile, “Schedule” was unable to decrease the execution times.

SX-Aurora TSUBASA was released in 2018, and the fortran compiler was newly developed.

Therefore, the overhead of OpenMP on SX-Aurora TSUBASA is high. In this evaluation, our

overlapping model, “Manual”, can hide a great part of the communication time on SX-Aurora

TSUBASA. We expect our overlapping model to produce increasing performance on a larger

data set with a larger system.

Conclusions

In this work, we focused on the overlapping between the computation and MPI communica-

tion operations of the SOR method in a thermal plasma flow simulation code, and examined an

implementation of MPI+OpenMP models where OpenMP thread 0 assigns the communication

operation and a part of the computation operation. Evaluation results demonstrated that SX-

ACE and SX-Aurora TSUBASA show a good potential for overlapping computation and MPI

communication on memory intensive codes, and our overlapping model, “Manual”, can hide the

MPI communication times of 90% on SX-ACE and 80% on SX-Aurora TSUBASA. Our over-

lapping model with SX-ACE and SX-Aurora TSUBASA is expected to increase perforamnce of

memory intensive codes.
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In future work, we will evaluate our three models using memory intensive codes from various

application fields on SX-Aurora TSUBASA and other systems: such as Intel Xeon and AMD

EPYC.
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Enhancing the in Situ Visualization of Performance Data

in Parallel CFD Applications
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This paper continues the work initiated by the authors on the feasibility of using ParaView as

visualization software for the analysis of parallel CFD codes’ performance. Current performance

tools are unable to show their data on top of complex simulation geometries (e.g. an aircraft

engine). In our previous paper, a plugin for the open-source performance tool Score-P has been

introduced, which intercepts an arbitrary number of manually selected code regions (mostly func-

tions) and send their respective measurements – amount of executions and cumulative time spent

– to ParaView (through its in situ library, Catalyst), as if they are any other flow-related variable.

This paper adds to such plugin the capacity to also show communication data (messages sent

between MPI ranks) on top of the CFD mesh. Testing is done again with Rolls-Royce’s in-house

CFD code, Hydra. The plugin’s original feature (regions’ measurements) is here revisited, in a big-

ger test-case, which is also used to illustrate the new feature (communication data). The benefits

and overhead of the tool are discussed.

Keywords: parallel computing, performance analysis, in situ processing, computational fluid

dynamics.

Introduction

Computers have become mandatory resources in solving engineering problems. For the size

of today’s typical ones (like designing aircraft), one needs to parallelize the simulation (e.g.

of the air flowing through the airplane’s engine) and run it in High Performance Computing

(HPC) hardware. Those are expensive infrastructures, both from time and energy consumption

point-of-views. Therefore the application needs to have its parallel performance high-tunned for

maximum productivity.

There are many tools for analyzing the performance of parallel applications; one of them

is Score-P2 [9], the development of which the Centre for Information Services and HPC (ZIH)

of the Technische Universität Dresden participates in. It instruments the simulation code and

monitors its execution, and can be easily turned on or off by the user at compile time. When

applied to a source code, the simulation will produce in the end, apart from its native outputs,

also the performance data. This is illustrated in the upper part of Fig. 1 below.

However, all tools currently available to visualize the performance data (generated by soft-

ware like Score-P) lack important features, like three-dimensionality, time-step association (i.e.

frame playing) and most importantly, matching to the simulation original geometry (where

everything happens in terms of computations and therefore where load imbalances lie).

As a separate category of add-ons, tools for enabling in situ visualization of applications’

output data – like temperature or pressure in a Computational Fluid Dynamics (CFD) simu-

lation – already exist too; one example is Catalyst3 [3]. They also work as an optional layer

to the original code and can be activated upon request, by means of preprocessor directives

1Technische Universität Dresden, Center for Information Services and High Performance Computing (ZIH), Dres-

den, Germany
2Scalable Performance Measurement Infrastructure for Parallel Codes – an open-source “highly scalable and

easy-to-use tool suite for profiling, event tracing, and online analysis of HPC applications” [tool’s website].
3An open-source “in situ use case library, with an adaptable application programming interface (API), that

orchestrates the delicate alliance between simulation and analysis and/or visualization tasks” [tool’s website].
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parallel application

performance add-on

output

in-situ add-on

Figure 1. Schematic of software components for parallel applications

at compilation stage. The simulation will then produce its native outputs, if any,4 plus the

coprocessor ’s (a piece of code responsible for allowing the original application to interact with

the in situ methods) ones, in separate files. This is also illustrated in Fig. 1. These tools have

been developed by visualization specialists for decades long by now and feature abundant visual

resources.

Then the question comes: why not use such in situ tools (made to extract data from the

simulation by separate side channels, just like the performance instrumenters) for the benefit of

the performance analysis of parallel applications (filling by that the lack of visual resources of

the performance tools)?

This work continues our investigations on the feasibility of merging the aforementioned

approaches. First, by unifying the overlapping functionalities of both kinds of tools, insofar as

they augment a parallel application with additional features (which are not strictly required

for the application to work in the first place). Second, by using the advanced functionalities of

dedicated visualization software for the purpose of performance analysis. Figure 2 illustrates the

idea.

parallel application

performance add-on

in-situ add-on flow variables

performance variables

output

Figure 2. Schematic of the software components for a combined add-on

In our previous paper [2], we mapped performance measurements of code regions – amount

of executions and cumulative time spent – to the simulation’s geometry, just like it is done

for flow-related properties. In this paper, we shall add to our tool the capacity of showing

communication data (messages sent between MPI ranks) on top of the CFD mesh. We will then

see how communication inefficiencies become immediately visible.

HPC analysis tools usually produce either performance profiles or event traces. In the case

4I.e. if the in situ channel does not replace completely the code’s original outputs, as it uses to happen.
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of Score-P, they are: performance profiles in the Cube4 format, to be visualized with Cube5;

and parallel event traces in the OTF2 format, to be visualized with Vampir6. But neither of

them, nor the other currently available tools, nor the related attempts in the literature (to be

summarized in Section 1 below), display their measurements onto complex geometries (like those

found in industry-grade CFD problems), what makes our proposal novel.

A design requirement is that the combined solution must be easily applicable on the source

code, yet without becoming a permanently required component: it needs to be “activatable”

on demand, as it is the case for each of its constitutive parts (performance measurement and in

situ processing). As evaluation case, the Rolls-Royce’s in-house CFD code (Hydra) will be used.

This paper is organized as follows: in Section 1 we discuss the efforts made so far at the

literature to map performance data to the simulation’s geometry and the limitations of their

results. In Section 2 we present the methodology of our approach, which is then evaluated in the

test-case in Section 3. Finally, Section 4 discusses the overhead associated with using our tool.

We then conclude the article with a summary and point directions for future work.

1. Related Work

In order to assist the developer of parallel codes in its optimization tasks, many software

tools have been developed. For a comprehensive list of them, including information about their:

• scope, whether single or multiple nodes (i.e. shared or distributed memory);

• focus, be it performance, debugging, correctness or workflow (productivity);

• programming models, ranging through MPI, OpenMP, Pthreads, OmpSs, CUDA, OpenCL,

OpenACC, UPC, SHMEM and their combinations;

• languages: C, C++, Fortran or Python;

• processor architectures: x86, Power, ARM, GPU;

• license types, platforms supported, contact details, output examples etc.

the reader is referred to the Tools Guide of the Virtual Institute – High Productivity Super-

computing (VI-HPS). However, none of them currently match the generated data back to the

simulation original geometry.

The necessity of bringing together the branches of performance analysis and visualization has

already been identified by the scientific community [4, 7] and is being pursued at research level.

Vierjahn et al. [12] mapped performance data to the simulation geometry, but developing the

visualization environment from scratch (the test-case was indeed simpler than a CFD problem).

Going this way, it would take decades for the tool to reach the same capabilities of today’s top

graphic programs. Huck et al. [5], on the other hand, did follow our approach: performance tool

TAU was linked to visualization software VisIt to show performance data on top of the Earth’s

oceans in a climate simulation; however the linking required writing a new VisIt file format

reader. To reproduce those results would require the effort of manually recreating such interface

for each different (CFD) simulation code, which was undesired. Husain et al. [6] followed a

similar path, also using VisIt as visualization tool, but MemAxes as performance measurer – a

software which does not seem to have a website, what impacts on its availability. Their results

required modifying the source code of both tools involved, which was again undesired. Finally,

5A free, but copyrighted “generic tool for displaying a multi-dimensional performance space consisting of the

dimensions (i) performance metric, (ii) call path, and (iii) system resource” [tool’s website].
6An “easy-to-use framework that enables developers to quickly display and analyze arbitrary program behavior

at any level of detail” [tool’s website].
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similar hurdles can be encountered in the work of Wood et al. [13]: the application needs to

be first enveloped by a multipurpose framework (SOSflow) and then linked with a non widely

known in situ infrastructure (Ascent) in order for performance data to be shown on simulation

geometries which are comprised of parallelepipedic rectilinear grids.

Not without reason, all attempts (to match performance data to the simulation’s geometry)

described above were unable to test their features on more complex (CFD) meshes: the required

user effort precluded it... We will then advance the state-of-the-art by aiming for a solution which

uses an already established way of extracting data from a simulation, which can be directly (i.e.

without wrapping layers) applied to any numerical code, running any type of mesh.

2. Methodology

2.1. Prerequisites

The goal aimed by this research depends on the combination of two basic, scientifically

established methods: performance measurement and in situ processing.

2.1.1. Performance measurement

When applied to a source file compilation, Score-P automatically inserts probes between

each code “region”7, which will at run-time measure a) the number of times that region has

been executed and b) the total time spent in those executions, by each process (MPI rank)

within the simulation. Its application is done by simply prepending the word scorep into the

compilation command, e.g.: scorep [Score-P’s options] mpicc foo.c. It is possible to ex-

clude regions from the instrumentation (e.g. to keep the related overhead low), by adding the

flag --nocompiler to the command above. In this case, Score-P sees only user-defined regions (if

any) and MPI-related functions, the detection of which can be easily (de)activated at run-time,

by means of an environment variable: export SCOREP MPI ENABLE GROUPS=[comma-separated

list]. Leaving it blank turns off instrumentation of MPI routines. Its default value is set to

catch all of them.

Finally, the tool is also equipped with an API, which allows the user to extend its func-

tionalities through plugins [11]. The combined solution proposed by this paper takes indeed the

form of such a plugin.

2.1.2. In situ processing

In order for Catalyst to interface with a simulation code, an adapter needs to be built,

which is responsible for exposing the native data structures (mesh and flow properties) to the

coprocessor component. Its interaction with the simulation code happens through three function

calls (initialize, run and finalize), illustrated in blue at Fig. 3. Once implemented, the adapter

provides the generation of post-mortem files (by means of the VTK 8 library) and/or the live

visualization of the simulation, both through ParaView9 [1].

7Every “function” is naturally a “region”, but the latter is a broader concept and includes any user-defined

aggregation of code lines, which is then assigned a name. It could be used e.g. to aggregate all instructions

pertaining to the main solver (time-step) loop.
8An open-source “software for manipulating and displaying scientific data” [tool’s website].
9An open-source “multi-platform data analysis and visualization application” [tool’s website].
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int main(int argc, char **argv)

{
MPI_Init(& argc, & argv);

#ifdef USE_CATALYST

initialize_coprocessor_();

#endif

// STARTING PROCEDURES...

#ifdef CATALYST_SCOREP

// tell the plugin that the time-step loop is about to start

cat_sco_initialize_();

#endif

// MAIN SOLVER LOOP

for (int time_step = 0; time_step < num_time_steps; time_step++)

{
// COMPUTATIONS...

#ifdef USE_CATALYST

run_coprocessor_(time_step, time_value, ...);

#endif

#ifdef CATALYST_SCOREP

// tell the plugin to process the current time step

cat_sco_run_(time_step, time_value);

#endif

}
#ifdef CATALYST_SCOREP

// tell the plugin that the time-step loop is over

cat_sco_finalize_();

#endif

// ENDING PROCEDURES...

#ifdef USE_CATALYST

finalize_coprocessor_();

#endif

MPI_Finalize();

return 0;

}

Figure 3. Illustrative example of changes needed in a simulation code due to Catalyst (blue)

and then due to the plugin (violet)
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2.2. Combining both Tools

In our previous paper [2], we have introduced a Score-P plugin, which allows performance

measurements for an arbitrary number of manually selected code regions to be mapped to the

simulation original geometry. In this paper, we are extending our software to pipeline (i.e. send

for visualization) also communication data (messages exchanged between ranks) on top of the

CFD mesh. The plugin must be activated at run-time through an environment variable (export

SCOREP SUBSTRATE PLUGINS=Catalyst), but works independently of Score-P’s profiling or trac-

ing modes being actually on or off. Like Catalyst, it requires three function calls (initialize, run

and finalize) to be inserted in the source code, illustrated in violet at Fig. 3. Additionally, a call

must be placed before each function to be pipelined:

#ifdef CATALYST_SCOREP

! send the following region’s measurements to ParaView

CALL cat_sco_pipeline_next_()

#endif

CALL desired_function(argument_1, argument_2...)

Figure 4. Illustrative example of the call to tell the plugin to show the upcoming function’s

measurements in ParaView

The above layout ensures that the desired function will be captured when executed at that

specific moment and not in others (if the same routine is called multiple times – with different

inputs – throughout the code, as it is usual for CFD simulations). The selected functions may

be nested. This is not needed for the new feature of our tool (show communication on the

simulation geometry), as the instrumentation of MPI routines is done independently at run-

time (see Section 2.1.1 above).

Finally, the user needs to add a small piece of code into its simulation Catalyst adapter, in

order for the plugin-generated variables to be pipelined, as shown on Fig. 5.10 The first part is

related to the selected regions inside the simulation code (the original feature of our tool); it

contains two vectors since for each selected region the plugin will generate two variables (which

correspond to the two basic measurements made by Score-P, as explained in Section 2.1.1 above).

The second part refers to the tracking of communication between MPI ranks (the new feature

of our tool); it also contains two vectors for each of the supported calls (MPI Send, Isend, Get

and Put), one to store the amount of times that specific call was made (inside the time-step),

another to store the total amount of bytes transported through those calls.

3. Evaluation

3.1. Settings

Hydra is Rolls-Royce’s in-house CFD code [10], based on a preconditioned time marching

of the Reynolds-averaged Navier-Stokes (RANS) equations. They are discretized in space us-

10In order for the plugin to work with simulation codes written in C or Fortran, its three main calls have name

mangling and no namespaces. However, given VTK requires C++ features, a Catalyst adapter needs to be written

in C++, hence the plugin calls shown on Fig. 5 are free from such restrictions.
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#ifdef CATALYST_SCOREP

// Related to the selected regions

std::vector<vtkNew<vtkUnsignedIntArray> >freq(cat_sco::meas::get_size());

std::vector<vtkNew<vtkDoubleArray > >time(cat_sco::meas::get_size());

for (std::size_t i = 0; i < cat_sco::meas::get_size(); ++i)

{

freq[i] -> SetName( (cat_sco::meas::get_name(i) + " : freq").c_str() );

time[i] -> SetName( (cat_sco::meas::get_name(i) + " : time").c_str() );

freq[i] -> SetNumberOfComponents(1);

time[i] -> SetNumberOfComponents(1);

freq[i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

time[i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

freq[i] -> FillTypedComponent(0, cat_sco::meas::get_counter(i));

time[i] -> FillTypedComponent(0, cat_sco::meas::get_time (i));

vtk_grid -> GetPointData() -> AddArray(freq[i].GetPointer() );

vtk_grid -> GetPointData() -> AddArray(time[i].GetPointer() );

}

// Related to communication

std::vector<vtkNew<vtkUnsignedIntArray > >counter(cat_sco::comm::get_size());

std::vector<vtkNew<vtkUnsignedLongArray> >bytes (cat_sco::comm::get_size());

std::stringstream name;

for (std::size_t i = 0; i < cat_sco::comm::get_size(); ++i)

{

name << "MPI_Put to " << i;

counter[i] -> SetName( (name.str() + " : counter").c_str() );

bytes [i] -> SetName( (name.str() + " : bytes" ).c_str() );

counter[i] -> SetNumberOfComponents(1);

bytes [i] -> SetNumberOfComponents(1);

counter[i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

bytes [i] -> SetNumberOfTuples(vtk_grid->GetNumberOfPoints() );

counter[i] -> FillTypedComponent(0, cat_sco::comm::get_counter_put(i));

bytes [i] -> FillTypedComponent(0, cat_sco::comm::get_bytes_put (i));

vtk_grid -> GetPointData() -> AddArray(counter[i].GetPointer() );

vtk_grid -> GetPointData() -> AddArray(bytes [i].GetPointer() );

name.str(""); name.clear();

}

#endif

Figure 5. Illustrative example of the addition needed in the simulation Catalyst adapter due to

the plugin
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Figure 6. Geometry used in the simulations (left) and its partitioning among processes for

parallel execution (right)

ing a second-order, edge-based finite volume scheme with a multistage, explicit Runge-Kutta

scheme as a steady time marching approach. Multigrid and local time-stepping acceleration tech-

niques are used to improve steady-state convergence [8]. Figure 6 shows the test-case selected for

this paper: it represents a simplified (single cell thickness), 360° experimental grid of two tur-

bine stages in an aircraft engine, discretized through roughly 1 million points. Unsteady RANS

calculations have been made with second-order, time-accurate dual time-stepping. Turbulence

modelling was based on standard 2-equation closures. Preliminary analyses with Score-P and

Cube revealed two code functions to be especially time-consuming: iflux edge and vflux edge

(both mesh-related); they were selected for pipelining.

The simulations have been done using two entire Haswell nodes of Dresden University’s

HPC cluster (Taurus), each with 24 ranks (i.e. pure MPI, no OpenMP), one per core and with

the entire core memory (2583 MB) available. Processes are pinned by default. Figure 6 shows

the domain partitioning among the ranks, done in a geometric fashion – which ensures a similar

number of grid points between each sub-domain11 – and not subject to any stochastic variance.

One full engine shaft rotation was simulated, comprised of 200 time-steps (i.e. one per 1.8°),
each internally converged through 40 iteration steps. Catalyst was generating post-mortem files

every 20th time-step (i.e. every 36°), what led to 10 stage pictures by the end of the simulation.

Finally, everything was built / tested with release 2018a of Intel® compilers in association

with versions 4.0 of Score-P and 5.5.2 of ParaView.

3.2. Results

3.2.1. Original feature – manually selected code regions

Figure 7 shows the amount of executions, per time-step, of the two selected regions; it is

constant in every time-step and not subject to any stochastic variance. From the picture it

11It does not look so in the picture because the grid gets finer in the x direction.
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Figure 7. Amount of executions, per time-step, of two selected code functions (iflux edge on the

left, vflux edge on the right) in the test-case

Figure 8. Total time spent in function iflux edge, in an arbitrary time-step, on two consecutive

runs of the test-case

is visible that ensuring a similar number of mesh points between the sub-domains does not

necessarily mean an equally similar number of edges,12 as both functions are applied at the

edge level and their amount of executions differ up to 1 million times (every time-step) between

maximum and minimum among the ranks. There is a clear bias towards overloading the sub-

domains closer to the turbine inlet (the air flows in the positive x direction), plus the creation

of a chess-like pattern (interleaved areas of higher and lower number of executions).

12Hydra works with unstructured meshes: grid cells do not need to be of uniform type across the entire domain.
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Figure 9. Total time spent in function vflux edge, in an arbitrary time-step, on two consecutive

runs of the test-case

The aforementioned distortions indeed reflect on the code performance. Figures 8 and 9

show the total – i.e. comprising all executions – time spent (in seconds) in the selected regions

in an arbitrary time-step: they change every time-step and are subject to stochastic variance

(hence two pictures per function, each referring to the same time-step at consecutive runs of

the test-case). Both the bias in the inlet / outlet direction and the chess-like pattern are visible;

furthermore, it becomes clear that the load imbalance is stronger in vflux edge.

3.2.2. New feature – tracking of communications

Mapping communications data to the simulation geometry is a new feature of our plugin

and is being presented here for the first time. Figure 10 shows the location of an arbitrary

subdomain (left) and those communicating with it (right), colored by the amount of messages

sent (in this case, MPI Isend calls) in an arbitrary time-step of the test-case. It represents the

expected behavior: only the neighbors communicate with the selected rank (the last one, number

47). However, this is not the case for other subdomains within the same simulation: Figure 11

shows the same information as the previous one, but now for rank number 1. Notice how many

non-neighbors communicate with it in the selected time-step, and thousand of times indeed. This

means an unneeded burden on the simulation run-time and should be avoided. It actually could

be avoided, as such non-neighbors are not properly sending any data through those thousands

of MPI calls, as revealed by Fig. 12, which corresponds to Fig. 11, but now coloring the sender

subdomains by total amount of bytes sent at the time-step shown.

Such conclusions are only made possible thanks to the mapping of communication data

back to the simulation geometry; it would indeed be difficult to reach the same insights from the

traditional way of showing communication traces (lines crossing each other on a two-dimensional,

horizontal bar-chart-like visualization). It has proved the benefits of our tool.

R.F.C. Alves, A. Knüpfer
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Figure 10. Location of an arbitrary subdomain (left) and those communicating with it (right),

colored by the amount of messages sent (in this case, MPI Isend calls) in an arbitrary time-step

of the test-case

Figure 11. Location of another arbitrary subdomain (left) and those communicating with it

(right), colored by the amount of messages sent (in this case, MPI Isend calls) in an arbitrary

time-step of the test-case
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Figure 12. Location of another arbitrary subdomain (left) and those communicating with it

(right), colored by the amount of bytes sent (in this case, through MPI Isend calls) in an

arbitrary time-step of the test-case

4. Overhead

Provided we are talking about performance analysis, it is important to analyse the impact

of our tool itself on the performance of the instrumented code execution.

4.1. Settings

In the following table, the baseline results refer to the pure simulation code, running as per

the settings presented in Section 3; the numbers given are the average of 5 runs ± 1 relative

standard deviation. The + Score-P results refer to when Score-P is added onto it, running with

both profiling and tracing modes deactivated (as neither of them is needed for the plugin to

work)13. Finally, ++ plugin refers to when the plugin is also used: running only one feature

(regions or communication) at a time14 and on the iterations when there would be generation

of output files15.

Score-P has been always applied with the --nocompiler option. When the plugin is used to

show communication between ranks, this option will be enough, as no instrumentation (manual

or automatic) is needed when only MPI calls are being tracked. On the other hand, when the

goal is to measure code regions, the instrumentation overhead is considerably higher, as every

single function inside the simulation code is a potential candidate for the analysis (as opposed

to when tracking communications, when only MPI-related calls are intercepted). In this case,

13If present, there would be at the end of the simulation, apart from the simulation output files, those generated

by Score-P for visualization in Cube (profiling mode) or Vampir (tracing mode). Their generation can co-exist

with the plugin execution, but it is not recommended: the overheads sum up.
14The plugin can perfectly run in all its features simultaneously. However, this is not recommended: the overheads

sum up.
15Given the simulation was not being visualized live in ParaView, there was no need to let the plugin work in

time-steps when no data would be saved to disk.

R.F.C. Alves, A. Knüpfer
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#ifdef SCOREP_USER

#include "scorep/SCOREP_User.inc"

#endif

! {...}

subroutine IFLUX_EDGE(...)

implicit none

#ifdef SCOREP_USER

SCOREP_USER_REGION_DEFINE( iflux_region )

#endif

! {variable declarations}

#ifdef SCOREP_USER

if(MODULO(time_step, 20) == 0 .OR. time_step == 1) then

SCOREP_USER_REGION_BEGIN(iflux_region, "iflux_edge",

& SCOREP_USER_REGION_TYPE_COMMON)

endif

#endif

! {function body}

#ifdef SCOREP_USER

if(MODULO(time_step, 20) == 0 .OR. time_step == 1) then

SCOREP_USER_REGION_END( iflux_region )

endif

#endif

return

end

Figure 13. Example of a manual (user-defined) code instrumentation with Score-P; the optional

if clauses ensure measurements are collected only at the desired time-steps

it is necessary to add the --user Score-P compile flag and manually instrument the simulation

code (i.e. only the desired regions were visible to Score-P). This is achieved by means of an

intervention as illustrated in Fig. 13: if MODULO... additionally ensures measurements are

collected solely when there will be generation of output files and at time-step 1 – the reason for

it is that Catalyst runs even when there is no post-mortem files being saved to disk (as the user

may be visualizing the simulation live) and the first time-step is of special importance, as all

data arrays must be defined then (i.e. the (dis)appearance of variables in later time-steps is not

allowed)16. Finally, when measuring code functions, interception of MPI-related calls has been

turned off at run-time17.

4.2. Results

Table 1 shows the impact of the proposed plugin on the test-case performance. The mem-

ory section refers to the peak memory consumption per rank, reached somewhen during the

16Hence, in the end there were two narrowing factors for Score-P: the spacial (i.e. accompany only the desired

functions) and the temporal (accompany only at the desired time-steps) ones.
17By means of the SCOREP MPI ENABLE GROUPS environment variable (see Sec. 2.1.1 above).
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Table 1. Overhead results of the plugin on the test-case’s performance

running time memory (MB)

++ plugin + Score-P baseline ++ plugin + Score-P baseline

regions 47m12s (6%) 46m30s (5%) 44m20s ± 2% 405 (–4%) 410 (–3%) 423 ± 1%

comm. 49m21s (11%) 46m38s (5%) 44m20s ± 2% 468 (11%) 410 (–3%) 423 ± 1%

simulation; it neither means that all ranks need that much memory (simultaneously or not),

nor that the memory consumption is like that during the entire simulation. Score-P’s individual

footprint is so small that it lies within the statistical margin of oscillation of the value itself; the

same applies to the plugin footprint when measuring the two code regions. Tracking communi-

cations, on the other hand, adds many more data arrays to ParaView (two per rank per type of

communication call), hence the associated overhead is higher.

The run-time overhead, in its turn, is more critical. But fortunately it lies within acceptable

thresholds. The regions feature has again been less burdensome, but that has to do with how

many regions are being intercepted within the source code (here, only two of them).

Conclusions

In this paper, we have extended our software that allows mapping parallel performance data

back to the simulation geometry, by means of (combining) the code instrumenter Score-P and the

in situ library Catalyst , resulting on three-dimensional, time-stepped (framed) visualizations in

the graphical program ParaView . The tool, which takes the form of a Score-P plugin, is capable

of matching to the domain mesh (e.g. an aircraft engine):

• measurements for an arbitrary number of manually selected code regions – original feature

of the tool, introduced in our previous paper [2] and here revisited (in a bigger test-case);

• communication data (messages exchanged between MPI ranks) – new feature of the tool,

presented here for the first time.

All that is based exclusively on open-source dependencies. The tool source code is available

at https://gitlab.hrz.tu-chemnitz.de/alves–tu-dresden.de/catalyst-score-p-plugin.

The advantage of using ParaView as visualization software comes to all the resources already

available in – and experience accumulated by – it after decades of continuous development.

Visualization techniques are usually not the specialization field of researchers working with code

performance: it is more reasonable to take advantage of the currently available graphic programs

than attempting – from scratch – to equip the existing profiling tools with their own GUIs. In

this threshold, the developed plugin makes load imbalances and communication inefficiencies

easier to identify. It works independently of Score-P’s profiling or tracing modes and with either

automatic or manual code instrumentation. Finally, like Catalyst itself, its output frequency

(when doing post-mortem analyses) is adjustable at run-time (through the plugin input file).

Future Work

We plan to continue this work in distinct directions:
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More extensive evaluation cases.

To run the plugin in bigger test-cases, as the difficulty in matching each parallel region id

number (the MPI rank) with its respective grid part (hence the benefit of matching performance

data back to the simulation mesh) increases with scaling. Concomitantly, to run the plugin

in test-cases which comprise regions with distinct flow physics, when the computational load

becomes less dependent on the number of points / cells per domain and more dependent on

the flow features themselves (given their non-uniform occurrence): chemical reactions in the

combustion chamber, shock waves in the inlet / outlet (at the supersonic flow regime), air

dissociation in the free-stream / inlet (at the hypersonic flow regime) etc.

Develop new visualization schemes for performance data.

To take advantage of the many filters available in ParaView for the benefit of the code

optimization branch, e.g. by recreating in it the statistical analysis – display of average and

standard deviation between the threads/ranks measurements – typically available in performance

tools.
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9. Knüpfer, A., Rössel, C., Mey, D.a., et al.: Score-P: A joint performance measurement run-

time infrastructure for Periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S.,

Nagel, W.E., et al. (eds.) Tools for High Performance Computing 2011. pp. 79–91. Springer

Berlin Heidelberg, Berlin, Heidelberg (2012), DOI: 10.1007/978-3-642-31476-6 7

10. Lapworth, L.: Hydra-CFD: a framework for collaborative CFD development. In: Interna-

tional Conference on Scientific and Engineering Computation, IC-SEC, June, Singapore.

vol. 30 (2004), https://www.researchgate.net/publication/316171819_HYDRA-CFD_A_

Framework_for_Collaborative_CFD_Development
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Recently, many researchers have been investigating quantum annealing as a solver for real-

world combinatorial optimization problems. However, due to the format of problems that quantum

annealing solves and the structure of the physical annealer, these problems often require additional

setup prior to solving. We study how these setup steps affect performance and provide insight into

the interplay among them using the job-shop scheduling problem for our evaluation. We show that

the empirical probability of success is highly sensitive to problem setup, and that excess variables

and large embeddings reduce performance. We then show that certain problem instances are unable

to be solved without the use of additional post-processing methods. Finally, we investigate the

effect of pausing during the anneal. Our results show that pausing within a certain time window

can improve the probability of success, which is consistent with other work. However, we also show

that the performance improvement due to pausing can be masked depending on properties of the

embedding, and thus, special care must be taken for embedded problems.

Keywords: quantum annealing, quantum computer, job-shop scheduling, combinatorial opti-

mization.

Introduction

As quantum computing devices are increasing in size and availability, quantum computing

is experiencing a surge of interest as a method to efficiently solve problems that are other-

wise impractical for classical computers or for which even small speedups are desirable. This

interest is justified by existing quantum algorithms that improve upon classical ones, such as

Shor’s algorithm for integer factorization [31] and Grover’s search algorithm [14]. One type of

quantum computing that excels at solving combinatorial optimization problems is quantum an-

nealing (QA). By exploiting fundamental quantum mechanical properties, such as tunneling

and superposition, QA has high potential to efficiently find high quality solutions [18]. While

early results [15, 20] may not have seemed promising for QA over classical solvers, later re-

sults [2, 12, 24] were more promising, and indicated that harder benchmark problems reveal the

power of QA over classical solvers. QA achieves computation by preparing a system in an initial

quantum configuration, and slowly evolving the system toward a final configuration, which rep-

resents the target problem. According to the adiabatic theorem, if the system is evolved slowly

enough, it will remain in the ground state and the final qubit values represent a solution to the

target problem [13]. However, due to problem properties, thermal excitations, noise, and other

factors, the system does not always remain in the ground state; thus, solutions may not be

found. Performance and usability are further impacted by preparatory steps required not only

by QA, but also by the current physical implementation of QA.

One of the major challenges in using QA is converting problems to quadratic unconstrained

binary optimization (QUBO) form, which is the native problem that QA solves. QUBO form

requires that all variables take binary values, and that all variable terms are of degree two or less.
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For some types of problems, such as integer programming problems, conversion of non-binary

variables to binary variables can be achieved through techniques such as one-hot encoding, yet

will result in a significantly higher number of variables in the QUBO. For other types of problems

that already use binary variables, such as the satisfiability problem, additional variables may

be introduced when reducing terms having a degree greater than two. Therefore, it is clear that

conversion to QUBO form often results in a problem containing significantly more variables than

the original representation did.

A second challenge associated with current QA arises from the physical quantum process-

ing unit (QPU) that implements QA. Commercially available QPUs have limited connectivity

between qubits, and impose similar constraints on qubits in QUBOs. Limited connectivity can

be remedied through minor embedding, which is a process that produces a mapping of a QUBO

to the QPU, while allowing one logical qubit to be represented by a “chain” of multiple phys-

ical qubits. A problem that requires embedding is known as an embedded problem. As many

applications, such as the one considered in this work, contain multiple variables that must be

represented by qubit chains, the number of qubits in an embedding can be significantly larger

than in its corresponding QUBO. This effectively reduces the maximum sizes of problems that

can be solved by the QPU, especially for embedded problems with variables that share many

constraints and have high connectivity.

The effects that problem formulation and embedding have on performance are not well stud-

ied. The purpose of this work is to investigate these effects, determine methods through which

performance can be maximized, and investigate the interplay between them. We select schedul-

ing problems for our evaluation. Scheduling is one of the most ubiquitous types of problems in

optimization and has applications in many fields. The standard form of these problems is finding

an assignment of tasks to resources that satisfies problem constraints [6]; however, real world

applications require domain specific variants [16, 29, 32, 35]. In this work, we select the standard

n×m job-shop scheduling problem (JSP) to evaluate the performance of QA. One characteristic

of the JSP that makes it a suitable candidate for evaluating the performance of QA is that it is

NP-hard, and often requires the use of heuristic solvers. Furthermore, binarization of the JSP

results in extra variables, which can have a significant impact on performance. Additionally, the

structure and connectivity of the JSP necessitates embedding, which allows us to evaluate the

performance of a multitude of unique embeddings. Seeking methods to improve performance,

we also evaluate post-processing techniques and modified anneal schedules that include a pause.

Finally, we conclude with a suggestion of how the considered methods can be combined to ad-

dress the above challenges and achieve high performance with QA on embedded problems. The

main contributions of this work can be summarized as follows:

• We investigate the impacts of problem formulation and embedding on performance;

• We provide methods to improve performance and show the interplay between them;

• We show that the effects of anneal pausing can be masked with a poor selection of embed-

ding, and provide an explanation as to why this occurs; and

• We suggest a combined approach to achieve high performance on embedded problems.

The rest of this paper is organized as follows. Section 1 provides background on QA and its

current implementation, and reviews a JSP formulation for QA. Then, in Section 2, we describe

in detail our methods for variable reduction, embedding, post-processing, and anneal schedule

modification. Section 3 contains our evaluation setup, results, and analysis. Related work is

discussed in Section 4. The final section contains our conclusions and potential future direction.
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1. Background

In this section, we first describe QA in detail. We then introduce our target problem, the

JSP, and provide details on how it can be formulated for QA.

1.1. Quantum Annealing

QA is a quantum mechanical metaheuristic for minimizing combinatorial optimization prob-

lems. System evolution follows a time-dependent Hamiltonian of the form

H(s) = A(s)HI +B(s)HF , (1)

where A and B are time-dependent coefficients, HI is the initial Hamiltonian, HF is the final or

problem Hamiltonian, and s is the re-scaled annealing time taking values in the range [0, 1]. In

a system of N qubits, HI and HF are given by

HI =

N∑

i=1

σix, (2)

and

HF =

N∑

i

hiσ
i
z +

N∑

i

N∑

j=i+1

Ji,jσ
i
zσ

j
z, (3)

where σiz and σjz are the Pauli matrices operating on qubits i and j, and h and J are local biases

and coupling strengths that encode the problem to be solved.

System evolution starts at s = 0 in the ground state of HI , where A is large and B = 0.

Tunneling strength, which is determined by A, is initially strong and analogous to the tempera-

ture term in the classical metaheuristic simulated annealing [21]. As system evolution progresses,

A monotonically decreases to 0 and B monotonically increases, introducing HF . According to

the adiabatic theorem, the system will remain in the ground state provided that evolution is

sufficiently slow with respect to the minimum gap, that is, the difference in energy between the

two lowest energy states of the system [13].

When system evolution ceases at s = 1, the system is in a classical state described by the

Ising model

E(s) =

N∑

i

hisi +

N∑

i

N∑

j=i+1

Ji,jsisj , (4)

where si ∈ {±1} are spin variables. Similar to the Ising model, but having binary variables

xi ∈ {0, 1}, is the QUBO problem of the form

E(x) =

N∑

i

N∑

j=i

Qi,jxixj , (5)

where Qi,j is a matrix containing local and quadratic biases. Note that QUBO variables can

be converted to Ising variables with the mapping si = 2xi − 1. Due to the binary values of

the QUBO matching those most frequently used in traditional computing, we use QUBO form

throughout the rest of this work.
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(c) Embedded into a unit cell

Figure 1. An example embedding for a problem consisting of three variables

In QA, there are no limitations placed on the connectivity of qubits; however, in current

QPUs implementing QA, qubit connectivity is limited. In the QPU used in this work, the

layout of qubits in the QPU follows the C16 Chimera graph, which is a 16 × 16 grid of K4,4

bipartite graphs, termed unit cells. In this graph, vertices, and thus qubits, have a maximum

connectivity of six. To solve QUBOs with variables having higher connectivity, or QUBOs that

have a structure that does not match that of the QPU, a technique called minor embedding must

first be performed. In minor embedding, connectivity between logical variables in the QUBO is

achieved by allowing the variables to be represented by a “chain” of multiple physical qubits

in the QPU. To ensure that all qubits of a chain take the same value, a strong negative bias is

used for intra-chain couplings. Problems that require chaining often use far more qubits in the

QPU than variables in their QUBO, which effectively reduces the maximum sizes of problems

that can be solved directly on the QPU.

We provide an example problem that requires embedding, as well as a potential embedding

for it, in Fig. 1. The problem contains three fully connected variables, and can be represented

graphically by a triangle, as shown in Fig. 1a. Note that in the unit cell in Fig. 1c, no three

vertices can be used to represent this system. Only by chaining a variable, as is done in Fig. 1b,

is it possible to embed the system into the unit cell as shown in Fig. 1c.

1.2. Job-shop Scheduling Problem

In this work, we consider the standard n × m JSP in which a set of n jobs J is to be

scheduled on a set of m machines M [4]. Each job j ∈ J must be processed exactly once by

each machine r ∈ M . The processing of a job on a machine is called an operation, denoted by

oi ∈ O = {o1, . . . , on×m}, where every oi corresponds to the machine r on which the operation

is to be executed. Each operation has a corresponding positive integer processing duration di ∈
D = {d1, . . . , dn×m}. The i-th set of operations and processing durations corresponds to job ji.

We seek a schedule of J on M that respects the following three constraints. First, operations

of a job must take place in the order defined in O, and no operation can start until all preceding

operations have completed. Second, machines can only execute one operation having a nonzero

processing duration at any given time. Lastly, all operations must be scheduled with exactly one

starting time and cannot be interrupted during processing. A schedule is valid if none of these

constraints are violated.

We define the shortest time in which all operations complete, the optimal makespan of an

instance, with T . In the optimization version of the JSP, we aim to minimize the makespan of

a schedule in such a way that the makespan is nearest to the instance’s optimal makespan. In

this work, we consider the decision variant of the JSP, in which we only seek a valid schedule.
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Before solving any problem with QA, its representation must be made compatible with

QUBO form. Typical problem representations may be composed of non-binary variable types,

such as integers, which are not directly compatible with QUBO form and require transforma-

tion [23]. One common method of integer variable binarization is to use one-hot encoding [26]. In

this method, given an integer variable whose values span N integers, we define P = (p1, . . . , pN )

as the sequence of those integer values. A vector of binary variables x = [x1, ..., xN ], xi ∈ {0, 1},
is used to represent P in such a way that if xi = 1, the i-th element of P is selected. In order to

maintain a coherent representation by ensuring that exactly one value is selected, the following

constraint is introduced:

N∑

i

xi = 1. (6)

This constraint can then be modeled as the following penalty

(
N∑

i

xi − 1

)2

. (7)

One method of binarizing the JSP is for a binary variable xi,t to represent the execution

of operation i at time t [6]. In this work, we use a formulation that was introduced in [36]

that has already been used with QA and in which binarization is achieved through variables

xi,t representing the starting of operation i at time t. One limitation of these methods is that

they require T̃ , an estimation of T used for limiting the number of binary variables created. An

estimate that is less than T results in a QUBO that cannot solve the JSP instance. On the other

hand, overestimating T produces an excess of binary variables. The penalties applied to these

variables, representing their constraints, that are used to construct the QUBO are:

∑

i

(∑

t

xi,t − 1

)2

, (8)

∑

n




∑

kn−1<i<kn

t+pi>t′

xi,txi+1,t′


 , (9)

∑

m


 ∑

(i,t,k,t′)∈Rm

xi,txk,t′


 . (10)

These penalties can be summarized as follows: Equation (8) penalizes configurations in which

operations do not start exactly once, Equation (9) penalizes out of order execution for operations

within a job, and Equation (10) penalizes configurations that violate the capacity of a machine.

For additional details, the reader is directed to [36].

2. Methods

In this section, we introduce the methods that are required for preparing a problem for QA

as well as those that will be used to improve the performance of QA on the JSP.
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2.1. Variable Reduction

To investigate the impacts of the formulation process on the performance of QA, we employ

two commonly used software packages for creating QUBOs. The first of these packages is D-Wave

Binary CSP (DBC). This tool is used to convert constraint satisfaction problems to QUBO form

and is developed by D-Wave Systems [8]. The second package is PyQUBO (PYQ), developed by

Recruit Communications [28]. While the object of this work is not to directly compare these two

tools, we observe that the output QUBOs can differ, despite both being constructed from the

same penalties and capable of producing correct schedules. For small size problems, DBC and

PYQ often output identical QUBOs; however, as problem size increases, DBC outputs larger

QUBOs than PYQ. The source of this discrepancy is auxiliary variables, which are only found

in QUBOs constructed by DBC. While auxiliary variables are typically introduced to reduce

polynomial terms with a degree higher than two, none of the terms in Equations (8), (9), or (10)

contain such terms. Thus, the creation of auxiliary variables can be considered a software error

that can be corrected. However, as QUBOs produced by DBC are able to successfully solve JSP

instances, a comparison of results from the QUBOs of the two tools will help to emphasize the

impact that formulation efficiency has on performance.

A second method of variable reduction is variable pruning, which is a formulation dependent

method for removing variables that cannot be set in valid solutions. We adopt the variable

pruning method from [36]. This method first examines the duration and order of operations

within a job. Then, variables are removed if they allow an operation to execute at a time that

would result in an invalid schedule. The specific conditions for which a variable is pruned are if it

allows an operation to start earlier than the sum of the processing durations of its predecessors,

or if it allows an operation to start later than the sum of the processing durations of itself and

its successor operations subtracted from T̃ . Therefore, by identifying the variables which meet

these conditions, a set of variables can be pruned.

2.2. Re-Embedding

We generate embeddings for QUBOs with the heuristic minor embedding algorithm de-

scribed in [7], which is the standard algorithm for problems of arbitrary structure. Owing to

its heuristic nature, the minor embedding algorithm generates embeddings over a range of sizes

where the largest often require double the amount of qubits than the smallest do. The signifi-

cance of this becomes apparent when considering the number of qubits available in the QPU; if

a QUBO is especially large or its variables have connectivity that is difficult to achieve on the

QPU, the embedding algorithm may fail to find any embedding. Additionally, we generally seek

embeddings that minimize either the total number of qubits required or maximum chain lengths

in order to avoid factors that degrade performance, such as early freezeout [3, 7]. In order to

find smaller embeddings for QUBOs and to evaluate performance at different embedding sizes,

we repeat the embedding process for each QUBO.

2.3. Post-Processing

An additional post-processing step is required for problems that require chains of physical

qubits. During post-processing, chains are examined to determine the value of the corresponding

logical qubit. This step is necessary because despite the strong coupling bias between qubits in a

chain, which compels the qubits to take the same value, the values within a chain do not always
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match at the end of an anneal. In the case where all qubits within a chain take the same value,

the logical qubit also takes that value. However, if the values within a chain span both binary

values, the chain is “broken”, and additional logic is required to determine which value the

logical qubit should take. We consider two post-processing methods for resolving broken chains:

majority voting (MV), which is provided in [9]; and minimizing energy (ME), which is provided

in [10]. In the first method, MV, the logical qubit takes on the value that most frequently occurs

in the chain. The second method, ME, implements a greedy algorithm that assigns the value

resulting in the lowest energy penalty based on linear and quadratic biases associated with the

variable. Related work has shown that MV can reduce the penalty of a broken chain, but leads

to higher penalties from constraints of neighboring qubits [29]. We expect that ME will result

in higher performance since it accounts for neighboring qubits when selecting the value for a

broken chain.

2.4. Anneal Schedule Modifications

The D-Wave 2000Q provides annealing controls, which are special features that provide

additional control over the anneal schedule, beyond specifying the annealing time. These controls

have been used to great effect in improving performance [16, 17, 22, 25, 38]. In this work, we

focus on modifying the anneal schedule so that it includes a pause, a period of time during which

A and B remain constant. Marshall et al. [25] have shown that pausing at the right time allows

the system to relax to the ground state, and improves success probability by orders of magnitude.

A follow-up study performed by Izquierdo et al. [17] evaluated the performance improvement

from pausing on embedded problems. However, there is, as yet, no evaluation into the effect

that embedding size has on the performance improvement from pausing. In this work, we seek

to extend the understanding of pausing and explain the effect of embedding size on pausing. To

accomplish this, we perform additional anneals with modified annealing schedules that include

a pause, similar to what is done in [17, 25].

3. Evaluation and Discussion

This section presents our evaluation configuration, evaluation results, and ends with a dis-

cussion of our findings.

3.1. Configuration

We solve JSP instances on the D-Wave 2000Q quantum computer. The instances on which

we evaluate QA are randomly generated with n = m ∈ {3, 4, 5, 6, 7} with operation processing

durations, di ∈ D, selected from a subset of {0, 1, 2}. For each instance, T is found by solving the

instance with a classical solver. The formulation described in Section 1.2 is implemented, with

T̃ = T , and a QUBO is generated with both DBC and PYQ. Initial results showed that variable

pruning was a necessary procedure for obtaining any valid schedules, regardless of instance size.

Thus, variable pruning is performed on each instance and no results are shown for QUBOs whose

variables have not been pruned. The minor embedding algorithm was repeated one million times

in order to collect embeddings of different sizes for each QUBO. Starting from 102 random JSP

instances, QA was performed on a total of 36, 805 embeddings. For all samples taken with the

annealer, the anneal time was set to 20 µs, and 300 anneals were performed, with all other
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parameters set to their default values. In the final experiment, in which we introduce a pause

into the anneal schedule, the pause duration is set to 100 µs. Pause locations were limited to

the range [0.25, 0.75], after initial testing revealed that the optimal pause location consistently

occurred between these values, and pause locations were selected at intervals of 0.01. We also

applied ten spin-reversal transforms, a procedure that is used to reduce the effect of hardware

biases on results, and has been shown to be a critical step in analyzing the effects of pausing [17].

A limited set of instances was selected for evaluation, and embeddings for each instance were

selected uniformly, based on the number of qubits required for the embedding.

We evaluate the performance of QA using Psuccess, the observed probability of successfully

finding a valid schedule, that is, one that violates no constraints and is the ground state of HF .

This is a standard metric [16, 17] for evaluating the performance of QA and is defined as

Psuccess =
number of valid schedules

number of anneals
. (11)

3.2. Results

We first show the effect of variable reduction on QUBO size and the embedding process.

Figure 2 shows the number of variables in QUBOs generated by DBC and PYQ for JSP instances

where n = m = 4, and T ranges from 5 to 13. This figure shows the effect described in Section 2.1;

DBC and PYQ output QUBOs of equal size for small JSP instances, yet for larger ones, DBC

introduces unnecessary auxiliary variables, resulting in larger QUBOs. For the largest instance

in this figure — where T = 13 — auxiliary variables comprise 22% of the variables in the DBC

QUBO. The effects that this has on the embedding process are shown in Fig. 3, which compares

the frequency distributions of embedding sizes, which are approximately normal, for the JSP

instances where T = 9 and T = 13 in Fig. 2. When T = 9, the small amount of auxiliary variables

produced by DBC have a relatively small effect on the embedding size distribution, resulting in

the distribution being shifted right and thus embeddings being larger. On the other hand, when

T = 13, the significant number of auxiliary variables has a considerable effect on embedding

size. Furthermore, the increased number of variables in the QUBO also affects the failure rate

of the embedding algorithm. In this figure, the failure rate of the algorithm is visualized by

redistributing the percentage of failed embeddings to each embedding size proportionally, based

on the percentage of successful embeddings generated for that size. We see that the embedding

failure rate is only 25% for the PYQ QUBO, but is as high as 96% for the DBC QUBO.

These results show that an efficient formulation is necessary to minimize failed embeddings and

embedding size.

Next, we evaluate the performance implications of embedding size on Psuccess. In Fig. 4,

Psuccess is shown for JSP instances where n = m = 4, yet having different operation processing

times than the instances used for Fig. 2 and Fig. 3. For this series of data, the default post-

processing method MV is used. These figures show the effect that unnecessary variables have

on Psuccess; annealing using embeddings generated from the DBC QUBO produces no valid

schedules. Figure 4a also shows that Psuccess is moderately negatively correlated with embedding

size (r = −0.69), and thus, fewer valid schedules are found with larger embeddings. This effect

is also visible in Fig. 4b, where only the smallest embeddings of the PYQ QUBO have a nonzero

Psuccess. These results emphasize not only the advantages of using smaller embeddings but also

the disadvantages of using larger embeddings.
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Figure 2. Comparison of the number of variables in QUBOs by tool

(a) T = 9 (b) T = 13

Figure 3. Distributions of embedding sizes for two JSP instances

(a) T = 6 (b) T = 10

Figure 4. Downward trend in Psuccess

We provide additional statistics on the embedding process in Fig. 5 and Fig. 6, where we

show the median embedding time and embedding failure rate, which both increase with QUBO

size. We see that for relatively small QUBOs, the cost of re-embedding is low due to short
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Figure 5. Median embedding times Figure 6. Embedding failure rates

Table 1. Summary of post-processing methods

Psuccess comparison Percentage

MV < ME 33.32

MV > ME <0.01

MV = ME = 0 56.80

MV = ME 6= 0 9.87

embedding time and low embedding failure rate. On the other hand, for larger QUBOs, the

cost of re-embedding is high due to both the long embedding time and high embedding failure

rate. Considering these costs alone may suggest that re-embedding is a poor choice for large

QUBOs; however, the benefit of re-embedding is highest for large QUBOs. This is shown in

the results from the embeddings for PYQ QUBOs in Fig. 4a and Fig. 4b, corresponding to

a small and large QUBO, respectively. In the case of the small QUBO, re-embedding found

smaller embeddings that resulted in a higher Psuccess, but any embedding solved the instance

as each resulted in a Psuccess that was greater than zero. For the case of the large QUBO, the

smallest embedding found through re-embedding also resulted in a higher Psuccess than larger

embeddings, but most larger embeddings resulted in a Psuccess of zero. Therefore, despite the

increasing cost of re-embedding with QUBO size, the largest QUBOs are the ones that most

benefit from re-embedding, as it may be required to solve problem instances.

Next, in Fig. 7, we show a comparison of post-processing methods on PYQ QUBOs only.

Here, we see that ME consistently recovers a higher number of valid schedules than MV does.

As shown where T = 9, ME can even recover valid schedules when MV often produces none.

Table ?? shows a broader comparison of post-processing methods for all embeddings used in this

work. Excluding the cases where neither post-processing method resulted in a positive Psuccess,

which often corresponds to the largest embeddings, ME resulted in a higher Psuccess 77% of the

time. For the majority of the remainder of the cases with a positive success rate, ME and MV

returned the same number of valid schedules. The percentage of cases in which MV outperformed

ME is less than 0.01%. Therefore, to maximize Psuccess on the JSP, ME should be used during

post-processing.

Finally, we evaluate the impacts of embedding size on an altered anneal schedule that

includes a pause. Figure 8 shows our results from a set of ten embeddings of a PYQ QUBO where
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Figure 7. Comparison post-processing methods

Figure 8. Effect of embedding size on pausing

ME is used during post-processing and is representative of results obtained for embeddings of

other instances. These results are consistent with those in [17, 25]; only within a narrow region

of s does pausing result in a higher Psuccess, and outside this region, Psuccess remains relatively

constant. In this figure, we see that Psuccess decreases as embedding size increases, which was

also observed in Fig. 4a. However, this figure also shows that the performance improvement

from pausing near the optimal pause location also decreases as embedding size increases. We

attribute this effect to the increased cost associated with flipping larger chains. That is, as the

number of qubits within a chain increases, changing the value of all chained qubits comes at

a higher energy cost. Thus, for embeddings with longer chains, thermal relaxation will not be

as effective as it is for shorter chains. Lastly, we see that while embedding size affects Psuccess,

it does not significantly affect the optimal pause location. In summary, we see that in order to

maximize performance when pausing near the optimal pause location, embedding size should be

minimized.
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3.3. Discussion

As previously mentioned in the introduction to this paper, two major challenges need to be

addressed to improve QA performance. Our evaluation shows how the four methods in Section 2

can address these challenges and further improve QA performance. We address the first chal-

lenge through an efficient problem formulation — which we represent with the PYQ tool — and

through variable pruning. Our results show the impacts of this through smaller QUBOs, smaller

embedding sizes, and reduced embedding failure rates. While the second challenge is also ad-

dressed through our variable reduction techniques, we primarily use re-embedding to find smaller

embeddings that result in higher performance. The necessity of this step is shown in Fig. 4b,

where the embeddings that are most likely to be found by the embedding algorithm are unable to

solve the JSP instance. Despite performing both variable reduction and re-embedding, Psuccess

can still be low for larger QUBOs. We show that this can be remedied through proper selection

of a post-processing method and insertion of a pause near the optimal pause location in an an-

neal schedule. However, to make the most of pausing, our results show that re-embedding needs

to be performed to find smaller embeddings with relatively short chains, since the performance

benefits from pausing decrease as chain length increases. Lastly, our results show that while em-

bedding size affects the performance improvement from pausing, it does not significantly change

the optimal pause location. In summary, to achieve the highest performance with QA, all the

considered methods must be performed together.

4. Related Work

One of the first steps in QA is problem formulation. While this is a problem dependent step,

Lucas [23] provides Ising formulations of many NP-hard problems and shows that some share

fundamental components. One of the major considerations in this step is the number of variables

used, as these are represented by qubits on the QPU, which are highly limited in number. The

desire to minimize the number of variables can be clearly seen in the work presented by Venturelli

et al. [36] through the use of variable pruning methods. However, even when using this method,

only relatively small problems are able to be solved. Stollenwerk et al. [32] show effects of tunable

resolution in discretization of a variable. Fine resolution results in high quality solutions, but

comes at the cost of an increased number of variables. Conversely, a lower resolution can reduce

the number of variables required, but results in lower quality solutions.

In order to enable solving large scale problems with current QA hardware, various hybrid

quantum-classical methods have been proposed. These range from methods that partition and

modify problems over many anneals to strategies for decomposing problems into subproblems

to be solved by classical and quantum computers. Karimi and Rosenberg [19] present a method

to iteratively set the values of variables that nearly always take the same value across many

annealing runs. Through the use of this method, the authors note that not only does problem

size decrease, but success rate increases, and outperforms QA when the method is not used.

Another iterative method that targets problems too large to be fully embedded on the QPU is

given by Rosenberg et al. [30]. In this method, a large problem is solved by iteratively setting

variables, and solving the remaining subproblem. In contrast to these iterative methods are

hybrid methods that employ both classical and quantum computers to solve subproblems of a

decomposed problem. Such a method is presented by Tran et al. in [35], in which a battery

capacity constraint for a Mars lander is offloaded to classical computers. A similar work applies

this method to multiple scheduling problems, and provides the decomposition for each [34]. Yet
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another hybrid quantum-classical method is to use classical computation resources as search

managers for problems. In this method, a binary search tree is constructed for a QUBO, and is

then used to direct the search based on results from the annealer by setting the values of certain

variables. Not only does setting variable values make use of previous results, but it also provides

means to reduce problem size. This method can be found in many works [34–36]. Similar to the

methods in our work, hybrid methods can successfully reduce problem and embedding size, and

improve performance. Additionally, hybrid quantum-classical methods can also enable guided

searches of the solution space. Therefore, development of hybrid quantum-classical methods is

a promising area of research for QA.

Another step required by QA that also has an effect on the size of the problem submitted

to the QPU, is embedding. While embedding does not influence the size of the original problem,

it does determine the size of the embedded problem, which is what will be solved on the QPU.

Thus, embedding algorithms that result in small embeddings are of great interest. Currently,

the embedding tool developed by D-Wave, minorminer, is commonly used [7]. This method

employs a heuristic, resulting in embeddings of different sizes being found for the same QUBO.

However, embedding size is not the only metric by which embedding algorithms are judged;

two other metrics of interest are the time required to generate an embedding, and the resulting

performance of annealing with a specific embedding. Therefore, embedding algorithms that can

improve any of these three metrics are useful.

Pudenz et al. [27] show that as chain length increases, performance decreases. This implies

that two of the metrics for embedding, embedding size and performance, may be related. How-

ever, using chain length alone to measure embedding size may be misleading, as shortening one

chain may result in lengthening other chains. Abbott et al. [1] show that embedding time can

eliminate any computational speedup resulting from using QA. While they do not present a

new embedding algorithm, they note that for their type of problem, the dynamically weighted

maximum-weight independent set problem, the embedding cost for any number of weight con-

figurations of a graph can be reduced to the embedding cost for one configuration by reusing

the embedding with altered weights. One embedding algorithm that is able to improve all three

metrics, by considering the structure of the QPU, is presented by Date et al. [11]. However, their

algorithm assumes the working graph of the QPU has a 100% yield, that is, no qubits on the

QPU are turned off. Furthermore, the algorithm only applies to Chimera architecture QPUs,

and will not apply to Pegasus architecture QPUs. In [37], Yarkoni et al. note that a parameter

related to embedding, chain strength, has a strong effect on performance. These works show

that the embedding process can have a significant impact on the performance of QA and affect

the computational speedup obtained from using QA. These results also show that there is room

for improvement in current embedding methods.

Another way of improving performance of QA is through the use of anneal controls. However,

as they are only available on the latest Chimera architecture QPU, research implementing them

is relatively limited. Lanting et al. [22] present one of the first works using anneal controls to

improve performance by applying non-uniform driver Hamiltonians, through the use of anneal

offsets, to mitigate perturbative anticrossings. Marshall et al. [25] explore the use of anneal

pausing and reverse annealing, and are able to improve performance by orders of magnitude.

Izquierdo et al. [17] extend this work to include embedded problems, and study the effect of

chain strength. In [38], Ikeda et al. perform forward annealing, and use the results as input to

reverse annealing. They show that reverse annealing can improve performance, and that selecting

the lowest energy configurations from forward annealing results in higher performance than

randomly selecting a configuration. However, they only explore limited schedule configurations
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for reversed annealing. In these works, it is clear that anneal controls have a large configuration

space, and an exhaustive search would be costly in terms of QPU access time. Yarkoni et al. [38]

address this by proposing and successfully implementing an evolutionary algorithm to tune

anneal offsets on a per-qubit basis. Overall, these works show that annealing controls enable

performance improvements, yet finding the optimal configuration is challenging.

Conclusions and Future Work

In this work, we evaluated QA on the JSP. We first converted each JSP instance to use

binary variables and determined a set of excess variables that could be pruned. We then used

two tools to create QUBOs of different sizes that each produced valid schedules for the original

JSP instance. Next, for each QUBO, we repeated the embedding process to find embeddings over

a large range of embedding sizes. We retrieved samples from the QPU using each embedding,

and applied two post-processing techniques to recover incomplete configurations. Finally, we

performed annealing a second time, using a modified annealing schedule containing a pause.

Our results show that for the JSP, QA performance is sensitive to problem formulation,

embedding, and post-processing. Furthermore, when studying the effects of anneal controls,

such as anneal schedule modifications, special care must be taken when preparing a problem

for annealing so as not to mask the effect of the control on performance. We have shown that

embedding size can have a significant impact on performance, and that the embeddings that

are most commonly found by embedding tools do not result in the highest performance. We

then proposed re-embedding as a method to improve Psuccess. While re-embedding introduces

a time-performance trade-off, we showed that it can be necessary for solving larger instances.

We have also shown that the size of a QUBO affects the sizes of embeddings found, and con-

sequently, QUBO size also impacts performance. Thus, minimization of QUBO size through an

efficient formulation and variable pruning techniques are critical to high performance. We then

showed that a higher number of valid schedules can be found through use of a post-processing

method that considers the penalties associated with different qubit values. Finally, we showed

that pausing can improve Psuccess, yet the magnitude of improvement lowers as embedding size

increases, due to the increased energy cost associated with changing the state of an entire qubit

chain. In summary, we have shown that due to the sequential nature of and the interplay be-

tween the steps used to solve the JSP, they must be considered together in order to achieve high

performance. Furthermore, as these steps are not specific to the JSP, they can be applied to

other embedded problems to improve performance.

Some main limitations of the current QA hardware are the low number of qubits and low

connectivity between qubits. While Pegasus architecture QPUs [5] will increase both the num-

ber of qubits and qubit connectivity, embedded problems may still be challenging, as they

often require numerous variables due to one-hot encoding of integer variables. We expect that

quantum-classical hybrid methods, such as those of the related work, will become increasingly

important, as they can decompose problems so that fewer resources are required for solving. Ad-

ditionally, as many problems require variable chaining, embedding algorithms that find smaller,

higher performing embeddings, in less time than current methods, will also be of interest for QA.

Lastly, since anneal schedule modifications can significantly improve QA performance, yet many

real-world applications will require embedding, which as we have shown limits the effectiveness

of anneal schedule modifications, additional work is required to determine which modifications

result in the highest performance.
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This paper describes the first-in-the-world attempt to develop an architectural-independent

graph framework named VGL, designed for different modern architectures with high-bandwidth

memory. Currently VGL supports two classes of architectures: NEC SX-Aurora TSUBASA vector

processors and NVIDIA GPUs. However, VGL can be easily extended to other architectures due

to its flexible software structure. VGL is designed to provide users with the possibility of selecting

the most suitable architecture for solving a specific graph problem on a given input data, which, in

return, allows to significantly outperform existing frameworks and libraries, developed for modern

multicore CPUs and NVIDIA GPUs. Since VGL uses an identical set of computational and data

abstractions for all architectures, its users can easily port graph algorithms between different target

architectures without any source code modifications. Additionally, in this paper we show how

graph algorithms should be implemented and optimised for NVIDIA GPU and NEC SX-Aurora

TSUBASA architectures, demonstrating that both architectures have multiple similar properties

and hardware features.

Keywords: vector computers, NVIDIA GPUs, graph algorithms, graph framework, VGL,

CUDA, optimisation.

Introduction

Developing efficient implementations of graph algorithms is an extremely important problem

of modern computer science, since graphs are heavily used in many applications fields: social

networks and web graphs analysis, navigation, solving infrastructural problems, and many oth-

ers. Supercomputing architectures with high-bandwidth memory (HBM) are able to significantly

speed up solving various graph problems, which belong to the data-intensive class and thus po-

tentially benefit from faster memory hierarchy. Nowadays, high-bandwidth memory is installed

either into GPUs or systems with vector processing features (vector processors or CPUs with

vector extensions). Efficiently implementing graph algorithms on systems with high-bandwidth

memory is difficult, since implementation approaches significantly differ from those used for

traditional multicore CPUs, mainly because these systems utilize SIMD-processing (Single In-

struction Multiple Data) features.

Various graph libraries and frameworks have been developed for various modern archi-

tectures, mainly multicore CPUs and NVIDIA GPUs. Graph libraries usually provide highly-

optimised implementations of several fundamental graph algorithms, while graph frameworks

typically include optimised computational and data abstractions, which can be used to easily

express different graph algorithms variations. However, existing graph-libraries and frameworks

have the following drawbacks:

1. none of the existing frameworks and libraries support efficient graph processing on vector

systems (such as NEC SX-Aurora TSUBASA);

2. existing frameworks typically target only a specific architecture, forcing its users to com-

pletely rework the implementation when using a different architecture is required; and

3. existing frameworks in many cases can be further optimized for their target architectures

(including NVIDIA GPUs).
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To approach the first problem we have previously developed a VGL (Vector Graph Li-

brary)2 [2, 5] framework for the NEC SX-Aurora TSUBASA vector architecture. VGL signifi-

cantly outperforms many existing graph-processing frameworks, developed for modern multicore

CPUs and NVIDIA GPUs.

As shown in [3], NVIDIA GPUs and NEC SX Aurora TSUBASA vector architecture have

many common hardware features. This means that many graph algorithms can be im-

plemented on these architectures with similar optimisation and implementation

approaches. However, at the moment of this writing no research has been carried out to con-

firm (or refute) this thesis. In order to approach this problem, we ported our VGL framework

(originally developed for NEC SX-Aurora TSUBASA vector architecture) to the latest NVIDIA

GPUs, what allowed us to compare implementation and optimisation approaches, which should

be used for both architectures.

As a result we have developed a first-in-the-world architecture independent framework,

which simultaneously targets multiple architectures with high-bandwidth memory: modern NEC

SX-Aurora TSUBASA vector system and NVIDIA GPUs. This is achieved by using a unified set

of computational and data abstractions, identical for all architectures. Moreover, our framework

has flexible software structures, which allow to easily extend it to different architectures (for

example multicore CPUs). This property of VGL allows its users to select the most suitable

architecture for solving a specific graph problem on a given input data, thus solving it consider-

ably faster compared to the existing frameworks and libraries, developed for a single particular

architecture.

The article is organized as follows. Section 1 describes primary target architectures of the

VGL framework: NEC SX-Aurora TSUBASA vector processors and modern NVIDIA GPUs.

Section 2 describes existing state-of-the-art frameworks, developed for modern NVIDIA GPUs

and multicore CPUs. In addition, Section 2 provides the description of computational and data

abstractions, used in the VGL framework. Section 3 describes program structure of the VGL

framework, which allows it to operate on different architectures, and thus to easily port graph

algorithms implementations between them. Section 4 provides a detailed comparison of im-

plementation and optimisation approaches, which are used to implement VGL computational

abstractions on NEC SX-Aurora TSUBASA and NVIDIA GPU architectures. In particular, ef-

fects of different optimisations is compared for these two architectures. Section 5 evaluates the

performance of multiple graph algorithms implemented via VGL framework, as well as VGL

performance against existing graph-processing frameworks for other architectures. Conclusion

summarizes the study and points directions for further work.

1. Target Architectures Overview

1.1. NEC SX-Aurora TSUBASA

The NEC SX-Aurora TSUBASA vector architecture [15, 20] consists of multiple vector

engines (VE), installed into a vector host (VH), which is a typical x86 node. Vector engines

are used as a primary processors for executing vectorised applications, while vector host is used

as a secondary processor for executing basic operating system (OS) functions, as well as some

scalar computations offloaded from the VE. The VE has eight powerful vector cores, each one

operating with vector instructions of 256 length. Each vector core consists of two computational

2VGL is available for free download at vgl.parallel.ru
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components: a scalar processing unit (SPU) and a vector processing unit (VPU). All vector

computations are performed by VPUs, while SPUs are designed to provide a relatively high

performance on scalar computations, without the need to explicitly offload them to the vector

host (thus significantly reducing the amount of transfers through interconnect). In the following

subsections the most important hardware characteristics of the NEC SX-Aurora TSUBASA

architecture will be provided, related to graph processing.

1.2. NVIDIA GPU

NVIDIA GPUs [14] are also installed into the system as coprocessors, similar to SX-Aurora

vector engines. Modern NVIDIA GPUs have thousands of CUDA cores, which are grouped into

streaming multiprocessors (SM). Streaming multiprocessors execute instructions based on the

warp concept: a group of 32 threads running on CUDA cores perform exactly the same in-

struction at every given moment of time. This computing model has many common features

with vector computing, since they both belong to SIMD [9] class. This particular feature deter-

mines the fact that various graph algorithms may potentially be implemented similarly on these

two classes of architectures. Further in the paper warps and vector instructions will be some-

times refereed as “SIMD instructions”. In this paper two most recent GPUs of Tesla family are

used: V100 and A100, hardware characteristics of which will be also provided in the following

subsection and simultaneously compared with vector engines.

1.3. Hardware Characteristics Comparison

The main hardware characteristics of the two latest generations of SX-Aurora Vector Engines

and NVIDIA GPUs are listed in Tab. 1. These hardware characteristics most noticeably affect

the performance of graph processing. For example, peak memory bandwidth determines how

fast information about graph edges can be loaded from memory, while the memory capacity

determines graph of which size can be processed using GPU or VE, etc.

Table 1. The comparison between main hardware characteristics of modern NVIDIA

GPUs and NEC SX-Aurora TSUBASA vector engines

Hardware

Characteristic

NEC SX-Aurora

TSUBASA

(1st generation)

NEC SX-Aurora

TSUBASA

(2nd generation)

NVIDIA

V100 GPU

NVIDIA

A100 GPU

Peak memory

bandwidth
1200 GB/s 1500 GB/s 900 GB/s 1500 GB/s

Memory

capacity
48 GB 48 GB 16-32 GB 40-80 GB

LLC size 16 MB 16 MB 6 MB 40 MB

Prefetching support yes yes no yes

LLC bandwidth 3000 GB/s 3000 GB/s N/a N/a

SIMD size 256 256 32 32

Cores number 8 8 5120 6912

Interconnect

bandwidth
up to 32 GB/s up to 32 GB/s up to 300 GB/s up to 600 GB/s
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Based on the provided in Tab. 1 information, the following conclusions can be made. The

first generation of SX-Aurora vector engines have comparable characteristics to V100 GPUs,

while the second generation – to A100 GPUs. However, several differences exist: for example,

GPUs typically have interconnect with higher bandwidth,which allows to copy input graphs into

GPU memory much faster. At the same time vector engines have significantly less resource of

inner parallelism: they use only 8 cores, each one operating with vectors of 256 length, while

modern GPU have thousands of cores, which require even more threads running in order to

efficiently hide memory latency. This potentially allows vector engines to process small-sized

and medium-sized graphs more efficiently compared to GPUs.

2. State of the Art

2.1. Existing Graph-Processing Frameworks

Several graph libraries and frameworks have been recently developed for modern multicore

CPUs and NVIDIA GPUs. Ligra [18], Galois [17] and GAPBS [6] are the most well-known exam-

ples of multicore CPUs frameworks and libraries, while Gunrock [19] CuSHA [13], Medusa [22],

and Enterprise [16] frameworks and libraries target modern NVIDIA GPUs. However, the fol-

lowing factors determine the relevance of developing VGL framework:

• none of the existing frameworks target modern vector systems, such as NEC SX-Aurora

TSUBASA;

• none of the existing frameworks are capable of operating with relatively high performance

on different architectures, such as NVIDIA GPUs, multicore CPUs and vector processors;

and

• performance of almost all existing frameworks and libraries for NVIDIA GPU architectures

can be further improved by applying additional optimisations, discussed in this paper.

2.2. VGL Abstractions

In [2, 5] we have proposed a set of four computational abstractions and four data abstrac-

tions, which can be efficiently implemented on the NEC SX-Aurora TSUBASA architecture.

Further in this paper we will describe how these abstractions can be ported to the NVIDIA

GPU architecture. However, first it is necessary to describe the main functionality of each ab-

straction and discuss why these abstractions are suitable for both classes of architectures.

Graph. A graph is the main data-abstraction of the VGL framework. Graphs in the VGL

are stored in optimized and preprocessed VectCSR format [4]. The VGL framework provides a

convenient interface for working with both directed and undirected graphs. For directed graphs,

outgoing and incoming edges are stored for each vertex, while for undirected graphs all edges

are stored as outgoing. This allows VGL users to easily implement pull-based and push-based

algorithms [7].

Frontier. Frontier is a specific subset of graph vertices and the second important data-

abstraction of the VGL. Frontiers in the VGL allows to control which vertices and edges need to

be processed inside computational abstractions. For example, the advance abstraction processes

all vertices from the input frontier, as well as all their adjacent edges. Frontiers in the VGL

have different types: sparse, dense, and all-active (last one includes all graph vertices). Sparse
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frontiers are represented via lists of indices, while dense – via an array of flags, where each flag

corresponds to the presence of vertex inside the frontier.

Vertices array. Vertices arrays allow storing information about graph vertices, for example

current level of each vertex in the BFS (Breadth-First Search) algorithm, or distances to each

vertex in the shortest paths algorithms. Vertices arrays have a straightforward implementation

using aligned arrays, allocated either in vector engine or unified memory of GPUs.

Edges array. Edges arrays allow storing information about graph edges, which is required

when working with weighted graphs. Weighted edges are stored as a structure of arrays, providing

better memory access pattern for vector instructions and warps.

Advance. The advance abstraction is the main tool of traversing graphs in the VGL. The

advance input consists of a graph, an input frontier, and several user-defined handler functions:

vertex preprocess o, edge op, vertex postprocess op. The advance applies vertex preprocess op

to each vertex of its input frontier, edge op to each of its adjacent edges, and then vertex

postprocess op to each vertex again. It is guaranteed that the execution of vertex preprocess op,

edge-processing, and vertex postprocess op operations for each vertex are serialized. However, all

edge op operations for each adjacent edge are executed in parallel. The computational workflow of

the advance abstraction (as well as three others) is illustrated in Fig. 1. The advance abstraction

is used in all situations, when processing graph edges is required.

Figure 1. The computational workflow of VGL abstractions

Compute. The compute abstraction applies a user-defined operation to each vertex of the

given input frontier. Typicality, this abstraction is used for a wide range of operations over graph

vertices: initializing distances in shortest paths, implementing the “hook” phase in connected

component algorithms, and many others.

Reduce. The reduce abstraction applies a user-defined operation (which returns some value)

to each vertex of a given input frontier. The returned values are reduced using additionally

specified reduction operation (SUM, MAX, MIN, AVG). This abstraction can be used for a
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large number of applications: estimating future frontier size in BFS, calculating dangling nodes

inputs in page rank, etc.

Generate New Frontier. The generate new frontier abstraction allows to create a new

frontier of graph vertices, using a specified condition. This condition can be based on vertex id,

its degree, or some data from user-defined vertices arrays.

The described computational abstractions are suitable for both NVIDIA GPUs and NEC

SX-Aurora TSUBASA architectures for the following two reasons. First, each abstraction has

a large resource of so-called data-driven parallelism, since they all execute the same operations

over different data (graph vertices and edges). This allows to efficiently use vector instructions

and warps, which is crucial for both architectures. In addition, each abstraction has a large

resource of inner parallelism, since all graph vertices and edges can be processed in parallel,

what is important since both architectures can be classified as massively-parallel. Thus, the

described abstractions can be implemented on both architectures with approximately the same

level of efficiency, in the case when correct optimisations are applied. These optimisations and

implementation approaches will be described in details further in the paper.

3. Program Structure of VGL Framework

The software structure of the developed framework is illustrated in Fig. 2. This software

structure allows VGL to operate on various target platforms, since all the abstractions have iden-

tical interfaces for all platforms. Each computational abstraction is implemented as a method of

a base class, and has a basic OpenMP parallel implementation. For each architecture, a separate

derived class can be created, where these methods are overloaded to contain architecture-specific

implementations. Implementation and optimisation approaches inside overloaded methods are

not limited to any extend; for example, abstractions for NVIDIA GPU can be implemented

via CUDA, while for NEC SX-Aurora TSUBASA – by using special vector instructions and

directives.

Figure 2. The software structure of the VGL framework. Third-party users are allowed to extend

abstractions for different architecture by implementing derived classes

Data abstractions are split into two categories: architecture-dependent and architecture-

independent. Graph, vertices array and edges array belong to architecture-independent cat-

egory, since they have exactly the same implementation for each architecture currently sup-

ported in VGL. The frontier belongs to the architecture dependent category, since our experi-
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ments demonstrated that frontiers require significantly different implementation approaches for

NVIDIA GPU, SX-Aurora TSUBASA and multicore CPUs architectures.

The described software structure allows third-party users to extend VGL on the new ar-

chitectures by implementing derived classes and changing several implementations of abstrac-

tions if necessary. Since interfaces of all abstractions remain exactly the same, graph algorithms

implementations will also remain the same for different architectures, which makes VGL an

architectural-independent framework.

4. Porting VGL Abstractions to NVIDIA GPU: a Detailed

Comparison of Implementation and Optimisation

Approaches

Despite the fact that VGL computational and data abstractions for different architectures

can be implemented independently, for NVIDIA GPUs and NEC SX-Aurora TSUBASA archi-

tectures similar implementation and optimisation approaches can be used in many situations.

Further in this section we will discuss which optimisations have been used for both architec-

tures when implementing different computational abstraction. In the most important cases we

will also demonstrate which acceleration has been achieved on each platform by applying each

optimisation.

Advance. Implementing the advance abstraction on NVIDIA GPUs and vector architec-

tures is difficult since it has highly-irregular computational workflow caused by (1) the irregular

distribution of vertex degrees and (2) a large number of indirect memory accesses performed

during edge traversals. Moreover, the advance abstraction contributes from 50% to 95% of exe-

cution time for many graph algorithms. The main optimisations used in the advance abstraction

are listed in Tab. 2 together with the acceleration values obtained by implementing each of the

optimisations.

Inter-core workload balancing in graph algorithms is typically implemented via splitting

graph vertices into groups based on their degrees. Vertices from different groups are processed

using different amount of hardware resources (cores). Dividing vertices into groups can be im-

plemented either based on graph preprocessing (preliminary sorting graph vertices based on

their degree), or dynamically during graph algorithm execution (using different vertex queues).

According to our experiments both these approaches allow to achieve a comparable accelera-

tion on NVIDIA GPUs, while for the NEC SX-Aurora TSUBASA architecture only the first

approach (preprocessing) can be efficiently used. In order to provide better hardware utilisa-

tion, different groups of vertices can be simultaneously processed on the same GPU or vector

engine. This optimisation can be implemented using CUDA-streams for NVIDIA GPUs, while

OpenMP nested parallelism can be used for the NEC SX-Aurora TSUBASA architecture. This

optimisation allows to achieve higher acceleration on NVIDIA GPUs, since modern GPUs have

significantly larger resource of parallelism, and thus require more graph vertices and edges to be

processed in parallel.

Low-degree vertices should be accurately processed on both architectures, since it is hard to

efficiently use vector instructions or warps when loading information about their adjacent edges.

On both architectures loading information about graph edges with load/store instructions must

have sequential memory access pattern in order to maximise the sustained bandwidth. To achieve

this goal we used two different techniques: constructing graph vector extension [4], or using
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Table 2. The effect of different optimisations applied to the implementation of the advance

abstraction

Optimisation

V100 GPU,

acceleration (times)

NEC SX-Aurora,

TSUBASA

1st generation,

acceleration (times)

Inter-core workload balancing based on graph

preprocessing
6.4 3.1

Dynamic inter-core workload balancing 5.5 0.93

Concurrent processing of different group of vertices 1.9 0.8

SIMD-processing of low-degree vertices based on vector

extension
1.4–5.2 2.1–8.1

SIMD-processing of low-degree vertices based on virtual

warp
4.8 0.5

Graph clusterisation 5 3.8

Prefetching most frequently accessed vertices into LLC – 1.2

Switching from push to pull-based graph traversal 0.9 1.7

Packing indirectly accessed 4-byte into 8-byte 1.1 1.3

“virtual warp” concept [12]. Vector extension allows to process groups of VECTOR LENGTH

vertices by simultaneously processing first edges of all vertices (using a single SIMD instruction),

then second, and etc. Virtual warps concept is based on splitting SIMD instruction in separate

parts, with each part processing vertices in a fixed range, as shown in Fig. 3. Vector extension

allows to achieve a very significant and comparable acceleration on both architectures, while

applying “virtual warp” concept to vector instructions leads to program slowdown on the NEC

SX-Aurora TSUBASA architecture.

In order to efficiently load information about indirectly accessed graph vertices, the clus-

terisation [21] should be used for both architectures. The clusterisation is based on grouping

information about most frequently accessed graph vertices in the adjacent regions of memory,

which can be later prefetched into LLC cache (which allows to obtain an additional acceleration

on the NEC SX-Aurora TSUBASA).

The performance of the advance abstraction also depends on the direction, in which graph

edges are traversed. During pull traversal [7] in VGL the incoming edges are processed, while

during push – the outgoing. According to our experiments, pull-direction is preferable for NEC

SX-Aurora TSUBASA architecture, while push – on GPUs. Finally, for the NEC SX-Aurora

TSUBASA multiple indirectly accessed values can be packed into 8-byte values, since gather and

scatter instructions to 8-byte values are approximately 2 times faster compared to 4-byte values

for this architecture. On NVIDIA GPUs, such optimisation does not provide any significant

acceleration.

Compute. The implementation of the compute abstraction on both architectures is almost

identical and straightforward, since all its operations can be performed independently in parallel.
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Figure 3. Vector extension against virtual warps comparison. Red edges are simultaneously

processed using a single vector instruction of length 4

On NVIDIA GPUs the compute abstraction is implemented via a parallel CUDA kernel, while

on NEC SX-Aurora TSUBASA – via a vectorized parallel loop.

Reduce. For the NEC SX-Aurora TSUBASA architecture, the reduce abstraction is imple-

mented via a vectorized and parallelized loop, where each vector core accumulates the reduced

values on vector registers. This way the reduction vector instructions are executed only on the

last stage of algorithm, when the obtained on vector registers values are reduced into the scalars.

On the NVIDIA GPU architecture, the reduction is implemented based on using parallel reduc-

tion inside shared memory [10]. However, the reduce is implemented on NVIDIA GPUs less

efficiently since shared memory has a higher latency compared to vector registers.

Generate New Frontier. The generate new frontier abstraction on GPUs is implemented

based on parallel prefix sum algorithm [11], which generates indexes of vertices from the output

frontier. On the NEC SX-Aurora TSUBASA a different algorithm is implemented [5], which

generates lists of frontier indexes using special vector buffers, later unrolling them into a linear

list. Both these approaches demonstrate approximately the same performance.

5. Performance Evaluation

The performance of the VGL framework has been evaluated on cluster equipped with (1) 12-

core Intel (R) Xeon (R) Gold 6126 processors, (2) NVIDIA V100 and (3) A100 GPUs, and (4) SX-

Aurora TSUBASA Type 10B (First Generation) vector engines. Unfortunately, at the moment

of this writing we do not have an access to the second generation of SX-Aurora TSUBASA

architecture. As input graphs we used synthetic RMAT [8] and several real-world graphs from

the SNAP [1] collection.

The performance evaluation is split into two stages. On the first stage we compared the

performance of VGL-based implementations launched on SX-Aurora TSUBASA, V100 and A100

GPUs. This comparison is demonstrate in Fig. 4 for different graph problems and algorithms.

I.V. Afanasyev

2020, Vol. 7, No. 4 57



(a) Top-down BFS (b) Page rank

(c) Generalized Bellman–Ford shortest paths (d) Shilloah–Vishkin connected components algo-

rithm

Figure 4. The comparison of VGL-based implementations of different graph problems and al-

gorithms

The following conclusions can be made based on the provided performance data. The first

generation NEC SX-Aurora TSUBASA vector engines have a comparable with V100 perfor-

mance on medium-sized and large graphs, which once again confirms the thesis about the sim-

ilarity of these architectures. At the same time, SX-Aurora implementations are significantly

faster on small-sized RMAT and most of real-world graphs, which have relatively small size.

This can be explained by the fact that SX-Aurora requires significantly less vertices and edges,

which have to be processed in parallel in order to efficiently utilize hardware resources.

At the second stage, the importance of developing of an architectural-independent framework

is demonstrated in Fig. 5. For a specified graph problem and input graph we selected the fastest

VGL-based implementation (among SX-Aurora and V100 GPU architectures), and compared

it to the fastest available among CPU-based and GPU-based frameworks and libraries, listed

in Section 2. The necessity of selecting different architectures can be explained by the fact

that different architectures are faster at processing different input graphs, as shown in Fig. 4.

According to our experiments, the Gunrock framework and NVGRAPH library provide the

highest performance on NVIDIA GPUs, while GAPBS library has the highest performance

among single-socket multicore CPU implementations. As shown in Fig. 5, VGL outperforms

these frameworks and libraries from 3 to 15 times on different input graphs.

Conclusion

In this paper we have described the first-in-the-world attempt to develop an architecture-

independent graph framework VGL, which targets multiple modern systems with high-
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(a) Top-down BFS (b) Shilloah–Vishkin connected components algo-

rithm

Figure 5. The comparison of VGL-based implementations to best available multicore CPU and

NVIDIA GPU frameworks

bandwidth memory: NEC SX-Aurora TSUBASA and NVIDIA GPUs. VGL has from 3 to 15

times better performance compared to the existing frameworks, developed for modern multicore

CPUs and NVIDIA GPUs. Moreover, due its flexible software structure, the VLG framework can

be easily extended to other massively parallel architectures, such as the A64FX, AMD EPYC

Rome and Intel KNL, which is an important direction of future research.

Finally, in this paper we have compared optimisation approaches, which should be used in

order to efficiently implement graph algorithms on NEC SX-Aurora TSUBASA vector processors

and NVIDIA GPUs. Applying various optimisations, such as graph clusterisation or constructing

graph vector extension, allowed to achieve similar acceleration on both these architectures, which

emphasizes the similarity of these architectures in the context of implementing various graph

algorithms.
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Molecular dynamics has proved itself as a powerful computer simulation method to study

dynamics, conformational changes, and interactions of biological macromolecules and their com-

plexes. In order to achieve the best performance and efficiency, it is crucial to benchmark various

hardware platforms for the simulations of realistic biomolecular systems with different size and

timescale. Here, we compare performance and scalability of a number of commercially available

computing architectures using all-atom and coarse-grained molecular dynamics simulations of wa-

ter and the Ndc80-microtubule protein complex in the GROMACS-2019.4 package. We report

typical single-node performance of various combinations of modern CPUs and GPUs, as well as

multiple-node performance of the “Lomonosov-2” supercomputer. These data can be used as the

practical guidelines for choosing optimal hardware for molecular dynamics simulations.

Keywords: molecular dynamics, coarse grain, tubulin, microtubule, Ndc80.

Introduction

Over the last decades, molecular dynamics (MD) simulations have become a powerful tool

for investigating molecular systems (including protein assemblies) with the exceptionally high

temporal and spatial resolutions unattainable so far using experimental techniques. Molecular

systems of biological interest typically consist of up to millions of atoms, so MD simulations of

biomacromolecules still represent a major computational challenge. The GROMACS package [1]

is among the most efficient and popular engines for MD simulations as it runs efficiently on

a wide variety of hardware from desktop workstations to supercomputers. Here, we evaluate

which hardware combinations show optimal performance. This work continues the systematic

comparison of the multiple currently available hardware architectures in terms of their MD

simulation performance, which has been initiated in [3] for a number of biologically relevant

molecular systems. In the present study, we use two types of molecular systems as computing

benchmarks: (i) water boxes (WB) of different size and (ii) a biomolecular system consisting

of the Ndc80 protein complex with a microtubule (MT) fragment [4]. Moreover, we extend our

benchmark to coarse-grained (CG) MD simulations using MARTINI force field [7], a popular

CG model for biomolecular simulations [8], using the same protein complex for testing. The

MARTINI model is based on a four-to-one mapping, i.e., on average four heavy atoms plus

associated hydrogens are represented by a single interaction center (called a bead). The overall

aim of the coarse-graining approach is to provide a simple model that is computationally fast

and easy to use, yet flexible enough to be applicable to a large range of biomolecular systems.
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The paper is organized as follows. In Section 1, we introduce the biomolecular systems used

for benchmarking and describe the simulation setups employed for all-atom and coarse-grained

simulations. In Section 2, we provide a comprehensive overview of performance achieved on

various computational platforms. Finally, in Conclusion, we summarize the results and outline

possible directions for further work.

1. Methods

All calculations were performed using the GROMACS-2019.4 version, which allows parallel

computing on hybrid architectures. All benchmarks were run for 15 minutes. All-atom (AA)

simulations were run in the explicit solvent using the TIP3P water model and the CHARMM27

force field for proteins. The production simulation runs were carried out in the NPT ensemble at

300K, using the Parrinello-Rahman algorithm [10] and the V-rescale thermostat for a duration of

1 µs each. The structure of Ndc80 in complex with a MT fragment was obtained from the Protein

Data Bank (PDB id 2VE7). The size of the virtual cell was chosen in such a way that the distance

from the protein surface to the nearest box boundary was not less than two nanometers. For AA

simulations the particle mesh Ewald (PME) method was used for the long-range electrostatics.

Here, we used the interpolation order of 4 for PME, which equals cubic interpolation and should

give electrostatic energies accurate to about 5·10−3. The mass rescaling approach (i.e., partial

transfer of mass from heavy atoms to the hydrogens bound to them) [5] allowed us to use 4-fs

time step for AA MD simulations of the Ndc80 system instead of 1-fs time step used for the WB

simulations and thus to accelerate them. Further details about the utilized MD protocol can be

found in [4].

Table 1. Molecular dynamics systems used in the benchmark. Water box size is shortcutted in

the system name, where the number stands for the thousands of particles in the system. Ndc80

is an acronym of a kinetochore protein

MD

systems

MD

system

name

Number

of

particles

Box

type

System

size

(nm)

Time

step

(fs)

Water box (WB)

WB-10 10206 cube 4.7x 4.7x 4.7 1

WB-80 80232 cube 9.3x9.3x9.3 1

WB-120 121527 cube 10.7x10.7x10.7 1

WB-160 159780 cube 11.7x11.7x11.7 1

WB-200 203415 cube 12.7x12.7x12.7 1

Ndc80 complex with microtubule

Ndc80 AA 750295 cube 22.1x17.2x20.1 4

Ndc80 CG W 133371 cube 27x22x27 20

Ndc80 CG PW 386294 cube 27x22x27 20

Coarse-grained simulations were run using the most recent version 2 of the MARTINI force

field and the yet unreleased version 3 of this force field. The simulations with MARTINI 2

were run in combination with the polarizable water model (PW) [12], which allows for proper

screening of interactions and other polarization effects. For these simulations, we utilized either
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the PME or the reaction-field (RF) approach for the long-range electrostatics (with the cut-off

rc = 1.1 nm, the dielectric constant beyond the cut-off was set to infinity [2]). The MARTINI

beta version 3 is currently lacking an appropriately parameterized polarizable water model, so

the simulations using this version of the CG force field were run with the standard water model

(W) corresponding simply to a van der Waals particle. The RF approach was used for the long-

range electrostatics in this case. The detailed protocols can be found elsewhere [6]. Specifications

of all MD systems used for benchmarking are summarized in Tab. 1.

2. Results and Discussion

In order to examine the performance of MD simulations as a function of particle count both

in homogeneous systems and in realistic systems, we have carried out MD simulations for a series

of water boxes of the increasing size (see Tab. 1) and for the Ndc80-MT complex in the explicit

solvent. In contrast to the previously reported benchmark [3], the updated results suggest that

an increase of the system size leads to a commensurable decrease of computer performance in

the explored range of system size (10,000–200,000 atoms), i.e., 20-fold increase in the number of

atoms results in approximately equal decrease of performance for the CPU-only architecture. For

GPU-accelerated simulations, we have found out even slower decrease of performance, which,

for instance, scales down by the factor of 12.5 with the 20-fold increase of the system size for the

RTX3080/Intel Core i9-9940X combination, see Tab. 2. However, for the largest system, which

we have tested in the present benchmark, the all-atom Ndc80-MT complex consisting of over

750,000 atoms, the performance drop becomes disproportional. Overall, it implies an extremely

high potential of the single-node hybrid architectures for the simulations of molecular systems

with up to 100,000–200,000 atoms particularly emanating from the recent adaptations of the

MD software for such platforms [9].

Figure 1. Performance of “Lomonosov-2” supercomputer (ns/day), depending on the number

of computing nodes for all-atom (AA) and coarse-grained (CG) MD simulations of the Ndc80

complex with a fragment of MT
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We have also addressed the question of scalability of MD simulations in GROMACS by

estimating the dependence of the “Lomonosov-2” supercomputer [11] performance on the number

of computer nodes used. For the all-atom Ndc80 system, as well as for the two CG systems with

polarizable water (PW), the performance grows almost linearly as a function of the number of

supercomputer nodes (Fig. 1) roughly following Amdahls law. However, for the smallest coarse-

grained system (with the standard water model, W), the performance reaches the plateau at

10 nodes.

Finally, we have assessed the performance of two alternative schemes commonly used to

treat the long-range electrostatics in CG simulations: PME and RF. For all the tested systems,

RF outperforms PME suggesting the former as the best option. However, the difference is the

strongest for the no-GPU platforms where it can be as large as 7-fold. For the GPU-accelerated

platforms, a much lower handicap of 1.2–3.5 is observed.

Table 2. Single-node performance (ns/day) for systems of different size depending on various

combinations of CPUs and GPUs

GPU
MD system

WB-10 WB-80 WB-120 WB-160 WB-200 Ndc80 AA Ndc80 CG W
Ndc80 CG

PW PME

Ndc80 CG

PW RF

no GPU* 100.3 14.1 9.0 6.6 5.2 4.2 910.8 25.9 153.8

RTX 2070 Super* 290.8 48.5 32.3 25.8 20.9 15.1 1657.5 152.2 260.9

RTX 2080 Ti* 349.9 62.6 43.8 34.5 26.8 19.5 1750.2 187.5 286.6

RTX 3080* 365.8 67.9 47.5 37.3 29.4 23.5 1817.6 252.4 330.4

no GPU** 113.6 16.5 10.5 8.1 6.3 5.7 1127.8 24.4 181.4

RTX 2080 Ti** 338.5 45.5 29.1 22.2 16.5 14.3 1993.1 207.7 331.4

2 RTX 2080 Ti** 207.4 49.6 30.0 22.6 17.5 14.7 2232.4 88.2 279.3

* Nodes with the Intel Core i9-7900X CPU.
** Nodes with the Intel Core i9-9940X CPU.

Conclusion

Our comparative performance analysis of molecular dynamics software (using the popular

GROMACS package as an example) provides the guidelines for selection of the best-performing

GPU-based architectures for both all-atom and coarse-grained MD simulations of realistic molec-

ular systems. It also outlines certain limitations of the single-node workstations and highlights

the importance of the HPC platforms (e.g., “Lomonosov-2” supercomputer) for the simulations

of large systems exceeding ca. 200,000 particles on the relevant time scale.

In the case of the AA MD simulations, the presence of a modern graphics accelerator speeds

up the calculations by about 5 times both for a 100 thousand atom system, and a million atom

system. Moreover, as the size of the system grows, the acceleration increases slightly. However,

in the case of CG models, the increase in performance with a modern GPU is not so impressive –

only about 2 times. In this case, the multicore and multiprocessor computing architectures are

also very important.

When using a parallel supercomputer 15 nodes (or more) are optimal for both AA and

CG calculations. However, for CG systems with non-polarizable water, 10 nodes is the optimal

choice, since with a further increase in the number of nodes, performance begins to decline.
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Computer Design of Structure of Molecules of High-Energy

Tetrazines. Calculation of Thermochemical Properties
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The article presents high-performance calculations, using quantum chemical ab initio meth-

ods, of thermochemical characteristics of high-energy compounds: C2N6O4, C2N6O5, C2N6O6,

C2H2N6O4, C3HN7O6, C3HN7O4F2, C4N10O12, C3HN6O4F , C4N10O8F4, C4N8O8F2. The IR

absorption spectra, structural parameters and atomic displacements for the most intense vibra-

tions, as well as the enthalpies of formation are provided in the article. The calculations were

performed at the B3LYP/6-311+G(2d,p) level and using the combined methods CBS-4M and G4

within the Gaussian 09 application package (Linda parallelization). It is shown that the enthalpy

of formation depends on the molecule structure.

Keywords: high-performance computing, enthalpy of formation, quantum-chemical calcula-

tions, high-enthalpy compounds, IR spectra of gaseous molecules, combined CBS-4M method, com-

bined G4 method.

Introduction

The rapidly developing new technologies, especially in the field of engines for advanced

aircraft, stimulate great interest in the creation of high-energy materials for various purposes.

In the recent time, modern computer technologies have played an increasingly important role in

the creation of new materials with specific properties [1–3].

The value of the standard enthalpy of formation ∆H◦
f of a chemical compound is one of the

main criteria for its energy intensity, thus the determination of this value, both experimental

and calculated, becomes a key task for assessing the efficiency of using a particular substance

as a component of high-energy materials. In terms of thermochemistry, it is important to know

how the enthalpy of formation of a substance changes with some structural changes. One of

the most reliable methods for studying the dependences of the enthalpy of formation on var-

ious parameters characterizing molecules (along with the experiment) is quantum-chemical ab

initio calculations using high-precision combined methods, such as CBS-4M and G4 within the

Gaussian 09 package.

This work is dedicated to determination by quantum chemical methods of ∆H◦
f of a num-

ber of high-enthalpy compounds with the common structure as shown in the Fig. 1. All these

compounds were designed by the authors and are promising as components of fuel for various

purposes. They have not been synthesized yet, and their thermochemical properties have been

studied for the first time in this work. It should be noted that for molecules of such complexity,

the spread of experimental data might be larger than that of calculated one, as it has been

observed in one of our previous works [4].
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Figure 1. Structure of the studied molecules

The article is organized as follows. In Section 1 we describe the method we used to determine

the enthalpy of formation of the given molecules. In Section 2 we discuss the results of our

calculations: enthalpies of formation and IR spectra. Section 3 contains computational details

of our calculations. Conclusion summarizes the study.

1. Calculation Method

The enthalpy of formation of the investigated gaseous molecules was calculated by the

atomization method as was described in our previous works [4, 5]. The simulation was performed

within the Gaussian 09 package [6] using the hybrid density functional B3LYP [7, 8] with the

basis set 6-311+G(2d,p), which had already proven itself in molecular calculations, and the

combined methods CBS-4M [9, 10] and G4 [11, 12].

The CBS series of methods was introduced by Petersson and colleagues [9, 10, 13–17] and

includes three main methods listed in ascending order of accuracy and estimated time: CBS-4M,

CBS-QB3, CBS-APNO. To obtain an accurate energy value, these methods use both additive

and extrapolation schemes, and empirical corrections. We used the CBS-4M method in our

work as the least demanding on computational resources. The CBS-4 [9] method which is a

base for the CBS-4M one uses low level theory UHF/3-21G(*) for geometry optimization and

zero-point energies and a series of further energy calculations for a given geometry using large

basis sets for the SCF method, medium size ones for MP2 calculations, and small basis sets for

the higher level method. The modifications introduced in the CBS-4M method are the use of

the minimum population localization in the CBS extrapolation, the change in the two-electron

empirical parameter and corrections for spin-orbit interactions in atomic energies [10].

The G4 method was introduced in 2007 by Curtiss and colleagues [11]. It uses calculations at

the B3LYP/6-31G(2df,p) level for geometry optimization and zero-point energies. The Hartree-

Fock energy limit is calculated using a linear two-point extrapolation scheme and Dunnings

basis sets [18–22]. The G4 method for approximating the energies of more accurate calculations

combines the CCSD (T) method with a sufficiently high level of electron correlation and a

medium-sized basis set (6-31G (d)) with the energies from the calculations of a lower level of

the theory (MP4 and MP2) with large basis sets. In addition, the remaining errors are taken

into account by several empirical corrections that do not depend on the studied molecule.

The main steps of the calculation by the atomization method of the enthalpy of formation

of compounds with the common formula CwHxNyOzFp are listed below:
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1. Calculation of the atomization energy in the nonrelativistic approximation.

∑
D0 = wE0(C) + xE0(H) + yE0(N) + zE0(O) + pE0(F )− E0(CwHxNyOzFp), (1)

where E0(C), E0(H), E0(N), E0(O), E0(F ) are calculated total energies of atoms. Total en-

ergy of the molecule E0(CwHxNyOzFp) is calculated by the formula E0(CwHxNyOzFp) =

ε0+ZPE, where ε0 is a total energy of the molecule, and ZPE is a sum of zero-point energies

of all vibrational modes of the molecule.

2. Calculation of the enthalpy of formation at 0K

∆H◦
f (CwHxNyOzFp, 0K) = w∆H◦

f (C, 0K) + x∆H◦
f (H, 0K)+

+ y∆H◦
f (N, 0K) + z∆H◦

f (O, 0K) + p∆H◦
f (F, 0K)−

∑
D0,

(2)

where the first five summands are the enthalpies of formation of gaseous atomic components

known from experiment.

3. Calculation of the enthalpy of formation at 298.15K

∆H◦
f (CwHxNyOzFp, 298K) = ∆H◦

f (CwHxNyOzFp, 0K) + (H0(CwHxNyOzFp, 298K)−
−H0(CwHxNyOzFp, 0K))− w(H0(C, 298K)−H0(C, 0K))−
− x(H0(H, 298K)−H0(h, 0K))− y(H0(N, 298K)−H0(N, 0K))−
− z(H0(O, 298K)−H0(O, 0K))− p(H0(F, 298K)−H0(F, 0K)),

(3)

where the second summand is obtained from the calculation of the molecule, the third to

seventh summands are known from experiment (or calculated from experimental molecular

constants). The values of the enthalpy of formation of gaseous atoms and thermal corrections

can be taken from various reference books or literature sources, for example [23–27].

In this work, we used the experimental atomic enthalpies of formation from the NIST-

JANAF thermochemical tables [24]. Since the theoretical calculation systematically overesti-

mates the values of the zero-point frequencies, the frequencies are corrected using empirically

selected coefficients. To obtain more accurate frequencies, it is necessary to correct the vibration

frequencies when calculating the ZPE corrections and corrections (H0(CwHxNyOzFp, 298K)−
H0(CwHxNyOzFp, 0K)). The values of the scaling factors are used for this, which are recom-

mended in the literature for various calculation methods and various basis sets [6].

2. Results and Discussion

2.1. Enthalpy of Formation

Table 1 shows the structures of the calculated molecules, molecular weights, enthalpies

of formation (in kcal/mol, kJ/mol, kJ/kg) obtained at different calculation levels: B3LYP/6-

311+G(2d,p), CBS-4M and G4. Figure 2 and Fig. 3 show the structural parameters and the

change in the enthalpies of formation of the calculated gaseous molecules.
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Table 1. Chemical and structural formulae, molecular weights (Mw, in amu), enthalpies of

formation ∆H◦
f of calculated molecules (in kcal/mol – regular font, kJ/mol – italic, kJ/kg –

bold), obtained at the B3LYP/6-311+G(2d,p), CBS-4M and G4 levels

N

Mw

Structural formula B3LYP/6-311+G(2d,p) CBS-4M G4

1

C2N6O4

172.06

139.88

585.25

3401.42

130.04

544.08

3162.16

128.76

538.74

3131.12

2

C2N6O5

188.06

133.51

558.59

2970.28

124.31

520.10

2765.61

120.84

505.59

2688.49

3

C2N6O6

204.06

136.4

570.72

2796.84

128.14

536.14

2627.37

122.72

513.47

2516.30

4

C2H2N6O4

174.07

105.24

440.35

2529.63

104.93

439.03

2522.09

97.67

408.66

2347.59

5

C3HN7O6

231.08

152.63

638.6

2763.49

125.99

527.16

2281.26

124.95

522.76

2262.36

6

C2H2N6O4

174.07

99.38

415.79

2388.58

94.61

395.83

2273.92

91.53

382.95

2199.92

7

C3HN7O4F2

237.08

143.87

601.96

2539.06

120.94

506.00

2134.29

118.04

493.86

2083.10

8

C4N10O12

380.1

192.74

806.43

2121.61

142.90

597.91

1573.02

138.54

579.64

1524.97

9

C3HN6O4F

204.06

91.98

384.86

1885.86

70.45

294.84

1444.75

71.18

297.81

1459.29

10

C4N10O8F4

392.1

174.96

732.02

1866.94

132.66

555.05

1415.58

124.29

520.05

1326.33

11

C4N8O8F2

326.1

71.07

297.35

911.87

31.74

132.81

407.28

30.63

128.14

392.97
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Figure 2. Structural parameters of the calculated molecules (in two angles)

Figure 3 and Tab. 1 show that the combined calculation methods (CBS-4M, G4) give similar

results with difference being within 7% of the values obtained at the G4 level, while time spent

on calculation by the CBS-4M method is up to 10 times less as compared to the G4 level. The

values of enthalpy of formation obtained at the B3LYP/6-311+G(2d,p) level are higher than

the ones of the CBS-4M method by 180-520 kJ/kg, which is from 8 to 57% as compared to

the results at the G4 level, while time spent on calculations is more than that of the CBS-4M

method, but less than that of the G4 method. The CBS-4M method uses the HF method with

the basis set 3-21G* to calculate the frequencies, so we introduce the IR absorption spectra

calculated at the B3LYP/6-311+G(2d,p) level.

Figure 3 and Tab. 1 show that the enthalpy of formation decreases with changes in structure 1

considered in the article. Let us discuss in more detail the trends observed in structures 1–11.

C2N6O4. The successive addition of one or two oxygen atoms to the ring part of structure 1

is modeled in a series of structures 1–3. In this case, the enthalpy of formation decreases se-

quentially by 429 and 594 kJ/kg, respectively (we compare here the values obtained by the G4
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Figure 3. Enthalpies of formation of structures 1–11

method). The addition of the first oxygen atom lowers the enthalpy of formation by 429 kJ/kg,

and the effect of the addition of the second one is significantly lower (166 kJ/kg).

The transition from structure 3 to 4 by replacing one of the NO2 fragments with NH2 leads

to a decrease in the enthalpy of formation by 172 kJ/kg.

In the case when oxygen atoms are located opposite each other (structure 4), the enthalpy

of formation is higher (by 153 kJ/kg) than the one for the isomer with structure 6, where both

oxygen atoms are located near the NH2 fragment.

C3HN7O6. The molecules in the series from structure 1 to structure 5 are rearranged by

replacing one NO2 fragment with H and the other with C(NO2)3. This rearrangement is ac-

companied by a decrease in the enthalpy of formation by 854 kJ/kg. Replacement in structure 5

of one of the NO2 fragments by NF2 (structure 7) or F (structure 9) leads to a decrease in

the enthalpy of formation by 193 kJ/kg and 825 kJ/kg, respectively. The presence of two oppo-

sitely located C(NO2)3 groups in structure 8 leads to a decrease in the enthalpy of formation

in comparison with structure 5 by 718 kJ/kg.

2.2. IR Absorption Spectra

The IR absorption spectra and displacements of atoms for the most intense vibrations are

shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7 correspondingly.

The highest frequencies (from 1628 cm−1 to 1670 cm−1) with noticeable intensities are ob-

served in the NO2 groups, which are part of the R1 and R2 fragments in almost all the structures

under consideration. The exceptions are structures 4 and 6, in which the most intense vibrations

are with frequency of 1457 cm−1 for structure 4 and 1398 cm−1 for structure 6, corresponding

to the vibrations of the NO bond of nitrogen atoms in the ring. Vibrations along the C − N

bond of the nitrogen atom belonging to the NO2 group are characterized by frequencies with

lower intensity: 1333cm−1 for structure 5, 1330cm−1 for structure 8, 1350cm−1 for structure 9,

1335 cm−1 for structure 10, and 1348 cm−1 for structure 11. Asynchronous vibrations of carbon

and nitrogen atoms included in the ring are also characterized by frequencies with noticeable

intensity: 1355 cm−1 for structure 2 and 1455 cm−1 for structure 3.
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Figure 4. IR absorption spectra for the calculated compounds (structures 1–6)

Figure 5. IR absorption spectra for the calculated compounds (structures 7–11)
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Figure 6. Displacement vectors for the indicated frequencies (structures 1–6)

3. Computational Details

Various computational sources have been used for the quantum chemical simulation depend-

ing on the complexity of the task. Simulations of the simpler molecules have been performed on
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Figure 7. Displacement vectors for the indicated frequencies (structures 7–11)

the local computational resources of the Institute of Problems of Chemical Physics of the Rus-

sian Academy of Sciences using the minicluster with computational nodes consisting of two Intel

Xeon®X5675@3.46GHz processors, 48 Gb RAM and two GPU Nvidia Tesla C2075 per node,

and computational cluser with nodes consisting of Intel Xeon®5450-5670@3GHz processors and

8 and 12 Gb RAM. The computation time for the given tasks have amounted to several hours

approximately. For the computationally intensive tasks, we have used the high-performance com-

puting resourses of the Lomonosov Moscow State University with computational nodes consisting
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of Intel Xeon®Gold 6140 CPU @2.30GHz processors and 256 Gb per node. The computation

time on the heaviest structures by the most expensive G4 method amounted to two months.

Conclusion

Thermochemical data of high-energy compounds: C2N6O4, C2N6O5, C2N6O6, C2H2N6O4,

C3HN7O6, C3HN7O4F2, C4N10O12, C3HN6O4F , C4N10O8F4, C4N8O8F2 has been obtained

as a result of high-precision quantum-chemical calculations. It is shown that the enthalpy of

formation decreases with increasing complexity of the structure of the molecules of the studied

series. The IR absorption spectra, structural parameters, and atomic displacements for the most

intense vibrations are also calculated. The calculations have been performed at the B3LYP/6-

311+G(2d,p) level and using the combined CBS-4M and G4 methods. It has been demonstrated

that the use of the CBS-4M calculation level for the selected class of molecules gives results

that are close (within 7%) to those obtained at the G4 level and leads to a significant (up

to 10 times) savings in the calculation time, although the values of the enthalpy of formation

obtained by this method are either overstated or understated in comparison to the results of

the G4 calculation. All molecules have been designed in the work for the first time and their

physicochemical properties have been calculated and described for the first time.
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