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• Thomas Lippert, Jülich Supercomputing Center, Germany
• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• Victor Gergel, University of Nizhni Novgorod, Russia
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
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Towards A Data Centric System Architecture: SHARP

Gil Bloch1, Devendar Bureddy2, Richard L. Graham3, Gilad Shainer2,

Brian Smith3
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Increased system size and a greater reliance on utilizing system parallelism to achieve compu-

tational needs, requires innovative system architectures to meet the simulation challenges. The

SHARP technology is a step towards a data-centric architecture, where data is manipulated

throughout the system. This paper introduces a new SHARP optimization, and studies aspects

that impact application performance in a data-centric environment. The use of UD-Multicast to

distribute aggregation results is introduced, reducing the letency of an eight-byte MPI Allreduce()

across 128 nodes by 16%. Use of reduction trees that avoid the inter-socket bus further improves

the eight-byte MPI Allreduce() latency across 128 nodes, with 28 processes per node, by 18%. The

distribution of latency across processes in the communicator is studied, as is the capacity of the

system to process concurrent aggregation operations.

Keywords: data centric architecture, SHARP, collectives, MPI.

Introduction

The challenge of providing increasingly unprecedented levels of effective computing cycles,

for tightly coupled computer-based simulations, continues to pose new technical hurdles. With

each hurdle traversed, a new challenge comes to the forefront, with many architectural features

emerging to address these problems. This has included the introduction of vector compute

capabilities to single processor systems, such as the CDC Star-100 [28] and the Cray-1 [27],

followed by the introduction of small-scale parallel vector computing, such as the Cray-XMP [5],

custom-processor-based tightly-coupled MPPs, such as the CM-5 [21] and the Cray T3D [17],

followed by systems of clustered commercial-off-the-shelf micro-processors, such as the Dell

PowerEdge C8220 Stampede at TACC [30] and the Cray XK7 Titan computer at ORNL [24]. For

a decade or so the latter systems relied mostly on Central Processing Unit (CPU) frequency up-

ticks to provide the increase in computational power. But, as a consequence of the end of Dennard

scaling [9], the single CPU frequency has plateaued, with contemporary HPC cluster performance

increases depending on rising numbers of compute engines per silicon device to provide the

desired computational capabilities. Today HPC systems use many-core host elements that utilize,

for example, X86, Power, or ARM processors, General Purpose Graphical Processing Units

(GPGPUs) and Field Programmable Gate Arrays (FPGAs), [15], to keep scaling the system

performance. Network capabilities have also increased dramatically over the same period, with

changes such as increases in bandwidth, decreases in latency, and communication technologies

like InfiniBand RDMA that offload processing from the CPU to the network.

With increasing compute engine counts, system architectures have continued to be CPU

centric, with these system elements being involved in the vast majority of data manipulation.

This has resulted in unnecessary data movement and undesirable competition between com-

putational, communication, storage and other needs for the same computational resources. A

Data-Centric system architecture, which co-locates computational resources and data through-

out the system, enables data to be processed all across the system, and not only by CPU’s
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at the edge. For example, data can be manipulated as it is being transferred within the data

center network as part of a collective operation. This type of approach addresses latency and

other performance bottlenecks that exist in the traditional CPU-Centric architecture. Mellanox

focuses on CPU offload technologies designed to process data as it moves through the network,

either by the Host Channel Adapter (HCA) or the switch. This frees up CPU cycles for compu-

tation, reduces the amount of data transferred over the network, allows for efficient pipelining

of network and computation, and provides for very low communication latencies. To accomplish

a marked increase in application performance, there has been an effort to optimize often used

communication patterns, such as collective operations, in addition to the continuous improve-

ments to basic communication metrics, such as point-to-point bandwidth, latency, and message

rate.

InfiniBand technologies are being transformed to support such data-centric system architec-

tures. These include technologies such as SHARP for handling data reduction and aggregation,

hardware-based tag matching and Network data hardware-gather scatter capabilities. These

technologies are used to process data and network errors at the network levels, without the need

for data to reach a CPU, reducing overall volume of transferred data and system resilience.

This paper extends the investigation of the the SHARP technology previously introduced

[12] for offloading aggregation and reduction operations to InfiniBand switches. The paper is

organized as follows: Section 1 presents previous related work in offload technologies. Section 2

describes the new UD-Multicast protocol which utilizes multiple children in the reduction tree

to avoid using internal node interconnect between sockets. Section 3 describes the benchmarks

and applications investigated, and discusses the distribution of latencies across processes in a

communicator and the network’s ability to process multiple reduction operations concurrently.

The final section provides a summary and discussion of the work presented.

1. Previous Work

In the past extensive work has been done on improving performance of blocking and non-

blocking barrier and reduction algorithms.

Algorithmic work performed by Venkata et al. [33] developed short vector blocking and non

blocking reduction and barrier operations using a recursive K-ing type host-based approach,

and extended work by Thakur [31]. Vadhiar et al. [32] presented implementations of blocking

reduction, gather and broadcast operations using sequential, chain, binary, binomial tree and

Rabenseifner algorithms. Hoefler et al. [16] studied several implementations of nonblocking MPI -

Allreduce() operations, showing performance gains when using large communicators and large

messages.

Some work aimed to optimize collective operations for specific topologies. Representative ex-

amples are ref. [6] and [22], which optimized collectives for mesh topologies, and for hypercubes,

respectively.

Other work presented hardware support for performance improvement. Conventionally, most

implementations use the CPU to setup and manage collective operations, with the network just

used as a data conduit. However, Quadrics [26] implemented support for broadcast and barrier

in network device hardware. Recently IBM’s Blue Gene supercomputer included network-level

hardware support for barrier and reduction operations. Its preliminary version Blue Gene/L [11]

which uses torus interconnect [1], provided up to twice throughput performance gain of all-to-all

collective operations [2, 20]. On a 512 node system the latency of the 16 byte MPI Allreduce() the
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latency was 4.22 µ-seconds. Later, a message passing framework DCMF for the next-generation

supercomputer Blue Gene/P was introduced [18]. MPI collectives optimization algorithms for

this generation of Blue Gene were analyzed in [10]. The recent version Blue Gene/Q [14] provides

additional performance improvements for MPI collectives [19]. On a 96,304 node system, the la-

tency of a short allreduce is about 6.5 µ-seconds. IBM’s PERCS system [4] fully offloads collective

reduction operations to hardware. Finally, Mai et al. presented the NetAgg platform [23], which

uses in-network middleboxes for partition/aggregation operations, to provide efficient network

link utilization. Cray’s Aries network [3] implemented 64 byte reduction support in the HCA,

supporting reduction trees with a radix of up to 32. The eight byte MPI Allreduce() latency for

about 12,000 process with 16 processes per host was close to ten u-seconds.

Several APIs have been proposed for offloading collective operation management to the

HCA. This includes the Mellanox’s CORE-Direct [13], protocol, Portal 4.0 triggered opera-

tions [7], and an extension to Portals 4.0 [29]. All these support protocols that use end-point

management of the collective operations, whereas in the current approach the end-points are in-

volved only in collective initiation and completion, with the switching infrastructure supporting

the collective operation management.

2. Aggregation Protocol

A goal of the new network co-processor architecture is to optimize completion time of

frequently used global communication patterns and to minimize their CPU utilization. The

first set of patterns being targeted are global reductions of short vectors, and include barrier

synchronization, and small data reductions. As previously mentioned, the SHARP protocol has

already been described in detail, therefore, only a brief description is provided in this section,

highlighting the new hardware capability that is introduced.

SHARP provides an abstraction describing data reduction and aggregation. The protocol

defines aggregation nodes (ANs) which form the nodes of a reduction tree. These trees overlay

a physical network. Figure 1 shows an example of a physical network topology, with Fig. 2

describing a possible reduction tree constructed over this physical topology. The aggregation

nodes are colored in red, with the leaves of the tree, the blue stars, being source of the data.

Figure 1. Physical Network Topology

Towards A Data Centric System Architecture: SHARP
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Aggregation operations are defined for SHARP groups. These groups are formed as subtrees

of SHARP trees, where multiple groups may be formed from a given SHARP tree. Figure 3 gives

an example of a SHARP group of size eight.

An aggregation operation is performed with participation of each member of the aggregation

group. To initiate such an operation, members of the aggregation group send their aggregation

request message to their leaf aggregation node. The aggregation request header contains all

needed information to perform the aggregation, and includes the data description, i.e. the data

type, data size, and number of such elements, and the aggregation operations to be performed,

such as a min or sum operation. An aggregation node receiving aggregation requests collects

these from all its children and performs the aggregation operation once all the expected requests

arrive. The root aggregation node performs the final aggregation producing the result of the

aggregation operation.

This aggregation result is distributed in up to two of several possible ways. The destination

may be one of several targets, including one of the requesting processes, such as in the case of

MPI Reduce(), all the group processes, such as in the case of an MPI Allreduce() operation, or

a separate process that may not be a member of the reduction group. An aggregation tree can

be used to distribute the data in these cases.

The new hardware capability described in this paper is that the target may also be a user-

defined InfiniBand multicast address. It is important to note that while multicast data distri-

bution is supported by the underlying transport, it provides an unreliable delivery mechanism.

Any reliability protocol needed must be provided on top of this mechanism.

Figure 2. Logical SHARP Tree. Note that in the SHARP abstraction an Aggregation Node may

be hosted by an end-node

Figure 3. A SHARP group defined for the SHARP tree. The red stars designate AN’s and the

blue stars the tree leaves
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The protocol does not define the data transport, so that communication between AN’s can

occur using a range of transports, such as RDMA-enabled protocols like InfiniBand or RDMA

over Converged Ethernet (RoCE). It also does not handle packet loss or reordering, requiring a

reliable transport which provides reliable in-order delivery of packets to the upper layer.

2.1. SwitchIB-2-Based Aggregation Support

In the SwitchIB-2 implementation, the aggregation node logic is implemented as an Infini-

Band TCA integrated into the switch ASIC. The transport used for communication between

ANs and between AN and hosts in the aggregation tree is the InfiniBand Reliable Connection

(RC) transport. The results are distributed from the root to the leaf nodes, or hosts, down the

tree, or to a target InfiniBand Multicast group.

The aggregation node implementation includes a high performance Arithmetic Logic Unit

(ALU), used to perform the aggregation operations supported by the aggregation node. It can

operate on 32- and 64-bit signed and unsigned integers and floating point data. The supported

operations include sum, min and max, MPIs MinLoc and MaxLoc, bitwise OR, AND, and XOR,

which include all the operations, with the exception of the product, needed to support the MPI

standard and the OpenSHMEM specification.

Requests are collected in the TCA, with the reduction performed only after all operands are

available, in a predetermined and fixed order. SwitchIB-2 implements a predictable operation

ordering to enable repeatable results regardless of the order of arrival of the aggregation requests.

When using hardware multicast to distribute the aggregation results, the result also needs

to be distributed with a reliable protocol to ensure delivery of these results.

3. Benchmark Results

To evaluate the SHARP capabilities, both low-level MPI benchmarks, as well as an appli-

cation level benchmark are used.

A 128 host system is used for these experiments. Each node has two 14-core Broadwell

CPUs running at 2.60 GHz, with 256GB of RAM memory. ConnectX-4 HCAs are used running

at 100Gb/s. The fabric uses a two-level fat-tree with SwitchIB-2 switches and eight leaf switches,

each connecting to 16 hosts. The hosts run RedHat Linux 7.2, and the tests were carried out with

OFED 3.4-2.1.9.0. A pre-release version of HPC-X, the Mellanox supported MPI, is used, which

includes a set of MPI collective routines that access and use the SHARP hardware capabilities,

embedded in the SwitchIB-2 switches, to optimize the performance of the corresponding MPI

collectives.

3.1. MPI-Level SHARP Measurements

The OSU MPI Allreduce() test [25] is used to measure the SHARP latency.

Figure 4 shows the latency of MPI Allreduce() operations as a function of message size and

the mode of result distribution, with one process per-node. Using UD multicast for distributing

the result takes advantage of the O(1) multicast capabilities for improved performance, but

is unreliable (bit error rate being on the order of 10−15) requiring the additional RC result

distribution to provide the result when a UD packet is dropped. Using UD multicast and RC

to distribute the results improves latency in the range of 15-58% relative to using RC only for

Towards A Data Centric System Architecture: SHARP
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this distribution, even with the duplicate result distribution. The improvement relative to the

host-based approach is in the range of 143 to 385 percent.

Figure 4. 128 node MPI Allreduce() average latency with different modes of result distribution.

A comparison to the host-only algorithm is also included. Latency is reported in µ-seconds

SHARP reduction trees assume some sort of host-level aggregation prior to sending data

to the leaf AN, because of the limitation on AN’s radix. Figure 5 shows the latency of the

MPI Allreduce() operation when using one connection per socket (2 channels) into the SHARP

reduction tree, avoiding reduction over the internal chip network, and one connection per node

(1 channel). As the results show, for messages up to 1024 bytes in size, this reduces latency by

more than ten percent. With larger messages, an increase in latency is observed. The two-channel

case eliminates the host-side intra-socket reduction steps, it increases the leaf AN radix by a

factor of two. As the vector length increases, this manifests itself with a larger latency relative

to the one-channel case.

Figure 5. 128 node, 28 processes per-node MPI Allreduce() average latency in µ-seconds

To get a better understanding of the spread in completion times across the communicator,

several metrics are collected to characterize this behavior. Table 1 lists the average MPI Allre-

duce() latencies, along with quartile data, minimum value and maximum value to describe the

data distribution, using UD-multicast for result distribution, and one process per node. These

are reported for the average of the full collective operation (measured as as the average of the

G. Bloch, D. Bureddy, R.L. Graham, G. Shainer, B. Smith
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collective operation) and for the the completion of each of the individual ranks in the communi-

cator. As expected, there is greater variance in individual completion times, as compared with

the average per-collective completion time. Also, we see that the SHARP based collectives have

a much smaller per-rank latency range.

Table 1. MPI Allreduce() Latency (µsec) Distribution of a

127 Node Cluster with One Process Per Node

Size Ave. Quartiles Quartiles

(B) min, Q1, Q2, Q3, max min, Q1, Q2, Q3, max

Per Operation Average Per Process Data

SHARP 4 2.39 2.38, 2.39, 2.39, 2.40, 2.41 2.16, 2.35, 2.37, 2.41, 13.49

Host 5.09 4.99, 5.07, 5.09, 5.10, 5.13 2.34, 4.74, 4.88, 5.13, 12.69

SHARP 8 2.39 2.37, 2.38, 2.39, 2.39, 2.40 2.14, 2.35, 2.37, 2.41, 2.78

Host 5.18 5.11, 5.18, 5.18, 5.19, 5.21 2.51, 4.83, 4.98, 5.20, 15.49

SHARP 16 2.41 2.40, 2.40, 2.41, 2.41, 2.42 2.20, 2.37, 2.39, 2.43, 2.90

Host 5.26 5.20, 5.25, 5.26, 5.28, 5.31 2.48, 4.91, 5.05, 5.27, 16.15

SHARP 32 2.47 2.47, 2.48, 2.48, 2.48, 2.49 2.26, 2.45, 2.47, 2.50, 3.02

Host 5.32 5.26, 5.31, 5.32, 5.33, 5.38 2.48, 4.97, 5.11, 5.36, 13.64

SHARP 64 2.55 2.55, 2.55, 2.56, 2.56, 2.57 2.26, 2.52, 2.55, 2.57, 3.00

Host 5.98 5.72, 5.98, 6.00, 6.00, 6.04 2.70, 5.65, 5.80, 6.01, 18.38

SHARP 128 2.76 2.75, 2.76, 2.76, 2.76, 2.77 2.44, 2.72, 2.74, 2.77, 10.30

Host 6.43 6.17, 6.43, 6.44, 6.45, 6.51 3.23, 6.10, 6.27, 6.50, 13.66

SHARP 256 3.52 3.51, 3.51, 3.52, 3.52, 3.53 3.04, 3.48, 3.51, 3.54, 7.37

Host 7.55 7.38, 7.54, 7.57, 7.58, 7.62 4.19, 7.29, 7.42, 7.63, 16.36

SHARP 512 4.10 4.07, 4.07, 4.07, 4.10, 4.25 3.63, 4.05, 4.08, 4.14, 10.70

Host 9.16 8.96, 9.14, 9.17, 9.19, 9.22 4.05, 8.93, 9.04, 9.21, 24.66

SHARP 1024 5.19 5.11, 5.15, 5.18, 5.21, 5.32 4.68, 5.07, 5.15, 5.28, 7.70

Host 18.49 16.24, 17.36, 18.27, 19.60, 20.52 11.38, 17.33, 18.67, 19.52, 31.69

SHARP 2048 7.55 7.52, 7.54, 7.55, 7.56, 7.58 5.61, 7.22, 7.51, 7.80, 16.65

Host 33.47 31.33, 32.56, 33.60,3 4.27, 36.89 28.83, 32.48, 33.49, 34.25, 50.40

SHARP 4096 12.34 12.30, 12.33, 12.34, 12.35, 12.39 10.38, 11.54, 11.99, 13.06, 17.27

Host 45.99 42.60, 45.10, 46.06, 46.80, 49.49 39.15, 44.99, 45.95, 46.89, 58.68

For the SHARP capabilities to be useful in a general purpose production system, where

multiple jobs run concurrently, potentially sharing ANs, it is useful to study the systems ability

to support concurrent SHARP operations. The system’s capacity to service concurrent collective

operations is studied by running multiple collective operations at the same time, using completely

overlapping SHARP-tree groups. The OSU-latency test was modified to run concurrent collective

operations with non-overlapping MPI Communicators, with the MPI process layout configured

to achieve this overlap. As the results show in Fig. 6 for communicators of size eight, SHARP

is able to accommodate many outstanding operations very well. Latency starts to degrade at

a message size of 2048 bytes, with eight concurrent operations, where as many as sixty four

operations are in flight. With sixteen concurrent operations, latency is impacted by about 30%

with a message size of 64 bytes.

Towards A Data Centric System Architecture: SHARP
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(a) Small-size Allreduce

(b) Large-size Allreduce

Figure 6. SHARP MPI Allreduce() latency (in µ-seconds) for 128 nodes with varying simulta-

neous communicators

Table 2 presents the MPI Allreduce() latency as a function of the number of outstanding

SHARP operations each group is configured to allow. The eight byte data requires only one

SHARP-level operation per MPI operation, whereas the 2048 byte reduction requires eight

such operations. As expected, we see that the eight byte reduction is minimally impacted by

the number of allowed outstanding SHARP operations, except in the eight communicator test,

where there are insufficient resources for all communicators, and the test does not run as written.

The 2048 byte MPI-level operation is negatively impacted by the lack of sufficient resources to

pipeline the entire operation at once, but even with only two outstanding SHARP operations

supported, there is the benefit of some pipelining, with the latency being less than four times

that of the eight operation case.

3.2. Application Benchmarks

Table 3 shows the result of running the Algebraic Multi-Grid (AMG) [8] micro benchmark on

64 nodes, with 28 processes per node. The AMG benchmark uses an eight byte data reduction.

On average, running five of the AMG test cases (Laplace, 27 point, Jumps, def/pool1 and

def/pool0) an average improvement of 1.8% in total test run time was measured when using

G. Bloch, D. Bureddy, R.L. Graham, G. Shainer, B. Smith

2017, Vol. 4, No. 4 11



Table 2. Eight Process MPI Allreduce() Average Latency

(µsec) as a Function of the Number of Communicators

Operating in Parallel and as a Function of Maximum

Outstanding SHARP Operations (OSOs) Available

8 bytes

Total OSOs OSOs per Comm 1 Comm 2 Comm 4 Comm 8 Comm

8 1 2.24 2.263 2.260 N/A

16 1 2.210 2.253 2.260 2.238

32 2 2.210 2.245 2.250 2.236

2048 bytes

OSOs OSOs per Comm 1 Comm 2 Comm 4 Comm 8 Comm

32 2 11.890 11.990 12.154 14.991

64 4 7.695 7.783 8.374 12.229

128 8 5.495 5.533 6.710 10.351

SHARP. The figure of merit used is system-size * number-of-iterations / (solve-time in units of

seconds).

Table 3. AMG Figure-of-Merit (Higher is Better) Data for

Five Different Tests, Run on 64 Nodes with 28 Processes

Per Node, and a System Configured with Low System

Noise

Job Type Laplace 27pt Jumps Pooldist 1 Pooldist 0

non-SHARP 2.10E+09 1.64E+09 2.84E+09 2.45E+09 3.82E+09

SHARP 2.21E+09 1.68E+09 2.86E+09 2.40E+09 3.92E+09

% Change 5.2 2.4 0.7 -2.0 2.6

Discussion and Conclusions

To improve MPI-level aggregation performance, UD-Multicast is used to distribute results

from the root of the aggregation-tree, and SHARP trees that avoid using the host’s inter-socket

bus for aggregations are employed. Employing UD-multicast to distribute the aggregated values

reduces overall operation latency, even though the result is sent twice to ensure reliable delivery,

once using UD-Multicast and once with RC. The UD packets allow for fast result distribution,

with a very low packet-rate loss. The RC packets sent to ensure data delivery arrive a little later,

and impact latency only when the UD packets are lost. This improves eight byte reduction at 128

nodes by 16%, and the 4096 byte latency by 58%. The distribution using UD-Multicast benefits

from the switch’s ability to replicate the data packet to all ports relevant to the multicast group in

parallel, whereas the RC packet replication has some degree of serialization. In addition, for small

message distribution message rate, rather than bandwidth, is the primary performance limiter.

The high message rate, of 195 messages per port, per µ-second supported by the SwitchIB-2

device, is capable of handling the duplicated data.

Towards A Data Centric System Architecture: SHARP
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Using the intra-host bus for data exchange between sockets can be expensive relative to the

intra-socket communication. It is frequently more efficient to avoid using this bus when accessing

the network, and therefore a similar approach has been investigated for SHARP reductions. As

the results show, aggregating data on a per-socket basis also helps reduce operation latency for

small message sizes, reducing the eight byte operation latency by 16% at 128 nodes. However, as

the data size increases, competition for the PCIe bus bandwidth from the host to the network

and the two fold increase in AN radix at the leaf switches make this particular optimization

undesirable.

In general purpose data-centric environments, with multiple jobs running on the system

at the same time jobs compete for a fixed set of resources, unless special care has been taken

to isolate the resources used by separate jobs. In the case of SHARP the AN resources are an

additional set of resources, beyond the host and other network resources that may be shared.

The impact of such sharing on the SHARP latencies has been studied by running concurrent

reductions on the same reduction-tree and limiting the number of concurrent aggregations.

To study the effectiveness of the protocol in a multi-job scenario, where some ANs may

be used by multiple jobs, we ran up to sixteen concurrent collectives simultaneously. This is

expected to be a worse-case type of scenario, because the test forces the collective operation

concurrency. Since application runs typically are not synchronized, and they do more than

just run collective operations, the impact on concurrent running applications using the same

AN resources is expected to be less. The results show that the impact on the small message

reduction latency is small, but as the message size increases the impact of this sharing becomes

noticeable due to the competition for bandwidth. At 2048 byte message size and 128 nodes, a

small impact is noticed when two operations are running concurrently, but with four it is still

advantageous to use the SHARP protocol over the host-based protocol.

We also observed that when there are insufficient resources to pipeline a reduction operation

with independent resources, there are still benefits to such optimization when compared with

the host-based approach. A 2048 byte message size and 128 nodes requires eight OSOs for the

full message reduction to be concurrently in flight. However, providing only two such OSOs still

reduces the operation latency relative to the host-based approach.

Finally, collective operations are known to amplify application load imbalance. Looking at

the per-process spread in collective operations, we see that the SHARP based collectives are less

susceptible to imbalance within the collective algorithms themselves, thus supporting application

scalability better than the host-based algorithms.

In conclusion, this paper has introduced the ability to use UD-multicast for aggregation re-

sult distribution and presented several aspects of the SHARP protocol not previously examined.

Benchmark and application results show that the protocol is effective, and help to show how to

best utilize the underlying SHARP capabilities in a general purpose data-centric environment.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Data intense scientific domains use data compression to reduce the storage space needed.

Lossless data compression preserves information accurately but lossy data compression can achieve

much higher compression rates depending on the tolerable error margins. There are many ways of

defining precision and to exploit this knowledge, therefore, the field of lossy compression is subject

to active research. From the perspective of a scientist, the qualitative definition about the implied

loss of data precision should only matter.

With the Scientific Compression Library (SCIL), we are developing a meta-compressor that

allows users to define various quantities for acceptable error and expected performance behavior.

The library then picks a suitable chain of algorithms yielding the user’s requirements, the ongoing

work is a preliminary stage for the design of an adaptive selector. This approach is a crucial step

towards a scientifically safe use of much-needed lossy data compression, because it disentangles the

tasks of determining scientific characteristics of tolerable noise, from the task of determining an

optimal compression strategy. Future algorithms can be used without changing application code.

In this paper, we evaluate various lossy compression algorithms for compressing different

scientific datasets (Isabel, ECHAM6), and focus on the analysis of synthetically created data that

serves as blueprint for many observed datasets. We also briefly describe the available quantities

of SCIL to define data precision and introduce two efficient compression algorithms for individual

data points. This shows that the best algorithm depends on user settings and data properties.

Keywords: data reduction, compression, lossy, climate data.

Introduction

Climate science is data intense. For this reason, the German Climate Computing Center

spends a higher percentage of money on storage compared to computation. While providing a

peak compute performance of 3.6 PFLOPs, a shared file system of 54 Petabytes and an archive

complex consisting of 70,000 tape slots is provided. Compression offers a chance to increase

the provided storage space or to provide virtually the same storage space but with less costs.

Analysis has shown that with the proper preconditioning an algorithm can achieve a compression

factor of roughly 2.5:1 with lossless compression, i.e., without loss of information [7]. However,

the throughput of compressing data with the best available option is rather low (2 MiB/s per

core). By using the statistical method in [9] to estimate the actual compression factor that can

be achieved on our system, we saw that LZ4fast yield a compression ratio (we define compression

ratio as r =
size compressed

size original
; inverse is the compression factor) of 0.68 but with a throughput

of more than 2 GiB/s on a single core. Therefore, on our system it even outperforms algorithms

for optimizing memory utilization such as BLOSC.

Lossy compression can yield a much lower ratio but at expense of information accuracy and

precision. Therefore, users have to carefully define the acceptable loss of precision and properties

of the remaining data properties. There are several lossy algorithms around that target scientific

applications.

1Deutsches Klimarechenzentrum, Hamburg, Germany
2Universität Hamburg, Hamburg, Germany
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However, their definition of the retained information differs: some allow users to define

a fixed ratio useful for bandwidth limited networks and visualization; most offer an absolute

tolerance and some even relative quantities. The characteristics of the algorithm differs also

on input data. For some data, one algorithm yields a better compression ratio than another.

Scientists struggle to define the appropriate properties for these algorithms and must change

their definition depending on the algorithm decreasing code portability.

In the AIMES project we develop libraries and methods to utilize lossy compression. The

SCIL library3 provides a rich set of user quantities to define from, e.g., HDF5. Once set, the

library shall ensure that the defined data quality meets all criteria. Its plugin architecture utilizes

existing algorithms and aims to select the best algorithm depending on the user qualities and

the data properties.

In the paper [10], we introduced the architecture and idea of the compression library SCIL,

together with two new lossy algorithms and analyzed the results for a single data set of a climate

model. This paper repeats key concepts from the previous paper but its key contribution is

providing new experiments and a different perspective by investigating understandable synthetic

data patterns in depth. Understanding the general properties (ratio, speed) when compressing

different types of data enables us to approximate behavior for similar types of data.

This paper is structured as follows: We give a review over related work in Section 1. The

design is described in Section 2. An evaluation of the compression ratios is given in Section 3.

Final section provides a summary.

1. Related Work

The related work can be structured into: 1) algorithms for the lossless data compression;

2) algorithms designed for scientific data and the HPC environment; 3) methods to identify

necessary data precision and for large-scale evaluation.

Lossless algorithms: The LZ77 [17] algorithm is dictionary-based and uses a “sliding win-

dow”. The concept behind this algorithm is simple: It scans uncompressed data for two largest

windows containing the same data and replaces the second occurrence with a pointer to the

first window. DEFLATE is a variation of LZ77 and uses Huffman coding [5]. GZIP is a popular

lossless algorithm based on DEFLATE.

Lossy algorithms for floating point data: FPZIP [15] was primarily designed for lossless

compression of floating point data. It also supports lossy compression and allows the user to

specify the bit precision. The error-bounded compression of ZFP [15] for up to 3 dimensional

data is accurate within machine epsilon in lossless mode. The dimensionality is insufficient for

the climate scientific data. SZ [4] is a newer and effective HPC data compression method, it

uses a predictor and the lossless compression algorithm GZIP. Its compression ratio is at least

2x better than the second-best solution of ZFP. In [7], compression results for the analysis of

typical climate data was presented. Within that work, the lossless compression scheme MAFISC

with preconditioners was introduced; its compression ratio was compared to that of standard

compression tools reducing data 10% more than the second best algorithm. In [6], two lossy

compression algorithms (GRIB2, APAX) were evaluated regarding to loss of data precision,

3The current version of the library is publicly available under LGPL license:

https://github.com/JulianKunkel/scil
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compression ratio, and processing time on synthetic and climate dataset. These two algorithms

have equivalent compression ratios and depending on the dataset APAX signal quality exceeds

GRIB2 and vice versa.

Methods: Application of lossy techniques on scientific datasets was already discussed in

[2, 3, 8, 12–14]. The first efforts for determination of appropriate levels of precision for lossy

compression method were presented in [1]. By doing statistics across ensembles of runs with full

precision or compressed data, it could be determined if the scientific conclusions drawn from

these ensembles are similar.

In [9], a statistical method is introduced to predict characteristics (such as proportions of file

types and compression ratio) of stored data based on representative samples. It allows file types

to be estimated and, e.g., compression ratio by scanning a fraction of the data, thus reducing

costs. This method has recently been converted to a tool4 that can be used to investigate large

data sets.

2. Design

The main goal of the compression library SCIL is to provide a framework to compress

structured and unstructured data using the best available (lossy) compression algorithms. SCIL

offers a user interface for defining the tolerable loss of accuracy and expected performance as

various quantities. It supports various data types. In Fig. 1, the data path is illustrated. An

application can either use the NetCDF4, HDF5 or the SCIL C interface, directly. SCIL acts

as a meta-compressor providing various backends such as the existing algorithms: LZ4, ZFP,

FPZIP, and SZ. Based on the defined quantities, their values and the characteristics of the data

to compress, the appropriate compression algorithm is chosen5. SCIL also comes with a pattern

library to generate various relevant synthetic test patterns. Further tools are provided to plot,

to add noise or to compress CSV and NetCDF3 files. Internally, support functions simplify the

development of new algorithms and the testing.

SCIL Framework

Application

NetCDF4
+ Quantities support

HDF5
+ Quantities support

+ SCIL Filter

SCIL
C-API

SCIL Tools

HDF5-File

SZ

ZFP

...

1
quantities
and data

2
quantities
and data

3

quantities
and data

4

compressed
data

5
compressed

data

Figure 1. SCIL compression path and components

4https://github.com/JulianKunkel/statistical-file-scanner
5The implementation for the automatic algorithm selection is ongoing and not the focus of this paper. We will

model performance and compression ratio for the different algorithms, data properties and user settings.
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2.1. Supported Quantities

There are three types of quantities supported:

Accuracy quantities define the tolerable error on lossy compression. When compressing the

value v to v̂, it bounds the residual error (r = v − v̂):

• absolute tolerance: v − abstol ≤ v̂ ≤ v + abstol;

• relative tolerance: v/(1 + reltol) ≤ v̂ ≤ v · (1 + reltol);

• relative error finest tolerance: used together with rel tolerance; absolute tolerable

error for small v’s. If relfinest > |v · (1± reltol)|, then v − relfinest ≤ v̂ ≤ v + relfinest;

• significant digits: number of significant decimal digits; and

• significant bits: number of significant digits in bits.

SCIL must ensure that all the set accuracy quantities are honored, meaning that one can

set, e.g., absolute and relative tolerance and the value that is most strict quantity is chosen.

Performance quantities define the expected performance behavior for both compression

and decompression (on the same system). The value can be defined according to: 1) absolute

throughput in MiB or GiB; or 2) relative to network or storage speed. It is considered to be the

expected performance for SCIL but it may not be as strictly handled as the qualities – there

may be some cases in which performance is lower. Thus, SCIL must estimate the compression

rates for the data, this value is not yet covered by the algorithm selection but will be in the

future. The system’s performance must be trained for each system using machine learning.

Supplementary quantities: An orthogonal quantity that can be set is the so called fill value,

a value that scientists use to mark special data points. This value must be preserved accurately

and usually is an specific high or low value that may disturb a smooth compression algorithm.

An example for using the low-level C-API is illustrated in Listing 1.

1 #include <scil.h>

2 int main(){

3 double data [10][20]; // our raw data , we assume it contains sth. useful

4

5 // define the quantities as hints , all specified conditions must hold

6 scil_user_hints_t hints;

7 hints.relative_tolerance_percent = 10;

8 hints.absolute_tolerance = 0.5;

9 hints.significant_digits = 2;

10 // define performance expectation on decompression speed

11 hints.decomp_speed.unit = SCIL_PERFORMANCE_GIB;

12 hints.decomp_speed.multiplier = 3.5;

13 // ... add more quality constaints if desired

14 // create a compression context for a given datatype

15 scil_context_t* ctx;

16 scil_create_context (&ctx , SCIL_TYPE_DOUBLE , 0, NULL , &hints);

17

18 // the multi - dimensional size of the data , here 10 x20

19 scil_dims_t dims;

20 scil_initialize_dims_2d (& dims , 10, 20);

21

22 // the user is responsible to allocate memory for the output/tmp buffers

23 size_t buffer_size = scil_get_compressed_data_size_limit (& dims , SCIL_TYPE_DOUBLE);

24 byte * compressed_data = malloc(buffer_size);

25

26 size c_size; // will hold the number of bytes of the compressed buffer

27 scil_compress(compressed_data , buffer_size , data , &dims , &c_size , ctx);

28 // now do something with the data in compressed_data

Listing 1. Usage of the low-level API

Towards Decoupling the Selection of Compression Algorithms from Quality Constraints...
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2.2. Algorithms

The development of the two algorithms sigbits and abstol has been guided by the definition

of the user quantities. Both algorithms aim to pack the number of required bits as tightly as

possible into the data buffer. We also consider these algorithms useful baselines when comparing

any other algorithm.

2.2.1. Abstol

This algorithm guarantees the defined absolute tolerance. Pseudocode for the Abstol algorithm

is provided in Listing 2.

1 compress(data , abstol , outData){

2 (min ,max) = computeMinMax(data)

3 // quantize the data converting it to integer , according to abstol

4 tmp[i] = round((data[i] - min) * abstol)

5 // compute numbers of mantissa bits needed to store the data

6 bits = ceil(log2 (1.0 + (max - min) / abstol))

7 // now pack the neccessary bits from the integers tightly

8 outData = packData(tmp , bits)

9 }

Listing 2. Pseudocode for the Abstol algorithm

2.2.2. Sigbits

This algorithm preserves the user-defined number of precision bits from the floating point

data but also can honor the relative tolerance. One precision bit means we preserve the floating

point’s exponent and sign bit as floating point implicitly adds one point of precision. All other

precision bits are taken from the mantissa of the floating point data. Notice, that for denor-

malized number (the leading ”hidden” bit is always 0), for example, mantissa 0.0000001 with 5

precision bits will be cutted to 0.00000. That means that the significand part is missed. Note

that the sign bit must only be preserved, if it is not constant in the data. Pseudocode for the

Sigbits algorithm is illustrated in Listing 3. When a relative tolerance is given it is converted to

the number of precision bits.

1 compress(data , precisionBits , outData){

2 // preserve the exponent always

3 (sign , min , max) = computeExponentMinMax(data)

4 // compute numbers of bits needed to preserve the data

5 bits = sign + bits for the exponent + precisionBits - 1

6 // convert preserved bits into an integer using bitshift operators

7 tmp[i] = sign | exponent range used | precision Bits

8 // now pack the bits tightly

9 outData = packData(tmp , bits)

10 }

Listing 3. Pseudocode for the Sigbits algorithm

Since the values around the 0 contain a huge range of exponents in IEEE floating point

representation, e.g., 0 ± 10−324 which is usually not needed, the relative error finest tolerance

limits the precision around 0 to remove exponents and preserve space.

2.3. Compression chain

Internally, SCIL creates a compression chain which can involve several compression algo-

rithms as illustrated in Fig. 2. Based on the basic datatype that is supplied, the initial stage of

the chain is entered. Algorithms may be preconditioners to optimize data layout for subsequent
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Array of
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Preconditioners
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data

process data process data
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Figure 2. SCIL compression chain. The resulting data path depends on the input data type.

Table 1. Schemas for Pattern Names
Pattern name Example

random[mutator][repeat]-[min-max] randomRep10-100

random[min]-[max] random0-1

steps[number] steps2

sin[frequency][iterations] sin35

poly4-[random]-[degree] poly4-65432-14

simplex[frequency][iterations] simplex102

If not specified otherwise, min=0 and max=100.

compression algorithms, converters from one data format to another, or, on the final stage, a

lossless compressor. Floating point data can be first mapped to integer data and then into a

byte stream. Intermediate steps can be skipped.

2.4. Tools

SCIL comes with tools useful for evaluation and analysis: 1) To create synthetic data for

compression studies, i.e., well-defined multi-dimensional data patterns of any size; 2) To modify

existing data adding a random noise based on the hint set; 3) To compress existing CSV and

NetCDF data files.

Synthetic data covers patterns such as constant, random, linear steps (creates a hyper-

plane in the diagonal), polynomial, sinusoidal or by the OpenSimplex algorithm. OpenSimplex

implements a procedural noise generation [11]. An example for the Simplex data is given in

Fig. 3; original data and the compressed data for the Sigbits algorithm preserving 3 bits from

the mantissa. Each pattern can be parameterized by the min/max value, random seed and two

pattern-specific arguments:

• sin: Base frequency (1 means to have one sine wave spanning all dimensions) and number

of recursive iterations by which the frequency is doubled each time and the amplitude is

halved;

• poly4: Initial number for random number generator and degree of the polynomial;

• steps: Number of steps between min/max; and

• simplex: Initial frequency and number of iterations, in each iteration the frequency is

doubled and the amplitude halved.

Additionally, mutators can be applied to these patterns such as step (creating a linear

N-dimensional interpolation for the given number of data points) and repeat which repeats a

number N-times. Explanation of file names used in this paper are listed in Section 2.4.
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3. Evaluation

In the evaluation, we utilize SCIL to compress the data with various algorithms. In all cases,

we manually select the algorithm. The test system is an Intel i7-6700 CPU (Skylake) with 4 cores

@ 3.40GHz; one core is used for the testing and turbo boost is disabled.

3.1. Test Data

All data uses single precision floating point (32 bit) representation. A pool of data is created

10 times with different random seed numbers from several synthetic patterns generated by SCIL’s

pattern library and kept in CSV-files. Synthetic data has the dimensionality of (300 x 300 x 100

= 36 MB).

Additionally, we utilize the output of the ECHAM atmospheric model [16] which stored 123

different scientific variables for a single timestep as NetCDF and the output of the hurricane

Isabel model which stored 633 variables for a single timestep as binary6. The scientific data

varies in terms of properties and in particular, the expected data locality. For example, in the

Isabel data many variables are between 0 and 0.02 many between -80 and +80 and some are

between -5000 and 3000.

3.2. Experiments

For each of the test files, the following setups are run7:

• Lossy compression preserving T significant bits

– Tolerance (T): 3, 6, 9, 15, 20 bits;

– Algorithms: zfp, sigbits, sigbits+lz48;

• Lossy compression with a fixed absolute tolerance

– Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value9;

– Algorithms: zfp, sz, abstol, abstol+lz4.

Each configuration is run 3 times measuring compression and decompression time.

3.3. Understanding Synthetic Patterns

The compression ratios for various synthetic patterns are shown in: Fig. 4 and Fig. 5, the

figures show a variable absolute tolerance and the number of precision bits, respectively. Note

that for random patterns and simplex patterns, 10 different seeds have been applied and each

measurement results in one data point. In most cases, they do not differ notably for a given

precision and algorithm.

Absolute tolerance: First, we look at the random patterns in Fig. 4 and the absolute tol-

erance (left column). The x-axes contains the absolute tolerance between 0.001 and 0.1. In this

experiment, the actual tolerance is computed based on the maximum value to enable comparison

between different datasets. A value of 0.1 means that 10% of the maximum is used as absolute

tolerance. Thus, data can be quantized and encoded in 5 values representing the mean of (0-20%,

6http://vis.computer.org/vis2004contest/data.html
7The versions used are SZ from Aug 14 2017 (git hash 29e3ca1), zfp 0.5.0, LZ4 (Aug 12 2017, 930a692).
8This applies first the Sigbits algorithm and then the lossless LZ4 compression.
9This is done to allow comparison across variables regardless of their min/max. In practice, a scientist would set

the reltol or define the abstol depending on the variable.
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Figure 3. Example of synthetic pattern: Simplex 206 in 2D

20-40%, ...), i.e., 3 bits are needed out of 32 bits⇒ a compression ratio of 9.4% can be achieved.

Therefore, as abstol performs this quantization it is expected to reach that level regardless of

the redundancy in the data which it does. ZFP and SZ predict the next data point based on the

experience, therefore, as expected the achievable ratio for random data is worse than for abstol

by a constant of 0.05. Applying a lossless compressor on pure random data does not help, too.

When interpolating between 10x10x10 neighboring cubes (randomIpol10), then the prediction

of SZ yields a similar performance to abstol. Abstol+LZ4 improves the ratio slightly for inter-

polated data as it may reuse some prefix in data. The ratio is a bit better when compressing

random data between 1-100 vs. -1 and +1, the reason is that twice the number of intervals are

used when data spans a negative and positive range. The randomRep data repeats a value in a

block of 2x2x2 or 10x10x10, therefore, SZ and ZFP reduce their ratio but only to 80% and 66%

for the small and large block, respectively. This is surprising as 8 and 1000 neighboring points

contain the identical value, respectively. For SZ, the interpolation (10x cube) and replication

(2x cube) leads to comparable results. Abstol+LZ4 exploits the redundancy better, even better

than the GZIP lossy compressor as part of SZ. Note that in most cases the achievable ratio is

independent of the random seed for creating the data (ZFP sometimes has some variance).

The polynomial of degree 3 is compressed well by all algorithms, SZ benefits from the

locality. Realistic terrain data is created by the simplex algorithm. In Fig. 5, it can be seen that

SZ and ZFP can predict this pattern well. Abstol+LZ4 cannot exploit the jitter in the data much

but with increasing absolute tolerance, jitter is rounded and repetition can be exploited better.

The more refinements are made by the simplex algorithm, the more fine structures are visible,

increasing the difficulty for ZFP and Abstol+LZ4 to exploit similarities. The prediction steps

of SZ work well in all cases. A similar pattern can be observed with the more simple sinusoidal

patterns, they are a bit more uniform and easier to exploit for all algorithms.

Precision bits: Sigbits uses a number of bits needed for encoding the sign bit and exponent

range (max - min) and the precision bits as defined by the user. For the random data between 0

to 1, 5 bits are used to represent the exponent10 leading to a ratio of 22% for 3 precision bits (= 2

mantissa bits). With negative and positive values an extra bit is needed, using interpolation on a

range between -1 and +1 may cause additional exponents to emerge, reducing the ratio. Since the

remainder of the mantissa looks random, the additional LZ4 stage cannot improve the ratio for

10Since the function rand() is used to create the test data.
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Figure 4. Mean harmonic compression factor for synthetic data based on user settings
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Figure 5. Mean harmonic compression factor for synthetic data based on user settings
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interpolated data but only when repeated data blocks emerge. The regular polynomial benefits

for a low precision from the repeatability but behaves non-linearly. Similarly, this appears for

the variants of the simplex pattern and sin16, the higher the frequency the quicker it degrades.

Sin35 behaves non-monotonic for Sigbits+LZ4, with 15 precision bits the ratio is lower than for

12 bits. The reason presumably is that in this case the resulting number of bits is 20 that allows

LZ4 to find patterns more effectively (6 bits are needed for the exponent covering the range

1-100, 14 bits for the mantissa).

ZFP cannot be compared easily as it does not support the precision bit quantity but a fixed

ratio and compresses data blockwise – this leads to validation errors. For comparison reasons,

we use zfp stream set precision() with the same number of bits as utilized by Sigbits. Still

with a fixed setting, ZFP typically yields a better ratio at the cost of precision.

3.4. Scientific Data

Ratio Depending On Tolerance Next, we investigate the compression factor depending on

the tolerance level for the scientific data. The graphs in Fig. 6 and 7 show the mean compression

factor for two types of climate data files varying the precision for the algorithms ZFP, SZ, Sigbits

and Abstol. The mean is computed on the pool of data, i.e., after compression, a factor of 50:1

means all compressed files occupy only 2% of the original size.

We will discuss the absolute tolerance first: With 1% of tolerance, a compression factor

of more than 15 can be achieved on both data sets. For the ECHAM dataset, Abstol+LZ4

outperforms SZ, for the Isabel data SZ outperforms Abstol+LZ4 initially clearly. In both cases,

the ratio of Abstol+LZ4 improves with the absolute tolerance.

When using precision bits, ZFP yields a better factor on the Isabel data than Sigbits.

However, note that since this dataset uses high fill values, the result cannot be trusted. With

3 precision bits (relative error about 12.5%), a ratio of around 10 is achievable. It can be

concluded that the ECHAM dataset is more random compared to the Isabel data which stores

a finer continuous grid.

Fixed Absolute Tolerance To analyze throughput and compression ratio across variables,

we selected an absolute tolerance of 1% of the maximum value.

Mean values are shown in Tbl. 2a. The synthetic random patterns serve as baseline to

understand the benefit of the lossy compression; we provide the means for the different random

patterns. Abstol+LZ4 yields a 20% reduction compared to SZ for ECHAM and the random

data while for Isabel data it needs about 50% more space. Compression and decompression

Figure 6. Mean harmonic compression factor for ECHAM data based on user settings
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Figure 7. Mean harmonic compression factor for Isabel data based on user settings

speed of Abstol+LZ4 is at least 2x the speed of SZ. LZ4 supports the detection of random data

and avoids compression in that case increasing performance for random data significantly. ZFP

achieves worse compression ratios but with a better compression speed than SZ. For Isabel data

the decompression is even a bit higher than when using Abstol+LZ4.

The results for the individual climate variables are shown in Fig. 8 for ECHAM and Isabel

data; on the x-axis are the different variables sorted on compression ratio to ease identification of

patterns, e.g., to see the impact of higher compression ratio to performance. It can be observed

that for the ECHAM data Abstol+LZ4 yields in most cases the best compression ratio and the

best compression and decompression speeds. For some variables (on the right), SZ compresses

better. When dealing with Isabel data, in most cases SZ outperforms the ratio of Abstol+LZ4,

but for a few Abstol+LZ4 is better. SZ performance is quite robust and so is Abstol but the

LZ4 step depends on the compressability on the data. Both Abstol+LZ4 and SZ reveal some

steps in the data, where the complexity to compress data increases.

Table 2. Harmonic Mean Compression of Scientific Data

Algorithm Ratio Compr. Decomp.

MiB/s MiB/s

E
C

H
A

M

abstol 0.190 260 456

abstol,lz4 0.062 196 400

sz 0.078 81 169

zfp-abstol 0.239 185 301

Is
ab

el

abstol 0.190 352 403

abstol,lz4 0.029 279 356

sz 0.016 70 187

zfp-abstol 0.039 239 428

R
an

d
om

abstol 0.190 365 382

abstol,lz4 0.194 356 382

sz 0.242 54 125

zfp-abstol 0.355 145 241

a) 1% absolute tolerance

Algorithm Ratio Compr. Decomp.

MiB/s MiB/s

E
C

H
A

M sigbits 0.448 462 615

sigbits,lz4 0.228 227 479

zfp-precision 0.299 155 252

Is
ab

el

sigbits 0.467 301 506

sigbits,lz4 0.329 197 366

zfp-precision 0.202 133 281

R
an

d
om

sigbits 0.346 358 511

sigbits,lz4 0.348 346 459

zfp-precision 0.252 151 251

b) 9 bits precision

Fixed Precision Bits Similarly to our previous experiment, we now aim to preserve 9 pre-

cision bits. mean values are given in Tbl. 2b and Fig. 9 shows the ratio and performance across
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a) ECHAM

b) Isabel

Figure 8. Compressing climate data variables with an absolute tolerance of 1% max
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climate variables. The Sigbits algorithm is generally a bit faster than Abstol. It can be seen

that Sigbits+LZ4 outperforms ZFP mostly for ECHAM data, although ZFP does typically not

hold the defined tolerance. For Isabel data ZFP is typically better than Sigbits+LZ4 (but again

does not hold the precision bits). In this case, the LZ4 compression step is beneficial for a small

fraction of files, for 50% it does not bring any benefit.

a) ECHAM

b) Isabel

Figure 9. Compressing climate data variables with 9 precision bits
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Summary
This paper describes the concepts for the scientific compression library (SCIL) and compares

algorithms with the state-of-the-art compressors ZFP and SZ. We investigate various relevant

synthetic test patterns in more detail. As expected the predictors of SZ and ZFP improve the

ratio for continuous data, for data containing repeated patterns or with more randomness, Abstol

can yield a comparable or better ratio. The structure of the data depends on the scientific

meaning of the variable and the scientist setting up the experiment: the output may be a

continuous high resolution variable that is highly predictable or a downsampled version, it may

contain not differentiable data potentially mixed with extreme values (e.g., fill values that mask

points). The difference is relevant since the pattern that repeats a single value within 3D data

block, the compression ratios of all algorithms are behind the expectation. Instead of storing

10x10x10 blocks of the same value, a single point could be stored for each block allowing to

reduce the data volume to 1/1000 while the best algorithm here only yields a reduction to 1/33.

In any case, the performance of Sigbits and Abstol are better than existing algorithms.

Since SCIL aims to choose the best algorithm automatically, it ultimately should be able to

take benefit of both algorithms. We believe that decoupling of the interface to define scientific

precision from the actual algorithm is a mandatory step for the HPC community to move on.

Ongoing work is the development of an algorithm honoring all quantities at the same time and

the automatic chooser for the best algorithm.
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Considering the dynamic nature of new generation scientific problems, load balancing is a ne-

cessity to manage the load in an efficient manner. Load balancing systems are used to optimize the

resource consumption, maximize the throughput, minimize response time, and to prevent overload

in resources. In current research, we consider operational distributed systems with dynamic vari-

ables caused by different nature of the applications and heterogeneity of the various levels in the

system. The conducted studies indicate that many different factors should be considered to select

the load balancing algorithm, including the processing power, load transfer and communication

delay of nodes. In this work, We aim to design a dashboard that is capable of merging the load

balancing algorithms in different environments. We design an adaptive system infrastructure with

the ability to adjust various factors in the run time of a load balancing algorithm. We propose

a task and a resource allocation mechanism and further introduce a mathematical model of load

balancing process in the system. We calculate a normalized hardware score that determines the

maturity of the system according to the environmental conditions of the load balancing process.

The evaluation results confirm that the proposed method performs well and reduces the probability

of system failure.

Keywords: Load Balancing, Resource Management, Dynamic Variables, Communication De-

lay, Distributed System.

Introduction

In the next-generation high performance computing (HPC) systems, the scientific programs

are going to get more complex with unpredictable requests what requires large scale and more

powerful computing systems [3]. Distributed computing system (DCS) is a promising solution to

such demands. DCS consists of a group of computers, each of which has an independent operating

system and all are connected through a network [12]. This definition of distributed computing

systems is very general and covers all types of purposes for user resource connectivity. Users

get connected to resources to receive different facilities and services like computing, file sharing,

I/O sharing, and storage. In distributed computing systems with mission of high performance

computing, the main concern of managing resources is reaching to minimum execution time and

maximum throughput in running scientific/industrial programs [10].

In resource management framework, the load balancer is the key unit in efficient utilization

of resources and improving response time [16]. Load balancing is the distribution of load among

several computing resources such as computers, clusters, network communication lines, central

processing units, or disk drives. The advantages of the load balancing could be categorized

as: optimizing resource consumption, maximizing network throughput, reducing response time,

and preventing overload in each resource. It is known that using multiple components in load

balancing increases reliability and availability [5].

In load balancing mechanism, some parameters have direct impact in efficiency of load

balancing operation. A group of these parameters are determined by specifying the status of

nodes [1]. Practically, the nodes speed up in executing the commands and their current load are
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2Kharazmi University, Tehran, Iran
3Department of Electronics, Informatics, and Systems, University of Calabria (Unical), Rende, Italy
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two important factors in specifying the status of the nodes and making decision to distribute

the load based on them. It is clear that, the load balancer should migrate and transfer the extra

load from over loaded nodes to the ones that are under loaded. Another group of parameters

are related to execution of load balancing mechanism that among them specifying the start

time of load balancing mechanism is an important issue. In one-shot strategy, when extra load

is imposed in the node, the load balancing operation starts to work [11]. The third group of

parameters are related to interconnection platform status. The important effective parameter

in load balancing mechanism from these parameters is the communication delay between the

nodes.

Load balancing should not only be considered in terms of a mechanism that can improve the

computing efficiency. Load balancing is a necessity for large scale computing systems. In such

systems, the whole computation goal may fail if the load balancing is not applied in the system.

on the other-hand, predetermined variables are commonly used in decision-making algorithms

by introducing unchangeable formulas and computing algorithms. Therefore, beside efficient and

optimized algorithms for load balancing, it is important to introduce a framework dashboard

that can also adapt to variation of parameters by choosing different algorithms, dynamically.

Therefore, the two usage of load balancing systems are as follows:

1. Reducing critical points in system: In fact, using load balancing improves the system avail-

ability. If an adaptive load balancing system is used in the network and a node (hardware

or software) corrupts, no failure time is felt from the user’s side.

2. Efficient load distribution by load balancing exploits the full computational power (maxi-

mum available) of system elements.

Standard load balancing manager includes five activities: queuing, scheduling, monitoring,

resource control and accountants. As shown in Fig. 1, queuing is the first phase of load balancing

operation and in this unit the tasks are assigned by user, and the process ends by giving the

result of executed tasks to the user. The aim of these five activities is efficient matching of user-

specified workload to existing resources by keeping balance the load of the system. The standard

process of load balancing manager starts by receiving the jobs from users in queuing unit. After

placement of jobs in queues, scheduling unit is activated. Scheduling is a fundamental technique

for improving performance in computer systems. The scheduler has to balance the priorities of

each job, with the demands of other jobs, the existing system compute and storage resources,

and the governing policies dictated for their use by system administrators. Scheduler should be

able to deal with different types of jobs such as huge jobs, small jobs, real-time jobs, high-priority

jobs, dynamic jobs, static jobs and etc. The scheduler governs the order of execution based on

these independent priority assessments.

The present study aims to develop a load balancing dashboard to monitor the impact of

static and dynamic variables on the non-stop decision making process by the load balancer.

In current research, we consider distributed systems with dynamic variables. We aim to design

and model an adaptive dashboard that is capable to merge the load balancing algorithms in

different environments. We design an adaptive system infrastructure with the ability to adjust

various factors in the run time of a load balancing algorithm. We propose a task and a resource

allocation mechanism and further introduce a mathematical model of load balancing process in

the system. We calculate a normalized hardware score that determines the maturity of system

according to the environmental conditions of the load balancing process. The rest of this paper is

organized as follows: In section 1, we present the related works based on some recent researches
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Figure 1. Standard load balancing manager scheme

and the investigation of Azure Load Balancing system. The effect of communication delay on

load balancing is presented in Section 2 and Section 3 includes our proposed task and resource

allocation mechanism. The mathematical model and scoring model are presented in Section 4,

and evaluation results of the proposed method are presented in Section 5. Finally, Section 6

concludes the paper.

1. Related Works

1.1. Related Researches

Research studies conducted in this area pursued specific goals. The summarized significant

goals in the literature are as follows:

1. In some of the studies, the goal is to propose new methods to improve the performance

of current algorithms for different environments. These studies investigate the performance

of the existing algorithms and proposed combined algorithms derived from the existing

ones [15]. Usually, the authors compare the response time of the proposed algorithms with

the existing ones by simulating the environment through simulation tools.

2. Some studies focus on load balancing algorithms in particular environments (such as public

clouds) [19]. Generally, this approach aims to adapt and optimize load balancing algorithms

based on the implementation variables.

3. Some researchers focus on mathematical approaches to improve the performance of load

balancing algorithms. For example, heuristic optimization and artificial intelligence tech-

niques [8].

4. Some studies focus on the scalability [13]. The scalability is related to the implementa-

tion structure. Normally, the workload of load balancing structures is not predictable (for

example, when a load balancing structure is needed for dynamic load distribution among

processors). Accordingly, the scalability may result in an adaptive load balancing system for

a larger number of environments.
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One of the main challenges of performing a load balancing process, is the right choice of

algorithm. This choice, as mentioned earlier, is influenced by many factors. A lot of studies were

conducted to find a proper algorithm. In [9] authors propose a dynamic parallel scheduling al-

gorithm for load balancing. Several strategies are proposed to distribute the load using dynamic

and distributed load balancing mechanisms, called sender-initiated and receiver-initiated strate-

gies. In the sender-initiated strategy, a portion of the load of over-loaded processor is sent to

another computing node [2]. In receiver-initiated strategy, the under-loaded processor initiates

the transaction by sending a message to other nodes [6]. In [7], authors propose a load balanc-

ing mechanism for massive parallel computations based on sparse grid combination techniques.

In [18], authors present an optimized load balancing algorithm by organizing the tasks in queues

based on task data size and location. The implemented technique is a MATRIX. However, the

portion of the load that should be transferred by forming unpredictable events in runtime is

not specified. The proposed method in [17], named Slum++, employs multiple controllers so

that each one manages a partition of computing nodes and participates in resource allocation

through resource balancing techniques. The authors propose a monitoring-based weakly consis-

tent resource stealing technique to achieve resource balancing in distributed high performance

computing. In [14], authors investigate migration of applications for high performance com-

puting by deriving respective requirements for specific field of applications. In [10], authors

consider practical parameters such as communication delay and propose an optimized dynamic

load balancing algorithm for exasclae distributed computing systems.

1.2. Related Measures

1.2.1. Azure Load Balancing

In this section we review the Azure Load Balancing (ALB) system as a successful and

practical business case as illustrated in Fig. 2. The ALB system is a load balancing service

based on the process as a Service, which provides the highest level of network performance as

well as the highest level of availability under UDP and TCP protocols. This system splits the

traffic among healthy devices in a cloud structure or among distributed virtual machines. ALB

is commonly used in the following cases:

• Splitting traffic of Internet access among virtual machines;

• Splitting traffic among virtual machines in a virtual network, among virtual machines in

a cloud service, or among virtual machines and local computers in a local interconnect

network; and

• Conducting external traffic on a specific virtual machine.

1.2.2. Required Attributes of ALB

In this section, we address the required information to register a task based on a practical

sample of Azure Load Balancing. The following information is collected from the official website

of the Ohio Super Cloud Computing Center. This website uses a batch file to allocate tasks to

servers. In fact, this is a text file containing task allocation settings. The proprietary file formats

are .job or .pbs. This file has its own structure and supports features like commenting. This

center is used to accept a specific scripting task. The required attributes to register a task are

as follows:
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Figure 2. General architecture of Azure Load Balancing

1. Wall Back Time: It represents the maximum allowed runtime for Job. This attribute is

accepted in two formats: second and HH: MM: SS. This is an estimated time, and if our

work exceeds it, it will be eliminated by the system.

2. Nodes: Through this attribute, the number of nodes and node characteristics are specified.

It is also used to specify the number of processors per node or PPN, the number of GPUs

per node or GPUN, and the type of node.

3. Memory: This attribute determines the total amount of memory in all nodes. This feature

is used in special cases when requiring a high-memory node, or when there is no matching

between the number of processors in the node and requested memory.

2. Effect of Communication Delay on Load Balancing

Delay time of load transferring from the nodes with positive load (over-loaded nodes) to

nodes with negative load (under-loaded nodes) should be acceptable and reasonable. If this

amount of the transferring delay be more than the execution time of instructions in that node,

load balancer should use suitable policy such that the total time of program execution be efficient.

For example, consider a node that includes 200 task for execution and the average number of

task execution in this node is 100 tasks per second. In this situation, the load balancer of the

system makes decision to transfer 80 tasks to other node, therefore this node should execute

120 task that due to execution time of one task in this node the total time executing 120 task

will be 1.2 task/s. Now suppose that transferring time of each task to destination node is 0.02

second. In this situation, for transferring 80 tasks, 1.6 seconds is needed. Therefore, based on

this load balancing policy, the source node (the node that distribute its extra load) dont have

any task for execution at least for 0.4 second. On the other hand, the destination node also can

finish its tasks execution long before receiving these new tasks (transferred load). In both cases,

part of the capacity of the system that could be used to execute commands will be lost. This

communication delay is considered in [10]. In this research authors introduce a compensating

factor and find the optimum value based on the modeled optimization problem.
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To illustrate the effect of load transfer delay, we consider a scenario and assume that all

nodes have 300 initial tasks. The load execution speed is considered to be 200 tasks per second

for each node and 100 tasks per second are transferred from one node to another. In this scenario,

we assume that the external load is inserted to node 6 having node 4 as its sole neighbor depicted

in Fig. 3.

Figure 3. Graph of a sample distributed system model

As depicted in Fig. 4, the node 4 performs all assigned tasks at t=0.17 and is in standby

state till t=5.05 when the load from load balancing is reached to node 4. The load balancing is

performed in a way that all nodes finish their tasks together. The standby time of node 4 causes

extra delay in the system and node 4 finish its assigned tasks at t=7.13 while node 6 ends the

tasks at t=2.24. According to the definition of total exertion time, the network execution time

for assigned tasks is equal to t=7.13. So, it is obvious to compensate for this load transfer delay

and to prevent the standby time in the system [10].
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S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 39



3. Proposed Mechanism

In this section, we outline the proposed system. The innovation of proposed mechanism is

described in the following two subsections:

• Task allocation process; and

• Resource allocation process

The main procedure is depicted in Fig. 5. First the user needs to specify the resource

allocation process to prioritize tasks for execution after determining the intended user algorithm

(without the need for coding unlike the existing simulators). In the final step, the user executes

the load balancing procedure and views the results.

Figure 5. The general procedures of load balancing in the proposed system

3.1. Entities Participating in the Load Balancing Process

3.1.1. Virtual Servers

The structure of the entity in the database is depicted in Fig. 6. In simple words, each

virtual server can have one or more Hardware in this system. Each Hardware has exactly one

Hardware Type, and each Hardware Type has one Unit. This structure is used to explain how

the load balancing algorithm is implemented.

Figure 6. Conceptual model of virtual servers

3.1.2. Job/Task

The structure of task/job in the database is depicted in Fig. 7. Each job can have one or

more Hardware Type in this system, and each Hardware Type in the Job needs a consumption.

Therefore, we specify the hardware requirements for different hardware defined in system (in a
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completely dynamic manner). We also use this structure to explain how to implement the load

balancing algorithm in the following section.

Figure 7. Conceptual model of job/task

3.2. Resource Allocation Process

The proposed system can facilitate implementing the required algorithms and allocating

resources in the environment. The general approach is to enable the user to implement algo-

rithms and allocate resources without dealing with complex issues (compared to other existing

simulators, such as SimGrid [4]), by using the structures described in the following section.

3.2.1. Load Balancing and Resource Allocation Process

The load balancing and resource allocation processes are implemented in two ways that are

described separately.

Load balancing process using predetermined algorithms: In this model, the load bal-

ancing and resource allocation processes are performed using the following steps:

1. Selecting tasks (jobs) from the task list defined in the system.

2. Selecting servers from the server list defined in the system.

3. Selecting an algorithm from the following algorithms for selecting tasks.

4. Applying the settings for the resource allocation process.

5. Executing the load balancing process using predefined formulas.

In this procedure, the load balancing process is executed according to the selected settings for

all available queues of job. However, first, the tasks need to be sorted according to the selected

algorithm to form queues. Simply put, the load balancing process is fully executed for all the

job queues. After a complete execution, the load balancing process is executed for the next task

in the queue for all servers (available in the server queue) according to the server settings. This

procedure is summarized in Fig. 8.

Load balancing process using dynamic algorithms: The objective is to create a dy-

namic environment for executing load balancing algorithms according to the user requirements.

The proposed system provides the ability to implement different load balancing algorithms in

runtime through different settings applied by user. This model is depicted in Fig. 9.

4. Mathematical Model of the Proposed System

The load balancing process in proposed system, includes the following steps:

Selecting the task with the highest priority: The task with highest priority is selected

from the queue and is applied to the available servers in the queue to start the load balancing

process. Filter 1 on servers: This filter removes all servers that do not meet all the hardware
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Figure 8. Load balancing process using predetermined algorithms

Figure 9. Load balancing process using dynamic algorithms

requirements. For example, if a job requires four different types of hardware, only the servers

that meet these requirements remain in the list.

virtual Server⇒
Distinct(HardwareType in Jobs) ∈ Distinct(HardwareType in VirtualServere) (1)

Filter 2 on servers: Each hardware type in each server has a total capacity called briefly the

Capacity. There is also an in-use value called In Use. For the current job, we filter all servers

with the Capacity-In-use value higher than the required value for the job.

ΛHardwareTypeVirtualServer⇒
(Capacity-Inuse) in VirtualServer > 0 Λ

(Capacity-Inuse) in VirtualServer > (Consumption) in Job (2)

Now it is time to rate servers according Capacity-In use value, which we called remain

later on. We will calculate the maximum remain for each hardware type on the servers and,
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accordingly, rate each server. That is, the specific score of a hardware type for each hardware

type available on servers is calculated as follows:

Hardware Type Score in VirtualServer =
(Capacity-Inuse) of Current Hardware Type in Current VirtualServer

max
Current Hardware Type in All VirtualServers

(Capacity-Inuse)

(3)

Given the fact that the previous approach leads to the elimination of the unit in computing,

we can calculate a server score according to the scores of different hardware types on a server

as follows:

Score of VirtualServer =
Hardware Type in VirtualServer index=i∑

n

(Capacity-Inuse) of Current Hardware Type in Current VirtualServer
max

Current Hardware Type in All VirtualServers
(Capacity-Inuse)

(4)

With regard to the score obtained for each server, we can determine the optimal server

for the job. Moreover, if the user selects dynamic variable values for participating in the load

balancing process (for each server), the values participated in the computing process according

to their data entry style in the software as follows:

Final Score of VirtualServer =
Hardware Type in VirtualServer index=i∑

n
Hardware Type Score[i]

+
Dynamic Variable in VirtualServer index=i∑

n
Dynamic Variable[i]

(5)

5. Evaluation Results

5.1. Practical Example

In this part a practical example of the execution of the load balancing process is presented.

It is assumed that, according to the settings outlined, the load balancing process is started in the

system, using both dynamic and predetermined formulas. The current job specifications (Top

job in closed queue) and the available server specifications in server queue are presented in Tab.

1 and Tab. 2, respectively.

Table 1. Job 01 Specifications

Job Name Hardware Requirements

Job 01

CPU:0.5 Hz

RAM: 3 GB

HDD: 200 MB

In the first-phase filter, SRV 02 is eliminated due to not having all hardware types required.

In the second-phase filter, SRV 01 is eliminated due to having only 1 GB 8-7 RAM hardware type

that is less than the current job required RAM hardware type, 3 GB. We now need to calculate

the server score between SRV 03 and SRV 04 servers. According to all hardware types that the

job requires, we give scores to the servers. Therefore, SRV 03 server for GPU hardware type
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Table 2. Specification of Virtual Servers

Server Name
Hardware

(Capacity/In use)
Remain

Dynamic Variables

(-100<Score>100)

SRV 01

CPU: (3.2 / 2.1)

Hz

RAM: (8 / 7) GB

HDD: (500 / 100) MB

CPU: 1.1 Hz

RAM: 1 GB

HDD: 400 MB

-

SRV 02
CPU: (3.2 / 0.1) Hz

HDD: (5000 / 2500) MB

CPU: 3.1 Hz

HDD: 2500 MB
Availability: 90

SRV 03

CPU: (4.1 / 1.2)

Hz

RAM: (16 / 3) GB

HDD: (1000/ 100)

MB

GPU: (3.1 / 0.1)

CPU: 2.9 Hz

RAM: 13 GB

HDD: 900 MB

GPU: 3

Availability: -63

SRV 04

CPU: (4.1 / 1.8)

Hz

RAM: (32 / 24)

GB

HDD: (1500 / 350) MB

CPU: 2.3 Hz

RAM: 8 GB

HDD: 1150 MB

Communication Delay: 26

is not given any score, because here this hardware type is not needed. The score is calculated

between the servers remaining in the queue according to each hardware type based on that

hardware type maximum. The score for SRV 03 and SRV 04 is illustrated in Tab. 3.

Table 3. Comparing Score for SRV 03 and SRV 04

Hardware

Types In

Current Job

Maximum Remain

Between All

Hardware

Type in Servers

Score of

SRV 03

Score of

SRV 04

CPU 2.9 Hz (SRV 03) 2.9 Hz/2.9 Hz =1 2.3 Hz/2.9 Hz= 0.79

RAM 13 GB (SRV 03) 13 GB/13 GB= 1 8 GB/13 GB= 0.61

HDD 1150 MB (SRV 04) 900 MB/1150 MB =0.78 1150 MB/1150 MB= 1

SUM 2.78 2.39

So far, the score of each server is calculated based on the proposed algorithm. Now it is time

to apply dynamic variable scores to the system. The result is presented in Tab. 4.

As depicted in Fig. 10 it is clear that the winner server is SRV 04.

5.2. Simulation Procedure

In this section, the simulation steps of a load balancing algorithm in the system is presented.

We simulate the centralized information algorithm and centralized decision-making algorithm

in our proposed dashboard. As mentioned earlier, system information is stored in a single node
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Table 4. Calculating SRV 03 and SRV 04 Score in Dynamic Variable Case

Server Name
Dynamic Variable

Score

Current

Score

Total Score

(Dynamic Variable)

Current

SRV 03 -63 /100 = -0.63 2.78 2.15

SRV 04 26 /100 = 0.26 2.39 2.65

Figure 10. General comparison between SRV 03 and SRV 04

and the decision is applied by the same node in this category of algorithms. The central part is a

subset of this algorithm. Then according to the described example, the dashboard can play the

role of the center in this system. The developed algorithm is based on load balancing process

using dynamic algorithms. At first, we consider some basic rules for the existing environment as

follows:

Rule 1: Some services have uncertain latency in the system. However, the latency can be

generally divided into three categories based on to the range of changes.

• Communication latency of less than 20 milliseconds;

• Communication latency of 21-80 milliseconds; and

• Communication latency of 81-150 milliseconds.

According to the job type in this environment and the execution time, servers with a latency of

more than 151 milliseconds are considered to be rejected, and nothing refers to them.

Rule 2: The custodian of the environment in which the load balancing process is implemented

is a subset of a major organ. According to this fact, the organization will always keep its most

powerful server in reserve, according by order of the same organ, and this fact must be taken

into account for the load balancing process.

Rule 3: Due to financial constraints for the custodian responsible for load balancing, some of

these servers are subject to defects. This will make the custodian prefer, in equal conditions,

that the job (task) is referred to the servers that are not subject to degradation problems.
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Rule 4: Because of the geographical conditions of the area in which the servers are located,

they are subject to high humidity. Therefore, humidity control devices are used to control the

humidity level for the servers in different racks. Currently, it is preferable not to refer the job

to some servers (located on the second floor of the building) which should also be considered in

the implementation of the load balancing process. Given the limitations and conditions above,

we need to implement this algorithm in the environment in such a way that we cover all the

aforementioned aspects.

The Solution for Rule 1: The use of dynamic variables. Given the above and the sensitivity

and importance of time, we define a dynamic variable called Communication Delay to apply the

corresponding servers by using the following rules:

• Communication Delay is zero for servers with a latency of less than 20 milliseconds. So,

we are allowed not to apply this variable to this category of servers because it will not

affect the computing results;

• Communication Delay is -20 for servers with a latency of 21-80 milliseconds; and

• Communication Delay is -60 for servers with a latency of 81-150 milliseconds.

The Solution for Rule 2: The use of system settings when developing the resources allocation

algorithm. This is anticipated when implementing the resource allocation process in the system.

The user determines which server is the winner after the execution of load balancing process in

the system. After determining the second server as the winner, the company’s most powerful

server will be used as reserve.

The Solution for Rule 3: The use of dynamic variables. We can fully cover Rule 3 by defining

a dynamic variable called Quality and set it as follows:

• For servers subject to degradation problems, we consider the value of Quality to be -40;

and

• For the rest of the servers, we consider the value of this variable to be +40.

The Solution for Rule 4: The use of dynamic variables. We define a dynamic variable

called Humidity with a value of -50 for the servers located on the second floor. Now with regard to

the above, we can conclude that all the necessary infrastructures required for the implementation

of the load balancing process are provided through the proposed solutions.

As depicted in Fig.11, the steps to implement a load balancing algorithm using the proposed

system are as follows:

1. Full knowledge of the behavior of the algorithm in terms of both of the load balancing and

resource allocation.

2. Implementation of load balancing approach and resource allocation approach using the dash-

board facilities.

3. Applying the existing limitations and rules to the system by defining related dynamic vari-

ables.

Conclusion

Load balancing is a key necessity to many computing systems. Load balancing not only

improves the performance but also decrease the system failure points. In practice, a load bal-

ancing algorithm include many different variables. Depending on the type, these variables, can

have a wide level of influences on runtime as well as the overall system efficiency. In this re-

search we proposed a flexible dashboard in the environments of load balancing algorithms. In

this approach, we improved the flexibility of the system to be adaptive to dynamic variables. We
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Figure 11. General method for implementing load balancing algorithms in the proposed dash-

board

designed a rule-based dashboard to manage the load balancing process in real-time runtime. We

proposed a scoring system to find the best computing node based on the task specification in an

adaptive manner. We showed that our proposed system is capable if change the boundaries and

limitations of the system, changing the load balancing process, introducing new variables and

removing the existing ones and measuring the running algorithm in the system. We evaluated

our proposed system based at a practical implementation. We also presented a simulation based

on different rules in a limited environment. Evaluation results proved that the proposed system

reduced the probability of the system failure and also determined the maturity of the system

according to the environmental conditions of the load balancing process.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Performance events or performance monitoring counters (PMCs) are now the dominant pre-

dictor variables for modeling energy consumption. Modern hardware processors provide a large

set of PMCs. Determination of the best subset of PMCs for energy predictive modeling is a non-

trivial task given the fact that all the PMCs can not be determined using a single application run.

Several techniques have been devised to address this challenge. While some techniques are based

on a statistical methodology, some use expert advice to pick a subset (that may not necessarily

be obtained in one application run) that, in experts’ opinion, are significant contributors to en-

ergy consumption. However, the existing techniques have not considered a fundamental property

of predictor variables that should have been applied in the first place to remove PMCs unfit for

modeling energy. We address this oversight in this paper.

We propose a novel selection criterion for PMCs called additivity, which can be used to de-

termine the subset of PMCs that can potentially be used for reliable energy predictive modeling.

It is based on the experimental observation that the energy consumption of a serial execution of

two applications is the sum of energy consumptions observed for the individual execution of each

application. A linear predictive energy model is consistent if and only if its predictor variables are

additive in the sense that the vector of predictor variables for a serial execution of two applications

is the sum of vectors for the individual execution of each application. The criterion, therefore, is

based on a simple and intuitive rule that the value of a PMC for a serial execution of two appli-

cations is equal to the sum of its values obtained for the individual execution of each application.

The PMC is branded as non-additive on a platform if there exists an application for which the

calculated value differs significantly from the value observed for the application execution on the

platform. The use of non-additive PMCs in a model renders it inconsistent.

We study the additivity of PMCs offered by the popular state-of-the-art tools, Likwid and

PAPI, by employing a detailed experimental methodology on a modern Intel Haswell multicore

server CPU. We show that many PMCs in Likwid and PAPI that are widely used in models as

key predictor variables are non-additive. This brings into question the reliability and the reported

prediction accuracy of these models.

Keywords: performance events, PMC, energy predictive models, Likwid, PAPI.

Introduction

Performance events or performance monitoring counters (PMCs) are special-purpose regis-

ters provided in modern microprocessors to store the counts of software and hardware activities.

We will use the acronym PMCs to refer to software events, which are pure kernel-level coun-

ters such as page-faults, context-switches, etc. as well as micro-architectural events originating

from the processor and its performance monitoring unit called the hardware events such as

cache-misses, branch-instructions, etc. They have been developed primarily to aid low-level per-

formance analysis and tuning. Remarkably while PMCs have not been used for performance

modeling, over the years, they have become dominant predictor variables for energy predictive

modeling.

Modern hardware processors provide a large set of PMCs. Consider the Intel Haswell mul-

ticore server CPU whose specification is shown in Tab. 1. On this server, the PAPI tool [19]

provides 53 hardware performance events. The Likwid tool [17, 23] provides 167 PMCs. This
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Table 1. Specification of the Intel Haswell Multicore CPU

Technical Specifications Intel Haswell Server

Processor Intel E5-2670 v3 @2.30GHz

OS CentOS 7

Micro-architecture Haswell

Thread(s) per core 2

Cores per socket 12

Socket(s) 2

NUMA node(s) 2

L1d cache 32 KB

L11 cache 32 KB

L2 cache 256 KB

L3 cache 30720 KB

Main memory 64 GB DDR4

Memory bandwidth 68 GB/sec

TDP 240 W

Idle Power 58 W

includes events for uncore and micro-operations (µops) of CPU cores specific to Haswell archi-

tecture that are not provided by PAPI. However, all the PMCs can not be determined using a

single application run since only a limited number of registers is dedicated to collecting them.

For example, to collect all the Likwid PMCs for a single runtime configuration of an application

on the server, the application must be executed 53 times. It must be also pointed out that energy

predictive models based on PMCs are not portable across a wide range of architectures. While

a model based on either Likwid PMCs or PAPI PMCs may be portable across Intel and AMD

architectures, it will be unsuitable for GPU architectures.

Therefore, there are three serious constraints that pose difficult challenges to employing

PMCs as predictor variables for energy predictive modeling. First, there is a large number of

PMCs to consider. Second, tremendous programming effort and time are required to automate

and collect all the PMCs. This is because all the PMCs can not be collected in one single

application run. Third, a model purely based on PMCs lacks portability. In this paper, we focus

mainly on techniques employed to select a subset of PMCs to be used as predictor variables for

energy predictive modeling. We now present a brief survey of them.

O’Brien et al. [18] survey the state-of-the-art energy predictive models in HPC and present a

case study demonstrating the ineffectiveness of the dominant PMC-based modeling approach for

accurate energy predictions. In the case study, they use 35 carefully selected PMCs (out of a total

of 390 available in the platform) in their linear regression model for predicting dynamic energy

consumption. [1, 9, 10] select PMCs manually, based on in-depth study of architecture and

empirical analysis. [8, 15, 18, 21, 22, 27, 30] select PMCs that are highly correlated with energy

consumption using Spearman’s rank correlation coefficient (or Pearson’s correlation coefficient)

and principal component analysis (PCA). [1, 2, 15] use variants of linear regression to remove

PMCs that do not improve the average model prediction error.

From the survey, we can classify the existing techniques into three categories. The first

category contains techniques that consider all the PMCs with the goal to capture all possible
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contributors to energy consumption. To the best of our knowledge, we found no research works

that adopt this approach. This could be due to several reasons: a) Gathering all PMCs requires

huge programming effort and time; b) Interpretation (for example, visual) of the relationship

between energy consumption and PMCs is difficult especially when there is a large number of

PMCs; c) Dynamic or runtime models must choose PMCs that can be gathered in just one

application run; d) Typically, simple models (those with less parameters) are preferred over

complex models not because they are accurate but because simplicity is considered a desirable

virtue.

The second category consists of techniques that are based on a statistical methodology. The

last category contains techniques that use expert advice or intuition to pick a subset (that may

not necessarily be determined in one application run) and that, in experts’ opinion, is a dominant

contributor to energy consumption. However, the existing techniques have not considered one

fundamental property of predictor variables that should have been considered in the first place

to remove PMCs unfit for modeling energy. We address this oversight in this paper.

We propose a novel selection criterion for PMCs called additivity, which can be used to de-

termine the subset of PMCs that can potentially be used for reliable energy predictive modeling.

It is based on the experimental observation that the energy consumption of a serial execution

of two applications is the sum of energy consumptions observed for the individual execution of

each application. We define a compound application to represent a serial execution of a combi-

nation of two or more individual applications. The individual applications are also termed as

base applications.

A linear predictive energy model is consistent if and only if its predictor variables are additive

in the sense that the vector of predictor variables for a compound application is the sum of vectors

for the individual execution of each application. The additivity criterion, therefore, is based on

simple and intuitive rule that the value of a PMC for a compound application is equal to the sum

of its values for the executions of the base applications constituting the compound application.

We brand a PMC non-additive on a platform if there exists a compound application for which

the calculated value significantly differs from the value observed for the application execution on

the platform (within a tolerance of 5.0%). If we fail to find a compound application (typically

from a sufficiently large suite of compound applications) for which the additivity criterion is

not satisfied, we term the PMC as potentially additive, which means that it can potentially be

used for reliable energy predictive modeling. By definition, a potentially additive PMC must be

deterministic and reproducible, that is, it must exhibit the same value (within a tolerance of

5.0%) for different executions of the same application with same runtime configuration on the

same platform.

The use of a non-additive PMC as a predictor variable in a model renders it inconsistent

and therefore unreliable.

We study the additivity of PMCs offered by two popular tools, Likwid and PAPI, by employ-

ing a detailed statistical experimental methodology on a modern Intel Haswell multicore server

CPU. We observe that all the Likwid PMCs and PAPI PMCs are reproducible. However, we

show that while many PMCs are potentially additive, a considerable number of PMCs are not.

Some of the non-additive PMCs are widely used in energy predictive models as key predictor

variables.

For each non-additive PMC, we determine the maximum percentage error (averaged over

several runs) observed experimentally. This is the ratio of the difference between the PMC of

Additivity: A Selection Criterion for Performance Events for Reliable Energy Predictive...

52 Supercomputing Frontiers and Innovations



a compound application and the sum of the PMCs of the base applications and the sum of

the PMCs. We show that there is a PMC where the error is as high as 3075% and there are

several PMCs where the error is over 100%. This brings into question the reliability and reported

prediction accuracy of models that use these PMCs.

Our key contribution in this work is that we propose a novel criterion called additivity that

can be used to identify PMCs not suitable for energy predictive modeling. PMCs offered by

popular tools such as Likwid and PAPI are classified based on this criterion using a detailed

experimental methodology on a modern Intel Haswell multicore server CPU. In our future work,

we plan to classify the non-additivity of PMC into application-specific and platform-specific

categories.

The rest of the paper is structured as follows. Section 1 surveys popular tools that provide

programmatic and command-line interfaces to obtain PMCs. In Section 2, we define the property

of additivity and explain why it is important for reliable energy predictive modeling. Section 3

presents the experimental methodology used to determine the additivity of Likwid and PAPI

PMCs. Sections 4 and 5 present a classification of Likwid and PAPI PMCs respectively based

on the criterion of additivity. Finally, Section 6 concludes the paper.

1. Related Work

This section is divided into two parts. In the first part, we present tools widely used to

obtain PMCs. In the second part, we survey notable research on selection of PMCs for power

and energy modeling from a large set supplied by a tool.

1.1. Tools to Determine PMCs

PAPI [19] provides a standard API for accessing PMCs available on most modern micropro-

cessors. It provides two types of events, native events and preset events. Native events correspond

to PMCs native to a platform. They form the building blocks for preset events. A preset event

is mapped onto one or more native events on each hardware platform. While native events are

specific to each platform, preset events obtained on different platforms can not be compared.

Likwid [22] provides command-line tools and an API to obtain PMCs for both Intel and

AMD processors on the Linux OS.

For Nvidia GPUs, CUDA Profiling Tools Interface (CUPTI ) [3] can be used for obtaining

the PMCs. Intel PCM [14] is used for reading PMCs of core and uncore (which includes the

QPI) components of an Intel processor. Perf [25] also called perf events can be used to gather

the PMCs for CPUs in Linux.

1.2. Techniques for Selection of PMCs for Energy Predictive Modeling

All the models surveyed in this section are linear energy predictive models.

Singh et al. [20] use PMCs provided by AMD Phenom processor. They divide the PMCs

into four categories and rank them in the increasing order of correlation with power using the

Spearman’s rank correlation. Then they select the top PMC in each category (four in total) for

their energy prediction model.

Goel et al. [8] divide PMCs into event categories that they believe capture different kinds

of microarchitectural activity. The PMCs in each category are then ordered based on their

A. Shahid, M. Fahad, R. Reddy, A. Lastovetsky

2017, Vol. 4, No. 4 53



correlation to power consumption using the Spearman’s rank correlation. The PMCs with less

correlation are then investigated by analyzing the accuracy of several models that employ them.

Kadayif et al. [16] present a PMC-based model for predicting energy consumption of pro-

grams on a UltraSPARC platform. The platform provides 30 different PMCs. However, they use

only eight and do not specify how they have selected them.

Lively et al. [17] employ 40 PMCs in their predictive model. They use an elaborate statistical

methodology to select PMCs. They compute the Spearman’s rank correlation for each PMC and

remove those below a threshold. They compute the principal components (PCA) of the remaining

PMCs and select those with the highest PCA coefficients. Bircher et al. [1] employ an iterative

linear regression modeling process where they add a PMC at each step and stop until desired

average prediction error is achieved.

Song et al. [21] select a group of PMCs (for their energy model of Nvidia Fermi C2075 GPU)

that are strongly correlated to power consumption based on the Pearson correlation coefficient.

Witkowski et al. [26] use PMCs provided by the Perf tool for their model. They use the

correlation (Pearson correlation coefficient) between a PMC and the measured power consump-

tion and select those PMCs, which have high correlation coefficients. Although they find that

the PMCs related to DRAM have a low correlation with power consumption, they still use them

since these variables signify intensity of DRAM operations, which contribute significantly to

power consumption.

Gschwandtner et al. [9] deal with the problem of selecting the best subset of PMCs on the

IBM POWER7 processor, which offers over 500 different PMCs. They first manually select a

medium number of hardware counters that they believe are prominent contributors to energy

consumption. Then they empirically select a subset from their initial selection. Jarus et al. [15]

use PMCs provided by the Perf tool for their models. The PMCs employed differ for different

models and are selected using two-stage process. In the first stage, PMCs that are correlated

90% or above are selected. In the second stage, stepwise regression with forward selection is used

to decide the final set of PMCs.

Haj-Yihia et al. [10] start with a set of 23 PMCs (offered by Likwid) based on expert

knowledge of the Intel architecture. Then they perform linear regression iteratively where they

drop PMCs (one by one) that do not impact the average prediction error of their model.

Wu et al. [29] use the Spearman correlation coefficient and PCA to select the subset of

PMCs, that are highly correlated with power consumption. Chadha et al. [2] select a particular

PMC from the list of PAPI PMCs available for their platform and check if it fits well with linear

regression model. If it does, they select it as a key parameter for their modeling and experimental

study. Otherwise, they skip it.

2. Additivity: Definition

The additivity criterion is based on simple and intuitive rule that the value of a PMC for a

compound application is equal to the sum of its values for the executions of the base applications

constituting the compound application.

We brand a PMC non-additive on a platform if there exists a compound application for which

the calculated value significantly differs from the value observed for the application execution on

the platform (within a tolerance of 5.0%). If the experimentally observed PMCs (sample means)

of two base applications are e1 and e2 respectively, then a non-additive PMC of the compound

Additivity: A Selection Criterion for Performance Events for Reliable Energy Predictive...

54 Supercomputing Frontiers and Innovations



Table 2. List of Applications

Application Description

NPB IS Integer Sort, Kernel for random memory access

NPB LU Lower-Upper Gauss-Seidel solver

NPB EP Embarrassingly Parallel, Kernel

NPB BT Block Tri-diagonal solver

NPB MG Multi-Grid on a sequence of meshes

NPB FT Discrete 3D fast Fourier Transform

NPB DC Data Cube

NPB UA Unstructured Adaptive mesh, dynamic and irregular

memory access

NPB CG Conjugate Gradient

NPB SP Scalar Penta-diagonal solver

NPB DT Data traffic

MKL FFT Fast Fourier Transform

MKL DGEMM Dense Matrix Multiplication

HPCG High performance conjugate gradient

stress CPU, disk and I/O stress

Naive MM Naive Matrix-matrix multiplication

Naive MV Naive Matrix-vector multiplication

application will experimentally exhibit a count that does not lie between (e1 + e2)× (1− ε) and

(e1 + e2)× (1 + ε), where the tolerance ε = 0.05.

If we fail to find a compound application (typically from a large set of diverse compound

applications) for which the additivity criterion fails, we term the PMC as potentially additive,

which means that it can potentially be used for reliable energy predictive modeling. By definition,

a potentially additive PMC must be deterministic and reproducible, that is, it must exhibit the

same value (within a tolerance of 5.0%) for different executions of the same application with the

same runtime configuration on the same platform.

The use of a non-additive PMC as a predictor variable in a model renders it inconsistent

and therefore unreliable. We explain this point using a simple example. Consider an instance of

an energy prediction model that uses a non-additive PMC as a predictor variable. A natural and

intuitive approach to predict the energy consumption of an application that executes two base

applications one after the other is to substitute the sum of the PMCs for the base applications

in the model. However, since the PMC is non-additive, the prediction would be very inaccurate.

Therefore, using non-additive PMCs in energy predictive models adds noise and can signif-

icantly damage the predicting power of energy models based on them.

We now present a test to determine if a PMC is non-additive or potentially additive. We

call it the additivity test.

2.1. Additivity Test

The test consists of two stages. A PMC must pass both stages to be declared additive for a

given compound application on a given platform. At the first stage, we determine if the PMC is

deterministic and reproducible.
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At the second stage, we examine how the PMC of the compound application relates to

its values for the base applications. At first, we collect the values of the PMC for the base

applications by executing them separately. Then, we execute the compound application and

obtain its value of the PMC. Typically, the core computations for the compound application

consist of the core computations of the base applications programmatically placed one after the

other. This has to be the case for PAPI PMCs. However, for Likwid PMCs, one can use the

system call to invoke the base application. It must also be ensured that the execution of the

compound application takes place under platform conditions similar to those for the execution

of its constituent base applications.

If the PMC of the compound application is equal to the sum of the PMCs of the base

applications (with a tolerance of 5.0%), we classify the PMC as potentially additive. Otherwise,

it is non-additive.

We call the PMC that passes the additivity test potentially additive. For it to be called

absolutely additive on a platform, ideally it must pass the test for all conceivable compound

applications on the platform. Therefore, we avoid this definition.

In our experiments, we observed that all the PMCs were deterministic and reproducible.

For each PMC, we determine the maximum percentage error. For a compound application,

the percentage error (averaged over several runs) is calculated as follows:

Error(%) = (|(eb1 + eb2)− ec
eb1 + eb2

|)× 100 (1)

where ec, eb1, eb2 are the sample means of predictor variables for the compound application and

the constituent base applications respectively. The maximum percentage error is then calculated

as the maximum of the errors for all the compound applications in the experimental testsuite.

3. Experimental Methodology to Obtain Likwid and PAPI

PMCs

In this section, we present our experimental setup to determine the additivity of PMCs.

The experiments are performed on the Intel Haswell multicore CPU platform (specifications

given in Tab. 1). We used diverse range of applications (both compute-bound and memory-

bound) in our testsuite composed of NAS parallel benchmarking suite (NPB), Intel math kernel

library (MKL), HPCG [13], and stress [24] (description given in Tab. 2). The experimental

workflow is shown in Fig. 1 where the internals of the server are shown in great detail.

For each run of a application in our testsuite, we measure the following: 1) Dynamic energy

consumption, 2) Execution time, and 3) PMCs. The dynamic energy consumption and the

application execution time are obtained using the HCLWattsUp interface [11]. We would like

to mention that the output variables (or response variables) in the performance and energy

predictive models, i.e. energy consumption and execution time, are additive. We confirm this via

thorough experimentation and therefore we will not discuss them hereafter.

We now present our experimental methodologies for determining Likwid and PAPI PMCs.

3.1. LIKWID PMCs

In this section, we explain the experimental methodology to obtain Likwid PMCs.
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Figure 1. Experimental workflow to determine the PMCs on the Intel Haswell server.

A sample Likwid command-line invocation is shown below where EVENTS represents one

or more PMCs, which are collected during the execution of the given application APP :

likwid-perfctr -f -C S0:0-11@S1:12-23 -g EVENTS APP

Here, the application (APP ) during its execution is pinned to physical cores (0-11, 12-23)

in our platform. Since Likwid does not provide option to bind application to memory, we have

used numactl, i.e. a command-line linux tool, with option –membind to pin our applications

to memory blocks (for our platform numactl gives 2 memory blocks, 0 and 1). The list of

comma-separated PMCs is specified in EVENTS. For example, the following command:

likwid-perfctr -f -C S0:0-11@S1:12-23

-g ICACHE ACCESSES:PMC0,ICACHE MISSES:PMC1

numactl –membind=0,1 APP

determines the counts for two PMCs, ICACHE ACCESSES:PMC0 and ICACHE

MISSES:PMC1.

Collection of all PMCs requires significant programming efforts and execution time because

only a limited number of PMCs can be obtained in a single application run due to the limited
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number of registers dedicated to collecting PMCs. In addition, to ensure the reliability of our

results, we follow a detailed statistical methodology where sample mean of a PMC is used. It

is calculated by executing the application repeatedly until it lies in the 95% confidence interval

and a precision of 0.050 (5.0%) has been achieved. For this purpose, Student’s t-test is used

assuming that the individual observations are independent and their population follows the

normal distribution. We verify the validity of these assumptions by plotting the distributions of

observations.

Likwid provides 167 PMCs for our platform. In order to collect all of them for an application,

we have to run the application 53 times. We wrote a software tool to automate this collection

process, SLOPE-PMC-LIKWID [12].

Before we apply the additivity test, we remove few PMCs such as IIO CREDIT (related to

I/O and QPI), and OFFCORE RESPONSE since they exhibit zero counts. We also remove

PMCs having very low count (less than 10). The resulting dataset contained 151 performance

events, which are then input to the additivity test.

3.2. PAPI PMCs

In this section, we explain the experimental methodology to obtain PAPI PMCs.

We check the available PAPI PMCs for our Intel Haswell platform using the command-line

invocation, ′papi avail − a′. We found that a total of 53 PMCs are available. The number of

PMCs that can be gathered in a single application run varies. While gathering a set of 4 PMCs

is common, there are a few event sets, which can contain up to 2 or 3 PMCs. Therefore, we

found that the application has to be executed 14 times in order to collect all the PMCs for the

application on our platform.

We wrote a software tool to automate the process of collection of PMCs, SLOPE-PMC-

PAPI [12]. It is to be noted that for ensuring the reliability of our experimental results, we

follow the same statistical methodology that was followed for determining Likwid PMCs.

4. Additivity of Likwid PMCs

In this section, we determine the additivity of Likwid PMCs. We execute all the compound

applications where each application is composed of two base applications in our testsuite (shown

in Tab. 2).

The list of potentially additive PMCs is shown in the Tab. 3. The list of non-additive PMCs

is presented in Tab. 4, which also reports the maximum percentage error for each PMC.

It is noteworthy that some non-additive PMCs are used as predictor variables in many

energy predictive models [5, 6, 10, 20, 23]. These are ICache events, L2 Transactions, and L2

Requests.

5. Additivity of PAPI PMCs

In this section, we determine the additivity of PAPI PMCs. We again execute all the com-

pound applications where each application is composed of two base applications in our testsuite

(shown in Tab. 2).

The list of potentially additive PMCs is shown in Tab. 5. The list of non-additive PMCs is

shown in Tab. 6, which also reports the maximum percentage error for each PMC.
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Table 3. List of Potentially Additive Likwid PMCs

BR INST EXEC ALL BRANCHES IDQ UOPS NOT DELIVERED CYCLES 0 UOPS DELIV CORE
BR MISP EXEC ALL BRANCHES IDQ UOPS NOT DELIVERED CYCLES FE WAS OK
BR INST RETIRED ALL BRANCHES UOPS EXECUTED PORT PORT 0
BR MISP RETIRED ALL BRANCHES UOPS EXECUTED PORT PORT 1
DRAM CLOCKTICKS UOPS EXECUTED PORT PORT 2
SNOOPS RSP AFTER DATA LOCAL UOPS EXECUTED PORT PORT 3
SNOOPS RSP AFTER DATA REMOTE UOPS EXECUTED PORT PORT 4
RXL FLITS G1 DRS NONDATA UOPS EXECUTED PORT PORT 5
RXL FLITS G0 NON DATA UOPS EXECUTED PORT PORT 6
TXL FLITS G0 NON DATA UOPS EXECUTED PORT PORT 7
CPU CLK UNHALTED ANY UOPS EXECUTED PORT PORT 0 CORE
CPU CLOCK UNHALTED THREAD P UOPS EXECUTED PORT PORT 1 CORE
CPU CLOCK UNHALTED THREAD P ANY UOPS EXECUTED PORT PORT 2 CORE
CPU CLOCK UNHALTED REF XCLK UOPS EXECUTED PORT DATA PORTS
CPU CLOCK UNHALTED REF XCLK ANY L2 RQSTS ALL DEMAND REFERENCES
HA R2 BL CREDITS EMPTY LO HA0 L2 RQSTS L2 PF MISS
HA R2 BL CREDITS EMPTY LO HA1 MEM UOPS RETIRED ALL
CPU CLOCK THREAD UNHALTED
ONE THREAD ACTIVE

UOPS EXECUTED PORT PORT 3 CORE

CPU CLOCK UNHALTED TOTAL CYCLES UOPS EXECUTED PORT PORT 4 CORE
OFFCORE REQUESTS OUTSTANDING
DEMAND DATA RD

UOPS EXECUTED PORT PORT 5 CORE

OFFCORE REQUESTS OUTSTANDING
CYCLES WITH DATA RD

UOPS EXECUTED PORT PORT 6 CORE

OFFCORE REQUESTS OUTSTANDING
DEMAND DATA RD C6

UOPS EXECUTED PORT PORT 7 CORE

UOPS EXECUTED PORT DATA PORTS UOPS EXECUTED PORT ARITH PORTS
OFFCORE REQUESTS DEMAND DATA RD UOPS EXECUTED PORT ARITH PORTS CORE
HA R2 BL CREDITS EMPTY HI R2 NCB UOPS EXECUTED PORT DATA PORTS
CPU CLOCK UNHALTED THREAD P UOPS RETIRED CORE TOTAL CYCLES
CPU CLOCK UNHALTED THREAD P ANY LSD CYCLES 4 UOPS
CPU CLOCK UNHALTED REF XCLK UOPS EXECUTED THREAD
CPU CLOCK UNHALTED REF XCLK ANY UOPS EXECUTED USED CYCLES
CPU CLOCK THREAD UNHALTED
ONE THREAD ACTIVE

UOPS EXECUTED STALL CYCLES

CPU CLOCK UNHALTED TOTAL CYCLES UOPS EXECUTED TOTAL CYCLES
ICACHE MISSES UOPS EXECUTED CYCLES GE 1 UOPS EXEC
L2 RQSTS RFO MISS UOPS EXECUTED CYCLES GE 2 UOPS EXEC
L2 RQSTS ALL RFO UOPS EXECUTED CYCLES GE 3 UOPS EXEC
L2 RQSTS CODE RD HIT UOPS EXECUTED CYCLES GE 4 UOPS EXEC
L2 RQSTS CODE RD MISS UOPS EXECUTED CORE
UOPS EXECUTED PORT DATA PORTS UOPS EXECUTED CORE USED CYCLES
MEM LOAD UOPS RETIRED ALL ALL UOPS EXECUTED CORE STALL CYCLES
UOPS ISSUED ANY UOPS EXECUTED CORE TOTAL CYCLES
UOPS ISSUED USED CYCLES UOPS EXECUTED CORE CYCLES GE 1 UOPS EXEC
UOPS ISSUED STALL CYCLES UOPS EXECUTED CORE CYCLES GE 2 UOPS EXEC
UOPS ISSUED TOTAL CYCLES UOPS EXECUTED CORE CYCLES GE 3 UOPS EXEC
UOPS ISSUED CORE USED CYCLES UOPS EXECUTED CORE CYCLES GE 4 UOPS EXEC
UOPS ISSUED CORE STALL CYCLES UOPS RETIRED ALL
UOPS ISSUED CORE TOTAL CYCLES UOPS RETIRED CORE ALL
IDQ MITE ALL UOPS UOPS RETIRED RETIRE SLOTS
IDQ DSB UOPS UOPS RETIRED CORE RETIRE SLOTS
IDQ MS UOPS UOPS RETIRED USED CYCLES
IDQ ALL DSB CYCLES ANY UOPS UOPS RETIRED STALL CYCLES
IDQ ALL DSB CYCLES 4 UOPS UOPS RETIRED TOTAL CYCLES
IDQ ALL MITE CYCLES ANY UOPS UOPS RETIRED CORE USED CYCLES
IDQ UOPS NOT DELIVERED CORE UOPS RETIRED CORE STALL CYCLES
CAS COUNT RD CAS COUNT WR

CAS COUNT ALL

It should be mentioned that some of these non-additive PMCs such as PAPI L1 ICM and

PAPI L2 ICM have been widely used in energy and performance predictive models [2, 4, 7,

17, 27, 28]. These represent L1 and L2 instruction cache misses.
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Table 4. List of Non-additive Likwid PMCs

Event Name Maximum Percentage Error (%)
UNCORE CLOCK 16.98
CBOX CLOCKTICKS 16.98
SBOX CLOCKTICKS 17.08
WBOX CLOCKTICKS 17.57
BBOX CLOCKTICKS 16.98
PBOX CLOCKTICKS 16.98
RBOX CLOCKTICKS 16.98
QBOX CLOCKTICKS 17.57
HA R2 BL CREDITS EMPTY LO R2 NCB 45.27
HA R2 BL CREDITS EMPTY LO R2 NCS 48.28
HA R2 BL CREDITS EMPTY HI HA0 203.15
HA R2 BL CREDITS EMPTY HI HA1 213.15
HA R2 BL CREDITS EMPTY HI R2 NCS 250.56
OFFCORE RESPONSE 0 DMND DATA RD ANY 47.50
ICACHE IFETCH STALL 86.60
L2 RQSTS RFO HIT 27.44
ARITH DIVIDER UOPS 3075.23
IDQ UOPS NOT DELIVERED CYCLES LE 1
UOP DELIV CORE

163.64

IDQ UOPS NOT DELIVERED CYCLES LE 2
UOP DELIV CORE

89.16

L2 RQSTS L2 PF HIT 39.41
ICACHE HIT 105.45
RXL FLITS G0 DATA 176.62
OFFCORE REQUESTS OUTSTANDING
ALL DATA RD

33.76

OFFCORE REQUESTS ALL DATA RD 42.45
IDQ MITE UOPS 42.06
L2 RQSTS ALL DEMAND DATA RD 52.76
L2 TRANS DEMAND DATA RD 24.29
L2 RQSTS ALL DEMAND DATA RD MISS 29.14
L2 RQSTS ALL DEMAND DATA RD HIT 35.09
L2 RQSTS ALL DEMAND DATA RD 39.43
L2 TRANS DEMAND DATA RD 52.43
L2 RQSTS ALL DEMAND DATA RD MISS 56.23
L2 RQSTS ALL DEMAND DATA RD HIT 72.32
L2 RQSTS ALL DEMAND DATA RD 35.03
L2 TRANS DEMAND DATA RD 75.24
L2 RQSTS ALL DEMAND DATA RD 80.33
RXL FLITS G2 NCB DATA 100
RXL FLITS G2 NCB NONDATA 100
TXL FLITS G0 DATA 100
TXL FLITS G1 DRS DATA 100
TXL FLITS G1 DRS NONDATA 100
TXL FLITS G2 NCB DATA 100
LSD UOPS 42

5.1. Core and Memory Pinning

We ran two sets of experiments, one with the application pinned to the cores and the other

with the application pinned to cores and memory. While the percentage errors were reduced

slightly when the application is pinned to both the cores and the memory, we observed that

memory pinning has no effect on additive PMCs but, most importantly, non-additive PMCs

remained non-additive (within a tolerance of 5%).

6. Discussion

From Tab. 3 and Tab. 4 showing potentially additive and non-additive Likwid PMCs respec-

tively, one can observe that out of a total of 151 PMCs, 43 PMCs are non-additive.
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Table 5. List of potentially additive PAPI PMCs

PAPI L1 DCM PAPI FUL CCY PAPI L2 DCW

PAPI L2 DCM PAPI BR UCN PAPI L3 DCW

PAPI CA SHR PAPI BR CN PAPI L3 TCR

PAPI CA CLN PAPI BR TKN PAPI L2 TCW

PAPI CA INV PAPI BR NTK PAPI L3 TCW

PAPI CA ITV PAPI BR MSP PAPI REF CYC

PAPI L1 STM PAPI BR PRC PAPI L1 TCM

PAPI L2 LDM PAPI TOT INS PAPI L2 TCM

PAPI L2 STM PAPI L2 DCR PAPI BR INS

PAPI PRF DM PAPI L3 DCR PAPI RES STL

PAPI TOT CYC PAPI L2 DCA PAPI L3 DCA

PAPI L2 TCA PAPI L2 TCR PAPI L3 TCA

Table 6. List of non-additive PAPI PMCs

Event Name Maximum Percentage Error (%)

PAPI CA SNP 40.23

PAPI TLB DM 31.54

PAPI TLB IM 23.70

PAPI STL CCY 31.43

PAPI LD INS 32.06

PAPI SR INS 21.98

PAPI LST INS 45.87

PAPI L1 ICM 37.28

PAPI L2 ICM 37.50

PAPI L2 ICH 107.12

PAPI L2 ICA 30.65

PAPI L3 ICA 30.2

PAPI L2 ICR 30.65

PAPI L3 TCM 14.54

PAPI L3 LDM 74.68

PAPI L1 LDM 200.82

PAPI L3 ICR 19.48

The event ARITH DIVIDER UOPS exhibits the highest maximum percentage error of

about 3075%. This event belongs to the µOPS group of Likwid PMCs responsible for gath-

ering PMCs related to the instruction pipeline.

Several PMCs (HA R2 BL CREDITS EMPTY HI HA0, HA R2 BL CREDITS EMPTY HI HA1,

HA R2 BL CREDITS EMPTY HI R2 NCS ) show maximum percentage error of about 200%.

These events specifically belong to the Home Agent (HA) group of Likwid PMCs. HA is central

unit that is responsible for providing PMCs from protocol side of memory interactions.
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There are several PMCs that show maximum percentage error of about 100%. They are

mainly from the QPI group of Likwid PMCs responsible for packetizing requests from the

caching agent on the way out to the system interface.

Similarly, from Tab. 5 and Tab. 6 showing potentially additive and non-additive PAPI PMCs

respectively, 17 PMCs out of a total of 53 PMCs are non-additive. One PMC, PAPI L1 LDM,

demonstrates the highest maximum percentage error of about 200%. It represents L1 load misses.

Another PMC, PAPI L2 ICH, demonstrates a maximum percentage error of over 100%. It rep-

resents L2 instruction cache hits.

If we increase the tolerance to about 20%, then only 8 non-additive Likwid PMCs will

become potentially additive. For PAPI, only two non-additive PMCs will become potentially

additive, PAPI L3 TCM and PAPI L3 ICR. They represent L3 cache misses and L3 instruction

cache reads respectively. Increasing the tolerance to about 30% results in other 3 non-additive

Likwid PMCs and 5 non-additive PAPI PMCs becoming potentially additive.

Thus, one can see that there are still a large number of PMCs that are non-additive even

after increasing the tolerance to as high as 30%. Some of these PMCs have been used as key

predictor variables in energy predictive models [2, 4–7, 10, 17, 20, 23, 27, 28].

To summarize, the non-additive PMCs that exceed a specified tolerance must be excluded

from the list of PMCs to be considered as predictor variables for energy predictive modeling,

because they can potentially damage the prediction accuracy of these models due to their highly

non-deterministic nature. Also the list of potentially additive PMCs must be further tested

exhaustively for more diverse applications and platforms to secure more confidence in their

additivity.

In our future work, we would study how much the prediction error is affected due to the

presence of non-additive PMCs in all the linear predictive energy models that we surveyed.

Conclusion

Performance events (PMCs) are now dominant predictor variables for modeling energy con-

sumption. Considering the large set of PMCs offered by modern processors, several techniques

have been devised to select the best subset of PMCs to be used for energy predictive modeling.

However, the existing techniques have not considered one fundamental property of predictor

variables that should have been taken into account in the first place to remove PMCs unsuitable

for modeling energy. We have addressed this oversight in this paper.

We proposed a novel selection criterion for PMCs called additivity, which can be used to

determine the subset of PMCs that can potentially be considered for reliable energy predictive

modeling. It is based on the experimental observation that the energy consumption of a serial

execution of two applications is the sum of energy consumptions observed for the individual

execution of each application. A linear predictive energy model is consistent if and only if

its predictor variables are additive in the sense that the vector of predictor variables for a

serial execution of two applications is the sum of vectors for the individual execution of each

application.

We studied the additivity of PMCs offered by two popular tools, Likwid and PAPI, using a

detailed statistical experimental methodology on a modern Intel Haswell multicore server CPU.

We showed that many PMCs in Likwid and PAPI are non-additive and that some of these

PMCs are key predictor variables in energy predictive models thereby bringing into question the

reliability and reported prediction accuracy of these models.
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In our future work, we would classify the non-additivity of a PMC into application-specific

and platform-specific categories. We will also look at additivity of PMCs offered by accelerators

such as Graphical Processing Units (GPUs). For instance, Nvidia GPUs provide CUDA Profiling

Tools Interface (CUPTI) that provides functions to determine around 140 PMCs. However,

implementing a compound application (or kernel) from two or more base applications (kernels)

is not straightforward. While CUPTI allows a continuous event collection mode, we found it is not

widely supported and hence unusable presently for implementation of compound applications.
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The paper presents the problem of creating a cloud service designed to solve promising nan-

otechnology problems on supercomputer systems. The motivation for creating such a service was

the need to integrate ideas, knowledge and computing technologies related to this applied problem,

as well as the need to involve specialists in solving problems of this type. The preliminary result

of the work is a prototype of the cloud environment, implemented as a KIAM Multilogin service

and an application software accessible from users virtual machines. The first applications of the

service were the software packages GIMM NANO and Flow and Particles, designed to solve the

actual problems of nanoelectronics, laser nanotechnology, multiscale problems of applied gas dy-

namics. The implementation of the service took into account such aspects as support for parallel

computations on the park of remote supercomputers, improving the efficiency of parallelization,

very large data sets processing, visualization of supercomputer modeling results. With the help of

the implemented service, it was possible to optimize the process of solving the applied problems

associated with calculating the parameters of gas-dynamic flows in the microchannels of industrial

spraying systems. In particular, it was possible to carry out a series of studies devoted to the

analysis of gas-dynamic processes at gas-metal boundary. In these studies it was shown that in

the presence of microcapillaries in a technical system, it is necessary to use direct modeling of gas

dynamic processes on the basis of the first principles in the Knudsen layers, for example, using

molecular dynamics methods.

Keywords: cloud service, virtualization, supercomputer modeling in nanotechnology problems,

visualization.

Introduction

The present work is devoted to the development of applied cloud services intended for solving

complex nanotechnology problems by computer methods. Fundamental nature and relevance of

the common problem comprise the fact that at present in context of the introduction of nanotech-

nology in many industries there is an urgent need to combine various mathematical approaches,

information and computing resources into a unified tool of computer and supercomputer mod-

eling. The most successful way of such an association is to create relevant cloud environments

and services in which each user can have access to all possible information materials, modeling

programs, computing resources and industrial CAD.

The specific task is to create a cloud service using heterogeneous clusters and supercom-

puters for multiscale modeling of nonlinear processes in polydisperse multicomponent media

used in the implementation of industrial nanotechnologies. To solve the problem, the KIAM

Multilogin cloud platform has been developed and implemented in the previous two years, it

allows accessing the created modeling environment. The architecture of the platform and the

individual components were described in sufficient detail in [1–3]. The application part of the

service was represented by the parallel program Flow and Particles [4–6], intended for multiscale

molecular modeling of processes of interacting gas particles and the walls of microchannels of
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2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Feder-

ation
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technical systems. However, in connection with the evolution of this application to the scale

of the software package and the availability of other software tools which the developers had,

including the GIMM NANO [7] software, the problem of integrating such programs into large

systems and/or environments appeared.

The article is organized as follows. Section 1 is devoted to describing the problems and

formulations of specific tasks that need to be solved. Section 2 describes the architecture of the

cloud service being developed and user scenarios of work. In Section 3, the prototype of the

cloud service and its individual components are described. Section 4 illustrates the application

of the developed service to the example of solving the problem of modeling gas flows in the mi-

crochannels of technical systems. Conclusion summarizes the results and determines the further

development of the service.

1. Problems and Tasks

In this paper, the task was to create a cloud-based application service. The motivation

for this task was the general trends in the development of software for mass use. Within the

framework of cloud technologies, many problems are solved: hierarchical user authentication,

the creation of a common protected information space, the work of users with personal desktops

of virtual machines, migration of virtual machines in the constantly expanding and modifying

field of calculators, optimal management of computing resources, convenience of developing spe-

cific applications, guaranteed secure storage of critical information, joint software development,

training in work with services, and much more.

The specific task was, first of all, the development of a general concept of the applied part

of the medium associated with supercomputer modeling of multiscale nonlinear processes in

real technical microsystems. The complexity of this kind of problem is due to the fact that the

mathematical models used contain heterogeneous descriptions of the physical processes under

consideration that pertain to different scale levels. These heterogeneity and different scales give

rise to a number of problems that have to be solved simultaneously.

Let us explain what has been said on a certain example. For this, let us consider the problem

of calculating gas flow through a metallic channels system of a real three-dimensional geometry.

In the case of a macroscale problem (when the sizes of the modeled system are much larger

than the mean free path of molecules, that is, the Knudsen number is much less than 1) and

simple Cartesian geometry, the description of the flow will require the use of one of the models

of continuum mechanics (for example, the systems of Navier-Stokes equations for describing

the gas flow, as well as the heat conduction equation for describing the heat exchange of a gas

with the walls of the channel). The final initial-boundary task can be solved either with the

help of ready-made software (for example, with the help of packages ANSYS CFX, StarCD,

OpenFOAM, FlowVision, etc.), or by developing own solution.

In essence, in the case of simple geometry, it is necessary to use the grid finite differ-

ence/volume method (FDM/FVM) or the finite element method (FEM) in combination with

the method of markers and cells on a suitable structured grid. Parallel implementation of the

resulting numerical algorithm is usually not particularly complicated. However, this requires a

good library of parallel algorithms for solving systems of linear and/or nonlinear algebraic equa-

tions (for example, Aztec, PETSc, etc.). The use of hybrid computing, for example, systems

with central and graphics processors, may present some difficulties. However, there are already

a lot of tools from NVidia, Intel and other developers.
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If you need to take into account the curvilinear geometry of the system, it is necessary to use

unstructured grids and specialized versions of FVM or FEM. If the geometry of the problem is

rather complicated, and the degree of anisotropy of the computational domain and grid is high,

then for high-precision parallel calculation a parallel grid generation, its optimal partitioning

according to calculators, a special scheme for storing calculation control points and calculation

results, an efficient parallel algorithms for solving algebraic problems with singular matrices will

be required. In this situation, widespread software may not be suitable either because of its high

cost, or because there are no reliable algorithms for solving the problem at all stages (assigning

and/or importing and analyzing the geometry of the computational domain, constructing and

partitioning the grid or multiple grids, forming a set of algebraic tasks, solving the algebraic

problems, preservation, processing and visualization of results).

If it is necessary to take into account the more complex physics of the process, then the

problem of the formation of a realistic mathematical model is added to the problems of pro-

cessing geometric data. In the case under consideration, it is necessary to take into account the

nonideality of the gas and the walls of the channel, the mutual influence of the gas and solid

media at the boundaries. As a result, it is necessary to modify the model and methods of its

numerical implementation, introducing the material coefficients of the medium, including the

real equations of state for the gas, the dependences of the viscosity (shear and volume), thermal

conductivity and diffusion coefficients from temperature and pressure (for both gas and material

of the channel walls), special algebraic models of the boundary layer.

Specified complication of the mathematical model is impossible without knowledge of the

properties of substances in a wide range of parameters. This information is not always available

in full, even for well-researched materials. For new composite materials, it is practically non-

existent. Therefore, in order to carry out the basic study, additional studies are needed on the

properties of the gas and solid media used in the model. At present, in addition to natural

experiments, there are three main approaches for obtaining information about the properties of

matter: quantum-mechanical, statistical and hybrid.

The first approach is related to ab initio methods (from the first principles), which allow

obtaining detailed information about substances at the molecular and submolecular levels by

solving the corresponding quantum-mechanical problems. However, this approach is the most

computationally capacious and does not allow obtaining in real time an information about large

particle systems (in the present situation, the size of the quantum-mechanical systems being

studied amounts to several thousand structural units - molecules, atoms, electrons, protons,

neutrons, etc.). Therefore, it is necessary to simplify the corresponding models, moving to hybrid

schemes.

Within the framework of the statistical approach, it is possible to consider very large systems

(currently the number of random variables can reach 15–20 decimal orders), but the accuracy of

the data obtained in large systems first increases with the number of trials, but then decreases

sharply due to increasing parasitic noise. As a result, and in the framework of this approach, we

have to look for hybrid solutions.

Among the most effective hybrid approaches, we select methods for solving problems based

on the Boltzmann kinetic equation or Fokker-Planck equation in conjunction with statistical

Monte Carlo methods, as well as methods of classical and quantum molecular dynamics. These

approaches successfully combine models from the first principles with statistical and variational

calculations of moderate volume and allow with good accuracy to determine the properties of

Cloud Service for Solution of Promising Problems of Nanotechnology

68 Supercomputing Frontiers and Innovations



different media and materials. Based on these approaches, databases on the properties of matter

are usually formed. In particular, the NIST database (USA), as well as the Russian EPIDIF

database, etc. are widely known. However, the use of such databases is possible only in a limited

range of parameters and in off-line mode, when the user is forced to manually collect the neces-

sary data. Therefore, researchers have to independently create similar databases using different

packages for quantum-mechanical, statistical and molecular-dynamics calculations. Among them

we note AB INITIO, GAMESS, GAUSSIAN, VASP, HyperChem, LAMMPS, GROMACS and

many others.

In case of a meso- or microscale problem (when in some zones of the flow the Knudsen

number approaches or even exceeds 1), an additional problem is the violation of the hypothesis

of continuity of the medium. In this situation it is necessary to use mixed models that com-

bine descriptions of continuum mechanics and alternative descriptions (meso- and microscopic).

At the program level, this means, in the general calculation, using the algorithms of various

kinds implemented within the framework of different libraries and/or packages. The only cor-

rect possibility of such computations is the method of splitting by physical processes. Within

the framework of this method, it is possible to interface almost any computational schemes (it

is only necessary to satisfy the stability conditions of the general algorithm). In the presented

paper, exactly this concept is laid in the basis of cloud service that is being developed.

2. The Architecture of the Cloud Service and the Scenarios of

Users Work

Let us briefly consider the architecture of the application cloud service that is being devel-

oped. It assumes the existence of a distributed computing platform hidden from users and a

single scheme for accessing it via the Internet/Intranet using a specialized web portal. Standard

user authentication mechanisms (login-password, login-public key, etc.) and their role differen-

tiation (novice user, user-researcher, developer, administrator, etc.) are assumed here. Inside

this cloud architecture, in addition to access servers, there are an information portal, a training

portal, a research portal, a developer portal, and computing resources in the form of database

servers and working computers (clusters and supercomputers).

Access servers form a decentralized system in which individual elements can be spaced

territorially, but synchronized according to a certain principle. Access servers contain, in addition

to the authentication service, a platform for launching and operating virtual machines (VM) of

users. User virtual machines are stored in one or more databases (DBVM). They can be started

by the service at any time and on any access server, but only in a single copy. Simultaneous

launch of a user’s virtual machine on multiple access servers is excluded. In this case, it is possible

to migrate the user’s virtual machine to a less-loaded access server, performed by storing all

VM data and cold restart. Also, each user can have several variants of VM, distinguished by

the type of OS and/or intended purpose, for example, by the role function (user, developer,

administrator), as well as several saved states of a particular VM (snaphots).

The user’s scenario of work starts with the procedure for registering it on the access servers

as a novice user, preparing one or more virtual machines (usually selecting the VM from the

repository according to the user’s specific preferences), exploring the capabilities of a cloud en-

vironment on the information portal, learning to work within the framework of specific projects.

After passing the initial training course, the user gets the status of a user-researcher and/or a
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developer user and can start working within one or several projects. At the same time, he or she

has the opportunity to initiate a new project.

The scenario of the user-researcher’s work is connected with preparation and carrying out of

long cycles of calculations within the framework of one or several projects. This involves all the

main application services of the cloud environment. Relating to the problems of computational

fluid dynamics, the following commercial or open software is necessary to use: CAD systems for

specifying geometry (for example, SolidWorks, ParaSolid, etc.), mesh generators (for example,

GAMBIT, TetGen, Ani3D, etc.), programs of grid partitioning by calculators (for example,

METIS, ParMETIS, Jostle, etc.), specific solvers from the set of available packages (for example,

ANSYS CFX, StarCD, Comsol, OpenFOAM, FemLab, etc.), sequential and parallel visualizers

of the received intermediate and resulting data (for example, TecPlot , ParaView, MolDraw,

ChemDraw, etc.), as well as programs for pre- and post-processing of data at all stages of

calculations. Programs for pre- and post-processing are necessary for combining separate stages

of computation by data. The work scenario of the user-developer of the software is associated

with the use of specialized virtual machines (equipped with the necessary licensed and/or freely

propagated programming tools), installing ready-made software packages on computers, as well

as developing and testing new programs and services in various OS and environments.

3. Cloud Service as a Way of Integrating Technology

The above-described service architecture and users work scenarios are inherent in many

cloud systems. However, in the created service variant such a standard solution is only a part

of the overall implementation. More complex and relevant parts in this case are the systems of

managing informational, educational and computing resources, as well as a project management

system. To date, in the evolving service, in a full-scale version, there is only a system for

managing computing resources and computing tasks for users. It is called KIAM Job Control

and was partially described in [2].

At this stage of the cloud project development, it allows users to perform large-scale calcula-

tions on the basis of separate parallel programs from the GIMM NANO and Flow and Particles

packages, and also store the results in the corresponding databases, post-process and visualize

them [8].

Informational and educational resources management systems are under development and

will eventually represent a distributed knowledge base on all aspects of the application service:

from technologies of its realization to modeling technologies implemented within user-accessible

application program packages and separate applications.

The project management system has not yet been implemented, although such systems are

widely used in business and in foreign government institutions. Apparently, there is a strong

non-determinism of the processes of scientific research. Therefore, within the framework of this

direction it is supposed to start with the automation of application development processes.

To implement this task, there is a certain reserve obtained when creating the GIMM NANO

package. Within the framework of this project, the architecture and individual elements of the

designer of parallel hybrid applications in the field of solving nanotechnology problems on the

basis of ready library functions were determined. In particular, the program interface for C++,

C and Fortran languages was developed, which allows assembling a hybrid MPI application

from some ready-made components and a newly developed calculation part that determines the

novelty and target function of the code.

Cloud Service for Solution of Promising Problems of Nanotechnology

70 Supercomputing Frontiers and Innovations



The ready-made components of the application include:

- input/output functions (both sequential and distributed) of text and binary data related

to the description of the geometry of the calculation area, grid parameters, physical parameters

of the problem, parameters of the numerical approach, parameters of parallel computations,

fields of calculated data, etc.;

- parallel generators of grids of a certain type (Cartesian, triangular, tetrahedral, hybrid,

block, etc.); and

- parallel solvers of systems of linear and nonlinear equations supporting calculations on

central processing units (CPU), vector processing units (VPU) and graphics processing units

(GPU).

The development of the application as a whole is carried out in accordance with the concept

of a hybrid parallel platform [9], the distinguishing feature of which is the desire to maximize

accounting the features of the problem being solved and the architecture of a calculator with

minimal differences in the code from the implementation on the CPU. Achievement of such

parameters is realized due to writing of special functions and macroses, taking into account

specific parameters of algorithms and capabilities of calculators. Basically, the success or failure

of such an implementation depends on the possibilities of vectorization of calculations and the

use of block processing of poorly structured data.

When integrating the solutions of the GIMM NANO package based on the models of contin-

uum mechanics with molecular dynamics applications from the Flow and Particles package, it

was possible to implement multiscale two-level parallel algorithms and corresponding programs

that allow solving new types of problems of technical gas dynamics characteristic of modern

nanotechnology. An example of a solution to one such problem is presented in [10]. It is impor-

tant to emphasize that rapid development of this application was accomplished through the use

of technologies implemented in the GIMM NANO package.

4. Modeling of Gas Flows in Microchannels of Technical

Systems

Let us briefly consider the application of the developed service to the solution of the problem

of modeling gas flows in microchannels of technical systems. The basis of parallel application

developed for these purposes is a combination of a gas dynamic code and a program of direct

molecular modeling [6, 11, 12].The calculated geometry is shown in Fig. 1.

Figure 1. Calculated geometry in section y = 0

M.A. Kornilina, V.O. Podryga, S.V. Polyakov, D.V. Puzyrkov, M.V. Yakoboskiy

2017, Vol. 4, No. 4 71



The essence of the problem is to calculate the gas flow from the high-pressure chamber

(located on the left) through the micronozzle (located in the center) into the free space (located

on the right). The complexity of the calculation is due to the fact that when the size of the

nozzle decreases, the real properties of the gas and the walls of the chamber and the micronozzle

turn out to be important, and not only the similarity theory is violated, but also the criterion

for the continuity of the medium.

In the calculations below, we used a cylindrical micronozzle with diameter D0 ≈ 310 µm,

and length L0 = 6D0 ≈ 1860 µm. It connects the chamber of nitrogen and the open space of

the vacuum chamber (zone of free space), which was initially filled with the same highly diluted

gas. The dimensions of the computational domain were chosen as follows. The diameters of the

computational parts in the chamber and in the vacuum chamber were equal to D1 = D2 = 6D0.

The length of the calculated part in the chamber was L1 = 10L0; the length of the calculated

part in the vacuum chamber was equal to L2 = 50L0. Along with the true size of the investigated

system, much smaller ones were considered: D0 ∼ 1 µm.

At the initial moment, the gas is at rest: u1 = u2 = 0. In this case, it is in the chamber

under standard normal conditions: T1 = 295.15 K, p1 = 101325 Pa; in the nozzle and the

vacuum chamber it is at the same temperature, but at lower pressures: T2 = 295.15 K, p2 =

δ0p1, δ0 ∼ 10−3 ÷ 10−5 — pumping parameter. The nozzle on the left is blocked by a partition,

which at the beginning of the calculation opens instantly.

To carry out realistic calculations, it was necessary to find out the real characteristics of the

gas: the parameters of the equation of state (compressibility factor, heat capacity) and its kinetic

coefficients (viscosity, thermal conductivity, diffusion, etc.). For this purpose for a sufficiently

long time we were accumulating a database on the properties of nitrogen (in the temperature

range from 80 to 400 K and the pressure range from 0.00001 to 1 atm), which was used as a

gaseous medium (see [10, 13, 14]).

Next, a series of two-dimensional and three-dimensional calculations based on the quasi-

gasdynamic (QGD) [15] model were performed [10], taking into account the real properties of

nitrogen. One of the results is shown in Fig. 2 and Fig. 3. It illustrates the passage of a shock

wave through a micronozzle. The figures show the results of two-dimensional modeling based on

the QGD model, taking into account the real equation of state and the kinetic properties of the

gas environment.

The concentration distributions for two characteristic times are represented in Fig. 2. The

longitudinal velocity distributions for the same moments of time are represented in Fig. 3.

The analysis of the obtained data showed that the numerical approach used reflects many real

characteristics of the flow. However, some clarification is required. In particular, a more detailed

study of the passage of gas through the micronozzle in case of its very small dimensions is

necessary.

In connection with the foregoing, a series of numerical experiments was carried out, con-

nected with direct molecular modeling of the processes of interacting of the gas and the mi-

cronozle walls. For this purpose, we have chosen nickel as the nozzle material, which is often

used in vacuum micro- and nanotechnology. As a gas, nitrogen was still used. The conducted

molecular dynamics (MD) [16] experiments comprised 3 stages.

At the first stage, the equilibrium parameters of bulk nickel were clarified, including the

lattice step at 273.15 K, which amounted to aNi ≈ 0.35314 nm [17, 18]. Also, the equilibrium
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Figure 2. Distributions of the concentration of gas molecules at time points t = 0.0553, 0.553 µs

(respectively, a and b)

Figure 3. Distributions of the longitudinal velocity of gas molecules at time points t =

0.0553, 0.553 µs (respectively, a and b)
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state of nitrogen at a given temperature was calculated, including the mean free path of nitrogen

molecules λN2
≈ 75 nm [15].

At the second stage, the interaction of resting nitrogen with a nickel plate with dimensions

288x288x24 in units of aNi or 101.7x101.7x8.48 in nanometers [19–21]. The dimensions of the

calculated region in the gas phase were 1.36x1.3640.68 in units of λN2
or 101.7x101.7x1525.6

in nanometers. The number of molecules in the considered gas-metal system was about 8.55

million particles. These calculations showed that, under normal conditions, a layer of high density

nitrogen molecules is adsorbed on the nickel surface. The thickness of the layer is comparable to

the triple height of the nickel crystal, that is 3aNi. The analysis of the obtained data was carried

out using the visualizer Flow and Particles View [8, 22, 23] embedded in the cloud environment

(Fig. 4). Note that this required processing of five thousand checkpoints of the Flow and Particles

application with a total volume of 3.3 TB.

Figure 4. Visualization of effect of nitrogen adsorption on nickel surface

At the third stage, a small middle part of the micronozle was reconstructed based on the

equilibrium state of the nickel plate and the nitrogen layer (Fig. 5). For reconstruction the

microstructure editor KIAM MicroStructure Editor was used. The total geometry actually con-

tained two plates of nickel (top and bottom) with layers of adsorbed nitrogen adhering to

them and a free layer of nitrogen between them. The parameters of the new microsystem were:

1) the dimensions of the top and bottom plates of nickel were 288028824 in units of aNi or

1017.0x101.7x8.5 in nanometers; 2) the dimensions of the gaseous medium between the plates

were 13.6x1.368.2 in units of λN2
or 1017.0x101.7x614.5 in nanometers. The number of nickel

atoms in both plates is 162.57 million, the number of nitrogen molecules on the plates and

between them is 42.382 million.

The new microsystem was again brought to a state of equilibrium. Then, with the help of

the Langevin thermostat, the middle part (a layer of the width of w = 1440 ·aNi ≈ 508.5 nm) of

the gas in it was accelerated to the velocity of 0.4 nm/ps, which is slightly higher than the speed
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Figure 5. Calculated geometry modeling micronozle

of sound in nitrogen under normal conditions (vsound ∼ 0.532 nm/ps). Next, the calculation

with the thermostat turned off was carried out until a regular flow regime was established.

The simulation results are shown in Fig. 6, where the profiles of the longitudinal velocity

component Vx(z) averaged over the coordinate x are shown at different moments of time. They

show first the acceleration of the gas to supersonic speed in the middle zone of the microchannel,

and then the formation of a profile type of the Poiseuille profile. Dynamics with time also shows

the beating of the velocity profile near the microchannel wall (Fig. 7).

Figure 6. Evolution of the distribution of the average longitudinal velocity as a function of the

coordinate z during the acceleration of the flow (on the left) and the establishment of the regular

regime (right)

It is important to emphasize that these calculations would not be possible both without the

use of supercomputers, and the created cloud service. In the above calculations the supercom-

puter K60 of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

with a performance of 60 TFlops and the supercomputer MVS10P-PII of Joint Supercomputer

Center of the Russian Academy of Sciences with a performance of 167 TFlops were used. The
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Figure 7. Distribution of the modulus of gas flow velocity in the middle part of the micronozle

developed cloud service allowed to use effectively both of these computing systems and process

the total information volume of about 5 TB.

Conclusion

The paper presents a prototype of cloud service, intended for solving promising nanotech-

nology problems on supercomputer systems. The prototype is implemented as an access service

KIAM Multilogin and application software accessible from users virtual machines. The first ex-

perience of parallel applications integration within the framework of the created service was

using separate programs from the GIMM NANO and Flow and Particles packages intended for

solving complex problems of nanoelectronics, laser nanotechnology, and multiscale problems of

technical gas dynamics. The service capabilities are demonstrated using the example of the prob-

lem of calculating the gas flow from a high-pressure chamber through a micronozzle into a free

space. Specificity of the problem consists in its multiple scales and nonlinearity. To solve the

problem, a two-level multiscale approach is used, realized by grid methods at the macrolevel and

molecular dynamics methods at the microlevel. To achieve the necessary accuracy, the high-grid

resolution and a large number of particles at the microlevel had to be used within the framework

of the proposed approach. Simultaneous realization of these requirements became possible due

to the use of supercomputers and the developed cloud service.

Further development of the service consists in improving the management systems of infor-

mation, educational and computing resources, adding new packages and applications, creating

a flexible project management system, increasing the capabilities of the visualization system.
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