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Distribute the South Asian Genomic Database, Necessary for

Precision Medicine in this Population
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Precision medicine is an emerging approach for disease treatment and prevention that takes

into account individual variability in genes, environment, and lifestyle for each person. Efforts to

implement precision medicine have gained traction in recent years due to significantly increased

understanding of the role of genetic variations in human disease over the past decade. However,

delivery of precision medicine requires robust population specific reference genome datasets for full

appreciation of existing natural variation. A large majority of publicly available genomic databases

are primarily derived from Caucasian populations and do not fully address the diversity of Asian

populations. In an effort to address this problem, we have aggregated and built a genomic database,

ggcINDIA, specifically for South Asian populations. In collaboration with Global Alliance for

Genomics and Health (GA4GH), we have made this database publicly available to the community

through the GA4GH’s Beacon project. ggcINDIA represents the first Beacon for South Asian

populations. As more data are generated and aggregated, the ggcINDIA beacon will provide the

precise genomic data that is critical to the delivery of precision medicine within South Asia.

Keywords: Precision Medicine, ggcINDIA, Beacon Network, South Asian Genome, Genome

Data Sharing.

Introduction

Next generation sequencing and constant advances in the high throughput technologies as

well as lab automation have made it possible to explore the vast variation that exists within

the human genome [8, 14]. For example, variations in genes related to drug metabolism (also

known as pharmacogenomics) such as CYP2C19, NAT2, etc. affect the individual’s response

to drug treatment. Similarly, presence of specific pathogenic variants in certain cancers allow

the use of targeted therapeutics (also known as precision oncology). For example, treatment

of melanoma with a somatic V600E variant in the BRAF gene, specifically includes the use of

selective BRAF inhibitors such as vemurafenib. Selective inhibition of BRAF results in a relative

reduction of 63% in risk of death and 74% in risk of tumor progression [2]. These success stories

have accelerated the move towards precision medicine, a disruptive model of healthcare delivery,

where treatment is tailored to the individual’s characteristics, in most cases, the genetic or

molecular information.

For successful delivery of precision medicine, it is imperative to understand the genomic

variations, and their consequences, for different populations. Studies such as the 1000 Genome

project have demonstrated that these genetic variations are dependent on the ancestry and eth-

nicity [6, 21]. They are responsible for the phenotypic diversity within the diverse populations,

such as facial appearance, but more importantly, for differences in disease susceptibility and ther-

apeutic response. A major limitation of previous genomic studies was a focus on Caucasian pop-

ulations. More recent efforts have have begun to individuals from a more diverse non-Caucasian

background, which has led to an increase in representation of non-European individuals in the

NHGRI-EBI GWAS from 4% in 2009 to 19% in 2016 [18]. However, the vivid diversity of South

Asian population [20], that is not accurately represented even with the increased representation
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of non-European individuals in publicly available genomic databases [13, 18]. The concern with

this bias is that it can result in misinterpretations and misdiagnoses [15]. In a recent analysis by

the Exome Aggregation Consortium group at the Broad Institute, only 9 out of 192 variants,

previously called as pathogenic, were truly pathogenic, while over 160 variants were population

specific polymorphisms, and hence, likely benign [13, 23]. Furthermore, on comparing the stan-

dard datasets to bushmen in the KB1 African genome analysis, it was found that there was

an increased frequency of sequence variation between them, and over 47% of variants identified

were novel, affecting over 7700 genes; indicating the scale of population diversity [22].

To fill in the gap of South Asian genome knowledge, the goal of this study is to build genome

database for South Asian populations and to make this database accessible to researchers and

at large.

1. Methods

1.1. Aggregating Genomic Data of South Asian populations

Through separate projects, we identified individuals of South Asian ancestry, and performed

genomic sequencing (either whole exome or whole genome) on these individuals. In addition,

we aggregated available genomic data, including some available publicly through Creative Com-

mons Attribution License [4]. All of the individuals included in this study had all of their four

grandparents born on the Indian subcontinent.

The DNA sequence of each individual was collected in the standard FASTQ files, which

store the DNA sequence as well as its corresponding quality scores.

1.2. Genome Analysis: Alignment, Variant Calling, and Variant Annotation

A customized bioinformatic analysis pipeline was set up to analyze the genome sequences

and make the South Asian variant datasets available to the public (fig. 1).

The raw genomics data in FASTQ format were processed using the Sentieon DNAseq pipeline

version 201611 [9]. Sentieon DNAseq is a proprietary reimplementation of Broad Institutes best

practices pipeline for DNAseq [3] with an approximately 10x improvement in runtime. Perfor-

mance improvements were achieved through use of Sentieon’s proprietary improved algorithms

and better resource management.

DNA sequences in FASTQ files were aligned to the known and publicly available reference

genome GRCh37 using Sentieon BWA (sequence alignment tool) and the resulting alignments

were sorted by genomic coordinates and converted to BAM format (binary format of sequence

data) using the Sentieon UTIL binary. The quality of the aligned sequence data - including

mean base quality for each flowcell cycle, the base quality score distribution, GC bias metrics,

alignment metrics, and insert size metrics were calculated for each sample using the Sentieon

driver. Duplicates in the sequences were removed, reads were realigned around indels (insertions

and deletions in the sequence) identified by the 1000 Genomes project [6] or Mills et al. [17],

and base quality scores were recalibrated. (The variation in the DNA sequence that occurs

at a specific position in the genome is called a variant.) Variants were called for each sample

independently using the Sentieon DNAseq Haplotyper and variants were output as genomic

Variant Call Format (gVCF) files. Joint genotyping was performed on all gVCF files using the
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Sentieon DNAseq GVCFtyper. This step creates a common VCF file having the information

from all the individuals’ sequences.

Variant Effect Predictor (VEP) version 86 from Ensembl was used to annotate the VCF

for further analysis. VEP determines the effect of variants (including single nucleotide polymor-

phisms (SNPs), insertions and deletions) on genes, transcripts, and protein sequence, as well as

regulatory regions [16].

Figure 1. Genome Sequence Analysis of 325 individuals DNA sequences. From raw data genome

files to making the Variants of South Asian populations public on Beacon Network search engine

1.3. Computation and Resources

High performance computing infrastructure provided through the National Super Comput-

ing Centre, Singapore was used to perform memory, resource, and compute intensive operations.

PBS Pro was used to manage the workload and use the HPC resources efficiently. 2 units of 24

CPUs, 96GB of memory, 1 GPU, and 12 threads of 2 MPI processes were used. The total size

of the raw data was 3183.3 GB.

Sentieon’s DNAseq pipeline as well as VEP were deployed onto the compute nodes on the

NSCC server infrastructure. Processing one individual’s FASTQ files to a gVCF file took about

6 hours on a single 32 core server. 64GB of memory is recommended to process such a sample.

The computation time can be reduced to under an hour using distributed computing processes

on multiple parallel servers. In our case, with the above mentioned resource configuration, the

job of processing 325 individuals’ genome datasets was completed in 168 hours.

2. Results

2.1. Demographics

We aggregated genomic data from 325 individuals of South Asian ancestry (tab. 1). Out of

the 234 individuals where data on geographical distribution within India was available, 67.2%

were from North India, 15.9% were from South India, 14.7% were from West India and 2.2%

were from East India. There were 291 (89.5%) males. The age range was 31 to 81 years (median

48 years).

Using High Performance Computing to Create and Freely Distribute the South Asian...
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Table 1. Distribution of 325 Individuals by their

Country of Birth. For Each of them, all 4

grandparents were native to the Indian

Subcontinent

COUNTRY OF BIRTH PROPORTION(%)

India 72.0% (234)

Pakistan 10.5% (34)

Sri Lanka 5.2% (17)

Bangladesh 1.2% (4)

Afghanistan 0.6% (2)

Other 10.5% (34)

2.2. Genomic Data

All individuals underwent genomic sequencing as per standard protocols. 178 underwent

whole genome sequencing and 147 underwent whole exome sequencing. All sequencing was per-

formed on the Illumina platform.

2.3. Genomic Variant Calling and Annotation

Variants in one’s genome are defined as the differences in an individual’s genome when

compared to a reference genome. These variants account for the differences among individuals

and tend to cluster based on ancestry [7]. While some of these variations may directly alter

the structure or function of the protein they code (also known as protein altering variants), a

significant majority of these variants occur in the non protein coding regions, and the significance

of these variants has not been well elucidated. Some of the variants could have associations with

human diseases or complex traits.

In our cohort, we detected 19,643,311 variants, which were then annotated using VEP. The

majority of the variants (81.6%) were single nucleotide variants (SNV) (fig. 2) (replacement of a

single nucleotide in the sequence). The rest of the 18.4% variants are indels and sequence alter-

ation - meaning there were insertions or deletions of nucleotide(s) from the sequence. Only 1.1%

of these SNV variants were coding (coding region is the part which translates into proteins),

while 47.1% were intronic and 39.7% were intergenic (fig. 3). Among the coding variants, 54.0%

were missense variants, 42.0% were synonymous variants, 1.5% were frameshift variants and

1.0% affected the termination codon (fig. 4). Among the missense coding variants, 59.8% were

predicted to be benign by Polyphen-2 [1], while 33.7% were predicted to be either possibly or

probably damaging (suppl. fig. 1). Distribution of variants across chromosomes is demonstrated

in suppl. fig. 2 to 27. In each of the figures, the X-axis is a position along the particular chro-

mosome and the Y-axis is a number of variants at the given location. This distribution, in turn,

does show the areas of increased variation.

2.4. ggcINDIA Beacon

Beacon Network by Global Alliance for Genomics and Health (GA4GH) is a global search

engine for genetic mutations [10]. Each collaborator’s genomic datasets in the form of VCF files

are uploaded and is called lighting a ’Beacon’. It enables global discovery of genetic mutations,
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Figure 2. Variant classification shown for the total of 19,643,311 variants detected among the

325 individuals. SNV= single nucleotide variant

Figure 3. Variant classification depending on the consequences, shows the most severe ones.

Only 1.1% are coding sequence variants

Figure 4. Coding consequences, variant classification of the 1.1% coding variants

federated across a large and growing network of shared genetic datasets. To join the effort and

to contribute to the community, we chose Beacon Network as the platform to make our South

Asian populations’ variant database public.

In collaboration with GA4GH, we have published the South Asian genomic variant database,

the first ’beacon’ of its kind for the South Asian population called ggcINDIA (fig. 5). This beacon

is the 69th beacon in the network. The beacon is a freely available resource and allows researchers

and the public to query the presence or absence of a given variant detected in their own discovery

cohort, and allows for filtering of variants for rarity. Once you access ggcINDIA, you can filter

out the variants specifically within the South Asian population.

Using High Performance Computing to Create and Freely Distribute the South Asian...
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Over time, we foresee generating and aggregating more genome sequences of individuals

from various cohorts of South Asian ethnicity into ggcINDIA beacon.

Figure 5. ggcINDIA on the Beacon Network. This interface allows researchers to know if a

particular searched variant is present or absent in the population. Here, the searched variant

was found in ggcINDIA.

3. Discussion

The correlation of genetic information with drug interactions as well as phenotypic and

pathogenic traits has proven that healthcare can be improved by personalizing to ones charac-

teristics and treatments [5]. Precision medicine is changing the dynamics of how healthcare is

delivered. However, for precision medicine to have maximum impact, the genomics of diverse

population cohorts must be known. The majority of known genetic knowledge is derived from

Caucasian populations [18]. The relative frequency of alleles important for pharmacogenomics

varies by population, meaning that certain drugs or drug groups will be less effective or even

hazardous in some populations, e.g., the risk for toxic epidermal necrolysis with the antiepileptic

drug carbamazepine in East Asians [24], and more effective and safer in other such as statin use

in Iranians with a specific KIF6 variant [11].

ggcINDIA is an initiative that takes up the challenge to recruit the under-represented popu-

lations and add their genomic information to correct the known racial bias of currently available

genomic knowledge. This study supports the fact that scientific data needs to be shared and

made publicly available within the scientific community as well as the public [12, 19]. ggcINDIA
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is part of global data sharing movement lead by GA4GH [19] and their flagship program of

Beacon Network. Such initiatives will only widen the scope of the reference genome and take

the necessary and obvious diversity into account.

ggcINDIA made its start with 325 individuals’ genomic data. Our aim is to continue to grow

and add data from more individuals to create a high fidelity South Asian reference genome.

Thus, moving forwards, we invite other collaborators to come and share their genomic datasets

for South Asian population and contribute in increasing the fidelity of the database. This process

will provide more accurate genomic data that is critical to delivery of precision medicine within

South Asia.
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An Application of GPU Acceleration in CFD Simulation for

Insect Flight
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The mobility and maneuverability of winged insects have been attracting attention, but the

knowledge on the behavior of free-flying insects is still far from complete. This paper presents

a computational study on the aerodynamics and kinematics of a free-flying model fruit-fly. An

existing integrative computational fluid dynamics (CFD) framework was further developed us-

ing CUDA technology and adapted for the free flight simulation on heterogeneous clusters. The

application of general-purpose computing on graphics processing units (GPGPU) significantly ac-

celerated the insect flight simulation and made it less computational expensive to find out the

steady state of the flight using CFD approach. A variety of free flight scenarios has been simulated

using the present numerical approach, including hovering, fast rectilinear flight, and complex ma-

neuvers. The vortical flow surrounding the model fly in steady flight was visualized and analyzed.

The present results showed good consistency with previous studies.

Keywords: insect flight, free flight, general-purpose computing on graphics processing units

(GPGPU), computational fluid dynamics (CFD), flapping-wing aerodynamics.

Introduction

Winged insects were the first animals to evolve flight locomotion. It is common to find them

hovering, flying sideways, landing up-side down, and executing rapid changes in flight speed and

direction. The capability of flight significantly contributes to insect diversity and abundance,

as it has permitted access to various ecological resources and rapid escape from predators. The

unparalleled mobility and maneuverability of winged insects have long captured the interest of

researchers in the area of biomechanics and aerodynamics. It is believed that, by explaining the

biomechanics of insect flight, scholars can yield insight to morphological evolution of insects and

their ecological roles.

In the past decade, several unsteady aerodynamic phenomena have been discovered to be

responsible for high agility and lift enhancement of flapping wing insect [12]. With the develop-

ment of CFD methods, and the continuous improvement of computing technology, it has become

feasible to study free flying insects and to visualize and analyze the complex unsteady aerody-

namics using numerical approaches [9, 13]. The use of CFD provides a convenient approach to

model various natural flapping wing flyers, since the geometries of the flyers and the environ-

ment the flyers encounter can be easily altered in a CFD model once it has been developed.

Sun & Wang [14] adopted CFD simulation results in their stability analysis of flapping wing

flight. Gao et al. [4] investigated the motion of a model fruit fly with six degrees of freedom

based on CFD computation, and simulated passive dynamic motions of the flyer under small

perturbation. They argued that an active control with sufficiently fast response is needed to

maintain the stability of the flight under disturbance. Kolomenskiy et al. [6] simulated taking

off flight of fruit-fly with two degrees of freedom using a pseudo-spectral method integrated with

a flight dynamics solver.

However, the simulation of insects in free hovering and rectilinear flight and intricate ma-

neuvering sequences remains highly challenging due to their dynamical complexities and high

computational cost [17]. General-purpose computing on graphics processing units (GPGPU) is
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an emerging heterogeneous computing technique that performs massive parallelization on graph-

ics processing unit (GPU). This technology is designed to achieve high float point operation rates

and is suitable for acceleration of numerically intensive CFD computations. Here, we adopted

the NVIDIA CUDA technology to accelerate the simulation of a free flying insect model and

investigated its long-term behaviors in different flight scenarios.

1. Numerical Methods

1.1. Governing Equations and Numerical Discretization

The dynamics of the fluid driven by flying insects is governed by the incompressible non-

dimensional Navier-Stokes (NS) equations, given here in an arbitrary Lagrangian-Eulerian

(ALE) form:

∂tu + (u− ug) · ∇u = −∇p+
1

Re
∇2u, (1a)

∇ · u = 0, (1b)

where u and p are the non-dimensional velocity and pressure fields respectively of the time-

varying fluid domain , and ug denotes the convection velocity of the computational node. The

convection velocity ug for meshfree nodes follow the movement of the boundary surfaces.

An implicit form projection method proposed in [3] is adopted in this work to advance the

above governing equations in time. The discretized form of the momentum equations (1a) is

written as:

u∗ − un

∆t
=

1

2

{[
−(u− ug) · ∇u +

1

Re
∇2u

]n+1

+

[
−∇p− (u− ug) · ∇u +

1

Re
∇2u

]n}
, (2a)

un+1 − u∗

∆t
= −1

2
∇pn+1, (2b)

where superscripts n and n + 1 denote time level. The u∗ is an approximation of the velocity

field un+1. Taking the divergence of (2b) yields the following pressure-Poisson equation, which

allows us to obtain the new pressure field pn+1 from u∗:

∇2pn+1 =
2

∆t
∇ · u∗. (3)

Boundary conditions given in [1], [16] and [17] have been implemented here to close the

above discretized governing equations. The fractional step equations and boundary conditions

are solved iteratively to advance the flow field to new time level. The pressure-Poisson equation

is solved by a hybrid Jacobi-BiCGSTAB solver to attain the solution of the pressure field pn+1.

1.2. SVD-GFD Scheme

Following the methodology developed in [3] and [15], the flow equations are solved on a

hybrid Cartesian cum meshfree grid system, wherein the body and wings of the flyer, and their

near fluid neighborhood are discretized by meshfree nodes. A set of computational mesh for a

fruit fly flyer that used in this study is shown in fig. 1. The meshfree nodes around the boundaries

convect with the motion of the body and wings. Generalized finite difference (GFD) scheme is

adopted here to approximate derivatives involved in the solution on the meshfree nodes.
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Figure 1. Schematic view of computational domain (R is the wing length of the flyer). Left:

background grid; Right: meshfree nodes around insect model

The GFD method is based on the Taylor series expansion. The three dimensional Taylor

series expansion of the function f(x) at x1 = x0 + ∆x1 is given in terms of the derivatives at

node x0 to order m by:

f(x1) = f(x0) +
∑

1≤j1+j2+j3≤m−1

∆xj11 ∆yj21 ∆zj31
j1!j2!j3!

[
∂j1x ∂

j2
y ∂

j3
z

]
+O(|∆x1|m), (4)

where ∂x, ∂y and ∂z denote the partial derivatives with respect to the coordinate variables.

If the values of the function f(x) are known at n nodes xi = x0 + ∆xi (i = 1, 2, · · · , n) in

the vicinity of the central node x0, we can obtain n equations about the derivatives [∂j1x ∂
j2
y ∂

j3
z f ]

at x0. By truncating the Taylor series after the third-order derivatives (m = 4), the equations

can form following linear system:

∆fn×1 = Sn×19∂f19×1, (5)

where

fn×1 =
[
f1 − f0 f2 − f0 · · · fn − f0

]
,

Sn×19 =




∆x1 ∆y1 ∆z1 0.5∆x21 0.5∆y21 0.5∆z21 · · · ∆x1∆y1∆z1

∆x2 ∆y2 ∆z2 0.5∆x22 0.5∆y22 0.5∆z22 · · · ∆x2∆y2∆z2
...

. . .
...

∆xn ∆yn ∆zn 0.5∆x2n 0.5∆y2n 0.5∆z2n · · · ∆xn∆yn∆zn



,

∂f19×1 =
[
∂x ∂y ∂z · · · ∂x∂y∂z

]T
f |x0

.

Should the matrix S be a non-singular square matrix, an approximate solution of the deriva-

tives ∂f19×1 at the central node may be determined by ∂f19×1 = [S−1
n×19]∆fn×1 with formal

accuracy of O(|∆x|3) and O(|∆x|2) for first order and second order derivatives, respectively.

This involves finding the pseudo-inverse of the coefficient matrix S. However, S tends to be ill-

conditioned due to irregular arrangements of the neighboring nodes, especially when two or more

nodes in the neighborhood are located very close to each other, making its inversion impossible

to be implemented in practice.
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The least-squares method and singular value decomposition (SVD) technique are classical

approaches that give the best-fitting solution/approximation for over-determined systems. In

the present 3D simulation, we implemented the SVD-GFD method presented by [1]. In the

algorithm, a regularization of the solution by setting the very small singular values of S to zero

is performed in order to avoid ill-conditioning. The system may become under-determined when

the small singular values were omitted, but the SVD method ensures a solution with minimum

L2 error can be obtained. The SVD scheme with regularization has been found to be robust and

accurate in the practice of 3D simulations for natural flyers and swimmers [11, 17, 18].

1.3. Nodal Selection

To minimize the approximation error caused by arbitrary node distribution in the meshfree

cloud, we adopted a minimum of 40 supporting nodes in the computation of ∂f19×1 for the

central node and applied a novel nodal selection criterion to improve the configuration of the

supporting nodes. In the current scheme, all neighboring nodes inside a predetermined support

region are collected as candidates for supporting nodes and are sorted in distance order, from

the closest to the furthest. A sphere with radius rinf and a cone with angle α are assigned to

each node including the central one as its zone of influence (fig. 2):

rinf =





rinf0, for central node,

r0 sinα, for nodes with r̄i ≤ r0,
r̄i sinα, for nodes with r̄i > r0,

(6)

Figure 2. Schematic drawing showing region of influence of nodes A and B in the neighborhood

of central node C

Moreover, it was pointed out that all the supporting nodes should be visible to the central

node to ensure that the derivatives can be correctly discretized [11]. As defined in geometry, a

supporting node is visible to the central node if the line segment that connects them does not

intersect any boundary surface. A visibility check base on ray-casting algorithm is applied on the

nodes close to a sharp edged object or a thin air foil like the insect wing, as their candidate nodes

are probably selected across the boundary surface. As shown in fig. 3, the selected supporting

nodes satisfy the visibility criterion for nodes near solid surface.
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Figure 3. Resultant supporting nodes (blue) of central nodes (red) near solid surface

2. Implementation

The motion of the model insect in free flight is motivated by aerodynamic forces and is

subject to Newton’s law. With the rigid body assumption, a flapping wing flyer in free flight can

be treated as a multi-body system that has six degrees of freedom (6-DoF). The wing mass of

fruit fly (D. melanogaster) is about several micro grams and contributes to less than 0.5% of the

total mass [2]. Hence, we here ignored the wing mass of the model fruit fly in the present study.

Moreover, we supposed that the density of insect body is homogeneous, and computed the fly’s

inertia tensor and centre-of-mass (CoM) based on this homogeneous density distribution. The

equations of motion for the 6-DoF flight are given by:





mV̇C(t) = mg + FA(t)

ẊC(t) = VC(t)

L̇C(t) = MA(t)

Θ̇C(t) = K(t) · ωC(t)

, (7)

where VC , XC , LC and ΘC denote the linear velocity, body position, angular momentum and

body orientation vector of the flyer at its body centre-of-mass (CoM) C in the global frame,

respectively, K is a transformation matrix, ωC is the flyer’s angular velocity determined by its

angular momentum and moment of inertia, g is the gravity vector, and FA and MA are the

aerodynamic forces and moments acting on the model fly respectively.

The CFD scheme presented in the last section was adopted here to resolve the flow field

surround the flapping wing flyer, in order to model the aerodynamic forces from the pressure and

viscous stress acting on the flyer surfaces. The surface configuration Γ(G(t)|VC ,XC ,ωC ,ΘC) is

time-dependent and comprise information about the geometry of the model fly (body and wings)

G(t) in its body frame as well as the information on the state of motion ξ = [VC ,XC ,ωC ,ΘC ]T

of the flyer in the global frame. Γ(t) determines the boundary condition in the CFD computation

while is in turn solved from (7) using the resultant aerodynamic forces. Hence, the solution of

Γ(t) involves fluid-body interaction (FSI) and is essentially an implicit problem.

This FSI problem was solved through a fixed-point iteration on Γ(t) using a predictor-

corrector method based on the 4-step implicit Adams-Moulton scheme in the present study. The

reason why multistep methods were selected is that evaluating aerodynamic forces by the CFD

method in intermediate steps requires extra computing time and storage, and the time step
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size used in the CFD part is small enough to ensure stability of the selected multistep method.

Moreover, the consistent time integration intervals allow the iterative projection method in

CFD part to be embedded into the 6-DoF motion solver to achieve a tightly coupled fluid-body

interaction simulation.

The calculation procedures are listed below and showed in fig. 4 in details:

1. Predicator step (P): at time step n + 1, compute the current dynamic state of insect ξn+1

from the previous dynamic state using the 2-step Adams-Bashforth scheme:

ξn+1,0 = ξn + ∆t

(
3

2
ξ̇
n − 1

2
ξ̇
n−1
)

; (8)

2. Evaluator step (E): update the flow field state Φ from Φn to Φn+1 using the CFD solver with

boundary conditions given by ξn+1, then evaluate ξ̇
n+1

from the latest available solution of

Φ;

3. Corrector step (C): correct ξn+1 using the 4-step implicit Adams-Moulton scheme:

ξn+1,j = ξn + ∆t

(
3

8
ξ̇
n+1,j

+
19

24
ξ̇
n − 5

24
ξ̇
n−1

+
1

24
ξ̇
n−2
)
. (9)

The above algorithm ran in iterative P(EC)kE mode, with one predictor step and k corrector

iterations, to solve the rigid body dynamics of insect flight.

 Predicator

If j≥kC 

Evaluator

Evaluator

No

0j 

Corrector

j=j+1

1

1

( , ) ,  ( , ) ,...n n

t n


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ξ ξ ξ ξ

Start

1j 

1,0 1 1compute ( , ) , update [ , , , ]  and .n n n

C C

  ξ ξ V X Θ ω

1 1

1, 1 1, 1

1,

update flow field with [ , , , ]  and ;

compute areodynamic loads used in  ( , , );  

compute  .

n n

C C

n j n j

n j

f t

 
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

V X Θ ω

ξ ξ
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1, 1 1compute , update [ , , , ]  and .n j n n
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  ξ V X Θ ω

End
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1, 1 1accept  as , update flow field, compute .n j n n  
ξ ξ ξ

Figure 4. Schematic of predicator corrector solution procedure in one time step

The CFD solution in the Evaluator step was orders of magnitude more numerically intensive

than other calculations in the present in-house code. Hence, the in-house OpenMP parallelized

code was re-programmed with CUDA technology to exploit the capability of modern heteroge-

neous clusters.

Parallelization of the CFD computations was straight forward due to semi-implicit nature

of the projection method given by Equation (2a) and (2b), and the BiCGSTAB method for
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the pressure-Poisson equation (3). However, the SVD algorithm executed on each meshfree

node required heavy numerical workload on individual one and was not yet re-programmed

into reliable and efficient GPU code. However, the SVD algorithm executed on each meshfree

node generated significant numerical workload that has still not yet been re-programmed into

reliable and efficient GPU code. Hence, the SVD calculation of the CFD solver was performed on

CPUs only in present simulations and was one aspect of the computation that could be further

improved upon.

3. Results and Discussion

3.1. Benchmarking Cases

The parallel code was performed on the heterogeneous cluster of the National Supercomput-

ing Centre of Singapore with the NVIDIA Tesla K40 accelerator installed. Additionally, an Intel

Xeon E5 Workstation with the NVIDIA Tesla K20c accelerator was used for debugging and

benchmarking purposes. Benchmarking computations were conducted on the Xeon E5 Work-

station using three different mesh systems shown in tab. 1 (Mesh size: Set 1<Set 2<Set 3).

From fig. 5a-c, it can be seen that the parallelization and the GPU acceleration greatly speedup

the nodal search process and fractional step iteration in above CFD scheme. The GPU speedup

increased with the size of the Cartesian mesh, because time used for data transfer between CPU

and GPU became less important with increasing computation time. The drop of speedup in

node search may be explained by the increasing overhead of memory operand in larger array.

The time for the projection method calculation with GPU acceleration is about half of compu-

tation using only 12 threads of CPU parallelization. Considering the wall-time elapsed during

one complete FSI iteration, the advantage of GPU acceleration is more impressive when the

grid size is large (fig. 5d), due to the computational bottleneck caused by the SVD procedure

executing on CPUs. In general, the current GPU-accelerated solver allowed us to complete the

simulation of about 100 wingbeats of the free flying insect in forward flight within a week time.

This significant reduction of computational time made possible by the using of GPUs allowed

us to obtain the long-term quasi-steady state of the model insect in free forward flight.

Table 1. Details of benchmarking mesh sets

Set 1 Set 2 Set 3

Cartesian grid 125× 125× 245 161× 161× 161 221× 221× 221

Meshfree nodes 40039 31863 31863

We adopted the experimental results in [10] to validate the CFD scheme presented in this

paper. In the experiments of Muijres et al. [10], the forces on the insect wings were estimated

from a scaled robot wing and normalized to the fly scale using F ∗ = F/mg with a body mass

of m = 1.8 mg. Compared to their unfiltered experimental data, our numerical results closely

tracked the build-up and decrease of forces, and correctly captured major force peaks and troughs

in the whole wingbeat (see fig. 6). The mean lift obtained in the present CFD simulation was

13.5% higher than the experimental results, while a 9.7% surplus was obtained on the mean

drag. This relative error between experimental and numerical results agreed with the previous

numerical studies [9, 11, 17], and it may caused by the oscillation/flutter of the robotic wing

due to its imperfect rigidity and slips within the actuator mechanisms. This agreement indicates
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Figure 5. Performance of parallel code

that the present GPU-accelerated CFD solver can predict the force generation of insect wings

with sufficient accuracy for our purpose.

Figure 6. Comparison of computational forces of a fruit fly wing executing natural wing motion

at Re=115 with experimental results from [10]

3.2. Flight Simulations

The present numerical method resolves the full details of temporal dynamics of the flow

field, and provides us a convenient way to visualize and quantify the 3D flow field produced by

the flapping wings.

In hovering flight, the wings shed a copious amount of vorticity into the surrounding

air. These took the forms of a leading-edge vortex (LEV), a wing-tip vortex (WTV) and a

trailing-edge vortex (TEV) - identified by the regions on the wing where they are generated as

shown fig. 7a. The vortices connected with each other to form a vortex ring (VR) on the wings
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. The present results show that there existed a strong spanwise flow on the flapping wing in

hovering flight. As suggested by previous studies [5, 7], the spanwise flow that may drain energy

from the LEV, and thus limited its downstream chordwise development and prevented the wings

from stalling. However, the increase of non-dimensional spanwise velocity, u∗span, from the wing

root to the middle wing-span also suggests that the spanwise flow may stretch the LEV along

the wing and hence helped to prolong the attachment of LEV [8]. In fact, as u∗span decreased

in the distal section of the wing, the LEV soon detached from the wing surface. The spanwise

flow may also confine the development of the TEV near the wing root which formed sheet-like

vortices.

Figure 7. Vortices on the flapping wing obtained in hovering flight. Left: stream traces and

iso-surface of λ∗2 = −80; Right: u∗span contours and λ∗2 iso-lines

In forward flight, the wing stroke plane of the flyer is typically rotated forward to generate the

requisite wing thrust, while the body is pitched forward to reduce aerodynamic drag. The quasi-

steady posture of the flyer and the stroke angle are speed-dependant and ultimately governed

by the balance of forces and moments acting on the whole flyer. Overall, the bulk of thrust

was produced during the upstroke of a wingbeat, while the bulk of lift was generated by the

downstroke. As shown in fig. 8, the vortex wake behind model fruit flyer in 60 cm/s flight - the

near wake contains vortex rings shed by the up- and down-strokes, which eventually decayed to

form a pair of travelling vortex tube (TVT) further downstream.

The shedding vortices become even more complex when the insect flyer is executing fast

maneuvers, as the large body motion of the flyer interfered directly with the shed vortices in

the wake. A simulation of fast banking flight has been carried out in this work. The insect was

controlled to turn to its right side from steady hovering state in the banking flight. As shown

in fig. 9, the wings of the rolling model fly collided with the stacked VRs and broke them down

into disconnected vortex tubes. There were two highly stretched vortex tubes existing in the

wake. During the fast rightward rolling, a strong vortex ring was created in the wake below the

left wing (see fig. 9c) and the vortex moved towards the left side of the flyer (fig. 9b d). This

vortex ring conveyed the lateral momentum induced by the rolling motion, and is noted as the

rolling vortex. Thereafter, the downstroke WTV created on the right wing was greatly elongated

to form a yawing vortex during the fast yawing phase, and remained visible in the flow field till

the fifteenth wingbeat (fig. 8e f). The transient structure of the vortex wake soon decayed and

evolved into the normal hovering wake after the flyer re-stabilized itself in a new hovering state.
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Figure 8. Shedding vortices (VR-Dn (—) and VR-Un (· · · )) on 80 cm/s forward flight showing

by λ∗2 iso-surfaces (light blue λ∗2 = −0.18, dark red λ∗2 = −1.8)
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Figure 9. Development of vortex wake in banking flight (banking from steady hovering), showing

by λ∗2 = −1.8 iso-surfaces obtained at the mid-downstroke. (BD: insect body; LW: left wing;

RW: right wing)
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Conclusions

This paper presents a numerical study on the flapping-wing free flight of a model fruit-lfy (D.

melanogaster). The simulations were carried out with a coupled CFD/6-DoF motion solver on

a 3D Cartesian-cum-meshfree grid by an SVD-GFD computational scheme. The study covered

a variety of flight scenarios including hovering, forward flight and banking maneuvers. Unlike

most previous insect flight studies, the model insect was allowed to move freely in all the six

degrees of freedom. The computationally-intensive simulations were expedited by the application

of CUDA-based GPUs, which greatly accelerated the speed of the CFD (Navier-Stokes) solver

over that of the original CPU parallelized code. The gains in turnaround time were particularly

significant and beneficial of highly prolonged simulations carried out to investigate the long-time

quasi-steady performance of certain flight states, such as hovering and long-distance forward

flights. The simulations allowed us to probe the complex aero-cum-body dynamics in flapping

wing insect flight, and to study and refine control strategies and algorithms to achieve steady

flight and complex aerial maneuvers.

The present computational simulations reveal the complex vortical wakes created by the

wings of the model insect. The strong LEV, TEV, and WTV shed by the flapping wings domi-

nated the highly complex near-wake of the flyer. An even more complex wake system enveloped

the model insect in sharp maneuvering flights, where the wings may directly interfere with the

shed flow structures. These flow structures are governed by the kinematics of the flapping wings

and the motion of the flyer; and their analyses will help us to better understand the underlying

physics. In level forward flight, the vortex wake in the rear of the model insect may decay into

a pair of trailing vortices, similar to those frequently observed behind airplanes in flight.
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With nano-scale technology and Moore’s Law end, architecture advance serves as the princi-

pal means of achieving enhanced efficiency and scalability into the exascale era. Ironically, the field

that has demonstrated the greatest leaps of technology in the history of humankind, has retained

its roots in its earliest strategy, the von Neumann architecture model which has imposed tradeoffs

no longer valid for today’s semiconductor technologies, although they were suitable through the

1980s. Essentially all commercial computers, including HPC, have been and are von Neumann

derivatives. The bottlenecks imposed by this heritage are the emphasis on ALU/FPU utilization,

single instruction issue and sequential consistency, and the separation of memory and processing

logic (“von Neumann bottleneck”). Here the authors explore the possibility and implications of one

class of non von Neumann architecture based on cellular structures, asynchronous multi-tasking,

distributed shared memory, and message-driven computation. “Continuum Computer Architec-

ture” is introduced as a genus of ultra-fine-grained architectures where complexity of operation is

an emergent behavior of simplicity of design combined with highly replicated elements. An exem-

plar species of CCA, “Simultac” is considered comprising billions of simple elements, “fontons”,

of merged properties of data storage and movement combined with logical transformations. Em-

ploying the ParalleX execution model and a variation of the HPX+ runtime system software, the

Simultac may provide the path to cost effective data analytics and machine learning as well as

dynamic adaptive simulations in the trans-exaOPS performance regime.

Keywords: High-Performance Computing, parallel processing, exascale, non-von Neumann ar-

chitecture, cellular architecture.

Introduction

Commercial computers have been predominantly von Neumann derivative architectures

throughout the seven decades of digital electronic information processing although the enabling

technologies and the logical structures have varied widely over this period. Such systems like

MPPs, SIMD, vector, ILP, and multithreaded, while representing their own distinct ways of

exploiting parallelism, have none the less been based on the fundamental principles of the von

Neumann model of the 1940s. These include sequential instruction issue and sequential consis-

tency, optimizing for ALU/FPU utilization as the precious resource, and separation of processing

and memory. At one time this was the rational objective function as an FPU in the enabling

technology of their respective times was the most expensive component in discrete components,

size, cost, and power; thus, driving its throughput as most important for performance to cost.

Even when this was less so, while Moore’s Law dominated, component capacity and performance

grew exponentially with time in conjunction with Dennard scaling [7] and ILP through incre-

mental extensions of conventional practices and architecture. Since 2005, processor core speeds

have not grown and overall system performance has been improved only through increased mul-

tiplicity of cores either through multicore/manycore architectures such as the Intel Xeon Phi

or the higher order core structures like the NVIDIA family of GPUs. This will likely deliver an

ExaFLOPS HPL Rmax performance after 2020 but at significant cost and low efficiency. Fur-

ther emerging applications of importance in data analytics and machine learning among others

will demand very different design structures, balance, and programming methodologies. It is a
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premise of this paper that the future of high end computing exploiting CMOS nano-scale device

technologies will require new classes of computer architecture to take full advantage of compo-

nent capabilities through avoidance of many of the bottlenecks imposed by the von Neumann

architecture model. One example of active interest and research pursuit is neuro-morphic ar-

chitectures that are brain-inspired such as neural nets. The research discussed here, Continuum

Computer Architecture (CCA), is proposed to reverse the stagnation of von Neumann archi-

tecture and dramatically increase key properties of scalability and memory bandwidth while

dramatically reducing size, power, and cost. This paper establishes the fundamental principles

of the future class CCA systems.

CCA is motivated by the end of Moore’s Law at nanoscale semiconductor feature size and

the opportunity for new architectures that exploit rational optimization strategies of current

enabling technologies as opposed to conventional practices based on the legacy of the venerable

von Neumann architecture model. An examination of conventional core architectures based on

the three major contradictions imposed by the von Neumann model are the emphasis on FPU

utilization, the separation of processor and memory, and the limited way in which parallelism is

exposed and exploited due to sequential instruction issue. Much of the die area is dedicated to

emphasizing the FPU/ALU utilization including speculative execution, branch prediction, out of

order completion, and multiple cache layers and their control. The principal metric of operation

should be the time delay between when an operation is logically ready to be executed (that is

satisfies its precedent constraints) and when it is actually performed. Eliminating the von Neu-

mann bottleneck associated with the latency and bandwidth constraints for memory access has

been long recognized as an essential goal but current cache based techniques demand data reuse

through temporal and spatial locality. The typical practice of organizing parallel computation

through the BSP style [21] with global barriers imposes potentially severe bottlenecks in core

usage with irregular tasks. Furthermore, both user productivity and performance portability

are hampered by the myriad details of performance optimization resulting from the complexity

of contemporary core designs. Ultimately, future architectures across the exascale performance

regime will depend how they address the key fundamental operational factors of starvation,

latency, overhead, and contention at every level with effective use of parallelism probably most

critical.

This paper departs from the norm by considering these key issues and examining an ar-

chitecture design space that falls into the broad family of non-von Neumann architectures

to eliminate the deleterious effects of the legacy of von Neumann based machines. It further

presents a genus of innovative architectures, Continuum Computer Architectures, that borrows

from early consideration of a number of alternative strategies including cellular automata [14],

dataflow [8], systolic arrays [5], and more recent work on Asynchronous Multi-Task comput-

ing [10, 12, 15, 20, 23] as well as the authors’ own work on the ParalleX execution model [1, 11].

The paper concludes with an analysis that suggests that an exascale computer employing such

concepts could be devised and fabricated using contemporary CMOS semiconductor technology

and managed through current experimental dynamic adaptive software techniques in a relatively

cost effective way compared to current projected approaches.

1. Continuum Computer Architecture

The architecture genus of Continuum Computer Architecture is first advanced as a

Gedanken-experiment with the following attributes: presume that a finite space (rectangular
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for convenience) is filled with many rows and columns of computers connected in a mesh topol-

ogy. Within the finite space, replace each computer with four machines, each of a quarter lower

performance, data storage, and foot print so that the same area has the same capability, just

realized through more and more smaller and smaller computing elements. Repeat this cycle in-

finitely. In the limit, every point in a finite space has the properties of logical operations, data

storage, and data movement but to a minimal, actually zero amount, in each case. But a finite

area, no matter how miniscule beyond a point will have non-zero values in all three parameters.

A medium of computing has been created, at least of the imagination a continuum computer.

Such continuum computers can actually be produced for special purposes in the analog domain

such as the determination of electrical fields in a conductive fluid; not exactly programmable in a

general purpose sense but it does prove the point. For a more general CCA, such a medium must

be discretized as is done with many algorithmic models such as Discrete Fourier Transforms [6]

or Finite Element Methods [2]. The challenge is to derive the smallest fine grain element that

embodies the properties of data storage, logic, and data transfer such that when employed in

collectives can accomplish real world (programmable) parallel computation. In the special case

of the species of CCA described in this paper, the element is referred to as a “fonton”, but this

is getting ahead of the story, to which we return in future sections. It is ironic that perhaps

the first example of this genus of non-von Neumann architectures was created by John von

Neumann himself in 1949 in the form of the cellular automata which he proved to be Turing

equivalent. Many special purpose cellular automata have been devised over ensuing years; the

most famous of which is most likely Conway’s Game of Life [3]. The technical strategy of the

CCA is summarized as comprising the following elements:

1. Non von Neumann Architecture – to eliminate the bottlenecks imposed by legacy structures.

2. Optimizing for most expensive property, not FPU utilization – emphasizing today’s crucial

bottlenecks such as memory bandwidth and latency rather than the obsolete notion of FPU

utilization.

3. Cellular Structures -- maximizing best usage of die area through cellular structures which

replaces complexity of design for complexity of operation with simplicity of design combined

with massive replication.

4. Nearest Neighbor Access – exploitation of nearest neighbor communication between cells

for extreme system bandwidth with minimum latency as appropriate.

5. Parallel Control Flow – the replacement of sequential issue based control flow with intrinsic

parallel control flow combining dataflow and futures semantics with a high level global

parallel control state.

6. Objective Function – parameter set for a multi-dimensional optimization space including

memory bandwidth and latency, delay between enabled and executed actions, sustained

OPS versus peak or Linpack FLOPS, and time to solution versus cost.

These strategy elements in concert establish the guidelines that govern the manifestation of

continuum computer architectures for ultra-scale computing.

2. Simultac Fonton

The Simultac architecture currently investigated by the authors is but one of possible species

of CCA. It stresses practical aspects of the design to promote cost-effective and efficient imple-

mentation while reducing the design time and enabling fast prototyping on FPGA technology.
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The primary guiding principle is simplicity; the complexity of its component cells is signifi-

cantly lower than that of a single RISC core. The desired performance level of the whole system

is achieved through high level of replication of uniform component cells (fontons). The emer-

gent properties of a large scale system manifest themselves due to synergies arising within the

multitude of concurrent actions performed by many fontons.

Simultac design directly addresses performance degradation factors identified by the

SLOWER model [16]. It supports hierarchy of parallel actions, ranging from dataflow-like inter-

actions inside cell groups to parallel process instances, each occupying a macroscopic fraction of

hardware resources. This limits starvation by identifying opportunities for parallelism extraction

at multiple levels of program execution. The latency effects are suppressed by introduction of

new structures, both in software and hardware that enable opportunistic scheduling of work.

The overheads are minimized through development of optimized hardware mechanisms; due to

simplicity of the design, the analysis of costs and implementation of such improvements are not

difficult to perform. The contention is addressed by providing abundant execution resources.

A critical element of reducing power consumption, proximity of data, is achieved through in-

tegration of storage and processing logic. Finally, component redundancy and high availability

“anywhere in the medium” provides fault tolerance.
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Figure 1. Internal structure of a fonton

A schematic diagram of fonton internals is shown in fig. 1. At the heart of the fonton is

an associative storage array in which memory segments with capacity comparable to that of a

cache line are combined with virtual tags to enable selection of the appropriate individual storage

cells. Contents of the array may be transformed by an ALU controlled by logic executing locally

stored strands of instructions. The (limited) code may be either kept in the memory array or

delivered by an incident token (active message) from the cross-chip interconnect. The token

destination address is matched by specialized logic monitoring all locally used tags. If a match is

obtained, including forms of wildcard addressing, the token is absorbed by a fonton. The fonton

has a dedicated adjacency interface permitting access and modification of the state of several

neighbor fontons. This interface also permits realization of simple but high aggregate bandwidth

massaging, alleviating the load of on-chip network if only intra-neighborhood communication is
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necessary. The majority of fonton operations are performed within a single clock cycle eliminating

elaborate pipelines and reducing the processing latency.

Figure 2. Some of the possible 2D tessellations

Scaling to chip size involves embedding a large number of fontons on a die. For this purpose,

die area has to be tessellated using uniform shapes to completely fill the available space. This

also determines the number of adjacent fontons involved in the nearest-neighbor interactions.

Some of the considered tessellations are illustrated in fig. 2. The resultant geometry directly

impacts the types of parallel processing that can be performed in local neighborhoods. They

range from simple 1D pipelines, forked pipelines, overlapping multi-directional pipelines, trees

and DAGs to arbitrary graphs. Determining the tradeoffs between the required resource count

(such as number of links per cell with associated control logic) and the ability to emulate a

broad range of structures required to represent data and/or control flow relationships is one of

the subjects of the ongoing research.

3. Parallel Control Flow
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Figure 3. Semantic constructs of ParalleX enabling various types of parallel control flow

The CCA/Simultac architecture described thus far satisfies the need to define organization

of primitive components. But the von Neumann architecture also provides the semantics of

computing; the execution model that governs the logic of operations and the meaning of the
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objects on which they perform as well as the order in which they are performed. Continuum

Computer Architectures in general and the Simultac architectures in particular also require an

execution model to transform the local rules and state to global general purpose computation,

meeting the criteria of success required of this non von Neumann approach. The experimental

ParalleX execution model serves this purpose as an abstraction to define and guide the semantics

of computing implemented as a version of the HPX family of runtime systems [18, 19]. This also

provides a low-level application programming interface (API) or a target for high-level language

compilers. There are many aspects of the ParalleX execution model and its HPX embodiment

that distinguish it from the classical von Neumann model, but a few functional constructs create

the framework for the rest of the parallel operation. These include the following:

• Global name space – data, control, and program objects all exist in a single but hierarchical

name space that permits virtual objects to migrate across physical space without requiring

name change.

• Spanning processes – first class ephemeral contexts that include data, control state, task

instantiations, child processes, and resource mapping that span multiple physical work

units like conventional SMP nodes. They define the hierarchical name space.

• Compute complexes – the principal form of executing instantiated tasks that operate within

a defined locality (contiguous physical space of bounded response time and guaranteed

compound atomic sets of operations) that performs the work of the application.

• Parcel-driven computing – a form of active messages that move work to the data as opposed

to always moving data to the work to reduce latencies and their effects while managing

asynchronous operation of distributed systems.

• Local control objects – small objects that contain and transform control state a graph of

which provides global parallelism control and continuations. Rich semantic constructs like

dataflow and futures (actor’s model [9]) provide a rich array of asynchronous control for

managing the progress of complexes and the creation of new ones.

The HPX runtime systems manage the overall resource management and task scheduling of

a ParalleX program anticipated for future CCA and Simultac application programs. HPX-5 is a

recent experimental runtime system embodying many of these policies on conventional parallel

computers for many applications in use today. Challenges in the area of overhead of runtime

control can be minimized by architectural features within the fontons. This represents future

research.

4. ExaOPS System Architecture

The proposed architecture may be implemented using the currently available CMOS tech-

nology (fig. 4). To lower the production costs, die sizes that result in best balance between the

effective silicon area, yield, and ability to support the required number of I/O leads are selected,

typically in the vicinity of 100 mm2. In many cases the yield may be improved further since

chips containing a few damaged fontons need not be discarded. The practical fonton counts are

expected to reach about 10,000 per die. The required packaging density may be achieved by

stacking dies on top of each other and connecting them using Through-Silicon Vias [4] to pro-

vide high local interconnect bandwidth while sacrificing relatively minor fraction of usable silicon

area. The bottom dies incorporate high-speed serial transceivers to enable communication be-
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tween different stacks on the same board. For longer distances, integrated silicon photonics [17]

may be deployed to allow the use of more efficient fiber optics.

a) b) 

c) d) 
Figure 4. Simultac system architecture: a) single CMOS die, b) 3D die stack, c) board stack

with integrated cooling, and d) exascale machine

The board space is mainly consumed by few thousands of die stacks. The remainder is oc-

cupied by voltage regulators and other conventional circuitry such as clock and reset generators,

system monitors, etc. Relatively dense packaging will result in substantial heat dissipation thus

preventing the use of conventional forced-air cooling. To cope with that, heat sinks with inte-

grated cooling channels may be applied. This also permits the boards to be densely stacked as

illustrated in fig. 4c. Finally, the complete system incorporates a number (64 shown) of board

stacks arranged uniformly in three dimensions to minimize the length of cables connecting the

individual units.

To estimate the resources needed to implement a Simultac system of exascale capability, a

number of (rather conservative) assumptions have been made. To limit the power consumption,

the clock frequency has been reduced to 250 MHz. The logic of a single fonton was estimated

at the generous 16,000 gates, excluding memory. 50% of die resources are used for storage,

while the logic and interconnect consume 40% and 10%, respectively. Each memory data cell

uses 12 transistors per bit due to multi-ported access supporting both local operation and

adjacency interfaces. The extra transistors may also be used in support circuits that improve

noise margins in storage cells and reduce the current leakage arising as an effect of sub-1V

supply voltage [13, 22], thus providing additional power saving. The assumed resource budget

yields about 1 KB of useful storage per fonton, accounting for address tags and synchronization

bits for individual words. The dies are stacked four-deep and the resulting stacks are spaced
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Figure 5. Comparison of one cubic meter Simultac implementation using four process tech-

nologies: a) overall performance and aggregate memory size and b) total fonton count and

power dissipation. The estimated power consumption for the last technology node could not be

calculated due to unavailability of reliable data

20 mm center-to-center on the boards, leaving 10% of board area for supporting circuitry. With

boards mounted every 20 mm in vertical dimension, the properties of a prototype fitting into

1 m3 are plotted in fig. 5 assuming transistor densities represented by four recent processor

implementations: IBM POWER8, AMD APU for Xbox One, Intel Xeon Broadwell, and Apple

A10. The power figures were approximated by linear scaling of the published TDP values by clock

frequency and transistor count, hence do not take correctly into account static power dissipation

and possible additional savings due to reduction of supply voltage. Properties of a full-scale

system using arrangement of 4× 4× 4 cubes are contrasted in tab. 1 with the currently fastest

machine on the planet, TaihuLight. While Simultac compares favorably on nearly all metrics, it

has significantly worse storage capacity. This may be corrected by integrating additional DRAM

dies into 3D stacks and connecting them by TSVs to achieve high data throughput.

Table 1. Comparison of major system metrics for Simultac and TaihuLight

Parameter Simultac TaihuLight

Clock speed 250 MHz 1.45 GHz

Processing unit count 303.6 billion fontons 83.9 million FPUs

Peak performance 76 ExaOPS 125 PetaFLOPS

Total memory 345 TB 1.28 PB

Aggregate memory bandwidth 1821 EB/s 5.46 EB/s

Memory size to performance ratio 0.0000044 bytes/OPS 0.01 bytes/FLOPS

Memory bandwidth to performance ratio 24 bytes/OP 0.044 bytes/FLOP

Physical footprint 25 m2 605 m2

Conclusions

This paper has described a genus of computer architectures referred to here as the “Con-

tinuum Computer Architecture” and a particular specific instance, the “Simultac”, intended

to deliver superior performance to cost in the trans-exaOPS performance regime. It has taken
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a distinctly different direction from typical incremental changes to conventional practice most

frequently pursued. In particular, CCA is a genus of architectures that are non von Neumann

in form and function for the purpose of eliminating the legacy artifacts of prior art that impose

potentially severe bottlenecks. These include sequential instruction issue, separation of process-

ing logic and memory often referred to as the von Neumann bottleneck, and the emphasis on

FPU utilization for which much of the remaining architecture is dedicated. With the end of

Moore’s Law at nanoscale feature size, the development of revolutionary architectures suggests

the most promising approach to dramatic improvements to efficiency and scalability. This paper

has discussed at length the strategy of the CCA and has analyzed to first order the potential

peak capability of the Simultac with respect to foot print and volume.

There are many design decisions yet to be determined for the Simultac class of cellular

structures. Perhaps most significant is the granularity of the fonton components. How large and

what is the form factor of the fonton storage? What are the logical functions that are directly

implemented in hardware of the fonton both to perform the application operations and to elim-

inate sources of overhead for resource management and task scheduling? One parameter to be

determined is the clock rate which needs to be slow enough to permit single cycle operation

of the fonton but fast enough to maximize the sustained performance of the Simultac. The

communication protocol has yet to be devised that can efficiently represent the Parcel semantics

while minimizing latency and power. Managing the global name space and converting the virtual

address space distribution to physical routing algorithms requires refinement with emphasis on

race conditions due to asynchrony in the presence of migrating objects including continuations.

An exciting opportunity for academic research in architecture is the design of the fonton. Con-

ventional processor architectures are outside the scope of small teams of researchers. But this

particular class of architecture, that is the CCA genus, yields itself to small groups of develop-

ers. Prototyping with FPGAs is entirely feasible that can lead to very small chips for proof of

concept in semiconductor technology. The HPX runtime system software has been developed in

multiple versions and is sufficiently mature to anticipate its use in this context. But changes to

the low-level backend interface will have to be produced to work with the metal. This is a very

exciting time in computer architecture beyond an exascale and at the end of Moore’s Law. No

longer should research be constrained by incrementalism of conventional practices. The need is

too great to reconsider the opportunities of the non von Neumann family of architectures. An

exaOPS in a cubic meter is an extraordinary goal, but realistic in its execution.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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The STAR protocol is proposed, which solves three inherent problems with MPI, a well

known security problem caused by data memory access faults, and the following four exascale

communication problems. Exascale systems must efficiently save the state of their Data Processor

Chips (DPCs) every fraction of a second to support rollback when an error is encountered. Exascale

systems will have the possibility of frequent optical communications failures. Exascale systems

must resiliently respond to these optical communication failures. An exascale computer needs

to be fed enough data fast enough, and its data center must keep up. Optical implementations

are developed compatible with 100 Gbit/sec Ethernet to solve these problems. Automatic fault

resilience mechanisms are discussed, which improve HPC quality of service, and meet the exascale

reliability and resilience challenges. The bandwidth problem for exascale computers interfacing

with data centers is solved. The STAR protocol enables data centers and supercomputers, to be

invulnerable to memory fault injection of viruses and rootkits.

Keywords: MPI, optical communications, exascale, HPC, security, router, memory wall, fault

resilience.

Introduction: Problems to be Solved

MPI is a standard for message passing commonly found in parallel processing systems, in

particular HPC systems [8], [17], [7],and [15]. While MPI is versatile and readily available, it

has inherent problems. Figure 1 shows sending a message in MPI. The sending of the message

locks up the buffer until the message has completed being sent. All instruction processing has to

refrain from accessing the buffer until the buffer is unlocked. Often, the core must rely upon an

interrupt structure to know when the buffer is again ready for access, implement a wait loop, or

suspend a thread. This not only slows things down, but costs energy and increases complexity

of the hardware and software operating environment.

Figure 1. Sending a message in MPI

Figure 2 shows receiving the MPI message not only locks up a buffer until the message is

received, but also for the time required to process, or move, its contents elsewhere. Making this

function efficient now requires that the operating environment know when this buffer mechanism
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can be accessed for a new operation. The operating envirnoment may use one or more of the

following: status registers to trigger an interrupt in the core; implement a second wait loop; or

suspend the thread. From an application program perspective, these operations appear to be

primitives, but they come with a large amount of overhead, in terms of instruction processing to

initiate these operations, wait for their completion and then release these resources to be used

for a new operation. All of this takes energy, hardware, and computing time.

Figure 2. Receiving a message in MPI

With MPI, messages can be any length, and a short message can be stalled by a long message

at a router transfer point, as shown in Figure 3. It should be noted that Intel has announced

a component solution to this one problem, but it does not solve all three of these MPI related

problems, much less the security, and the exascale related problems we consider next.

Figure 3. A short message stalled at a router transfer point by a long message

There is common security problem in processors derived from the PDP-11 and/or the IBM

360 [1]. A buffer is assumed to have a starting address, a length, and from this, a computed

ending address. Suppose a computer starts writing at the starting address, but writes a string

that is longer than the length of the buffer. In other situations, the writing goes toward the

start of the buffer and writes data into addresses before the buffer’s starting address. In either

case, addresses outside of the buffer are altered. For example, these addresses can hold program

instructions, pointers to code, such as the return address for a program during execution. These

data buffer access faults can, and do, inject viruses or rootkits into the instruction memory of

these processors [19]. Data fault injection turns seemingly innocent data into an injected virus,

which can then access anything in the memory domain of the injected device. While this issue

has been around for decades, it persists as a major security problem [13]. One of the earliest

examples of this ocurred in 1988, when the Morris worm, infected DEC VAX and SUN computers

running BSD Unix across the Internet [4]. This article shows how the STAR communications

protocol supports rendering this situation impossible for a data center or a supercomputer.
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Exascale brings with it four new problems.

1. Consider a Data Processor Chip (DPC) containing some increment of 20 Mbytes of internal

state. An exascale computing system [3] will probably have at least several hundred thousand

DPC’s, each containing at least 500 cores. Further assume that for any specific fault, the

system needs to be able to rollback back within a second, with an overhead of no more

than a few percent, say 2%. Consider what is required when the DPC state is captured in

a snapshot every 10 ms. Within that 10 ms, 2% of the time the DPC is saving the state,

with each DPC operating on a local 1 ns clock. (All mention of a clock only refers to a local

clock.) This implies that each 20 Mbytes must be saved in 2% of 10M clock cycles, or 200K

clocks. Therefore, for each 20 Mbytes of internal state in the DPC, 100 bytes must be saved

in a nanosecond. This is much more than the 100 Gbits/second optical fibers can support.

While rolling back by a second seems natural, the question is how much of the system needs

to roll back. By recording snapshots every 10 milliseconds, in many situations, the amount

of roll back can be limited to a much smaller fraction of the system, saving energy and

computing capacity.

2. Another problem is the failure rate for large scale optical networks. These failures can be de-

fined as any message that is received, and through analysis of its Error Detection/Correction

(EDC) envelope, is found to have detectable, but uncorrectable, errors. Failure rate is the

number of failures per unit time. The overall communication failure rate of the exascale

system [3] depends upon the failure rate for one optical fiber and its transceivers, and grows

directly (but not necessarily linearly) based upon each of the following: The number of data

channels per bundle interfacing to each of the chips; the number of optical fibers in each

channel; the number of DPCs; the number of routers needed to avoid deadlocking these

chips; and the complexity of the routers.

3. Analyses [3] of the maintenance logs of current US supercomputers indicate that the Mean

Time Between Failure (MTBF) for exascale systems may be no more than minutes. When the

optical communications fail, the system fails. With exascale systems, there is no time to rely

upon an operating system, or a distant snapshot of the communications. This led the author

to develop this multiple degree of freedom, fault resilience strategy, to be implemented in

the local communications hardware.

4. There is a another, essentially mirror problem to the first exascale problem. How does one

feed data into an exascale computer fast enough to keep it busy? This problem will be

answered later at three system component levels, first at the DPC, second at the mostly

binary topological network interfaces of the system components, and third at the cabinet to

data center interface level.

1. Introducing the STAR Protocol

It is required for STAR message protocol compliance that any compliant device transmits

and receives a STAR message on every local clock cycle, except when responding to an uncor-

rectable error upon reception. This requirement removes the three problems with MPI. Sending

a message is completed in one local clock. Receiving a message is completed and buffer released

in one local clock. Each STAR message clears each local pipe stage in the routers in one local

clock, so that no message stalls another for an unknown amount of time. The response to such

errors can involve automatic channel component replacement in, at most, a microsecond.
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Figure 4. STAR message transport layer

Figure 4 shows the application layer of the STAR message, which includes a package con-

taining a data payload and a context. The payload includes a 5 bit extension code and 128 bits

of standard payload. The context is 32 bits, which is interpreted at every STAR message core

to determine the package disposition and transfer. The context and its interpretation, is under

complete control of the program.

The transport layer of each STAR message, also includes a 35 bit Error Detection/Correction

(EDC) code. These 35 bits are arranged in clusters of 7 bits. Each 7 bit cluster relates to a

separate group of 33 bits of the package. There are five groups covering the package. These 7

EDC bits allow the system, at each receiver, to calculate a 1 bit error correction of the received

group of 33 bits. These same 7 EDC bits enable calculation of a 2 bit error detection flag for

these same 33 bits of the received package. All of these EDC calculations are required to be

performed within one, or more, locally clocked (nanosecond) pipe stages. The transport layer

supports detecting and correcting up to five single bit errors, one in each of the groups of the

application layer. The transport layer also supports detecting any, or all, of the five groups

having uncorrectable 2 bit errors. The local clock is about 1 GHz, and is readily supported by

standard CMOS, so that 200 Gbits/second can be simultaneously sent, and received, on each

STAR channel.

1.1. Exascale State Resilience and Optimized Matrix Communication

The first example of the payload format, sets the top Extension bit (Ext bit 4) to 0, and the

remaining payload is interpreted as two double precision floating point numbers, each augmented

by two bits of the extension field, used as guard bits. This format can represent a complex

number, as well as be useful in bulk downloading and uploading of the state of cores in the

DPC. Note that each of these messages is transferring 16 bytes in one clock cycle, so that 8 of

these channels delivers 128 bytes per nanosecond in and out. Recall that each DPC has some

multiple of 20 Mbytes of internal state, which required 100 bytes per nanosecond to store, and

restore, as discussed above with a reasonable overhead for application programs. This approach

makes DPC state resilience feasible. The STAR bandwidth delivery, both as input and output,
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is a necessity for keeping an exascale system fed with data, which is further discussed in the

following section on the optical implementation below.

The second format example configures Ext bit 4 as 1, and two of the other 4 bits as 0. This

can be interpreted as a double precision number and its two guard bits with an index list of

64 bits. This format has two uses. In dense matrix manipulation, such as matrix inversion by

Gaussian elimination with partial pivoting, or block LU decomposition [6], the format is used to

communicate a pivot, or potential pivot candidate. In sparse matrix manipulation [10], [16], 4

bits of the index list can act as a field identifying sixteen large objects, such as sparse matrix A

and several vectors associated with the matrix. This format configuration insures efficiency for

both dense, and sparse, matrix operations. By configuring the context of a message, the second

format can be interpreted as having more than one floating point number. For example, the

66 bits can be interpreted as dual single precision (each with a guard bit), or quad FP16 bit

numbers. Further configurations using the context, can result in these 66 bits being interpreted

as numeric values in a form of posit numbers [9]. With posit numbers, more opportunities are

potentially available, for instance, 3 posit numbers, each of 22 bits in length, or 5 posits, each of

13 bits, or 6 posits, each of 11 bits. The net result of these opportunities is that as an application

progresses in run time, it can use fewer parameters per payload, for greater precision.

2. STAR Bundle

Figure 5. Example of a STAR bundle

Figure 5 shows a STAR bundle including data channels as well as control and status channels.

There are 16 data channels, with a spare channel instance used for fault resilient recovery from

unrecoverable message faults. The control and status channels include one task and one transfer

request message channel, and a spare channel for fault resilient recovery. This example has

several positive consequences. 16 data channels guarantee that the state of the DPC can be

saved within a reasonable time overhead for exascale systems. Note that in the above discussion,

we showed that 8 channels deliver 128 bytes per local clock, so 16 channels deliver 256 bytes per

clock. This is a data payload bandwidth of 2 Terabits per second input and output of each link

(bundle interface) for every DPC, each memory controller and every link of every router in the

system. Every DPC can receive and send 32 double precision numbers on every local clock. This is

compared to the Sunway [2], with a system interface at the MPE/CPE chip of 16 Gbytes/second

= 128 Gbits/sec with a latency of 1 microsecond. The ratio of 2 Tbits/256 Gbits is roughly 16.

The Sunway is roughly 93 Petaflops of performance, or 9% of an exaflop. Delivering 16 times

the bandwidth for 11 times the performance has a reasonable expectation of reaching exascale
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system performance. The transfer request messages can remove all the main memory address

calculations from the DPCs, sending instead just the necessary parameters for the transfers. This

results in energy reduction for many programs in the DPC, by removing the address calculations

from the DPC, and placing them in the memory controllers. Task messaging is carried out

in a separate channel from data transfers and their requests, systematically separating data

from task control and configuration. Therefore, data cannot be confused with task control and

configuration infromation by these separate channels. This removes an avenue of injection for

malicious software such as viruses and root kits.

2.1. STAR Communications Network

A STAR communications network is a point-to-point network of nodes, each acting as

sources, destinations, and routing nodes, called STAR Trinary Routers (STRs).

Figure 6. STAR Trinary Router

Each STR has three bidirectional STAR bundle links to nodes, or other STR instances, as

shown in Figure 6. Each node may be a module within a chip, or a chip. The interface between

a STAR bundle and data processing circuitry, whether in an STR, or a core module, is through

a STAR bundle module.

Figure 7 shows a STAR in-chip network, including a binary graph of channel bundles,

whose nodes are interfacing through bundle modules to a core, or core modules, called the

Programmable Execution Modules (PEMs) 0 to 3. The STRs inside a chip are laid out as a

communication module paired with a module of cores as a unit. In particular, the PEM and the

STAR bundle module with the STR are laid out as a unit.

Figure 8, on the left side, shows a STAR channel core as part of STAR bundle module

1. The data STAR channel core interfaces a data channel of the STAR channel bundle shown

in the middle. This interface includes an Incoming Message Processor (IMP) and an Outgoing

Message Processor (OMP). The IMP and the OMP belong to the data STAR channel core 1.

They interface with a core, possibly in a core module, or in the PEM, or in the STR. On the

right side, each of the STAR channels of the second STAR bundle module interface through a

corresponding channel core to another core, core module, PEM, or STR, either within a chip,

or between chips.

Consider block LU decomposition [6] on a matrix with 32 million rows and columns, which

is the approximate size required by the Linpack specification for a computer to be exascale.

Assume the block size is 32 rows and columns. This matrix will be processed for eight or more
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Figure 7. A STAR in-chip network

Figure 8. Interfacing a STAR channel bundle between two bundle modules
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hours to meet the HPL standard of sustained performance of an exaflop [14]. At the start, the

probability of row swapping is essentialy certain, as there is one chance in 32 million the pivot is

in the diagonal entry. This persists for most almost all of the runtime of the algorithm, say for 32

million minus 32 of the diagonal entries. When processing of the next block column begins, that

block columns needs to be loaded, which means that almost all of the rows have been swapped.

This can be visualized as a swarm of insects all taking off and landing somewhere else in a

random pattern. These swarms of messages must be efficiently delivered. For this to happen,

each message needs to clear its inhabited pipe stage in one local clock, or the communication

clogs, and the supercomputer will fail to perform Linpack at an exaflop. Also, if even one of

these messages fails to be delivered, the Linpack benchmark may fail.

2.2. Optical Implementation of a STAR Channel

Communication in exascale systems requires optical communications for, at least, the fol-

lowing reasons.

• Assume a system includes the DPC chips arranged in chip stacks, on some form of Printed

Circuit Board (PCB) interfaced through some form of motherboard to the rest of the

system. Assume that the DPC states are stored in DRAM local to the chip stack so that

the 20 Mbytes travels no more than 10 cm to its backup store. Otherwise communications

on the PCBs is likely to clog.

• Delivering 800 bits per nanosecond into or out of one chip cannot be reasonably done with

our classic level-shifted electronic signaling. Such signaling is best represented by LVDS

(Low Voltage Differential Signal) protocols [5] for integrated circuits, which have a typical

upper limit of about 1 bit per nanosecond per coupling. These couplings typically do not

support bidirectional simultaneous signaling.

• 800 bits per clock requires at least 1600 pins, in each direction. Even in a ball grid array

for a chip 5 cm on a side, this will saturate the active logic pins.

Electronically traversing 10 cm across 800 signal pairs is an RF noise nightmare with today’s

PCB technologies. While the basic PCB layout rules of thumb say that these 800 differential

signal pairs are traveling at 1/2 the speed of light (30 cm per nanosecond) the quarter wave length

of a 1 Ghz signal is 15 cm. However, the rising and falling edges of the differential signal pair

have a large high frequency component of roughly 10% of the wavelength of the overall signal,

or about 10 GHz. This means that anything more than about 1.5 cm can act as an antenna

for the differential edges, so many of these signal paths can cross couple due to the antenna

affect [20]. These very wide signal paths are assumed to be synchonized. Thirdly, consider the

sheer number of interfaces. The roughly 500 K to a million DPC tells us, based upon the other

problems just outlined, that the electromagnetic couplings of the past are not reliable enough

for this function.

The above shows that communication between these DPC, their memory controllers in the

chip stacks, and nodes connecting these chip stacks, PCBs and motherboards need to be optical

in their transport of the data. The 100 bytes (800 bits) per nanosecond clock is 8 times the

maximum rate of 100 Gbit optical Ethernet. This bandwidth must be achieved with a multi-

fiber protocol approach. Consider multi-fiber links between these components in a HPC system

sustainably generating 1018 floating point operations per second (flops). These links are going

to require Error Detection and Correction (EDC) circuitry at each receiver for each end of

each optical fiber. These EDC circuits are going to need to respond with good, corrected or
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uncorrectable error detection status very quickly. Each transmitter and receiver side circuit is

going to have to fix itself locally, save and restore the communication stream disrupted by the

detected error, and keep track of what was sent until it is certain that it was correctly received.

Again, all of this needs to be local to its side of the link, or else the system can clog. Consider

the individual messages communicated on a STAR message channel.

Figure 9. Example of fault resilient STAR optical implementation

Figure 9 shows an implementation consistent with today’s 100 Gbit Ethernet opto-

transceivers, using four optical fibers and associated transceivers, between two STAR channel

cores. The STAR channel cores each interface to this single STAR message channel, which sup-

ports four degrees of freedom in automated, local, fault resilient response to an uncorrectable

received message fault. In the best of situations, during normal operations, two transceiver pairs

can be operated locally at 130-140 GHz for 100 Gbit/sec transfers across two of the optical

fibers, delivering a STAR message every nanosecond to collectively deliver 200 Gbits per second

across the two fibers as the first degree of freedom in the fault resilience strategy. In other situa-

tions, three transceiver pairs are operated locally at 100 GHz, for 66-70 Gbit/sec to collectively

transfer 200 Gbits/sec across three optical fibers delivering a STAR message every nanosecond,

as shown in Figure 10 as the second degree of freedom. Consider implementations where each

STAR message is delivered by one optical fiber and its corresponding circuitry. The local STAR

channel core, either receiving a message with an unrecoverable error, or in transmitting that

message, can directly determine which fiber, and circuitry, failed. This information can be used

by both sending and receiving STAR channel cores to resiliently respond to the error.

TS k stands for the Training Sequence of STAR message k, fork=1:7. In communication

protocols, a training sequence refers to a known sequence of channel states which are transmitted

to ”train” the synchronization circuitry, such as phase locked loops or delay locked loops. The

training sequence is often incorporated into each message or burst, to account for timing drift

between the transmitter and the receiver. Note that all four optical fibers in Figure 9, can be

operated to deliver the STAR message on every local clock cycle as the third degree of freedom in

the communication fault resilience strategy. This has been not been shown in detail, but operates

much the same as in Figure 10. To summarize, when everything is working optimally in a STAR

optical channel, two of the four optical fibers are operated to achieve the collective delivery of a

STAR message every (local) nanosecond. When the pairs of fibers and components are not able

to operate at 130-140Ghz, a component trio operates at a lower frequency as outlined in Figure

10. When the trios can no longer operate in this fashion, then all four optical fibers and their
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Figure 10. Transmitting and receiving STAR messages using three optical fibers

transceivers are operated at a second, lower frequency to collectively deliver the STAR message

every nanosecond.

Figure 11 shows some of the details of the STAR channel cores supporting the interactions

within this STAR channel. While there are four optical fibers being operated, each fiber supports

communication in each of two channel directions, labeled channel directions one and two. During

normal operations at the receiver in STAR channel core 1, ER1 in the upper left hand corner

is not asserted, and the incoming selector selects the received message from channel direction

one, shown along the left side. At the transmitter in STAR channel core 2 near the bottom, the

outgoing selector stimulates the OMP 2. Consider the automated response when operating all

four optical fibers fail in one direction. The faulty link, from transmitters to receivers in that

one direction is automatically replaced by the spare optical fibers and circuitry in that direction.

Figure 12 shows the interactions in one channel direction, and in the spare channel direction,

in greater detail. During normal operation, OMP 2 is stimulated with the package and the

context from the outgoing context generator, unless the resend queue has a backlog. When the

resend queue has a backlog, the package and context is sent from the queue directly, and any

newly generated package and context is added to the existing resend queue. During normal

operations the package and context are logged at the resend queue, in case this message fails to

be received correctly. Assume the receiver’s EDC pipe detects that the received message has an

uncorrectable error. This indicates the received message is fatally flawed.

When the EDC pipe reports the uncorrectable error, ER 1 is asserted and a source error

message is sent by one or more of the control and status channels from the destination to the

source. When all four of the optical fibers for this message channel are already in use, the

link treats both source and destination as tainted in this direction. Up until all four optical

fibers are in use, the link will attempt repair by using either a different combination of optical

fibers, or more optical fibers while operating at a slower local clock, at both the source and the

destination. Assuming that all four optical fibers are in use, both the optical fibers, the source

and the destination circuitry are replaced by the spare channel resources in the same direction.

The operations, when completed, have replaced the left side of Figure 12 with the right hand

side. This is the fourth degree of freedom in the communication fault resilience strategy.

Components, such as the DPC, typically have a binary tree interface for the STAR network

as shown in Figure 7. Figure 13 shows a different level in a system, where binary trees are shown
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Figure 11. Interaction between two STAR channel cores across the four optical fibers

on the left as Link 1 and Link 2. If the whole system was composed entirely of these binary tree

interfaces, the HPC components would be vulnerable to bottlenecks. Extending the network to

a Mostly Binary Tree through the network and operation of STRs to form the PCB interface at

Link3 and Link 4, enables optical PCBs etc., to have dual, or better, STAR bundle interfaces,

eliminating the bottlenecks. This is another level in the understanding of how to keep an exascale

computer fed with data.

Consider the communication between one of these supercomputers and its data center.

The management requirement for such a communications interface is that it does not stall the

supercomputer, and can keep up with its output. Figure 14 shows using the mostly binary STAR

network to allow one cabinet to provide 15 or more STAR bundles to interface with the data

center. Using these STAR bundles, each cabinet can use the 16 STAR data channels per bundle,

each with 4 Ethernet optical fibers through the STAR bundle to ethernet nodes, as shown. This

supports the cabinet simultaneously communicating with 500 or more Ethernet networks (15
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Figure 12. Detailed view of STAR channel core 1 interacting with STAR channel core 2

Figure 13. STAR binary tree components extended to make a mostly binary network component

bundles*16 channels/Bundle * 4 fibers/channel= 960), each with 100 Gbit/second bandwidth.

This delivery resolves the communication bandwidth requirements to, and from, supercomputers

for years to come. Note that this is the third level needed to understand how to keep an exascale

computer fed with data.
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Figure 14. Cabinet to data center communications with the mostly binary STAR network

3. Transforming Today’s Vulnerable Data Center

Today’s data centers need to interact with something like the world wide web or the internet,

let’s call it a merged data and task-instruction external stream shown in the top right corner

in Figure 15. The interactions can be regimented so that data communications go through an

external data portal and the task-instruction related communications go through an external

task portal. Further, one portal’s communications cannot be intercepted by the other portal.

There are a number of options for achieving this, such as different physical transport layers,

differing communications protocols, and distinct encryption mechanisms, any, and all, of which

can be implemented.

Second, the data center’s internal communications are systematically segregated into one,

or more, data related networks and task-instruction related networks. Each of these segregated

networks has its own memory controllers. Each of these memory controllers only handles one

of the two segregated information types. The data memory controller communicates between

the internal data network and the various data related drives, DRAM and SRAMs. Also, the

internal data network communicates only across data related channels to invulnerable handheld

devices and invulnerable networked sensors [12]. The task-instruction memory controller only

communicates between the internal task network and the task related drives, DRAMs, and

SRAMs. Also, the internal task network communicates only across task-instruction information

channels with the invulnerable handheld sensor and invulnerable handheld devices . Third,

the cores, core modules, PEMs, or chips, separately communicate with the task-information

messages, and the data-related messages, delivered by these segregated internal networks. These

cores, core modules, etc. cannot alter their instruction memory nor their task control based

upon data memory comminucation or access. With this approach, the data center of the future

can be constructed to systematically exclude the possibility of data memory faults triggering

the injection of viruses and root kits.

4. Summary

The STAR message protocol solves, or enables the solution of, each of the following problems:

• Sending an MPI message locks up a buffer until the message has completed being sent.

• Receiving an MPI message locks up the buffer until the message is received and it has

either been processed, or cleared from the buffer.

• Short messages can be stalled by long messages at a router transfer point in MPI.
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Figure 15. Tomorrow’s invulnerable data center

• The common data memory fault security problem, which can inject viruses and rootkits

into a computer system.

• The bandwidth problem involved in saving the state of DPCs in exascale systems.

• The data center problem of feeding enough data into, and out of, an exascale system so

the exascale system is not stalled.

• The failure rate problem for optical communications in exascale systems.

• The fault resilient response to uncorrectable errors in a received optical message.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Core Module Optimizing PDE Sparse Matrix Models with

HPCG Example

Earle Jennings1

c© The Author 2017. This paper is published with open access at SuperFri.org

This paper introduces a fundamentally new computer architecture for supercomputers. The

core module is application compatible with an existing superscalar microprocessor, with minimized

energy use, and is optimized for local sparse matrix operations. Optimized sparse matrix manip-

ulation is discussed by analyzing the High Performance Conjugate Gradient (HPCG) benchmark

specification. This analysis shows how the DRAM memory wall is removed for this benchmark,

and for sparse matrix models of partial differential equations (PDEs) for a wide cross section of

applications. By giving the programmer improved control over the configuration of the super-

computer, the potential for communication problems is minimized. Application compatibility is

achieved while removing the superscalar instruction interpreter and multi-thread controller from

the existing microprocessor’s hardware. These are transformed into compile-time utilities. The

instruction cache is removed through an innovation in VLIW instruction processing. The data

caches are unnecessary and are turned off in order to optimally implement sparse matrix models.

Keywords: HPCG, superscalar, sparse matrix, partial differential equation, memory wall, HPC.

Introduction

Today’s high performance, superscalar microprocessor includes a superscalar instruction in-

terpreter [12], instuction and data caches, as well as a multi-thread controller [19]. These elements

consume more than 90% of the silicon and more than 90% of the energy, without processing any

of the data. These are the energy monsters in today’s high performance microprocessors. This

paper introduces a core module known as the Simultaneous Multi-Processor (SiMulPro) core

module, which removes all of these problems.

Application Compatibility

Application compatibility requires the existing compiler technology remain basically un-

touched. Removing the hardware overhead of the superscalar instruction interpreter, multi-

thread controller and the instruction cache, requires that the SiMulPro core module be seman-

tically compatible with the existing microprocessor of Figure 1. This means that each assembly

language program needs to generate two applications, the first for the microprocessor, which is

the first target of existing software tools. The second target is the SiMulPro core module, which

does not implement the microprocessor’s Instruction Set Architecture (ISA). This is discussed in

section 1. Semantic compatibility is established for this assembly language program when both

applications respond to the same input stream by generating essentially equal output streams.

Confirming application compatibility needs to be cost effectively managed by breaking this

job into several steps. For High Performance Computers (HPC), particularly supercomputers,

C, C++ and Fortran compilers are the most commonly used. Consider the C compiler. It has

a compiler test set, which is used today to confirm generated assembly code targeting the

microprocessor. The first step of verifying application compatibility uses this C compiler test

set to verify semantic compatibility with the second target (SiMulPro core and core module)

from its generated assembly language programs. The compiler test set is exercised through the C

1QSigma, Inc., Sunnyvale, USA

DOI: 10.14529/jsfi170205

54 Supercomputing Frontiers and Innovations



compiler to generate its family of assembly test programs. These generated assembly programs

can verify semantic compatibility, and therefore application compatibility, between the existing

microprocessor and the SiMulPro core module.

A second step uses the assembly code programs of one, or more, C function libraries, each

with their verification set, to extend verification of semantic compatibility between these two

targets. At this point, there are two ways to proceed. One approach continues to the C++

and Fortran compilers, their test sets, and so on. The other approach starts from the compiler

output opcode range, and successively extends testing, using the verification and test suite of

the microprocessor. The verification can extend beyond the compiler output opcode range, to

include more, possibly all, of the ISA.

Figure 1. Semantic compatibility confirmed against both compiler technology and the verifica-

tion and test set of the microprocessor implementing an Instruction Set Architecture (ISA)

Consider the verification and test set of the microprocessor of Figures 1 and 2. These ver-

ification and test sets are the primary technical collateral used to insure that going to silicon

with the microprocessor’s design is not a waste of money. This same verification and test set

can be used in several ways to help remove the energy monsters from the microprocessor in an

application compatible manner. What we have just described is the systematic and cost effective

development of the semantic compatibility verification set for the second target. We will return

to Figure 2 later, but first, the second target needs to be outlined.
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Figure 2. Components of the verification and test set and of the generated SiMulPro technology

1. Simultaneous Multi-Processor (SiMulPro) Cores And Core

Module

This simple SiMulPro core supports two simultaneous processes. It implements a simulta-

neous process state calculator, which issues two process states for executing these processes.

Figure 3. A simple SiMulPro core

Each of these simultaneous processes separately owns instructed resources. The separated

ownership means that both processes cannot contend for the same resource, making them im-

mune to stalling from contentions. Each instructed resource includes its own local instruction

processor, which can access its own local instruction memory component. The state of each

process stimulates each owned, local instruction processor. Each instruction processor accesses

its own local instruction memory to generate the local instruction to direct that resource. Each

of the processors includes its simultaneous process and its owned resources.

Figure 4 shows a use of this simplified SiMulPro core. The right hand side is characteristic of

the Multiflow [6], and the EPIC architecture [16], which led to the I-64 [11] and the Itanium [17].

The Mill computer [7] bears some resemblance to the left hand side, but has only two instruction

pointers.

The SiMulPro cores support factoring algorithms into their natural units of up to six, or

more, simultaneous processes sufficient to handle the factoring of at least the algorithms as

outlined in Numerical Recipes [14]. This large virtual VLIW space removes the need for
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Figure 4. The first and second SiMulPro processes each have 8 process states, shown on the left.

A single VLIW instruction pointer requires an equivalent VLIW memory of 64 VLIW words,

shown on the right

instruction caching. Also, all predecessor VLIW approaches require unique compilers, which

negates application compatibility.

Figure 5 shows the FP SiMulPro core including the process state calculator, which generates

multiple process states (or indexes) and their corresponding loop outputs, on every clock cycle.

This is shown in instruction pipe 0. These process states, etc., form an execution wave front,

which successively traverses each instruction pipe. Assume each instructed resource includes 256

local instructions per task. If K is 4, this is a virtual VLIW instruction space of 4 Giga-VLIW

instructions. If K is 6, this is 256 Tera-VLIW instructions.

Pipe 1 includes the Memory Access Processor (MAP), which generates all local addressing

for many standard access patterns, including matrix and vectors, buffering, and FFTs. During

local, linear algebra operations, as in Linpack, all non-floating point cores are turned off. The

system capabilities of instruction pipes 2 and 4 are coupled:

• The FP Rams are organized so that a program can access them for complex numbers as

4 blocks, but are implemented as 8 blocks of 512 words. The read ports are in instruction

pipe 2 and the write ports are in pipe 4. These can be programmed to limit access collisions

for local, sparse matrix operations, to about 2% of the time. Each pair of read ports shares

two queues, so these collisions do not significantly stall the multipliers in performing sparse

matrix operations.
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Figure 5. Example FP SiMulPro core supporting K simultaneous processors

• Data is fed back from instruction pipe 4 to output queues in instruction pipe 2. This feed

mechanism also provides a router-less feed interface to neighboring modules. This is more

energy efficient, because hardware routers are not needed.

• Farther communication uses the STAR (Simultaneous Transmit And Receive) input port

of pipe 4 and output queues of pipe 2. The transfer request channel sends to a memory

controller the parameters for each programmed memory access pattern. The state of the

core modules can be saved with an acceptable overhead. The memory controllers can re-

spond to anticipating memory requests, which preload data into the controller for low

latency transfers when the data is actually needed. This combined with the VLIW in-

struction space makes caches unnecessary. Each channel can transmit and receive a STAR

message on each local clock cycle, assumed to be 1 ns. The application layer of the STAR

message includes a package with a payload of 128 + 5 bits and a context field of 32 bits.

The payload can hold two double precision numbers, sufficient to efficiently download, or

upload, the state of the cores in a Data Processing Chip (DPC). Also, the payload can hold

a double precision number and an index list, which can represent a non-zero entry in a

sparse matrix, or a vector component associated with one, or more, of the non-zero, sparse

matrix entries. This package with, or without the context, is supported by the arithmetic

and feed interfaces as well, so that sparse matrix processing, as well as matrix pivots, are

consistently and efficiently supported.

• Reciprocals, reciprocal square roots and a range clamp circuit, for range limiting of tran-

scendental functions, are each supported with input in pipe 4 and output in pipe 2.

• Integer to float and float to integer are also supported, though they are not shown.

Pipe 3 includes pass forward circuits and two instances of a fused multiplier C-adder. Se-

mantic compatibility often requires a fused multiply-accumulate capability in Floating Point

(FP) [5]. Fused multiplier Comparison (C)-Adders support not only FP, but also posit arith-

metic [9] in at least 3 precisions, 64, dual 32, and quad 16 bit formats. With these capabilities,
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algorithms can go from coarse (16 bit), to finer, and finest arithmetic (64 bit posit), with re-

duced communication overhead, and memory access for early iterations. Neural networks and

deep learning can operate in 16 bit mode, providing 8 posit multiply-accumulates per execution

wave front.

Within each execution wave front, a use vector, of the used resources is generated. Within

the wave front, a use bit drives a power gate generating a gated power used by the resource,

for each resource. In CMOS, the clock may be gated to control power. However, in technologies

such as memristors and molecular gates, other specific mechanisms may provide this capability.

2. Core Modules And Programmable Execution Module (PEM)

Figure 6. The PEM contains 4 core modules, each including 3 types of SiMulPro cores

The PEM is roughly a quad core superscalar microprocessor, without the overhead. Note

that without this overhead Data Processor Chips (DPCs) can scale from about 60 core micropro-

cessors to ten times that many core modules, with about the same power and silicon as today’s

chips. Instances of the same typed cores, such as the FP cores discussed above, can share their

instructed resources. This increases the virtual VLIW space. Assume each FP core supports 6

simultaneous processors and 256 instructions per resource. The VLIW instruction space is then

2(4∗6∗8) = 2192 = 222(19∗10) > 4 ∗ 1057.

There are three types of cores in each PEM, FP, integer and Pattern Manager (Pat Man)

cores. The integer core implements the arithmetic required for application compatibility, and also

keeps track of the indexing associated with every word of the FP memory used for local sparse

matrix oprations. However, the integer core does not generate main memory addressing. Access

requests can be sent by the STAR input port to an external, anticipating memory controller for
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DRAM. This saves at least 15% of the energy used in the core module. Pat Man organizes and

directs the FP and integer activities needed for local sparse matrix operations.

Each core module can operate as a seperate unit. Core module 0 may perform a simulation

of one object. Simultaneously, core module 1 may simulate a second model. Alternatively, each

core module may be configured to model the same object, but at differing geometric locations.

3. Software Development Today And Tomorrow

The compiler is basically unchanged between today and tomorrow. The superscalar inter-

preter hardware, in particular its behavioral model, is transformed into the thread collector

utility as shown in Figures 2 and 6. The thread collector is now a compile-time utility receiving

assembly code, which it translates into microcode. The microcode is then scheduled, as close to

the start of a thread as allowed by the preceding assembler instructions. The thread collector

outputs these sequenced micro code instructions as one, or more, thread source code files.

Figure 7. Software Development Summary

The multi-thread controller, becomes a software utility, which merges and places the threads

into configurations of the PEM. The farther (STAR) network and the router-less neighbor com-

munications are then configured for each DPC in the system. Configuring the system also in-

volves configuring the anticipating memory controllers, interfaced to the DRAM, configuring

communications within the DPC to across the system, and configuring communication with the

data center, in which the supercomputer resides. The verification and test sets for today’s su-

perscalar instruction interpreter become the verification set for the thread collector. Exercising

this verification set and the thread collector, generates the verified thread collector. The behav-
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ioral models of the microprocessor’s data processing resources are injected into SiMulPro core

templates to create the core module. The semantic compatibility verification set is derived, as

discussed above, from the compiler test sets, etc.. Exercising the core model with the semantic

compatibility verification set generates the verified, semantically compatible SiMulPro cores and

core module. Verifying the core module creates the semantically compatible PEM.

3.1. Threads

Today, a thread of execution, is the smallest sequence of program instructions which can

be managed independently by a scheduler in an operating system. In this architecture, threads

are operations of at least one core, in a PEM, expressed as one or more processes. Consider the

following example shown in Figure 8 of a process defined in a thread source code file.

process DotAccum // Declarations

FeedbackInput

ProductIn 1, DotAccum 2;

FeedbackOut

ProductFedback1 ProductIn 1;

DotFedback[1:5] DotAccum[1:5];

C-Adder DotAccum 0;

STAR Out Data DotOut 0;

// Process List

ProcessStates

DPaccum6, // highest priority, least probable process state

DPaccum5, DPaccum4, DPaccum3, DPaccum2, DPaccum1,

DPaccum0; // least priority and most probable state

endProcessStates;

Endprocess;

Figure 8. Short example of thread source code

Figure 9. Resource ownership of four processes to be merged
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After collecting the threads, the intermediate program representation is analyzed from the

thread source code files, and thread merging begins. Consider the following example of processes

shown in Figure 9, all to be placed in the same core after merging. Note that these four processes

share ownership of C-adder0, as they all use this resource. Consider how actions are triggered by

a simultaneous process. Each process owns all of its stimulators, which can be queues associated

with one or more RAM read ports, feedback, feed local or feed farther (STAR) sources. The

process can also be stimulated by the state of internal loop registers. Assume that the four

processes of Figure 9 are to be merged and have the following process states:

Table 1. The states of the processes to be merged

Dot Accum Filter 1 Filter 2 Max Calc Merged

DPaccum6 Facc2 F2acc3 Max5

DPaccum5 Facc1 F2acc2 Max4

DPaccum4 Facc0 F2acc1 Max3

DPaccum3 F2acc0 Max2

DPaccum2 Max1

DPaccum1 Max0

DPaccum0

Given that the highest priority state of each process (shown in the top row) is its least

probable state, merging there processes proceeds by first listing the highest priority states of

each process as shown in the Merged 1 column:

Table 2. Resulting top states of the merged process

Dot Accum Filter 1 Filter 2 Max Calc Merged 1 Merged 2

DPaccum6 Facc2 F2acc3 Max5 DPaccum6 DPaccum6

DPaccum5 Facc1 F2acc2 Max4 Facc2 Facc2

DPaccum4 Facc0 F2acc1 Max3 F2acc3 F2acc3

DPaccum3 F2acc0 Max2 Max5 Max5

DPaccum2 Max1 DPaccum5

DPaccum1 Max0 Facc1

DPaccum0 F2acc2

The merging of these processes continues in this fashion as shown in the Merged 2 column. At

runtime, the instruction set operations are gone, replaced by their microcode sequences, sched-

uled as opportunistically as the assembly program segment permits, and then, possibly, merged

with other simultaneous processes. This runtime situation is new to application developers. They

need to know what processes have been initiated.

Table 3 shows a sketch of a runtime tool to aid programmers. The thread condition register

can show a log of which processes have been initiated in a thread and what test conditions

are being responded to by these processes. When the current thread has completed initiation,
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Table 3. Example of a thread condition register

Thread Condition Register

Collapse Cond Cond Cond Cond

Count 0 1 ... p

it releases its processes to respond to feedback, input and loop conditions. For instance, each

thread may use a 2 bit arithmetic condition code, where ’00’ means == 0, ’01’ means >0, ’10’

means <0, and ’11’ means unavailable. Arithmetic error codes may be represented by another

2 bit code, where ’00’ means normal, ’01’ means infinite generated, ’10’ means Not A Number

(NAN) generated, and ’11’ means unavailable.

subprogram X1(parm list) {
code 1 // cond state length = 0 Cond collapse = 0

if test1 // 0 0

{ code 2) // 1 0

else { code 3 // 2 0

} code 4 // 1 1

}
Figure 10. Example showing condition length and collapse count of the condition code register

Let’s look briefly at what is needed to aid the programmer in this post-branching architec-

ture. We need a semantic content that consistently describes branching across Fortran, C and

C++, at a minimum. Let’s focus on Arithmetic IFs from Fortran, the switch conditional from

C, and Range limiting for transcendental functions. Each of these branching mechnisms can

be described by 2 bit encoding of trinary condition states, making it a feasible and consistent

choice across all three languages. We also need some form of loop constructs that account for

the looping of these languages. Fortunately, C provides us with two primitives into which the

other implementations can be mapped:

do { body1 } while test1;

while test2 do { body2 };

Figure 11. Thread Placement for Block LU Decomposition in one Data Processor Chip

Suppose a DPC is allocated to perform linear algebra operations such as Block LU de-

composition, by placing three kinds of threads, lower block, upper block, and diagonal block

processors [8], as shown in Figure 11. This is a very simplified presentation, placing only three
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distinct threads. However, each core, in each of the PEM, can be configured differently. Complex

parsers, data analytics, numerically intensive, and all other manner of threads, can be placed

to create networks of state machines. These networks can be unique to each DPC. These state

machine networks optimize the big computational, and the big data, processing of tomorrow.

4. Introduction To Sparse Matrix Mathematics And Models

A matrix is a 2-D rectangular array of numbers, either FP or posit numbers. A sparse matrix

A = [ai,j ] is a matrix in which most numbers are zeros. A column vector x =
[
x0 ... xN

]T

is called a stimulus and a vector b =
[
b0 ... bN

]T
is called a response when Ax = b, or

∑
ai,jxj = bi for all i.

Matrix mathematics [8] is an innately useful tool in many applications [14]. In particular,

sparse matrix math [15] has been harnessed to approximate solutions to partial differential

equations [1], [18] specifically, 3-D models of physical systems, which includes fluids, stress and

strain of solids, the dynamics of molecules, plasmas [2], as well as the weather.

Many differential operators, for example the Laplacian, support very stable and efficient

finite difference approximations, such as the 27 stencil model [13] used in HPCG benchmark [10].

Figure 12. On left is the 27 point stencil from the HPCG specification, and on right, the index

enumeration problem for finite difference schemes

The standard approaches to enumerating the finite difference-derived linear equations of the

stencil involve traversing in one direction first. For example, along the i axis, then the j axis,

followed by the k axis. This scatters the geometric locations across a wide section of the stimulus

vector components. HPCG is a typically sized grid of 280 by 320 by 540 nodes. Consider the two

neighboring points L0 and L1 on the right side of Figure 12. The Euclidean distance between

L0 and L1 is 1, but distance between these index locations in the corresponding stimulus vector

components, is 280*320 = 89,600 double precision numbers, or 716,800 bytes apart from each

other. Note that two points separated by one in the j direction are 2,240 bytes apart. If two points

are separated by two numbers in the j direction, this is enough to trigger a cache fault when the

cache page size is 4096 bytes. Every time the sparse matrix row interacts with the stimulus vector

at these two points, components of the stimulus vector are fetched at these greater distances.
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These fetches of the stimulus vector are likely to trigger cache faults. To execute these sparse

linear models efficiently, we need to situate the geometric neighborhoods of the model system

in a single core. By concentrating the relevant geometric information in one core, data caching

is unneeded. The main memory is accessed only once, eliminating the memory wall problem.

5. Local Implementation Of Sparse Matrix Solvers For A

Geometric Neighborhood

The indexing rasterization discussed above for the 3-D model of HPCG, leads to an index

location calculated as

IndexLocation
(

x, y, z
)

= (z ∗N2 + y) ∗N1 + x = IL

implying a localization function, which generates x, y, and z by performing

k = floor (IL/N1)

x = rem (IL/N1)

y = rem (k/N2)

z = floor (k/N2)

Note that HPCG sets N1 = 280 and N2 = 320.

Figure 13. Allocation of FP RAM in Vector stores with the indexing mirrored by Int RAM

Figure 13 shows the FP RAM holding all the non-zero entries for several rows of the matrix

A. Each of these rows includes a lower part, a diagonal part and an upper part. The relevant

entries of each vector are stored locally in vector stores in the FP RAM. Each of the stimulus

vector entries corresponds with (at least) one of the non-zero entries of the A matrix stored
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locally. The response vector components correspond to one of the row indexes of the matrix

rows being stored locally. The vector length is chosen so that the stencil can be stored in

just one vector store, and the boundary stencils fit naturally within this vector store, without

requiring garbage collection. The integer RAM contains the indexes of the corresponding FP

RAM locations. The Pat Man core keeps track of the management tables for the FP and Int

Cores. Note that in some implementations the vector stores for the stimulus and response vectors

may be organized differently.

6. Introduction To The Pat Man Core

Figure 14. Block diagram of the Pat Man core

The Pat Man core shown in Figure 14 is a SiMulPro core, with the following components.

1. The C1-adders of pipe 3 match the index list of a received package to determine which

global object is being referenced, whether the package should be stored in this core module,

and whether the global object uses finite difference, or finite element, indexing. Often, finite

element indexing is organized to reveal geometric proximity.

2. Divmod in and Divmod out of pipes 4 and 2, respectively implement various schemes for

2-D, 3-D (shown above) index location conversion to geometric address. Higher dimensional

indexing may also be supported.

3. Pattern Recognizers (PatRecs) use either the index list (for finite element indexing), or the

derived geometric addresses, to determine which vector store holds the package numeric

data.

The sparse matrix A is downloaded to the relevant DPCs, where these downloaded entries are

processed for storage in their specific core modules. Once completed, the vectors are initialized,

with the core modules storing the relevant components for their model locally. At this point

in each core module, the Pat Man core’s determine which row, or rows, can be processed to

alter the vector components. The altered components are then distributed as needed by one,
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or more, of the communication mechanisms. The received vector updates are used by the Pat

Man cores to update the readiness of the local sparse rows for processing. When a row is ready

for processing, the PatMan sends a message to the FP and Int cores, which is queued until the

cores are ready to begin those operations.

7. Basic Systems Analysis Of Sparse Matrix Performance

While HPCG is not a real program solving one or more partial differential equations, several

things can be done to evaluate what will happen to other application models of similar size. Each

of the FP RAM includes 4K words, which supports 151 vector stores. If 25% of these stores are

allocated to the local components of the vectors, each core module can execute about 110 rows

of the sparse matrix. The 48,384,000 rows of HPCG, and comparable models, fit in 440K core

modules, or about 764 Data Processor Chips (DPCs), which each contain 144 PEM, or 576 core

modules. Assuming 16 DPC chip stacks per optical PCB and 12 PCB’s per optical motherboard,

this is essentially a single rack containing 4 optical motherboards. This rack, once loaded from

the DRAM, never needs to access the DRAM for the matrix values, or vector values, until the

run is over, or the DRAM needs updating due to adaptive grid generation, or refinements of the

finite element cells (etc.).

The remaining overhead is primarily the communication overhead for vector updates. Con-

sider a worst case situation for HPC. Suppose a tokamak reactor containing plasma is simulated

as the interior of a torus as shown in Figure 15. This is a very simplified discussion, which will

not require detailed knowledge of plasma physics nor the specifics of a particular solution algo-

rithm for such equation systems. Simply assume this model saturates a supercomputer covering

a computer floor of roughly 40 meters on a side. Further assume the torus is modeled as a sheet

of core modules, which has its top and bottom edges (ab and cd) joined, then its left and right

edges joined, which is a classic topological construction of the torus. This naive construction has

just condemned the simulation to have a huge energy budget, as well as very poor communica-

tion latency, because the body effect latency now includes the worst case propagation from the

bottom left to the top right cabinets.

Figure 15. Making a torus by identifying sides, and then imposing a 2-D red-black ordering

To bring horizontal traversal under control, rather than enumerate the local geometric neigh-

bors successively, employ a red-black ordering scheme so that the first half of the right to left

cells run from left to right horizontally as red cells, with the second half of these cells as black

cells running from right to left. Now the farthest left and the farthest right neighborhoods can

meet in two neighboring PEM. To remove the vertical traversal problem, further apply the red

black scheme so that the first half of the local neighborhoods traverse from top to botton as red

cells and the second half traverse from the bottom going to the top as black cells. Now, the top
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cells meet the bottom cells within two neighboring PEM, and the worst case traversal path is

just from one cabinet to an adjacent cabinet.

8. Summary

A fundamentally new computer architecture has been introduced. This architecture is ap-

plication compatible with an existing superscalar microprocessor, which can be verified in a

systematic, incremental approach lending itself to effective project management. The super-

scalar instruction interpreter and multi-thread controller are removed from the microprocessor

and transformed into compile-time utilities. Today’s compilers for the microprocessor are pre-

served, essentially unaltered. The instruction cache is unneeded because of the huge, virtual

VLIW space. Sparse matrix modeling of partial differential equations and HPCG, are optimized

by removing the DRAM memory wall. Communication latency and throughput can be con-

trolled by thread placement, as shown by the tokamak and block LU decomposition examples.

New software tools, while maintaining today’s compilers, enable programs to be embodied by

these supercomputers as algorithm state machine networks.

Energy use is minimized. The superscalar instruction interpreter, the caches, and the multi-

thread controller are removed from hardware, giving at least a 10X reduction. Each SiMulPro

core, gates off power to each unused resource on each clock. Local feed communications with

neighboring PEM do not use routers. Sending access requests to external, anticipating memory

controllers for DRAM, saves at least 15% of the energy used for memory address calculation.

Sparse matrix solvers, in systems as small as a rack, are only loaded once from the DRAM.

I wish to thank Heather Murphree, John Gustafson, and George Pearson of MacKickan

Software for their invaluable contributions. I wish to thank the reviewer for pointing to an in-

consistency in the discussion of sparse matrices. Thanks to the HPCG team for their thinking

and their excellent bibliography. Also, thanks to the applied mathematics community for giving
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Beating Floating Point at its Own Game: Posit Arithmetic

John L. Gustafson1, Isaac Yonemoto2
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A new data type called a posit is designed as a direct drop-in replacement for IEEE Standard

754 floating-point numbers (floats). Unlike earlier forms of universal number (unum) arithmetic,

posits do not require interval arithmetic or variable size operands; like floats, they round if an an-

swer is inexact. However, they provide compelling advantages over floats, including larger dynamic

range, higher accuracy, better closure, bitwise identical results across systems, simpler hardware,

and simpler exception handling. Posits never overflow to infinity or underflow to zero, and “Not-

a-Number” (NaN) indicates an action instead of a bit pattern. A posit processing unit takes less

circuitry than an IEEE float FPU. With lower power use and smaller silicon footprint, the posit

operations per second (POPS) supported by a chip can be significantly higher than the FLOPS

using similar hardware resources. GPU accelerators and Deep Learning processors, in particular,

can do more per watt and per dollar with posits, yet deliver superior answer quality.

A comprehensive series of benchmarks compares floats and posits for decimals of accuracy

produced for a set precision. Low precision posits provide a better solution than “approximate

computing” methods that try to tolerate decreased answer quality. High precision posits provide

more correct decimals than floats of the same size; in some cases, a 32-bit posit may safely replace

a 64-bit float. In other words, posits beat floats at their own game.

Keywords: computer arithmetic, energy-efficient computing, floating point, posits, LINPACK,

linear algebra, neural networks, unum computing, valid arithmetic.

1. Background: Type I and Type II Unums

The unum (universal number) arithmetic framework has several forms. The original

“Type I” unum is a superset of IEEE 754 Standard floating-point format [2, 7]; it uses a “ubit”

at the end of the fraction to indicate whether a real number is an exact float or lies in the open

interval between adjacent floats. While the sign, exponent, and fraction bit fields take their

definition from IEEE 754, the exponent and fraction field lengths vary automatically, from a

single bit up to some maximum set by the user. Type I unums provide a compact way to express

interval arithmetic, but their variable length demands extra management. They can duplicate

IEEE float behavior, via an explicit rounding function.

The “Type II” unum [4] abandons compatibility with IEEE floats, permitting a clean,

mathematical design based on the projective reals. The key observation is that signed (two’s

complement) integers map elegantly to the projective reals, with the same wraparound of positive

numbers to negative numbers, and the same ordering. To quote William Kahan [5]:

“They typically save storage space because what you’re manipulating are not the num-

bers, but pointers to the values. And so, it’s possible to run this arithmetic very, very fast.”

The structure for 5-bit Type II unums is shown in fig. 1. With n bits per unum, the “u-lattice”

populates the upper right quadrant of the circle with an ordered set of 2n−3 − 1 real numbers

xi (not necessarily rational). The upper left quadrant has the negatives of the xi, a reflection

about the vertical axis. The lower half of the circle holds reciprocals of numbers in the top half,

a reflection about the horizontal axis, making × and ÷ operations as symmetrical as + and −. As

with Type I, Type II unums ending in 1 (the ubit) represent the open interval between adjacent

exact points, the unums for which end in 0.
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2Interplanetary Robot and Electric Brain Company, Saratoga, California, USA

DOI: 10.14529/jsfi170206

2017, Vol. 4, No. 2 71



Positive
Reals

Negative
Reals

����������
�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����
���������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����
�����

0

±∞

1-1

x1-x1

1/x1-1/x1

x2-x2

1/x2-1/x2

x3-x3

1/x3-1/x3

Type II Unums

(5 bits)

Figure 1. Projective real number line mapped to 4-bit two’s complement integers

Type II unums have many ideal mathematical properties, but rely on table look-up for

most operations. If they have n bits of precision, there are (in the worst case) 22n table entries

for 2-argument functions, though symmetries and other tricks usually reduce that to a more

manageable size. Table size limits the scalability of this ultra-fast format to about 20 bits or

less, for current memory technology. Type II unums are also are much less amenable to fused

operations. These drawbacks motivated a search for a format that would keep many of the merits

of Type II unums, but be “hardware friendly,” that is, computable using existing float-like logic.

2. Posits and Valids

We contrast two esthetics for calculation involving real numbers:

� Non-rigorous, but cheap, fast and “good enough” for an established set of applications

� Rigorous and mathematical, even at the cost of greater execution time and storage

The first esthetic has long been addressed by float arithmetic, where rounding error is

tolerated, and the second esthetic has been addressed by interval arithmetic. Type I and Type II

unums can do either, which is one reason they are “universal numbers.” However, if we are always

going to use the “guess” function to round after every operation, we are better off using the last

bit as another significant fraction bit and not as the ubit. A unum of this type is what we call

a posit. To quote the New Oxford American Dictionary (Third Edition):

posit (noun): a statement that is made on the assumption that it will prove to be true.

A hardware-friendly version of Type II unums relaxes one of the rules: Reciprocals only follow

the perfect reflection rule for 0,±∞, and integer powers of 2. This frees us to populate the u-

lattice in a way that keeps the finite numbers float-like, in that they are all of the form m ⋅ 2k
where k and m are integers. There are no open intervals.

A valid is a pair of equal-size posits, each ending in a ubit. They are intended for use

where applications need the rigor of interval-type bounds, such as when debugging a numerical

algorithm. Valids are more powerful than traditional interval arithmetic and less prone to rapidly

expanding, overly pessimistic bounds [2, 4]. They are not the focus of this paper, however.
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2.1. The Posit Format

Here is the structure of an n-bit posit representation with es exponent bits (fig. 2).

s

sign
bit

regime
bits

r r r r⋯ r

exponent
bits, if any

e1 e2 e3⋯ ees

fraction
bits, if any

f1 f2 f3 f4 f5 f6⋯

Figure 2. Generic posit format for finite, nonzero values

The sign bit is what we are used to: 0 for positive numbers, 1 for negative numbers. If

negative, take the 2’s complement before decoding the regime, exponent, and fraction.

To understand the regime bits, consider the binary strings shown in Table 1, with numerical

meaning k determined by the run length of the bits. (An “x” in a bit string means, “don’t care”).

Table 1. Run-length meaning k of the regime bits

Binary 0000 0001 001x 01xx 10xx 110x 1110 1111

Numerical meaning, k −4 −3 −2 −1 0 1 2 3

We call these leading bits the regime of the number. Binary strings begin with some number of

all 0 or all 1 bits in a row, terminated either when the next bit is opposite, or the end of the

string is reached. Regime bits are color-coded in amber for the identical bits r, and brown for

the opposite bit r̄ that terminates the run, if any. Let m be the number of identical bits in the

run; if the bits are 0, then k = −m; if they are 1, then k =m− 1. Most processors can “find first

1” or “find first 0” in hardware, so decoding logic for regime bits is readily available. The regime

indicates a scale factor of useedk, where useed = 22
es

. Table 2 shows example useed values.

Table 2. Table 1. The useed as a function of es

es 0 1 2 3 4

useed 2 22 = 4 42 = 16 162 = 256 2562 = 65536

The next bits (color-coded blue) are the exponent e, regarded as an unsigned integer. There

is no bias as there is for floats; they represent scaling by 2e. There can be up to es exponent

bits, depending on how many bits remain to the right of the regime. This is a compact way of

expressing tapered accuracy ; numbers near 1 in magnitude have more accuracy than extremely

large or extremely small numbers, which are much less common in calculations.

If there are any bits remaining after the regime and the exponent bits, they represent the

fraction, f , just like the fraction 1.f in a float, with a hidden bit that is always 1. There are no

subnormal numbers with a hidden bit of 0 as there are with floats.

The system just described is a natural consequence of populating the u-lattice. Start from

a simple 3-bit posit; for clarity, fig. 3 shows only the right half of the projective reals. So far,

fig. 3 follows Type II rules. There are only two posit exception values: 0 (all 0 bits) and ±∞ (1
followed by all 0 bits), and their bit string meanings do not follow positional notation. For the

other posits in fig. 3, the bits are color-coded as described above. Note that positive values in

fig. 3 are exactly useed to the power of the k value represented by the regime.
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Figure 3. Positive values for a 3-bit posit

Posit precision increases by appending bits, and values remain where they are on the circle when

a 0 bit is appended. Appending a 1 bit creates a new value between two posits on the circle.

What value should we assign to each in-between value? Let maxpos be the largest positive value

and minpos be the smallest positive value on the ring defined with a bit string. In fig. 3, maxpos

is useed and minpos is 1/useed. The interpolation rules are as follows:

� Between the maxpos and ±∞, the new value is maxpos×useed; and between 0 and minpos,

the new value is minpos/useed (new regime bit).

� Between existing values x = 2m and y = 2n where m and n differ by more than 1, the new

value is their geometric mean,
√
x ⋅ y = 2(m+n)/2 (new exponent bit).

� Otherwise, the new value is midway between the existing x and y values next to it, that

is, it represents the arithmetic mean (x + y)/2 (new fraction bit).

As an example, fig. 4 shows a build up from a 3-bit to a 5-bit posit with es = 2, so useed = 16:

useed
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1
16

1

16
±∞
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0001
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0111
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0
1
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1
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1
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4
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1
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1

64

1

16

1

8

1

4

1

2

1

2

4

8

16
64

256
4096±∞

Figure 4. Posit construction with two exponent bits, es = 2, useed = 22
es = 16

If one more bit were appended in fig. 4 to make 6-bit posits, posits representing the range

of values between 1/16 and 16 will append fraction bits, not exponent bits.

Suppose we view the bit string for a posit p as a signed integer, ranging from −2n−1 to 2n−1−1.

Let k be the integer represented by the regime bits, e be the unsigned integer represented by
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the exponent bits, if any. If the set of fraction bits is {f1f2 . . . ffs}, possibly the empty set, let f

be the value represented by 1.f1f2 . . . ffs. Then p represents

x = ⎧⎪⎪⎨⎪⎪⎩
0, p = 0,±∞, p = −2n−1,
sign(p) × useedk × 2e × f , all other p.

The regime and es bits serve the function of the exponent bits in a standard float; together,

they set the power-of-2 scaling of the fraction where each useed increment is a batch shift of

2es bits. The maxpos is useedn−2 and the minpos is useed2−n. An example decoding of a posit is

shown in fig. 5 (with a “nonstandard” value for es here, for clarity).

× × (1 + )

0

sign

+

regime

0 0 0 1

256-3

exponent

1 0 1

25

fraction

1 1 0 1 1 1 0 1

221 / 256

Figure 5. Example of a posit bit string and its mathematical meaning

The sign bit 0 means the value is positive. The regime bits 0001 have a run of three 0s,

which means k is −3; hence, the scale factor contributed by the regime is 256−3. The exponent

bits, 101, represent 5 as an unsigned binary integer, and contribute another scale factor of

25. Lastly, the fraction bits 11011101 represent 221 as an unsigned binary integer, so the

fraction is 1 + 221/256. The expression shown underneath the bit fields in fig. 5 works out to

477/134217728 ≈ 3.55393 × 10−6.

2.2. 8-bit Posits and Neural Network Training

While IEEE floats do not define a “quarter-precision” 8-bit float, an 8-bit posit with es = 0

has proved to be surprisingly useful for some purposes; they are sufficiently powerful to train

neural networks [3, 8]. Currently, half-precision (16-bit) IEEE floats are often used for this

purpose, but 8-bit posits have the potential to be 2−4× faster. An important function for neural

network training is a sigmoid function, a function f(x) that is asymptotically 0 as x → −∞
and asymptotically 1 as x → ∞. A common sigmoid function is 1/(1 + e−x) which is expensive

to compute, easily requiring over a hundred clock cycles because of the math library call to

evaluate exp(x), and because of the divide. With posits, you can simply flip the first bit of the

posit representing x, shift it two bits to the right (shifting in 0 bits on the left), and the resulting

posit function in fig. 6 (shown in magenta) closely resembles 1/(1 + e−x) (shown in green); it

even has the correct slope where it intersects the y-axis.

1

e-x + 1

8-bit posit with first bit

flipped, shifted right two places

-10 -5 0 5 10

0.2

0.4

0.6

0.8

1.0

Figure 6. Fast sigmoid function using posit representation
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2.3. Using the Useed to Match or Exceed the Dynamic Range of Floats

We define the dynamic range of a number system as the number of decades from the smallest

to largest positive finite values, minpos to maxpos. That is, the dynamic range is defined as

log10(maxpos)− log10(minpos) = log10(maxpos/minpos). For an 8-bit posit system with es = 0,

minpos is 1/64 and maxpos is 64, so the dynamic range is about 3.6 decades. Posits defined with

es = 0 are elegant and simple, but their 16-bit and larger versions have less dynamic range than

an IEEE float of the same size. For example, a 32-bit IEEE float has a dynamic range of about

83 decades, but a 32-bit posit with es = 0 will have only about 18 decades of dynamic range.

Here is a table of es values that allow posits to surpass the dynamic range of floats for 16-bit

and 32-bit size, and closely match it for 64-bit, 128-bit, and 256-bit sizes.

Table 3. Float and posit dynamic ranges for the same number of bits

Size, IEEE Float Approx. IEEE Float Posit Approx. Posit

Bits Exp. Size Dynamic Range es Value Dynamic Range

16 5 6 × 10−8 to 7 × 104 1 4 × 10−9 to 3 × 108

32 8 1 × 10−45 to 3 × 1038 3 6 × 10−73 to 2 × 1072

64 11 5 × 10−324 to 2 × 10308 4 2 × 10−299 to 4 × 10298

128 15 6 × 10−4966 to 1 × 104932 7 1 × 10−4855 to 1 × 104855

256 19 2 × 10−78984 to 2 × 1078913 10 2 × 10−78297 to 5 × 1078296

One reason for choosing es = 3 for 32-bit posits is to make it easier to substitute them not just

for 32-bit floats, but for 64-bit floats as well. Similarly, the 17-decade dynamic range of 16-bit

posits opens them up to applications currently are tackled only with 32-bit floats. We will show

that posits can exceed both the dynamic range and accuracy of floats with the same bit width.

2.4. Qualitative Comparison of Float and Posit Formats

There are no “NaN” (not-a-number) bit representations with posits; instead, the calculation

is interrupted, and the interrupt handler can be set to report the error and its cause, or invoke

a workaround and continue computing, but posits do not make the logical error of assigning

a number to something that is, by definition, not a number. This simplifies the hardware con-

siderably. If a programmer finds the need for NaN values, it indicates the program is not yet

finished, and the use of valids should be invoked as a sort of numerical debugging environment

to find and eliminate possible sources of such outputs. Similarly, posits lack a separate ∞ and−∞ like floats have; however, valids support open intervals (maxpos,∞) and (−∞,−maxpos),
which provide the ability to express unbounded results of either sign, so the need for signed

infinity is once again an indication that valids are called for instead of posits.

There is no “negative zero” in posit representation; “negative zero” is another defiance of

mathematical logic that exists in IEEE floats. With posits, when a = b, f(a) = f(b). The IEEE

754 standard says that the reciprocal of “negative zero” is −∞ but the reciprocal of “positive

zero” is ∞, but also says that negative zero equals positive zero. Hence, floats imply that −∞ =∞.

Floats have a complicated test for equality, a
?= b. If either a or b are NaN, the result is always

false even if the bit patterns are identical. If the bit patterns are different, it is still possible for a

to equal b, since negative zero equals positive zero! With posits, the equality test is exactly the

same as comparing two integers: if the bits are the same, they are equal. If any bits differ, they
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are not equal. Posits share the same a < b relation as signed integers; as with signed integers,

you have to watch out for wraparound, but you really don’t need separate machine instructions

for posit comparisons if you already have them for signed integers.

There are no subnormal numbers in the posit format, that is, special bit patterns indicating

that the hidden bit is 0 instead of 1. Posits do not use “gradual underflow.” Instead, they

used tapered precision, which provides the functionality of gradual underflow and a symmetrical

counterpart, gradual overflow. (Instead of gradual overflow, floats are asymmetric and use those

bit patterns for a vast and unused cornucopia of NaN values.)

Floats have one advantage over posits for the hardware designer: the fixed location of bits

for the exponent and the fraction mean they can be decoded in parallel. With posits, there is a

little serialization in having to determine the regime bits before the other bits can be decoded.

There is a simple workaround for this in a processor design, similar to a trick used to speed the

exception handling of floats: Some extra register bits can be attached to each value to save the

need for extracting size information when decoding instructions.

3. Bitwise Compatibility and Fused Operations

One reason IEEE floats do not give identical results across systems is because elementary

functions like log(x) and cos(x) are not required by IEEE to be accurate to the last bit for every

possible input. Posit environments must correctly round all supported arithmetic operations.

(Some math library programmers worry about “The Table-Maker’s Dilemma” that some values

can take much more work to determine their correct rounding; this can be eliminated by using

interpolation tables instead of polynomial approximations.) An incorrect value in the last bit

for ex, say, should be treated the way we would treat a computer system that tells us 2 + 2 = 5.

The more fundamental reason IEEE floats fail to give repeatable results from system to

system is because the standard permits covert methods to avoid overflow/underflow and perform

operations more accurately, such as by internally carrying extra bits in the exponent or fraction.

Posit arithmetic forbids such covert help.

The most recent version (2008) of the IEEE 754 standard [7] includes the fused multiply-add

in its requirements. This was a controversial change, and vehemently opposed by many of the

committee members. Fusing means deferring rounding until the last operation in a computation

involving more than one operation, after performing all operations using exact integer arithmetic

in a scratch area with a set size. Fusing is not the same as general extended-precision arithmetic,

which can increase the size of integers until the computer runs out of memory.

The posit environment mandates the following fused operations:

Fused multiply-add (a × b) + c
Fused add-multiply (a + b) × c
Fused multiply-multiply-subtract (a × b) − (c × d)
Fused sum ∑ai
Fused dot product (scalar product) ∑aibi

Note that all of the operations in the above list are subsets of the fused dot product [6] in

terms of processor hardware requirements. The smallest magnitude nonzero value that can arise

in doing a dot product is minpos2. Every product is an integer multiple of minpos2. If we have

to perform the dot product of vectors {maxpos,minpos} and {maxpos,minpos} as an exact

operation in a scratch area, we need an integer big enough to hold maxpos2/minpos2. Recall that
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maxpos = useedn−2 and minpos = 1/maxpos. Hence, maxpos2/minpos2 = useed4n−8. Allowing

for carry bits, and rounding up to a power of 2, tab. 4 shows recommended accumulator sizes.

Table 4. Exact accumulator sizes for each posit size

Posit size in bits, n 16 32 64 128 256

Exact accumulator size, bits 128 1024 4096 65536 1048576

Some accumulators clearly are register-sized data, while the larger accumulators will require

a scratch area equivalent of L1 or L2 cache. The fused operations can be done either through

software or hardware, but must be available for a posit environment to be complete.

4. Quantitative Comparisons of Number Systems

4.1. A Definition of Decimal Accuracy

Accuracy is the inverse of error. If we have a pair of numbers x and y (nonzero and of the same

sign), their order-of-magnitude distance is ∣ log10(x/y)∣ decades, the same measure that defines

the dynamic range with smallest and largest representable positive numbers x and y. A “perfect

spacing” of ten numbers between 1 and 10 in a real number system would be not the evenly-

spaced counting numbers 1 through 10, but exponentially-spaced 1,101/10,102/10, . . . ,109/10,10.

That is the decibel scale, long used by engineers to define ratios; for example, ten decibels is

a factor of 10. Thirty decibels (30 dB) means a factor of 103 = 1000. The ratio 1 dB is about

1.26⋯; if you know a value to within 1 dB, then you have 1 decimal of accuracy. If you knew it

to 0.1 dB, that would mean 2 decimals of accuracy, and so on. The formula for decimal accuracy

is log10(1/∣ log10(x/y)∣) = − log10(∣ log10(x/y)∣), where x and y are either the correct value and

the computed value when using a rounding system like floats and posits, or the lower and upper

limits of a bound, if using a rigorous system like intervals or valids.

4.2. Defining Float and Posit Comparison Sets

We can create “scale models” of both floats and posits with only 8 bits each. The advantage

of this approach is that the 256 values produced are a small enough set that we can exhaustively

test and compare all 2562 entries in the tables for + − × ÷ for numerical properties. A “quarter-

precision” float with a sign bit, four-bit exponent field and three-bit fraction field can adhere to

all the rules of the IEEE 754 standard. Its smallest positive real (a subnormal float) is 1/1024 and

its largest positive real is 240, an asymmetrical dynamic range of about 5.1 decades. Fourteen

of the bit patterns represent NaN.

The comparable 8-bit posit environment uses es = 1; its positive reals range from 1/4096

to 4096, a symmetrical dynamic range of about 7.2 decades. There are no NaN values. We can

plot the decimal accuracy of the positive numbers in both sets, as shown in fig. 7. Note that the

values represented by posits represent over two decades more dynamic range than the floats, as

well as being as accurate or more for all but the values where floats are close to underflow or

overflow. The jaggedness is characteristic of all number systems that approximate a logarithmic

representation with piecewise linear sequences. Floats have tapered accuracy only on the left,

using gradual underflow; on the right, accuracy falls off a cliff to accommodate all the NaN

values. Posits come much closer to a symmetrical tapered accuracy.
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Figure 7. Decimal accuracy comparison of floats and posits

4.3. Single-Argument Operation Comparisons

4.3.1. Reciprocal

For every possible input value x to the function 1/x, the result can land exactly on another

number in the set or it can round, in which case we can measure the decimal loss using the

formula of Section 4.1; for floats, it can overflow or produce a NaN. See fig. 8.

13.3% exact 18.8% exact80.5%
inexact

81.3%
inexact5.47% NaN 0% NaN

0.781% overflow
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Figure 8. Quantitative comparison of floats and posits computing the reciprocal, 1/x
The graph on the right plots every decimal accuracy loss created by reciprocation, other than

the float cases that produce NaN. Posits are superior to floats, with far more exact cases, and

they retain that superiority through their entire range of sorted losses. Subnormal floats overflow

under reciprocation, which creates an infinite loss of decimal accuracy, and of course the float

NaN input values produce NaN output values. Posits are closed under reciprocation.

4.3.2. Square Root

The square root function does not underflow or overflow. For negative values, and for the

NaN inputs for floats, the result is NaN. Remember that these are “scale model” 8-bit floats and

posits; the advantage of posits increases with data precision. For a similar plot of 64-bit floats

vs. posits, posit error would be about 1/30 of float error instead of about 1/2 the float error.

4.3.3. Square

Another common unary operation is x2. Overflow and underflow are a common disaster

when squaring floats. For almost half the float cases, squaring does not produce a meaningful

numerical value, whereas every posit can be squared to produce another posit. (The square of

unsigned infinity is again unsigned infinity.)

J. L. Gustafson, I. Yonemoto

2017, Vol. 4, No. 2 79



7.03% exact 8.20% exact
40.6% inexact 42.2% inexact
52.3% NaN 49.6% NaN

Floats Posits
Floats

Posits

0 20 40 60 80 100 120

Losses,
sorted

0.000

0.005

0.010

0.015

0.020

0.025

Decimal
loss

Figure 9. Quantitative comparison of floats and posits computing
√
x
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Figure 10. Quantitative comparison of floats and posits computing x2

4.3.4. Logarithm Base 2

We can also compare logarithm base 2 closure, that is, the percentage of cases where log2(x)
is exactly representable and how much decimal accuracy is lost when it is not exact. Floats

actually have one advantage in that they can represent log2(0) as −∞ and log2(∞) as ∞, but

this is more than compensated by the richer vocabulary of integer powers of 2 for posits.

7.81% exact 8.98% exact
39.8% inexact 40.6% inexact
52.3% NaN 50.4% NaN
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0.015

0.020
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Figure 11. Quantitative comparison of floats and posits computing log2(x)
The graph is similar to that for square root, with about half the input values resulting in NaN

in both cases, but posits experience about half the loss of decimal accuracy. If you can compute

log2(x), it just takes a scale factor to convert to ln(x) or log10(x) or any other logarithm base.
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4.3.5. Exponential, 2x

Similarly, once you can compute 2x, it is easy to derive a scale factor that also gets you ex

or 10x and so on. Posits have just one exception case: 2x is NaN when the argument is ±∞.
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Figure 12. Quantitative comparison of floats and posits computing 2x

The maximum decimal loss for posits seems large, because 2maxpos will be rounded back to

maxpos. For this example set, just a few errors are as high as log10(24096) ≈ 1233 decimals.

Consider which is worse: the loss of over a thousand decimals, or the loss of an infinite number

of decimals? If you can stay away from those very largest values, posits are still a win, because

the error for smaller values is much better behaved. The only time you get a large decimal loss

with posits is when working with numbers far outside of what floats can even express as input

arguments. The graph shows how posits are more robust in terms of the dynamic range for

which results are reasonable, and the superior decimal accuracy throughout this range.

For common unary operations 1/x,√x,x2, log2(x), and 2x, posits are consistently and uni-

formly more accurate than floats with the same number of bits, and produce meaningful results

over a larger dynamic range. We now turn our attention to the four elementary arithmetic

operations that take two arguments: Addition, subtraction, multiplication, and division.

4.4. Two-Argument Operation Comparisons

We can use the scale-model number systems to examine two-argument arithmetic operations

like + − × ÷. To help visualize all 65536 results, we make 256 by 256 “closure plots” that show

at a glance what fraction of the results are exact, inexact, overflow, underflow, or NaN.

4.4.1. Addition and Subtraction

Because x− y = x+ (−y) works perfectly in both floats and posits, there is no need to study

subtraction separately. For the addition operation, we compute z = x + y exactly, and compare

it to the sum that is returned by the rules of each number system. It can happen that the result

is exact, that it must be rounded to a nearby finite nonzero number, that it can overflow or

underflow, or can be an indeterminate form like ∞ −∞ that produces a NaN. Each of these

is color-coded so we can look at the entire addition table at a glance. In the case of rounded

results, the color-coding is a gradient from black (exact) to magenta (maximum error of either

posits or floats). fig. 13 shows what the closure plots look like for the floats and the unums.

As with the unary operations, but with far more data points, we can summarize the ability

of each number system to produce meaningful and accurate answers:
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Figure 13. Complete closure plots for float and posit addition tables
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Figure 14. Quantitative comparison of floats and posits for addition

It is obvious at a glance that posits have significantly more additions that are exact. The

broad black diagonal band in the float closure plot is much wider than it would be with higher

precision, because it represent the gradual underflow region where floats are equally spaced like

fixed-point numbers; that is a large fraction of all possible floats when we only have 8 bits.

4.4.2. Multiplication

We use a similar approach to compare how well floats and posits multiply. Unlike addition,

multiplication can cause floats to underflow. The “gradual underflow” region provides some

protection, as you can see in the center of the float closure graph (fig. 15, left). Without it, the

blue underflow region would be a full diamond shape. The posit multiplication closure plot is

much less colorful, which is a good thing. Only two pixels light up as NaN, near where the axes

have their “zero” label. That is where ±∞× 0 occurs. Floats have more cases where the product

is exact than do posits, but at a terrible cost. As fig. 15 shows, almost one-quarter of all float

products overflow or underflow, and that fraction does not decrease for higher precision floats.
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Figure 15. Complete closure plots for float and posit multiplication tables

The worst-case rounding for posits occurs for maxpos × maxpos, which is rounded back to

maxpos. For these posits, that represents a (very rare) loss of about 3.6 decimals. As the graph

in fig. 16 shows, posits are dramatically better at minimizing multiplication error than floats.
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Figure 16. Quantitative comparison of floats and posits for multiplication

The closure plots for the division operation are like those for multiplication, but with the

regions permuted; to save space, they will not be shown here. The quantitative comparison for

division is almost identical to that for multiplication.

4.5. Comparing Floats and Posits in Evaluating Expressions

4.5.1. The “Accuracy on a 32-Bit Budget” Benchmark

Benchmarks usually make a goal of the smallest execution time, and are frequently vague

about how accurate the answer has to be. A different kind of benchmark is one where we fix

the precision budget, that is, the number of bits per variable, and try to get the maximum

decimal accuracy in the result. Here is an example of an expression we can use to compare

various number systems with a 32-bit budget per number:
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X = ⎛⎝ 27/10 − e
π − (√2 +√3)

⎞⎠
67/16 = 302.8827196⋯

The rule is that we start with the best representation the number system has for e and π, and

for all the integers shown, and see how many decimals agree with the correct value for X after

performing the nine operations in the expression. We will show incorrect digits in orange.

While IEEE 32-bit floats have decimal accuracy that wobbles between 7.3 and 7.6 decimals,

the accumulation of rounding error in evaluating X gives the answer 302.912⋯, with only three

correct digits. This is one reason IEEE float users feel pressure to use 64-bit floats everywhere,

because even simple expressions risk losing so much accuracy that the results might be useless.

The 32-bit posits have tapered decimal accuracy, with a wobble between about 8.2 and 8.5

decimals for numbers near 1 in magnitude. In evaluating X, they give the answer 302.88231⋯,

twice as many significant digits. Bear in mind that 32-bit posits have a dynamic range of over 144

decades, whereas 32-bit IEEE floats have a much smaller dynamic range of about 83 decades.

Therefore, the extra accuracy in the result was not attained at the expense of dynamic range.

4.5.2. A Quad-Precision Test: Goldberg’s Thin Triangle Problem

Here’s a classic “thin triangle” problem [1]: Find the area of a triangle with sides a, b, c,

when two of the sides b and c are just 3 Units in the Last Place (ULPs) longer than half the

longest side a (fig. 17):

a

b = a / 2 + 3 ULPs c
 =

 a
 /

 2
 +

 3 ULPs

Figure 17. Goldberg’s thin triangle problem

The classic formula for the area A uses a temporary value s:

s = a + b + c
2

;A =√s(s − a)(s − b)(s − c)
The hazard in the formula for a thin triangle is that s is very close to the value of a, so

the calculation of (s − a) magnifies any rounding into a large relative error. Let’s try 128-bit

(quad-precision) IEEE floats, where a = 7, b = c = 7/2 + 3 × 2−111. (If the units are in light-years,

then the short sides are only longer than half the long side by 1/200 the diameter of a proton.

Yet that pops the triangle up to about the width of a doorway at the thickest point.) We also

evaluate the formula for A using 128-bit posits (es = 7). Here are the results:

Correct answer: 3.14784204874900425235885265494550774498⋯× 10−16
128-bit IEEE float answer: 3.63481490842332134725920516158057682788⋯× 10−16
128-bit posit answer: 3.14784204874900425235885265494550774439⋯× 10−16

Posits have as much as 1.8 decimal digits more accuracy than floats in quad precision over a vast

dynamic range: from 2×10−270 to 5×10−269. That is ample for protecting against this particular

inaccuracy-amplifying disaster. It is interesting to note that the posit answer would be more

accurate than the float answer even if it were converted to a 16-bit posit at the end.
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4.5.3. The Quadratic Formula

There is a classic numerical analysis “trick” to avoid a rounding error hazard in finding the

roots r1, r2 of ax2 + bx + c = 0 using the usual formula r1, r2 = (−b ±√b2 − 4ac)/(2a) when b is

much larger than a and c, resulting in left-digit cancellation for the root for which
√
b2 − 4ac is

very close to b. Instead of expecting programmers to memorize a panoply of arcane tricks for

every formula, perhaps posits can make it a bit safer to simply apply the textbook form of the

formula. Suppose a = 3, b = 100, c = 2, and compare 32-bit IEEE floats with 32-bit posits.

Table 5. Quadratic equation evaluation

Root Mathematical Value Float result Posit result

r1 (−100 +√9976)/6 = −0.0200120144⋯ -0.02001190 −0.02001206⋯
r2 (−100 −√9976)/6 = −33.3133213⋯ -33.3133202 −33.3133216⋯

The numerically unstable root is r1, but notice that 32-bit posits still return 6 correct decimals

instead of only 4 correct decimals from the float calculation.

4.6. Comparing Floats and Posits for the Classic LINPACK Benchmark

The basis for ranking supercomputers has long been the time to solve an n-by-n system of

linear equations Ax = b. Specifically, the benchmark populates a matrix A with pseudo-random

numbers between 0 and 1, and sets the b vector to the row sums of A. That means the solution

x should be a vector of all 1s. The benchmark driver calculates the norm of the residual ∣∣Ax−b∣∣
to check correctness, though there is no “hard number” in the rules that limits how inaccurate

the answer can be. It is typical to lose several decimals of accuracy in the calculation, which

is why it requires 64-bit floats to run (not necessarily IEEE). The original benchmark size was

n = 100, but that size became too small for the fastest supercomputers so n was increased to 300,

and then to 1000, and finally (at the urging of the first author) changed to a scalable benchmark

that ranks based on operations per second assuming 2/3n3 + 2n2 multiply or add operations.

In comparing floats and posits, we noticed a subtle flaw in the benchmark driver: The

answer is generally not a sequence of all 1 values, because rounding occurs when computing the

row sums. That error can be eliminated by finding which entries in A contribute a 1 bit to the

sum beyond the precision capabilities, and setting that bit to 0. This assures that the row sum

of A is representable without rounding, and then the answer x actually is a vector of all 1s.

For the original 100-by-100 problem, 64-bit IEEE floats produce an answer that looks like

0.9999999999999633626401873698341660201549530029296875

1.0000000000000011102230246251565404236316680908203125⋮
1.000000000000022648549702353193424642086029052734375

Not a single one of the 100 entries is correct; they are close to 1, but never land on it. With

posits, we can do a remarkable thing. Use 32-bit posits and the same algorithm; calculate the

residual, r =Ax−b, using the fused dot product. Then solve Ax′ = r (using the already-factored

A) and use x′as a correction: x ← x − x′. The result is an unprecedented exact answer to the

LINPACK benchmark: {1,1, . . . ,1}. Can the rules of LINPACK forbid the use of a new 32-bit

number type that can get the perfect result with a residual of zero, and continue to insist on
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the use of 64-bit float representations that cannot? That decision will be up to the shepherds of

the benchmark. For those who use linear equations to solve real problems and not to compare

supercomputer speeds, posits offer an overwhelming advantage.

5. Summary

Posits beat floats at their own game: guessing their way through a calculation while incurring

rounding errors. Posits have higher accuracy, larger dynamic range, and better closure. They

can be used to produce better answers with the same number of bits as floats, or (what may

be even more compelling) an equally good answer with fewer bits. Since current systems are

bandwidth-limited, using smaller operands means higher speed and less power use.

Because they work like floats, not intervals, they can be regarded as a drop-in replacement

for floats, as demonstrated here. If an algorithm has survived the test of time as stable and “good

enough” using floats, then it will run even better with posits. The fused operations available in

posits provide a powerful way to prevent rounding error from accumulating, and in some cases

may allow us to safely use 32-bit posits instead of 64-bit floats in high-performance computing.

Doing so will generally increase the speed of a calculation 2− 4×, and save energy and power as

well as the cost of storage. Hardware support for posits will give us the equivalent of one or two

turns of Moore’s law improvement, without any need to reduce transistor size and cost.

Unlike floats, posits produce bitwise-reproducible answers across computing systems, over-

coming the primary failure of the IEEE 754 float definition. The simpler and more elegant design

of posits compared to floats reduces the circuitry needed for fast hardware. As ubiquitous as

floats are today, posits could soon prove them obsolete. ◻
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The global e�ort to build ever more powerful supercomputers is faced with the challenge of

ramping up High Performance Computing systems to ExaScale capabilities and, at the same time,

keeping the electrical power consumption for a system of that scale at less than 20 MW level.

One possible solution, bypassing this local energy limit, is to use distributed supercomputers to

alleviate intense power requirements at any single location. The other critical challenge faced

by the global computer industry and international scienti�c collaborations is the requirement of

streaming colossal amounts of time-critical data. Examples abound: i) transfer of astrophysical

data collected by the Square Kilometre Array to the international partners, ii) streaming of large

facilities experimental data through the Paci�c Research Platform collaboration of DoE, ESnet

and other partners in the US and elsewhere, iii) the Super�cilities vision expressed by DoE, iv)

new architecture for CERN LHC data processing pipeline focussing on more powerful processing

facilities connected by higher throughput connectivity.

The In�niCortex project led by A*STAR Computational Resource Centre demonstrates a

worldwide In�niBand fabric circumnavigating the globe and bringing together, as one concurrent

globally distributer HPC system, several supercomputing facilities spanned across four continents

(Asia, Australia, Europe and North America). Using global scale In�niBand connections, with

bandwidth utilisation approaching 98% link capacity, we have established a new architectural

approach which might lead to the next generation supercomputing systems capable of solving the

most complex problems through the aggregation and parallelisation of many globally distributed

supercomputers into a single hive-mind of enormous scale.
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Introduction

This article is a �nal report of In�niCortex I project led by A*STAR Computational Re-

source Centre in Singapore. We document an implementation of a worldwide In�niBand fabric

bringing together several supercomputing facilities spanned across the globe to create a galaxy

of supercomputers [12]. In�niCortex I project represents a huge collaboration e�ort of several

agencies and universities in Singapore (A*STAR, NSCC, NUS, NTU, SingAREN) together with

more than 20 international partners around the globe.

After successfully demonstrating the �rst 100Gbps transcontinental In�niBand connection

connecting Singapore and United States of America at the annual Supercomputing Conference
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2014, in New Orleans, USA [10], the award winning In�niCortex project [1] grew rapidly demon-

strating every year novel capabilities.

Over the last few years several unprecedented elements have been showcased:

• largest ever spanning In�niBand network � a ring-around-the-world with most of the seg-

ments at 100Gbps and few at 10-30Gbps;

• eight In�niBand subnets created using In�niBand routers and demonstrated In�niBand

routing using BGFC (Bowman Global Fabric Controllers [5]);

• In�niCloud: the �rst ever true high throughput global span HPC cloud allowing instances

provisioning across four continents: Asia, Australia, North America and Europe [7�9].

During the last three years, In�niCortex and numerous applications utilising this concept and

infrastructure, have been successfully demonstrated at several international events: Supercom-

puting Frontiers 2015 and 2016 in Singapore; ISC15 and ISC16 in Frankfurt, Germany; TNC15

in Porto, Portugal and TNC16 in Prague, Czech Republic and �nally at SC14 (New Orleans)

and SC15 (Austin), USA.

Hence we have furnished a su�cient proof of concept demonstrations exhibiting the e�ec-

tiveness of the proposed solutions. Several elements are already being implemented in Singapore

and elsewhere as production solutions enabling higher bandwidth and security.

In the next section we will describe in some detail the third stage on our In�niCortex I

project which took place during the Supercomputing 2016 conference in Salt Lake City, USA.

In Sub-Section 1.1 we will provide a list of all our collaborators in this project, followed in

Sub-Section 1.2 with a description of a global scale network infrastructure, and, in Section 1.3,

details of a number of application demonstrations prepared with our partners from the Oak

Ridge National Laboratory, Fermilab, Stony Brook University, George Washington University,

USA; University of Reims Champagne-Ardenne, France; Pozna« Supercomputing and Network

Centre and Interdisciplinary Centre for Mathematical and Computational Modelling, University

of Warsaw, Poland. In Section 2 we online our plans for In�niCortex 2 phase of our project, and

�nally Section 3 contains conclusions of this report.

1. In�niCortex Demonstrations at SuperComputing 2016

The International Conference for High Performance Computing, Networking, Storage and

Analysis - SC16, the 28th annual international conference of high performance computing, net-

working, storage and analysis, celebrated the contributions of researchers and scientists � from

those just starting their careers to those whose contributions have made lasting impacts. The

conference drew more than 11,100 registered attendees and featured a technical program span-

ning six days. The exhibit hall featured 349 exhibitors from industry, academia and research

organizations from around the world.

During the conference, Salt Lake City also became the hub for the world's fastest computer

network: SCinet, SC16's custom-built network which delivered 3.15 terabits per second in band-

width. The network featured 56 miles of �ber deployed throughout the convention center and

32 million dollars in loaned equipment. In�niCortex is build on top of the SCinet network with

support from the SCinet team and in collaboration with various netowrking orgnizations.

1.1. Partners

The following partners were involved in the In�niCortex demonstrations at SC16:
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• A*STAR Computational Resource Centre* - Singapore

• Oak Ridge National Laboratory (ORNL) - USA

• Fermilab - USA

• Stony Brook University (SBU)* - USA

• George Washington University (GWU)* - USA

• University of Reims Champagne-Ardenne (URCA)* - France

• Pozna« Supercomputing and Network Centre (PSNC)* - Poland

• Interdisciplinary Centre for Mathematical and Computational Modelling (ICM)* - Poland

Locations marked with an asterisk denote locations where a Longbow In�niBand range extenders

were installed for the SC16 demo.

1.2. Network Infrastructure

The In�niBand network ran on top of the dark-�bre network infrastructure prepared by

A*CRC Network team in collaboration with various networking organisations (SingAREN,

TEIN, GEANT, PIONEER, RENATER, Internet2, SCinet). A total of �ve E100 Longbows were

used to connect the SC16 show �oor to A*CRC in Singapore providing a 50Gbps In�niBand

link.

A global WAN In�niBand network has been setup with 4 distinct subnets:

• National Supercomputer Centre, Singapore

• Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), Poland

• A*CRC, Singapore + URCA, France + George Washington University, USA

• Stony Brook University, USA

using Obsidian's BGFC In�niBand subnet manager [5] capable of In�niBand routing between

subnets.

Figure 1. SC16 In�niCortex global coverage map

1.2.1. Performance metrics

In�niBand

• Each Longbow E100 link is capable of 10Gbps of In�niBand tra�c. All 5 usable Longbows

were stress-tested for bandwidth. All �ve Longbows were pumping 10Gbps simultaneously

- giving 50Gbps raw bandwidth (40Gbps usable data bandwidth due to 2 in every 10 bits

for encoding).

• The bandwidth test of a single Longbow shows 938.83 MB/s between a server at SC16 and

a remote server at A*CRC in Singapore.
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Figure 2. Global RDMA test between Singapore and Salt Lake City using Longbows E100

• An aggregated total bandwidth of 75 - 80 Gbps was utilised with link sharing with Tokyo-

Tech University

Figure 3. Screen-shot of the bandwidth utilisation during SC16 demos showing 75-80 Gbps data

transfer between Tokyo University of Technology and A*CRC booth at the show �oor

• The whole SC16 exhibit utilised just over 800 GBps bandwidth.

• A dsync+ test was attempted to transfer a large dataset from storage in A*CRC to SC16.

The initial transfer was 6MB/s due to heavy packet loss on the link - despite no recorded

packet loss during the bandwidth stress tests. There was no time left to diagnose the issue.

100G Ethernet

Andrew Howard from NSCC, Canberra, Australia conducted the following additional tests:

• iperf3 network test showed 16-23Gbps per UDP stream, 17.2Gbps for TCP.
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• Lim Seng from A*CRC did further Ethernet bandwidth tests and was able to add additional

bandwidth to the network.

1.3. Demonstrations

During SC16 A*CRC and several partners demonstrated �ve applications that were using

the long range In�niBand connectivity. The following sections will brie�y describe the details

and achievements of each applications.

1.3.1. Demonstrations with Oak Ridge National Laboratory (ORNL) / Fermilab / Stony

Brook University (SBU)

The demonstration with ORNL and SBU called Remote Fusion Experiment Data Analysis

Through Wide-Area Network consisted in remote data processing capability of large and high-

throughput science experiment through cross-Paci�c wide area networks and showed how one can

manage science work�ow executions remotely by using ORNL ADIOS data management system

and FNAL mdtmFTP data transfer system. In this demonstration our partners presented a

fusion data processing work�ow, called Gas Pu� Imaging (GPI) analysis, to detect and trace

blob movements during fusion experiment. GPI data streams were being sent from Singapore

to Fermilab for near-real time analysis, while ADIOS was managing analysis work�ows and

mdtmFTP transports stream data.
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Figure 4. NSTX GPI Work�ow With ADIOS and MDTM
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Figure 5. ORNL demonstration screenshot

Figure 5 shows a screenshot of the live demo running in SC16. The demonstration was

susscesfully relying on the mdtmFTP data transfer system developed in Fermilab.

Accomplishments and problems encountered:

We encountered several problems with this demo especially because the Stony Brook servers

were available only a few days before SC16. Most of the tests have been done between Singapore

and Fermilab, however even in this scenario a lot of problems arose from the fact this was not a

dedicated L2 circuit and several �rewalls were blocking the communication on each side.

Ultimately the problems have been solved. ORNL team have had plans to show this demo

once again in 2017. The demo is part of a bigger collaboration between ORNL and Japan in the

ITER project.

1.3.2. Demonstrations with George Washington University (GWU)

A Preliminary Study of Executing Parallel Applications over a Long-Range-IB network was

showcased using mpiBLAST - a freely available, open-source, parallel implementation of NCBI

BLAST. The mpiblast was run on multiple nodes on a cluster comprising of 4 nodes at GWU

and 3 nodes at A*CRC and communicating was done via mpi/LHIB.

The experiment consisted of the following steps:

• A protein reference database (524603 protein entries, size of 153MB) was prepared and

distributed to all of the compute nodes of the cluster (in both USA and Singapore).

• The database was fragmented into 64 smaller fragments by running the program: mpifor-

matdb.

• A subset of the protein sequences (from the reference database) was used for the protein

blast search (blastp). The total number of sequences used was 7516.
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• The total execution time of the blastp (protein blast search) was measured against the

di�erent number of compute nodes used. Measurements were conducted using two cases:

i) case1: compute nodes on USA only and ii) case2: compute nodes in both USA and

Singapore.

• The mpiblast command is as follows:

mpirun -np 9 �mca btl openib,self �hostfile hostfile mpiblast �copy-via=cp

/�concurrent=8 �use-parallel-write �query-segment-size=1000 -p blastp

/-d AR.faa -i testInput.faa -o testOutput.txt

where:

�np changing from 9, 17, 33 (for 1 node, 2 nodes and 4 nodes)

�concurrent changing from 8, 16, 32 (for 1 node, 2 nodes and 4 nodes)

�copy-via specify to use system cp command to copy fragment database �les onto nodes.

�mca btl speci�es to use openib as the communication protocol

�host�le speci�es the host machines being used, for example:

10.1.1.30 (node at USA)

10.1.1.20 (node at Singapore)

�AR.faa is the protein reference database

�testInput.faa is the protein blast input sequence �le

�segment-size speci�es the job size (no. of sequence send from master mpi process to the

workers mpi processes to work; i.e. for controlling task granularity)

Results of the tests are shown in �gures 6 and 7.

Figure 6. Input sequences: 7516
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Figure 7. Input sequences: 48844

The following conclusions were drawn after analizing the results:

• Up to 32 individual tasks were running on di�erent nodes. In �gures 6 and 7, the computa-

tional scalability is shown with di�erent problem sizes using di�erent numbers of computing

nodes, and also reveal the di�erence of localising the process on one side versus distributed

process across In�niCortex infrastructure.

• Super linear scalability is observed for the processes running only on the US nodes. Super

linear scalability is unusual and there is no guarantee if cluster size is expanded. The

main reason behind this super linear scalability is unclear yet, but it may be because the

overhead of the initial data distribution is smaller amongst the nodes connected within the

same In�niBand switch.

• Basically, a linear scalability for the task distributed across In�niCotex is observed, and

it is the ideal case for a parallel computational process. So it should be considered as a

successful demonstration.

• Many large scale scienti�c and engineering computational tasks can be divided into many

small sub-tasks using data partitioning strategy, and then computed in parallel using MPI

(Message Passing Interface) protocol to distribute tasks and data on di�erent computer

nodes. However, the e�ciency of the rapid data exchange amongst the sub-task is very

sensitive to the network latency, and thus certain computational tasks are inherently not

scalable on the In�niCortex infrastructure.

• To hide the inevitable latency due to the distance with a large data transfer, we have

successfully demonstrated a number of work�ows since SC14 (i.e. pipelining di�erent stages

of a task on the systems in di�erent locations), but this is the �rst time we demonstrate

solving a single computational task on two HPC clusters across continents using MPI. This

speci�c application was succesfully run because it is inherently embarrassingly parallel, no

data exchange required among the sub-tasks.

• Despite the success of this demonstration, we have encountered several di�culties:

� OpenMPI was unable to build on the cluster on US side, and the issue was eventually

resolved by the A*CRC software team. It was mainly due to the version of OpenMPI

being too new for the building scripts that were used.
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� We observed a big overhead (up to 2 minutes) for the initialisation of MPI if the job

is distributed across In�niCortex. It was con�rmed that this overhead does not a�ect

the accuracy of the computation, but the cause is not clear yet.

� Because the servers in the US and Singapore were using di�erent types of processors

additional time was necessary for tuning the data set between the two clusters. Such

heterogeneity made di�cult a fair comparison.

1.3.3. Demonstrations with University of Reims Champagne-Ardenne (URCA)

rCUDA (http://www.rcuda.net) is a development of the Parallel Architectures Group from

Universitat Politecnica de Valencia (Spain). rCUDA enables the concurrent remote usage of

CUDA-enabled devices in a transparent way. Thus, the source code of applications does not

need to be modi�ed in order to use remote GPUs but rCUDA takes care of all the necessary

details. Furthermore, the overhead introduced by using a remote GPU is very small.

ROMEO HPC Center succesfully tested and run rCUDA inside their 260 GPUs cluster for

the past year. The purpose of the SC16 demonstration was to test rCUDA over In�niCortex and

analyse the behaviour of the framework over extremely long distances. For the demo purpose

the rCUDA server was installed in Singapore on a machine that didn't have any GPUs attached.

The rCUDA client was installed on 18 servers in Reims each having 2 K20x. A standard matrix-

matrix multiplication example from the CUDA SDK was then run on the Singapore machine

which transparently sent all CUDA calls to the servers in Reims where the computation was

actually taking place on the GPUs and then it was collecting the �nal result.

The rCUDA developers from Universitat Politecnica de Valencia developed a small graphical

interface that was showing the performance of one single node compared to the performance of

running the same code over several nodes. This was clearly showing the performance and bene�ts

of running the rCUDA framework. The main advantage is that all the GPUs in the cluster are

exposed as a big pool of resources for each node.

Figure 8. rCUDA performance running on 18 GPUs as compared to standard CUDA running

on 1 GPU

The demo was eventuallly con�gured to run on IPoIB. For reasons that were not determined

before the beginning of the conference the IB version of rCUDA was always freezing in an

initialization stage. The presence of the Obsidian R400 router and BGFC and di�erent OFED

stacks were initially thought to be the problem. However even after the router was removed from

the con�guration and the OFED stacks synchronized the rCUDA was not able to work in native

IB mode although other tests like ib_pingpong were succesful. rCUDA developers suggested that

further tests are run after SC16 in order to determine why their framework is not able to function

properly in a native long range IB setup.
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1.3.4. Demonstrations with Pozna« Supercomputing and Networking Centre (PSNC)

Vitrall (http://apps.man.poznan.pl/trac/vitrall-test) is a distributed web based vi-

sualization system. It is under development at the Applications Department of the Pozna« Su-

percomputing and Networking Center.

A typical scenario of Vitrall usage is a real-time visualization of a complex 3D content

using remote servers equipped with modern multi GPU solutions, like nVidia Tesla. Following

frames are compressed as JPEG pictures and sent over HTTP protocol to clients. Still, they

may be displayed on an attached screen or projector. Users may watch the same content from

di�erent points of view simultaneously. Information about users' input is sent back to the Vitrall

Visualization Server using WebSocket protocol � part of HTML5 speci�cation.

Rendering process was distributed among two locations: Pozna« and Singapore - every

second frame will be rendered in Singapore, and every other frame in Pozna« and then accessed

by client through Singapore. At the exhibition �oor in SC a regular web browser was used

to connect to the Vitrall instances and and visitors were able to interact with the presented 3D

scene providing a smooth animation. Web browser uses WebSocket to connect with Vitrall server

controller instance and after a new rendering session is established, client starts to send input

messages. Controller instance interprets those messages and continuously applies changes to the

authoritative state of presented 3D scene. That state is then incrementally replicated to both

rendering instances - only those need access to a GPU device. One such instance runs locally

with the controller instance (in Singapore), and the other runs in Pozna«. Controller instance

decides which frame to render where, sends rendering requests to rendering instances and noti�es

the client where following frames will be available. The client then requests those frame using

HTTP in the way that frame rendered in Pozna« are accessed through Singapore.

Figure 9. Vitrall distributed web based visualization system

Accomplishments and problems encountered:

The demo was succesfully run between PSNC and A*CRC without any major problems. Figure

10 shows a screenshot of the demo running in SC16. The performance was quite good as the

interactivity with the scene was almost seameless. The only problem is that all servers involved

in the demo requier quite powerfull GPUs.
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Figure 10. PSNC demonstration screenshot

1.3.5. Demonstrations with Interdisciplinary Centre for Mathematical and

Computational Modelling (ICM)

The concept of demo was to show a basic proof-of-concept solution for globally remote visu-

alization, where the simulation (or datasets), the visualization pipeline and the user are globally

dispersed and connected only by a global network like In�niCortex. A scienti�c example chosen

for this demo was the numerical weather forecasting. The model itself (run by the Interdisci-

plinary Centre for Mathematical and Computational Modelling at the University of Warsaw

(ICM)) is an iterative process of predicting an atmosphere state condition dynamics based on

initial weather. In each step a signi�cant number of data is created being a multivariate dataset

on a three dimensional non-uniform grid over a modelled area. Observations of the evolution

of a running simulation are possible by visualization of the consecutive iterations and provide

the insight to the simulation. For the purpose of this a demo a dynamics of cloud coverage over

central Europe was chosen. From the implementation perspective the demo consists of three

layers: a simulation layer (or data layer), a visualization layer and end-user layer. The three

layers were globally spatially disjoint and combined by a global interconnect. The simulation

layer was physically located in Singapore (ACRC) and the running simulation was mimicked by

incremental creation of new time step data �les in the shared �lesystem (each new �le represents

a simulation dump of a single iteration). The �lesystem based on BeeGFS was remotely shared

via In�niCortex network and used by the visualization layer to access datasets. The visualization

layer was physically located in Poland (ICM, Warsaw) and based on a dedicated visualization

server running both the remote visualization middleware and the visualization software. VisNow

(http://visnow.icm.edu.pl) was used as the visualization platform for implementation of the

whole visualization pipeline. Visualization was created to show the orography of central Europe

(static baseline layer) and the semi-transparent representation of cloud coverage was animated

looping over the available iterations. A dedicated data access module in VisNow was monitoring

the remote �lesystem for presence of new time steps. Incremental dataset di�s were read in re-

motely via a shared �lesystem. The remote visualization middleware was based on NICE Desktop
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Cloud Visualization (DCV) platform, providing a remote desktop with dedicated data streaming

for 3D OpenGL graphics and hardware compression. The end-user layer, being the interactive

visualization, was physically located in the USA (SC16, Salt Lake City) and was running on a

DCV thin client. On the DCV client-server path both In�niCortex and Internet connections were

tested.

DATA STORAGE

VISUALIZATION

REMOTE DESKTOP

Figure 11. Remote visualization work�ow

Accomplishments and problems encountered:

The proposed demo was successfully con�gured and run on a basic dataset of numerical weather

forecast. As a proof-of-concept solution the demo showed the possible application of a globally

connected supercomputer based on In�niCortex network. At the same time novel knowledge was

gathered on technical bottlenecks of the proposed visualization ecosystem and several concepts

of improvement solutions were de�ned.

Figure 12. ICM demonstration screenshot
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Some problems were encountered due to the fact that a BeeGFS parallel �le system was

being mounted over the In�niCortex. This con�guration was not tested and �ne tuned before

the demonstration leading to access time outs to the �le system.

2. In�niCortex Phase 2

Although over the last three years the In�niCortex project ran as a proof-of-concept to

demonstrate several unprecedented features, currently it is entering phase "In�niCortex 2" where

many of the features demonstrated start being integrated in production systems creating sym-

biotic collaborations and developing new projects [11].

At the beginning of the project the international connectivity was obtained through the

goodwill of several international carriers. Since 2015 Singapore has its own permanent links

with US and Europe dedicated to research. The National Supercomputing Centre of Singapore

(NSCC) currently funds the enhancement of the connectivity and through SingAREN MoUs have

been signed for co-funding of permanent international links (100 Gbps towards US with Internet2

and 10Gbps towards Europe with TEIN*CC). These links will open the world and bene�t the

entire research community in Singapore, thus creating a symbiotic relationship between several

local entities. The link to US set to open new oppotunities such as the participation in the

Global Research Platform, an international extension of the Paci�c Research Platform [3]. Similar

international connectivity are currently being negotiated with Australia and Japan.

In the next years, NSCC and A*CRC are set to work on implementing a nation-wide In�ni-

Band fabric to interconnect several academic and industrial sites in Singapore which will provide

high throughput, low latency direct connection to the supercomputing facilities in Fusionop-

olis. The �rst steps have already been made with the launch of the NSCC who has its main

stakeholders campuses (NUS, NTU, GIS) connected through In�niBand directly to the main

supercomputer. This infrastructure provides researchers in remote campuses an unparalleled �n-

gertip access to HPC resources. This initiative to allow a wide access to the HPC resources will

continue in the future under NRF funding for National Research Infrastructure.

Genome Institute of Singapore (GIS) has the largest sequencing facility in South-East Asia

at their facilities at the Genome Building, Biopolis. GIS relies on in-house storage as well as

storage in Matrix Building Biopolis (100m away) and on storage and high performance com-

pute facilities 2km away at the A*STAR Computational Resource Centre, Fusionopolis. Going

forward, GIS will be processing up to thousands of exomes on a regular basis, processing ca-

pacity needs to be ramped up to cope with this demand of several Terabytes of data per day

emerging from their sequencing labs. This means that in-house generated sequence data must

be safely stored for data regulation compliance reasons, as well as transferred and stored at re-

mote location pending computational processes such as the quality control step, read mapping

step (high memory), variant call steps (embarrassingly parallel) and annotation steps involving

di�erent types of software with di�erent hardware requirements. To avoid a data-bottleneck, we

have constructed on top of standard TCP/IP network of A*STAR's next generation ExaNet a

500Gbps In�nera CloudExpress 1 Ethernet link plus a Mellanox MetroX and Obsidian Longbow

In�niBand interconnections between Biopolis and Fusionopolis. The 500 Gbps link runs over a

dedicated dark �bre and is the fastest point-to-point link in Asia, and the fastest known link in

the world dedicated for Next Generation Sequencing (NGS) analytics. By 2017 the whole band-

width capacity between Biopolis and Fusionopolis will exceed 1.2 Tbps. In 2016, a 1 Terabyte

RAM node was installed in GIS Biopolis linked by In�niBand to the new NSCC supercomputer
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with 10 PByte storage (up to 500Gbytes/sec I/O using DDN's state-of-the-art In�nite Mem-

ory Engine, accessing a dedicated genome analytic queue on ASPIRE 1, the 1PFLOPS NSCC

supercomputer at Fusionopolis. This will become one the world fastest and biggest distributed

genome processing system and will ensure that genome analytics can be scaled up to thousands

of genomes to be processed routinely per month for biomedical research which will be a current

practice in the framework of projects like Genome Asia 100k.

Conclusions

In�niCortex project started by A*CRC under leadership of Dr Marek Michalewicz in 2014 has

gained a lot of interes both in Singapore and abroad. The A*CRC group which was responsible

for the In�niCortex project was recognized through several awards during the past few years,

the most prestigious one being the Innovative Project Gold Award from the Ministry of Trade

and Industry of Singapore in 2015 [1]. In�niBand connectivity is still regarded as a high-end

HPC oriented interconnect however features such as high-bandwidth and security which are

demonstrated advantages over the classic TCP/IP are now recommending it for production

environments outside the walls of a datacentre.

In�niCortex project could serve as a very useful prototypical infrastructure for a number of

Big Scienti�c Data projects currently being developed: i) distribution of data to the international

partners from the Square Kilometre Array [4], ii) streaming of large facilities experimental data

through the Paci�c Research Platform collaboration of DoE, ESnet and other partners in the US

and elsewhere [3], iii) the Super�cilities vision expressed by DoE [6], and iv) new architecture for

CERN LHC data processing pipeline focussing on more powerful processing facilities connected

by higher throughput connectivity [13] .

Data connectivity between key HPC centres and countries has been de�ned as one of the

priority areas of newly established EuroHPC programme. "HPC is developing to cope with the

constant increase in data volumes and �ows. A recent report projects that annual global IP tra�c

will reach 2.3 zettabytes by 2020 � or 504 billion DVDs per year." [2]

The authors are �rmly convinced that In�niCortex I project provides very well de�ned and

tested path to realising some of the goals of EuroHPC connectivity agenda.
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