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Reliability is a serious concern for future extreme-scale high-performance computing (HPC)

systems. Projections based on the current generation of HPC systems and technology roadmaps

suggest the prevalence of very high fault rates in future systems. While the HPC community has de-

veloped various resilience solutions, application-level techniques as well as system-based solutions,

the solution space remains fragmented. There are no formal methods and metrics to integrate the

various HPC resilience techniques into composite solutions, nor are there methods to holistically

evaluate the adequacy and efficacy of such solutions in terms of their protection coverage, and

their performance & power efficiency characteristics. Additionally, few of the current approaches

are portable to newer architectures and software environments that will be deployed on future sys-

tems. In this paper, we develop a structured approach to the design, evaluation and optimization

of HPC resilience using the concept of design patterns. A design pattern is a general repeatable

solution to a commonly occurring problem. We identify the problems caused by various types of

faults, errors and failures in HPC systems and the techniques used to deal with these events. Each

well-known solution that addresses a specific HPC resilience challenge is described in the form of

a pattern. We develop a complete catalog of such resilience design patterns, which may be used by

system architects, system software and tools developers, application programmers, as well as users

and operators as essential building blocks when designing and deploying resilience solutions. We

also develop a design framework that enhances a designer’s understanding the opportunities for in-

tegrating multiple patterns across layers of the system stack and the important constraints during

implementation of the individual patterns. It is also useful for defining mechanisms and interfaces

to coordinate flexible fault management across hardware and software components. The resilience

patterns and the design framework also enable exploration and evaluation of design alternatives

and support optimization of the cost-benefit trade-offs among performance, protection coverage,

and power consumption of resilience solutions. The overall goal of this work is to establish a sys-

tematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC

systems that keep scientific applications running to a correct solution in a timely and cost-efficient

manner despite frequent faults, errors, and failures of various types.

Keywords: high-performance computing, resilience, fault tolerance, design patterns.

Introduction

Extreme-scale, high-performance computing (HPC) will significantly advance discovery in

fundamental scientific research by enabling multiscale simulations that range from the very

small, on quantum and atomic scales, to the very large, on planetary and cosmological scales.

Computing at scales in the hundreds of petaflops, exaflops and beyond will also provide the com-

puting power for rapid design and prototyping and big data analysis. Yet, to build and effectively

operate extreme-scale HPC systems, there are several key challenges, including management of

power, massive concurrency, and resilience [22].

In the pursuit of greater computational capabilities, the architectures of future HPC systems

are expected to change radically. These innovative systems require equally novel components,

which are designed to communicate and compute at unprecedented rates. Traditional HPC

system design methodologies have not had to account for power constraints, or parallelism on

the level designers must contemplate for future extreme-scale systems [55]. The evolution in the

architectures will require changes to the programming models and the software environment
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to ensure application scalability. In the midst of these rapid changes, the resilience to faults

or defects in system components, which can cause errors and failures, will be critical. The

reliability of these systems will be threatened by a decrease in individual transistor reliability

due to manufacturing defects prevalent at deeply scaled technology nodes, device aging related

effects, etc. [9]. The chips built using these devices will be increasingly susceptible to errors due

to the reduced noise margins arising from near-threshold voltage (NTV) operation [24] (that will

be necessary to meet the limits on power consumption). These effects are expected to increase

the rate of transient and hard errors in the system. The scientific applications running on these

systems will no longer be able to assume correct behavior of the underlying machine. The errors

will propagate and generate various kinds of failures, which may result in outcomes in HPC

applications ranging from data corruptions to catastrophic crashes.

Managing the resilience of future extreme-scale systems is a complex, multidimensional

challenge. As HPC systems approach exaflops scale, the sheer frequency of faults and errors

in these systems will render many of the existing resilience solutions ineffective. Newer modes

of failures due to faults and errors, which will only emerge in advanced process technologies

and complex system architectures, will require novel resilience solutions. To remain viable the

adaptations of existing solutions, as well as the designs of new solutions, must also navigate

the complexity of the hardware and software environments of future systems. Additionally,

HPC resilience solutions, both hardware and software, must optimize for some combination of

performance, power consumption and cost while providing effective protection against faults,

errors and failures. Therefore, addressing the resilience challenge for extreme-scale HPC systems

will require integration and coordination between various hardware and software technologies

that are collectively capable of handling a broad set of fault models at accelerated fault rates.

The HPC community and vendors have developed a number of hardware and software

resilience solutions over the years to confront faults and their consequences in a HPC system

and to limit their impact on the applications. Most of these solutions are based on a limited

set of underlying detection, containment and mitigation techniques that have persisted through

generations of systems and will remain important in the future. The key to the design and

implementation of HPC resilience solutions is no longer the invention of novel methodologies

for dealing with the various fault types that may occur, or to manage the extreme fault rates;

rather, it is based on the selection and combination of the most appropriate solutions among the

well-understood resilience techniques and adapting them to the design concerns and constraints

of the emerging extreme-scale systems. However, there are no systematized methods to adapt the

existing solutions to future architectures and software environments, nor are there formalized

to integrate multiple solutions into composite solutions. There is also a lack of standardized

methods to investigate and evaluate the effectiveness and efficiency of such solutions. Therefore,

the designers of HPC hardware and software components have a compelling need for a systematic

methodology for designing, assessing and optimizing resilience solutions.

In this work, we develop a structured approach for constructing resilience solutions for

HPC systems and their applications based on the concept of design patterns. Design patterns

are descriptions of well-known solutions to specific, repeatedly occurring problems that are

encountered in a specific domain. In an effort to develop resilience design patterns we identify

well-known techniques to handle faults and their consequences in various hardware and software

components throughout the HPC system stack. In general, resilience solutions provide techniques

for the detection of faults, errors or failures in a system, mechanisms to ensure that their
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propagation is limited, and for masking of error or failure and recovery of the system. This

paper presents a complete catalog of patterns that capture the solutions for each of these three

aspects. Each pattern provides a solution to a recurring HPC resilience problem under a set of

clearly defined assumptions about the type of the fault, error or failure it deals with and the

constraints about the system behavior it guarantees. The resilience design patterns are specified

at a high level of abstraction and describe solutions that are free of implementation details.

The patterns have the potential to shape the design of HPC applications’ algorithms, numerical

libraries, system software, and hardware architectures, as well as the interfaces between layers

of system abstraction. Therefore, they are intended to be useful for HPC application, library

and tool developers, hardware architects and system software designers, as well as system users

and operators.

We codify the resilience design patterns in a layered hierarchy, which classifies the patterns

in the catalog, and clearly conveys the relationships among them. The hierarchical scheme

enables individual hardware/software component designers to focus on problems and constraints

related to detection, containment and mitigation/recovery of specific fault types in specific

contexts, while system architects contemplate role of the individual patterns within the context

of the overall system architecture and software environment and issues related to stitching

the various patterns together and refinement of their interactions. Combining these patterns

according to the guidelines given by the classification scheme provides a systematic way to

design and implement new resilience solutions, port existing solutions to future architectures

and software environments, and to holistically evaluate the scope and efficiency of the solutions.

Therefore, using the design patterns as building blocks enables:

• Systematic design and refinement of resilience solutions by using patterns to outline the

overall structure of the solution (independent of a specific implementation approach), and

incrementally converging towards a detailed implementation;

• Design of solutions with a clear understanding of their protection coverage and performance

efficiency;

• Evaluation and comparison of alternative resilience solutions through qualitative and quan-

titative evaluation of the coverage and handling efficiency of each solution;

• Design of flexible solutions through integration of multiple patterns into complete resilience

solutions. The individual patterns may be independently evolved and developed for porta-

bility to different HPC system architectures and software environments;

• Design of cross-layered resilience solutions that combine capabilities from different layers

of the system stack; and

• Optimization of the trade-off space, at design time or at runtime, between the key system

design factors: performance, resilience, and power consumption.

In this paper, we also develop a systematic methodology to combine an essential set of

patterns into productive and efficient resilience solutions. We present a conceptual framework

based on the notion of design spaces that enables HPC designers to use the patterns as reusable

design elements. The framework enables designers to navigate the complexities of composing

patterns into complete solutions within the constraints of performance and power overheads, the

fault model and its impact on the system, hardware and software implementation challenges, etc.

The overall goal of this work is to enable a systematic methodology for the design and evaluation

of resilience technologies in HPC systems that keep applications running to a correct solution in

a timely and cost-efficient manner despite frequent faults, errors, and failures of various types.

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

6 Supercomputing Frontiers and Innovations



1. Design Patterns for HPC Resilience

The occurrences of various types of faults, errors and failures are not rare events in modern

large-scale HPC system environments. The term fault refers to an underlying flaw or defect in

a system that has potential to cause problems, an error refers to the result of the activation

of a fault, which causes an illegal system state. A failure occurs if an error reaches the ser-

vice interface of a system, resulting in system behavior that is inconsistent with the system’s

specification. The faults are due to radiation-induced effects such as particle strikes from cosmic

radiation and the system environment, chip manufacturing defects and design bugs that remain

undetected during post-silicon validation and manifest themselves during system operation, as

well as circuit wear out, or aging failure mechanisms of CMOS integrated circuits. The faults

may also occur due to software bugs, which is a growing concern as the complexity of the soft-

ware environment grows. Due to the complex system interactions and dependencies between the

hardware and software components, the application program, and the HPC system’s physical

environment, preventing the activation of these faults and containing the propagation of the

resulting errors and failures to other components a significant challenge.

HPC resilience solutions seek effective and efficient management of the different types of

fault and errors to ensure that the applications produce reliable outcomes despite the resulting

degradations and failures. The focus of resilience solutions is on application correctness lieu of,

or even at the expense of, reliability of state of the system. In general, every HPC resilience

solution consists of the following core capabilities:

• Detection: Identifying the presence of an anomaly in the data or control value is an

important aspect of any resilience management strategy. The detection and diagnosis of

faults in a system may allow the remedy of the underlying defect, which may prevent the

activation of an error or failure. The timely detection of errors or failures enables recovery

of the system.

• Containment: When an error or failure is discovered in a system, containment strategies

assist in limiting the impact of the event on other components in the system. Limiting the

propagation enables simplified recovery strategies.

• Recovery: The recovery aspect of any resilience solution is necessary to ensure that the

application outcome is correct in spite of the presence of an error or a failure in a system.

The recovery may entail a workaround to isolate and bypass the presence of an error or

a failed component, complete elimination of the error or failure, and may also seek to

prevent the root cause of the underlying fault from resurfacing.

Often the solutions used to achieve these capabilities are based on well-known techniques,

which have been repeatedly used by hardware and software designers to increase system reli-

ability since the early days of computing systems. These techniques are based on the use of

redundant structures to mask failed components, error-control codes and duplication or tripli-

cation with voting to detect or correct information errors, diagnostic techniques to locate failed

components, automatic switchovers to replace failed subsystems, and the specification of well-

defined modular structures and interfaces for containment and definition of recovery scope [5].

Many of the resilience solutions, hardware and software, used in HPC environments over the

past three decades are also largely based on these set of techniques.

Our goal is to capture the best-known techniques that are used in the design of HPC

resilience solutions formatted as design patterns. A design pattern describes a generalizable

solution to a recurring problem that occurs within a well-defined context. It identifies the key
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aspects of a solution and presents it in the form of an abstract description, which provides

designers with guidelines on how to solve a problem. Each pattern in this paper presents a

solution to a specific problem in detecting, recovering from, or masking a fault, error or failure

event. The pattern descriptions don’t describe a concrete design or an implementation, and are

also free from constraints of details associated with the level of system abstraction at which the

solution can be implemented. Therefore, the resilience patterns may be used as design templates

that may be adapted by the HPC hardware or software designers for a specific problem at

hand. The design of new resilience solutions and adapting existing ones for future extreme-

scale systems is accomplished by combining various patterns into complete solutions and by

refining their interactions. The patterns describe the design decisions and trade-offs that must be

considered when applying a certain solution, which enables designers to reason about the impact

of applying a solution on a system’s performance scalability and power consumption overhead as

well as consider implementation issues. Since the various resilience techniques handle different

types of events, and they each provide different guarantees about properties such as the time or

the space overhead introduced to the normal execution of the system, number of simultaneous

errors or failures it can handle, the efficiency of the reaction to a failure, the design complexity

added to the system, the patterns may also be used to explore alternatives solutions to a given

problem.

Based on the insight that any resilience solution is only necessary in the presence of, or

sometimes in the anticipation of an anomalous event, such as a fault, error, or failure, we define

the template of a resilience design pattern in an event-driven paradigm. The design pattern tem-

plate consists of a behavior and a set of activation and response interfaces. The pattern behavior

provides a description of the solution, which systematically names, explains the semantics of,

and evaluates the trade-offs involved in using the solution in an HPC environment. The activa-

tion and response interfaces specify the conditions for application of the solution. The individual

implementations of the same pattern may have different levels of performance, resilience, and

power consumption. However, using this universal template enables a standardized approach for

the evaluation of patterns and comparison between alternative solutions for a given problem.

While any resilience design pattern must conform to this basic template, the instantiation of a

pattern may cover combinations of detection, containment and mitigation capabilities.

2. Classification of Resilience Design Patterns

For designers of HPC resilience solutions, the patterns serve as reusable design elements.

For the design of resilient hardware and software components, the patterns can be combined

in different ways to produce complete solutions. For a systematic approach to transforming

individual patterns into a solution consisting of a system of patterns, a classification scheme is

essential. A classification outlines the relationships between the various patterns, which enables

designers to understand their individual capabilities and the relationships among the patterns

when seeking to integrate different patterns into composite solutions.

The resilience design patterns may be classified on the basis of the type of event handled,

whether the pattern offers detection, containment, recovery or masking semantics, the scope of

protection coverage offered, design complexity of the patterns, time and space overheads, power

consumption overheads, etc. However, in developing a classification for the resilience design

patterns, our goal is to provide designers with the guidelines to identify the patterns that make

up a resilience solution, specify the roles played by individual patterns, and how they interact,

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale
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Figure 1. Classification of resilience design patterns

such that the incorporation of resilience capabilities becomes an essential part of the design

process of HPC hardware and software components.

We develop a pattern classification scheme that organizes the resilience patterns in a layered

hierarchy, in which each level addresses a specific aspect of the problem. Resilience in the context

of HPC systems and its applications has two key dimensions: (1) forward progress of the system

and (2) data consistency in the system. Based on these factors, we organize the resilience design

patterns into two major categories, state patterns and behavioral patterns. These are placed

side by side in Figure 1 to enable designers to separately reason about the patterns that define the

scope of the protection domain and those that define the semantics of the detection, containment

and mitigation. The behavioral patterns are organized in a hierarchy, as shown in Figure 1, in

which the patterns in bottom layer may be used to think about the strategies suitable for

confronting anomalous events depending on whether it is a fault, an error, or a failure. The

patterns in the middle layer explicitly defines the architecture of a solution based on the nature

of the event and considers compatibility of the pattern solution with the overall system design.

The top-level patterns consider issues related to implementation of the solution, including the

appropriate granularity and level of system abstraction, and the overheads incurred by the

solution.

For the design and analysis of new solutions, or adapting existing solutions to emerging

HPC environments, hardware and software designers can approach the hierarchy of patterns in

a top down or bottom-up manner. The refinement and optimization of patterns will often require

traversing the layers several times before a solution is finalized. The hierarchical organization

of the patterns permits the different stakeholders to reason about resilience solutions based on

their view of the system and their core expertise. Architects describe the overall organization of

the solutions, analyze the integration of various resilience patterns across the system stack, and

evaluate the protection coverage and overheads to overall system performance. The designers of

individual hardware and software components operate within a single layer of system abstraction

and focus on alternative patterns to address the problem at hand and the analyze the design

complexity of instantiating a specific pattern.
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2.1. State Patterns

The state patterns specify the protection domain of a resilience solution. The correctness

and consistency of the system state ensures the correct operation of a system. Therefore, the

precise definition of the scope of the protected system state is an important part of designing

a resilience solution. From the perspective of an HPC application, the notion of state may be

classified into three categories:

• Static State, which represents the data that is computed once in the initialization phase

of the application and is unchanged thereafter.

• Dynamic State, which includes all the system state whose value may change during the

computation.

• Operating Environment State, which includes the data needed to perform the computation,

i.e., the program code, environment variables, libraries, etc.

The state patterns, which capture each of these aspects of the system state, are classified

as stateful patterns. The properties of each state pattern may be used to guide the selection

of a behavioral pattern. Certain resilience strategies may be applied without regard for state

and apply behavioral patterns that are concerned with only the forward progress of the system

(for e.g., idempotent operations). Therefore, the classification of state patterns also includes a

stateless pattern that enable designers to create solutions that define behavior without state.

This organization of the state patterns enables the behavioral patterns to be applied to individual

aspects of a system’s state. However, in designing a resilience solution, more than one type of

state pattern may be fused to enable the use of a single behavioral pattern for more than one

state pattern.

2.2. Behavioral Patterns

The behavioral patterns are concerned with forward progress of the system despite the pres-

ence of anomalous events in the system. These design patterns identify detection, containment,

or mitigation actions that enable the components in a system that realize these patterns to cope

with the presence of a fault, error, or failure event. The behavioral patterns are presented in a

layered hierarchy to highlight the design choices when selecting one pattern over another:

• Strategy Patterns: These patterns define high-level polices of a resilience solution. The

strategy patterns are organized by the type of event that they handle - fault, error or failure,

since the techniques to handle these events are fundamentally different. The classification

of the strategy patterns captures the intent behind of each solution makes the design

choices in applying the patterns explicit. These patterns describe the overall structure and

the key components in a solution in a manner independent of the layer of system stack

and hardware/software architectural features. Their descriptions are deliberately abstract

to enable hardware and software architects to reason about the overall organization of the

solution and assess the suitability of the pattern to the full system design.

The fault treatment patterns are concerned with diagnosing and preventing an imminent

error or failure. The recovery and compensation patterns must limit and remove an error

or failure state in the system. The recovery pattern aims to substitute an error/failure-free

state in place of the erroneous/failed system state. The compensation pattern seeks to

tolerate the presence of an error or failure by providing redundancy in the system design.

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

10 Supercomputing Frontiers and Innovations



• Architectural Patterns: The architectural patterns convey specific methods necessary

for the construction of a resilience solution. The patterns provide details about the key

components and connectors that make up the solution and explicitly specify the type of

event that they handle. These patterns are a sub-class of the strategy patterns, and they

are also organized based on the type of event they handle and the intended impact of the

action on the system resilience. Certain architectural patterns may be adapted to confront

faults, errors or failures. Consequently, there exists an overlap between the patterns in

the architectural layer with more than one type of strategy pattern in Figure 1. The

classification of these architectural patterns based on the core solution is also suggestive

of the design time and runtime complexity encountered when instantiating a pattern. Yet,

architectural pattern descriptions are independent of the precise fault model and may be

implemented at any layer of the system stack.

• Structural Patterns: These patterns provide concrete descriptions of the solution rather

than high-level strategies. While the strategy and architectural patterns serve to provide

designers with a clear overall framework of a solution and the type of events that it can

handle, the structural patterns express the details such that they can contribute to the

development of complete working solutions. They comprise of specific instructions for

implementing the pattern, including concrete descriptions of the key parts of the solution.

Their descriptions include specific details of the fault model that the pattern handles.

Although the structural patterns provide more detailed solutions, their descriptions are still

independent of the layer of system abstraction at which the patterns may be instantiated.

The pattern descriptions are flexible enough for most, if not all structural patterns to be

suitable for implementation within hardware structures as well as within algorithms in

the application or system software. The various structural patterns are sub-classes of the

strategy and architectural patterns. Therefore, their first-order organization is also based

on the type of fault event that their solutions handle.

A variety of implementation patterns may be derived from the structural patterns.

These patterns are intended to bridge the gap between the design principles and the concrete

details of an implementation. The pattern descriptions explicitly specify the layer of system

abstraction at which they are implemented, and the activation and response interfaces. The

implementation patterns also enable a standardized way for hardware and software designers

to communicate about design of their resilience solutions. These patterns may be designed as

composite patterns, i.e., using a combination of patterns. Defining implementation patterns

enables designers to thoroughly analyze the overhead of a solution in terms of time and space,

as well as the trade-off between design complexity and runtime complexity. Due to the limitless

possibilities in developing implementation patterns suited for various architectures, software

environments and HPC applications through pattern composition, we only provide detailed

descriptions of the foundational state and behavioral resilience patterns in this paper.

3. Resilience Design Pattern Catalog

The resilience design pattern catalog contains detailed descriptions of the state and behav-

ioral patterns. The primary objective of the catalog is to capture the best-known HPC resilience

solutions and present them a standardized and accessible form. For the patterns to be useful to

HPC system architects and individual hardware and software component designers alike, they
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are written down in a highly structured format to enable designers to quickly discover whether

the pattern solution is suitable to the problem being solved.

For convenience and clarity, each resilience pattern in the catalog follows the same prescribed

format. The pattern description is formatted in terms of the following key attributes:

• Name : Identifies a pattern and provides a convenient way to refer to it, typically using a

short phrase.

• Problem : A description of a problem indicating the intent behind applying the pattern.

This describes the goals and objectives that will be accomplished with the use of this

specific pattern.

• Context : The preconditions under which the pattern is relevant, including a description

of the system before the pattern is applied.

• Forces: A description of the relevant forces and constraints, and how they interact or

conflict with each other, and with the intended goals and objectives. The forces highlight

the intricacies of the problem and make the trade-offs that must be considered explicit.

• Solution : A description of the solution that includes specifics of how to achieve the in-

tended goals and objectives. This includes the core structure of the solution, its semantics

and its interactions with other patterns. The description includes guidelines for implement-

ing the solution, as well as descriptions of variations or specializations of the solution.

• Capability : The resilience management capabilities provided by this pattern, which may

include detection, containment, mitigation, or a combination of these capabilities.

• Protection Domain : The resiliency behavior provided by the pattern extends over a

certain scope, which may not always be explicit. The description of the nature of the

fault model and its protection domain enables designers to reason about the scope of the

coverage in terms of the complete system.

• Resulting Context : A brief description of the post-conditions arising from the applica-

tion of the pattern. There may be trade-offs between competing optimization parameters

that arise due to the use of this pattern.

• Examples: One or more sample applications of the pattern, which illustrate the use of

the pattern for a specific problem, the context, and set of forces. This also includes a

description of how the pattern is applied, and the resulting context.

• Rationale : An explanation of the pattern as a whole with an elaborate description of how

the pattern actually works for specific situations. This provides insight into its internal

workings of a resilience pattern, including details on how the pattern accomplishes the

intended goals.

• Related Patterns: The relationships between this pattern and other relevant patterns.

These patterns may be predecessor or successor patterns in the hierarchical classification,

or patterns that provide similar capabilities.

• Known Uses: Known applications of the pattern in existing HPC systems, including any

practical considerations and limitations that arise due to the use of the pattern at scale in

production HPC environments.

There are three key reasons behind this pattern format: (1) to present the pattern solution

in a manner that simplifies comparison of the capabilities of patterns and their use in developing

complete resilience solutions, (2) to present the solution in a sufficiently abstract manner that

designers may modify the solution depending on the context and other optimization parameters,

and (3) to enable these patterns to be instantiated at different layers in the system.
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The complete catalog of resilience design patterns in the template format is available in a

specification document [38]. In the remainder of this section, we summarize each design pattern,

highlighting its key features. The pattern descriptions use the term system to refer to an entity

that has the notion of a well-defined structure and behavior. A subsystem is a set of elements,

which is a system itself, and is a component of a larger system, i.e., a system is composed

of multiple sub-systems or components. For a HPC system architect, the scope of system may

include compute nodes, I/O nodes, network interfaces, disks, etc., while an application developer

may refer to a library interface, a function, or even a single variable as a system. A full system

refers to the HPC system as a whole or to a collection of nodes, which is capable of running a

parallel application.

3.1. Strategy Patterns

3.1.1. Fault Treatment Pattern

The emergence of a defect or anomaly in an HPC system environment has the potential to

activate, which may potentially lead to an error or a failure in the system. The Fault Treatment

pattern provides a method that attempts to recognize the presence of an anomaly or a defect

within a system, and creates conditions that prevents the activation of the fault into an error or

failed state. The solution requires an auxiliary monitoring system, which may be a sub-system of

the monitored system or an external system, that observes the key parameters of the monitored

system. The pattern applies to a system that has well-defined parameters that may be used

to discover the presence of anomalies in the behavior of the monitored system. The pattern

supports either one, or both of the following capabilities:

• Fault detection: detect anomalies during operation before they impact the correctness

of the system state.

• Fault mitigation: methods to enable an imminent error or failure to be prevented, or a

defect to be removed.

The protection domain of this pattern extends to the scope of the monitored system and

implicitly extends to other systems that are interfaced to the monitored system. The benefit of

incorporating fault treatment patterns in a design, or deploying it during system operation is to

preemptively recognize faults in the system; the preventive actions avoid the need for expensive

recovery and/or compensation actions that may be necessary if the fault activation causes an

error or failure. In incorporating this pattern in the design of a HPC hardware or software

component, the key considerations are the frequency of interaction between the monitoring and

monitored (sub-)systems and the precision of fault detection. The frequency of these interactions

must be minimized to reduce interference in the operation of the monitored system; yet, the

interactions must be frequent enough to detect every defect in the monitored system. Also, fault

must be detected and treated in a timely manner, i.e., the time interval for the monitoring

system to gather data about the monitored system and to infer the presence of an anomaly

or a defect must be rapid to prevent the activation of an error/failure. The pattern must also

have few false positive and false negatives to minimize preemptive mitigation actions that are

unnecessary.

In HPC systems, various hardware-based solutions for fault detection observe the attributes

of a system, such as thermal state, timing violations in order to determine the presence of a

defect in the behavior of the system that may potentially cause an error or failure. For example,
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processor chips such as the IBM Power 8 and Intel Xeon series processors contain thermal sensors

that detect anomalous conditions in the cores. Software-based solutions detect the anomalies in

the behavior of a system’s data variables or control flow attributes to determine the presence

of a fault. Heartbeat monitoring is used for liveness checking of MPI processes, which enables

detection of imminent failure of the MPI communicator [6].

3.1.2. Recovery Pattern

In an HPC environment, the occurrence of errors or failures in the system results in incorrect

answers, and in some cases, catastrophic application crashes. The Recovery pattern enables a

system to survive an error or failure event. The pattern is suitable for a system whose design or

runtime configuration contains no intrinsic support for tolerating the error or failure event. The

solution is based on the periodic creation of snapshots of the system state during error/failure-

free operation, and the maintenance of these snapshots persistently. Upon detection of an error

or a failure, the preserved snapshots are used to recreate a known error/failure-free state of

the system. When the system state is recovered, the operation of the system is resumed. The

error or failure in the system must be detected; the pattern offers no implicit error/failure

detection. The pattern applies to a system that is deterministic, i.e. forward progress of the

system is defined in terms of the input state to the system and the execution steps completed

since system initialization. The pattern requires the system state can be compartmentalized in

a form that is accurately representative of the progress of the system since initialization. It also

requires that the system has well-defined intervals that enables it to transition the system state

to a known correct interval in response to an error/failure.

The protection domain for a Recovery pattern is determined by the scope of the state

pattern that is captured during checkpoint creation operation. The size and frequency of

creation of checkpoints determines the overhead to system operation; frequent checkpointing

incurs proportionally greater overheads during error/failure-free operation, but reduces the

amount of lost work when an error/failure event does occur. Also, the broader the scope of

the system state that is preserved, the larger is the scope of the system state that may be

protected from an error/failure event. The solution offered by this pattern is not dependent

on the precise semantics of the error/failure propagation. Therefore, the effort and complexity

in using this pattern in a hardware or software design, or in the system configuration is low.

There are several instances of the usage of the pattern in HPC systems to support recovery of

an application or the complete system upon detection of an error/failure. For example, various

checkpoint and rollback protocols enable HPC applications and systems to capture state and

commit the checkpoint files to parallel file systems [27].

3.1.3. Compensation Pattern

The occurrence of an error or failure event may cause loss in system functionality, or reduc-

tion in system capacity. The HPC applications running on such a system may produce incorrect

results or experience failure. The Compensation pattern makes up for the deficiency or abnor-

mality in a system that is caused by the error or failure event. The pattern solution introduces

redundancy with into the system design, or in the configuration to counterbalance the (sub-

)systems in error or failed state. The pattern is applicable to a system that is deterministic, and
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the overall system design allows for modular design with well-defined inputs and outputs for each

module, about which redundant information is maintained. The redundancy may be in the form

of a group of replicas of a (sub-)system, referred to as n-modular redundancy, or in the form of

encoded information about the (sub-)system state. The pattern supports detection, and in some

cases correction, by using the redundant information about a (sub-) system to recompense for

the presence of an error/failure. The scope of the protection domain, which covers includes the

part of the system designed or operated redundantly, may include a sub-system, or the cover

the full system.

The replicas of the modules permit the system to continue operation even in the presence

of a (sub-)system failure. When the redundancy is in the form of modular replication, an error

or failure in one of the (sub-)systems may be tolerated by substituting the (sub-)system with a

replica. In order to recover from 2N errors/failures in the system, there must be 2N + 1 distinct

replicas. For the detection of errors, the outputs of the replicas of the system are compared

by an auxiliary monitor (sub)-system. For a system to tolerate an error/failure, the number

of replicas must be greater than two, in which case the monitor performs majority voting on

the outputs produced by the replicas. This enables incorrect outputs from replicas in erroneous

state to be filtered out. The design effort and complexity of replication of the system depends

on the replication method: deploying identical replicas requires low design effort, but the design

of functionally identical but independently designed versions of a (sub-)system requires much

higher design and verification effort.

The scope and strength of the redundancy employed by the pattern determines the overhead

to the system performance. The pattern introduces a penalty in terms of time (increase in execu-

tion time), or space (increase in resources required) independent of whether an errors or failure

occurs during system operation. The N-modular redundancy approach is used at the hardware

and software levels in a various HPC components; the dual-modular redundancy (DMR) for error

detection and triple-modular redundancy (TMR) for error detection and correction [42] are the

most widely used forms of redundancy. Redundant information in the form of error correction

codes is also used at the hardware-level in the form of ECC [49] and at the application-level for

application data structures [37].

3.2. Architectural Patterns

3.2.1. Fault Diagnosis Pattern

The occurrence of a defect or anomaly has the potential to activate causing an error or failure

in the system. The Fault Diagnosis pattern, which is a derivative of the Fault Treatment

strategy pattern, identifies the presence of the fault and determines its root cause. The solution

consists of an auxiliary monitoring system that observes specific parameters of a monitored

system. Until a fault has not activated into an error it does not affect the correct operation of

the system. Therefore, the Fault Diagnosis pattern makes an assessment about the presence of

a defect based on observed behavior of one or more system parameters. The inference is based on

observing deviations in the standard operating behavior of the monitored system. Identifying the

norm of (sub-)system parameters also enables narrowing the search for the fault type, its location

and its root cause. To incorporate this pattern in an HPC environment requires inclusion of a

monitoring (sub-)system, which introduces additional complexity in the overall system design.

When the monitoring system is extrinsic to the monitored system, the design effort may be
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simplified, but the interfaces between the (sub-)systems must be well-defined. The pattern only

infers the presence of a defect and reports it via its response interface, but does not act to remedy

the fault. Among the key design challenges when using the pattern is the resolution limit, which

is influenced by the number of parameters observed and frequency of probing the monitored (sub-

)system and affects the precision of the fault detection. In the context of HPC systems, faults

may be detected and diagnosed based by accumulating empirical data on the characteristics and

the behavior of hardware and software components and use the information to discover faults.

For example, HPC components commonly use the Intelligent Platform Management Interface

(IPMI) [21], which provides standardized interfaces for monitoring hardware health information

such as the system temperatures, fans, power supplies, etc. Using these interfaces, software

tools may monitor the health of system resources and infer the presence of anomalies in the

components.

3.2.2. Reconfiguration Pattern

In the event of a fault, error or failure event the configuration, i.e., the organization of

the (sub-)systems in an HPC environment may be affected in ways that result in applications

producing incorrect results, or experiencing fatal crashes. The Reconfiguration pattern,

which derives from the Fault Treatment and Recovery strategy patterns, entails modification

of the interconnection between (sub)-systems. The reconfiguration isolates the (sub-)system

affected by the event to prevent it from affecting the correct operation of the overall system.

The pattern assumes that the system may be partitioned into a set of logical modules and that

altering the interconnection between the modules is possible. The protection domain of the

Reconfiguration pattern covers all (sub-)systems that are interconnected to provide a specified

function. The pattern may cause the system to assume several configurations in response to

a fault, error or failure event, each of which is characterized by its own topology of intercon-

nections, the system must retain functional equivalency with the original system configuration.

The performance overhead of using this pattern is proportional to the number of (sub-)systems

and degree of interconnection between them. The reconfiguration of the system may also

result in system operation at a degraded performance level. The implementation of the pattern

requires partitioning the system into modules that remain functionally correct in multiple

different configurations. There is much complexity associated with defining the scope of these

modules and to validate their functional equivalency in alternative configurations. Well-known

use cases of the reconfiguration pattern include the NodeKARE module in the Cray Linux

Environment CLE, which automatically runs diagnostics on all involved compute nodes in the

cluster whenever a users program terminates abnormally and removes the failing nodes from the

pool of available compute nodes so that subsequent jobs are allocated only to healthy nodes [18].

3.2.3. Checkpoint Recovery Pattern

Errors or failures in an HPC environment may result in conditions that prevent forward

progress of the system until the error or failure condition is removed. The Checkpoint-Recovery

pattern, which is a specialization of the Recovery strategy pattern, is based on the creation of

snapshots of the system state and maintenance of these checkpoints on a persistent storage

system during the error- or failure-free operation of the system. Upon detection of an error
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or a failure, the checkpoints/logged events are used to recreate last known error- or failure-

free state of the system, after which the system operation is restarted. The solution offered

by the pattern supports only recovery; the detection and containment of the error/failure is

beyond the scope of the pattern’s capabilities. The pattern assumes that the system is capable

of compartmentalizing its state in a way that is accurately representative of the progress of the

system since initialization. The techniques used by the pattern are classified into checkpoint-

based and log-based strategies. The checkpoint-based solution typically captures and preserves

the complete state of the system; in contrast, log-based strategies only record specific system

events. Instantiations of the pattern may also use a combination of checkpointing and event

logging. The pattern handles an error or a failure by retrieving a version of the error or failure-

free state from the checkpointed state, and substituting the erroneous or failed state with the

error or failure-free state. Therefore, the system is able to resume operation with a version of

the system state that is free of any effects of the error or failure event.

However, the pattern requires interruption of the system during error or failure-free opera-

tion to record the checkpoint, which incurs an overhead. The frequency of creation of checkpoints

and/or event logging determines the extent of the overhead; frequent checkpointing/logging in-

curs proportionally greater overheads during error- or failure-free operation. However, more

frequent checkpointing and logging reduces the amount of lost work when the system encoun-

ters an error or failure event. The checkpointing/logging latency affects the overhead during

error- or failure-free operation on account of the latency to write the checkpoint to a storage

system. The scope of the system state captured during a checkpointing operation results in a

proportionate increase in space overhead due to the storage resources needed to preserve the

checkpoints. The solution offered by this pattern is independent of the type of error or failure and

its mode of propagation. Therefore, the design effort and complexity in instantiating this pattern

in any system design in low. In the context of HPC systems, checkpoint and restart capabili-

ties in the software layers, including various library-based and operating system-based solutions

such as BLCR [25] for Linux processes. Certain library implementations of the MPI standard,

such as OpenMPI, also support transparent checkpoint-restart [39]. Log-based recovery based

on message logging has been adopted by implementations of MPI [10].

3.2.4. Redundancy Pattern

When an error or failure event in an HPC environment cannot be prevented from affecting

the correct operation of a component, or the full system, it must be remedied to enable forward

progress of the system. The Redundancy pattern, which is a derivative of the Compensation

pattern, enables offsetting the effects of the error/failure. The pattern solution entails incor-

porating excess resources in the (sub-)system design or in the configuration at runtime. The

redundancy enables a (sub-)system to detect, and in certain cases correct an error/failure, by

repetition, omission of a (sub-)system without loss of functionality, or superfluity of (sub-)system

state information. The pattern applies to a (sub-)system that allows for a modular design with

well-defined inputs and outputs for each module. The application of a Redundancy architecture

pattern, the following error/failure handling capabilities can be supported:

• Detection by comparison: observing the likeness of each replica’s outputs as means to

detect the presence of an error or failure in each redundant version of a (sub-)system;

• Fail-over mitigation: substitution of a replica in error or failed state with another

identical replica that is error/failure-free.
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• Mitigation by isolation: creation of a group of N replicas of a (sub-)system and majority

voting on the outputs produced by each replica; the outputs that fall outside the majority

are excluded.; and

• Encoding information for detection and mitigation: maintenance of additional

(sub-)system state information to identify errors within the state.

The protection domain of the pattern extends to the scope of the (sub-)system state about

which redundant information is maintained. The pattern introduces penalty in terms of time

(increase in execution time), or space (increase in resources required) independent of whether

an errors or failure occurs. The use of dual-modular redundancy for error detection and triple-

modular redundancy for error/failure detection and correction are common forms of instantia-

tion of the pattern in various hardware and software-level modules. HPC systems contain service

nodes that are responsible for system management tasks while the parallel computation is per-

formed by a set of compute nodes. The tasks include user login, network file system, job and

resource management, communication services. Various existing solutions provide hot-standby

redundancy with transparent fail-over to tolerate failures in the critical services in the service

nodes. Well-known examples of redundancy are the scheduling and resource management ser-

vices in Simple Linux Utility for Resource Management (SLURM) [53] , as well as the metadata

servers of the Parallel Virtual File System (PVFS) [15] and the Lustre file system [2]. Produc-

tion HPC systems such as the Cray XC40 series [19] include redundant power supplies, voltage

regulator modules and cooling fans to ensure continuous operation in the event that one of these

units experience malfunction or failure.

3.2.5. Design Diversity Pattern

Design flaws on account of human error or defective tools manifest themselves as errors,

which may cause failures in HPC environments. The Design Diversity pattern, which is also a

derivative of the Compensation pattern, creates distinct but functionally equivalent versions of

the same design specification, which are created by different individuals or teams, or developed

using different tools. The intent behind applying this pattern is to eliminate the impact of

design bugs during the implementation of a (sub-)system. The pattern enables systems to

tolerate errors/failures due to design faults that may arise on account of incorrect interpretation

of the specifications by designers, mistakes made during implementation, or due to bugs in

the tools. The detection and correction of error/failures is possible due to the independent

design processes reducing the likelihood that the same flaw emerges in the alternative versions

of a (sub-)system. The pattern is based on the assumption that the system has a well-defined

specification for which multiple implementation variants may be created. The versions of the

(sub-)system specification may be applied to a system in a time or space redundant manner.

The replica (sub-)systems are provided with identical inputs, and their respective outputs

are compared in order to detect and potentially correct the impact of an error or a failure in

either replica of the systems. The protection domain of the pattern extends to the scope of the

system that is described by the design specification. However, designing multiple variants of the

same (sub-)system specification requires significantly higher verification and validation effort.

The design diversity solution is used in the validation of the results produced by scientific

applications, particularly those that require high-precision floating point arithmetic. Such

applications may be compiled and executed using alternative implementations of compiler

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

18 Supercomputing Frontiers and Innovations



toolchains, message passing libraries, numerical analysis libraries to verify the application results.

3.3. Structural Patterns

3.3.1. Monitoring Pattern

The various types of errors in HPC environments occur as a result of underlying defects in

hardware or software components. Identifying the defects before they cause an error, which may

result in a failure of one or more components, prevents incorrect behavior of a (sub-)system. The

Monitoring Pattern is a specialization of the Fault Diagnosis architectural pattern, which

consists of a monitoring system that observes specific parameters of a monitored system to

discover the presence of anomalies in its behavior. The monitoring system may approach the

problem of fault detection using two strategies:

• Effect-Cause Diagnosis: This approach entails observation of the parameters of the (sub-

)system for anomalies. When a (sub-)system parameter deviates from a range of values

considered normal, the monitoring system attempts to determine the root cause. The

monitoring system logically partitions the system into modules and progressively eliminates

the modules known to be fault-free. Through this process, it narrows the search for the

fault in the (sub-)system.

• Cause-Effect Diagnosis: This approach is based on a set of known fault models and the

monitoring system compares the (sub-)system parameters with a model developed using

fault free system operation, or using simulations. When the observed set of parameters

deviates from a model, the presence of and the type of fault may be inferred.

Based on these inferences, the pattern enables the monitored system to report the presence of

a fault and to analyze its root cause and location. The (sub-)system design or configuration must

include a monitoring (sub-)system. When the monitoring system is extrinsic to the monitored

system, the design effort may be simplified, but the interfaces between the (sub-)systems must be

well-defined. However, when the monitoring system is intrinsic to the design or configuration of

the monitored system, the complexity of the design process increases. The Monitoring pattern

only infers the presence of a defect and reports it, but does not remedy the defect. Various

HPC system installations use the monitoring pattern through tools for collecting performance-

or health-related data about the system. Popular solutions include: Ganglia Monitoring System

[44], Nagios [1] and OVIS Lightweight Distributed Monitoring System [3].

3.3.2. Prediction Pattern

The accurate prediction of where faults are likely to occur in a (sub-)system enables reduc-

tion in the costs of a resilience solution by preemptively enhancing the (sub-)system’s capabilities

to handle any resulting errors or failures. The Prediction Pattern, which is also a derivative of

the Fault Diagnosis architectural pattern, develops models that estimate future faults based

on the observations of the parameters of a (sub-)system, or based historical trend analysis of

these parameters. For prediction, the pattern may use: (i) Rule-based methods that build rules

of association to capture the causal correlations between system parameter values and fault

events, or (ii)Statistical-based methods that discover probabilistic characteristics of potential er-

rors/failures in a system using statistical inference techniques to examine correlations between

previous events. The monitoring system of this pattern contains the following components:
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• Filter/Preprocessor : removes incomplete fault data and duplicates and produces a consis-

tent format for analysis.

• Regression: seeks to analyze the parameter values and establish relationships between

them.

• Knowledge Base: storage component that maintains the rules or statistical properties

and models, which may be used for online prediction of fault events using real-time data

captured from the monitored system.

Much like the Monitoring Pattern, the Prediction pattern only infers the presence of

a defect and reports it, but does act to remedy the fault. Based on the prediction method

and accessibility of the system parameters selected for observation, the prediction may not be

very precise, which leads to false positive outcomes, or unforeseen events that are missed by the

prediction algorithm. However, when errors or failures are predicted at a high degree of accuracy,

avoidance or preventative actions may be applied. For example, event prediction may be used

for proactive management in large-scale clusters [51].

3.3.3. Restructure Pattern

The occurrence of a fault, error, or failure event sometimes impacts a system in a way

that affects the correctness of the interactions between sub-systems in an HPC environment,

which causes further errors, or a failure of the system. The Restructure Pattern, a derivative

of the Reconfiguration pattern, modifies the configuration between the interconnected sub-

systems to isolate the specific sub-system affected by a fault, error or failure. The reconfiguration

pattern alters the organization of the (sub-)systems to work around the affected (sub-)system,

or it excludes the affected (sub-)system from interacting with the remaining (sub-)systems (i.e.,

the restructured system includes N-1 sub-systems). In either case, the pattern seeks to maintain

(sub-)system functionality equivalent to that before the occurrence of the fault, error or failure

event.

The protection domain of the pattern spans the part of (sub-)system whose constituent

sub-systems may be reconfigured. While the pattern seeks to restructure the sub-systems in an

operating state that is functionally equivalent to the fault-free state, the pattern may result in

the operation of the system in degraded condition, which incurs additional time overhead to

the system. Existing solutions that restructure the system in response to an event include the

ULFM extension to the MPI standard [7], which allows parallel applications to get notifications of

process failures. ULFM provides a set of routines to revoke and restructure a MPI communicator

that consists of the remaining active processes. Dynamic page retirement is another instantiation

of the restructure pattern solution, in which pages that have an history of frequent memory errors

are removed from the pool of available pages.

3.3.4. Rejuvenation Pattern

When a (sub-)system in an HPC environment behaves incorrectly on account of a fault,

error or failure, the correctness of the full system may be compromised. The Rejuvenation

Pattern, which is also a derivative of the Reconfiguration pattern, isolates the specific part

of the (sub-)system affected by a fault, error or failure and restores it to an operating state that

is free of any effects of the event. Only the affected part of the system is rejuvenated to ensure
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correct operation of the system by the pattern. The pattern requires the system operation to be

halted to identify the part of the system affected by the event.

The protection domain of the pattern spans the part of system whose state may be rejuve-

nated. The rejuvenation is often a slow process that requires substantial additional overhead to

identify the part of the system affected by the fault, error or failure, and to selectively reinitialize

the system, in addition to overhead incurred due to any lost work. The rejuvenated system may

not maintain the level of performance as before the occurrence of an event. Examples of reju-

venation include the Mini-Ckpts framework, which recovers fatal operating system crashes by

rejuvenating only the kernel data structures, which are preserved in persistent memory, without

affecting the HPC application state [31]. Algorithm-based recovery methods for data corruptions

in structures used in numerical analysis problems use interpolation of neighboring data values

to rejuvenate data values in error state. Such methods have been demonstrated in the context

of the HartreeFock algorithm used in computational chemistry codes [20].

3.3.5. Reinitialization Pattern

The impact of a fault, error or failure may sometimes be irreversible such that the

affected (sub-)system cannot be restored to a form that permits correct operation. The

Reinitialization Pattern, also a derivative of the Reconfiguration pattern, simply restores

the system to its initial state. This causes system operation to restart with a pristine reset of

state, which implicitly cleans up the effects of the fault, error or failure in the system. The pat-

tern is applied in conditions in which the mitigation or recovery from the fault, error or failure

event is deemed impossible, or excessively expensive in terms of overhead to performance. The

pattern expects the fault, error or failure in the system to be detected; the pattern offers no

implicit fault monitoring, prediction, or error/failure detection capability. The restoral of the

system state to the initial state causes lost work, but guarantees the impact of the event is

completely removed before service is resumed. Various cluster management software systems,

such as the Cray Hardware Supervisory System (HSS) [18], enable malfunctioning nodes in the

cluster to be reset. The HSS initiates a reboot sequence for a failing node without disrupting

the remaining nodes in the system.

3.3.6. Rollback Pattern

Following an error or a failure event, the (sub-)systems in a HPC environment often lose all

work performed until the occurrence of the event. The Roll-back Pattern, which derives from

the Checkpoint Recovery architectural pattern, periodically captures the progress of the system

and maintains these as system snapshots on a persistent storage system during the error/failure-

free operation of the system. The rollback recovery is performed by restoring the system state

based on the last known stable version of (sub-)system state. The solution provides rollback

recovery, i.e., based on a temporal view of the system’s progress, the system state restored

during the error/failure recovery process is a previous error/failure-free state of the system. For

a system that is deterministic, the pattern creates checkpoints of the system, which requires

the capability to export the current (sub-)system state and import a new state during recovery.

When the system design consists of several sub-systems, the pattern must coordinate the process

of checkpointing. The instantiation of the pattern may apply the following coordination policies:
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• Coordinated rollback recovery protocol : The (sub-)systems coordinate the process of creat-

ing checkpoints, creating globally consistent checkpoint states, which simplify the recovery.

• Uncoordinated roll-back recovery protocol : The (sub-)systems each independently decide

when to create their respective checkpoints. This approach has the potential to cause the

full-system to propagate roll-backs to the initial system state to ensure that all dependen-

cies are met (called the domino effect).

• Communication-based rollback recovery protocol : The protocol enables each (sub-)system

to create local checkpoints, but periodically also enforces coordinated checkpoints between

all (sub-)systems. Such hybrid strategy helps avoid the domino effect.

For systems with non-deterministic events, the pattern employs log-based protocols, which

use a combination of checkpointing and logging of non-deterministic events in the (sub-)system.

The log-based rollback recovery is based on piecewise deterministic assumption, in which the

system identifies and records the nondeterministic events and information necessary (encoded

in tuples called determinants) to replay the event during recovery. The pattern may use the

following logging protocols:

• Pessimistic: The protocol assumes that a failure occurs after a nondeterministic event

in the system. Therefore, the determinant of each nondeterministic event is immediately

logged to stable storage.

• Optimistic: The determinants are held in a volatile storage and written stable storage

asynchronously. This protocol makes the assumption that the logging is completed before

the occurrence of an error or failure. The error- or failure-free overhead of the optimistic

approach is low.

• Causal : The protocol provides a balanced approach by avoiding immediate writing to

stable storage (much like the optimistic protocol in order to reduce event free overhead),

but each sub-system commits output independently (much like the pessimistic protocol

in order to prevent creation of orphan sub-systems in the context of a multicomponent

environment).

The protection domain for a Rollback pattern is determined by the extent of state captured

during checkpoint operation and/or the number of system operations that can be recovered

from the log of events. The time overhead introduced by the use of the pattern during error-

free operation is correlated with the frequency of taking checkpoints. The rollback leads to loss

of work due to the need to recover the system from a previous version of the system state.

The amount of lost work is also correlated with the frequency of the checkpointing/logging.

The worst-case scenario for recovery using this pattern is a roll-back to the initial state of

the system. In the context of HPC systems, checkpoint and restart capabilities in the software

layers, including various library-based and operating system-based solutions, enable recovery

from process errors/failures and rollback of the applications. Well-known solutions that employ

the rollback recovery pattern include the CoCheck checkpoint-restart for MPI [56], as well as

BLCR [25] and SCR [48]. Message logging protocols have been implemented in OpenMPI to

support faster failure recovery [10].

3.3.7. Roll-forward Pattern

When an error or failure event occurs in an HPC environment, a (sub-)system incurs loss

of the work performed prior to the occurrence of the event. The Roll-forward pattern is a

derivative of the Checkpoint Recovery pattern that avoids loss of work by using checkpoints
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to recover the (sub-)system to a stable state immediately before the error or failure event. Like

the Rollback pattern, the solution entails the creation of snapshots of the system state and

maintenance of these checkpoints on a stable storage system during the error- or failure-free

operation of the system; log-based protocols use a combination of checkpointing and logging of

non-deterministic events in the (sub-)system. However, the pattern uses the previously captured

checkpointed state and/or logging information to recreate a stable version of the (sub-)system

state identical to the one right before the error or failure occurred. This prevents the need for re-

execution of all (sub-)system operations from the last stable checkpoint. The pattern must select

checkpointing based on the policies similar to those used by the Rollback pattern: coordinated,

uncoordinated, or communication-based.

The pattern may use the following protocols for roll forward:

• Log-based protocols: Based on the piecewise deterministic assumption, in which the (sub-)

system uses the determinants to recreate state. The logging mechanisms may be based on

pessimistic, optimistic, or causal protocols; and

• Online recovery protocols: Do not rely on event logging for roll forward of the (sub-)

system; rather, they use inference methods to recreate state, or may permit the state to

self-correct after restart.

The protection domain of a Roll-forward pattern is determined by the extent of state

captured during checkpoint operation and/or the number of system operations that can be

recovered from the log of events. The pattern solution is not dependent on either the type of

event, or the precise semantics of the error propagation; therefore, the design complexity in using

this pattern in any HPC (sub-)system design in low. For the pattern to be effective in an HPC

environment, the overhead to bring the system state to the most recent state before the error

or failure must be less than or equal to the overhead of rollback recovery. In the context of HPC

systems, software solutions typically implement roll-forward recovery using algorithm-specific

knowledge. For example, Global View of Resilience (GVR) [13] uses versioning of distributed

arrays supports, in which roll-forward recovery is based on application-specified mechanisms for

each array structure.

3.3.8. N-modular Redundancy Pattern

An error or failure of a (sub-)system in an HPC environment may cause loss in system

capability or capacity, which prevents correct operation, or failure, of the full system. The

N-modular Redundancy Pattern, which is a derivative of the Redundancy architectural pattern,

remedies the effect of the error or failure by isolating the affected (sub-)system and compensating

for its removal from the system design or configuration with a replica module. The solution entails

creation of a group of N replicas of a (sub-)system. The replicated versions of a (sub-)system

enables their use in various configurations to support errors or failures in one of the replicas,

including fail-over, active comparison for error detection, or majority voting for detection and

correction by excluding the replica whose outputs fall outside the majority. The pattern applies

to a system with a modular design that has a well-defined scope and set of inputs and outputs.

The scope of the pattern may be a sub-system in the HPC hardware or software architecture,

or it may even encompass the complete system scope. Each of the N modules of the system

exist simultaneously; the modules may be active at the same time (spatial replication), or

may operate in succedent order (temporal replication), or the (sub-)system may activate the

redundant modules on-demand. The protection domain of the pattern extends to the scope of the
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module that is replicated. Implementations of the MPI standard use these forms of redundancy

for MPI messages, or even by replicating MPI process ranks; the MR-MPI [28], rMPI [29] and

RedMPI [30] are well-known MPI implementations using the n-modular redundancy approach.

3.3.9. Forward Error Correction Code Pattern

When the state information of a (sub)-system is affected by an error, the incorrect state

often leads to malfunctioning of the (sub-)system, which may lead to the failure of the full sys-

tem. The Forward Error Correction Code Pattern, which is a derivative of the Redundancy

architectural pattern, maintains redundant information about (sub-)system state. The pattern

applies to a system whose state may be represented using a sequence of symbols. The solution

consists of an encoder and a decoder module. In the simplest form, the encoder repeats each

symbol that represents the (sub-)system state. The decoder module checks both instances of

each state symbol. The general form of this pattern uses an encoder module that accepts k

state information symbols and separately appends a set of r redundant symbols that are de-

rived from the symbols representing (sub-)system state. The output of the encoder module is

a (n, k) code, in which n = k+r. While the encoded redundant state information is a complex

function of the original state, the encoder module does not modify the state information. The

decoder module extracts the original state from the encoded state symbols. The availability of

redundant state information enables recovery of system from corruption in symbols that repre-

sent the (sub-)system state by using the redundant information to reconstruct the original state

information.

The protection domain of the pattern extends to the scope of the (sub-)state that is encoded

and decoded using the forward error correction code. The number of errors that are detectable

and correctable is limited by the amount of redundant information contained in the error cor-

rection code. Since every operation that affects the system state requires encoding/decoding

operations, the pattern introduces penalty in terms of time (increase in state information access

latency), and space (increase in resources required to store state information) independent of

whether an errors or failure occurs. There are various schemes that enable forward error correc-

tion in memory devices, storage systems, as well as in communication channels in HPC systems.

Examples of forward error correction code (FEC) in HPC environments include parity bits,

checksums, Hamming codes, hash function codes; more elaborate schemes such as systematic

cyclic block codes include binary BCH, Reed-Solomon, Cyclic redundancy checks (CRC). The

use of ECC in memory DIMMs is another well-known example of FEC for compensation of bit

flip errors within the DRAM memory lines [49]. Algorithm-based methods use FEC schemes

such as checksums to detect and correct errors in application data structures [37].

3.3.10. N-version Design Pattern

When a design bug exists in a (sub-)system design or configuration, the resulting error or

failure is often unavoidable. Therefore, the detection and mitigation of the impact of such errors

or failures is critical. The N-version Design Pattern, which is a derivative of the Design

Diversity pattern, applies distinct implementations of the same design specification created

by different individuals or teams. The pattern applies N (N ¿= 2) independently implemented

versions in a time or space redundant manner. The N versions of the (sub-)system are operated

simultaneously, and a majority voting logic is used to compare the results produced by each
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design version. Due the low likelihood that different individuals or teams make identical errors

in their respective implementations, the pattern enables compensating for errors or failures

caused by a bug in any one implementation version.

The pattern applies to a system that has a well-defined specification for which multiple

implementation variants may be designed. The protection domain extends to the scope of the

system that is described by the design specification. The extent to which each of the n versions

are different affects the ability of the pattern to tolerate errors/failures in the system. The use

of the n-version design pattern requires significant effort for design, implementation, testing and

validation of the independent versions of a (sub-)system specification. Differences in the design

may cause differences in timing in generating output values for comparison and majority voting;

these differences incur overhead to the overall (sub-)system operation.

3.3.11. Recovery Block Pattern

The errors and failures caused by design bugs prevent HPC (sub-)systems from operating in

conformance with the (sub-)system specification. Yet, the application of the N-version Design

pattern may be impractical in various contexts. The Recovery Block Pattern, which is also

a derivative of the Design Diversity pattern, introduces an alternative implementation of

the same design specification to perform detection and mitigation of errors. The pattern is

a specialization of the N-version Design pattern since the solution also relies on multiple

variants of a design that are functionally equivalent but designed independently. The recovery

block is invoked when the result from the primary version of the system fails an acceptance test,

which often indicates the presence of an error or failure. The instantiation of this pattern may

sometimes include the function that performs the acceptance test. The consequence of applying

the pattern in an HPC environment results in (sub-)system designs that consist of a module

that implements the primary design and a module that serves as an exceptional case handler,

i.e., the recovery block. There is also an adjudicator that applies an acceptance test to validate

the results produced by the primary system. If the adjudicator does not accept the results of the

primary system, it invokes the exception handler subsystem, which indicates that the primary

system could not perform the requested service operation. The protection domain of the pattern

extends to the scope of the primary system, i.e., the scope for which the recovery block is created.

Examples of the recovery block pattern in HPC include the Containment Domains (CD) [14]

programming construct, which provides a recovery routine initiated upon detection of an error

in the execution of the block of code encapsulated by the CD. This enables the CD to constrain

the detection and correction of errors to the boundary of the domain.

3.4. State Patterns

3.4.1. Static State Pattern

The Static state pattern encapsulates all aspects of a system’s state that is computed when

the system is initialized, but is not modified during the system operation. The static state outlives

the process that creates and initializes it. From the perspective of an HPC application, the

static state includes program instructions and variable state that is computed upon application

initialization. The correctness of the static state at all times is essential to the correct execution

and outcome of a program. The invariant property of this state enables the use of a resilience

behavioral pattern that can leverage this property to detect and recovery errors/failure of such
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state. For example, various algorithm-based fault tolerance methods leverage the property of

invariance in the static state. These methods maintain replicas of the application variables in

the static state pattern; recovery entails setting these variables to their default data values. A

well-known application of this pattern is in the context of algorithm-based resilience techniques

used in the design of iterative linear solvers. For the solution of a system of equations A.x

= b, the static data structures such as the operand matrix A, the right-hand side vector B,

or the preconditioner are computed once in the initialization phase of the application and are

unchanged after. Errors in these structures are recovered using maintaining checksums [37].

3.4.2. Dynamic State Pattern

The Dynamic State pattern encapsulates the state that changes as the system makes for-

ward progress. In an HPC application, the pattern refers to all aspects of the program state that

changes as an application program executes. The dynamic state includes the data variables that

are modified by the algorithm, as well as the control-flow variables that enable forward progress

of the system. The dynamic feature of this state pattern implies that any faults or errors in

such state amounts to lost work. Separating the dynamic state enables the identification of the

appropriate behavioral resilience patterns to detect and correct errors in such state. Due to the

transitory nature of the variables in the dynamic state patterns, the behavioral patterns often

require preservation of the state pattern, or repetition of operations from a known stable point

to recreate a version of the variables in the state pattern that are free from the effects of any

errors. The most well-known method for protecting dynamic state is using checkpointing-based

roll-back recovery methods [27].

3.4.3. Environment State Pattern

The Environment State Pattern encapsulates the system state that plays a supporting

role in the operation of the system. The pattern defines the scope of the system state that

provides a common set of services in support of the primary function of the system. The en-

vironment also facilitates and coordinates the operation of various sub-systems in a system. In

general, HPC systems navigate complexity through the definition of abstractions that hide the

details of specific functions behind well-defined interfaces. When executing an HPC application,

the overall system state may be partitioned into the aspects that are related to the application

program state and those that provide access to the system resources and services that enable

the application to fulfill its function. The pattern enables the resilience behavior of the environ-

ment state to be reasoned about separately from the resilience behavior of the primary system

state, i.e., an HPC application. The separation of the environment state enables designers to

instantiate behavioral patterns that are independent of the design of the algorithms of HPC

applications. Any changes in the environment due an error or failure event directly affects the

application program operating within the environment. While an application program does not

normally have complete control over its environment, it may exert partial control to affect the

environment through well-defined interfaces. The Environment state pattern defines the scope

of the state that support resource sharing, coordination and communication between the various

(sub-)systems. In a typical HPC system stack, the environment state pattern includes productiv-

ity tools and libraries, the runtime system, the operating system, file systems, communication

libraries, etc. For example, operating-system based resilience mechanisms are independent of
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the resilience features of the application program and solely focus on the correctness of the data

structures within the kernel. Mini-Ckpts is a known example of a framework that emphasizes the

recovery of the OS environment by preserving kernel structures in persistent memory [31]. Sim-

ilarly, the ULFM MPI provides recovery of the communication environment from the failure of

processes by reconstructing the MPI communicator by creating consensus among the remaining

set of processes [7].

3.4.4. Stateless Pattern

The Stateless pattern enables the definition of resilience solutions that are independent of

system state. Since every resilience solution consists of at least a state and behavior pattern, the

Stateless pattern provides the construct of null state in order to create solutions that have a

well-defined notion of behavior, but don’t define a scope for the behavior. From the perspective

of an HPC application, the definition of the Stateless pattern permits the definition of the

scope of operations that perform detection or recovery without explicitly specifying the variable

state of the program that is affected by the operations. The solutions that are based on a

Stateless pattern may include: (i) applications that consist of predominantly memory load

operations that rarely contain state-modifying memory and I/O operations; these applications

typically perform reduction operations over large number of data elements, and (ii) applications

that yield imperfect results since their algorithms are based on approximation and iterative

refinement, or use noisy input data to begin with. The stateless pattern is utilized together

with behavioral resilience patterns whose actions do not necessitate modifying any particular

aspect of the system state during the detection or recovery. However, the resilience solution

that uses a stateless pattern must select and instantiate a behavioral pattern that is capable of

dealing with any additional side-effects due to the inclusion of the stateless pattern. The use

of the transaction model to provide resilient behavior is an example of the Stateless pattern.

Transactions support execution of a sequence of operations that may complete as a unit, or

fail; the notion of partial execution is not supported. For example, in the Relax framework, the

idempotence property guarantees that any region can be freely re-executed, even after partial

execution, and still produce the same result. Relax supports language-level constructs as well

as compiler-based techniques that enable the definition of idempotent regions of execution; the

recovery of such regions is stateless [43].

4. Building Resilience Solutions Using Design Patterns

4.1. Components of Resilience Solutions

Each pattern in the resilience design pattern catalog presents a solution to a specific problem

in detecting, containing or mitigating a fault, error or failure event. However, ensuring that an

HPC application executes to result in a correct solution despite the occurrence of the events

in the systems requires that a resilience solution be constructed using multiple such patterns

that are organized in a well-defined system of patterns. The artifacts of a design process that

uses design patterns are complete resilience solutions that confront a specific type of event and

provide detection, containment and mitigation capabilities over a well-defined protection domain.

Therefore, the first step in the design of a solution is the selection of patterns for each of these

capabilities. Therefore, a complete solution consists of at least one state pattern (defining scope
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Figure 2. Elements of a resilience solution for HPC systems and applications
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Fault model
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Figure 3. Design Spaces for construction of resilience solutions using patterns

of the protection domain) and one or more behavioral patterns (supporting a combination of

detection, containment and mitigation solutions). These key constituents of a complete solution

are shown in Figure 2.

The pattern descriptions allow for instantiating each pattern in the catalog at any layer of

the system stack. The individual patterns that make up a complete solution can be implemented

across layers the system stack. The architecture of a HPC system consists of various types of

processor, memory, storage and networking components, and its software stack is a complex

multicomponent environment consisting of communication and threading libraries, productiv-

ity software and tools, including numerical libraries, runtime systems, profiling tools, etc. To

construct resilience solutions for the hardware and software components requires methodically

selecting resilience patterns that may be conveniently incorporated into the design of these com-

ponents. The coordination between the resilience patterns, particularly when implemented across

layers of abstraction, requires well-defined activation and response interfaces for each pattern.

4.2. Design Spaces

For hardware and software designers to make practical use these patterns in the development

of resilient versions of their designs, a set of guidelines are necessary to combine the patterns and

refine their interactions. The hierarchical classification scheme articulates only certain aspects

of the pattern selection and integration process by categorizing the patterns based on the type

of event they handle and the core technique employed. However, the selection of patterns solely

on the basis of their detection, containment and mitigation capabilities leaves much to skills

of the designer in terms of finalizing the design and the implementation of the component or
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system. To build practical resilience solutions various other factors must be considered, includ-

ing the layer of abstraction for their implementation, scalability of the solution, portability to

other architectures, dependencies on any hardware/software features, flexibility to adapt the

solution to accelerated fault rates, capability to handle other types of fault and error events, the

performance and performance overheads.

To enable a systematic assessment of the suitability of a resilience pattern to a specific

context and to integrate patterns into composite solutions, we develop a design framework.

The framework enables the creation of an initial outline of the resilience solution that identifies

the strategy patterns and the captures the dimensions and capabilities solution resulting from

the composition of the patterns. The framework is based on design spaces that are arranged

in a hierarchy. Each design space progressively refines the relationships between the patterns

and optimizes the overall solution, which allows for a structured approach for constructing

customized designs. By navigating over the design spaces, the framework enables the designer

to approach the various issues that must be addressed in the process of developing practical

resilience solutions. The framework, which is illustrated in Figure 3, consists of the following

design spaces:

• Capability: This design space is concerned with identifying the patterns that support

capabilities for the detection, containment, mitigation of a specific type of fault, errors or

failure event. Based on the system context, this design space also considers the organization

of the overall structure of the solution.

• Fault model: By identifying the root causes of fault and understanding the impact and

propagation through the system enables deciding the architecture patterns. The design

space emphasizes the selection of architecture patterns and the distribution of responsibil-

ity among the chosen patterns.

• Protection domain: This design space concentrates on the definition of the protection

domain by deciding the state patterns and their composition. This enables a clear encap-

sulation of the system scope over which the resilience patterns operate.

• Interfaces: The identification and implementation of the activation and response inter-

faces for behavioral patterns affect the propagation of fault/error/failure event information.

Within this design space, the layer of abstraction appropriate for the instantiation of the

pattern, as well as the performance and power overheads are considered. The design space

explores various implementation constructs that facilitate the coordination between the

various patterns, particularly across system layers.

• Implementation mechanisms: This design space is concerned with low-level implemen-

tation details of how patterns are embedded within a hardware structure, or in software

code. It considers the constraints imposed by specific features of hardware, execution or

programming models, software environment and how the various pattern implementations

coordinate their behavior in this context.

The design spaces represent the most important aspects of a resilience solution that a de-

signer must contemplate in order to create effective and efficient resilience solutions. As a designer

navigates through these design spaces, they are able to develop a clearer understanding of the

solution profile and the general constraints, which enables them to select the appropriate pat-

terns from the catalog and decide on implementation alternatives. The use of resilience patterns

in the context of the framework provided by the design spaces enables HPC system designers,

users and application developers to evaluate the feasibility and effectiveness of novel resilience
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techniques, as well as analyze and evaluate existing solutions. They provide a structured flow

to the design process the design spaces articulate the critical decision points in the design of a

resilience solution, providing guidelines for the selection of the appropriate patterns based on

the requirements of protection and the cost of using specific patterns.

Designers may use various approaches to navigate the design spaces, including a strictly

top-down approach, in which the design is driven by the event type and model that a system

must be protected against, and the implementation of the system is adapted to enable the

system to survive the different ways in which the event may impact the reliability of the system.

Alternatively, in a bottom-up approach, the resilience capability must be woven into the existing

hardware or software component designs and interfaces, and additional components are included

to enhance the protection coverage, or to handle specific fault model behaviors. Often, designers

may be required to take a hybrid approach, in which the design spaces are revisited in an effort

to refine a design, to optimize the features of a solution, and to enable designers to overcome

constraints imposed by any hardware or software system features.

5. Case Studies

This section explores use cases for the application of resilience design patterns to the sys-

tematic design and analysis of resilience solutions. We use the pattern-based approach for un-

derstanding existing solutions with the view to adapt the solution to future generations of HPC

systems as well as for exploration and assessment of novel cross-layered solutions. The case stud-

ies describe the pattern-based design process for different fault models on a notional architecture

and software environment of a HPC system.

5.1. Checkpoint and Rollback Solution for Process Failures

Figure 4. Case Study: Checkpoint & Restart-based Recovery

For this case study, we aim to develop a resilience solution that enables an HPC application

to survive process failures. In an HPC environment, the diagnosis of the precise root cause of

these failures is difficult due to the lack of sufficient hardware-level debugging information. For

designing a purely software-based solution, the fault model is a process crash or hang whose

cause is unknown. This type of failure results from the presence of a fault in the processor
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or memory that activates, which causes an error in the form of an illegal instruction, or an

invalid address in the program state. When the program execution encounters the address in

the program state that is in error state, the process may crash or hang.

Checkpoint and restart (C/R) solutions are the often used to support resilience to pro-

cess failures in HPC systems. We reexamine this well-known software-based solution using the

structured pattern-based approach to analyze composition of the constituent patterns needed to

design this solution. Such analysis will be useful for adapting C/R solutions to future systems

and evaluate their performance characteristics. The goal of a complete C/R solution is to recover

a failed process such that the application may resume from an error-free state. This requires

that the solution capture the image, or snapshot, of a running process and preserves it for later

recovery. For parallel applications, the C/R framework’s coordination protocols produce a global

snapshot of the application by combining the state of all the processes in the parallel application.

Since most parallel applications using the message passing interface (MPI) define a MPI process

to be a POSIX process, the protection domain of the solution must cover the complete POSIX

process state. Therefore, we fuse the Persistent and Dynamic and Environment state patterns,

which extends the domain of our system-level checkpointing solution to the entire memory as-

sociated with a process. In a Linux-based environment, the protection domain covers the total

virtual address space of a Linux process.

For the detection of a process failure, we require instantiation of the Fault Treatment

strategy pattern. Specifically, our solution requires a Fault Diagnosis architecture pattern to

discover the location of the failure and the type of event, which is enabled by a Monitoring struc-

tural pattern. The instantiation of the Monitoring pattern is a kernel-level heartbeat monitor,

which is deployed in the system to detect whether the process is alive.

For the selection of a recovery pattern, there are key two considerations: (i) the frequency of

node failures; and (ii) the performance and resource overhead of applying the pattern. The space

overhead incurred by instantiating a Compensation strategy pattern for recovery is substantial

due to the need to replicate the protection domain. For systems that experience process failures

infrequently, the use of a compensation-based solution proves prohibitively expensive. Therefore,

for the failure recovery we select the Recovery strategy pattern. The Checkpoint-Recovery

architectural pattern is appropriate since Linux provides the capability for a running process

to be interrupted and its context to be written to disk. Also, the process state is deterministic

and defined by the state of the program counter and the registers; therefore, the Roll-back

structure pattern is suitable for implementation at the operating system level. With the selection

of this pattern protection domain of the failure to be limited to a single process context, which

implicitly defines the containment pattern. The implementation of the recovery pattern requires

a disk storage system, to which the checkpoint, i.e., the process state captured during failure-free

operation is exported. The performance overhead of these patterns during failure-free operation

and the recovery time are dependent on bandwidth available between memory and the disk

system.

The implementation of the patterns, which is illustrated in Figure 4, is implemented using

the Berkley Lab’s Checkpoint/Restart (BLCR) [25] framework. Since BLCR does not provide a

failure detection mechanism, the Monitoring pattern is implemented by a kernel-level module

that uses heartbeat monitoring to check for process liveness. BLCR provides a completely trans-

parent checkpoint of the process, which saves the current state of a Linux process. The framework

uses a coarse-grain locking mechanism to momentarily interrupt the execution of all the threads
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Figure 5. Case Study: Proactive Process Migration

of the process, giving them a global view of its current state. The entire state is saved, including

the CPU registers, the virtual memory map as well as the function call stack. From the perspec-

tive of an application programmer, the checkpoint routine returns with a different error code,

to let the caller know if this function call returns from a successful checkpoint or from a suc-

cessful restart. The Roll-back pattern handles recovery after the detection of a process failure

by restoring the context file set from the stable storage, and recreating the process on the same

hardware, with the same software environment. BLCR also provides an API for applications

programmers to manage pattern behavior through hooks that allow the application to block off

code sections where checkpoints are not permitted. These hooks also give applications a chance

to respond to checkpoint/requests and take appropriate action, which provides an application

programmer with explicit control over the pattern’s activation and response interfaces.

5.2. Proactive Process Migration for Failure Avoidance

In HPC environments, various fault indicators indicate the imminence of error or failure

events. The goal of this case study is to design and implement a proactive resilience solution

using the structured design pattern-based approach. In contrast to a reactive solution that seeks

to recover from an error or a failure event after the fact, a proactive solution identifies faults

in a system and seeks to remedy the anomaly or defect to prevent their activation to result in

errors or failures. This analysis of this solution is intended to identify the patterns that must

instantiated for a proactive design approach, and to articulate the protection domain of the

solution.

The key to designing a proactive strategy is the identification of fault indicators that can

sufficiently predict the activation of an error or failure. The fault model for this case study is a

defect in the system that has the potential to result in an error or failure. We consider faults

that are known to cause errors, which result in application crashes. Using design patterns, we

seek to develop a software-based solution that can preemptively migrate parts of an application

away from system resources that are about to fail. In a HPC system, the failure of a compute

node causes termination of the application processes running on that node. Since the presence of

a fault does not impact the correctness of an application program until it activates, the solution
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supports proactive failure avoidance from the application’s perspective. We select the protection

domain by fusing the Persistent and Dynamic and Environment state patterns. Much like the

C/R solution, the protection domain covered by these patterns includes the complete POSIX

process state in a Linux environment. The ultimate objective of the solution is to preemptively

migrate the application processes from compute nodes where a failure is likely to cause them to

crash to another node in the system.

To anticipate the occurrence of a failure, the solution must observe critical indicators that

will predict the likelihood of a failure. We apply the Fault Treatment strategy pattern, which

is instantiated as a Fault Diagnosis pattern in every node of the HPC system. This pattern

is instantiated as a Prediction structural pattern, which enables estimating the possibility of

an imminent error or failure event. Its activation interface reads health monitoring data for the

various components in each compute node and its response interface signals the possibility of

a node failure. The prediction pattern creates a control feedback-loop such that a mitigation

pattern can take preventive action to avoid failure of the processes running on the node. Since the

solution addresses faults in the computes nodes, it requires the instantiation of another Fault

Treatment pattern for mitigation rather than a Recovery strategy pattern. For this solution,

we assume that the number of nodes allocated for an application run are determined during

startup and are fixed for the lifetime of the application run. If the application uses all nodes

in the allocation at initialization and leaves no spare nodes, the inclusion of a Compensation

strategy pattern is not a suitable alternative. The Reconfiguration architectural pattern is

applied, which is instantiated in the form of a Restructure structural pattern that isolates

a failing node and migrates the application processes to an alternative compute node in the

system. The containment is implemented by a kernel level module provides containment for the

fault by identifying the process that is executing on the node which the Prediction pattern has

assessed vulnerable due to a specific set of changes in operating conditions of the node.

The overall structure of the pattern-based design is illustrated in Figure 5. The implemen-

tation of the Prediction pattern is realized as a per-node health monitoring mechanism that

uses various platform-level indicators in the system. It uses platform data available through

the Intelligent Platform Management Interface (IPMI) interface, which relies on the baseboard

management controller (BMC) to collect sensors readings for health monitoring, including the

data on temperature, fan speed, and voltage. The response interface of the pattern notifies

the scheduler when the sensors indicate deterioration of a node’s health. Since the behavior

of the Recovery strategy pattern used by this solution entails performing a live migration of

a POSIX process in the context of the MPI execution environment, the implementation of the

Restructure pattern is realized within the system’s job scheduler. The pattern identifies healthy

nodes in the system as potential destinations for the process migration. Once a destination node

has been identified, the pattern initiates the migration of the process from source to destination

node. It is imperative the entire context of a process be migrated when the presence of a fault is

inferred on a compute node. Therefore, the migration entails transfer of the process image, which

occurs by a page-by-page copy of the address space. The implementation then synchronizes all

the MPI processes to a consistent state, after which the in-flight data in the MPI communication

channels is drained. Once all the MPI processes reach a consistent global state, the remaining

dirty pages, which includes the registers, signal information, pid, files, etc. to the destination

node. Once the mapping of the processes to nodes in the system has been restructured, the

communication channels and the previously saved in-flight messages are restored. The migrated
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Figure 6. Case Study: Cross-Layer Design using Algorithm-based Fault Tolerance to comple-

ment Hardware-level Error Correction Codes

processes resume execution on the destination node. The implementation of the patterns in this

solution ensure the transparency of the proactive migration to the HPC application.

5.3. Cross-layer Hardware/Software Solution for Soft Error Resilience

In this case study, we use design patterns as building blocks to explore novel resilience

solutions that leverage capabilities from various layers of the system stack. By navigating the

design spaces of the resilience design pattern framework, we can evaluate the effectiveness of

instantiating a detection, containment or mitigation pattern at a specific level in the system

stack and systematically construct a cross-layer resilience solution that connects patterns from

multiple layers. The structured approach supported by the framework also enables refining the

cross-layered solution. The aim of this case study is to develop a solution that provides soft error

detection and correction for HPC application data structures. The fault model that we consider

is transient errors in memory structures that cause multiple bit flips in the application’s data or

control variables, which may result in outcomes ranging from incorrect results to fatal program

crashes.

The DRAM memory chips used in HPC systems use error correcting codes (ECC) to detect

and correct bit flip errors. Similarly, algorithm-based fault tolerance techniques are available that

maintain checksums for data structures to detect and correct data value errors at the application

level. However, the lack of formal methods to combine these solutions often precludes cross-layer

hardware-software designs that cooperative protect the application data. Our proposed solution

is designed to support transient error resilience for a scientific application that uses an iterative

linear solver method. In general, these methods solve a system of linear equations represented

as A.x = B, where x is the solution vector, A is the operand matrix and b is a known vector.

The iterative algorithm begins with an initial approximation of the solution x, and refines this

solution until the residual norm is below a certain error bound. Therefore, the matrix A and

vector b are scoped within Static state patterns, the solution vector x in a Dynamic state

pattern, and the remaining variable state is contained within an Environment pattern. While

the solution vector is often tolerant to perturbations due to the iterative nature of the algorithm,

any transient errors within the scope of the two Static state patterns affects the correctness
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of the solver. Therefore, we define the protection domain of our cross-layer solution to include

only these static patterns.

For achieving error detection and correction in digital data, the general approach is to add

redundant information to discover errors and reconstruct the original data. This approach fits

the Compensation strategy pattern, which may be instantiated in the form of a Forward Error

Correction pattern. For the detection of the transient errors, we assume that this pattern

is implemented in the form of ECC in the DRAM modules, which supports single-bit error

correction and double-bit error detection. Therefore, the instantiation of this structural pattern

handles both detection and mitigation for single-bit errors. Double-bit errors result in an ECC

violation on the memory line, which is asynchronously communicated by the Forward Error

Correction pattern to the operating system via its response interface by raising a machine check

exception. For the containment of the double-bit error, we deploy a Fault Treatment pattern in

the operating system, since the OS views the double-bit corruption as a fault. Since the pattern

must discover whether the double-bit corruption maps to the protection domain specified by the

state patterns, it is instantiated as a Fault Diagnosis pattern, specifically as a Monitoring

structural pattern. For recovery of variable state scoped by the Static state pattern, the solution

instantiates the Compensation strategy pattern. It uses the Redundancy architecture pattern and

structures the solution based on the Forward Error Correction pattern.

The instantiation of the patterns across the system stack is illustrated in Figure 6. The

Monitoring pattern for containment is implemented as a kernel-level module that maps the

physical address to the virtual address space to discover whether the fault may be contained

within the Static state pattern. The pattern’s response interface treats the presence of the fault

in the state pattern as an application error and notifies the numerical library. When the error

is outside the scope of the Static state pattern, the response interfaces indicates to the kernel

module that the error is unrecoverable, which results in the OS killing the application. Besides

the Forward Error Correction pattern in ECC for single-bit error recovery, another instance

of this pattern type is implemented in the numerical library to handle double-bit errors. The

implementation maintains a set of checksums for the matrix A and vector b. The checksums

enable the identification of the element of the matrix affected by the error, and substitution of

that element with a correct value using the remaining uncorrupted elements in the row/column

and the checksum values. The instantiation of the Forward Error Correction pattern at the

application library level provides context about the significance of the error to the overall ap-

plication, and is able to employ an algorithm-specific fault tolerance detection and correction

method, which is more cost effective for double-bit error mitigation than system-level bulk reli-

ability provided by hardware-level solution such as an enhanced ECC that supports double-bit

correction. Therefore, the cooperation between patterns across system layers supports a flexible

memory protection mechanism to single and double-bit memory errors, which allows the appli-

cation to resume operation towards completion rather than experience a fatal crash with higher

performance and energy efficiency.

6. Related Work

The original concept of design patterns was developed in the context of civil architecture and

engineering problems where patterns were defined with the goal of identifying and cataloging so-

lutions to recurrent problems and solutions in the building and planning of neighborhoods, towns

and cities, as well as in the construction of individual rooms and buildings [4]. In the domain
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of software engineering, patterns were introduced in an effort to bring discipline to the art of

programming and create reusable designs. The intent of software design patterns isn’t to provide

a finished design that may be transformed directly into code; rather, these patterns are used to

systematize the software development process by using proven paradigms and methodologies in

software engineering practice [12]. With the use of design patterns, there is sufficient flexibility

for software developers to adapt their implementation to accommodate any constraints, or issues

that may be unique to specific programming paradigms, or the target platform for the software.

Related to software design patterns, the concept of algorithmic skeletons was introduced [16]

and further refined [17]. In the context of object-oriented (OO) programming, design patterns

provide a catalog of methods for defining class interfaces and inheritance hierarchies, and estab-

lish key relationships among the classes [34]. In many OO systems, reusable patterns of class

relationships and interactions between objects are used to create flexible, elegant, and ultimately

reusable software design. Pattern systems have also been developed for cataloging concurrent

and networked object-oriented environments [54], resource management [41], and distributed

systems [11].

In the pursuit of quality and scalable parallel software, patterns for programming paradigms

were developed [45] as well as a pattern language, called Our Pattern Language (OPL) [40].

These describe the computation and communication patterns in various parallel algorithms and

therefore useful for designing and implementing scalable parallel applications. For engineering

parallel applications for shared-memory many-core processors, parallel programming patterns

simplify the process of expressing parallelism using a number of programming interfaces such as

OpenMP, OpenCL, Cilk Plus, ArBB, Thread Building Blocks (TBB) [46]. Patterns also support

the implementation of parallel algorithms that automatically avoid unsafe race conditions and

deadlocks [47].

Design patterns have been discovered in a variety of other domains and used to codify the

best-known solutions, which include patterns for natural language processing [57], user interface

design [8], web design [26], visualization [36], and software security [23]. Patterns have also been

defined for enterprise applications that involve data processing in support or automation of

business processes [32] in order to bring structure to the construction of enterprise application

architectures. In each of these domains of design, the patterns capture the essence of solutions

in a succinct form such that they may be easily applied to other contexts.

Previous efforts to develop design patterns for fault tolerance have defined a number of pat-

terns for error detection, recovery and mitigation. These patterns are developed based on well-

known fault tolerance solutions that are used in mission-critical systems such as telecommuni-

cation systems and space programs [35], distributed systems [52] and enterprise data processing

systems [33]. The fault tolerant version of the Common Object Request Broker Architecture

(CORBA) [50] applies patterns in the design of the middleware to improve the performance of a

range of fault tolerance strategies that provide applications with capabilities for rapid recovery

from service failures, including request-retry, redirection, active and passive replication. While

the capabilities of some of the patterns in these domains overlap with the resilience patterns

described in this document, they solve problems that are significantly different from those en-

countered in HPC environments in terms of the system architectures, the software stack, and

the nature of the applications. The patterns in this document specifically address the challenges

for maintaining resilient operation for HPC systems and their applications.

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

36 Supercomputing Frontiers and Innovations



Summary

In this paper, we introduce the concept of resilience design patterns, which support a sys-

tematic approach to designing and implementing resilience solutions. The structured approach

to the design of HPC resilience solutions is useful to reduce the complexity of the design pro-

cess, and is particularly relevant for the future generations of extreme-scale parallel systems and

their applications. The resilience design patterns are based on well-known and well-understood

solutions that have been applied in HPC systems and provide solutions to specific problems

encountered in the management of resilience. The patterns presented in this document support

detection, containment, masking and recovery capabilities. The resilience patterns may be used

by designers as reusable templates when building and refining new resilience solutions and for

reengineering existing solutions for future generations of HPC systems. The paper also presents

a classification scheme that organizes the resilience patterns in a layered hierarchy in order to

expose the relationships between the various patterns in the catalog and their capabilities. The

hierarchical organization of the patterns enables system hardware and software architects to

approach the solution at an abstract level, while individual component designers and software

developers may restrict their work to the level that directly impacts their portion of the solu-

tion. We have also developed a design framework to simplify the composition of design patterns

into complete resilience solutions. The framework is useful for navigating the various design chal-

lenges and constraints encountered by designers and enables the creation of flexible and portable

resilience solutions. The resilience patterns and the pattern-oriented framework also facilitates

the exploration of alternative solutions, the refinement and optimization of solutions, and the

investigation of the effectiveness and efficiency of solutions. This structured approach aims to

address the resilience challenge for extreme-scale HPC systems through a systematic design of

solutions with an emphasis on optimizing the trade-off, at design time or runtime, between the

key system design factors: performance, resilience, and power consumption.
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We examine the performance of the in-situ data exploration framework based on the in-situ

Particle Based Volume Rendering (In-Situ PBVR) on the latest many-core platform. In-Situ PBVR

converts extreme scale volume data into small rendering primitive particle data via parallel Monte-

Carlo sampling without costly visibility ordering. This feature avoids severe bottlenecks such as

limited memory size per node and significant performance gap between computation and inter-node

communication. In addition, remote in-situ data exploration is enabled by asynchronous file-based

control sequences, which transfer the small particle data to client PCs, generate view-independent

volume rendering images on client PCs, and change visualization parameters at runtime. In-Situ

PBVR shows excellent strong scaling with low memory usage up to ∼ 100k cores on the Oakforest-

PACS, which consists of 8,208 Intel Xeon Phi7250 (Knights Landing) processors. This performance

is compatible with the remote in-situ data exploration capability.

Keywords: in-situ visualization, volume rendering, runtime steering, strong scaling, perfor-

mance evaluation.

Introduction

Recent advances in HPC technology enabled extreme scale simulations at several tens of

Peta-FLOPS, while the performance gap between computation and data I/O is enhanced. Be-

cause of this severe I/O bottleneck, data handling procedures such as “data output from simula-

tions to storage” and “data input from storage to visualization applications” are becoming very

costly, and conventional post processing visualization strategies often fail. In-situ visualization is

one of promising solutions to this issue. In this approach, the I/O bottleneck is avoided by com-

bining simulations and visualization applications to visualize simulation data at runtime on the

same computing nodes. This requires extreme scale parallel visualization with high scalability

at the same level as the simulations.

Computational fluid dynamics (CFD) applications are widely used in various science and

engineering fields, and are expected to be one of major applications on future exa-scale systems.

Although variety of scientific visualization methods have been developed for CFD applications,

visualization methods applicable to massively parallel processing of extreme scale volume data

are still limited. Therefore, volume rendering methods for in-situ approaches should be carefully

selected from the viewpoint of massively parallel processing and flexible visual analytics. Vol-

ume rendering is one of scalable visualization methods, which are suitable especially for CFD

applications. In addition, in Ref. [4], it was shown that the volume rendering makes visual

analytics flexible by extending the definition of transfer functions (TFs) into multi-dimension.

Multi-dimensional transfer functions (MDTFs) generate not only three dimensional (3D) volume

rendering, but also iso-surfaces, slice planes, image cropping, and image composition.

Another important requirement is interactivity of in-situ visualization. In the conventional

in-situ visualization, visualization parameters such as viewpoint and TFs are prescribed be-

fore batch processing. But, such prescribed parameters often generate undesirable images. This

problem obviously leads to the loss of computational resources, and is fatal at extreme scale. In

order to extract important features from extreme scale data, one needs to change visualization
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parameters repeatedly in an interactive manner. To this end, the so-called runtime visualization

approaches [18] [19] are becoming more important in modern visual analytics. In the runtime

visualization approaches, runtime steering of visualization parameters enables interactive in-situ

data exploration, which minimizes such a visualization failure.

However, it is not so clear whether one can design such interactive in-situ visualization

frameworks based on the conventional volume rendering algorithms, which may suffer from the

following issues. Firstly, the conventional algorithms of volume rendering require large rendering

primitive data (e.g., splatting kernels, cells, and polygons), which can be comparable or even

larger than the original volume data. Since exa-scale simulations have to overcome severe con-

straint on the memory size per node, this feature is a critical issue. Secondly, even if one can

store such large rendering primitive data, calculation of semi-transparency attribute requires

costly collective communication for sorting or searching of sub-images, which could lead to per-

formance degradation and prevent strong scaling. Thirdly, the conventional volume rendering

generates view-dependent images, and thus, interactive in-situ visualization becomes extremely

costly. Existing parallel visualization libraries such as VTK-m [12], VisIt [1], and ParaView [2]

support in-situ visualization based on the conventional volume rendering algorithms. However,

the above bottlenecks were not resolved yet. Therefore, it is important to construct in-situ visu-

alization frameworks based on a new volume rendering algorithm, which can resolve the above

issues, and demonstrate its performance on the latest many-core platforms.

In this work, we address these issues by using the In-Situ PBVR [6], which was developed

using visualization algorithm PBVR [17] [15], whose rendering primitive can be processed view-

independent and data size is controllable by image quality. This framework converts extreme

scale volume data into small view-independent rendering primitive (particle) data via Monte-

Carlo sampling, and transfers it to client PCs, where it is rendered at interactive frame rate.

Since the particle generation process does not require visibility ordering, and thus, inter-node

communication, this framework works only with the embarrassingly parallel Monte-Carlo sam-

pling, which can be computed on the same massively parallel nodes as the simulations with

much less memory usage. Therefore, it is expected that this framework does not suffer from

the aforementioned bottlenecks. In addition, the In-Situ PBVR supports flexible MDTF design,

which is essential for visualizing complicated multivariate volume data generated from extreme

scale simulations with high fidelity and reality. We examine the performance of the In-Situ

PBVR, which is coupled to a multi-phase multi-component thermal-hydraulic CFD code, on the

Oakforest-PACS, which consists of 8,208 Intel Xeon Phi7250 (Knights Landing) processors.

1. Related Works

Volume rendering requires visibility ordering for alpha blending over the entire volume

data, which leads to high calculation and memory costs. In realizing interactive visual analytics,

the development of parallel volume rendering with high frame rate and low memory cost is

of critical importance. So far, such parallel volume rendering methods have been developed on

various parallel platforms, and they are categorized into two types: methods optimized for multi-

threaded accelerators such as Xeon Phi and GPU, and methods optimized on massively parallel

CPU platforms. Since massively parallel accelerator platforms are one of promising approaches

towards exa-scale machines, the former is attracting much attention in recent works.

On massively parallel platforms, most parallel volume rendering methods adopts the so-

called sort-last approach, in order to efficiently use distributed memory. While this approach is
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suitable for processing subdivided volume data on distributed memory, visibility ordering for

image composition requires costly inter-node communication. To resolve this issue, significant

efforts were made in former works. By optimizing time series processing pipeline and reducing the

cost of image composition using improved direct send method, Peterka et al. [13] improved the

performance of parallel volume rendering using 4,096 cores of IBM BlueGene/P and processed

about 644 million grids (8643) of volume data at the frame rate of ∼ 0.3 frame per second

(fps). However, in this work, the cost of image composition rose exponentially, and exceeded the

cost of rendering at 4,096 cores. Perterka et al. further optimized this approach using a faster

compositing algorithm Radix-k and extended the numerical experiment up to 32k cores [14]. In

the case of about 1.4 billion grids (11203), the performance acceleration was saturated at 16k

cores, while in the case of about 90 billion grids (44803), the scalability was extended up to

32k cores. Howison et al. [3] optimized the volume rendering using Levoy’s method [11] with a

hybrid MPI/OpenMP parallelization model on Cray XT5. They conducted scaling tests using

98 billion grids (46083), and the performance was scaled up to 216k cores.

There are several on-going efforts to develop parallel volume rendering methods for acceler-

ators. Embree [21] is a photorealistic ray-tracer, which consists of a set of low-level kernels for

multiple platforms, and has a simple API to port its kernels. OSPRay [20] is a multi-platform

ray-tracing framework for scientific visualization on GPUs and multiple CPU architectures with

varying SIMD widths, and is integrated into VisIT and ParaView. BnsView [8] is a molecular

visualization framework which delivers fast volume rendering and ball-and-stick ray casting on

Xeon Phi and is implemented in a SPMD language. Larsen et. al. [9] presented a method for ray-

tracing consisting entirely of data parallel operators such as map, gather, scatter, reduce, and

scan, which are optimized for CPU and GPU. VTK-m library [12] employs Larsen’s algorithm

for the ray-tracer and supports in-situ visualization mode on various multithreaded devices such

as CPU, GPU, and MIC. In our previous work [5], PBVR was implemented on GPU, and an

order of magnitude speedup was achieved compared with CPU rendering.

In terms of interactive data exploration, transfer of the original data requires a dedicated

visualization cluster and a sustained network bandwidth equal to the solution output rate in

order to support the so-called runtime visualization [10]. Tu et al. [19] proposed an online

approach with image delivery and demonstrated efficient monitoring of tera-scale earthquake

simulations running on supercomputers with thousands of processors. Over a wide-area network,

they were able to interactively change visualization parameters to visually monitor simulation

runs [18]. This kind of online approach was also extended to lightweight in-situ application called

Strawman [10], which supports multiple programming languages and data models with refined

system interface. In Ref. [6], we proposed a runtime visualization framework, In-Situ PBVR,

which enables an online approach by transferring lightweight volume rendering primitive data.

2. In-situ PBVR

PBVR comprises two processes: particle generation and particle projection [7] (see Fig. 1).

The first process constructs a particle density function based on physical variables, and generates

particles for representing volume data. In Fig. 1, the left shows the cell-by-cell particle generation

using Monte-Carlo sampling. The particles are randomly located in each cell and its color is given

by interpolated physical values.
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Figure 1. Image generation process of PBVR

The second process projects particles onto an image plane, and the particles are stored in

the corresponding particle buffer, and final color and brightness values are synthesized from the

illuminant particles in the buffer. In Fig. 1, the right shows the particle projection onto screen.

The screen has the particle buffer which is consist of color and depth buffers, and each pixel is

subdivided to sub-pixels. After the projection, the color and depth information in sub-pixels are

synthesized to calculate the final pixel color.

PBVR generates particles by referring to the particle density function, which represents

a number of particles in a unit volume. The particle density function is derived from a user-

specified MDTF. The particles are generated in a cell-by-cell manner. In each cell, the locations

of the particles are calculated via Monte Carlo sampling to avoid lattice patterns. The number

of particles in each cell is calculated by volume integration of the particle density function. The

3MB particles	 250MB particles	

Figure 2. The PBVR image quality and the number of particles

size of particle data often becomes several orders of magnitude smaller than that of the original

simulation data, and is determined by a flexible level of details (LOD) control. The left and

right of Fig. 2 shows coarse and fine images with 1, 024× 1, 024 pixels generated using ∼ 3MB

particle data (∼ 0.1M particles) and ∼ 250MB particle data (∼ 9.3M particles), respectively.

Here, a single particle has 27MB data consisting of particle position (4Byte×3), RGB color

(1Byte×3), and normal vector (4Byte×3). One can control the image resolution by varying the

number of particles depending on the purpose of visualization. For example, light weight particle

data may be useful for interactive data exploration via narrow bandwidth network. On the other

hand, heavy particle data may be desirable for generating high fidelity images, once MDTFs are

properly designed through in-situ data exploration.

In-situ PBVR consists of three main components: “Sampler” connected to the simulation

solver on computing nodes, “Daemon” launched on an interactive node, and “Viewer” providing

the multivariate volume renderer and GUI to design MDTFs on client PC. Particle generation

and projection processes are computed by Sampler and Viewer respectively, and Daemon controls

data transfer between them. Fig. 3 shows the whole design of the developed framework.
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Fig. 2. Left; PVBR viewer. Middle; TFS. Upper right; start/stop button of time progress. Middle right; a panel to call TFS, particle controller and animation
capture. Lower right; terminal. PBVR viewer displays the visualization result of multicomponent analysis for complicated core internals in the reactor pressure
vessel (RPV). Viewpoint is looking up from bottom of RPV. (orientation box at lower right on the viewer indicate x-y-z axis. Z-axis means vertical direction.)
Gray; structure of control rod. Yellow; melted control rod. Red; channel box. Orange; melted fuel rod, which is expelled from the structure of control rod.

TABLE I
COST DISTRIBUTION OF PROPOSED FRAMEWORK

Cores (Procs. X Thrds.) 432 (108 X 4) 864 (216 X 4) 1728 (432 X 4) 3456 (864 X 4)
JUPITER Solver [sec/step] 64.804 37.274 20.064 8.717
PBVR Sampler [sec/step] 1.686 0.946 0.736 0.391
Ratio [%] 2.6 2.5 3.7 4.5

for all cases, so that the gathering time is completely hidden
by the simulation time.

V. CONCLUSION

We have developed a novel in-situ online visualization
framework, which is highly scalable and allows multivariate
volume rendering with view exploration. This framework is
applied to the JUPITER and the feasibility of monitoring large-
scale parallel simulation at runtime from a remote user PC is
demonstrated.
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Figure 3. Three components of In-situ PBVR. From left to right, Sampler, Daemon, and Viewer

2.1. Viewer

Viewer on client PCs receives particle files, histogram files, and time step files from Dae-

mon. Here, the particle file contains particle data, the histogram file has the information on

distribution of (synthesized) variables, and the time step file contains other control parameters.

Viewer renders particle data by projecting particles onto an image plane. Since the particle data

is view-independent, one can easily change viewpoints, shading types, and light directions to

explore the volume data. Since the maximum particle data size is several hundreds MB, Viewer

works on PCs with small memory, and its thread parallel implementation with OpenMP enables

interactive data exploration at interactive frame rate [5].

Another important interactive feature is flexible design environment of MDTFs supported

by Transfer Function Synthesizer (TFS) [4]. Based on algebraic expressions, TFS generates

new variables at runtime following definitions given as functions of existing multiple variables,

coordinates, and time. The definitions of new variables are stored as character data of algebraic

expressions. 1D TFs, which defines the color and the opacity as a function of a single variable,

are designed using GUIs based on algebraic expressions, control points, or freeform curves. 1D

TFs are stored either as character data or as data tables. Finally, algebraic synthesis of multiple

1D TFs gives a MDTF, which defines the color and the opacity independently as functions of

multiple variables. The definition of MDTF is stored as character data of algebraic expressions.

Together with other visualization parameters such as the number of particles, the above MDTF

information is transferred to Daemon, and stored in a visualization parameter file.

2.2. Sampler

Sampler is written in C++ based on a visualization library KVS [16], which supports various

data structures for visual programing. The routines of Sampler are wrapped in C interface,

which can be called also from Fortran programs. Sampler is parallelized using a hybrid MPI

and OpenMP parallelizaiton model, where MPI parallelization follows domain decomposition of

the simulations, while OpenMP is applied to cell-by-cell parallelization in each subdomain. This

parallelization strategy makes the API of Sampler quite simple. Sampler is easily coupled to the

simulation by calling the following function from each MPI process at each time step.

void generate particles( Type** subvolume, Param* parameters )

T. Kawamura, T. Noda, Y. Idomura

2017, Vol. 4, No. 3 47



Here, subvolume is data array of resulting multivariate volume data in each subdomain,

and parameters involve the information of volume data size and MPI parameters such as

the rank ID, the number of MPI processes, and MPI communicators. A pseudo code of void

generate particles is shown in Code 1, where parameters are visualization parameters in-

cluding MDTF read from the visualization parameter file, multi dim tf gives the color and the

opacity by processing MDTF, interpolator calculates trilinear scalar interpolation at given

point, gradient defines the normal vector from the gradient of the opacity around given point,

conv opa2dens converts the opacity to the normalized particle density [7], particle object is

a dynamic array for generated particles, which have point (particle position), color (8bit RGB),

and gradient (normal vector), following the KVS format. Since the number of particles in each

cell varies depending on multivariate volume data and MDTFs, the particle generation is paral-

lelized in a cell-by-cell manner with dynamic scheduling. In each cell, the number of particles is

computed, particles are generated following the opacity or the particle density via Monte-Carlo

sampling, and the color is computed from MDTFs. The most expensive part of the particle gen-

eration is multi dim tf, in which algebraic expressions of MDTFs, which is given as character

data, are interpreted and expanded into a tree structure by using a function purser, and then,

volume data synthesis, 1D TF computation, and MDTF synthesis are computed sequentially. In

order to reduce the cost of multi dim tf, we synthesize volume data before starting the particle

generation, and keep a copy of the volume data of opacity, which is used for calculation of the

normal vector given by the gradient of the opacity.

Although Sampler can be processed using the original volume data on the memory of com-

puting nodes, we produce a copy of the volume data before the particle generation, so as not

to affect the simulation. As a result, the current Sampler consumes memory space for a copy of

the original multivariate volume data, the volume data of opacity, and generated particles.

When the visualization parameter file is updated, visualization parameters are distributed

from the master process, and the corresponding histogram data computed by using the new

visualization parameters are reduced to the master node. Apart from this initialization process,

the particle generation is processed without any MPI communication, and the generated particle

data is written from each process using POSIX I/O in an asynchronous manner.

2.3. Daemon

Daemon is operated on an interactive processing node or on a login node, which can access

the storage and are connected to the internet, and controls the following data transfer between

Viewer and Sampler.

• Sampler ← Viewer: visualization parameter file

• Sampler → Viewer: particle file, histogram file, time step file

Daemon interacts with Viewer via socket communications (through ssh tunnel), while it interacts

with Sampler via asynchronous file-based control sequences. When new visualization parameters

are transferred from Viewer, Daemon writes them to a new visualization parameter file. As shown

in Code 1, when Sampler is launched from the simulation, it detects the new parameter file, and

the master process reads new visualization parameters and distributes them via MPI Bcast. In

principle, this process may be constructed without MPI Bcast, provided that all processes can

read the same visualization parameter file. However, depending on the timing of file update, all

computing nodes may not access the same file, and the coherence of visualization parameters

may break down. To avoid such a failure, the above file control sequence is designed. Even
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Algorithm 1 generate particles on each MPI rank

1: MPI Barrier

2: if Open( visualization parameter file ) == true then

3: if mpi rank == 0 then

4: Read( visualization parameter file ) → parameters

5: Rename( visualization parameter file → old parameter file )

6: end if

7: MPI Bcast( parameters )

8: MPI Reduce( histograms )

9: Write( histogram file ) ← histograms

10: end if

11: #pragma omp for schedule( dynamic ) nowait

12: for each cell do

13: scalars ← interpolator( gravity center of cell )

14: opacity ← multi dim tf( scalars )

15: density ← conv opa2dens( opacity, visualization parameters )

16: num particles ← density * volume of cell

17: c = 0

18: while c < num particles do

19: point ← randomly sampled point in each cell.

20: scalars ← interpolator( point )

21: opacity ← multi dim tf( scalars )

22: density ← conv opa2dens( opacity, visualization parameters )

23: r ← random number from 0 to 1.

24: if density > r then

25: vector ← gradient( point )

26: color ← multi dim tf( scalars )

27: particle object ← ( point, color, vector )

28: c + +

29: end if

30: end while

31: end for

32: Write( particle file ) ← particle object

33: if mpi rank == 0 then

34: Write( time step file )

35: end if
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with this control sequence, when Daemon and Sampler access the visualization parameter file

simultaneously and the update of the visualization parameter file is not completed, Sampler often

fails because of incomplete visualization parameters. To avoid this error, the exclusive control of

write and read sequences of the visualization parameter file is designed, so that Daemon writes

“END OF FILE” statement at the end of the visualization parameter file, and before Sampler

reads the visualization parameters, it waits until this statement is detected in the file.

On the other hand, when the current time step in the time step file is updated by the

master process of Sampler, Daemon starts to gather the particle files. This file I/O is thread

parallelized via OpenMP. Here, their file names include the information of the current time step,

the rank ID, and the number of MPI processes. By using this information, Daemon detects the

completion of the file gather, before it launches transfer of the merged particle data to Viewer.

3. Performance Evaluation

In-Situ PBVR was originally developed on the ICEX, which consists of 2,510 Intel Xeon E5-

2680v3 connected via the Infiniband FDR interconnect, and its performance showed excellent

strong scaling up to 3,456 cores [6]. In order to estimate its performance on the latest many core

platforms, which have significantly different hardware characteristics from the ICEX, we conduct

a numerical experiment on the Oakforest-PACS, in which 8,208 computing nodes with Intel Xeon

Phi7250 (Knights Landing) are connected via the Intel Omni-Path Host Fabric Interface.

Sampler is connected to the JUPITER code [22], which computes relocation behavior of

molten debris in reactor pressure vessels based on thermal-hydraulic equations and multiphase

simulation models. The code is based on structured grids with 3D domain decomposition, and is

highly parallelized using a hybrid MPI and OpenMP parallelization model. A typical simulation

duration of the JUPITER code is ∼3,000,000 time steps, and visualization is processed at every

1,000 steps. However, in this numerical experiment, Sampler is called at every time steps. A

strong scaling test is performed with the fixed problem size of 240 × 240 × 1, 920 ∼ 108 grids.

Sampler generates ∼ 107 particles (∼250MB), which is typically used for high quality image

with 1, 024 × 1, 024 pixels. In the strong scaling test, the number of MPI processes per node

is fixed to 4, and the number of threads per MPI process is chosen to be 16. Therefore, 64

cores per node are used without hyper-threading, while the Oakforest-PACS has 68 cores per

node. The multi-channel dynamic random access memory (MCDRAM) is used in a cache mode.

In the experiment, the number of nodes (cores) is increased from 24 (1,536) to 1,536 (98,304).

The computational cost is measured over 20 time steps, in which visualization parameters are

updated once.

The strong scaling test is summarized in Tab. 1 and in Fig. 4. In Tab. 1, “Solver” and

“Sampler” mean the costs of the JUPITER code and the In-Situ PBVR, respectively. “Write”

and “Update” are respectively the costs of updating visualization parameters and writing particle

data, which are included in Sampler. The result shows that the cost of Sampler is suppressed

between ∼ 10% and ∼ 45% of the JUPITER code (Solver). If one calls Sampler less frequently,

this cost is negligibly small. Both Solver and Sampler scale up to ∼ 100k cores. However, at

1,536 nodes, the problem size per thread is reduced to 15 × 15 × 5, which is almost the upper

limit of strong scaling, and Solver suffers from significant performance degradation. As a result,

the acceleration of Solver between 24 and 1,536 nodes (the peak performance ratio of ×64)

is limited to ×3.9. Although Sampler shows better acceleration ratio ×9.5, it is still far from

the peak performance ratio. This performance degradation may be attributed to the cost of
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writing the particle data, and the load imbalance inherent to the particle distribution reflecting

the (synthesized) multivariate volume data. The overhead of file I/O increases from ∼ 1% to

∼ 79% of the total Sampler cost. It is noted that the update of visualization parameters includes

MPI Bcast and MPI Reduce, and thus, the overhead of synchronization among all nodes was

anticipated. However, the result shows very small impact from the update.

Another important result is the memory usage summarized in Tab. 2 where “Solver” and

“Sampler” mean the memory usage of the JUPITER code and the In-Situ PBVR, respectively.

The memory usage of Solver is based on the maximum memory size reported from the job

scheduler, while the memory usage of Sampler is calculated from the difference of the memory

usage before and after the memory allocation for the particle generation. Here, the instantaneous

memory usage is obtained from “/proc/[process ID]/stat” file. Even with the fixed problem size,

the memory usage of Solver shows explosive growth due to increasing halo regions and MPI

buffers. On the other hand, the memory usage of Sampler shows moderate growth, and the

memory usage per MPI process is suppressed between ∼ 3.3MB and ∼ 92MB. This extreme low

memory usage is an important advantage of In-Situ PBVR.

The particle data was transferred to client PCs via socket communication, and the multi-

variate volume data was rendered on Viewer, in which the viewpoint is changed at about 10

fps.

Table 1. Distribution of computational costs per time step

observed in the numerical experiment on Oakforest-PACS

Nodes 24 96 384 1,536

Cores 1536 6,144 24,576 98,304

Solver [sec/step] 26.7 10.3 7.3 6.8

Sampler [sec/step] 7.6 2.8 1.0 0.8

Write [sec/step] 0.078 0.064 0.124 0.645

Update [sec/step] 0.05 0.03 0.04 0.03
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100.0	
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Figure 4. Strong scaling of the JUPITER code (Solver) and the In-Situ PBVR (Sampler) on

Oakforest-PACS

T. Kawamura, T. Noda, Y. Idomura

2017, Vol. 4, No. 3 51



Table 2. Total memory consumption observed in the

numerical experiment on Oakforest-PACS

Cores 1536 6,144 24,576 98304

Solver [GB] 106.7 135.0 256.7 773.2

Sampler [GB] 8.9 9.5 11.6 20.4

Conclusion

We have examined the performance of the In-Situ PBVR framework on the latest many-

core platform based on Knights Landing processors. The proposed framework is designed to

process parallel in-situ visualization with the minimum memory usage and to enable interactive

in-situ data exploration. Sampler is parallelized by MPI for each decomposed subdomain and

by OpenMP for each cell, respectively. The result of strong scaling test shows that Sampler

performance scales up to ∼ 100k cores with extremely low memory usage. These are promis-

ing features for future exa-scale in-situ visualization frameworks. Interactive data exploration

is realized by the following two features. Firstly, we designed asynchronous file-based control

sequences for interactive update of visualization parameters between Sampler and Daemon, so

that the performance of Sampler is not affected by the interactive procedure. Secondly, In-Situ

PBVR is based on view-independent rendering primitives, which are given as relatively small

particle data. The particle data is easily transferred to remote PCs via socket communication,

and is rendered at interactive frame rate.
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Development and Integration of an In-Situ Framework for Flow

Visualization of Large-Scale, Unsteady Phenomena in ICON
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With large-scale simulation models on massively parallel supercomputers generating increas-

ingly large data sets, in-situ visualization is a promising way to avoid bottlenecks. Enabling in-situ

visualization in a simulation model asks for special attention to the interface between a parallel

simulation model and the data analysis part of the visualization, and to presentation and interac-

tion scenarios. Modifications to scientific workflows would potentially result in a paradigm shift,

which affects compute and data intensive applications generally. We present our approach for en-

abling in-situ visualization within the highly parallelized climate model ICON using the DSVR

visualization framework. We focus on the requirements for generalized grid and data structures,

and for universal, scalable algorithms for volume and flow visualization of time series. In-situ

pathline extraction as a technique for the visualization of unsteady flows has been integrated in

the climate simulation model ICON and verified in first studies.

Keywords: DSVR, ICON, in-situ visualization, visualization framework.

Introduction

High-resolution simulation of climate phenomena tends to produce very large data sets,

which hardly can be processed in classical post-processing visualization applications. Typically,

the visualization pipeline consisting of the processes data generation, visualization mapping, and

rendering is distributed into two parts over the network or separated via file transfer [4, 6, 20].

Within most traditional post-processing scenarios, the simulation is executed on a supercom-

puter whereas data analysis and visualization is done on a graphics workstation. That way

temporary data sets with huge volume have to be transferred over the network, which leads

to bandwidth bottlenecks and volume limitations. A solution to this issue is the avoidance of

temporary storage, or at least significant reduction of data complexity. This can be achieved by

in-situ visualization, where the visualization is tightly coupled to the data generation [9]. In our

work we focus on this topic, as well as on further challenges in extreme-scale visual analytics [19].

One actual climate simulation model is the ICON (Icosahedral non-hydrostatic) general

circulation model, which was initiated by the Max Planck Institute for Meteorology (MPI-M)

and the German weather service “Deutscher Wetterdienst” (DWD) [21]. Within the Climate

Visualization Lab – as part of the Cluster of Excellence “Integrated Climate System Analysis

and Prediction” (CliSAP) at Universität Hamburg, in cooperation with the German Climate

Computing Center (DKRZ) – we enhance our in-situ approach and integrate it into the ICON

framework.

The article is organized as follows. Section 1 introduces our DSVR framework [13] in the

context of state-of-the-art visualization approaches. In section 2 we present the development

steps to support generic grids. Section 3 addresses the integration and application of DSVR

based flow visualization in ICON. The Conclusion summarizes the study and points directions

for further work.
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1. Parallel Data Extraction and Visualization in “DSVR”

As the data exchanged between the processes of the visualization pipeline decreases in vol-

ume, the level of exploration also decreases. So the partitioning of the visualization pipeline

while designing a visualization system is always a trade-off decision between those two parame-

ters. Common in-situ approaches fulfill the full visualization task on the supercomputer running

the simulation and just store 2D pixel data within a movie. In another common approach, the

visualization framework let a remote user connecting directly into the running simulation in

order to allow live visualization of the running simulation. Well-known visualization systems

utilizing one or both of these approaches are: Paraview Catalyst [1, 5] or VisIt [18]. An overview

of most common in-situ visualization frameworks is given at [2]. We decided to follow the sec-

ond approach, separating the process chain between the mapping and the rendering processes,

since this enables real-time streaming while preserving user interactions like explorative camera

changes, setting of lighting or time shifting within the visualization (see fig. 1).

 
Data Source

(Parallel
Simulation)

Presentation
(Display)

Rendering
(Graphics)

Filter, Mapper
(Isosurface,  )

3D Geo-
metries

Raw
Data

2D Pixel
Images

Decreasing level of exploration
Decreasing data volume

Parallel Data Extraction

 In Situ  with DSVR

Figure 1. The visualization pipeline of DSVR

1.1. Distributed Streaming and Visualization Framework

In contrast to other visualization frameworks, where in-situ capabilities typically are built

on top of existing post processing visualization applications, the DSVR framework [7, 13] was

designed for in-situ visualization from scratch. This includes design and development of dis-

tributed software components, as well as network protocols and interfaces. As shown in fig. 2,

the DSVR framework consists of three main components:

3D Generator: To enable in-situ visualization, the mapping process is tightly coupled to the

simulation by calling methods of a parallelized data extraction library called libDVRP.

This way the visualization mapping algorithms have access to the transient raw data

in memory, using the domain decomposition of the calling simulation. The visualization

library also combines 3D data compression with the mapping algorithms. This includes

polygon reduction by adaptive vertex clustering within the isosurface generation [10], as

well as compression of pathlines. Pathlines could be enhanced by local properties of the

simulation to allow interactive post-filtering [15]. This results in a time-based sequence

of geometric 3D scenes, interleaved with samples of raw data or extracts, which can be

streamed and visualized in 3D.
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Figure 2. The DSVR framework consisting of libDVRP, streaming server, and rendering client

Streaming Server: A unique, advanced streaming feature of DSVR also has capabilities for

further reduction of transferred data by server-side filtering of geometric objects based on

sampled raw data as well as support of synchronization and control of frame rates. To

support long running simulations, the 3D models can be stored on a separate persistent

storage component, which is realized as a streaming server providing record and play

functions and then played-out asynchronously.

3D Viewer: The 3D viewer client was first realized as a multi-platform browser plugin based on

the NPAPI, and is now provided as a lightweight stand-alone version. Since the OpenGL

based rendering is part of this viewer application, the scenes can be navigated interactively,

optionally supported by stereoscopic 3D and tracking systems. In contrast to other in-situ

approaches where 2D images are created as part of the simulation or a synchronous co-

visualization takes place, our method supports interaction in 3D space and in time, as well

as control of frame rates.

1.2. In-Situ Pathline Extraction

Techniques for visualization mapping of raw data in a three dimensional domain can be

classified into volume visualization for scalar data and flow visualization for vector data. The

integration of streamlines or pathlines using particle tracking algorithms is a common techniques

for visualization of unsteady flow fields. Parallelization of particle tracking algorithms utilizes

basically one of the following parallelization schemes: parallelization over seeds, parallelization

over blocks (spatial domain and optional time), or hybrid approaches. For parallel performance of

one or another parallelization scheme, key influencing factors are data set size, seed set size, seed

distribution as well as vector field complexity [14]. Seeding strategies for pathline visualization
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not only affect the algorithm’s performance but also the visualization’s insight. A lot of seeding

strategies have been discussed for the integration of streamlines within steady flows, but they

could not be applied straight forwardly to unsteady flows. Seed points can be evenly distributed

all over the volume with some termination or filtering function to avoid visual cluttering. For

better results the data set is preprocessed to find critical points of the vector field. An overview

about geometric flow visualization including common seeding strategies is given in [12].

In our work we especially focus on techniques for visualization of time dependent scalar and

vector fields. Some algorithms we implemented in DSVR are already well proven and highly

optimized for the parallel visualization mapping and data reduction. Since the DSVR library

was originally designed to be used with rectilinear grids, the implemented algorithms take direct

advantages of the grid structure and are tightly bound to the grid. Parallel isosurface extraction

with integrated flexible polygon simplification, as well as parallel pathline extraction for feature

enhanced pathlines had been implemented and applied in oceanic and atmospheric simulations

based on the parallel large-eddy simulation model PALM [11, 16]. Using the simulation’s domain

decomposition the parallelization of the pathline extraction is natively given as parallelization

over blocks. Although time is a fourth dimension in time dependent flow visualization, paral-

lelization over time steps is not an option due to mainly two reasons: (1) within an in-situ

approach, only data of a few time steps can be hold in transient memory because of memory

limitations, and (2) pathline extraction uses iterative, serial algortihms to trace particles over

time steps. The seeding strategy would typically distribute a very large amount of seed points

over the simulated volume, using a predefined pattern. Visual cluttering is reduced by interactive

filtering during the streamed presentation, based on the enhancement of the pathlines with a

set of properties gained from the simulation.

1.3. Support of Simulation Applications

To enable DSVR based in-situ visualization within a simulation, the data extraction library,

called libDVRP, needs to be integrated within the simulation code. The library is written in

C and provides an additional Fortran interface. libDVRP supports MPI-based parallel envi-

ronments, and it encapsulates the handling of the transient data parts in 3D space and time,

according to the given domain decomposition and iterative solution, and the serialization for

file or streaming output of extracted 3D primitives or other data. The integration of the library

into a simulation can be done easily by adding a few lines of code as shown in fig. 3. In most

simulation codes a simple scheme can be found: First there is a bunch of initialization routines,

then within a main loop for each simulated time step the model data is calculated, followed by

finalization routines.

Within the simulation’s initialization routines, libDVRP needs to be configured. First of all

libDVRP needs to be initialized to set internal data structures to defaults and the output mode

has to be selected. Here the options are writing 3D sequences directly to file or to the DSVR

streaming server via TCP/IP. Then the simulation’s grid configuration needs to be given to the

library. After this the visualization has to be parametrized by setting seed points for pathlines

or thresholds for isosurfaces for example.

At the end of the simulation’s main loop, when all calculations are done, the data fields

needs to be provided to the library. Then DVRP_Visualize() can be called to let libDVRP

extract the 3D geometries. Within the simulation’s finalization our library should be finalized.
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PROGRAM simulation

! initialize simulation

CALL DVRP_Initialize

CALL DVRP_SetOutput

CALL DVRP_SetGrid

! call methods for setting visualization parameters,

! eg. DVRP_Threshold, DVRP_Material, DVRP_Cubic_Seeding

DO ! simulations main loop

! do the simulation step and calculate all those fields

CALL DVRP_SetDataFields

CALL DVRP_Visualize

END DO

CALL DVRP_Finalize

! finalize simulation

END PROGRAM simulation

Figure 3. Integration of DSVR in-situ visualization in a simulation code

2. Development of Visualization Methods on Generic Grids

ICON internally uses an icosahedral grid structure, which fits better for a spherical problem

domain found in earth sciences. Since ICON also includes output modules for rectilinear grids,

we had to do a design decision for integrating DSVR in ICON: Would we like to make usage

of the ICON output routines and fit them for our needs or reimplement our algorithms for the

ICON grid? Mapping of the ICON raw data onto rectilinear grids is attended by several issues:

(1) grid transformation requires recalculating all needed data fields on all grid points, (2) using

the same amount of grid points will lead to oversampling at the poles and to undersampling at

the equator and (3) matching the grid point distance of the original grid with the rectilinear

grid at the equator, won’t lead to undersampling but needs a higher memory footprint due to

oversampling. We decided to implement a highly generalized approach.

Given that other grid structures beside rectilinear and prism grids will get required in the

future, we decided for a paradigm shift for the development of libDVRP. The overall goal is to im-

plement visualization algorithms independent of the simulations’ grid structure while preserving

the possibility to optimize the in-situ visualization for the individual simulation data structures.

This results in a gridAPI written in C, which abstracts the grid and data relevant operations

from the visualization algorithms as known from object oriented programming approaches. For

each new grid, a realization of each of the gridAPI’s functions has to be implemented. The

gridAPI will then act like a proxy redirecting the function calls.

The API is designed as an integrated software layer between the simulation and the visual-

ization algorithms (fig. 4). It includes methods to be called by the libDVRP visualization routines

as well as function to be called by the simulation. While the simulation uses “setter”-functions

for setting grid type, grid parameters and data fields, the visualization routines typically use

“getter”-functions to get data values or the MPI process, having the data at given coordinates

or grid indices. In addition, it implements some sort of iterator to be used on the grid cells. The

design of the gridAPI still allows for grid specific optimization, since the major getter meth-

ods allows unspecific optional optimization parameters. This could be used to store previously

calculated cell indices or starting positions for search operations for example.
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Simulation Application

libDVRP gridAPI

libDVRP Visualization Routines

rectilinear grid ICON grid ...

Figure 4. libDVRP gridAPI layout

In order to take usage of the gridAPI, a reimplementation of the visualization algorithms

is needed. We implemented universal parallel algorithms for pathline extraction as well as for

isosurface extraction, both applying the gridAPI.

2.1. Pathline Extraction

The algorithm for pathline extraction using the gridAPI was based on the MPI-parallelized

pathline algorithm already introduced in [15, 16] with an optimized communication scheme as

in fig. 5.

Process lines
Process lines

Receive message

Messagetype?

Put received lines 
to queue

List of lines

Termination

Collect 3D
geometries

Send sendqueues

Take next line from 
queue

Integrate line

Line stays 
in domain?

Put line in 
sendqueue

Has more 
lines?

No

Yes

Yes

No

Figure 5. Process diagram of pathline extraction

As the parallelization is done using 1D, 2D, or 3D domain decomposition of the 3D data grid

given by the simulation model, integration of pathlines is limited to the local domain by each MPI

process. Parallelization of visualization over time steps is not possible (see 1.2), and generally

not realized in simulation models. The data of at most two time steps is cached in libDVRP, to

enable higher order numerical integration. On every call of DVRP_Visualize() each MPI process

iterates over all lines within the domain and integrates the next supporting point for each line

using Euler or Runge-Kutta integration. When a line leaves local domain of one process, it is
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sent to the MPI process holding the needed data. For optimized MPI communication, traversing

lines are buffered and asynchronously communicated after all local lines have been processed.

After the new pathlines entering from neighbor domains are received, the line processing starts

again.

Within this algorithm, only two functions of the gridAPI were used: while integrating the

line, the data values at a given position are requested by calling DVRP_gridAPI_getValAtPos()

up to four times for the Runge-Kutta 4th order integration. After this the MPI process handling

the data at the resulting position is requested to find out if the line stays within the local domain.

This is done by calling DVRP_gridAPI_getMPIAtPos(). This way the task of finding a specific

grid cell, as well as the data layout of the raw data, is shifted into the gridAPI. This allows

for optimizations regarding the grid and data access without touching the pathline algorithm

anymore.

2.2. Isosurface Extraction

In order to be independent of the used grid structure, the isosurface algorithm has to be

as general as possible. The marching cubes algorithm [8] used for isosurface extraction within

libDVRP could not be abstracted from grid and data layout. Contemplable algorithms have to

meet several constraints: parallelization based on domain decomposition as well as data volume

optimized resulting 3D meshes are hard requirements. This leads to two possible algorithms:

Complex-Valued Contour Meshing [17] and Isosurface Construction using Convex Hulls [3]. The

first algorithm fractionizes all 3D cells into a bunch of tetrahedrons and creates an isosurface for

each tetrahedron using a lookup table. The second algorithm would dynamically generate the

appropriate mesh pattern lookup tables for the necessary cell configurations during the run-time

initialization. Both algorithms have their own advantages and disadvantages. Though the first

algorithm is more generalized since it is not limited to convex cells, in a comparison test on a

prism grid it generates 6.7 times more triangles for the same isosurface. Therefore, we favored

the second algorithm, as it would generate the appropriate mesh pattern lookup tables for the

necessary cell configurations dynamically during the run-time initialization and result in lesser

amount of 3D geometric primitives.

For this algorithm we need 6 additional functions within the gridAPI:

startCellIteration, getNextCellId, getCellPoints, getCellValues, getEdgeDefinition

and getCellDefinition.

We have evaluated the isosurface algorithm using the artificial tornado like swirl by Crawfis3

generated by a self-written test application. The data field was generated and visualized on a

prism grid and on a rectilinear grid using the same grid points. The new algorithm was compared

with the Marching Cubes algorithm. Using our new algorithm on a prism grid with the same

amount of grid point but double amount of cells, the algorithm produces 47 percent more

triangles.

3. Integration of DSVR Based Pathline Extraction in ICON

In order to integrate an in-situ processing based on our DSVR framework and methods in the

state-of-the-art climate simulation model ICON, we are continuously evolving data structures of

the framework to support the ICON model’s native grid structures. Therefore, we implemented

3http://www.cse.ohio-state.edu/ crawfis/Data/Tornado/tornadoSrc.c
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a realization corresponding to the ICON grid within our gridAPI. ICON uses a dual grid, where

the primary grid consists of a triangle mesh around the globe with parallel layers for the height

axis. The secondary, indirectly stored grid consists of hexagons connecting adjacent triangles.

After reimplementation of the pathline extraction algorithm we have implemented a gridAPI

realization for rectilinear grids as well as for the ICON grid. To get scientists a better under-

standing about what DSVR is capable of, we implemented a stand-alone NetCDF post-processor,

based on libDVRP (fig. 6). By using the NetCDF post-processor the 3 processes simulation, vi-

sualization mapping, and rendering are separated completely: the data set is processed in a

batch mode – e.g. using the same supercomputer on which the data is generated – and the

interactive 3D rendering is done afterwards on the scientist’s local system.

ICON
(simulation)

3D-Viewer
(rendering)

NetCDF Post-Processor

libDVRP
(visualization mapping)

Network

3D Geometry 
Data

Raw Data

3D-Viewer
(rendering)

ICON

(simulation)

libDVRP
(visualization mapping)

Network

3D Geometry 
Data

Figure 6. Architecture diagram of ICON visualization with DSVR using the NetCDF post-

processor on the left side, and an in-situ visualization on the right

Since the NetCDF files do not necessarily contain any information about grid cells but only

the coordinates of where the data is stored at, a gridAPI realization supporting leveled point

sets was implemented. At the actual status of implementation, the post-processor supports the

generation of isosurfaces and colored slicers on volume data set time series based on rectilinear

grids as well as the visualization of pathlines on time varying flow fields based on either rectilinear

grids or leveled point set grids (see fig. 7).

Figure 7. Sample visualizations of ICON data using the post-processor (from left to right): (a)

pathlines of wind speed on ICON grid, (b) isosurface showing an atmospheric temperature of

273.15 K on rectilinear grid, and (c) colored slicer of atmospheric temperature on rectilinear

grid

We have now implemented a new output module to ICON to take advantage of the DSVR

visualization, which is called in the ICON simulation loop. The visualization can be configured

as most output modules by using a specific namelist and is exemplarily integrated within the

non-hydrostatic atmospheric model time loop. The module is initialized by a subroutine called

init_dvrp_output. Here the ICON grid structure is collected, conditioned and set within lib-

DVRP. Also the major configuration of the visualization is made here. The processing of every

time step is done by a subroutine called write_dvrp_output, were data fields are copied to
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libDVRP and the visualization routine DVRP_Visualize is called. ICON calculates most flow

vectors like wind speed at the cell center point. So the original ICON prism grid could be used

assuming the flow is the same everywhere within the cell. On the other hand, the hexagonal

grid can be used, with the original cell center points becoming the new grid points. The second

option would allow interpolation of flow values at every position leading to better visualization

results, so the decision fell on the usage of the hexagonal grid for pathline extraction. Since each

hexagonal cell can be broken down on triangles, we implemented the interpolation method as

well as the cell-searching algorithm on prism cells, taking advantage of the known clustering.

With the integration of a DSVR-based in-situ pathline extraction within ICON, the next

milestone is reached. The pathline algorithm as well as the grid data structures has been op-

timized for the domain decomposition used for the parallelization of ICON based on MPI and

OpenMP. Software implementation and evaluation is also done on the supercomputer “Mistral”

at DKRZ. All computation was done using Mistral’s standard compute nodes with two 12-core

Intel Xeon E5-2680 v3 processors at 2.5 GHz and 64 GB main memory each. In principle, the

data complexity is reduced from O(n3) to O(m), where n is the compute grid resolution of the

simulation model and m is the number of supporting point of all pathlines. Since the amount

of pathlines as well as the amount of supporting points per pathline are given by the users,

m is adjustable. The number of supporting points per pathline should be choosen relating to

the simulation’s resolution. The number of pathlines, on the other hand, should be constant in

order to prevent visual cluttering. Therefore, m will somehow be scaling with n, and the overall

reduction of complexity can be estimated with n2. The evaluation of stability and scalability

is done using Atmospheric Model Intercomparison Project (AMIP) runs which were used for

testing the model’s changes.
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Figure 8. Time measurement of ICON ATM AMIP runs on a 20480 * 47 grid (160 km) for 7

days (1008 time steps). Simulation based on 2D domain decomposition. In-situ visualization of

2000 pathlines with 100 supporting points. Strong scaling

In fig. 8 the results of such test run are shown, comparing the overall run times of ICON

with and without DVSR visualization. This case uses a low grid resolution of 160 km (20480

grid points per layer) and runs for 7 simulated days writing out 1008 time steps. Scalability

tests have been done up to 32 compute nodes, which means a maximum of 768 cores. Pathline

algorithms generally don’t scale very well on domain decomposition, since the extraction of

pathlines does not take that much computation time at all. Most time is consumed by finding

the value for a given position, and this has only to be done four times per pathline assuming the
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usage of the Runge-Kutta 4th order. Thereby the visualization time depends mainly on the MPI

communication. Rising visualization time with increasing core count is a tribute to the domain

decomposition, which may lead to more or less lines to alternate processes. Up to the tested 32

nodes, the visualization does not cause exceeding increase in the overall runtime of this strong

scaling test. We expect that weak scaling should show better results, since the relation between

computational load and communication cost would be better in that scenario.

Beside the runtime test within ICON, we have also tested the new pathline algorithm using

an artificial tornado by Crawfis on a large prism grid containing 1.44 million grid points per

layer multiplied with 200 layers to get an impression on the scalability (see fig. 9). This is

approximately the same amount of grid points as the ICON run on the 20 km grid has. The

prism grid was generated by cutting each voxel of a regular grid into two prisms.
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Figure 9. Visualization time measurement of an artificial tornado 1.44 million x 200 ICON grid.

Simulation based on 2D domain decomposition. In-situ visualization of 2000 pathlines with 100

supporting points

The higher runtime is caused by the DVRP_gridAPI_getValAtPos() function scaling with

the grid size. This also scales only up to 8 compute nodes, since the simulation part was not

compute-intensive, and because of the strong scaling method.

Conclusion and Future Work

In order to enable in-situ visualization within the ICON climate model using our DSVR

framework, we had to redesign one of its core components. With the design of the gridAPI, a

fundamental generalization is introduced for the parallelized data extraction library libDVRP.

This way, a support for actual and next-generation simulation models can easily be added. Also,

redesign and implementation of our visualization algorithms are required. For a start, algorithms

for pathline extraction as well as isosurface generation have been implemented. Both algorithms

have already been tested on artificial test scenarios. The pathline extraction has been integrated

in the NetCDF post-processor, as well as an in-situ visualization option in ICON.

In future work we plan to integrate the isosurface algorithm in ICON. Furthermore, large

scale performance and stability evaluation of flow visualization and volume visualization will be

done on high resolution scenarios.
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A fast and insightful visualization is essential in modeling biological system behaviors and

understanding underlying inter-cellular mechanisms. High fidelity models produce billions of data

points per time step, making in situ visualization techniques extremely desirable as they miti-

gate I/O bottlenecks and provide computational steering capability. In this work, we present a

novel high-performance scheme to couple in situ visualization with the simulation of the vocal fold

inflammation and repair using little to no extra cost in execution time or computing resources.

The visualization component is first optimized with an adaptive sampling scheme to accelerate

the rendering process while maintaining the precision of the displayed visual results. Our soft-

ware employs VirtualGL to perform visualization in situ. The scheme overlaps visualization and

simulation, resulting in the optimal utilization of computing resources. This results in an in situ

system biology simulation suite capable of remote simulation of 17 million biological cells and 1.2

billion chemical data points, remote visualization of the results, and delivery of visualized frames

with aggregated statistics to remote clients in real-time.

Keywords: in situ, visualization, vocal fold, systems biology simulation, agent based modeling,

tissue inflammation and repair, computational steering.

Introduction

Agent-based modeling (ABM) is a powerful and widely used approach to simulate a system

consisting of interacting components or agents. This form of modeling expresses a system at

the microscale, and attempts to explain the emergence of higher order properties of the overall

system [29]. As opposed to the analytical, equation-based approaches, the agent-based approach

offers the ability to add complex behaviors to individual components oragents, making modeling

of composite networks uncomplicated [8, 15]. In ABM, agents are used to represent a wide

spectrum of entities such as animals in ecosystems [13, 18, 24, 25], consumers and markets

in economic models [3, 10, 36–39], and cells and proteins in biological systems [9, 11, 12, 17,

20–23, 31, 32, 34, 41]. These entities interact among themselves and with their environment

(ABM world) in discrete time steps following a set of stochastic and/or deterministic rules. The

simulation area or ABM world is discretized into 3D cubes called patches. In ABM, agents can

be mobile and move from patch to patch. Each patch maintains its states, which affect the action

decision of the residing and neighboring agents.

In this paper, we use the ABM simulation approach to capture tissue injury and repair

at the cellular level. More specifically, we focus on the vocal fold injuries. It is estimated that

voice disorders afflict 1 in 13 adults [7], and nearly 1 in 12 children [1] in the the United

State annually. During phonation, human vocal folds undergo continuous biomechanical stresses.

Thus, voice overuse can lead to vocal fold mucosal tissue injury that triggers complex biological

processes of inflammation and repair. Voice treatments are usually prescribed to patients with

voice problems [16, 27]. However, the healing outcomes of the treatment depend on the patient’s

initial condition and biological profile [20], making the treatment-planning process restraining

and difficult for physicians and therapists. Computational medicine is a promising approach to
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addressing this problem as it incorporates the patient’s biological profile and initial conditions

as parameters in determining an appropriate treatment [19, 26]. Thus, ABM offers a gateway to

capturing inflammation and repair behavior to predict the outcomes of specific treatments for

an individual.

The vocal fold (VF) ABM requires a high-resolution 3D grid to capture cell-cell and cell-

substrate interactions with sufficient details in order to accurately predict the temporal tissue

response to a provocation. Since the size of the world grid reflects the spatial resolution of the

simulation, a high-resolution 3D VF ABM involves generation and analysis of large amounts of

data. Hence, a fast and low I/O load visualization is highly desirable, making in situ visualization

an ideal candidate for understanding the model output.

In this work, we extend our previous work on a fast GPU implementation of VF ABM

simulation to incorporate in situ visualization at no extra cost to the overall simulation. The

proposed scheme combines a data reduction technique to gain optimal visualization performance

with a CPU-GPU scheduling technique to overlap simulation and visualization while hiding the

execution costs of the visualization component. More specifically, our main contributions can be

stated as follows.

• Reducing the amount of data analyzed, while maintaining a high fidelity visual resolution

using an adaptive sampling scheme;

• An in-situ bio-simulation suite capable of processing 17 million biological cells and 1.2

billion chemical data points (a scale biologically representative of human vocal fold at the

cellular level) as well as collecting aggregated statistics, which:

– Completely bypasses I/O; and

– Analyzes and renders results without causing an increase in the overall simulation

time.

The rest of this article is structured as follows: section 1 introduces brief descriptions of

concepts fundamental to this work including agent-based modeling (ABM), the use of ABM

for inflammation and healing modeling, in situ ABM, and information on software and hard-

ware platforms used. Section 2 discusses approaches taken to enhance visualization resolution,

while keeping visualization performance optimized to enable a complete masking of the visual-

ization cost, using our CPU-GPU task scheduling scheme [32, 33]. Performance and resolution

enhancement evaluation is discussed in section 3.

1. Background and Related Work

1.1. Agent-Based Modeling (ABM)

The basic components of ABMs are:

• Agents - Autonomous objects that perform actions and interact with other agents and

the environment;

• Agent Rules - Behaviors of each type of agents; and

• World - The environment which all agents belong to.

Multiple types of agents can be modeled in a single ABM. Each type of agents behaves

according to a set of predefined rules, which can be deterministic or stochastic. For example, a

simulation related to tissue inflammation may have various biological cell types, such as neu-

trophils, macrophages and fibroblasts, as agents. The predefined rules are determined using the

best available knowledge in the literature of each component of the system. The autonomous
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agents are mobile and make decisions based on their states and their environment. Patch size

is uniform across the world, and thus the resolution of the simulation environment is inversely

proportional to the patch size. The temporal dimension of ABMs is discrete and the simulation

progresses in a sequence of synchronous iterations (sometimes referred to as ticks).

1.2. Modeling Vocal Fold Inflammation and Repair with ABM

A Vocal Fold (VF) ABM simulating inflammation and repair was developed and partially

verified against empirical data [20]. The biological cells were implemented as mobile ABM agents.

These agents perform their functionality and make action decisions based on the states of their

surrounding. Briefly, at the time of injury, the damaged mucosal tissue triggers platelet degran-

ulation [21, 22]. Platelets secrete chemicals by modifying the states of their residing patches.

In the inflammatory phase, these chemical gradients stimulate vasodilation and attraction of

inflammatory cells, namely, neutrophils and macrophages. These inflammatory cells then get

activated once they reach the wound site. Activated cells then clean up cell debris and produce

more chemicals to attract cells called fibroblasts, which are responsible for tissue structure main-

tenance. In the healing phase, fibroblasts, activated by tissue damage, synthesize and deposit

extracellular matrix (ECM) proteins such as collagen, elastin, and hyaluronans to form building

blocks in tissue repair [40]. These ECM proteins then form a scaffold for supporting fibroblasts

and other cells migration and wound repair activities [5].

1.3. In-Situ Agent-Based Modeling

In this section, we summarize the most related works. To the best of our knowledge, there has

not been much in situ visualization work involving agent-based modeling (ABM). A quadtree-

based ABM is proposed in [17] to reduce the amount of irrelevant data analyzed in-situ, where

the work in [35] attempts to accomplish the same goal with a bitmap-based approach. There are

tools available on Paraview [14], a popular visualization framework, which can be used for ABMs.

Paraview Catalyst [4, 6] was developed to process simulation output data in-situ according to

the user’s co-processing script. An image-based approach built on top of Paraview Catalyst was

presented in [2] to efficiently manage rendered images created in-situ by Paraview Catalyst. As

much as all these works [2, 4, 6, 17, 35] reduce I/O loads, none completely by-passes I/O or can

be used to achieve anything close to the desired performance for our problem.

1.4. Platforms Used

The model was implemented using C++ as the main language for speed and portability.

The tasks executed on CPUs and GPUs are parallelized using Open Multi-Processing (OpenMP)

application programming interface (API) for shared-memory parallel programming and Compute

Unified Device Architecture (CUDA) API [28], respectively. The visualization component was

implemented using Open Graphics Library (OpenGL), a cross-platform API for 2D and 3D

graphics rendering. The model outputs are visualized in situ, and the visualized frames are

delivered to the remote user via VirtualGL, an open source software which allows any Unix or

Linux remote display software to run OpenGL applications by using the server’s powerful 3D

accelerator to perform rendering calls and send only rendered images to the client [30].

The model was tested and benchmarked on a single compute node with 44-core Intel(R)

Xeon(R) CPU E5-2699 v4 @ 2.20GHz host and two attached accelerators, NVIDIA Tesla M40.
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The host has 128 GB of main memory and the accelerator has 24 GB of memory per device.

The program occupies the compute node fully while running and does not allow for sharing with

other processes as the program requires most of the memory available on the node.

2. A Novel Approach

2.1. Data Reduction Techniques

The processing of large amounts of data is inevitable in high-fidelity simulations. Expressive

visualization enables the human eye to easily extract insightful information about the simu-

lated system. Our model consists of approximately 17 million agents and produces 1.7 billion

bio-marker data points in each iteration. The visualization component includes cell migration,

chemical diffusion, and damage tracking. The most time consuming component is chemical dif-

fusion, which needs to access 154 million points of data during each iteration. To optimize the

visualization of such large amounts of data, we employ sampling techniques and study their

effects on the simulation visual output and corresponding performance enhancements.

2.1.1. Constant Sampling

The first sampling approach is simply constant sampling. The world environment is divided

into tiles of size gridx× gridy× gridz , where the corresponding grid point represents the values

of the tile centered at the point and within the radius of gridx/2, gridy/2 and gridz/2 in the

x-, y-, and z-dimension respectively. This naive approach was used to improve the visualization

speed in our earlier work [33]. At the perspective of the entire simulated volume, the appearances

of sampled simulation were indistinguishable for up to (6× 6× 6)-segment sampling. However,

the output became pixelated when the view is magnified and the camera focuses on a smaller

area. In particular, the wound area was not rendered with reasonable fidelity.

2.1.2. Adaptive Sampling

Adaptive sampling is used to optimize the data access while enhancing the resolution of the

visual output in important areas. This sampling scheme helps keep the execution time low, and

yet the details in the output presented are not compromised.

For models aiming to capture injury undergoing inflammation and repair processes, the

wound site is the most active area. Therefore, the highest importance index was assigned to

the wound site volume. The margin around the wound site, and the rest of the tissue are then

respectively assigned less and least importance. The adaptive sampling pipeline diagram in Fig. 1

illustrates data processing steps used to sample and send data to the visualization pipeline. The

program, by default, divides the whole tissue volume into three sections by first inspecting

the initial wound position and size, followed by adding a margin around the wound based on

user inputs, and then labeling this volume as the most active (region 1). The program lets the

user specify the volume ratio between medium- and low- activity area, and splits the rest of the

volume into regions 2 and 3 accordingly. As our visualization intends to highlight wound activity,

the re-sampling is performed only once, thus the memory footprint is not heavily affected by

the re-sampling process.
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Figure 1. Adaptive sampling pipeline. From the whole set of data (left), the data are read with

resolution conforming to the importance index (middle). The sampled data are then processed

and sent to the visualization pipeline to be rendered (right)

2.2. Simulation and Visualization Scheduling

Given the amounts of data updated at each time step, our model requires a carefully planned

scheduling mechanism for optimal performance. Accelerators such as GPUs need a CPU host,

each of which has a number of cores that can be exploited using parallel programming techniques.

However, whenever accelerated performance is the goal, the focus usually shifts towards GPUs

due to their exceptional data parallel computation capabilities. Often, this tendency results in

idle CPU cores, since their only job is to transfer data and launch GPU tasks, while the GPUs

perform all the computing work. We proposed a host-device computation overlap technique

in our earlier work [32], which results in state-of-the-art performance for multi-scale 2D bio-

simulation ABMs. Since the 3D model is substantially more computationally demanding, we

significantly extend the methods described there to achieve extremely high speed 3D simulation

with in situ visualization.

Model operations are divided into sub-tasks and categorized as coarse or fine [32]. Since

coarse-grain tasks (inflammatory cell and ECM function) are complex but less data-intensive,

they are deemed CPU-suitable, where simple data-intensive fine-grain (chemical diffusion) and

rendering tasks run most effectively on GPUs. The blue boxes in Fig. 2 illustrate the coarse-grain

tasks that are executed in parallel on the CPU using OpenMP, where the green boxes denote

the fine-grain tasks executed on the GPUs. The course-grain tasks execute on all CPU cores

with the exception of NGPU + 1 cores, where NGPU denotes the number of GPUs. The rest of

the NGPU CPU cores are then used to dispatch fine-grain tasks and manage data to and from

the GPUs, while the last core is spared to issue rendering calls to execute visualization on GPU.

In [33], constant sampling was used, which was fast at the cost of lower resolution. Thus, placing

the visualization execution in the GPU idle period was simple. However, in some circumstances,

the user may want to focus on a smaller sections of the world, which means a sampling technique

to enhance the resolution while keeping the visualization execution time smaller than GPU idle
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period is required. The adaptive sampling technique discussed in section 2.1.2 was introduced

to solve this performance-resolution trade-offs problem.

Figure 2. Diagram illustrating the scheduling and coordination of CPU-GPU computation and

visualization overlap. For simplicity, this diagram is depicting a system with a single GPU. For

multi-GPU, diffusion kernels launched are simply divided up and dispatched to multiple GPUs

3. Results

The results discussed below were benchmarked with 32 threads on a single compute node

with 44-core Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz host and two attached accelerators,

NVIDIA Tesla M40. The in situ simulation suite performance reported was measured with the

remote user running the simulation off-site on a typical 50/50 Mbps WIFI connection. The size

of the world grid is 110 x 1390 x 1006.

3.1. Visualization Component Performance

For the ABM simulation, CPU tasks (excluding updates) take about 4.7 seconds while GPU

tasks only take 2.5 seconds for each iteration. Thus, there is an idle period on the GPUs waiting

for the CPU to finish the coarse-grain tasks. Our goal is to make the visualization component

fast enough so that the 2.2-second window gap would allow us to integrate visualization with

computation on the GPUs without increasing the total execution time. As discussed earlier,

our work in [33] used constant sampling, which was fast enough but did not achieve good

enough resolution when zooming in areas of interest such as the wound site. It was observed

that for visualization view of the entire simulated volume (Fig. 3), the appearance of sampled

simulation was indistinguishable from (1 × 1 × 1)- up to (6 × 6 × 6)-segment sampling. Thus,
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for optimal performance, the least important areas in adaptive sampling are set to use the

coarsest resolution of 63 sampling windows. The medium and most important areas are then

sampled with finer 43 and 23 windows, respectively. With 2−4−6-sampling resolution, as shown

in Fig. 4, the resolution of the visualization improved significantly, while the execution time of

the visualization component only increased to 1.9 seconds, which is still below our visualization

time budget, hence no increase in the overall execution time.

Figure 3. A screenshot of in situ visualization of the simulation captured at the client side. The

2D charts plot total concentration for each type of a chemical. The left most 3D volume displays

the distribution of one of the eight chemicals specified by the user. The second and third volumes

show macrophage (brown) and neutrophil (red) distributions respectively. The last volume on

the right displays current damage (pink) and the distribution of fibroblasts (blue)

Figure 4. Screenshots comparison of 63 sampling windows (left) and 2−4−6-sampling resolution

(right) when zoomed in to high-activity area

3.2. Coupled Simulation and Visualization Performance

The performance of the simulation suite is shown in Fig. 5. Without sampling, visualiza-

tion took 23 seconds to complete. With adaptive sampling, visualization of chemical diffusion
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decreased to 1.9 seconds. The visualization execution was performed during the idle period on

one of the GPUs keeping the total execution time unchanged at 6.2 seconds per iteration on

average. This results in the ability to run the simulation from the start of the iteration, remote

computation, remote visualization to the moment the frame gets rendered on the client’s ma-

chine in under 7 seconds/frame. To the best of our knowledge, this is by far the fastest known

complex ABM simulation and visualization of a problem of that physiological scale.

Figure 5. Simulation suite performance. Chart demonstrating overlapped visualization and com-

putation executions on GPUs and CPUs

Conclusion

In this paper, we presented novel techniques to achieve in situ 3D ABM visualization at

almost no cost to the overall simulation. As a result, we can simulate and render the VF in-

flammation and repair in real time. An effective task scheduling and management approach

was used to orchestrate the execution of coarse-grain cellular functions, which are parallelized

on the multi-core CPU, with the execution of fine-grain GPU tasks, including the overlapping

with the in-situ visualization component. This results in optimal concurrent utilization of both

multi-core CPU and GPU, including the fact that the execution time of the GPU visualization

component is completely hidden behind the CPU tasks. We are able to simulate the total of

17 million inflammatory cells and 1.7 billion bio-marker data points, as well as analyze and

render the same number of cells and 154 million bio-marker data points on the server and send

result frames to the remote user in under 7 seconds per iteration. The model is currently being

developed to incorporate more visualization functionality, which includes an integration of ECM

proteins visualization and direct volume rendering into the simulation suite to give users the

ability to extract meaningful information and explore the output data in different ways. The

goal is to keep the overall performance of the simulation the same even with more comprehensive

visualization components.
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In this research we have used computational-intensive software that implements 2D and 3D

seismic migrations to study mini-application behavior for a set of the computational architectures.

In addition to three architecture type comparative analyses, two CPU generation comparisons have

been done.

The dynamic behavior of chosen mini-applications was studied using BSC performance anal-

ysis tools to identify their common features.

In summary, we observe the best performance of mini-applications on Intel Xeon E5-2698 CPU

generation 4. Intel Xeon Phi 7250 peculiar architectural characteristics requires careful source code

optimizations to help the compiler to effectively vectorize time-consuming loops and to improve the

cache locality in order to achieve higher performance level. Elbrus-4S CPU is theoretically suitable

for such kind of applications, but the currently observed performance is an order of magnitude

smaller than on Xeon E5 family; we believe that the frequency and RAM bandwidth increase, as

well as source code optimization work could improve its performance.

Keywords: Performance analysis, architecture comparison, seismic processing profiling, power-

usage analysis, application behavior analysis.

Introduction

In this research, the suitable seismic processing mini-applications were selected with active

collaborations with practitioners in seismic data analysis. These mini-applications can serve as

a basis for detailed performance study of reverse time migration algorithms, which are actively

used in reconstruction of under-surface Earth structure from the seismic sensor readings.

• Dynamic behavior of the chosen mini-apps is studied using the performance analysis tools

to identify their common features;

• Analysis was performed for a set computational architectures, including both common

architectures, such as x86, and non-standard one, VLIW; and

• Performed analysis demonstrates a scalability potential for the chosen mini-applications,

and we expect more performance /speedup for these mini-applications if run on computa-

tional cluster in multi-threaded/multi-MPI processes way. That is planned for the future

work.

The main emphasis was put on the computations, while mini-applications’ I/O requirements,

which play important role during data processing and affect total processing time, need to be

investigated further.

1. Tested Applications

For performance analysis we have used the most typical seismic mini-applications, that

implemented 2D and 3D seismic migrations, based on the algorithms used in practice. These

applications have been chosen in cooperation with practicing researchers in this field. The source

codes were provided by ”GEOLAB” Company, [3].

1ZAO RSC Technologies, Moscow, Russian Federation

DOI: 10.14529/jsfi170305

80 Supercomputing Frontiers and Innovations



Read  input 

traces

Fourier transform 

and transpose
Save depth 

image

Transpose depth 

image
Loop on frequences

Loop on depth steps

Loop on reference 

velocities

FFT/Phase shift/Thin 

lens correnction/

wavefileld evaluation

Produce depth 

image (MPI_Barrier)

Figure 1. Seismic migration basic flowgraph

At the same time, the applications are characterized by acceptable level of computation

complexity, which allows to use different techniques for testing different computational platforms.

The basic flowgraph of the seismic migration is represented on Fig. 1

2D-seismic migration application (Wemig, [7]) uses reverse-time wavefield continuation in

frequency/space domains and depth imaging. The MPI parallel programming model has been

implemented with basic auto-vectorization for Intel architectures. Input data amount for test:

206 MB.

3D seismic migration application (Cazmig, [2]) implements the Cazdag migration algorithm,

based on 3D data migration. In this method all computations are performed in the frequency

domain where the source and the receiver positions are aligned with the phase shift by the

rotation operation of Fourier coefficients. The hybrid parallel programming model has been

used (MPI+OMP) with basic auto-vectorization for Intel architectures. Input data amount for

test: 13.4 GB.

2. Simulation Stage

At the first stage, the algorithm structure analysis has been studied using BSC Performance

Analysis Tools [6], with early efforts focused on simulation of multi-node cluster.

The execution trace-files have been generated using Extrae [4], a tool for post-mortem

analysis. Then a simulation tool Dimemas [1] has been used for first approximation of geological

processing software and hardware interaction.

During the simulation stage, the workload intensity has been evaluated, as well as scalability

limits and DRAM impact on computation performance.

As an example, the MIPS (Million Instructions Per Second) distribution during the 2D

seismic migration execution on the simulated 1-node and 4-node configurations of Intel Xeon

E5-2697 v3, 64 GB RAM is shown on Fig. 2. Each horizontal line represents the timelined view of

each MPI rank, and the color intensity reflects the workload (darker color means more intensive

computation workload, then lighter).
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Figure 2. Tracing of MIPS during 2D seismic migration Mini-App simulation

According to the simulation result, the workload evenly distributed between all used MPI

ranks during execution time. The simulated results for four similar nodes also show balanced

workload and good application scalability, while computation intensity is decreased.

Further simulation and analysis with different amounts of cores and DRAM shows good

scalability for 2D and 3D seismic migration and results and strong correlation between amount

of DRAM and workload. Additional practical testing using different amount of RAM has been

conducted, based on the simulation results.

3. Testbeds

The real cluster nodes prototypes have been chosen, based on the simulation results and the

main trends in geological computations. The basic specifications of studied testbeds are listed

in the Table 1.

4. Efficiency

Experiments with different numbers of used computation cores have shown the efficiency of

the 2D seismic migration mini-app depending on the hardware (see Fig. 3).

The application efficiency depending of the amount of RAM is presented on Fig. 4. The

dotted vertical line divides physical cores efficiency (left side of the line graph) from the hyper-

threading technology efficiency, [5] (right side of the line graph, where number of threads exceed

the number of physical cores).

It is worth noting, that the doubling of memory capacity leads to the significant performance

increase on the Broadwell testbed, especially in the hyperthreading range, while on the Haswell

testbed productivity gains are not substantial for the tested mini-apps. It seems the Broadwell

cores with 64GB RAM configuration were stalled due to memory demands; the Haswell 64GB

results are more balanced.

The absolute values of the execution time confirm these observations for 2D and 3D seismic

migration cases (see Table 2). The provided results are the best from the tested range (for 2D

seismic migration we have tested a number of MPI from range 1 .. N cores x Hyperthreading;

for 3D migration, implemented using hybrid parallelization scheme, we have tested all suitable

MPI + OMP configurations in this range).
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Table 1. Testbeds Specifications

Codename CPU #

Cores

Memory GB/Core

Haswell 64GB Intel Xeon 2x 14 8x DRAM 2.28

E5-2697 v3 Micron 8GB

DDR4/2133MHz

Haswell 128GB Intel Xeon 2x 14 8x DRAM 4.57

E5-2697 v3 Samsung 16GB

DDR4/2133MHz

Broadwell 64GB Intel Xeon 2x 20 8x DRAM 1.6

E5-2698 v4 Micron 8GB

DDR4/2133MHz

Broadwell 128GB Intel Xeon 2x 20 8x DRAM 3.2

E5-2698 v4 Samsung 16GB

DDR4/2133MHz

KNC Intel Xeon Phi 61 SDRAM 0.26

7120D Intel 16GB

GDDR5/2750MHz

KNL Intel Xeon Phi 68 MCDRAM 2.8

7250 Intel 16GB +

6x DRAM

Micron 32GB

DDR4/2133MHz

Elbrus Elbrus-4C 4x 4 12x DRAM 3

Micron 4GB

DDR3/1600MHz

Table 2. Impact of the Amount of DRAM on the

Execution Times of 2D and 3D Seismic Migration

Mini-Apps

Testbed 2D Seismic Migration 3D Seismic Migration

Haswell 64GB 56 sec (56 MPI) 57 min 35 sec (14 MPI, 14

OMP)

Haswell 128GB 50 sec (56 MPI) 55 min 39 sec (14 MPI, 14

OMP)

Broadwell 64GB 55 sec (80 MPI) 56 min 13 sec (4 MPI, 16 OMP)

Broadwell 128GB 36 sec (80 MPI) 43 min 2 sec (16 MPI, 16 OMP)
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Figure 3. Efficiency of the 2D seismic migration depending on the hardware
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Figure 4. Efficiency of the 2D seismic migration depending of the amount of DRAM for a)

Haswell, b) Broadwell testbeds.

However, the increase in number of MPI processes results in declining efficiency rate for

all architectures despite enabled hyperthreading technology, that provides some performance

increase in absolute values.
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Figure 5. Efficiency of the 2D seismic migration on two generations of Intel Xeon Phi

The parallel computation efficiency for two generations of Intel Xeon PHI is shown on Fig. 5.

Intel Xeon Phi architectures support hyperthreading technology for up to 4 virtual threads/core.

The resulting comparative curves show that the second generation architecture (KNL) has

significant efficiency and scalability advantage over the first generation (KNC) for the tested

mini-apps, especially in the hyperthreading range. The absolute values of execution times pre-

sented in Table 3 also support this observation. Numbers of MPI processes and MPI threads

where carefully selected for each test run to achieve maximal performance.

Table 3. Execution Times of 2D Seismic Migration

Mini-App on Two Generations of Intel Xeon PHI

Testbed 2D Seismic Migration

KNC 13 min (240 MPI)

KNL 3 min (272 MPI)

Finally, Elbrus-4S architecture demonstrates the almost perfect efficiency of up to 16 pro-

cesses (i.e. up to one MPI process per computational core), because the amount of computations

is high for this architecture. (Fig. 6.)

5. Tracing

The application tracing results are presented on Fig. 7 in the same way, as simulation traces,

where each horizontal line represents one MPI rank. The server clients communication model

is implemented, root computation rank read data and generates packages for clients to process.

Client ranks are waiting and synchronizing.

The processors are highly loaded during the main computation stage, workload intensity

balances for KNL and Haswell testbeds, while there is some performance swings on the Broadwell

testbed due to high performance.
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Figure 7. Efficiency of the 2D seismic migration depending on the hardware
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6. Energy Consumption

The energy consumption of 3D Seismic Migration was studied using Intel Running Average

Power Limit (RAPL, [8]) counters. RAPL provides a way to measure power consumption on

processor packages and DRAM. The power consumption tracing is shown on Fig. 8, where

a curved line represents total power consumption, measured by RAPL*, and a dotted line

represents measured average idle power consumption.
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Figure 8. Energy consumption for a) Haswell 128GB, b) Broadwell 128GB c) KNL testbeds

during 3D seismic migration

Although during 3D-seismic migration test power consumption rate for Broadwell was higher

than for KNL (270 W vs. 188W), total power consumption for Broadwell was lower (0.2245 kW*h

vs. 0.2993 kW*h) because of substantially lesser runtime (3080 sec vs. 5741 sec). The Haswell

power consumption results show intermediate values (see Table 4).
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Table 4. Energy Consumption during 3D Seismic

Migration Execution

KNL Haswell 128GB Broadwell 128GB

Package0 Package1 Package0 Package1

Processor, J 967255 418726 424767 350858 92335

DRAM, J 113129 22204 25260 80799 90557

Time, sec 5741.172 3510.175 3080.837

Total Energy,

kWh

0,2993 0.2475 0.2245

It may be noted, that the energy consumption of Haswell sockets is similar (see Table 5),

while at the Broadwell testbed the first socket (processor) consumed more energy then the sec-

ond one more then three times. There can be correlation with workload disbalance detected on

the tracing stage. It seems, that the Broadwell 128GB testbed still has room for code optimiza-

tion to achieve maximum possible performance; larger amount of computation data and more

sophisticated processing models could also be used successfully.

Table 5. Energy Consumption during 3D Seismic

Migration Execution

Testbed Data Input Processing

KNL Time. sec 169.62 5571.552 sec

DRAM. J 1051 112078

CPU. J 14980.58 952274.42

Haswell 128 Time. sec 157.32 3352.855 sec

DRAM. J 819.86 46644.14

CPU. J 12189.47 831303.53

Broadwell 128 Time. sec 165.29 2913.873 sec

DRAM. J 4626.6 166729.4

CPU, J 10389.07 339303

Conclusions

In this research we have used computational-intensive software that implements 2D (Wemig)

and 3D (Cazmig) seismic migrations to study the application behavior for a set of the compu-

tational architectures. In addition to three architecture type comparative analyses, two CPU

generation comparisons have been done.

For Haswell/Broadwell testbeds with similar architecture there has been a substantial (about

2x times) performance growth between generations; for the KNC/KNL testbeds the performance

increase amounted up to 4x times. Moreover, there is portability issues with KNC architecture
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that are eliminated in KNL software stack. While the I/O overhead costs are non-essential (0.0%

of overall runtime) for most studied architectures, for KNL it takes 0.73% of the runtime. KNC

runtime results have worse scalability than the KNL due to lesser amount of RAM per core.

It is worth noting that the doubling of RAM memory capacity leads to the significant

performance increase on the Broadwell testbed, while on the Haswell testbed productivity gains

are not substantial. So the memory amount for seismic applications should be appropriate to

avoid the CPU stalls. The Elbrus-4S CPUs show the best scalability while overall absolute values

were lower than values for the Intel Xeons according to the theoretical performance value rates.

Average power consumption rate is the lowest for KNL and the largest for Broadwell; but

total power consumption for 3D seismic migration run shows the best rates for Broadwell testbed.

In summary, it makes sense for seismic applications to use the Intel Xeon E5-2698 CPU

(Broadwell) generation instead of E5-2697 (Haswell) only with large amount of RAM avail-

able; the Intel Xeon Phi (KNC/KNL) particular architectural characteristics requires careful

source code optimizations to help the compiler to effectively vectorize time-consuming loops

and to improve the cache locality for achieving higher performance level; The Elbrus-4S CPU

is theoretically suitable for such kind of applications, but it requires the frequency and RAM

bandwidth increasing, as well as sophisticated source code optimization work for achieving the

best instruction-level parallelism.
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Complex memory hierarchies of nowadays machines make it very difficult to estimate the

execution time of tasks as depending on where the data is placed in memory, tasks of the same

type may end up having different performances. Multiple scheduling heuristics have managed to

improve performance by taking into account memory-related properties such as data locality and

cache sharing. However, we may see tasks in certain applications or phases of applications that

take little or no advantage of these optimizations. Without understanding when such optimizations

are effective, we may trigger unnecessary overhead at the runtime level.

In previous work we introduced TaskInsight, a technique to characterize how the memory

behavior of the application is affected by different task schedulers through the analysis of data reuse

across tasks. We now use this tool to dynamically trace the scheduling decisions of multi-threaded

applications through their execution and analyze how memory reuse can provide information on

when and why locality-aware optimizations are effective and impact performance.

We demonstrate how we can detect particular scheduling decisions that produced a variation

in performance, and the underlying reasons for applying TaskInsight to several of the Montblanc

benchmarks. This flexible insight is a key for both the programmer and runtime to allow assigning

the optimal scheduling policy to certain executions or phases.

Keywords: task-based scheduling, data reuse, data locality, cache model.

Introduction

Scheduling tasks in task-based applications have become significantly more difficult due

to overall system complexity, particularly to the deep shared memory hierarchies. Typical ap-

proaches to optimizing scheduling algorithms consist of either providing an interactive visual-

ization of the execution trace [1, 5] or simulating the tasks execution to evaluate the overall

scheduling policy in a controlled environment [4, 9]. A developer then has to analyze the re-

sulting profiling information and deduce if the scheduler behaves as expected, and qualitatively

compare different schedulers.

Poor scheduling decisions can result in idle execution time due to load imbalance from the

inability to prioritize tasks on the critical path or appropriate map tasks to processors. However,

the scheduler decisions also impact data locality in the cache hierarchy by changing the order

of tasks. The result of these decisions is performance variation across tasks that can only be

understood by analyzing how the tasks share data and how the schedule affects that sharing.

Usually developers of a task-based application blame this performance degradation on data

locality and attempt to characterize their workload based on data reuse without considering the

dynamic interaction between the scheduler and the caches [3, 10]. This is simply because there

has been no way to obtain precise information on how the data was reused through the execution

of the application, such as how long it remained in the caches, and how the scheduling decisions

influenced this reuse. Without an automatic tool capable of providing insight as to whether

and where the scheduler misbehaved, the programmer must rely on intuition to understand and

adjust the scheduler for improved performance.

In previous work we presented TaskInsight, a new methodology to characterize, in a quantifi-

able way, the scheduling process in the context of one of the most important performance-related
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Figure 1. Distribution of the performance differences of all the experiments per benchmark. E.g. 80% of the

runs of fft had over 20% performance difference when executed with a different schedule. All three graphs are

the same but with different scales on the x-axis

characteristics: how the schedule affects data reuse between tasks through the cache hierarchy

over time, which provides insight into performance of the scheduler.

In this work, we show how applying TaskInsight to the widely adopted Montblanc bench-

marks reveals deep insight into why scheduling changed the memory behavior of applications,

the key to understanding performance variation across different executions. The article is or-

ganized as follows. We firstly analyze all the applications with different scheduling policies and

input sizes (Section 1). From all the executions, we select three specific applications, presenting

case-studies to show how applying TaskInsight reveals what were the problematic issues (Section

2). Then, we cover related previous work (Section 3) to finally conclude with some remarks on

how the TaskInsight analysis enables us to understand other behaviors across the benchmarks

and schedulers (Conclusion).

1. Motivation

It is well-known that cache optimization is crucial for performance, but real-world applica-

tions expose different sensitivities to changes in memory behavior. Task-based applications can

vary wildly in their behavior based on several factors such as the size of the input problem (total

data), the number of tasks they spawn, how they distribute work among those tasks (paral-

lelism), and how many tasks they can run in parallel (dependencies). Each of these factors can

typically be controlled, either by configuring the application or by the runtime. Nevertheless, it

is often difficult to know which one is the best and how would the scheduler behave with these

new configurations.

Before diving into understanding of how scheduling changes the internal application’s mem-

ory behavior, it is worth studying how significant the effects of scheduling can be. To do that, we

begin by looking at OmpSs [6] implementations of the Montblanc Benchmarks [4]. These bench-

marks were designed to cover a diverse range of task-based applications and behaviors. We

selected 9 benchmarks from the suite, and executed them with over 100 different combinations

of input parameters (different input datasets, number of tasks, steps, dimensions, simulations,

particles, etc.), each of which we call configuration. Every configuration was executed with two

different scheduling policies, one of which attempts to optimize for locality (smart, which fol-

lows the path of the spawned child tasks first) and one of which does not (naive, which follows

a regular Breadth-First search on the spawned tasks), and we refer to them as experiments.

These two scheduling policies are default options provided by the OmpSs framework. In order

to understand how sensitive the benchmarks are to scheduling, we show how much of an impact

the two schedulers have on the tasks’ performance in Figure 1. Note that this metric considers
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the task execution time to reveal memory system effects, and therefore excludes the scheduler

or the runtime overhead.

This gives us a distribution of the performance differences on a per-benchmark basis. We

can see which benchmarks exposed the largest sensitivity to scheduling across different config-

urations, and how often these performance differences occur. The graph shows the percentage

of the population (of the 100 configurations per benchmark, y-axis) as a function of slowdown

(percentage between the two schedulers, x-axis). In essence, this summarizes how many of the

experiments have a slowdown larger than X% (i.e. when changing the scheduling policy). Bench-

marks such as fft, cholesky, reduction and n-body have a high variation in performance

across a significant number of their configurations: 40% of the executions of fft have more

than 60% performance difference when changing the scheduling policy; for reduction 30% of

the executions have over 30% performance difference; and for cholesky, 40% have differences

of over 30%.

On the other hand, raytrace, dense-matrix and atomic-montecarlo show negligible per-

formance changes between the schedulers across all configurations. Interestingly, being insensi-

tive to scheduler changes appears in two forms depending on whether the performance impact

is small or the number of configurations that experience it is small. raytrace (green line) shows

that there is a variation when changing the scheduling policy in almost every execution, how-

ever, all those differences are less than 1%, and a similar (but more noticeable) effect is observed

in dense-matrix, with differences under 13%. On the flip side atomic-montecarlo shows that

variation is very unlikely to occur (1 in 100 configurations), but when it does, the performance

difference is significant (over 90%). These are two opposite and very extreme behaviors, but in

the context of this work they have the same implication that there is little to be gained from

optimizing the scheduler. For simplicity, we will classify both types as benchmarks that are

performance insensitive to scheduling changes.

The results of comparing the schedulers in Figure 1 shows significant variation in how appli-

cations respond to changes in scheduling, and a substantial potential for improving performance

through better scheduling. However, today’s tools and techniques do not enable us to analyze

and understand how they are related to scheduling, why they occur, and how to avoid them.

TaskInsight, originally presented in [2], can characterize performance differences caused by

changes in memory behavior of the application due to scheduling. In the following section, we

will select three applications that exposed performance variation (reduction, histogram and fft),

and show how TaskInsight enables us to understand the reasons behind it.

2. Analyzing Performance Variation Due To Scheduling

From the benchmarks shown in Figure 1, we have selected three of the scheduling-sensitive

benchmarks: fft (solving a Fast Fourier Transform), reduction (non-trivial computation over

vectors and reduction of the results) and histogram (computing the histogram of a sample

population). We will first observe the performance variation over time to identify the main

differences between the two schedulers (naive and smart). We will then look at the profile

data to see whether the source of the performance difference is memory, such as more L2 or L3

cache misses. Finally, we will correlate this data with TaskInsight’s reuse analysis to understand

how this memory behavior comes from different data reuse patterns in different schedules. Each

execution took less than 10 minutes.
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Figure 2. If data is used in a tidy pattern (smart, left), it fits in the cache exposing perfect reuse and incurring

fewer cache misses. However, a more spread pattern (naive, right) has constant cache misses across the entire

execution with a performance penalty. Cacheline refers to the number of unique cachelines touched by the task,

which can be directly correlated to cache misses

2.1. Single Task with Negative Impact if Data is not in the Cache

(Reduction)

An interesting case study is reduction (with inputs: nelem=8M, nt=128), where most of

the performance differences come from missing in the L2 cache. Data for L3 is not displayed

because there is no relevant change across schedules. From Figure 2 we can see that in smart,

there is a cycle drop after executing the first 36 tasks, and it corresponds to a drop in L2 misses.

From TaskInsights reuse analysis we see that data is still being reused, and has been reused

very recently (many last-reuses), meaning that the data is present in L2. On the other hand,

naive has a lower number of L2 misses but they are spread across the entire execution, causing

a more constant average cycle count. From the TaskInsight reuse analysis we see that data has

also been reused recently, but in a different pattern.

The interesting singularity that we observe is the task number 63 which brings a significant

amount of new data. In smart, this task was scheduled in the very beginning (5th), and it is

both touching a large set of new data and reusing very recent data. In naive this task, because

of dependency flexibility, was scheduled much later (63rd), and by that time the data it has

to reuse is much older as we see from TaskInsight’s classification. As its reuse is not much

further away, the task generates roughly 10x more L2 misses (also 10x more L3 misses) and its

execution now is 400X slower than in smart (note the Log scale). We are able to draw these

type of conclusions because OmpSs assigns unique tasks IDs to the tasks at initialization time.

Thus, we can identify how the same tasks were scheduled differently.

This is an interesting example of an application that exposes two fascinating effects. First, if

data is used in a tidy pattern, it might fit in the cache, delivering good reuse and incurring many

fewer cache misses in contrast to a more spread-out pattern that has constant misses across the

entire execution. Second, a single task can suffer a significant performance loss by being scheduled

further away from tasks with which it shares data, thereby creating a significant penalty to the
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Figure 3. Scheduling bigger tasks sooner (smart, left) will bring a larger amount of new-data sooner, exposing

more last-reuses between subsequent tasks

applications overall performance. In order to understand these issues we need TaskInsight’s data

usage classification combined with the performance profile.

2.2. Differences in Bringing New Data Sooner or Later (Histogram)

Another example where temporal locality of data at the private caches matters significantly

is the benchmark histogram (with inputs: nelem=4M, nbins=256, nt=128), Figure 3. The

largest slowdown we observe in a spike in the cycle count for naive, due to an increase in L2

misses (creating a difference of over 20% across the two schedules).

TaskInsight shows what the problem is (the reuse of old data and use of new data) and

where it comes from (the 18th task). Task 18 was executed as number 1 in smart, and has a

particularly large data set. By bringing its data in first, it enables that data to be installed in

the cache and we see reuse by subsequent tasks. On the other hand, if this task is scheduled

later, as in naive, it will reuse many smaller portions of already executed tasks (with smaller

data sets) which were very likely evicted from the cache. This causes a domino-effect that affects

several tasks creating a substantial difference in the overall cycle count.

TaskInsight not only shows the importance of scheduling a task sooner or later because of

its consequences, but it also allows us to detect which specific tasks have this type of behavior

and which other tasks are affected, enabling new insight into the scheduler’s behavior.

2.3. Reusing Old Data Spikes Last Level Cache Misses (FFT)

In fft (with inputs: nelem=1M, bs-tr=64, bs-fft=128) there is an interesting effect worth

studying at the L3 cache level. We use the multithreaded capability of TaskInsights to analyze

this. As we see from Figure 4, both schedulers show two spikes with a sudden slowdown in

cycles at co-running sets 35 and 73, which are correlated with spikes in L3 misses. The number

of L2 misses is not displayed in this case, for simplicity, but the trend is similar to L3.

The two spikes in the total cycles (performance, top) align with an increase in L3 misses

(middle). By looking at TaskInsight’s data classification (bottom), we can see that at those

places where the application is missing more, it is also reusing older data, which is likely not
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Figure 4. TaskInsight analysis of fft, where reuse of older data incurred in more L3 cache misses, causing two

spikes in the tasks cycle count

present in the cache. By correlating this data over time, we can see that this is caused by the

fact that tasks executed together at these times are not scheduled to reuse data effectively.

By comparing the two schedules, we see that naive has over 10% worse performance. When

looking at the cycle count over time and L3 misses, we see that during co-running sets 0 to 33, it

incurred in twice as many L3 cache misses, explaining where the overall performance difference

is coming from.

Even though we can observe this performance and memory behavior directly with perfor-

mance counters, is is only by adding TaskInsights data classification that we can understand

that the extra cycles seen in naive is only from new-data accesses which should be coming from

the main memory. This might seem counter-intuitive, as the reuse analysis is almost identical

in both schedulers, but other memory factor (not yet included in this model) like prefetching fit

as a very good candidate responsible for the performance difference.

3. Related Work

Multiple visualization tools [1, 5, 7] propose diagnosing scheduling anomalies by summa-

rizing and averaging information provided by both the runtime and the hardware performance

counters. However, when certain tasks end up being executed in a certain order and with differ-

ent performance, it is up to the programmer to reverse-engineer the scheduler’s decisions, the

reasons behind them, and the moment in time where these decisions happen. With TaskInsight

we analyze the memory reuse and show the reasons and the exact points in time that trigger

performance variation.

Stanisic et al. [9] simulate tasks’ execution in order to isolate the scheduler’s effect on

performance from tasks’ unpredictable behavior. In our work we execute the entire application

on real hardware and we characterize the interaction between the scheduler and the tasks, which

triggers online scheduling decisions and performance variation.

The memory reuse metric has been previously used [3, 10] to analyze spatial and temporal

locality of the application independent of the architecture. We propose correlating the tasks
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efficient use of the memory with performance variation by detecting when and why an online

scheduling decision is taken. Unlike [8] we look at the reused data throughout the execution and

provide an analysis over time.

Conclusion

In this work we have applied TaskInsight, a methodology that provides high-level, quantifi-

able information that ties task scheduling decisions to how tasks reuse data and the resulting

task performance, to diagnose the reasons behind performance differences across different runs

of the Montblanc applications. By combining schedule independent memory access profiling (to

classify how data is reused between tasks) and schedule specific hardware performance counter

data (to determine performance on a given system) we are able to identify which scheduling

decisions impact performance, when they happen, and why they cause a problem.

TaskInsight not only shows how a scheduler can be improved, but also gives explanations

for why tasks of the same type can demonstrate drastic variation in performance (up to 60%

in our examples). With this, programmers can now quantitatively analyze the behavior of the

scheduling algorithm and the runtime can use this information to dynamically make better

decisions, for example, by using a saved profile of the memory behavior of each task to determine

what to schedule next.

Our analysis exposed scheduler-induced performance differences of above 10% due to 20%

changes in data reuse through the private caches and up to 80% difference data reuse through

the shared last level cache. By providing this insight into the coupling between the schedule’s

behavior, data reuse through the cache hierarchy, and the resulting performance, we lay the

groundwork for improving scheduling policies.
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Near-data in-memory processing research has been gaining momentum in recent years. Typical
processing-in-memory architecture places a single or several processing elements next to a volatile
memory, enabling processing without transferring data to the host CPU. The increased bandwidth
to and from volatile memory leads to performance gain. However processing-in-memory does not
alleviate von Neumann bottleneck for big data problems, where datasets are too large to fit in
main memory.

We present a novel processing-in-storage system based on Resistive Content Addressable
Memory (ReCAM). It functions simultaneously as a mass storage and as a massively parallel
associative processor. ReCAM processing-in-storage resolves the bandwidth wall by keeping com-
putation inside the storage arrays, without transferring it up the memory hierarchy.

We show that ReCAM based processing-in-storage architecture may outperform existing
processing-in-memory and accelerator based designs. ReCAM processing-in-storage implementa-
tion of Smith-Waterman DNA sequence alignment reaches a speedup of almost five over a GPU
cluster. An implementation of in-storage inline data deduplication is presented and shown to
achieve orders of magnitude higher throughput than traditional CPU and DRAM based systems.

Keywords: Content Addressable Memory, Associative Processing, In-Storage Processing, Mem-
ristors.

Introduction
Until the breakdown of Dennard scaling designers focused on improving performance of a

single core by increasing instruction level parallelism. In recent years, as Dennard scaling slowed
down but Moore’s law endured, the focus has shifted to improving parallelism by increasing the
number of cores in multicore processors [16]. However, memory bandwidth does not improve at
the same rate, making von Neumann bottleneck one of the main performance limiting factors.

Data is typically fetched to CPU’s main memory from a non-volatile storage such as hard
disks or Flash SSDs. Consequently, storage bandwidth and access time pose a major constraint to
performance improvement. The problem worsens in datacenter cloud environment, where datasets
are distributed among multiple nodes across the datacenter. In such case, data transfer adds
latency and reduces bandwidth even further, lowering the performance upper bound.

This challenge has motivated renewed interest in Near-Data Processing (NDP) [7]. The main
premise of NDP is shifting computing closer to data. NDP seeks to minimize data movement
by computing at the most appropriate location in the memory hierarchy, which can be cache,
main memory or persistent storage. With NDP, less data needs to be transferred through levels
of hierarchy, thus alleviating the limited bandwidth problem. Placing computing resources at the
cache level or in main memory (also known as Processing-in-Memory or PiM) does not address
the emerging big data problems, where datasets are too large to fit in main memory.

Resistive CAM (ReCAM), a storage device based on emerging resistive materials in the bitcell
with a novel non-von Neumann Processing-in-Storage (PRinS) compute paradigm, is proposed in
order to mitigate the storage bandwidth bottleneck of big data processing. Section 1 provides
background on the basic concepts of ReCAM and PRinS and covers related work. Section 2
presents the ReCAM architecture, explains how processing is performed within ReCAM and
1Israel Institute of Technology, Haifa, Israel
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establishes its scalability. PRinS implementations of two algorithms are presented in Sections 3
and 4 and compared to other approaches: Smith-Waterman DNA sequence alignment and in-
storage data deduplication.

1. Background and Related Work
Three basic concepts underline the proposed ReCAM: content addressable memories, asso-

ciative processing and resistive materials. The following two subsections introduce each concept.
The third subsection covers related work on NDP and highlights their limitations at addressing
the storage bandwidth challenge of big data processing.

1.1. Content Addressable Memory and Associative Processing

Content addressable memory (CAM), also called associative memory, allows the comparison
of all data words to a key in parallel, tagging the matching words, and possibly reading some or
all of the tagged words, one by one. Standard memory read and write operations of a single word
at a time can also take place. In addition to storing information, a CAM array can be modified
to function as an associative processor [18] [47]. In associative processing, the parallel compare
and parallel write operations supported by CAM are used to implement an “if condition, then
value” expression. Thus, complex Boolean expressions are evaluated in parallel on all data words
(CAM rows) by sequential execution of truth table if-then lines. Each (multi-bit) argument of a
truth table line is matched with the contents of the appropriate field in the entire CAM array:
the matching rows are tagged, and the corresponding result values from the truth table line are
written into the designated fields of all tagged rows. For an m-bit argument x, any Boolean function
f(x) has 2m possible values, therefore, the associative computing operation should incur O(2m)
cycles, regardless of the dataset size. More efficiently, arithmetic operations can be performed on
ReCAM in a word-parallel, bit-serial manner, reducing compute time from O(2m) to O(m). The
massive parallelism of each operation compensates in performance for the relatively large number
of (parallel execution) cycles of each arithmetic operation. More complex computations (more
than Boolean functions) are decomposed into series of Boolean expressions [18] [47].

1.2. Resistive Memories

Resistive memories store information by modulating the resistance of nanoscale storage ele-
ments (memristors). Memristors are two-terminal devices, where the resistance of the device is
changed by the electrical current or voltage. The resistance of the memristor is bounded by a
minimum resistance Ron (low resistive state, logic “1”) and a Roff maximum resistance (high
resistive state, logic “0”).

Resistive memories are non-volatile, free of leakage power, and emerge as long-term potential
alternatives to charge-based memories, including NAND flash. The metal-oxide resistive random
access memory (ReRAM), employing one resistive device and possibly also one transistor (1R1T)
per bit-cell, is considered a potential technology to replace next-generation nonvolatile memories.
Its main features are high reliability and fast access speed. A test-chip of 32GB device with
two ReRAM-based memory layers and a CMOS logic layer underneath has been developed [32],
demonstrating design techniques to achieve a high density functional chip.
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1.3. Related Work

While processing-in-storage research is relatively young, the wider concept of near-data pro-
cessing, focusing mainly on processing in memory (PIM) has been thoroughly researched. The
concept of mixing memory and logic has been around since 1960s. The DAPP, STARAN, CM-2,
and GAPP computer architectures [39] used large number of processing units positioned in prox-
imity to memory arrays to implement a massively parallel SIMD computer. Gokhale et al. [21]
designed TeraSys, a computer architecture comprising a conventional host processor where at least
part of its memory was replaced by a PIM array, integrating memory and ALUs in close proxim-
ity. Hall et al. [24] developed DIVA, the Data-Intensive Architecture, combining PIM memories
with external host processors and performing selected computations in processing elements near
memory and reducing the volume of data transferred across the long and slow processor-memory
interface. Kogge et al. [30] developed HTMT, a parallel multilevel memory architecture, where
each RAM level is a PIM memory (memory blocks interconnected with ALUs). Suh et al. [43]
introduced a SLIIC QL computer featuring a processor integrated on the same die as DRAM.
Lipovski et al. [31] developed a dynamic associative access memory architecture that combined
DRAM and a single-bit processing element capable of associative and conventional arithmetic
processing, placed in the sense amplifier area of a DRAM. Yavits et al. [48] suggested replacing
the last level cache and the vector co-processor of a conventional high-performance CPU by an
associative processor, which is a PIM accelerator, combining data storage and massively parallel
SIMD processing capabilities. Nitin et al. [35] introduced RowCore, a near-memory processing ar-
chitecture for Big Data Machine Learning. Gao et al. [19] proposed Heterogeneous Reconfigurable
Logic, a reconfigurable array for near-data processing systems.

1.3.1. 3D Processing-in-Memory Architectures

While embedding processing with conventional 2D DRAM chips is less practical, recent ad-
vancement in 3D memory and logic stacking technology may remove this obstacle. Citing severe
bandwidth limitations in conventional computer architecture as datasets continue to grow, Ahn
et al. [1] introduced Tesseract, a 3D Processing-in-Memory accelerator for large-scale graph pro-
cessing. In another work, Ahn et al. [2] developed a hybrid-memory-cube based framework that
automatically decides whether to execute PIM operations in memory or processors depending
on the locality of data. Nair, Sura et al. [44] [34] introduced the Active Memory Cube, a het-
erogeneous computing system including general-purpose host processors and specially designed
in-memory processors that would be integrated in a logic layer within 3D DRAM memory. In
another work, Gao et al. [20] developed hardware and software of a 3D stack memory and near-
data processing architecture for in-memory analytics frameworks, including MapReduce, graph
processing, and deep neural networks. Azarkhish et al. [5] developed Smart Memory Cube and
designed a high bandwidth interconnect to serve the bandwidth demand of PIM architecture.
Zhang et al. [49] explored PIM implemented via 3D die stacking. Akin et al. [3] addressed the is-
sue of data reorganization in 3D stacked near-data processing architecture, introducing HAMLeT,
a mechanism for host interference, bandwidth allocation, and in-memory coherence. Farmahini-
Farahani et al. [17] proposed NDA, a near-DRAM acceleration architecture that processes data
using accelerators 3D-stacked on DRAM devices.
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1.3.2. Processing-in-Memory with Resistive Materials

Recently, emerging memory technologies such as resistive memory have become a focus of
PIM research. Paul et al. [38] developed MBARC, a resistive crossbar in-memory LUT-based
processing architecture. Chi et al. [10] introduced PRIME, a PIM accelerator of neural network
applications in RRAM-based main memory. Yavits el al. [47] introduced a resistive CAM-based
massively parallel accelerator. Shafiee et al. [40] developed an in-situ processing architecture, where
memristor crossbar arrays are used to perform dot-product operations in an analog manner.

1.3.3. Near-Data Processing-in-Storage

Flash-based SSD allowed for increased in-storage bandwidth, enabling data port from each
chip thus achieving higher data throughput. Typical processing-in-storage architecture places a
single or several processing cores inside the storage and allows data processing without transferring
it to the host processor. The concept of near-data processing-in-storage is illustrated in Fig. 1a.

Figure 1. Comparison of (a) near-data processing-in-storage (b) and in-data processing-in-
storage based on ReCAM

Boboila et al. [8] proposed Active Flash, a processing in solid-state storage that expedites
data analysis by migrating the data to the flash device. The authors explored energy and perfor-
mance trade-offs of their processing-in-storage architecture. Bae et al. [6] introduced the notion
of Intelligent SSDs, exploring the design considerations and examining their potential benefits in
data mining applications. Continuing the work on Intelligent SSD, Jo et al. [25] studied optimal
ways of combining CPU, GPU and SSD for efficient processing of data-intensive algorithms. Cho
et al. [11] cited the lack of parallel processing abilities in earlier in-SSD processing architectures
and proposed integrating a GPU, providing API sets based on the MapReduce framework. Kang
et al. [27] introduced the Smart SSD model, which combines in-SSD processing with a powerful
host system, and constructed a Smart SSD prototype. De et al. [14] introduced the FPGA-based
Minerva, which executed application-specific operations in the NVM controller. Jun et al. [26]
introduced and constructed BlueDBM, combining a flash based storage with in-store processing
capability and a low latency high-throughput inter-controller network, and explored its perfor-
mance benefits. Cho et al. [12] explored some of the questions which are also addressed in this
paper. The authors made a case for Intelligent SSD by discussing the bandwidth trends and
quantifying the potential benefits of processing-in-storage across a range of applications.
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2. Processing-in-Storage with ReCAM
The approach of this work is to design a device for storing big datasets and processing them

efficiently. The key properties of this design are scalability and massively parallel processing, pos-
sible due to the non-von Neumann architecture. Parallelism is achieved by in-situ processing of the
data, in contrast with NDP approaches. In this work, Resistive CAM (ReCAM), a non-volatile and
scalable storage device with resistive bitcells and a novel Processing-in-Storage (PRinS) paradigm
is presented. The concept is demonstrated in Fig. 1b.

2.1. ReCAM Crossbar Array

While ReRAM may employ one transistor and one memristor (1T1R) cells, ReCAM uses
2T2R cells, following [4]. Fig. 2 shows the resistive CAM crossbar. A bitcell, shown in Fig. 2a,
consists of two transistors and two resistive elements (2T2R). The KEY register contains a data
word to be written or compared against. The MASK register defines the active columns for write
and read operations, enabling bit selectivity. The TAG register (Fig. 2b) marks the rows that are
matched by the compare operation and may be affected by a parallel write. The TAG register
enables chaining multiple ReCAM ICs. In a conventional CAM, compare operation is typically
followed by a read of the matched data word. When in-storage processing involves arithmetic
operations, a compare is usually followed by a parallel write into the unmasked bits of all tagged
rows, and additional capabilities, such as read and reduction operations, are included [47].

Table 1. Operations included in ReCAM

Integer Instruction (32bit) Cycles
B ← A+B 256
C ← A+B 512

Shift down by one row 96
Row-wise Max (A,B) 64

Max Scalar (A) 64

Any computational expression can be efficiently implemented in ReCAM storage using line-
by-line execution of the truth table of the expression [7]. Arithmetic operations are typically
performed bit-serially. Table 1 lists several operations supported by ReCAM and the number of
cycles required by each operation. Shifting down a consecutive block of rows by one row position
requires three cycles per bit. First, compare-to-’1’ copies the source bit-column of all rows into
the TAG. Second, shift moves the TAG vector down by setting the shift-select line (Fig. 2b).
Third, write-’1’ copies the shifted TAG to the same bit-column. Shifting 32-bit numbers thus
requires 96 cycles. Addition (in-place or not) is performed in a bit-serial manner using a truth
table approach [7] (32 bits times 8 truth-table rows times 2 for compare and write amount to 512
cycles). Row-wise maximum compares in parallel two 32-bit numbers in each row. Max Scalar
tags all rows that contain the maximal value in the selected element. Additional operations, such
as parallel and reduction arithmetic, may be required for other algorithms.
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Figure 2. Single ReCAM crossbar integrated circuit. (a) 2T2R ReCAM bitcell. (b) TAG logic

2.2. System Architecture

Conceptually, the ReCAM comprises hundreds of millions of rows, each serving as a compu-
tational unit. Due to power die restrictions, the entire array may be divided into multiple smaller
ICs, as in Fig. 3a. A row is fully contained within an IC. All ICs are daisy-chained for Shift and
Max Scalar operations. The ReCAM storage system uses a microcontroller (Fig. 3b) similar to [23].
It issues instructions, sets the KEY and MASK registers, handles control sequences and executes
read requests. In addition, the microcontroller may also perform some baseline processing, such as
normalization of the reduction tree results. ReCAM-based storage is scalable due to its inherent
parallelism. It allows for scalability by adding more ICs and increasing storage capacity at no
performance cost since compute capability is linearly scalable in the number of ICs. Therefore,
processing in-storage of large data sets does not require ReCAM for external communication, in
contrast to datacenter-scale storage.

Figure 3. Complete ReCAM-based Storage system, composed of (a) separate multiple daisy-
chained ICs and (b) Microcontroller. Connected to the multiple ICs with a reduction tree network
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3. PRinS Application: Smith-Waterman DNA Sequence
Alignment

Searching for similarities in pairs of protein and DNA sequences (also called Pairwise Align-
ment) has become a routine procedure in Molecular Biology and it is a crucial operation in many
bioinformatic tools. The Smith-Waterman algorithm (S-W) [42] provides an optimal solution for
the pairwise sequence alignment problem, but requires a number of operations proportional to the
product of the two sequences. S-W identifies the optimal alignment of two sequences by comput-
ing a two-dimensional scoring matrix. Matchings base-pairs score positively, while mismatching
results in a negative score. The optimal alignment score of two sequences is the highest score in
the matrix. The S-W has two steps: scoring (to find the maximal alignment score) and trace-back
to construct the alignment. The first step is the most computationally demanding and is the focus
of this work.

Figure 4. Mapping the dynamic programming matrix on ReCAM. (a) A snapshot of the dynamic
programming matrix, shows the direction of progress for the parallel algorithm. (b) and (c) show
an example of organization of data in the ReCAM crossbar array at the beginning (b) and end
(c) of an iteration. AD[2] contents in (b) are being replaced with the new result (c). Bottom rows
in a crossbar IC are daisy-chained to the next IC in a shift instruction. The cell marked with X
contains the global maxmium score

Fig. 4a shows a snapshot of the scoring matrix during the algorithm execution. In a parallel
implementation, the matrix is filled along the main diagonal, and the entire anti-diagonal scores
are calculated in parallel. Fig. 4b shows the ReCAM memory map of two consecutive ICs at the
beginning of an iteration. A and B contain the sequences, where each base-pair takes 2-bit and
resides in a separate row. E and F are partial score results of the affine gap model [22]. AD[0],
AD[1] and AD[2] contain scoring matrix anti-diagonals. Scores are represented by 32-bit integers.
Shift operations in the PRinS implementation move data between rows inside an IC and between
daisy-chained ICs. Fig. 4c shows the ReCAM memory map at the end of an iteration and the
mapping between ReCAM and the scoring matrix. A complete description of the S-W PRinS
implementation appears in [28].
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3.1. Simulation and Comparison to State-of-the-art

A cycle-accurate simulator of the ReCAM storage was constructed. Assumed operational
frequency is 1GHz. An in-house power simulator was used to evaluate the power consumption
of ReCAM. The latency and energy figures used by both the timing and power simulations are
obtained using SPICE simulation and are detailed in [47].

Table 2. Simulated ReCAM parameters

ReCAM Parameter Value
Active storage size 8GB

Frequency 1Ghz
Power per integrated circuit 200W
Number of integrated circuit 32

We simulate the ReCAM with the cycle-accurate simulator. Assumed ReCAM parameters
are listed in Table 2. The CUPS metric (Cell Updates per Second) is used to measure S-W
performance. Results are compared to other works in Table 3. The in-storage implementation is
compared to other implementations in different platforms: a 384-GPU cluster [37], the 128-FPGA
RIVYERA platform [45] and a four Xeon Phi implementation [33]. On ReCAM with a total of
8GB in 32 separate ICs, each 256MB and 8M rows, 53 TCUPS are demonstrated, computing a
total of 57×1012 scores. 4.7× faster than the best implementation. The table also shows computed
GCUPS/Watt ratios; ReCAM is close to twice better than the FPGA solution and 80× better
than the GPU system.

Table 3. Summary of state-of-the-art performance for S-W
scoring step in previous works and in ReCAM

Accelerator Xeon Phi FPGA GPU ReCAM
Performance (TCUPS) 0.23 6.0 11.1 53

Number of ICs 4 128 384 32
Power (kWatt) 0.8 1.3 100 6.6
GCUPS/Watt 0.3 4.7 0.1 8.0

Reference [33] [45] [37]

4. PRinS Application: In-Storage Data Deduplication
Deduplication is a data compression technique for eliminating redundant copies of repeated

data, designed to improve storage utilization. Files are split into multiple data blocks. Only unique
blocks are meant to be stored. With every new write, a data block is compared against all blocks
in the storage. If a match occurs, a pointer to the previously stored block is saved in lieu of the
data block. Given that the same data block may occur multiple times (match frequency is also
dependent on the block size), storage efficiency can be greatly improved [50].

Deduplication operates on the physical layer of the storage, managing a set of data structures
to expose a consecutive logical layer of storage. Each data block has two addresses, physical (PA)
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and logical (LBA). Only the LBAs are exposed to the outside world, while physical addresses are
used internally by the deduplication mechanism.

4.1. Related Work: Conventional Deduplication

In a typical inline storage deduplication system (comprising disk / SSD storage, CPU and
DRAM for holding indices and tables), the basic deduplication data unit is termed a chunk. Upon
writing a new data chunk to storage, comparing the chunk contents (typically 4-8 KByte) to the
entire storage is infeasible. Instead, a much shorter representation, called a fingerprint or hash
(e.g., 20-byte SHA-1 hash) is calculated for each chunk, and the fingerprint is looked up in a chunk
index. If no entry is found, the chunk is stored, and a new entry is added to the chunk index. In
addition to the fingerprint, the index entry also holds at least the chunk’s PA and the number
of references to it (Fig. 5). If the fingerprint of the new chunk is found, its number of references
is incremented. An additional address translation table holds both the LBA and the PA of each
chunk.

Figure 5. Conventional deduplication scheme after writing the following sequence of (data block,
LBA): (A, x), (A, y), (B, y+1), (C, y+2). The storage, chunk index and address translation table
reside in the physical layer

Conventional implementations of deduplication require a dedicated computer within the stor-
age appliance. For example, a disk-based deduplication system [50] with usable capacity of 6TB
employs 15 SATA drives (connected in RAID6), 500GB each, and two dual-core CPUs with 8GB
of DRAM. It reaches 90% CPU utilization at peak I/O performance. All chunk metadata is stored
on disk, while the DRAM serves as a cache for chunk metadata, to reduce non-I/O storage access.
An expansion of that system [15] includes a flash-based SSD serving as fast storage for the entire
chunk metadata. The configuration is similar to [50], although smaller, with a RAID4 storage
comprising five hard drives, 500GB each, a dual-core CPU and 4GB of DRAM. As in the previous
work, DRAM serves as a small cache for chunk metadata. Xtremio’s X-brick [46] is an example of
an all-flash high-end large-scale contemporary storage appliance. Each of its units contains either
13 or 25 SSDs with an effective capacity of 3.2 or 7.2 TB, respectively. The appliance supports
up to 8 units and uses a quad-core processor with 256GB of DRAM.

At the other end of the spectrum, [9] shows an example of an in-SSD deduplication with the
purpose of enhancing the device endurance. The authors suggest using the device controller and

R. Kaplan, L. Yavits, R. Ginosar

2017, Vol. 4, No. 3 107



memory buffer to calculate the chunk fingerprint. Deduplication is implemented with an additional
indirection in the flash translation layer and uses the buffer as a small cache (similar to the DRAM
in [15] and [50]).

4.2. In-Storage ReCAM-Based Deduplication

The proposed ReCAM based inline deduplication requires neither external CPU, nor DRAM.
The deduplication is accomplished entirely within the ReCAM, using its in-storage processing
capabilities. ReCAM based deduplication is illustrated in Fig. 6. Each data block in ReCAM
storage is divided into S = (block size)/(ReCAM width) row-segments of ReCAM width size.
For example, for 256-bit wide ReCAM and 4KB blocks, the number of segments is S = 128. Data
blocks are stored in ReCAM in segment by segment fashion, in S consecutive ReCAM rows. The
first segment of each data block is marked by “1” in the block start bit column. The values of
block start in all other ReCAM rows of the data block are zero.

Figure 6. ReCAM based deduplication scheme, following the same sequence of writes as Fig. 5

Otherwise, the new block is unique. In that case it is written into the ReCAM along with its
(arbitrarily assigned, unique) PA. As described above, the block is written segment by segment
into S consecutive rows, and the first segment is marked “1” in the start block bit column.

4.2.1. ReCAM-Based Deduplication Algorithm

Fig. 7 shows the pseudo code for the ReCAM implementation of the three main deduplication
functions: write, read and delete.

During write, a new data block is compared (in parallel) against all data blocks stored in
the ReCAM. This is achieved by a sequence of one single compare followed by S − 1 continuous
compare operations. During the single compare, the start block bit column is masked-on, to enable
comparison of only the first segment of each data block in the storage. During the following S− 1
continuous compare, the result (TAG) of every consecutive compare is ANDed with the result of
the previous compare. Thus, in each compare, only the rows matched in the previous compare
are active, and the number of active rows drops progressively, significantly reducing the compare
energy. In both cases (unique and duplicate), the LBA of the data block is placed together with
its PA in an associative address translation table, which can be stored in a separate module of the
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ReCAM storage. The translation table mapping can be optimized to eliminate storing multiple
copies of the same PA (of duplicated blocks). Overall, write takes O(S) cycles.

Read is done in two steps. First, the LBA of the data block is searched in the associative
address translation table. The corresponding PA is retrieved from the table. Second, the PA is
searched in the ReCAM storage (by compare), followed by read of the data block from the matched
ReCAM rows. It is accomplished by a series of S read operations, starting with the row marked
by “1” in the start block bit column. Overall, read operation takes O(S) cycles.

Deletion of a data block is performed in three steps. In the first step, the LBA is searched in
the address translation table; its PA is retrieved (to be used at the second step), and the entry at
the address translation table is deleted. In the second step, the PA (retrieved at the first step) is
searched again in the address translation table; if matched, it means that the deleted block has
no duplicates. In this case, it is deleted from the ReCAM storage, in O(S) cycles.

A complete description of the in-storage deduplication appears in [29].

4.3. In-Storage Deduplication Evaluations

We simulate the ReCAM based deduplication using the cycle-accurate CAM simulator intro-
duced in [47], employing ReCAM performance and power figures obtained by SPICE simulations.
During ReCAM execution we record and count all operations (compare, write and delete). The
simulated ReCAM size is 256GB, running at 1GHz. External data throughput is assumed non-
limiting (contemporary interconnect such as multi-lane PCIe is capable of supporting in excess of
2.2M IOPS).

We compare our ReCAM deduplication implementation with opendedup [41], which supports
inline deduplication and runs on top of the local filesystem. It allows for either variable or fixed-
size blocks and does not limit the amount of stored data. In our analysis, block sizes of 1KB,
2KB, 4KB and 8KB were used. In addition, we used opendedup on a server with four octa-core
Intel Xeon E5-4650 CPUs with 64GB of RAM and 800GB Intel SSD DC P3700 drive.

To evaluate the performance and energy consumption of opendedup,the file system benchmark
IOzone was used [36]. IOzone allows writing data chunks with fixed number of duplicate parts,
to control the degree of deduplication. All runs include writing of 50GB of data, with varying
percentage of duplicate blocks. Each test was repeated with inline deduplication on and off, to
isolate the CPU and DRAM energy consumptions during deduplication. Intel performance counter
monitor [13] was used for measurements.

As demonstrated by [50], real-world workloads have high variability in the percentage of
duplicate data. Our goal is to exhaustively examine ReCAM performance and energy consumption.
Therefore we use a suite of artificial workloads with a varying degree of duplication ratio. It allows
us to control both the workload and the mainline system parameters. Both opendedup and ReCAM
deduplicate all duplicate blocks.

The simulated write throughput as a function of percentage of deduplicated blocks is presented
in Fig. 8. The measured throughput of opendedup is also presented in Fig. 8 for comparison. The
ReCAM throughput increases with the percentage of duplicate blocks, as the number of writes
drops. For 8KB data blocks, ReCAM storage reaches 2.2M IOPS for 30% duplicate blocks. For
comparison, high-end all-flash X-brick storage appliance reaches 150K IOPS in 30% write, 70%
read operation [46], similar to the simulated performance of opendedup.

The simulated energy consumption of ReCAM-based deduplication as a function of percentage
of deduplicated blocks is presented in Fig. 9. The measured energy consumption of opendedup
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1: function Dedup Write(logical address, data block)
2: Compare (data block) . in parallel for all data block stored in ReCAM
3: if NNZ TAG then . no match for data block
4: Compare(empty bit)
5: First tag()
6: Write (address, data, empty bit) . empty bit← 0
7: else . data block is duplicated
8: Read(logical address) . reads the address from matching data block in ReCAM
9: Save (new block address) . Save pointer to an existing block in an associative

address conversion table. Could be stored in a Se
10: end if
11: end function

1: function Dedup Read(logical address)
2: Compare (logical address) . find address in address conversion table
3: if NNZ TAG == 0 then . if found, block is deduplicated. Need to fetch its physical

address.
4: Read (physical address) . read physical address field from address conversion

table
5: Compare (pysical address) . find physical address in ReCAM
6: else . block is unique, address is its physical address
7: Compare (logical address)
8: end if
9: Read (data block) . read a data block

10: end function

1: function Dedup Delete(logical address)
2: Compare (logical address) . find address in address conversion table
3: if NNZ TAG == 0 then . match for address.
4: Remove (logical address) . if deduplicated, remove pointer from associative

address conversion table
5: else . data block is unique
6: Delete (logical address) . delete data block from ReCAM storage
7: end if
8: end function

Figure 7. Associative Write, Read and Delete in ReCAM-based data deduplication

(including the SSD energy consumption) is also presented in Fig. 9 for comparison. The energy
consumption of ReCAM-based deduplication is in the same range (slightly higher for smaller
blocks, lower for larger blocks).
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Figure 8. Write performance for different block sizes vs. percentage of deduplicated blocks, for
data blocks of 1KB, 2KB, 4KB and 8KB (OPNDDP = Opendedup)

Figure 9. Deduplication energy for different block sizes vs. percentage of deduplicated blocks, for
data blocks of 1KB, 2KB, 4KB and 8KB while writing 50GByte of data

Conclusions
Processing-in-memory does not address the bandwidth bottleneck problem when solving big

data workloads. We propose a novel in-data processing-in-storage architecture based on Resis-
tive Content Addressable Memory (ReCAM). It enables mass storage with in-data associative
processing capabilities. ReCAM storage contains billions of data rows, each row serving as an as-
sociative processing unit. ReCAM requires no in-storage processing cores external to the storage
arrays. There is no data transfer outside the storage arrays. Therefore, the internal bandwidth of
the resistive memory based storage can be utilized to its fullest extent, considerably improving
computation throughput of processing-in-storage system.

The ReCAM architecture, capable of general purpose associative processing, has been applied
to challenging big data problems, such as the Smith-Waterman bioinformatics algorithm and
inline data deduplication. The paper also compares ReCAM to other implementations and shows
a significant improvement in performance and energy efficiency.
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