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Efficient Parallel Implementation of Multi–Arrival 3D Prestack

Seismic Depth Migration

Alexander L. Pleshkevich1, Anton V. Ivanov2, Vadim D. Levchenko2,

Sergey A. Khilkov3, Boris P. Moroz1

c© The Authors 2019. This paper is published with open access at SuperFri.org

The goal of seismic migration is to reconstruct the image of Earth’s depth inhomogeneities

on the base of seismic data. Seismic data is obtained using shots in shallow wells that are located

in a dense grid points. Those shots could be considered as special point sources. A reflected and

scattered seismic waves from the depth inhomogeneities are received by geophones located also in

a dense grid points on a surface. A seismic image of depth inhomogeneities can be constructed

based on these waves. The implementation of 3-D seismic migration implies the solution of about

104÷5 3-D direct problems of wave propagation. Hence efficient asymptotic methods are of a great

practical importance. The multi-arrival 3-D seismic migration program is implemented based on

a new asymptotic method. It takes into account multi-pass wave propagation and caustics. The

program uses parallel calculations in an MPI environment on hundreds and thousands of processor

cores. The program was successfully tested on an international synthetic “SEG salt” data set and

on real data. A seismic image cube for Timan-Pechora region is given as an example.

Keywords: seismic imaging, multi-arrival seismic migration, HPC, aiwlib.

Introduction

Among all the tools applied for oil and gas exploration at the moment seismic prospecting is

the most accurate and widely used method to study the structure of the inhomogeneous Earth’s

medium. Seismic imaging implementation based on reflected and scattered seismic waves from

the depth geological structures is known as a seismic migration. Special seismic surveys are

performed in order to collect seismic data. Geophones on the surface register scattered and

reflected waves from the depth inhomogeneities. These waves are produced by special shots in

shallow wells as sources. For now the usual area of the survey is 102÷3 km2 and corresponding

dataset size is around 102÷3 GB. The seismic migration process demands to solve numerous

problems of wave propagation in heterogeneous medium. Thus asymptotic ray methods in the

context of the acoustic approximation overrule the field. It is common practice to use a single-

beam assumption. It states that there is only one ray from the source to an arbitrary point in the

medium, the one which passes through the point at the shortest time. In complex media, if caustic

occurs, the assumption breaks down and the resulting image can degrade. Therefore, to improve

the image, one should discard the single-beam assumption and take multipath propagation into

account. The seismic migration based on this approach and its efficient implementation are the

main topics of the authors’ research.

1. Formulation of Seismic Migration

Two asymptotic methods to solve the direct scattering problem taking the multipath prop-

agation and caustics into account are widely known. They are Maslov’s method of the canonical

operator [5] and the Gaussian beam summation method [4]. Applications of Maslov’s method

are constrained by the lack of suitable numerical scheme.
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Research described in [2, 3] allowed us to introduce an alternative convenient way to solve

the problem. It was implemented as a program for multi-arrival 3D depth seismic migration

of multi-fold seismic data. For the numerical implementation we used the integral asymptotic

solution of the direct scattering problem in the source-receiver Cartesian coordinates:

f(~r) =
1

16π2

∑
m,n

∫
Sm

∫
Sn

Am
s A

n
g Ĥ

Im+In u̇(~s,~g, τms (~s) + τng (~g)) d~s d~g, (1)

where f(~r) stands for image value at the point ~r, Sm and Sn are surface areas touched by the

wave front with KMAH indices Im and In correspondingly coming from the source ~s and receiver

~g at the point ~r. A is the integrable ray amplitude, Ĥ means Hilbert transform, τs and τg signify

the time that rays take to get to the source and the receiver from the point ~r, u̇(~s,~g, τ) is the

data from the dataset differentiated with respect to time.

Typical seismic migration project requires about 1017 floating-point operations. Hence the

computational cost of the procedure is exceptionally high. For the case of quasi-regular multi-

fold seismic data acquisitions it is possible to reduce computational cost of ray tracings even

farther to the amount of unique locations of sources and receivers. Therefore our procedure splits

into two consecutive steps. On first step we obtain the ray Green’s function (GF) by tracing

beam fans, e.g. we calculate A, I and τ . And the second one is for calculation of integrals (1)

with help of suitable quadratures and the previous step results. Since every GF contains up to a

gigabyte of data, the overall intermediate information amount adds up to hundreds of terabytes.

Efficient storage and transport of the intermediate data is the key problem arising in the program

implementation of the multipath 3D depth migration.

2. Algorithm and Implementation Specific Features

Our algorithm uses distributed RAM on a cluster to store ray GFs. Usually the intermediate

data amount is greater than the available RAM size on the computational system. Thus at the

scheduling stage the whole task is decomposed into smaller ones which use seismic data subsets.

Little seismic datasets require smaller GFs set, therefore, the amount of memory demanded

decreases. The optimal partitioning allows us to achieve program memory consumption inversely

proportional to the number of subtasks for big subtasks and square root of the number for smaller

ones. In the latter case GFs recalculations also take place. That increases the total computation

time, but GFs computation still takes about 10 ÷ 20 % of the runtime.

To keep additional costs less than a half of the integration time, we have to store at least

several thousands GFs in the memory. Thus computational system is required to have several TB

RAM to run the program fast enough. Each subtask updates the part of the seismic image (1).

Since the size of the updated part is relatively small (∼ 10 GB), an intermediate image may

be safely stored in long-term memory, even if we take the redundancy margin into account. As

a result we can ensure fault tolerance. After a fault it is necessary to restart only the failed

subtasks.

The problem (1) provides plenty of opportunities to employ parallel computations. Our

algorithm has three parallelization levels. It ensures the best locality of processed data and

efficiency on parallel systems with distributed memory. The top parallelization level utilizes MPI

protocol to make internode communications efficient. The middle level applies OpenMP interface

to achieve optimal performance on multi-core systems with shared memory. The bottom level

uses processor vector instructions (SSE2, AVX). On the first step of the algorithm the top level

A.L. Pleshkevich, A.V. Ivanov, V.D. Levchenko, S.A. Khilkov, B.P. Moroz
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(a) Edge flip (b) Edge split

Figure 1. Grid adaptation process

parallelise different beam fans tracings. The middle level thread processes its spatial GF tiles.

The bottom level deals with the access to the medium. The second step parallelisation is done

by GF tiles, seismic data subset and operations for interpolation of the medium model for levels

from the top to the bottom correspondingly. The velocity model is given on a uniform Cartesian

grid. VTI and TTI Tompsen anisotropy models are available in addition to the isotropic model.

The ray GF is reconstructed in heterogeneous half-space at nodes of the uniform Cartesian

grid. If a caustic occurs, there may be several rays leading from the source to a node. The tracing

of a ray implies solving the system of Hamilton’s equations for bicharacteristics numerically with

aid of Runge–Kutta 4-th order method. Hamilton’s system is integrated over the travel time

along the ray instead of the common parameter. The ray tracing is performed in two passes.

From now on we will refer to them as α and β tracings. The purpose of α-tracing is to construct

the dynamically adapting angular grid which approximates the wave front on every time step.

The grid consists of triangular cells (the beam fragments corresponding to single time moment).

Every grid node contains a ray. The grid of initial ray directions is a pentakis dodecahedron

recursive subdivision [1]. In contrast to the spherical coordinates of the grid, this triangulation

does not have a singularity on the poles, and for the same fineness it has half as many cells.

After updating all the rays positions to new time step, the grid adaptation is performed. All

edges with the length above the specified threshold value are arranged in a queue. The queue

is kept sorted so the longest edge is always the next to pop. The dynamic adaptation works as

follows: it gets the edge from the queue, tries to flip it (Fig. 1a) and tries to split it (Fig. 1b) if

the flip failed. All new edges longer than threshold value are added to the queue. If the algorithm

cannot split the edge, it discards it. The adaptation stops when the queue is empty. The flip is

accepted if directions of new adjacent cells normals are closer to directions normal to the wave

front. It is worth mentioning that in addition to the ray position the tracing procedure provides

us with time gradient which is orthogonal to the wave front.

The edge split is performed by tracing a new ray close to the middle of the line segment

connecting centers of cells adjacent to the edge. Initial parameters of the new ray are deduced

by means of the conjugate gradients method. The split is considered unsuccessful if the resulting

ray is not close enough to the desired point.

In the presence of caustics and head waves in a complex heterogeneous medium the α-tracing

is a costly procedure. Thus we can avoid repeating it by saving the adaptation history to the

long-term memory. It is exactly why the α-tracing was detached from the β-tracing. During the

β-tracing the same beam fans are formed again. The main point of the β-tracing is to provide

the GF on a uniform grid. In view of this we have to find all the nodes each beam catches. The

E�cient Parallel Implementation of Multi-Arrival 3D Prestack Seismic Depth Migration
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Figure 2. The seismic image by amplitude–preserving multiarrival 3D depth migration, Timan–

Pechora region

beam segment between to consecutive time moments is considered to take the space between the

corresponding triangular cells. For the linear ray segment approximation the problem of finding

points inside the beam reduced to finding the solution of a cubic equation. That may be easily

done by means of Newton method.

In order to calculate KMAH index for a beam, one should find the number of zeros Jacobian

has had to the current moment. The same linear interpolation for the beam segment leads to

Jacobian in the form of a cubic polynomial. Again Newton method saves us the trouble.

Unlike the integral in the ray parametric coordinates [3], the integral solution (1) contains

singularities. Those integrable singularities arise from Jacobian vanishing on caustic surfaces.

Special quadrature formulas explicitly localizing them are required in order to obtain the correct

solution.

The described algorithm is implemented as a program in C++11. It works on OS Linux,

requires aiwlib library [1] and uses MPI protocol. The code allows us to solve the multiarrival

seismic migration problem for a complex heterogeneous medium cost effectively. The produced

images were verified for SEG Salt synthetic dataset and a few real-world projects. Figure 2

displays the sample of seismic image for Timan-Pechora region produced by our code.

Conclusion

We have presented an original algorithm of multi-arrival 3-D seismic depth migration. It

is based on a new asymptotic solution of Dirichlet problem for acoustic wave equation. A new

asymptotic method is developed to correctly account for multipath ray propagation and caustics

A.L. Pleshkevich, A.V. Ivanov, V.D. Levchenko, S.A. Khilkov, B.P. Moroz
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in a complicated inhomogeneous Earth’s medium. A corresponding computer program has been

implemented. It has been successively tested on international synthetic and real seismic data

sets. The program uses parallel calculations on hundreds and thousands of processor cores in an

MPI environment.
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LAMMPS Code Simulation of the Defect Formation Induced

by Ion Incidence in Carbon Nanotubes

Andrey A. Shemukhin1, Anton V. Nazarov1, Anton V. Stepanov2

c© The Authors 2019. This paper is published with open access at SuperFri.org

A molecular dynamic calculation of the multi-walled carbon nanotube thermal sputtering

induced by ion irradiation is carried out. Sputtering results comparable to experimental data are

obtained. There are two models of ion and thermal sputtering discussed in the paper. The simula-

tion tested the model of thermal amorphization and revealed that the disordering of multi-walled

carbon nanotubes structure occurs as a result of their heating under ion irradiation. Classical

molecular dynamic simulation was performed using LAMMPS code. Simulation cell with 14 layers

multi-walled carbon nanotube 12 × 12 × 30 nm size contains 285600 atoms. Multi-walled carbon

nanotube was irradiated by 80 keV energy Ar+ ions in cumulative mode. Simulation was performed

on the Lomonosov-1 supercomputer. About 24600 nodes-hours were spent on one simulation as a

whole. The balancing of MPI flows for a spatial grid of counting nodes occurred according to the

scheme 8 × 8 × 128 MPI-stream. LAMMPS code was built with Intel 12.0 compiler. This configu-

ration allowed to speed up the calculation in comparison with the calculation on a single-processor

Xeon CPU X5570 2.93 GHz machine by 60 times.

Keywords: ion irradiation, multiwall carbon nanotube, defects, molecular dynamics, sputter-

ing, thermal mechanism.

Introduction

Studies related to the ion modification of carbon nanotubes (CNTs) [8] make it possible

to create semiconductor devices (diodes, transistors) [14], sensors [13], filters [3], electrodes for

electron emission [5] based on defective nanotubes, devices for controlling ionic beams [2, 17].

In studies on defects in carbon nanotubes [1, 7], little attention is paid to defects that appear

as a result of ionic modification, in particular the defect formation mechanisms [4]. Among the

defects induced by ion irradiation, vacancies, multi-vacancies and interstitials are most often

encountered [9]. Defects formed upon irradiation or induced by ion irradiation from intrinsic de-

fects of nanotubes have unique properties. Some types of defects, such as substitutional atoms,

or intercalants can significantly change the electronic band structure of a nanotube by transfer-

ring it from one type of conductivity to another. Defects in CNTs are chemically active centers

that bind molecules well from the environment, which makes the defective nanotube as a whole

chemically more active. Transition of a part of the nanotube atoms from the state with sp2

hybridization to a state with sp3 hybridization increases the surface area, which affects the tri-

bological, adsorption and capacitance properties of the nanotube. Modifications of the properties

of nanotubes by chemical or plasma-chemical processing of samples, for example, for the creation

of gas sensors, are what the work of collective [16] is devoted to. A directional change in the

properties of carbon nanotubes by an ion beam to create elements of micro and nanoelectronic

devices was carried out by Krasheninnikov, Nordlund et al. [6]. Simulation was accompanied by

experiments [12]. The mechanisms of sputtering the surface of multi-walled carbon nanotubes

under ion irradiation are discussed in [4, 10]. At the same time, the competition of two processes,

thermal and ionic sputtering, is discussed. In this paper, the first numerical calculations of the

interaction of ions with a multi-walled carbon tube are presented.

1Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russian Federation
2Chuvash State Agricultural Academy, Cheboksary, Russian Federation
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1. Methods

Calculations of the thermal sputtering of multi-walled nanotubes were performed using the

classical molecular dynamics method using the LAMMPS code [11]. Because of the large number

of atoms in the simulated system, in order to save computational time, it is advisable to solve the

equations of motion by the Verlete method in velocity form. The calculation was performed for

a single multiwalled carbon nanotube placed in periodic boundary conditions at all boundaries

in a cell with a size of 12 × 12 × 30 nm.

The AIREBO potential [18] is used to describe the interaction between carbon atoms in

a nanotube, which allows one to take into account the formation and breaking of new bonds,

the reorganization of a network of bonds, and the change in the degree of hybridization. Po-

tential energy obtaining by AIREBO potential consists of V R – repulsive, V A – attractive, and

V LJ – Lenard-Jones terms:

EREBO =
∑
i

∑
j(>i)

[V R(rij) − bijV
A(rij) + V LJ(rij)], (1)

responds to attraction of atoms at short distances. All coeficient details for repulsive, attractive

parts and main potential function were provided in the work [18]. Repulsive and attractive

parts of manybody AIREBO potential are used for short distance Feynman-Hellman forces

reproducing in terms of classical molecular dynamics. The multi-walled nanotube consisted of

14 layers: the smallest in diameter was CNT (10, 10) 1.4 nm in diameter, the largest in diameter

was CNT (75, 75) -10 nm, the length of each single-walled nanotube was 29.2 nm. The distance

between the layers is 0.34 nm, the layers are shifted relative to each other so that they form the

ABAB-packing of graphite. The total number of atoms in a multi-walled nanotube is 285600.

The initial temperature was set to 0.1 K. The nanotube was not thermally tested during the

passage of the ion. To reduce the radiation dose and to reduce the counting time, we used heavier

Ar+ atoms. The interaction of Ar+C was modeled using the Ziegler-Biersack-Littmark (ZBL)

potential [19]. The ZBL-potential is well tested for noble gas ions interaction with solids and

used in SRIM or TRIM code.

The ion began to move randomly from a distance of 5.5 nm from the axis of the nanotube,

with a random initial angle of 3–5 degrees and an energy of 80 keV. Over about 0.01 ps, the

ion passed through, then the nanotube was cooled to 500 K for 5 ps, 5 ps, thermostating at a

constant temperature, and then another cooling stage for 5 ps. The calculation was performed

on Lomonosov-1 supercomputer [15] using nodes with Intel Xeon CPU X5570 2.93GHz (8 cores

per node). Calculations were provided at 256 nodes. About 24600 nodes-hours were spent on one

calculation as a whole. MPI technology was used for parallelization. The balancing of MPI flows

for a spatial grid of counting nodes occurred according to the scheme of 8×8×128 MPI-streams.

LAMMPS code was built with Intel 12.0 compiler. This configuration allowed to speed up the

calculation in comparison with the calculation on a single-processor Xeon CPU X5570 2.93 GHz

machine by 60 times.

It is known that when passing through a multi-walled carbon tube, the Ar+ ion can lose

energy as a result of two processes: energy transfer to electrons – electronic energy losses, and

energy transfer to lattice atoms of a multi-walled carbon nanotube – nuclear energy losses. Thus,

as a result of motion, the ion either heats the lattice when interacting with electrons, or destroys

it in an elastic collision. In this case, the tube is heated at 300 K. Heating is produced due to

LAMMPS Code Simulation of the Defect Formation Induced by Ion Incidence in Carbon...
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ion-carbon atom scattering. As a result, this leads to an increase in the amplitude of vibrations of

the carbon atoms, and as a result, the mobility of defects increases with increasing temperature.

Defect formation at the initial stages occurs due to the formation of collision cascades

caused by the incident Ar+ ion, and after heating up due to rebuilding the network of bonds

and changing the bond order of carbon atoms. Results of simulation have shown, that with

the accumulation of the irradiation dose, the number of recoil atoms also increases, and hence

the defectiveness of the nanotube. Most often mono-and multivacancies are formed at the same

time, while the outer layers of the nanotube are sprayed. In addition, it can be seen that the

number of atomized atoms is not significant. This indicates that the main mechanism for the

modification of the relief is thermal.

Conclusions

This calculation made it possible to test the model of thermal amorphization, according

to which the disordering of the structure of multi-walled nanotubes occurs as a result of their

heating under ion irradiation. The model did not take into account the heat sink, so from this

point of view it is not quite adequate. Later the model will be further developed and based

on this model, and it is planned to calculate the number of defects and predict electrophysical

properties.
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A Fully Conservative Parallel Numerical Algorithm

with Adaptive Spatial Grid for Solving Nonlinear Diffusion

Equations in Image Processing

Andrey D. Bulygin1,2, Denis A. Vrazhnov2,3
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In this paper we present simple yet efficient parallel program implementation of grid-difference

method for solving nonlinear parabolic equations, which satisfies both fully conservative property

and second order of approximation on non-uniform spatial grid according to geometrical sanity

of a task. The proposed algorithm was tested on Perona–Malik method for image noise filtering

task based on differential equations. Also in this work we propose generalization of the Perona–

Malik equation, which is a one of diffusion in complex-valued region type. This corresponds to the

conversion to such types of nonlinear equations like Leontovich–Fock equation with a dependent

on the gradient field according to the nonlinear law coefficient of diffraction. This is a special case

of generalization of the Perona–Malik equation to the multicomponent case. This approach makes

noise removal process more flexible by increasing its capabilities, which allows achieving better

results for the task of image denoising.

Keywords: Perona–Malik method, nonlinear Schrödinger equation, fast parallel algorithm,

fully conservative numerical scheme.

Introduction

In recent years applications of mathematical physics methods in image processing have been

of great interest. One of such state-of-the-art approaches is Perona–Malik method used for image

denoising as numerical solution of partial differential equations (PDEs) [1]. This method was

further developed in many works, e.g. [2–4]. The idea of this method is relatively simple: authors

suggest to numerically solve PDE (for instance stationary diffusion equation) with image being

denoised as initial conditions. This is equivalent to image blurring with Gaussian filter and

has deep connection with other methods of denoising filters constructions based on application

of Green function for PDEs [5]. For example, Gaussian filter is a Green function for diffusion

equation. Thus, we can say that usage of diffusion equation in Perona–Malik approach for given

image is equivalent to convolution of this image with Gaussian filter. It should be mentioned

that application field of PDEs in image processing is not only denoising, but also broken image

restoration, known as inpainting process [6]. Development of denoising methods based on solution

of PDEs is troublesome because of heavy computational load. But usage of clusters and graphical

processor units (GPUs) can overcome this shortage. That is why parallel implementation of

algorithms based on Perona–Malik approach is very promising. In this paper we propose an

algorithm for image denoising based on non-linear diffusion equation. Parallel implementation

was done on FORTRAN 90 with MPI (Message Passing Interface) and Intel Fortran compiler.

The solution of the given equation is based on implicit finite difference scheme of the second

order.
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1. Generalized Perona–Malik Approach

Let us consider the following PDE of the given form:

∂tψ +∇D(∇ψ)∇ψ = 0. (1)

Here ψ(x, y) is a field (generally speaking - complex numbered) corresponding to processed

image being denoised. Parameter t is evolutional one. In general case coefficient D(∇ψ) is com-

plex numbered function [7]. Let as analyze specific form of D(∇ψ):

D = exp(−iϕ) exp(−(∇ψ/q)2). (2)

Here varph is a phase, tunable parameter whose inference on efficiency of generalized

Perona–Malik approach is a subject of interest. With ϕ = 0 we get ordinal case of non-linear

diffusion equation. With ϕ = π/2 we get non-linear Schrödinger equation (in generalized sense,

because non-linear Schrödinger equation assumes non-linearity of third order of field).

2. Numerical Scheme

According to the given initial conditions we construct non-uniform grid with symmetry to

the origin: xI = −xN+1−I = xI−1 + hI where hI = hI−1ε(I), I = N/2 + 1..N , N is the number

of grid nodes. In the case of axially symmetric xN/2+1 = h0/2 and hN/2+1 = h0. The symbol is

entered here ε ≤ 1 mesh heterogeneity parameter of the grid.

Similarly, we perform a partition of the orthogonal coordinate: yI . For the simplicity let us

assume, that there are equal number of points on each computational node.

We solve this task with alternative directions method [8], which allows to solve one-

dimensional diffusion task on each half-step:

∂

∂t
ψ =

∂

∂x
(D(ψ,

∂

∂x
ψ, x)

∂

∂x
ψ) + F (x). (3)

The given equation is a non-linear one, and we solve it by Newton–Raphson method [8].

This leads to the necessity of solving a linear system of differential equations on each step.

Condition of second order approximation of diffusion operator for scheme on non-uniform grid

can be deduced from the condition of the following equations coherence:

∂

∂x
(D(x))

∂

∂x
ψ)j = αjψj−1 + βjψj + γjψj+1 +O(h3). (4)

Again, for simplicity, let each processor have the same number of points ml = N/M , where

M is the number of processors.

Global index J relates to local index j on processor with number q as follows: J = (q − 1) ∗
ml + j. The numerical implementation of the diffraction step will be implemented on a three-

point “cross” scheme with a vory order of accuracy of approximation of the Laplace operator

on a non-uniform grid. Numerical implementation of diffraction step will be performed by three

point “cross” scheme with second order approximation of Laplace operator on non-uniform grid.

In this case we need to solve a system of equation of the kind:

aJψ
l+1
J−1 − cJψ

l+1
J bJψ

l+1
J+1 = −f lJ . (5)

.
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To solve this system of algebraic equations, we will use generalized method of fast paral-

lelization in complex case [9].

3. Results of Numerical Calculations

The following are examples (Fig. 1) of the original image of a noisy image and an example

of the result of a partially noise-free image:

(a) Initial image (b) Noisy image (c) Denoised image

Figure 1. Examples of images

We propose to measure the quality of denoising by RMS error of difference between initial

and noised image: m2(t) = (|ψ(t)| − |ψiso|)2. Bellow, graphics m2(t) (Fig. 2) acquired from

the solution of equations with Perona–Malik method 1 for different phase values in diffusion

equation 2 are presented:

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0 , 6

0 , 7

0 , 8
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1 , 1
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t
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   5
   6
   7
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   9
  1 0
  1 1

Figure 2. Dependance m2(t) of time for different values k, ϕ = kπ/6, where: k=1,2..11

From the presented pictures it can be seen, that efficiency of image denoising significantly

depends on parameter ϕ, and for the case under study value ϕ = 2π/3 is optimal.
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Conclusion

In this paper we present fully conservative numerical scheme (in a weak sense), which allows

to control correctness of the equation solution by tracing motion integrals and using this to

correct evolution variable step. This numerical scheme was parallely implemented for complex

generalization of Perona–Malik equation. It was shown, that this approach extends denoising

abilities of the method, which allows to achieve better results for the image noise removal task.

Thus, in particular, in the present study we show that complex parameter equals one is optimal

for image denoising task when phase is equal ϕ = 2π/3.
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Even when modern computational platforms and parallel techniques are used, conventional

all-atom simulations are limited both in terms of reachable timescale and number of atoms in

the biomolecular system of interest. On the other hand, coarse-grained models, which allow to

overcome this limitation, rely on proper and rigorous parametrization of the underlying force

field. Here, we present a novel iterative approach for parametrization of coarse-grained models

based on direct comparison of equilibrium simulations at all-atom and coarse-grained resolutions.

In order to assess the accuracy of our method, we have built and parametrized an elastic network

model (ENM) of the tubulin protofilament consisting of four monomers. For this system, our

method shows good convergence and the parametrized ENM reproduces protein dynamics in a

finer way when compared to ENMs parametrized using the conventional approach. The presented

method can be extended to other coarse-grained models with a slight adjustment of the equations

describing the iterative scheme.

Keywords: molecular dynamics, coarse-grained models, tubulin, elastic network model, high-

throughput simulations, parallel simulations.

Introduction

Despite huge advances in the computational techniques the atomistic simulations of molec-

ular dynamics are still limited in the time and space domains to µs and millions of atoms,

respectively, what makes various coarse-grained approaches a valuable alternative. Among the

latter, the elastic network models have gained a considerable success: though relatively simple

they can yield decent insights into molecular mechanisms of protein function. Particularly, the

simple Gō-models have proved themselves advantageous in the studies of protein folding, al-

lostery, etc. [2]. They consider protein as a network of Cα-atoms connected with uniform springs

when closer than a given cutoff distance. However, homogeneity of such networks, which pur-

sues models with very few fitted parameters, imposes certain limitations on the accuracy of

the obtained ENMs [4]. The latter can be overcome using a series of all-atom (AA) simulations

produced by modern high-throughput MD approaches in order to bring the CG models to the

highest accordance with their AA counterpart.

We suggest a methodology for accurate parametrization of ENMs based on the information

derived from a batch of all-atom simulations, which accounts for inconsistency of inter-residue

pair contacts, as well as the heterogeneity of their strength. We utilize the developed approach in

order to build a CG model of the tubulin protofilament — a structural element of microtubule,

which is a cytoskeletal structure essential for intracellular transport, cell division, cell motility,

1Moscow Institute of Physics and Technology, Dolgoprudny, Russia
2Sechenov University, Moscow, Russia
3M.V. Lomonosov Moscow State University, Moscow, Russia
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etc. [5]. We demonstrate that our method leads to a more reliable description of protein dynamics

comparing to the conventional ENM approaches. Since our approach is based on the direct

comparison of the coarse-grained and all-atom simulations, it can be applied to more complex

coarse-grained models. For instance, if the electrostatic energy is explicitly included to the

coarse-grained potential energy function, its contribution has to be excluded from potential

that is parameterized [3]. In our approach, this will be done automatically throughout iterative

process.

1. Methods

All-atom MD simulations of tubulin tetramers were carried out in the GROMACS 5 suite [1]

using the CHARMM27 force field. The PDB entry 3J6F, corresponding to a fragment of mi-

crotubule bound to GDP, was used in order to build an atomic model for simulations. The

following standard protocol was used for simulations: the NPT ensemble controlled by means of

Nose–Hoover thermostat (Tref = 303 K, τT = 2 ps) and Parrinello–Rahman barostat (isotropic

pressure, pref = 1 bar, τp = 2 ps, compressibility = 4.5 ·105 bar−1); time step — 4 fs, allowed by

the mass rescaling; the Verlet cut-off scheme and PME for the long-range electrostatics. In total,

two 1 µs-long trajectories were obtained, last 300 ns of each run was used for further analysis.

To parametrize the ENM, we first extracted mean distances and standard deviation for

each interparticle distance from the AA simulations to use as reference values. At each iteration,

4 × 106 steps of CG dynamics is performed, and the same values are extracted from the last

3 × 106 steps. The parameters are then adjusted and procedure is repeated until convergence is

reached. The update rules for the parameters are:

1

Kn+1
i,j

=
1

Kn
i,j

− α
(σ0i,j)

2 − (σni,j)
2

kBT
, bn+1

i,j = bni,j + β
b0i,j − bni,j
σ0i,j

. (1)

Here, Kn
i,j is a spring constant for the contact between i-th and j-th particles at n-th itera-

tion, σni,j is a dispersion, computed from simulations at n-th iteration, kB is Boltzmann constant,

and T is the temperature; bni,j is an average distance between particles i and j throughout the

simulation run at iteration n; zero value for the iteration index indicates that the respective

value is computed from the reference AA simulation run; α = 0.1 and β = 0.1 are dimensionless

iteration parameters.

Results and Discussion

Defining contacts in CG models solely on the distance cut-off can lead to the certain amount

of false-contacts. These not only include the pairs of particles that are not interacting directly,

but also those that cannot be properly described by the chosen potential. For instance, double-

well potentials cannot be described by harmonic ENMs and thus have to be excluded. To assess

the quality of contacts, we compared two independent AA simulation runs. We derived the

distributions of interparticle (contact) distances from two runs and computed an overlap between

them (Fig. 1a, b). We then excluded the contacts, for which the overlap was less then 50 %

(Fig. 1b, c). The distribution of mean distances of such “good” contacts (Fig. 1c, top) allowed

us to choose the optimal value for the distance cut-off (8 Å).

The iterative process for optimization of the model parameters converged in ∼ 50 iterations,

at which point the average distribution overlap reaches the plateau at value of 0.954 ± 0.002

Parametrization of the Elastic Network Model Using High-Throughput Parallel...
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Figure 1. Distributions of interparticle distances for “good” (A) and “bad” (B) contacts obtained

from two independent AA simulation runs (red and black curves); normalized distribution of

interparticle distances over all contacts in the system with sufficient distribution overlap (> 0.5)

(C, top) and a scatter plot of the distances and distribution overlaps for all the contacts (C,

bottom) with the “good” contacts embraced in the dashed rectangle

Figure 2. Distributions of the interparticle distances for two arbitrary chosen contacts (A, B):

blue curves represent the distributions from CG MD runs at different iterations of the

parametrization process, red curve shows the correspondent distribution from the AA simula-

tion; the average overlap of the distributions from the CG simulations with the AA distributions

as a function of the iteration number (C)

(Fig. 2c). Visual analysis of interparticle distributions showed a good correspondence between

the CG and AA simulations both in distributions of height and dispersion. As expected, the

Figure 3. Root mean-square fluctuations computed per residue for one of α-tubulin monomers

from AA MD simulations and CG MD simulations using the homogeneous model with the

uniform spring constant (homoENM) and the heterogeneous model based on AA simulations

(heteroENM)
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distributions obtained from CG simulations lacked certain features, observed in AA simulations,

e.g. small shoulders in some cases (Fig. 2a, b).

The overall quality of the parametrized model was assessed by comparing the RMSF curves

obtained from the AA MD simulations and CG simulations using either the developed ENM

or the homogeneous ENM with the uniform spring constant of 10000 kJ/mol·nm2. As one can

see in Fig. 3, the per-residue fluctuations calculated based on our model match those computed

from the AA simulations better comparing to the conventional homogeneous ENM model. The

mean-square error equals 0.24 and 0.19 Å2 for the homogeneous ENM and our heterogeneous

ENM, respectively.

To conclude, we developed a novel approach to parametrize the CG models of biomolecular

systems. The method outperforms the conventional approach for parametrization of ENM both

in terms of the convergence and the model quality while remaining robust and simple. The

proposed procedure can be extended to other CG models and the resulting models can be easily

incorporated into the existing MD software, which makes it interesting to anyone using this tool

in their research.
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Experiencing a tremendous growth, Cloud Computing offers a number of advantages over

other distributed platforms. Introducing the advantages of High Performance Computing (HPC)

also brought forward the development of HPCaaS (HPC as a Service), which has mainly focused

on flexible access to resources, cost-effectiveness, and the no-maintenance-needed for end-users.

Besides providing and using HPCaaS, HPC centers could leverage more from Cloud Comput-

ing technology, for instance to facilitate operation and administration of deployed HPC systems,

commonly faced by most supercomputer centers.

This paper reports the product, EasyOP, developed to realize the idea that one or more Cloud

or HPC facilities can be run over a centralized and unified control platform. The main purpose

of EasyOP is that the information of HPC systems hardware and system software, failure alarms,

jobs scheduling, etc. is sent to the Wuxi cloud computing center. After a series of analysis and

processing, we are able to share many valuable data, including alarm and job scheduling status, to

HPC users through SMS, email, and WeChat. More importantly, with the data accumulated on

the cloud computing center, EasyOP can offer several easy-to-use functions, such as user(s) man-

agement, monthly/yearly reports, one-screen monitoring and so on. By the end of 2016, EasyOP

successfully served more than 50 HPC systems with almost 10000 nodes and over of 300 regular

users.

Keywords: HPC, supercomputer, monitoring, notifications, cloud, operation, administration,

EasyOP.

Introduction

Cloud computing definitely takes top rank in recent information technology popular

paradigm list, due to the many promising advantages it brings. For example, the access to

resources is flexible and cost-effective, since it is neither necessary to invest a large amount of

money on a computing infrastructure, nor pay salaries for maintenance [11, 22, 31]. Also, there

are series of works which focus on HPC cloud, also known as HPCaaS (HPC as a Service).

Some have mainly contributed to understanding the cost-benefits of using cloud over on-premise

clusters [10, 23]. Other aimed at evaluating the performance gap between cloud and on-premise

resources [12, 20, 28]. Additionally, a lot of effort has been invested into the HPC job schedul-

ing, as well as application testing and tuning within the cloud environments [5, 6, 15, 19, 30].

Therefore, it could be found that most interests of combining HPC and cloud are laid on using

cloud as IaaS (infrastructure as a Service).

In fact, besides buying new infrastructure and testing new technology, most HPC centers

have to continuously monitor the utilization and the capacity of HPC facilities to ensure re-

search needs are adequately met, to plan and approve operational policies, and to advise &

review proposals from related departments for next step planning to ensure adequate usage

statistics. HPC systems are complicated combinations of application software, system software,

processors, co-processors, memory, networks and storage systems, which evolve rapidly with

1Sugon Information Industry Co, Beijing, China
2School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing,

China
3High School Affiliated to Renmin University, Beijing, China
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technology changes. What makes it even more challenging is the fact that the HPC systems are

getting larger and larger, and by consequence induce higher unreliability and complexity. Many

HPC centers have several HPC systems running subsequently or together. Therefore, efficient

operating of HPC systems (either several or large) efficiently conducting usage statistics and

user administration are inevitable key issues. Smooth operation depends on efficient error-free

server operation, stable server room conditions, and stable computing environment, which are

quite important to HPC end-users [18]. Note that the qualified and experienced HPC opera-

tion engineers are not easy to recruit, because HPC operation engineers require cross-discipline

knowledge accumulation and sufficient on-hand experiences.

Most HPC vendors provide operation management and administration software, such as

Open Manage Essentials from Dell [13], HP’s OperiView [14], Tivoli from IBM [16], and Sugon’s

Gridview [24] and so on. Some software solutions can even support grid or cloud environment

operation. Cacti [17] and MRTG [25] are solutions to create RRD-Tool graphs that are usually

used to show bandwidth consumption in network links. Nagios’ main features is the support

for plugins that are used to collect monitoring information from the monitored objects [2].

PARMON [3] and Rvision [8] can monitor specific systems, while GridEye [9] and Ganglia [21]

are able to support grid environments. Zenoss [1], and other operation centric software, have

gained a pretty substantial market share, even being adopted in Bank of America and US Air

Force. All these operation software and monitoring tool-kits compose a scenario where traditional

HPC system operation software is relatively mature.

As for the usage statistics and reporting side of operation, only a few software options

have implemented sufficient solutions. TACC Stats is a continuous monitoring tool for HPC

systems that collects data at the core and processor level for every job executing on a monitored

system [7]. This data can be aggregated at the system, group, user, application, job, node or core

level. TACC Stats also includes capabilities for generating several different reports including a

report giving a resource use profile. Open XDMoD portal provides a rich set of analysis and

charting tools that let users quickly display a wide variety of job accounting metrics over any

desired timeframe [26]. Two additional tools, which provide quality-of-service metrics and job-

level performance data, have been developed and integrated with Open XDMoD to extend its

functionality. On the other hand, some niche software companies have been working on report-

generating service, such as Zenoss [1] and Rizhiyi [27].

Leveraging the advanced characteristics of cloud computing makes it practical to send the

HPC systems’ information, including data regarding CPU, network, memory, storage, and job

etc., to a cloud computing center, and then spread the information (after certain data-mining)

to the persons in charge of reorganization. This is the main idea of EasyOP, a product recently

developed. The benefits of EasyOP include:

• operate several HPC systems at the same time;

• satisfy both remote operating and security demands by only allowing the operating infor-

mation to go out;

• generate live data of computing resource and jobs, triggering notices for hardware alarms,

job starts, job ends, abnormal job exit, and so on;

• automatically generate reports not only for a certain HPC System, but also all the con-

nected systems;

• spread the analyzed data through email, SMS, or Wechat;

• realize the remote monitoring of HPC systems, specially on smart portable devices.
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This article is organized as follows. In Section 1, we explain the used methods and challenges

behind the EasyOP. We also share the principle functions designed for HPC system operation

and administration in Section 2 and 3, respectively. Section 4 exhibits the practical observation

we mined through the data already collected from 50+ HPC systems. Finally, the last Section

contains conclusions and our plans for future work.

1. Method

1.1. Sugon and HPC

Sugon was born from the Institute of Computing Technology of the Chinese Academy of

Sciences (ICT), and was the first (and now largest) supercomputer vendor in China as shown

in Fig. 1. Since 1990, Sugon has been working on supercomputing, producing seven generations

of HPC systems, such as Dawning I and Dawning 1000 to 6000. It has successfully supported

more than 10,000 HPC projects. In 2014, Sugon was successfully listed on the Shanghai Stock

Exchange (Stock code: 603019). Besides the Silicon Cube, Sugon has successfully developed

the Sugon 4000A (#10, Top500 2004) and Nebulae (#2, Top500 2010). Sugon has continuously

dominated the China HPC Top100 for the past 9 times in 10 years and hit the 3rd of Top500

(Nov, 2015) per vendor market share. In 2016, Sugon was appointed as the only company to

develop the prototype of Chinese Exascale HPC by the Ministry of Science and Technology in

China.

Figure 1. Sugon and HPC

1.2. Methodology and Challenges for EasyOP Development

EasyOP cloud service platform collects the operation and administration information of

HPC systems without geographical limitations and sends the information to the Wuxi cloud

computing center. It analyzes the status and performance data of HPC systems, generates live

graphs and reports graphically, and then spreads the reports to end-users through Email, SMS,

and WeChat. Fig. 2 shows the topology strategy of EasyOP. From the perspective of data flow,

the whole process of EasyOP is composed by data collection and acquisition, data transmission,

data storage, data processing, data analysis, data display etc. The architecture design of EasyOP

is shown in Fig. 3.
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Figure 2. The network topology of EasyOP

Figure 3. Architecture design of EasyOP

To develop EasyOP, we had to overcome a series of challenges. The first challenge of EasyOP

R&D comes from data collection and acquisition. EasyOP relies on Gridview, a mature HPC

system management product used for more than ten years. Gridview collects many data and

indicators of HPC system by series of add-ins. The collected data are verified to be correct,

reliable, and in a reasonable format. In order to send this data to the cloud center, we need

to select the appropriate communications and transfer protocol, set up the service platform,

identify the suitable carrier, choose the cloud center, assign a domain name, and so on. The

HTTPS protocol has been adopted to ensure the data security is transferred. A private protocol

was also developed based on HTTPS considering appropriate commonality, which shares the

compatibility of various data format and data package size. The Wuxi cloud computing center

has been chosen as our partner, because the center operates for 5+ years with good users

assessment and can support the internet service from China Mobile, China Unicom, and China

Telecom. The three companies provide 95 % of internet service in China. In testing, we found

that some cities only connect with a certain internet service company. Therefore, we set up two

IP address (China Unicom and China Telecom each) to resolve the EasyOP’s domain. All HPC

systems linked to EasyOP transmit the system information and job information to the Wuxi

cloud computing center automatically. By default, the sending time interval is 1 minute, which
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could be customized for each HPC center. After the data analysis at EasyOP, the results will

be sent to the EasyOP’s public account on Wechat and the public webpage of EasyOP.

Data storage and analysis are the next challenges observed right after data collection and

transfer. In the cloud center, a highly available and high reliable data injestion and storage

solution is indispensable for completely receiving and almost real-time calculating mass data

(currently 300G per day). We have set up the load balancer and realized multi-point concurrent

data processing. The data used in EasyOP can be classified into static configuration data, real-

time status data, and history data, etc. We took different storage solutions for different data.

For instance, the big history data were stored and processed by a Hadoop cluster with good

scalability. In contrast, the real-time status data are stored both in the Hadoop cluster and

cache. As the number of served HPC systems increased, real-time status data grew quickly. To

solve this problem, we designed the storage alarms and conducted data compression for repeated

data, such as indicators’ name and time.

We also paid much attention to function planning and user interface design, especially to

data presentation. This is the core competitive advantage of EasyOP. From user authentication,

rights management, contents composition, workflow planning, to letter style selection, many

technologies and experiences of web development and design have been implemented. To balance

the cost and stability, we borrowed the advantages of web service SOA and EasySOC [4], and

the suggestion from Sheng’s review [29], and then set up the operation platform for EasyOP.

The design of the interface and the inner business process are independent of each other. The

browser compatibility has been included in our design by adopting jQuery and Bootstrap.

EasyOP receives regular updates every two weeks. We have implemented automatic devel-

opment technologies to support code writing, testing, and deploying. Specifications of demands

analysis, prototype design, solution design, coding, code debug, test, and new version release

have been confirmed and put into the practice with the automatic development tools.

2. Operation

EasyOP offers the functions of single-page monitoring, specific cluster monitoring, alarming,

and setting change and control. Using the single-page monitoring, operation engineers are able

to take a quick glance across the live working status for all systems under their command. It

is especially suitable for an HPC center with multiple systems. On the initial page the system

size distribution, system nodes/cores, jobs, major application, busy system ranking can be

quickly summarized. The specific monitoring furthermore displays information of one chosen

HPC system. In addition to the information similar from the single-page monitoring, the specific

monitoring also shows the live updates of job scheduling for each queue. Examples for one-page

monitoring and specific monitoring are shown in Fig. 4.

“Nip in the bud” minimizes the damage on the HPC system and helps to minimize downtime

and ultimately save money. Alarms from EasyOP make this possible. Some alarm examples are

shown in Fig. 5. Various alarms can come from switches, servers (e.g. computing network, CPU

temperature, disk usage, file system, GPU temperature, IPMI network, MIC temperature, MIC

availability, management network, disk availability, server power off, fan abnormal, etc.), RACK

(e.g. management network, node abnormal, fan abnormal), storage, blade cabin (e.g. abnormal

blade communication, abnormal power, management network). Who and how is supposed to

receive this alarms can be set through the setting page. If one wants to change the threshold

value of the alarm, he/she needs to set the value at the level of the Gridview system, meaning
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Figure 4. Examples for one-page monitoring and specific monitoring

one level below with higher privileges. Because the SMS might be charged by telecommunication

companies, users are suggested to take email or smart phone notifications as the primary choice.

Figure 5. Alarm examples in EasyOP

No doubt, Smartphone is the most efficient way to convey the alarms to users. Therefore,

EasyOP developed the alarm function based on WeChat. Users can also watch the basic moni-

toring page and job page via EasyOP official account on WeChat. In the meantime, the EasyOP

service group can directly contact and communicate with users by using WeChat. Snapshots of

using EasyOP on Smartphone are shown in Fig. 6.
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Figure 6. Examples of EasyOP service on a Smartphone

3. Administration

Through EasyOP, we can conduct asset management, job tracing, user management, cus-

tomized statistical analysis, monthly/yearly report, and setting via browser or smart phone. For

the asset management, EasyOP displays the general information, including name, joining time,

node number, node type, switch SN, city address, version of Gridview, key contact person, etc.

within a webpage. Part of the information can be read also on the smart phone.

Figure 7. Tracing jobs at webpage of EasyOP

Jobs on the HPC system can be traced by EasyOP in terms of live job, history job, abnormal

job, and the specification & working status of each node as shown in Fig. 7. When the job quits

out with error, alarms are automatically sent out to users through email, SMS, or smartphone

according to the users’ preference setting.

With EasyOP, administrators are able to evaluate user applications in addition to managing

the users account database. Super administrators can assign the permission on certain HPC

system(s) to certain ordinary administrator(s), if needed.

Reports can cause a lot of problems for many HPC centers. Here, EasyOP offers two types of

reports to free administrators from the tedious work. First, customized report can be created for
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Figure 8. An example of a customized report

monitoring indicators and jobs (29 in total), such as system performance trend, system status,

performance Top10, performance trends, job status, job number, and so on. The performance

is described in terms of CPU loads, memory loads, disk capacity, alarm, energy consumption,

etc. All these reports for job can be classified for each queue or for all queues. An example of a

customized report is shown in Fig. 8.

It is found that more HPC centers want to have monthly or yearly reports. A rich analysis of

job status is always welcomed. Therefore, besides all the information included in the customized

report, EasyOP also delivers reports for the number of jobs, running time, the variation within

months, proportion, top jobs, top submitters, queue distribution, abnormal job analysis, and

the comparison to the year before. Part of the snapshots of the yearly report is shown in Fig. 9.

This monthly or yearly reports are the most popular functions in EasyOP ranked by users.

Figure 9. Part snapshots of the yearly report generated by EasyOP
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4. In Practice

By the end of 2016, EasyOP has successfully served more than 50 HPC systems (seen in

Fig. 10) with almost 10000 nodes and more than 300 regular users and many more random users.

These systems are located in the most HPC active 18 cities in China. Within those systems,

2 % of the systems have more than 1000 nodes and 86 % systems have less than 100 nodes.

Figure 10. 18 cities have HPC systems serving by EasyOP

By the end of 2016, EasyOP has already generated 5000 alarms (as shown in Fig. 11), about

4000 of the alarms were minor, i.e. quickly self-repaired, such as “temperature is higher than

the set threshold”. The number of serious alarms was 500, which mainly lay on three aspects,

unstable IPMI network, CPU overloaded, and storage module broke.

Most of the 50+ systems, EasyOP is serving, are quite busy. The average CPU utilization

ratio is 75.69 % with the peak at 85 %. The average memory utilization ratio is 32.31 % with

the peak at 45 %. As for storage use these are 24.7 % and 38 %, respectively as shown in Fig. 12.

Figure 11. Alarms distribution from Oct. 2015 to Nov. 2016

The job running status shows an interesting drop at Feb. 2016, which is just during the

Spring Festival of China as shown in Fig. 13. This indicates that during the holiday season, less

scientists ran their calculations. Another drop is around Aug. 2016. This is the summer holiday

for most universities and institutions. The waiting jobs always exit and take 15 % of the total

jobs number. As for the jobs running time periods, we found all periods are quite even to each
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Figure 12. The average utilization of HPC systems serving by EasyOP

other, if we classify the period as > 500 hours, > 100 hours, 50–100 hours, 10–50 hours, and

< 10 hours.

Figure 13. Job status on HPC systems serving by EasyOP

Conclusions and Future Work

EasyOP, i.e. Easy Operation, is an on-line cloud service platform developed to facilitate

HPC centers’ operation and administration. From 2015, we identified the technological method,

grouped related engineers, developed the product, and provided service through Wuxi Cloud

Supercomputing Center. In addition to the R&D group, we also have a service group, who can

keep track of alarms and offer support to users in emergency, fix the HPC system problems per

users’ requests, and also compose the trend reports on average status for all HPC centers in

service. Currently, we have been serving 10000 nodes, distributed in 18 Chinese cities.

This is worth a try to grasp cloud ideas and their advantages for HPC centers’ operation

and administration after system deployment. EasyOP could also be taken as a good model for

Software as a Service (SaaS) to expand the internet+ applications. Probably, EasyOP offers a

different way to combine HPC with cloud compare to commonly noticed HPCaaS. However,

please keep in mind that EasyOP has no intention to replace operation engineers or administra-

tion officials. It is just a convenient tool for them.

Next step, we will make efforts on monitoring HPC applications, trouble shooting tracing,

multi-level service centers, and on-line sharing of HPC related resources, including but not
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limited to computing resource, document resource etc. As a blueprint, we hope to emerge and

support the HPC eco-system with both HPC facility enthusiasts and application scientists. The

really big challenge that lays ahead in the development of EasyOP as a monitoring and support

system is the long reaching plan of Sugon to start service for the European market. With its

strategic partner Arctur, Sugon will now start to (re)develop and localize the EasyOP application

to be better applicable to the European market. The specific challenges that are now becoming

apparent are the complete translation of the application in to at least English language, but

maybe also in to some other major European languages, for instance German and French. After

that the subsequent step will be to have an automated deployment system of EasyOP at the

customer solution since we are aware that many different European HPC centres cannot be run

and operated from a central location, but rather require a on-site solution. The first successful

deployment of EasyOP has already been established in Slovenia at the Arctur’s location. It is

now the challenge that faced by Sugon and Arctur to strengthen the foothold in Europe and

develop EasyOP in a reliable and stable solution to support the systems that will serve European

HPC customers.
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Modern supercomputers consist of multi-core processors, and these processors have recently

employed vector instructions, or so-called SIMD instructions, to improve performances. Numeri-

cal simulations need to be vectorized in order to achieve higher performance on these processors.

Various legacy numerical simulation codes that have been utilized for a long time often contain

two versions of source codes: a non-vectorized version and a vectorized version that is optimized

for old vector supercomputers. It is important to clarify which version is better for modern super-

computers in order to achieve higher performance. In this paper, we evaluate the performances of

a legacy fluid dynamics simulation code called FASTEST on modern supercomputers in order to

provide a guidepost for migrating such codes to modern supercomputers. The solver has a non-

vectorized version and a vectorized version, and the latter uses the hyperplane ordering method

for vectorization. For the evaluation, we also implement the red-black ordering method, which is

another way to vectorize the solver. Then, we examine the performance on NEC SX-ACE, SX-

Aurora TSUBASA, Intel Xeon Gold, and Xeon Phi. The results show that the shortest execution

times are with the red-black ordering method on SX-ACE and SX-Aurora TSUBASA, and with

the non-vectorized version on Xeon Gold and Xeon Phi. Therefore, achieving a higher performance

on multiple modern supercomputers potentially requires maintenance of multiple code versions.

We also show that the red-black ordering method is more promising to achieve high performance

on modern supercomputers.

Keywords: performance evaluation, legacy code, numerical fluid dynamics simulation, vector-

ization, hyperplane method, red-black method.

Introduction

Numerical simulations of fluid dynamics can solve many of the important problems the

scientific and engineering field faces today. Simulations for analyzing and understanding more

complex problems require higher performance supercomputers. Modern supercomputers consist

of multi-core processors such as Intel Xeon and Xeon Phi processors to increase the degree of

parallelism. Moreover, modern supercomputers have employed vector instructions to exploit the

loop-level parallelism. Thus, in order to achieve a higher performance on these processors, it

is necessary to vectorize the simulation codes. In this paper, the supercomputers composed of

processors employing vector instructions are referred to as modern vector machines.

Many numerical simulations of fluid dynamics utilize implicit methods for stably solving

large-scale models. However, the implicit methods generally have loop-carried dependencies on

stencil calculations, and these simulations cannot be vectorized in a straightforward way. The

hyperplane ordering method [1] was devised to vectorize them, and until recently this method

was widely used for vectorizing the implicit methods on vector supercomputers. Accordingly,
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some legacy numerical simulation codes (called old vectorized codes) often have two versions of

source codes: non-vectorized version (called naive version) and vectorized version.

As the hyperplane ordering method generally increases memory loads, Soga et al. [2] uti-

lized the red-black ordering method to vectorize the successive over-relaxation method, and

then demonstrated that both of the vector supercomputer SX-9 system and Intel Xeon proces-

sor (Nehalem-EX) can achieve higher performance by using the red-black ordering method in

comparison with the hyperplane ordering method. Therefore, old vectorized codes may require

another vector optimization (i.e., red-black ordering) to achieve a higher performance on modern

vector machines.

In this paper, we evaluate the performances of the naive version, hyperplane, and red-black

ordering methods on modern vector machines, NEC SX-ACE, SX-Aurora TSUBASA (hereafter:

SX-Aurora), Intel Xeon Gold, and Xeon Phi (Knights Landing), so as to clarify which method

achieves higher performance. Here, the finite-volume solver FASTEST [3] serves as basis for our

evaluation.

In Section 1, we present related work regarding optimization and performance evaluations of

FASTEST. Section 2 explains the system architecture of four modern vector machines. Section 3

provides an overview of the FASTEST code. Section 4 presents the results of performance

evaluations. We conclude in Summary section with a brief summary and mention of future

work.

1. Related Work

FASTEST is a legacy fluid dynamics code and was originally developed in the 1990s. Scheit

and Becker [4] optimized the FASTEST-3D code for multi-core processors and evaluated its

performance on an Intel Xeon eight-cores processor (Sandy Bridge) and six-cores processor

(Westmere). They found that the code was mostly memory-bound and that the solver of Stone’s

strongly implicit (SIP) method [5] was the main performance bottleneck. In order to decrease

the memory load, they used single-precision floating-point data, and avoided unnecessary re-

computation of the incomplete LU factorization to solve the SIP method. This improved the

performance by about 40 %. They also utilized non-blocking MPI functions and showed that the

scalability improved, i.e. the number of nodes of the optimized code was 2.8 times more than

that of the non-optimized code when each parallel efficiency was 50 %.

Burger et al. [6] examined optimizations of memory access on the sipsol subroutine and

found, similarly, that the solver of the SIP method was memory intensive and was the most time-

consuming. In particular, the memory access on the vectorized version of the solver was inefficient

due to memory accesses along a plane, called the hyperplane, which is a skew cutting plane across

the three-dimensional space. The solver needs long-interval accesses. They packed data elements

on a three-dimensional array into two two-dimensional arrays in sequential memory access and

showed that the performance becomes double on an AMD Opteron twelve-cores processor.

These studies utilized an Intel Xeon processor and AMD Opteron along with the AVX

instruction set, which enabled the simulation codes to be vectorized. However, there was no

discussion from a view point of vectorization. Therefore, in this paper, we clarify the performance

on the vectorized FASTEST codes on modern vector machines.
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Table 1. Specifications of each machine used in the

evaluation

SX-ACE SX-Aurora Xeon Gold Xeon Phi

Clock freq. (GHz) 1 1.4 2.6 1.3

CPU No. of cores 4 8 16 64

Perf. (Gflop/s) 256 2150 1331 2662

LLC (MB) - 16 22 32

Memory (GB) 64 48 192 96

(MCDRAM) 16

Mem. BW (GB/s) 256 1200 128 102

(MCDRAM) 409

2. Modern Vector Machines

Modern supercomputers consist of many processors and accelerators employing multi-core

technologies. For example, the world’s fastest supercomputer in the top 500 list in June 2018 [7] is

equipped with 2,397,824 cores and achieved the theoretical peak-performance of 200.8 Pflop/s.

Recently, scalar processors have provided support for vector instruction sets such as Stream-

ing SIMD Extensions (SSE), Advanced Vector Extensions (AVX), and AVX-512 instructions.

Thanks to these vector instructions, numerical simulations have been accelerated not only on

vector supercomputers but also on scalar supercomputers. In this section, we give overviews of

modern vector machines, NEC SX-ACE, SX-Aurora TSUBASA, Intel Xeon Gold, and Xeon

Phi. Table 1 lists the hardware configurations of each machine used in the evaluation.

2.1. SX-ACE

SX-ACE is a vector supercomputer launched by NEC in 2013 [8, 9]. Its processor consists

of four vector cores being comprised of a vector processing unit (VPU), Assignable Data Buffer

(ADB) and Miss Status Handling Register (MSHR). The VPU is a key component of SX-ACE.

The vector length of SX-ACE is 256 vector elements, 8 B each, and VPU can execute 256 oper-

ations by a single vector instruction using 16 vector pipelines in 16 clock cycles. The VPU has

two multiply units and two add units, which can be independently operated by different vector

instructions. Thus the core can simultaneously execute 64 operations by four vector instructions

in one clock cycle. As the clock frequency of the core is 1.0 GHz, the single core performance

of SX-ACE is 64 Gflop/s. The total performance of a single processor reaches 256 Gflop/s with

four cores. Each core is connected to a memory control unit (MCU) through the memory cross-

bar network at the memory bandwidth of 256 GB/s, and the bandwidth is shared by the four

cores. Thanks to this architecture, a single core can use the entire bandwidth of 256 GB/s if

the other three cores do not access the memory. Each core is equipped with 1 MB ADB, which

is a software controllable data buffer with a directory that can be accessed by the VPU at the

rate of 256 GB/s. Unlike caches on general scalar processors, ADB is controlled by manually

inserting directives into the source program. Consequently, ADB can retain only reusable data,

which will not be evicted by non-reusable data. MSHR is used to handle outstanding vector

loads on cache misses by eliminating unnecessary vector load accesses. It can reduce redundant

load requests between ADB and the main memory.
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2.2. SX-Aurora TSUBASA

SX-Aurora TSUBASA was released in 2017 [10, 11]. An SX-Aurora TSUBASA system is

comprised of a vector host (VH) and a vector engine (VE). A VE is implemented as a PCI

Express (PCIe) card equipped with a vector processor, i.e., the card is connected to the VH via

PCIe. One VH can control eight VEs. The vector processor consists of eight vector cores, a 16 MB

last-level cache (LLC), and six High Bandwidth Memory 2 (HBM2) memory modules. The SX-

Aurora TSUBASA’s VPU has three fused multiply add (VFMA) units and each VFMA unit

has 32 vector pipelines. The vector length of SX-Aurora TSUBASA is 256, which is the same as

that of SX-ACE. Thus, a VPU can execute 256 operations by a single vector instruction in eight

clock cycles. As the clock frequency of the VE is 1.4 GHz, a single core provides 268.8 Gflop/s

(32 operations in one clock cycle × two floating-point operations (add and multiply) by VFMA

× 3 VFMA units × 1.4 GHz). Hence, a vector processor, which consists of eight cores, achieves

2.15 Tflop/s. The LLC is directly connected to the vector registers of each core, and shared by

eight cores. The six HBM2 memory modules deliver the high memory bandwidth of 1.288 TB/s

in total. This memory architecture enables a high sustained performance especially in executing

memory-intensive applications.

2.3. Intel Xeon Gold

Intel Xeon Gold is marketed as a 6th-generation Intel core. In this paper, we evaluate the

performance of the application using a Xeon Gold 6142 processor, which consists of 16 cores.

On the previous generations of Intel Xeon processor families, cores, last-level cache (LLC),

memory controller, IO controller, and inter-socket Intel QuickPath Interconnect (Intel QPI)

ports are connected together using a ring architecture. In contrast, the 6-th generation Xeon Gold

processor introduces a mesh architecture that encompasses an array of vertical and horizontal

communication paths. This architecture allows traversal from one core to another through the

shortest path. The processor interconnect is Intel Ultra Path Interconnect (Intel UPI) which

replaced the Intel QPI. Modern scalar processors such as the Xeon Gold processor introduce

SIMD instructions. For example, AVX-512 instructions, which are supported by Xeon Gold,

provide 512-bit-wide vector instructions, 32 logical registers, eight mask registers, and indirect

vector access via gathers and scatters. A single AVX-512 instruction can execute 32 single-

precision or 16 double-precision floating-point operations per cycle. AVX-512 instructions are

classified into five categories: foundation instructions (AVX-512F), which are the base 512-bit

extensions; conflict-detection instructions (AVX-512CD); doubleword and quadword instructions

(AVX-512DQ); byte and word instructions (AVX-512BW); and vector length extensions (AVX-

512VL) [12].

2.4. Intel Xeon Phi

We use the second-generation Intel Xeon Phi 7210, so called Knights Landing (KNL), for

performance evaluation. The processor consists of 32 active physical tiles, and each tile is com-

prised of two cores and two vector processing units (VPU) per core. A 1 MB level-2 (L2) cache

which is shared by two cores is also included in each tile. Multi-channel DRAM (MCDRAM)

and double data rate (DDR) memory are used in the Xeon Phi. The total memory capacities

of MCDRAM and DDR are 16 GB and 96 GB, respectively. MCDRAM, which is 3D-stacked

DRAM integrated on-package, provides high bandwidth of 409 GB/s. The two types of memory
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do k=2,nkblk-1

     lkk=(k-1)*nijblk

     do i=2,niblk-1

          lki=ijksblk+lkk+(i-1)*njblk

          do ijk=lki+2,lki+njblk-1

             res(ijk)=ae(ijk)*fi(ijk+njblk)+aw(ijk)*fi(ijk-njblk)+an(ijk)*fi(ijk+1)+as(ijk)*fi(ijk-1) &

                            +at(ijk)*fi(ijk+nijblk)+ab(ijk)*fi(ijk-nijblk)+su(ijk)-ap(ijk)*fi(ijk)

             rhelp(m)=rhelp(m)+abs(res(ijk))

             res(ijk)=(res(ijk)-bb(ijk)*res(ijk-nijblk)-bw(ijk)*res(ijk-njblk)-bs(ijk)*res(ijk-1))*bp(ijk)

end do; end do; end do

Figure 1. Source code of the naive version

provide three memory modes, which are selectable through the BIOS setting at boot time. One

mode is the cache mode in which MCDRAM is used as a cache for the DDR memory. Another

mode is the flat mode, which handles both MCDRAM and DDR in the same way to organize one

memory space. The other is the hybrid mode, in which either 25 % or 50 % of MCDRAM is used

as cache and the rest is used as memory. In this work, the flat mode is selected for the evalua-

tion. As with Xeon Gold, the Xeon Phi’s VPU also provides support for AVX-512 instructions.

Xeon Phi’s AVX-512 instructions fall into four categories. AVX-512F and AVX-512CD are the

same as those in Xeon Gold. Two additional categories – exponential and reciprocal instructions

(AVX-512ER) and prefetch instructions (AVX-PF) – are only provided by Xeon Phi [13].

3. Incompressible Flow Solver, FASTEST

FASTEST is a three-dimensional incompressible flow solver [6]. Several academic developers

have independently enhanced it to simulate various flow phenomena and multi-physics couplings.

In this paper, we use the code developed at Technische Universität Darmstadt, whose codes are

parallelized by using MPI and OpenMP.

The solver is based on the Semi-Implicit method for the Pressure Linked Equations (SIM-

PLE) method [14], which iteratively solves the momentum and pressure-correction equations.

These equations are discretized using a second-order finite-volume scheme on a block-structured

grid. The resulting linear equation system is solved using the SIP method, which is based on an

incomplete LU factorization. The subroutine containing the SIP method (called sipsol subrou-

tine) is the main performance bottleneck and holds two different implementations [6]. The first,

called the naive version, is shown in Fig. 1. This code calculates the residual calculations after

the LU decomposition in the sipsol subroutine. Each data element in the figure is saved in a

linearized one-dimensional array. All elements are calculated along the three coordinate axes via

a nested loop using variables lkk and lki. The variable lkk indicates the start points of k. Simi-

larly, the variable lki also indicates the start points of i. Here, a loop-carried dependency exists

between the left-hand array res(ijk) and the right-hand arrays res(ijk-nijblk), res(ijk-njblk), and

res(ijk-1) in the second line from the bottom in Fig. 1. Hence, this do loop cannot be vectorized.

The second one, called the HP version, utilizes the hyperplane ordering method. The first do

loop in Fig. 2 converts a triple-nested do loop in Fig. 1 into a single do loop. The second nested

do loop is a loop of the hyperplane. Array ijkdia constructs planes fulfilling the condition i + j +
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do ijk=ijksblk+nijblk+njblk+2,ijksblk+(nkblk-2)*nijblk+njblk*(niblk-2)+njblk-1

   res(ijk)=ae(ijk)*fi(ijk+njblk)+aw(ijk)*fi(ijk-njblk)+an(ijk)*fi(ijk+1)+as(ijk)*fi(ijk-1) &

           +at(ijk)*fi(ijk+nijblk)+ab(ijk)*fi(ijk-nijblk)+su(ijk)-ap(ijk)*fi(ijk)

   rhelp(m)=rhelp(m)+abs(res(ijk))

end do

do ndia=1,numdia(ngr,m)

   do npoi=npsta(ndia,ngr,m)+1,npsta(ndia+1,ngr,m)

   ijk=ijkdia(npoi)

     res(ijk)=(res(ijk)-bb(npoi)*res(ijk-nijblk)-bw(npoi)*res(ijk-njblk)-bs(npoi)*res(ijk-1))*bp(npoi)

end do; end do

Figure 2. Source code of the HP version

i
j

k

Figure 3. Diagram of a hyperplane

k = constant. The plane is a skew cutting plane across the three-dimensional space. The orange

plane in Fig. 3 is one of these hyperplanes that consist of the same color across the grid in three-

dimensional space. Then, the inner do loop calculates the data elements on the planes. Since

this calculation does not have any loop-carried dependency, the code of the sipsol subroutine

is then vectorized. However, the hyperplane ordering method generally increases the number of

memory loads. This is because the memory accesses of array res(ijk) are stride accesses due to

access along the planes, and they have a long access latency. Moreover, the length of loop npoi

is a variable and the efficiency of vectorized calculation becomes low when npoi is small.

We implement the red-black ordering method (called the RB version), the memory loads of

which are lower than those of the hyperplane ordering method, as shown in Fig. 4. However, the

number of iterations required for convergence is generally increased on the red-black ordering

method. Thus there is a performance trade-off with increasing the number of iterations. The do

loop in the second line from the top in Fig. 4 is a switch of Red and Black executions using the

if statement in the fourth line from the top in Fig. 4. Array itbl is a mask table to skip elements

with the color that are not calculated at each iteration, and then the loop is vectorized. This

implementation also increases the number of operations compared to that of the naive version

because the number of iterations generally increases and inserting loop n2 doubles the total

iteration count within the loop nest. Although the if statement is used to skip the computation

in the loop body, SX-ACE executes the computation of both true and false and then the results

are discarded by the so-called masking capability [2]. The benefit of this implementation is to
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do m2=ijkgit(ngr,m)+1,ijkgit(ngr,m)+njblk*niblk*nkblk,iblk

  do n2=1,2

   do ijk=m2,min(m2+iblk-1,ijkgit(ngr,m)+njblk*niblk*nkblk)

      if(itbl(ijk-ijkgit(ngr,m),1,1,n2,m).ne.1) cycle

      res(ijk)=ae(ijk)*fi(ijk+njblk)+aw(ijk)*fi(ijk-njblk)+an(ijk)*fi(ijk+1)+as(ijk)*fi(ijk-1) &

              +at(ijk)*fi(ijk+nijblk)+ab(ijk)*fi(ijk-nijblk)+su(ijk)-ap(ijk)*fi(ijk)

      rhelp(m)=rhelp(m)+abs(res(ijk))

      res(ijk)=(res(ijk)-bb(ijk)*res(ijk-nijblk)-bw(ijk)*res(ijk-njblk)-bs(ijk)*res(ijk+rb_jm1))*bp(ijk)

end do; end do; end do

Figure 4. Source code of the RB version

increase the length of the innermost loop. This code also uses cache blocking to improve the

performance of memory accesses. This is possible because the data loaded at iteration n2=1

(Red) can be reused at iteration n2=2 (Black). Here, the variable iblk is the size of a cache

block.

4. Performance Evaluation

4.1. Experimental Setup

The performance of FASTEST is evaluated by using four modern vector machines: NEC

SX-ACE, SX-Aurora TSUBASA, Intel Xeon Gold, and Xeon Phi. The evaluated codes are the

naive version, the HP version, and the RB version, which are parallelized with OpenMP. Here,

we evaluate performances of a single processor on each machine because the performance per

processor is a key factor to achieve high performance on a large-scale parallel simulation. Then,

since modern HPC applications are usually written with considering the cache memory, we use

the model size of (32×32×53) per processor so that the data potentially fit in the cache memory

of each processor. Here, the maximum degree of parallelism using OpenMP is 16 determined

from the model size. Thus, the code is executed on four cores of SX-ACE, eight cores of SX-

Aurora, 16 cores of Xeon Gold, and 16 cores of Xeon Phi. The memory mode of Xeon Phi is set

to the flat mode.

Table 2 shows the versions and options of each machine’s Fortran compiler. The options

are high-level optimizations and inlining functions and subroutines. The codes are parallelized

by using OpenMP. Table 3 lists the compiler directives for each code on each machine. The

sipsol subroutine is vectorized by using the compiler directives: nodep, ivdep, and simd. SX-

ACE and SX-Aurora use the optimization directives: vovertake, gthreorder, and gather reorder,

which optimize the operation sequences of memory accesses. Here, the codes are executed with

double precision floating-point operations.

4.2. Experimental Results and Discussion

FASTEST iteratively computes the momentum and pressure-correction equations from ini-

tial values of pressure and velocity at each point to their converged values. The number of

iterations varies with optimized and vectorized methods. We measure the execution time of the

sipsol subroutine per iteration, and Figure 5 shows the performance ratios of HP and RB ver-
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Table 2. Versions and options of each compiler

Machine Versions Options

SX-ACE FORTRAN90/SX Rev.534 -Popenmp -Chopt -pi

SX-Aurora NEC Fortran 1.5.1 -fopenmp -O3 -msched-block

-finline-functions

Xeon Gold Intel Fortran 18.0.2.199 -qopenmp -O3 -xCORE-AVX512

-ipo -no-prec-div -fp-model fast=2

Xeon Phi Intel Fortran 18.0.2.199 -qopenmp -O3 -xMIC-AVX512

-ipo -no-prec-div -fp-model fast=2

Table 3. Compiler directives of each code

Machine Naive HP RB

SX-ACE - nodep, vovertake, gthreorder nodep, vovertake

SX-Aurora - ivdep, vovertake, gather reorder ivdep, vovertake

Xeon Gold - ivdep, simd ivdep, simd

Xeon Phi - ivdep, simd ivdep, simd

sions to the naive version (the performance ratio = the execution time of naive version ÷ the

execution time of HP (RB) version). Here, the execution times of the naive version are 0.156

seconds on SX-ACE, 0.053 seconds on SX-Aurora TSUBASA, 0.017 seconds on Xeon Gold,

and 0.039 seconds on Xeon Phi. HP(non-vectorized) and RB(non-vectorized) indicate that the

codes are not vectorized, and hence the performance differences between HP/RB and HP(non-

vectorized)/RB(non-vectorized) indicate the performance gain by vectorization in Xeon Gold

and Xeon Phi.

1.00 

5.20 

14.18 

1.00 

5.89 

13.25 

1.00 0.74 0.74 0.50 
0.89 1.00 

0.52 0.53 0.35 

1.63 

0

5

10

15

N
a

ïv
e

H
P

R
B

N
a

ïv
e

H
P

R
B

N
a

ïv
e

H
P

 (
n

o
n

-

v
e

ct
o

ri
ze

d
)

H
P

R
B

 (
n

o
n

-

v
e

ct
o

ri
ze

d
)

R
B

N
a

ïv
e

H
P

 (
n

o
n

-

v
e

ct
o

ri
ze

d
)

H
P

R
B

 (
n

o
n

-

v
e

ct
o

ri
ze

d
)

R
B

SX-ACE SX-Aurora

TSUBASA

Xeon Gold Xeon Phi

P
e

rf
o

rm
a

n
ce

 r
a

!
o

 (
N

a
iv

e
 =

 1
)

Figure 5. Performance ratio of HP and RB versions to naive version of the sipsol subroutine

with an iteration on each machine
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SX-ACE and SX-Aurora have the same performance characteristics. The vectorized codes,

HP version and RB version, can achieve a higher performance than the naive version. In the

case of SX-Aurora, the HP and RB versions are 5.89 and 13.25 times faster than the naive

version, respectively. In other words, SX-ACE and SX-Aurora cannot achieve high performance

unless codes are vectorized. Meanwhile, although both the HP and RB versions are vectorized,

the performances of the HP version on SX-ACE and SX-Aurora are lower than that of the

RB version, respectively. This is because the HP version needs indirect memory access and its

memory access latency is longer than that of 2-stride memory access used in the RB version.

Moreover, the efficiency of vectorized calculations becomes lower as the length of npoi is small.

Table 4 lists the ratios of stall time of the processor to total execution time on SX-ACE,

SX-Aurora and Xeon Gold. Here, the execution statistics of all the versions on Xeon Phi and

the naive version on SX-ACE and SX-Aurora cannot be measured by performance tools. This

table shows that the stall time of the HP version is larger than that of the others, and then the

HP version is inefficient on these machines.

Table 4. Ratio of stall time of processor

on SX-ACE and Xeon Gold

Naive HP RB

SX-ACE - 76.6 % 56.5 %

SX-Aurora - 72.7 % 67.9 %

Xeon Gold 11.7 % 63.3 % 31.4 %

In Xeon Gold and Xeon Phi, vectorization does not improve the performance of the HP

version. The execution time is almost unchanged by enabling vectorization. In contrast, the

vectorized RB version is 1.78 and 4.66 times faster than its non-vectorized version in Xeon Gold

and Xeon Phi, respectively. Especially, the vectorized RB version on Xeon Phi is faster than the

naive version. Meanwhile, as the clock frequency of Xeon Gold decreases, the performance gain

of Xeon Gold by the vectorization is not high. However, this demonstrates that vectorization is

important to achieve high performance even on Xeon Gold and Xeon Phi processors.

Table 5. Number of iterations on each method

Naive HP RB

Number of iterations 10,004 10,004 17,516

Table 5 shows the number of iterations required by each method for convergence. The RB

version requires 1.8 times more iterations than the naive and HP versions. The total execu-

tion times of the sipsol subroutine increase. Figure 6 shows the performance ratio of HP and

RB versions to naive version (the performance ratio = the execution time of naive version ÷
the execution time of HP (RB) version). Here, the execution times of the naive version are

1565.5 seconds on SX-ACE, 530.8 seconds on SX-Aurora TSUBASA, 171.4 seconds on Xeon

Gold, and 386.0 seconds on Xeon Phi.
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Figure 6. Performance ratio of HP and RB versions to naive version of the sipsol subroutine

with the total execution times on each machine

In SX-ACE and SX-Aurora, the RB version can achieve the shortest execution time, in spite

of an increase in the number of iterations. These results indicate that the red-black method is

suitable to vectorize FASTET for SX-ACE and SX-Aurora. On the other hand, the naive version

achieves the shortest execution time on Xeon Gold and Xeon Phi. These results show that, in

case of the RB version, there is a trade-off between the performance degradation by needing

more iterations and the performance improvement by using vectorization. Therefore, achieving

a higher performance on multiple modern vector machines will require maintenance of multiple

code versions. As a result, it will be more important to consider how to manage the code

complexity in a systematic way in the future. We have been working on this problem [15, 16],

and will further discuss such a methodology in our future work.

Summary

Processors of modern supercomputers have employed vector instructions to exploit loop-

level parallelism efficiently, and the vector lengths are increasing, resulting in increasing the

importance of vectorization to fully exploit the system performance. Various legacy numerical

simulation codes have been vectorized considering old vector machines in mind, and hence the

simulations have two different code versions of their kernel codes: non-vectorized version and

vectorized version. In this paper, we evaluate the performances of such a legacy code called

FASTEST, which is vectorized by the hyperplane and red-black ordering methods, using four

modern vector machines (SX-ACE, SX-Aurora, Xeon Gold, and Xeon Phi) in order to provide

which version is suitable for the modern vector machines.

Experimental results show that the red-black ordering method can achieve the shortest exe-

cution time on SX-ACE and SX-Aurora, while the naive version achieves the shortest execution

time on Xeon Gold and Xeon Phi. This demonstrates that achieving higher performance on

multiple modern vector machines will require maintenance of multiple code versions, namely,

the naive version and the RB version. Overall, these results indicate that the red-black ordering

method has the potential to achieve high performance on the modern vector machine, and that

vectorization is a key optimization method of the modern vector machine.
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In this work, we showed that the maintenance of multiple code versions is required to achieve

higher performance on multiple modern vector machines. We will pursue our methodology of

maintenance of multiple code versions. Moreover, since the number of cores on modern machines

has increased year by year, our future work will investigate performance characteristics of thread-

level parallelism such as OpenMP and OpenACC in order to achieve high performance on legacy

numerical simulation codes.
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Cloud computing systems have become widely used for Big Data processing, providing access
to a wide variety of computing resources and a greater distribution between multi-clouds. This
trend has been strengthened by the rapid development of the Internet of Things (IoT) concept.
Virtualization via virtual machines and containers is a traditional way of organization of cloud
computing infrastructure. Containerization technology provides a lightweight virtual runtime en-
vironment. In addition to the advantages of traditional virtual machines in terms of size and
flexibility, containers are particularly important for integration tasks for PaaS solutions, such as
application packaging and service orchestration. In this paper, we overview the current state-of-
the-art of virtualization and containerization approaches and technologies in the context of Big
Data tasks solution. We present the results of studies which compare the efficiency of containeriza-
tion and virtualization technologies to solve Big Data problems. We also analyze containerized and
virtualized services collaboration solutions to support automation of the deployment and execution
of Big Data applications in the cloud infrastructure.

Keywords: Big Data, visualization, containerization, cloud computing, Xen, KVM, Docker,
orchestration.

Introduction

Cloud computing systems have become widely used for implementation of Big Data process-
ing tasks. Clouds rely on virtualization technology to achieve the elasticity of shared computing
resources.

Virtual Machines (VMs) underlie the cloud computing infrastructure layer, providing vir-
tual operating systems. Virtualization is a combination of hardware and software solutions that
support the creation and operation of virtual versions of devices or resources, such as servers,
storage devices, networks, or operating systems. The virtualization platform allows one to divide
the physically unified hardware system into a logical set of independent computing resources [55].
Virtualization of computing resources allowed to solve the problem of increasing the efficiency
of scheduling in cluster computing systems, by presenting their resources in the format of in-
dependent virtual machines [6]. Virtual machines provide isolation of the file system, memory,
network connections, and system information [92]. But the use of virtual machines is associated
with large overheads [38, 101], which can significantly limit the performance of I/O systems and
efficiency of the computational resources.

The containerization technology has significantly advanced recently. It is based on the con-
cept of limiting the amount of resources that are provided to an application by the computational
node. The container provides a runtime environment for the application at the operating system
level [13], reducing the overhead compared to a virtual machine.

Virtual machines and containers are virtualization technologies, but they differ in goals and
functions. Containers can be viewed as a flexible tool for packaging, delivering and orchestrating
both applications and software infrastructure services. They allow you to focus on a portable way
to increase compatibility [73], while still using the principles of operating system virtualization.
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On the other hand, virtual machines are associated with the distribution and management of
computational infrastructure.

In this paper we would provide an overview of the current state of virtualization and con-
tainerization approaches and technologies in the context of Big Data tasks solution. The rest
of the paper is organized as follows. In Section 1 we would analyze the basics of virtualiza-
tion technologies, together with the brief overview of most popular open-source virtualization
solutions: Xen and KVM hypervisors. Section 2 is devoted to the overview of containerization
technologies. We would analyze the key features of containerization approach and take a look at
the architecture of the most popular containerization solutions and frameworks, such as Docker.
In the Section 3 we would overview the main results on the comparison of containerization and
virtualization solutions. Section 4 would be devoted to the overview of container orchestration
technologies. In the last Section, we would provide conclusions on the performed analysis.

1. Virtualization Technologies

Virtualization was developed for abstracting the hardware and system resources to provide
simultaneous execution of several operating systems on a single hardware platform [6].

Figure 1. The architecture of the virtual machine hypervisor (based on [9])

Virtual Machine Hypervisor technology, also called Virtual Machine Monitor, has a long
history since the 1960s and was widely used before the era of cloud computing. As shown in Fig. 1,
a virtual machine hypervisor (for example, Xen, KVM, VMware, etc.) is software that provides a
virtual platform, so several guest operating systems can run on one system server. The hypervisor
runs as a middleware between the virtual machine and the OS. Each virtual machine has its own
guest OS.

There are several approaches to implementing a virtual machine hypervisor. So, full virtu-
alization [98] is aimed at hardware emulation. In this case, a non-modified OS is used inside a
virtual machine, and the hypervisor controls the execution of privileged operations of the guest
OS. Paravirtualization requires modifications of the virtualized OS and coordination of opera-
tions between the virtual OS and the hypervisor [98]. Usage of paravirtualization improves the
performance with respect to full virtualization by performing most of the operations in the host
OS.
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Virtual instances use isolated, large files on their host as guest images that store the file
system and run the virtual machine as one large process on the host. This approach leads to
some performance degradation. A complete image of a guest OS, together with the binary files and
libraries needed for applications, are required for each virtual machine. This leads to significant
overhead on the required disk space, and also leads to additional RAM requirements when
executing virtual machines on the server. It also causes performance issues, such as slow image
startup. In addition, multiple owner clouds require sharing of disk space and processor cycles. In
a virtualized environment, this should be managed in such a way that the underlying platform
and infrastructure can be shared in a safe but compatible way [72].

1.1. Xen Hypervisor

Created by researchers at Cambridge University [6], Xen is a VM hypervisor that is operating
on a physical machine in the most privileged processor mode compared to any other software.
The Xen hypervisor is responsible for memory management, processor resources scheduling and
running a privileged domain of a physical machine (referred to as Dom0 in Xen terminology),
which has direct access to hardware devices.

Dom0 domain starts at the launch of a physical machine and is usually implemented as a
modified Linux, NetBSD, or Solaris OS [102]. One can manage the hypervisor and run other
non-privileged guest domains (DomU) from this domain. Xen implements paravirtualization
approach, so the guest OS in the DomU domain should be modified to access hardware through
the Dom0 using paravirtualized drivers and an interdomain channel [69]. Figure 2 shows the
operation of the Xen hypervisor and its domains.

Figure 2. Xen hypervisor architecture (based on [69])
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1.2. KVM Hypervisor

Kernel-based Virtual Machine (KVM) is a virtualization infrastructure integrated into the
Linux kernel. This hypervisor was first developed by Qumranet company in 2006 [42]. Instead
of creating a hypervisor from scratch, the Linux kernel was used as the KVM basis. It relies on
hardware-assisted virtualization support by the host processors. KVM includes a loadable kernel
module (kvm.ko), providing the basic virtualization infrastructure and a processor module (either
kvm-intel.ko, or kvm-amd.ko).

In KVM virtualization model, virtual machines are created by opening a /dev/kvm device
node. KVM uses a slightly modified QEMU emulator (called qemu-kvm) to create virtual machine
instances. Each guest virtual machine is implemented as a standart Linux process, managed by
a standard Linux scheduler. In addition to the two standard execution modes (kernel mode and
user mode), KVM adds a third mode: guest mode, which has its own kernel and user modes
that the hypervisor does not control. The modified QEMU emulator also handles I/O hardware
emulation, as shown in Fig. 3.

Figure 3. KVM hypervisor architecture (based on [69])

2. Containerization Technologies

Unlike full virtualization and paravirtualization, the OS-level virtualization approach does
not require a hypervisor. It implies that the OS is changed to ensure that several OS copies are
able to be executed on the same machine [98]. Linux OS-based virtualization is called container-
based virtualization [101].

A container is a packaged, standalone, deployable set of application components, which
may also include middleware and business logic as binary files and libraries for running applica-
tions [85] (see Fig. 4). Containers are the building blocks of OS-level virtualization that allows
isolated virtual environments without the need of hypervisors. These virtual structures are in-
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dependent of each other, but share the same underlying operating system (i.e., the kernel and
device drivers) [17].

Docker today is one of the most well-known platforms for organizing solutions based on
container technologies [2]. Such platforms turn containers into a convenient way to package and
deliver applications [13].

Figure 4. Container-based virtualization architecture (based on [31])

2.1. Namespaces and Cgroups

In modern Linux distributions, the LXC virtualization project (Linux containers) implements
kernel mechanisms such as namespaces and control groups (cgroups) to isolate processes on a
shared operating system [85].

Namespace isolation allows you to separate process groups. This ensures that they cannot
see resources in other groups. Different namespaces are used to isolate processes, network inter-
faces, access interposes communication, mount points, or to isolate kernel identifiers and version
identifiers.

On the other hand, cgroups control and restrict access to resources for groups of processes
by enforcing CPU resource limits, accounting and isolation, for example, limiting the memory
available to a specific container. This provides isolation between applications on the host. It also
limits containers in multi-tenant host environments. Control groups allow containers to share
available hardware resources and establish restrictions as needed.
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At the same time, the authors of [104] explore the performance of the cgroups technology
using the example of LinkedIn, where this technology is used as the basis for management of the
distributed computing resources. They indicate the following key technology limitations:

1) memory is not reserved for cgroups (as opposed to virtual machines);
2) both the shared memory and the cache pages are in the common memory pool, while the

former can displace the latter;
3) the OS can take over a page cache from any of the cgroups.

2.2. Key Containerization Technologies

The simplicity of tools and ease of creation and management of containerized environment
made Docker a popular open source project. Docker containers can run only Linux processes,
but one can use Linux, Windows or MacOS machines as a host. Docker containers provided
greater efficiency in software development, but orchestration tools such as Docker Swarm [55] or
Kubernetes [90] are required for enterprise use.

Java containers such as Jetty [88], Tomcat [4], Wildfly [76], and Spring Boot [71] are exam-
ples of container technologies that provide usage of standalone Java applications. The result of
such systems are containerized Java applications that can run without the need for an external
Java environment.

LXD is a container platform from Canonical [16]. LXD containers are created and operated
using the same tools as traditional virtual machines, but they can provide high performance at
runtime that matches the performance of container solutions. Unlike the Docker, LXD container
management does not require additional orchestration systems, such as Swarm or Kubernetes.
LXD is much closer to the full operating environment of the virtual machine hypervisor, including
the virtualization of network interfaces and data storage interfaces. LXD containers in this case
are much closer to full-featured virtual machines. For example, it is possible to run multiple
Docker containers within LXD [84].

OpenVZ (Open Virtuozzo) [64] is one of the oldest Linux container platforms still in use
today, with roots dating back to 2005. Before OpenVZ the Linux kernel had no means to create
any sort of containerization, apart from the chroot() functionality that allowed a process to be
run using a different view of the filesystem. LXC itself is a spiritual successor of OpenVZ. While
OpenVZ is still around, today LXC is the tool of choice for many who who wish to run a full
operating system in a container [70].

Rkt [75] is a container technology introduced in the CoreOS platform to address security
vulnerabilities in earlier versions of Docker. In 2014, CoreOS published the App Container (appc)
specification to stimulate innovation in container space, which spawned a number of open source
projects. It is necessary to clarify that Docker’s early vulnerabilities have already been resolved,
and Docker v1.11 implements the Open Container Initiative (OCI) standard [89] supported by
RedHat, Google, AWS, VMware and CoreOS, thus ensuring compatibility with rkt.

Another consequence of the implementation of the Open Container Initiative standard was
the CRI-O project [21], launched in 2016 with the participation of such companies as Red Hat,
Intel, SUSE, Hyper and IBM. CRI-O allows users to run and manage any containers that are
compatible with OCI directly from the Kubernetes platform without additional code or tools.
From the end user’s point of view, both the Docker and CRI-O implement the Kubernetes
Container Runtime Interface (CRI) and implement the same functionality (loading and launch-
ing containers). CRI was built mainly to ensure that the Kubernetes platform was not heavily
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dependent on Docker. Before this standard was adopted, Kubernetes was developed based on
assumptions specific to the docker architecture, including such variables as paths to volumes, the
internal architecture of the container, containers images storage specification, etc.

Windows Containers [54] technology was introduced along with the launch of Windows
Server 2016. Microsoft has made significant improvements to the architecture of the Windows
operating system to ensure the operation of container technologies, working closely with Docker
to ensure the seamless operation of Docker container management tools in the Microsoft infras-
tructure. Currently, a number of works are underway to optimize the size of container images.
Their work is provided in Windows 10, Server 2019 and Microsoft Azure cloud platform.

While discussing virtualization and containerization technologies we should mention the
Unikernels approach. Unikernels are single-purpose appliances that are compile-time specialised
into standalone kernels, sealed against modification when deployed to a cloud platform and act as
separate software components [48]. The final application consists of a set of executable unikernels
working together as a distributed system [49]. Unikernels provide optimization of the resources
required by the container. One can identify the dependencies of the runtime of the application
and package them into a single image, providing only the functionality of the OS that is necessary
at the application runtime. Unlike Docker containers, unikernels can load and run completely
independently, without a host operating system or external libraries, while Docker relies on
external resources and the host environment to run. Unikernels can reduce complexity, improve
portability, and reduce the attack surface of applications, but they require new development and
deployment tools that are still not well developed.

2.3. Docker

Docker is a container solution based on LXC approach [22]. Docker images are made up of
file systems arranged in layers, one above the other, like a Linux virtualization stack using LXC
mechanisms. A container daemon, called dockerd, starts containers as application processes. It
plays a key role as the root of the user process tree.

Figure 5. Docker deployment architecture on a node
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Docker provides a complete infrastructure for containerization, including:

1. Docker Engine (kernel) consisting of a daemon, a REST API and a client.
2. Orchestration mechanisms: Docker Machine, Docker Swarm, Docker Compose.
3. Installation packages for desktop and cloud platforms: Linux, MacOS, Windows, Microsoft

Azure, Amazon Web Services.
4. Online services: Docker HUB, CS Engine, Trusted Registry, Docker Cloud, Docker Store.

The Docker system deployed on the node is shown in Fig. 5, where:
• Docker Daemon is a management system, that manages containers, images, volumes, vir-

tual networks.
• C1..C2 are executable Docker containers, representing one or several processes running

in an isolated environment. This environment provides no access to external processes,
has its own root file system, network configuration (including hostname, IP-address, etc.).
A container is executed within the framework of limitations on computational, memory,
network and other I/O resources.

• I1...I3 are images of Docker containers: read-only file system presets, containing the OS
files, applications, all the necessary libraries and dependencies, except for the OS kernel
itself. A container image is a way to distribute applications. Container images have a layered
structure consisting of several images built on top of the base image. A typical division of
an image of a container into layers may include from top to bottom: a modifiable container
image for applications, basic images (for example, Apache and Emacs), a Linux image (for
example, Ubuntu), and a rootfs kernel image (see Fig. 6).

• V1...V3 are virtual volumes that provide long-term storage of data outside the container.
• Docker Network — a virtual network infrastructure that provides communication between

containers, containers and the host, containers and the outside world.
• REST API is an API for Docker Daemon management.
• Docker Client is a Command Line Interface that provides management for the Docker

infrastructure.
The Docker platform is gradually gaining popularity in the field of scientific problems asso-

ciated with the Big Data processing. This is due to the fact that the Docker platform provides a
single mechanism for containerized applications execution on the basis of a distributed compu-
tational environment, while simultaneously providing the necessary interfaces for network ports,
volumes, etc., allowing different system users to work within the standardized computing envi-
ronment [30].

2.4. NVIDIA Container Runtime

Big Data processing tasks often involve GPU resources in their solution for implementing
parallel computing. In this regard, a number of attempts have been made to introduce virtualized
graphics processors into virtual machines, including such approaches as GViM [35], gVirtuS [34]
and vCUDA [81]. These approaches are based on creating copies of the CUDA API for virtu-
alizing graphics processors and providing them to virtual machines. As a part of the rCUDA
solution [26], the technology of remote graphics processors usage was proposed. However, these
methods have their drawbacks, as they degrade the performance of the graphics processor dur-
ing the virtualization process [41]. Moreover, these methods provide only a part of the CUDA
API [40].
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Figure 6. Container image structure in the Docker system (based on [68])

In 2016 NVIDIA Corporation proposed a solution called NVIDIA Docker [57], which differs
from the approaches described above. NVIDIA Docker is a utility that makes it easy to use an
NVIDIA GPU inside a Docker container. NVIDIA Docker contains two executable programs:
nvidia-docker and nvidia-docker-plugin.

nvidia-docker is a shell on top of the Docker [59], which intercepts user commands to
use the nvidia-docker command instead of the original docker command. The role of this
command is to interpret and modify user commands with their subsequent transfer to the Docker
command interface. nvidia-docker captures only the run and create commands, the rest of the
commands are translated directly to the Docker. nvidia-docker checks whether the launched
image uses the CUDA API using com.nvidia.volumes.needed and com.nvidia.cuda.version
Docker labels, which specify the required CUDA versions. nvidia-docker uses data from these
labels to determine the number and location of installed graphics devices and links them using
the --device option. In addition, it links the correct versions of the GPU drivers using the
--volume option, which is directly related to the nvidia-docker-plugin.

The nvidia-docker-plugin is an add-on designed to facilitate the deployment of containers
that support GPUs. It acts as a daemon, identifies driver files, GPU devices, and responds to
volume mount requests from the Docker daemon [60]. The purpose of the nvidia-docker-plugin
is to check the existence of the NVIDIA GPU and CUDA API, as well as to provide the necessary
versions of the binaries and libraries to the running container. The version of the CUDA API
requested by the nvidia-docker command is provided via the nvidia-docker-plugin in the
volume with the corresponding name. When the container completes its work, the driver volume
shuts down.

The evaluation of the NVIDIA Docker approach shows that the performance of containerized
GPU-accelerated applications is no different from the performance of the same applications
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using GPUs outside the container [33]. NVIDIA Docker is successfully used to solve problems in
machine learning, implemented on top of containerized infrastructures [46].

This approach is developed further into the NVIDIA Container Runtime [58] solution, which
removes some of the limitations of the nvidia-docker project, including:

• support for the most common container technologies, such as LXC and CRI-O [21];
• compatibility with docker ecosystem tools, such as compose, for management of applica-

tions that use GPUs and consist of several containers;
• support of GPUs as resources in Kubernetes and Swarm container orchestration systems.

3. Comparison of Containerization and Virtualization Solutions

The virtual machine hypervisor emulates the hardware on top of which guest operating
systems are running. Containers provide virtualization solutions at the level of the operating
system: each guest OS uses the same kernel (and in some cases other parts of the OS) as the
host. Such difference gives an advantage to containers approach: they are smaller and more
compact than hypervisor guest environments since they have much more in common with the
host.

In this section, we study the opportunities offered by containerization and virtualization so-
lutions and present the results which compare the efficiency of containerization and virtualization
technologies to solve the practical problems.

3.1. Virtual Machines and Containers Comparison

Authors of [9, 25, 68] provide various methodologies for comparing containerization and vir-
tualization technologies. General characteristics and approaches of comparing these technologies
are presented in Tab. 1.

The following advantages have led to the widespread use of virtualization via containers [31]:
1. Hardware costs. Virtualization via containers decreases hardware costs by enabling con-

solidation. It enables concurrent software to take advantage of the true concurrency provided
by a multicore hardware architecture.

2. Reliability and robustness. The modularity and isolation provided by VMs improve reli-
ability, robustness, and operational availability by localizing the impact of defects to a single
VM and enabling software failover and recovery.

3. Scalability. A single container engine can efficiently manage large numbers of containers,
enabling additional containers to be created as needed.

4. Spatial isolation. Containers support lightweight spatial isolation by providing each con-
tainer with its own resources (e.g., core processing unit, memory, and network access) and
container-specific namespaces.

5. Storage. Compared with virtual machines, containers are lightweight with regard to storage
size. The applications within containers share both binaries and libraries.

6. Performance. Compared with virtual machines, containers increase performance (through-
put) because they do not emulate the underlying hardware. Note that this advantage is
lost if containers are hosted on virtual machines (i.e., when using a hybrid virtualization
architecture).

7. Real-time applications. Containers provide more consistent timing than virtual machines,
although this advantage is lost when using hybrid virtualization.
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Table 1. Comparison of virtual machines and containers (based on [9, 25, 68])

Characteristic Virtual machines Containers

Products VMware, Xen, KVM, ... Docker, rkt, LCX,OpenVZ, . . .

Guest OS

Each virtual machine is executed
on the basis of its own OS loaded
into its own block of RAM within
the framework of virtual hard-
ware.

All containers are executed on
the basis of the OS kernel of the
host machine.

Process management Virtual machine hypervisor. Namespaces, cgroups.

Isolation
Direct sharing of files or system
libraries among guest and host
OS is impossible.

Catalogues can be transparently
shared across multiple contain-
ers.

Image size
Large image, because it includes
the entire image of the base OS
and all related libraries.

Smaller image size, since a com-
mon OS kernel image is used.

Start-up time
Starting a virtual machine takes
a few minutes.

Start-up time can be a few sec-
onds.

Process of loading
and execution

After the standard boot process
on the host, each virtual machine
is represented as a separate pro-
cess.

Applications can be started in
containers directly or via an ini-
tial daemon known to the con-
tainer, for example dockerd. They
appear as normal processes on
the host.

8. Continuous integration. Containers support continuous development processes by en-
abling the integration of increments of container-hosted functionality.

9. Portability. Containers support portability from development to production environments,
especially for cloud-based applications.
Although there are some disadvantages of containerization that should be addressed, espe-

cially in such cases as shared resources usage, weaker isolation, and security issues, comparing
to virtual machines. Researchers and developers must address challenges and associated risks in
the following areas when using containers:

1. Shared resources. Applications within containers share many resources including container
engine, OS kernel, the host operating system, processor-internal resources (L3 cache, system
bus, memory controller, I/O controllers, and interconnects) and processor-external resources
(main memory, I/O devices, and networks). Such shared resources imply that software run-
ning in one container can impact software running in another container [31].

2. Security. Containers are not by default secure and require significant work to make them
secure. One must ensure that no data is stored inside the container, container processes

Comparative Analysis of Virtualization Methods in Big Data Processing

58 Supercomputing Frontiers and Innovations



are forced to write to container-specific file systems, the container’s network namespace is
connected to a specific, private intranet, and the privileges of container services are minimized
(e.g., non-root if possible). There were several well-known flaws, those allawed attackers to
create an application that would be able to escape the container and attack the host system.
One of such vulnerabilities (recently patched) allowed a malicious container to (with minimal
user interaction) overwrite the host runc binary and thus gain root-level code execution on
the host [79].

In view of the above many cloud administrators and software architects suggest running a
container on top of a VM to enhance security. Moreover this technic is implemented for easier
management and upgrade of the system, as well as to overcome hardware and software incom-
patibility with the physical server. But all the aforementioned benefits come with a performance
cost [51].

3.2. Comparative Effectiveness of Virtualization Technologies

Authors of [103] compare hypervisor models with full virtualization and paravirtualization,
such as Xen [6], KVM [44], VirtualBox [66] and VMWare ESX [95]. A comparison of character-
istics of analyzed virtualization platforms is provided in Tab. 2. According to the test results,
which included a comparison of the performance of the Linpack test, performing a fast Fourier
transform, evaluating bandwidth and latency of network connections, as well as running an
OpenMP program, the KVM platform (followed by VirtualBox) was recognized as the leader in
performance (see Fig. 7). Unfortunately, the results of the effectiveness of VMWare ESX are not
published in the article due to the limitations of the license agreement.

Table 2. Comparison of characteristics of virtualization platforms (based on [65, 87, 91, 94])

Xen 4.11 KVM VirtualBox 4.1 VMWare ESXi 6.7

Paravirtualization Yes No No Yes

Supported CPU x86, x86-64, IA64 x86, x86-64, IA64, PPC x86, x86-64 x86, x86-64

Host OS Linux, UNIX Linux, UNIX Windows, Linux, UNIX Propietary UNIX

Guest OS Windows, Linux, UNIX Windows, Linux, UNIX Windows, Linux, UNIX Windows, Linux, UNIX

CPUs per host (x86) 4095 4095 No Limit 768

Memory per host 16 TB 16 TB 1 TB 16 TB

License GPL GPL GPL/proprietary Proprietary

The mechanisms of Xen’s complete and paravirtualization models were investigated in [28].
The research results show that when using the full virtualization approach, the overhead is at
least 35 % more compared to the paravirtualization model.

Many researchers are focusing on the efficient use of virtualized resources for solving Big Data
processing problems. So, the authors of [47] compare an unnamed, but widely used, commercial
hypervisor with open solutions: Xen and KVM. The main analysis is a series of typical data
processing tasks on the Hadoop platform [83]. The greatest differences in performance were
observed in tasks related to high I/O usage, while tests related to high CPU performance demand
showed smaller differences between hypervisors. It was discovered that a commercial hypervisor
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(a) Linpack test results (b) The resulting rating (the smaller the better)
Figure 7. Testing of virtualization platforms (based on [103])

works better with disk write tasks, KVM is better for reading from disk, and Xen was better when
the task required a combination of reading and writing a disk with intensive CPU calculations.

Virtualization with hardware support was tested on the basis of Xen and KVM hypervisors
in the article [69] (see Fig. 8 and 9). In particular, to provide direct access to hardware devices by
virtual machines, PCI transit technologies were used. The results showed that the use of hardware
support technologies for virtualization can achieve low overhead costs both for performing I/O
operations and for tasks that require large CPU resources.

The carried out tests showed that the network delay increases on average by 30–60 microsec-
onds when using a Gigabit Ethernet type network and by 20–30 microseconds in InfiniBand
systems. Performing tests on pure InfiniBand hardware in TCP mode gave a network delay of
20 to 130 microseconds depending on the packet size (about 25 microseconds with packets up
to 2 kilobytes on average). Using RDMA reduced the delay to about 10–50 microseconds, de-
pending on the packet size (about 10 microseconds with a packet size of up to 2 kilobytes on
average). The use of virtualization, in this case, results in an increase in the response delay of
1.5–2.5 times: in TCP mode from 50 to 170 microseconds (about 65 microseconds with a packet
size up to 2 kilobytes on average), in RDMA mode both for Xen and KVM the delay is from 25
to 80 microseconds, depending on the packet size (about 30 microseconds with packet sizes up
to 2 kilobytes on average). Performance evaluation of an MPI application showed performance
degradation of virtualized systems by 20–50 % with KVM virtualization versus Xen.

(a) Bandwidth (b) Network latency
Figure 8. Comparison of Gigabit Ethernet type network performance on bare metal (PM), and
different types of Xen and KVM virtualization (based on [69])
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(a) Bandwidth (b) Network latency
Figure 9. Comparison of an InfiniBand network performance on bare metal (PM), and different
types of Xen and KVM virtualization (based on [69])

3.3. Comparison of Container and Virtual Machine Performance

The authors of [98] discuss the comparison of VMware, Xen and OpenVZ virtualization
and containerization technologies from the point of view of different workloads. OpenVZ as the
solution for virtualization at the OS level showed the least amount of overhead and the highest
performance. Che et al in [18] also evaluated the performance of OpenVZ, Xen and KVM. Test
results showed that OpenVZ has better performance, and KVM (full virtualization) has lower
performance than Xen (paravirtualization).

The authors of [67] compares Xen and OpenVZ in different configurations. The results showed
that Xen had a large overhead, which led to an increase in OpenVZ performance. Various solutions
for virtualization at the operating system level were compared to Xen in [101]. Overall, Xen
achieved lower performance than container-based virtualization solutions. LXC achieved the
best results among container-based solutions. However, performance isolation between virtual
machines was best on Xen, which may be a drawback to OS-based virtualization solutions.

Authors of [29] present the results of a comparison of various aspects of the performance of
virtualization and containerization technologies, such as I/O performance, network connection
latency and computational performance. For performance testing, the authors use the following
types of workload (see Tab. 3):

• PXZ, a parallel lossless data compression utility that uses LZMA algorithm;
• LINPAC, a package that provides a solution to linear equation systems using a LU fac-

toring algorithm with partial rotation.
The authors also tested the performance of data processing on virtualized/containerized

systems (see Fig. 10 to 12).

Table 3. Comparison of the performance of bare metal, docker and KVM solutions (based
on [29])

Load Bare metal Docker KVM without fine tuning KVM (fine tuning)

PXZ (MB/s) 76.2 [±0.93] 73.5 (-4 %) [±0.64] 59.2 (-22 %) [±1.88] 62.2 (-18 %) [±1.33]

LINPAC (Gigaflop) 290.8 [±1.13] 290.9 (-0 %) [±0.98] 241.3 (-17 %) [±1.18] 284.2 (-2 %) [±1.45]

Random Access (GUPS) 0.0126 [ ± 0.00029] 0.0124 (-2 %) [±0.00044] 0.0125 (-1 %) [ ± 0.00032] Not performed
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Figure 10. Testing the performance of random I/O (IOPS) (based on [29])

Figure 11. Performance evaluation (queries/s) of NoSQL Redis database for several deployment
scenarios. Each data point is an arithmetic average obtained from 10 runs (based on [29])

The authors of [29] make the following conclusion: “In general, Docker equals or exceeds
KVM performance in every case we tested... Although containers themselves have almost no
overhead, Docker is not without performance gotchas. Docker volumes have noticeably better
performance than files stored in AUFS. Docker’s NAT also introduces overhead for workloads
with high packet rates. These features represent a tradeoff between ease of management and
performance and should be considered on a case-by-case basis”.

The authors of [9] provide an analysis of the effectiveness of using virtualization and con-
tainerization technologies to solve problems in machine learning, large graphs processing and
SQL queries execution (see Tab. 4) based on the Apache Spark platform. Test results show that
using Spark based on Docker allows you to get acceleration more than 10 times compared to
using virtual machines. However, these results vary considerably by the type of executable ap-
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Figure 12. MySQL database performance (transactions/s) depending on parallelism (based
on [29])

plications due to different load patterns and different resource management schemes (Fig. 13).
In particular, it turned out that the implementation of the problem of data clustering based
on the k-means method in a containerized environment is slower than inside a virtual machine.
The analysis showed that this is due to a large number of mixing operations required for the
implementation of the k-means algorithm, each of which causes I/O operations. The specifics of
the implementation of the AUFS file system (copy-on-write technology) used in Docker, leads to
the fact that a large number of I/O operations can lead to inhibition of other processes.

Figure 13. Comparison of the execution time of typical Spark tasks in the virtual machine
environment and Docker containers (based on [9])
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Table 4. List of typical data processing tasks (based on [9])

The area Typical tasks

Machine learning K-Means (KM)
MinMaxScaler (MMS)
GaussianMixture (GM)
Logistic Regression (LR)
DecisionTreeClassification (DTC)
Tokenizer (T)
Alternating Least Squares (ALS)

Graphs processing PageRank (PR)
ConnectedComponents (CC)
TriangleCounting (TC)
AggregateMessages (AM)
Single-Source Shortest Paths (SSSP)

SQL queries SQLDataSource (SDS)
SparkSQL (SS)

As another example of usage of containerization technologies for Big Data problems, So-
gand Shirinbab et al. [82] provide a performance comparison between VMware virtual machine
and Docker container while running Apache Cassandra NoSQL distributed database as work-
load. Authors conclude that Docker had lower overhead compared to the VMware when running
Cassandra.

The solution of Big Data problems often requires an effective way to utilize GPU resources.
Authors of [99] conducted a comparative study of the performance of KVM, Xen and VMWare
ESXi hypervisors together with LXC container management solution for execution of CUDA and
OpenCL Applications. The experiments show, that LXC solution consistently performed closest
to the native case. Authors also show that GPU passthrough to KVM achieves 98–100 % of
the base system’s performance, while Xen and VMWare achieve 96–99 % of the base systems
performance, respectively.

3.4. Conclusion

The analysis shows that virtualization and containerization technologies can be used to solve
the tasks of Big Data processing as a mean of deploying specialized software platforms. Analysis
of the performance of these solutions shows that, with rare exceptions, the overhead for container
virtualization when deploying and executing software solutions are substantially less (from 10 %
to 90 %) than for virtualization using the hypervisor. Exceptional cases are associated with the
tasks that are focused on a large amount of I/O. This is due to the fact that, at the present stage
of development, containers are not capable of leveling the mutual influence on each other of tasks
implemented within the framework of the same computing module. In this case, containerization
performance becomes comparable to the performance of virtual machine-based solutions.
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4. Container Orchestration Technologies

Microservice architecture approach is aimed at solving the problem of partitioning of mono-
lithic applications into SOA-style independently deployable services that are well supported by
container architectures. Such services should be loosely coupled, supporting rapid deployment
and termination.

The architectural style of microservices is an approach to developing a single application as
a set of small services, each of which works in its own process and interacts with other services
through standardized network protocols [83]. The life cycle of microservices should be supported
by a fully automated deployment and orchestration platform. They require independent de-
ployment and scalability depending on the current load and need, as opposed to synchronous
deployment at specific times, typical for monolithic applications.

Also, the use of containerized computing services for solving real-world problems requires
solving the problem of organizing their joint work. So, it is necessary to provide dependency man-
agement between containers. Orchestration plan describes components, their dependencies, and
their life cycle. The PaaS cloud can then trigger workflows from the orchestration plan through
agents. Software platform services can support packaging applications and their deployment from
containers [56].

In this section, we discuss solutions that enable the deployment and collaboration of con-
tainerized applications within cloud infrastructures.

4.1. Private Cloud IaaS Platforms

Cloud computing is characterized by the dynamic provision of computing resources based
on service level agreements between the service provider and the consumer [14]. To implement
cloud computing, many open source solutions have been developed [96]. Authors of [27] present a
taxonomy and architecture for cloud solutions, together with a comparison between open source
cloud solutions.

The architectural and philosophical differences and similarities between the Eucalyptus [5],
OpenNebula [62] cloud platforms and Nimbus [93] cloud solutions were compared in [80]. Authors
of [100] compare the OpenNebula and OpenStack [63] platforms in terms of architecture, support
for virtualization hypervisors, cloud APIs, and security aspects. Authors of [45] provide a com-
parison of the OpenStack, OpenNebula, Nimbus and Eucalyptus platforms in terms of interfaces,
hypervisors, network capabilities, deployment and storage procedures, to assess the suitability of
their use for the FutureGrid testing environment. The scalability of physical and virtual machine
provisioning has also been verified. As a result of testing, the OpenStack platform showed the
best results.

Q. Huang et al [36] compared CloudStack, Eucalyptus and OpenNebula platforms with the
performance of classic server solutions. The results show that the use of cloud solutions provide
about 10 % degradation in application performance due to the use of virtualization technolo-
gies. Performance deteriorates as the number of virtual machines in use increases. OpenNebula
achieved better performance than other cloud solutions (CloudStack, Eucalyptus). Authors pre-
sented a comparison of the capabilities of the same cloud solutions for developing applications
in the field of geophysical research in their next paper [37]. In particular, they compared their
performance characteristics, including computational performance, I/O performance, memory
performance, network data transfer speeds, and applications for geophysical research. The dif-
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ference was observed in web application support, where OpenNebula showed slightly better
performance since this system traffic is not routed through the cloud controller. OpenNebula
also achieved better results in geophysical applications, albeit by a small margin as compared
with the alternatives.

4.2. PaaS Clouds and Containerization

Currently, virtual machines create a fabric of the IaaS level clouds. Containers, however,
look like a very suitable technology for packaging and managing applications in PaaS clouds.
The PaaS model provides mechanisms for designing and deploying cloud applications, providing
software infrastructure and libraries for transparently launching web services, routing requests
and distributing workload between cloud resources [43].

Container platforms eliminate application deployment problems with compatible,
lightweight, and virtualized packaging. Those containers, that are developed outside the PaaS
platform, can be transferred to other computing environments, because the container provides
encapsulation of applications. Some PaaS models are now compatible with containerization and
standardized packaging of applications, for example, based on Docker. This development is part
of the evolution of PaaS approach, moving towards a compatible PaaS based on containers. The
first generation of PaaS solutions includes classic proprietary PaaS platforms, such as Microsoft
Azure, Heroku, and Google App Engine [97].

The second generation of PaaS is built on open source solutions [7], such as Cloud Foundry [8]
or OpenShift [74], which allow users to run their own PaaS (both locally and in the cloud), with
integrated container support. In 2017, OpenShift switched from its own container model to the
Docker model. The Cloud Foundry platform implements containerization based on its internal
Diego solution [19]. Cloud Foundry and OpenShift handle containers differently. Cloud Foundry
supports stateless applications through containers, but services that require state preservation
are deployed in virtual machines. On the other hand, OpenShift does not distinguish them [68].

4.3. Container Clustering and Orchestration

The next problem is to facilitate the transition from one container to clusters of containers
that allow running containerized applications on several clusters or in several clouds [50].

Authors of [43] proposed a general solution to ensure the formation of container clusters
(Fig. 14). Within this model, each computing cluster consists of several nodes — virtual servers
on hypervisors or, possibly, on physical servers with a single tenant. Each node contains several
containers with common services that provide planning, load balancing, and application execu-
tion. Further, application services are logical groups of containers from the same image. Services
allow you to scale applications through sites. Volumes are used for applications requiring persis-
tent data. Containers can mount volumes. The data stored in these volumes is retained even after
the container has been terminated. Finally, links allow you to create a connection and provide
connectivity for two or more containers.

Deployment of distributed applications through containers is supported by a virtual scalable
head node (or head cluster) that provides scaling, load balancing and fault tolerance of the entire
system. At the same time, the API allows you to manage the life cycle of clusters. The head node
of the cluster accepts commands from the outside and sends them to the container hosts. This

Comparative Analysis of Virtualization Methods in Big Data Processing

66 Supercomputing Frontiers and Innovations



Figure 14. Containers cluster architecture (based on [43])

allows designing multi-container cloud applications without regard to the basic network topology
and avoids manual configuration [32].

As part of the cluster architecture, the basic cloud infrastructure provides solutions of ser-
vice discovery (for example, through shared distributed “key-value” storages), orchestration and
deployment, including load balancing, monitoring, scaling, and data transfer management.

It should be noted that the OASIS organization is developing a “Topology and Orchestration
Specification for Cloud Applications” (TOSCA) standard [11, 12, 61]. TOSCA supports several
functions:

• compatible description of application cloud services and infrastructure;
• communication between parts of the service;
• operational behavior of these services (deployment, updating or shutdown) in terms of

orchestration.
The implementation of such a standard provides the advantage of independence from the

service supplier, as well as any particular cloud service or hosting provider. TOSCA templates
can be used to define container clusters, abstract nodes and relation types, as well as application
stack templates [10].

TOSCA standard defines cloud services orchestration plan on the basis of the YAML lan-
guage. This orchestration plan is used to organize the deployment of applications, as well as
automation processes that are implemented after deployment. The orchestration plan describes
the applications and their life cycle, as well as the relationships between the components. This in-
cludes connections between applications and their locations. Using TOSCA, one can describe the
service infrastructure, the intermediate computational layer of the platform, and the application
layer located on the top (see Fig. 15).
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Figure 15. Reference structure for orchestrating cluster topology.

There are a number of PaaS platforms that support the TOSCA standard. For example, the
Cloudify platform [20] will be able to adopt the TOSCA orchestration plan and then apply it by
creating the necessary infrastructure and running the application.

4.4. Review of Container Orchestration Solutions

The goal for a container-based virutal clusters is to provide the users with computer clusters
to be used as if they were physical computing clusters, with the added value of using containers
instead of VMs. Therefore, the requirements for the container-based virtual cluster is to preserve
the very same environment and usage patterns that are commonly used in this computing plat-
forms, i.e. the software stack: the OS, the cluster middleware, the parallel environments and the
applications, as shown in Fig. 16 [1].

Figure 16. Generic architecture to deliver container-based virtual computer clusters deployed on
a computing infrastructure managed by a Container Orchestration Platform (based on [1])
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In this section, we would consider the most used systems that provide an orchestration of
containerized applications. We would overview the following systems: Docker Compose, Docker
Swarm, Apache Mesos, and Kubernetes.

Docker Compose is a Docker solution that provides the creation of multi-container Docker-
based applications [23]. This solution is based on the YAML configuration files, which define the
relationships between containers and the details of their interaction (such as images, volumes,
service configurations). We can highlight the following main advantages of this project: compar-
ative ease of implementation, convenience and ease of setup, as well as the possibility of easy
distribution of cluster configurations in the format of YAML files [30]. The disadvantages include
slightly less functionality compared to other projects under consideration (including, supporting
high availability, etc.). Docker Compose is a suitable solution for application developers, but not
functional enough to support large infrastructures.

Docker Swarm was originally a supplement to the Docker platform, but since Docker ver-
sion 1.12 it has been added to the main package [24]. The Docker Swarm system provides a
gradual update of services, the organization of inter-node network connections, load balancing in
multi-container applications. In a Swarm, each task maps to one container. When using Docker
you can control container placement decisions by using labels (tags) either user defined or sys-
tem defined. The scheduler also takes into consideration CPU and memory constraints when
scheduling containers (see Fig. 17) [39].

The main advantage of Docker Swarm is the built-in support for the Docker Compose con-
figuration files. Compared to Docker Compose, this is a more advanced solution, similar to other
orchestrators, although its capabilities are still limited compared to the Kubernetes ecosystem.
The Docker Swarm solution is suitable for small clusters that require simple management, deploy-
ment and use in small production environments. One of the limitations of Swarm Orchestrator
is its scalability, as well as the fact that it only works with Docker containers [52]. The Apache

Figure 17. Docker Swarm Architecture (based on [39])
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Mesos [3] project is a platform that links distributed hardware resources into a single pool of
resources. These resources can be used by application frameworks to distribute the load between
them. The project is based on the core of a distributed system, which follows the same principles
as the Linux kernel, but at a different level of abstraction. The Mesos kernel runs on all machines
in the cluster. This makes it easy to use applications with APIs for resource management and
scheduling in cloud environments. The difference between Apache Mesos and other solutions is
that Mesos is suitable not only for containers. This is an open source solution composed of Apache
Foundation projects (such as Hadoop and Zookeeper). Container orchestration is provided by
the Marathon platform [53], which is part of the Apache Mesos project. As for compatibility, it
initially supports LXC, as well as Docker. This orchestration system is often used to organize
the solution of issues in the field of Big Data processing [15, 52, 77, 86].

Another solution for managing clusters, albeit at a higher level than Mesos, is the Kubernetes
system [90]. Kubernetes is an open source project developed by Google, that automates the
deployment, scaling and management of container applications. This platform was built on the
basis of their experience with containers over the past decade. This project is an orchestrator,
which, unlike other technologies, supports several container solutions including, Docker, rkt, CRI-
O, Windows containers. Kubernetes consists of two main roles: the master and the node. The
master is the main component that controls each group of nodes. Nodes accept the requirements
of the master and perform the actions defined by the master. Three main components are used
to launch and manage containers:

• The pod is the basic unit of planning and deployment, which is a group of related containers.
• A replication controller that is a supervisor for pods and controls the status of the cluster.
• Kubernetes Services and kubelets, which run on each container and manage containers.
The Kubernetes platform is also gaining popularity in such fields as machine learning and

Big Data processing. For example, authors of [46] present the BAIPAS system — a distributed
platform supporting Big Data processing, artificial intelligence, and machine learning. BAIPAS
uses Kubernetes and Docker to provide simple platform installation and monitoring, as well as
NVIDIA Docker to provide GPU resources for deploying TensorFlow within containers.

The authors of [78] describe the computing system architecture to support the EO4Wildlife
project (www.eo4wildlife.eu). In order to ensure the interaction of a wide range of researchers
with a set of large geo-information data, the EO4wildlife platform was developed, providing the
implementation of the Spark system based on containerized infrastructure supported by Kuber-
netes. In this project, Kubernetes is responsible for application deployment and management,
including automatic scaling, load balancing, and monitoring of tasks.

4.5. Summary

The analysis shows that orchestration and containerization technologies are increasingly used
to implement Big Data processing solutions. They can be used either explicitly, by using con-
tainer orchestration systems such as Docker Compose or Kubernetes, or indirectly, by deploying
applications in PaaS environments that support automatic scaling and lifecycle management of
computing services, such as Cloudify or OpenShift.

The use of such systems allows one to automate the process of application deployment. It
also makes it easier to repeat experiments, because files describing the computing infrastructure
and the deployment of computing services can be easily distributed among researchers. Also,
these technologies are well integrated with other solutions and extensions of container computing
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systems, such as NVIDIA Docker, which allows them to be effectively used for solving problems
related to data analysis and machine learning.

Conclusion

Solving the issues of Big Data processing is impossible without the use of distributed comput-
ing infrastructures. To date, the key technologies that support the fabric of distributed computing
systems are technologies of virtualization and containerization of resources.

We have analyzed the key technologies of virtualization and containerization of computing
resources used today. Virtualization has been designed to abstract hardware and system resources
in order to ensure that multiple operating systems work together on the basis of one physical
node. There are several approaches to the implementation of virtualization. Full virtualization is
aimed at hardware emulation. Paravirtualization requires modification of the virtualized OS and
coordination of operations between the virtual OS and the hypervisor. The OS-level virtualization
approach (or containerization) does not require a hypervisor. Instead, the base OS is modified to
ensure that several instances of the OS are able to be executed on the same machine. Although
there are some disadvantages of containerization that should be addressed, especially in such cases
as shared resources usage, weaker isolation, and security issues, comparing to virtual machines.

The analysis shows that virtualization and containerization technologies can be used in
Big Data processing as a means of deploying of specialized software platforms. Analysis of the
performance of these solutions shows that, with rare exceptions, the storage costs for container
virtualization when deploying and executing software solutions are substantially less (from 10 %
to 90 %) than for virtualization using the hypervisor.

Also, orchestration technologies are increasingly being used to implement Big Data process-
ing solutions. They can be used either explicitly, by using container orchestration systems, such
as Docker Compose or Kubernetes, or indirectly, by deploying applications in PaaS environments
that support automatic scaling and lifecycle management of computing services, such as Cloudify
or OpenShift.

The use of such systems allows one to automate the process of deployment of applications
in a cloud environment. Such approach also makes it easier to repeat experiments, because files
describing the computing infrastructure and the deployment of computing services can be easily
distributed among researchers. Also, these technologies are well integrated with other solutions
and extensions of container computing systems, such as NVIDIA Docker, which allows them to
be effectively used for solving problems related to data analysis and machine learning.

It can be noted that the transition from virtualization to containerization has reduced the
overhead costs associated with managing computing resources by orders of magnitude. This made
it possible to efficiently use containerization technologies for solving a large class of problems
requiring high performance from computing resources, including Big Data processing tasks.
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