
Supercomputing
Frontiers

and Innovations
2017, Vol. 4, No. 1

Scope

• Enabling technologies for high performance computing

• Future generation supercomputer architectures

• Extreme-scale concepts beyond conventional practices including exascale

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Distributed operating systems, kernels, supervisors, and virtualization for highly scalable

computing

• Scalable runtime systems software

• Methods and means of supercomputer system management, administration, and monitoring

• Mass storage systems, protocols, and allocation

• Energy and power minimization for very large deployed computers

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Parallel performance and correctness debugging

• Scientific visualization for massive data and computing both external and in situ

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA

• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany
• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• Victor Gergel, University of Nizhni Novgorod, Russia
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Alex Porozov, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia

Contents

Design and Implementation of the PULSAR Programming System for Large Scale
Computing
J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra . 4

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big
Data
R. M. Badia, E. Ayguade, J. Labarta . 27

A Survey: Runtime Software Systems for High Performance Computing
T. Sterling, M. Anderson, M. Brodowicz . 48

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit
R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex, X. Li,
L. C. McInnes, J. D. Moulton, D. Osei-Kuffuor, J. Sarich, B. Smith, J. Willenbring, U. M. Yang69

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbu-
lence Simulations at Extreme Scale
W. Tang, B. Wang, S. Ethier, Z. Lin . 83

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.

Design and Implementation of the PULSAR Programming

System for Large Scale Computing

Jakub Kurzak1, Piotr Luszczek1, Ichitaro Yamazaki1, Yves Robert2,

Jack Dongarra1

c© The Authors 2017. This paper is published with open access at SuperFri.org

The objective of the PULSAR project was to design a programming model suitable for large-

scale machines with complex memory hierarchies, and to deliver a prototype implementation of a

runtime system supporting that model. PULSAR tackled the challenge by proposing a program-

ming model based on systolic processing and virtualization. The PULSAR programming model is

quite simple, with point-to-point channels as the main communication abstraction. The runtime

implementation is very lightweight and fully distributed, and provides multithreading, message-

passing and multi-GPU offload capabilities. Performance evaluation shows good scalability up to

one thousand nodes with one thousand GPU accelerators.

Keywords: runtime scheduling, dataflow scheduling, distributed computing, massively parallel

computing, multicore processors, hardware accelerators, virtualization, systolic arrays.

Introduction

Motivation

High-end supercomputers are on the steady path of growth in size and complexity. One can

get a fairly reasonable picture of the road that lies ahead by examining the platforms that will

be brought online under the DOEs CORAL initiative. In 2018, the DOE aims to deploy three

different CORAL platforms, each over 150 petaflop peak performance level. Two systems, named

Summit and Sierra, based on the IBM OpenPOWER platform with NVIDIA GPU-accelerators,

were selected for Oak Ridge National Laboratory and Lawrence Livermore National Laboratory;

an Intel system, based on the Xeon Phi platform and named Aurora, was selected for Argonne

National Laboratory.

Summit and Sierra will follow the hybrid computing model, by coupling powerful latency-

optimized processors with highly parallel throughput-optimized accelerators. They will rely on

IBM Power9 CPUs, NVIDIA Volta GPUs, and NVIDIA NVLink interconnect to connect the

hybrid devices within each node, and a Mellanox Dual-Rail EDR Infiniband interconnect to

connect the nodes. The Aurora system, on the contrary, will offer a more homogeneous model

by utilizing the Knights Hill Xeon Phi architecture, which, unlike the current Knights Corner

model, will be a stand-alone processor and not a slot-in coprocessor, and will also include

integrated Omni-Path communication fabric. All platforms will benefit from recent advances in

3D-stacked memory technology.

Overall, both types of systems promise major performance improvements: CPU memory

bandwidth is expected to be between 200 GB/s and 300 GB/s using HMC; GPU memory

bandwidth is expected to approach 1 TB/s using HBM; GPU memory capacity is expected to

reach 60 GB (NVIDIA Volta); NVLink is expected to deliver no less than 80 GB/s, and possibly

as high at 200 GB/s, of CPU to GPU bandwidth. In terms of computing power, the Knights

Hill is expected to be between 3.6 teraFLOPS and 9 teraFLOPS, while the NVIDIA Volta is

expected to be around 10 teraFLOPS.

1University of Tennessee, Knoxville, USA
2École Normale Supérieure de Lyon, Lyon, France

DOI: 10.14529/jsfi170101

4 Supercomputing Frontiers and Innovations

Figure 1. Canonical systolic array shapes

And yet, taking a wider perspective, the challenges are severe for software developers who

have to extract performance from these systems. The hybrid computing model seems to be here

to stay, and memory systems will become even more complicated. It is clear that support for

parallelism is going to have to dramatically increase, going up by at least an order of magnitude

for the CORAL systems and achieving billion-way parallelism at exascale. The PULSAR project

attempts to tackle these challenges with a simple programming model, based on the systolic

processing model, augmented with virtualization. The programming model is simple and so is

the runtime implementation. Processing is completely distributed and, therefore, very scalable.

Background

Systolic arrays are descendants of array-like architectures such as iterative arrays, cellular

automata and processor arrays. A systolic array is a network of processors that rhythmically

compute and pass data through the system. The seminal paper by Kung and Leiserson [42]

defines systolic arrays as devices with “simple and regular geometries and data paths” with

“pipelining as general methods of using these structures”.

The systolic array paradigm is a departure from the von Neuman paradigm. While the

von Neuman architecture is instruction-stream-driven by an instruction counter, the systolic

array architecture is data-stream-driven by data counters. A systolic array is composed of

matrix-like rows of units called cells or Data Processing Units (DPUs). DPUs operation is

transport-triggered, i.e., triggered by the arrival of a data object. The DPUs are connected

in a mesh-like topology (often two-dimensional). Each DPU is connected to a small number

of nearest neighbor DPUs and performs a sequence of operations on data that flows through

it. Often different data streams flow across the mesh in different directions. Figure 1 shows

three canonical shapes of systolic arrays: square can be used for a dense matrix multiplication,

diamond for a band matrix factorization, triangle for a dense matrix factorization.

Early on, Kung identified the main strength of systolic arrays as ability to addressing the

problem of the I/O bottleneck: “Thus, a problem what was originally compute-bound can become

I/O-bound during its execution. This unfortunate situation is the result of a mismatch between

the computation and the architecture. Systolic architectures, which ensure multiple computations

per memory access, can speed up compute-bound computations without increasing I/O require-

ments” [41]. Other valuable properties of systolic arrays include highly scalable parallelism,

modularity, regularity, local interconnection, high degree of pipelining, and highly synchronized

multiprocessing.

Closely related to systolic arrays is the concept of wavefront arrays, where global synchro-

nization is replaced by dataflow principles. Wavefront arrays are derived by tracing computa-

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 5

tional wavefronts in the algorithm, and pipelining these wavefronts on the processor array. The

computing network serves as a data-wave-propagating medium.

The computational wavefronts are data-driven. In a sense, they are similar to electromag-

netic wavefronts, since each processor acts as a secondary source and is responsible for the

activation of the next front. Despite the lack of global timing, the sequencing of tasks is cor-

rectly followed. Whenever data are available, the sender informs the receiver and the receiver

accepts the data whenever required. This scheme can be implemented through a simple hand-

shaking protocol, which ensures that the computational wavefronts propagate in an orderly

manner. Wavefront arrays share the features of regularity, modularity, local interconnection,

and pipelining: “A wavefront array equals a systolic array plus dataflow computing” [43].

Most importantly, computations expressed as a Direct Acyclic Graph (DAG) can be mapped

to an array processor, by assigning multiple nodes of the DAG to each processing element, as

long as the DAG is uniform (shift-invariant). Examples of algorithms, which belong to this class

include: convolution, autoregressive filtering, discrete Fourier transforms and an array of dense

linear algebra algorithms - matrix multiplication, LU factorization, QR factorization, triangular

matrix inversion, and more.

The origins of systolic arrays can be traced back to parallel array computers such as the

Solomon computer [29] and its successor ILLIAC IV [7, 40]. At the peak of interest in the mid

80s systolic arrays targeted special-purpose algorithm-oriented VLSI implementations, often as

attached processors. The ideas also led to the design of the Warp machines [3], which were a series

of increasingly general-purpose systolic array processors created by Carnegie Mellon University

in conjunction with industrial partners: G. E., Honeywell and Intel, and funded by the U. S.

Defense Advances Research Projects Agency (DARPA). Interest in systolic arrays died off by

early 90s, mostly due to the high cost of implementing them as special-purpose hardware during

a time in which Moore’s law was relentlessly increasing the computing power and decreasing the

cost of general-purpose processors.

In their seminal paper [42], Kung and Leiserson applied systolic arrays to problems in

dense linear algebra: matrix multiplication, Gaussian elimination, and triangular solve. They

also pointed out applications in signal processing: convolution, Finite Impulse Response (FIR)

filter, and discrete Fourier transform. A large body of work on systolic arrays was devoted to

applications in dense linear algebra [1, 6, 8, 17, 28, 46, 56].

Despite the loss of interest in systolic arrays per se, systolic principles lead to a series of

efficient algorithms for general-purpose computer systems, the prime example being a series

of algorithms for matrix multiplication, including: Cannon’s [10], Fox’s [26], BiMMeR [30],

PUMMA [16], SUMMA [58], and DIMMA [15].

The paper by Fisher and Kung [24] offers an extensive overview of systolic array literature.

General discussion and motivation for systolic arrays is given by Kung [41], and Fortes and

Wah [25]. Systematic treatment of the topic is provided by Robert [52, 53] and Evans [22]. The

paper by Kung [43] coins the term wavefront arrays and discusses the mapping of task graphs

to systolic architectures. The paper by Johnsson et al. [32] talks about general purpose systolic

arrays that can be applied to a wider range of problems (reconfigurable computing).

Related Work

The emerging Exascale programming models, including languages, draw from the PGAS

(Partitioned Global Address Space) and APGAS (Asynchronous PGAS) efforts. These efforts

Design and Implementation of the PULSAR Programming System for Large Scale...

6 Supercomputing Frontiers and Innovations

include the DARPA-sponsored HPCS (High Productivity Computing Systems) program [21]

which stressed productivity rather than performance, with the latter being the prerequisite

for the former. The older PGAS languages include Titanium [4, 19, 37–39, 44, 45, 50], UPC

(Unified Parallel C) [11, 18], and CAF (Co-Array Fortran) [23, 51]. They use the concept of

globally visible address space with an explicit handling of addresses that are non-local. The

ongoing efforts in the Fortran community ensure continuous support for CAF functionality as

exemplified by CAF 2.0 [31, 48, 49, 54] and incorporation of some of the CAF features into the

Fortran 2008 standard [55]. The DARPA’s HPCS program introduced three more languages into

the space: Fortress [2, 33], X10 [59], and Chapel (Cascade High Productivity Language) [12, 13].

The last two are still maintained by IBM and Cray, respectively. A recent resurgence of activity

around shared memory programming resulted in the OpenSHMEM [14] project that borrows

some ideas from the PGAS model, but is much more library-centric, as opposed to requiring a

completely new programming language.

The other approach to achieving good performance on the current Petascale and future

Exascale hardware designs is to use software runtime systems. Two notable projects in this cat-

egory are Charm++ [36] and PaRSEC [9], which deal with algorithms and their implementation

represented as a Direct Acyclic Graph (DAG) of tasks connected with edges that communicate

data between them – a concept clearly related to the dataflow paradigm. Many other systems

offer similar paradigm but might not afford the same type of support for distributed memory

parallelism [5, 47].

A new execution model has been argued by the authors of ParalleX [27, 34, 35] and im-

plemented by the HPX project [57] that now serves as a clear need for extensions of the C++

standard. Codelets Execution Model [20] can also be considered in the category of the new

models of computation.

Outline

The rest of the paper is organized as follows. We describe the PULSAR programming model

in Section 1, and further explain the construction and operation of a PULSAR instance in

Section 2. We outline the runtime implementation in Section 3. Then the following sections

are devoted to the detailed description of an example, namely Cannon’s algorithm. We briefly

review the algorithm in Section 5 and report performance results in Section 6. Finally, we state

some final remarks in Section 6.

1. Programming Model

The PULSAR programming model relies on five abstractions to define the computation:

VSA, VDP, channel, packet, tuple; and on two abstractions to map the computation to the

actual hardware: thread, device. Figure 2 conveys the basic ideas.

Virtual Systolic Array (VSA) A set of VDPs connected with channels.

Virtual Data Processor (VDP) The basic processing element in the VSA.

Channel A point-to-point connection between a pair of VDPs.

Packet The basic unit of information transferred in a channel.

Tuple A unique VDP identifier.

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 7

Figure 2. A VDP (left) and a VSA (right)

Thread Synonymous with a CPU thread or an entire (multicore) CPU.

Device Synonymous with an accelerator device (GPU, Xeon Phi, etc.)

The sections to follow describe the roles of the different entities, how the VDP operation is

defined, how the VSA is constructed, and how the VSA is mapped to the hardware. These oper-

ations are accessible to the user through PULSAR’s Application Programming Interface (API).

Because this API is quite small (12 core functions and 6 auxiliary functions), actual function

names are used when describing the different actions. Currently, PULSAR is implemented in C

and exports C bindings.

1.1. Tuple

Tuples are strings of integers. Each VDP is uniquely identified by a tuple. Tuples can be of

any length, and different length tuples can be used in the same VSA. Two tuples are identical

if they are of the same lengths and have identical values of all components. Tuples are created

using the variadic function prt tuple new, which takes a (variable length) list of integers as its

input. The user only creates tuples; after creation, the tuples are passed to VDP and channel

constructors. They are destroyed by the runtime at the appropriate time of destroying those

objects. As a general rule in PULSAR, the user only creates objects and loses their ownership

after passing them to the runtime.

1.2. Packet

Packets are basic units of information exchanged through channels connecting VDPs. A

packet contains a reference to a continuous piece of memory of a given size. Conceptually,

packets are created by VDPs. The user can use the VDP function prt vdp packet new to create

a new packet. A packet can be created from preallocated memory by providing the pointer.

Alternatively, new memory can be allocated by providing a NULL pointer. The VDP can fetch

a packet from an input channel using the prt vdp channel pop function, and push a packet

to an output channel using the prt vdp channel push function. The prt vdp packet release

function can be used to discard a packet. This does not translate to immediate deallocation,

since a packet can have multiple active references. The runtime discards a packet when the

number of active references goes down to zero. The VDP does not lose the ownership of the

Design and Implementation of the PULSAR Programming System for Large Scale...

8 Supercomputing Frontiers and Innovations

packet after pushing it to a channel. The packet can be used until the prt vdp packet release

function is called.

1.3. Channel

Channels are unidirectional point-to-point connections between VDPs, used to exchange

packets. Each VDP has a set of input channels and a set of output channels. Packets can

be fetched from input channels and pushed to output channels. Channels in each set are

assigned consecutive numbers starting from zero (or slots). Channels are created using the

prt channel new function and providing tuples of source and destination VDPs, and slot num-

bers in the source and destination VDPs. The user does not destroy channels. The runtime

destroys channels at the time of destroying the VDP. After creation, the channel needs to be

inserted in the appropriate VDP, using the prt vdp channel insert function. The user needs

to insert a full set of channels to each VDP. At the time of inserting the VDP in the VSA, the

system joins channels that identify the same communication path.

1.4. VDP

The VDP is the basic processing element of the VSA. Each VDP is uniquely identified

by a tuple. The VDP is assigned a function which defines its operation. Within that function,

the VDP has access to a set of global parameters, its private, persistent local storage, and its

channels. The runtime invokes that function when there are packets in all of the VDP’s input

channels. This is called firing. When the VDP fires, it can fetch packets from its input channels,

call computational kernels, and push packets to its output channels. It is not required that these

operations are invoked in any particular order. The VDP fires a prescribed number of times.

When the VDP’s counter goes down to zero, the VDP is destroyed. The VDP has access to its

tuple and its counter.

At the time of the VDP creation, the user specifies if the VDP resides on a CPU or on an

accelerator. This is an important distinction, because the code of a CPU VDP has synchronous

semantics, while the code of an accelerator VDP has asynchronous semantics. In other words, for

a CPU VDP, actions are executed as they are invoked, while for an accelerator VDP, actions are

queued for execution after preceding actions complete. In the CUDA implementation, each VDP

has its own stream. All kernel invocations have to be asynchronous calls, placed in the VDP’s

stream. Similarly, in the case of an accelerator VDP, all channel operations have asynchronous

semantics.

1.5. VSA

The VSA contains all VDPs and their channel connections, and stores the information about

the mapping of VDPs to the hardware. The VSA needs to be created first and then launched. An

empty VSA is created using the prt vsa new function. Then VDPs can be inserted in the VSA

using the prt vsa vdp insert function. Then the VSA can be executed using the prt vsa run

function, and later destroyed using the prt vsa delete function.

At the time of creation, using the prt vsa new function, the user provides the number

of CPU threads to launch per each distributed memory node, and the number of accelerator

devices to use per each node. The user also provides a function for mapping VDPs to threads,

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 9

prt packet t *packet = prt vdp packet new(vdp, ...);
kernel that writes(..., packet->data, ...);
prt vdp channel push(vdp, slot, packet);
prt vdp packet release(vdp, packet);

prt packet t *packet = prt vdp channel pop(vdp, slot);
kernel that modifies(..., packet->data, ...);
prt vdp channel push(vdp, slot, packet);
prt vdp packet release(vdp, packet);

prt packet t *packet = prt vdp channel pop(vdp, slot);
prt vdp channel push(vdp, slot, packet);
kernel that reads(..., packet->data, ...);
prt vdp packet release(vdp, packet);

for (v = 0; v < vdps; v++) {
prt vdp t *vdp = prt vdp new(...);
for (in = 0; in < inputs; in++) {

prt channel t *input = prt channel new(...);
prt vdp channel insert(vdp, input, ...);

}
for (out = 0; out < outputs; out++) {

prt channel t *output = prt channel new(...);
prt vdp channel insert(vdp, output, ...)

}
prt vsa vdp insert(vsa, vdp, ...);

}

Figure 3. Code snippets for VDP operation (left) and VSA construction (right)

and another for mapping VDPs to devices. These functions have to return the global thread or

device number, based on the VDP’s tuple and the total thread count or device count.

VSA construction can be replicated or distributed. The replicated construction is more

straightforward from the user’s perspective. In the replicated construction, each MPI process

inserts all the VDPs, and the system filters out the ones that do not belong in a given node,

based on the VDP-to-thread and the VDP-to-device function. However, the VSA construction

process is inherently distributed, so each process can also insert only the VDPs that belong in

that process.

2. Construction and Operation

The VSA is first constructed, and then launched. The VSA is constructed by creating all

VDPs and inserting them in the VSA. Each VDP, in turn, is constructed by creating all its

channels and inserting then in the VDP. The operation of the VSA is defined through the

operation of its VDPs. VDPs operate by launching computational kernels, and communicating

by writing and reading packets to and from their channels.

2.1. VSA Construction and Launching

Figure 3 shows a simple code snippet for VSA construction. A VSA is created using the

prt vsa new function, which returns a new VSA with an empty set of VDPs. After creation, the

VSA has to be populated with VDPs. Then the VSA can be launched using the prt vsa run

function. After execution, the VSA can be destroyed using the prt vsa delete function. The

function destroys all resources associated with the VSA.

2.2. VDP Creation and Insertion

Figure 3 shows simple code snippets of VDP operation. A VDP is created using the

prt vdp new function. The function returns a pointer to a new VDP with empty sets of in-

put and output channels. After creation, the VDP has to be populated with channels. Then the

VDP can be inserted into the VSA using the prt vsa vdp insert function. The user does not

free the VDP. At the time of calling prt vsa vdp insert, the runtime takes ownership of the

VDP. The VDP will be destroyed in the process of the VSA execution or at the time of calling

prt vsa delete.

Design and Implementation of the PULSAR Programming System for Large Scale...

10 Supercomputing Frontiers and Innovations

The user has to define the VDP function. The runtime invokes that function when packets

are available in all of the VDP channels, which is called firing. Inside that function, the user has

access to the VDP object. In particular, the user has access to its tuple, counter, local store and

global store. global store is the read-only global storage area, passed to the VSA at the time

of its creation. local store is the VDP private local storage area, which is persistent between

firings. tuple is the VDP unique tuple, assigned at the time of creation. counter is the VDP

counter. At the first firing, the counter is equal to the value assigned at the time of the VDP

creation. At each firing the counter is decremented by one. At the last firing the counter is equal

one.

2.3. Channel Creation and Insertion

A channel is created using the prt channel new function. After creation, the channel can

be inserted into the VDP using the prt vdp channel insert function. The user does not free

the channel. At the time of calling prt vdp channel insert, the runtime takes ownership of

the channel. The channel will be destroyed in the process of the VSA execution or at the time

of calling prt vsa delete.

2.4. Mapping of VDPs to Threads and Devices

The user defines the placement of VDPs on CPUs and GPUs by providing the mapping

function at the time of the VSA creation with prt vsa new. The runtime calls that function for

each VDP and passes as parameters: the VDP tuple, the pointer to the global store, the total

number of CPU threads at the VSA disposal in that launch, and the total number of devices in

that launch.

The function has to return the mapping information in an object of type prt mapping t,

with the fields location and rank, where the location can be either PRT LOCATION HOST or

PRT LOCATION DEVICE, and the rank indicates the global rank of the unit.

2.5. VDP Operation

This section describes actions which can take place inside the VDP function, i.e., the function

passed to prt vdp new. The user never calls that function; it is called by the runtime when

packets are available in all active input channels of the VDP. Inside that function, computational

kernel can be launched and packets can be created, deleted, pushed down output channels and

fetched from input channels.

A new data packet can be created by calling the prt vdp packet new function and released

by calling the prt vdp packet release function. The runtime will keep the packet and its data

around until it completes all pending operations associated with the packet. However, the packet

and its data should not be accessed after the release operation.

A packet can be received by calling the prt vdp channel pop function, and sent by calling

the prt vdp channel push function. The packet is still available to the VDP after calling the

send function and can be used and repeatedly sent until it is released.

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 11

2.6. Channel Deactivation and Reactivation

A channel can be deactivated by the VDP by calling the prt vdp channel off function.

This indicates to the runtime that it can schedule the VDP (call the VDP function) without

checking if there are packets in that channel. The VDP should not attempt to read packets from

an inactive channel.

A channel can be reactivated by the VDP by calling the prt vdp channel on function. This

indicates to the runtime that it cannot schedule the VDP (call the VDP function) if there are

no incoming packets in that channel. By default, channels are active.

2.7. Handling of Tuples

A new tuple can be created by calling the variadic function prt tuple new. A tuple has

to have at least one element. There is no upper limit on the number of elements. Tuples are

dynamically allocated strings or integers, with the INT MAX constant at the end, serving as the

termination symbol. As such, tuples can be freed by calling the C standard library free function.

However, tuples should not be freed after passing them to the PULSAR runtime. The runtime

will free all such tuples during its operation or at the time of calling prt vsa delete.

3. Runtime Implementation

Figure 4 shows the main objects in the runtime implementation and their relations. The VSA

is the top-level object containing multiple threads and devices, threads being synonymous with

CPU cores, and devices being synonymous with accelerator devices. It also contains a single

instance of the communication proxy, which is a server-like object responsible for managing

inter-node (MPI) and intra-node (PCI) communication. Each thread and device maintains a list

of multiple VDP. Each VDP maintains two separate lists of channels, one for input channels,

one for output channels. Each channel maintains a list of packets.

In a CPU-only scenario, there may be no devices; in a GPU-only scenario, there may be no

threads. Depending on the distribution of VDPs to threads and devices, any particular thread

or device may end up with an empty list of VDPs. There may be VDPs with no input channels

- pure data producers, as well as VDPs with no output channels - pure data consumers. In

practical scenarios, most VDPs will have a number of input and output channels. A list of

packets in a channel will grow and shrink at runtime.

3.1. Tuple

Tuples are implemented as strings of integers, terminated with the INT MAX marker. Tuples

support copy, concatenation and two types of comparisons. One checks for an exact match in

size and content, the other implements lexicographical ordering.

3.2. Packet

A packet is the basic unit of data in PULSAR. It contains a pointer to a memory region and

its size and the number of active references to the packet. A packet can be actively being used

by a VDP while also residing in multiple channels. A VDP can keep using a packet after pushing

Design and Implementation of the PULSAR Programming System for Large Scale...

12 Supercomputing Frontiers and Innovations

Figure 4. Structure of PULSAR runtime

it to a channel, or it can push it to multiple channels to implement a broadcast or multi-cast

operation.

While the packet is a very simple concept in the context of a CPU implementation, support

for accelerators introduces an additional level of complexity, due to the fact that accelerators have

separate memories. A shared-memory system with multiple accelerators basically looks to the

programmer like a distributed-memory, global address space system. To handle this situation,

PULSAR runtime keeps track of the location of the packet, which can be either in the host

(CPU) memory, or in the memory of one of the accelerators. This is the reason a packet is not a

stand-alone object, but is subordinate to a VDP. Packets are created by VDPs and inherit their

initial locations from the VDPs that create them.

Another level of complexity is introduced by the fact that PULSAR cannot rely on CUDA

functions for device memory allocations, without sacrificing asynchronous semantics, since

CUDA allocations cannot be executed in a stream. Because of that, PULSAR implements its

own device memory allocator, which grabs a large chunk of the device memory at the time of

initialization, and assigns memory segments asynchronously at runtime. Currently, the imple-

mentation is very simple, with fixed size (configurable) segments and fixed size (also configurable)

initial reservation. PULSAR maintains one such allocator per device, and each packet maintains

a reference to its allocator.

3.3. Channel

Channels are packet carriers between VDPs. A channel knows the tuples and slots of its

source and destination VDPs, and maintains a list of packets. A channel also knows the numbers

(MPI ranks) of the nodes, where the source and destination VDPs reside, as well as its unique

tag for MPI communication between the pair of nodes it connects. A channel connecting to a

device VDP is also assigned a unique stream to allow for asynchronous communication (one that

does not block kernel launches).

A channel provides two services to the VDP, fetching a packet (the pop operation), and

sending a packet (the push operation). A VDP is only fired when there are packets in all its

active input channels. Therefore, the pop operation is trivial, and simply fetches a packet from

the queue. All the complexity of communication is in the push operation, which takes appropriate

actions, depending on the boundaries crossed by the channel. If the source and the destination

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 13

VDPs are both CPU VDPs, residing in the same node, the operation is as simple as moving

the packet from one queue to another. Things are more complicated if the channel crosses node

boundaries, in which case MPI is invoked. Yet a different scenario is implemented if a boundary

between a host memory and a device memory has to be crossed. And finally, the most complex

case is invoked when a packet residing in device memory is sent across the network. The last case

results in a sequence of CUDA callbacks and non-blocking MPI calls, initiated by the channel

and carried out by the communication proxy, with support from the CUDA runtime and MPI.

As an extension to the basic programming model, a channel contains an active/inactive

flag, which allows the VDP for suspending channel activities. By deactivating a channel, the

VDP pledges to not pop packets from that channel, which allows the VDP to fire with that

channel being empty. Newly created channels are active by default. A VDP can deactivate and

re-activate channels at will, as long as it does not attempt to fetch packets from an inactive

channel.

3.4. VDP

A VDP is the basic execution unit of the VSA. A VDP knows its tuple and counter, and

the lists of input and output channels. It is assigned a function, local store and global store.

Support for accelerators requires a VDP to also know its location, i.e., if it is assigned to a CPU

or an accelerator, and which accelerator, if there are multiple of them in a node. An accelerator

VDP is also assigned its unique stream, so that multiple VDPs can execute at the same time,

in different streams, and also kernel launches can overlap data transfers.

In order to hide the complexity of managing the memory system within a single node

(host plus multiple devices), the VDP provides more abstract functions for accessing lower-level

functions of packets and channels. Specifially, rather than calling packet and channel methods

directly, the user calls VDP methods to perform operations on packets and channels. E.g., to

create a packet, the user calls the VDP function prt vdp packet new, so that the packet can

inherit its initial location from the creator VDP. For consistency, a packet is released by the

VDP upon calling the function prt vdp packet release. Similarly, channels are accessed by

VDP functions prt vdp channel push and prt vdp channel pop. First, this is consistent with

the handling of packets. Second, the user designates channels by using their slot numbers, rather

than references, which slightly increases the level of abstraction.

3.5. Threads and Devices

Threads and devices are internal PULSAR objects not directly accessed by the user. The

user only deals with them indirectly by providing formulas for mapping of VDPs to threads and

devices. Threads and devices know their local (within a node) and global ranks, and maintain

lists of VDPs.

The main reason for the distinction between CPU threads and GPU devices is the syn-

chronous behavior of the former and asynchronous behavior of the latter. While the code of

a CPU VDP is expected to have the usual synchronous nature, the code of a GPU VDP is

expected to be fully asynchronous. The reason is the asymmetry in the programming models

for CPUs and GPUs, in which GPUs are not fully autonomous devices. Most of their actions

have to be initiated by a CPU thread, and synchronous GPU code locks up the controlling

thread. In a multi-GPU setup, this can be remedied by putting a separate CPU thread in charge

Design and Implementation of the PULSAR Programming System for Large Scale...

14 Supercomputing Frontiers and Innovations

of controlling each GPU. This still leaves the problem with asynchronous communication and

multi-stream execution.

The requirement for the GPU VDPs to only contain asynchronous calls allows for maximum

performance and the simplest runtime implementation. A single CPU thread is sufficient to

launch all the computation and communication to multiple GPUs, and in the actual PULSAR

implementation, it is the same thread that is also responsible for all MPI transactions.

3.6. VSA

The VSA is the main object in PULSAR, containing all the top-level information about the

system, including: the total number of nodes and the rank of the local node, the number of CPU

threads launched per node, and the number of GPU devices used per node. It contains the lists

of threads and devices, and the communication proxy. It also contains a number of auxiliary

structures, like a lookup table of local VDPs, and a list of channels connecting the local node

to other nodes, as well as the list of memory allocators for all local devices.

The most complicated function provided by the VSA is VDP insertion. First, the VSA

evaluates the mapping function to find out the VDP location. VDPs that do not belong in the

local node, are immediately discarded. VDPs that do belong in the local node, are inserted in

the appropriate thread or device, depending on the location returned by the mapping function.

Then local channels are merged. Each VDP is inserted with a complete set of channels. If

the newly inserted VDP has channels connecting to other VDPs, inserted before, each pair of

duplicate channels is merged into one channel. To support this operation, the VSA maintains a

hash table, where the VDPs can be looked up by their tuples.

Then a unique (MPI) tag is assigned to each channel going out of the node. All channels

connecting each pair of nodes have consecutive tags. This is necessary, because PULSAR im-

plements VDP-to-VDP communication on top of MPI. MPI messages are received with the

MPI ANY SOURCE, MPI ANY TAG flags and the destination VDP identified by the rank of the ori-

gin and the tag of the channel. Consecutive numbering of tags connecting each pair of nodes,

as opposed to, e.g., global numbering in the whole system, prevents the problem of exhausting

the 16-bit tag size limit of older MPI implementations. To support this operation, the VSA

maintains lists of channels connecting the local node to all other nodes.

Finally, at the time of inserting a device VDP, a unique stream is created and assigned to

the VDP to enable its asynchronous operation.

At the time of launch, the VSA basically launches threads and waits for their completion.

Each CPU thread carries out its own execution. For a CPU-only run, nothing more is required. If

the run is distributed and/or accelerators are involved, the VSA launches an extra thread for the

proxy, which carries out the firings of device VDPs, as well as the MPI and PCI communication.

3.7. Proxy

The proxy carries out all tasks of asynchronous nature, including communication and firing

of device VDPs. For the purpose of communicating, threads and devices register with the proxy

as agents. The proxy maintains a list of sends requested, per agent, and sends posted, per agent.

It also maintains a list of outstanding receive requests, one for all agents, as well as a list of

outstanding local transfers, also one for all agents. During execution, the proxy continuously

loops over the following actions:

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 15

• Post another send for each agent.

• Complete another send for each agent.

• Post another receive.

• Complete another receive.

• Cycle each device, i.e., fire another VDP on each device.

• Issue all local communications.

The most complicated transfer that may happen in the system is when a GPU sends a

packet across the network. Figure 5 illustrates that situation. The following sequence of events

takes place:

1. In the VDP function, the prt vdp channel push function is called do push a packet down

a channel. At this point, the packet resides in device memory. A CUDA callback is placed

in the VDP stream, to trigger the transfer, when all preceding VDP operations complete.

2. CUDA runtime executes the callback, which places the transfer request in proxy’s list of

local requests.

3. The proxy handles the transfer request by placing asynchronous device-to-host memory

copy, across the PCI, in the outbound stream associated with the channel performing the

communication.

4. The proxy follows up with placing a callback in the channel’s outbound stream, to trigger

a transfer across the network, when the PCI transfer completes.

5. CUDA runtime executes the callback, which places the transfer request in the proxy’s list

of local requests.

6. The proxy places a send request in the list of sends requested by the device.

7. The proxy issues the MPI Isend action, and moves the request from the list of sends re-

quested to the list of sends posted.

8. The proxy tests the send request for completion. When the request completes, the proxy

removes the request from the list of sends posted and releases the packet.

A similar, although not identical, sequence of actions happens on the receiving side, where

the message is received, the destination VDP identified, and appropriate steps taken depending

on its location. Specifically, if the destination VDP resides in one of the devices, a transfer

across the PCI is queued with the proxy. As long as the sequence is, there are no shortcuts

here, since potentially two PCI buses and the network interface have to be crossed by the data.

Little can be done about the latency of such transfers, however, all the emphasis in PULSAR

is on latency hiding, rather than minimizing. The objective is to keep the buses and network

interfaces saturated by multiple transfers going on at any given point in time.

4. Software Engineering

Although being an experimental project, PULSAR has a quite robust implementation. PUL-

SAR is coded in C in a fairly object-oriented manner, and would be very suitable for a C++

implementation. PULSAR is very compact with only 21 .c files, 22 .h files and 6,600 lines of code.

The compactness and clear structure is mostly thanks to the very crisp abstractions established

in the design process (VDP, VSA, channel, packet, etc.)

PULSAR has very few software dependencies. At the minimum, it requires Pthreads, and

can be optionally compiled with MPI support and/or CUDA support. The build process involves

compiling the sources and creating a library from the object files. Using MPI requires providing

Design and Implementation of the PULSAR Programming System for Large Scale...

16 Supercomputing Frontiers and Innovations

proxyproxyCUDACUDA MPIMPI

MPI_Isend(
 proxy->send_requests)

MPI_Test(
 proxy->send_requests)

queue_append(
 proxy->local_requests,
 DEVICE->HOST->MPI)

queue_append(
 proxy->send_requests,
 DEVICE->HOST->MPI)

VDPVDP

prt_vdp_channel_push
 cudaStreamAddCallback(
 vdp->stream,
 DEVICE->HOST->MPI) queue_append(

 proxy->local_requests,
 DEVICE->HOST->MPI)

cudaMemcpyAsync(
 cudaMemcpyDeviceToHost,
 channel->outbound_stream)

cudaStreamAddCallback(
 channel->outbound_stream,
 DEVICE->HOST->MPI)

1

2

3

4

5

6

7

8

Figure 5. Timeline for a transfer originating from a GPU and involving MPI

the -DMPI flag in the compilation options and linking the application with an MPI library, in

addition to the PULSAR library. The same goes for CUDA with the -DCUDA flag. At the same

time, the use of #define directives is avoided thorughout the code. Instead of conditional blocks

of code handling MPI and CUDA, the code is written as if MPI and CUDA were present. If

they are not, a set of empty MPI/CUDA stub functions is included.

PULSAR only depends on the most basic data structures: a non-thread-safe double-linked

list, a thread-safe double-liked list (implemented by protecting the non-thread-safe one with

Pthread spinlocks), and a hash table. The basic linked list and hash table are implemented

themselves as dependency-free, stand-alone structures.

PULSAR contains its own tracing routines, based on recording time of different events and

writing an SVG file at the end of execution. PULSAR records computational tasks on CPUs

and GPUs (VDP firings), MPI communications, and CUDA data transfers. CPU timestamps

are taken using get time of day, GPU timestamps are take using cudaEventRecord.

PULSAR code, including the runtime (PRT) and examples, is available on the project

website (https://bitbucket.org/icl/pulsar), which also contains extensive documentation,

including: installation instructions, users’ guide, reference manual, etc. The code is documented

using Doxygen and the reference manual is produced automatically from Doxygen annotations.

A simple version is available in HTML and an extended version in PDF, where function call

graphs and data structures dependency graphs are also included.

5. Cannon’s Matrix Multiplication

Cannon’s algorithm for matrix multiplication is arguably the best known systolic algorithm.

Here it makes for a perfect example due to its simplicity and compactness of implementation.

Figure 6 shows the basic principle of Cannon’s algorithm. A two-dimensional (2D) mesh of

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 17

processors is used to compute the matrix product, C = A × B, by rotating the A matrix from

left to right, and the B matrix from top to bottom, while each processor computes a block of C.

Figure 6. Cannon’s matrix multiplication algorithm

Figure 7 shows the PULSAR code for the construction of the VSA. The basic premise of the

implementation is to built a 2D mesh of VDPs, and let each VDP compute one tile of the result

matrix C. Here nb is the size of each tile, and nt is the width and height of the matrix (number

of tiles). The code loops over the vertical and horizontal dimensions of the matrix and, for each

tile, creates a VDP, creates four channels (two vertical, two horizontal), inserts the channels in

the VDP, and inserts the VDP in the VSA.

Each VDP holds its local tile of the C matrix, as well as its local tiles of matrices A and B,

which are distributed in a skewed fashion, as depicted on Figure 6, i.e., tiles of the B matrix are

shifted by one vertically, from column to column, and tiles of A are shifted by one horizontally,

from row to row. All channels are initially inserted as inactive, so that each VDP can be launched

without any data in the input channels, compute the local part of the product, send its local

tile of A to the right, and send its local tile of B down.

Figure 8 shows a complete code of a VDP implementing the Cannon’s algorithm. It starts

with the declarations section, where tile size (nb) and matrix size (nt) are retrieved from

global store, the location of the VDP tile in the matrix (m,n) is retrieved from the VDP

tuple, an alias is created to the local store. The done variable is declared because the cuBLAS

calls require passing of the constant by reference.

The first half of the code handles the first step, when the VDP’s counter equals to the size of

the matrix. If the VDP is a device VDP (is assigned to a GPU), then cuBLAS initializations are

handled in the first step (creating cuBLAS handle and associating it with the VDP’s stream).

Then the local tile A is pushed to the right and the local tile of B is pushed down. Then the local

product is computed, either using a cuBLAS call or a CBLAS call, depending on the VDP’s

location. Finally, the input channels are activated to provide data for the next step.

In the followup steps, a tile of A is read from the left and passed to the right, unless it is

the last step of the algorithm (VDP reaches one). Tiles of B are handeld in the same manner,

passing downwards. Then the product is computed using an appropriate call (either cuBLAS or

CBLAS), and finally the transient packets, used for transfers of A and B, are released.

Design and Implementation of the PULSAR Programming System for Large Scale...

18 Supercomputing Frontiers and Innovations

#define LEFT INPUT 0
#define RIGHT OUTPUT 0
#define UPPER INPUT 1
#define LOWER OUTPUT 1
void vsa init(prt vsa t *vsa, int nb, int nt) {

int m;
int n;
for (m = 0; m < nt; m++) {

for (n = 0; n < nt; n++) {

prt vdp t *vdp = prt vdp new(
prt tuple new2(m, n), nt,
vdp func dgemm, sizeof(local store t), 2, 2);

prt channel t *channel;
channel = prt channel new(

nb*nb*sizeof(double),
prt tuple new2(m, n > 0 ? n-1 : nt-1), RIGHT OUTPUT,
prt tuple new2(m, n), LEFT INPUT);

prt channel off(channel);
prt vdp channel insert(vdp, channel, PRT INPUT CHANNEL);

channel = prt channel new(
nb*nb*sizeof(double),
prt tuple new2(m, n), RIGHT OUTPUT,
prt tuple new2(m, n+1 < nt ? n+1 : 0), LEFT INPUT);

prt vdp channel insert(vdp, channel, PRT OUTPUT CHANNEL);

channel = prt channel new(
nb*nb*sizeof(double),
prt tuple new2(m > 0 ? m-1 : nt-1, n), LOWER OUTPUT,
prt tuple new2(m, n), UPPER INPUT);

prt channel off(channel);
prt vdp channel insert(vdp, channel, PRT INPUT CHANNEL);

channel = prt channel new(
nb*nb*sizeof(double),
prt tuple new2(m, n), LOWER OUTPUT,
prt tuple new2(m+1 < nt ? m+1 : 0, n), UPPER INPUT);

prt vdp channel insert(vdp, channel, PRT OUTPUT CHANNEL);

prt vsa vdp insert(vsa, vdp);
}

}
}

Figure 7. VSA implementing the Cannon’s algorithm

6. Performance Experiments

PULSAR’s capabilities are demonstrated using a simple weak scaling experiment carried out

on up to 1024 nodes of the Titan supercomputer. Each node contains a 16-core AMD Interlagos

CPU and one NVIDIA Tesla K20X GPU. In this experiment, the nodes are assigned in a square

array of size 2 × 2, 4 × 4, 8 × 8, 16 × 16 and 32 × 32. Each node is assigned a 4 × 4 array of

tiles, where each tile is of size 2048 × 2048. Runs are made using CPUs only or GPUs only.

Multithreaded BLAS is used for the CPU runs and cuBLAS is used for the GPU runs.

Figure 9 shows the scaling. The dashed lines show ideal scaling, taking the smallest parallel

case (2 × 2 nodes) as the reference point. Figure 10 shows an execution trace of a small CPU

run (2 × 2 nodes, 2 × 2 tiles per node, 2048 × 2048 tiles). Figure 11 shows an execution trace of

the same run using GPUs. In the CPU trace, the timeline of each node is represented by two

lines. The first one shows the execution of the matrix multiplications. The second one shows

invocations of communication tasks. In the case of communication tasks, only the duration of

asynchronous MPI calls is registered (not duration of the actual communication), which results

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 19

void vdp func dgemm(prt vdp t *vdp) {
int nb = ((global store t*)vdp->global store)->nb;
int nt = ((global store t*)vdp->global store)->nt;
int m = vdp->tuple[0];
int n = vdp->tuple[1];
local store t *local store = (local store t*)vdp->local store;
double done = 1.0;

// IF first step.
if (vdp->counter == nt) {

// IF device VDP.
if (vdp->location == PRT LOCATION DEVICE) {

cublasStatus t cublas status;
cublas status = cublasCreate(&local store->cublas handle);
cublas status = cublasSetStream(local store->cublas handle, vdp->stream);

}
// Push local A right.
prt packet t *right packet = prt vdp packet new(vdp, nb*nb*sizeof(double), local A);
prt vdp channel push(vdp, RIGHT OUTPUT, right packet);

// Push local B down.
prt packet t *lower packet = prt vdp packet new(vdp, nb*nb*sizeof(double), local B);
prt vdp channel push(vdp, LOWER OUTPUT, lower packet);

// Compute local AxB.
if (vdp->location == PRT LOCATION DEVICE) {

cublasDgemm(local store->cublas handle, CUBLAS OP N, CUBLAS OP N, nb, nb, nb,
&done, local A, nb, local B, nb, &done, local C, nb);

} else {
cblas dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nb, nb,

1.0, local A, nb, local B, nb, 1.0, local C, nb);
}
// Activate input channels.
prt vdp channel on(vdp, LEFT INPUT);
prt vdp channel on(vdp, UPPER INPUT);

} else {
// Move A horizontally.
prt packet t *left packet = prt vdp channel pop(vdp, LEFT INPUT);
if (vdp->counter > 1)

prt vdp channel push(vdp, RIGHT OUTPUT, left packet);

// Move B vertically.
prt packet t *upper packet = prt vdp channel pop(vdp, UPPER INPUT);
if (vdp->counter > 1)

prt vdp channel push(vdp, LOWER OUTPUT, upper packet);

// Compute AxB.
if (vdp->location == PRT LOCATION DEVICE) {

cublasDgemm(local store->cublas handle, CUBLAS OP N, CUBLAS OP N, nb, nb, nb,
&done, left packet->data, nb, upper packet->data, nb,
&done, local C, nb);

} else {
cblas dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, nb, nb, nb,

1.0, left packet->data, nb, upper packet->data, nb,
1.0, local C, nb);

}
// Release transient packets.
prt vdp packet release(vdp, left packet);
prt vdp packet release(vdp, upper packet);

}
}

Figure 8. VDP code implementing the Cannon’s algorithm

in thin stripes in the trace. In the GPU trace, the timeline of each node is represented by three

lines. The first one shows the execution of the matrix multiplications. The second one shows the

DMA transfers between the host memory (CPU) and the device memory (GPU). Here, actual

durations of the transfers are shows. The third one shows durations of the MPI calls, just like

in the CPU case.

Design and Implementation of the PULSAR Programming System for Large Scale...

20 Supercomputing Frontiers and Innovations

In the CPU case, MPI communication is completely overlapped with computation, resulting

in no gaps in the trace and almost idea scaling. In the GPU case, the DMA transfers do not keep

up with the speed of execution, and the MPI transfers do not keep up with the DMA transfers,

resulting in large gaps in the trace and poor scaling. At the same time, GPU execution still

produces much higher overall performance than CPU execution.

1

4 0.823 0.823 0.153476875 0.153476875
16 2.897 3.292 0.611632845 0.6139075
64 9.992 13.168 2.450502888 2.45563

256 37.404 52.672 9.797182039 9.82252
1024 142.757 210.688 34.42743329 39.29008

Table 1

0

20

40

60

80

100

120

140

160

180

200

220

0 128 256 384 512 640 768 896 1024 1152

TF
LO

PS

number of nodes

GPU perfect scaling

CPU scaling

GPU scaling

CPU perfect scaling

Figure 9. Scaling of Cannon’s algorithm

CPUs
MPI

CPUs
MPI

CPUs
MPI

CPUs
MPI

node 1

node 2

node 3

node 4

Figure 10. CPU trace using 4 nodes

GPU
DMA

MPI

GPU
DMA

MPI

GPU
DMA

MPI

GPU
DMA

MPI

node 1

node 2

node 3

node 4

Figure 11. GPU trace using 4 nodes

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 21

Conclusion

This paper has presented the PULSAR system. PULSAR combines the key paradigms of

systolic arrays (regularity, extensive data re-use and multilevel pipelining) with virtualization

techniques, in order to provide a simple yet efficient programming model to design parallel

algorithms on complex multicore systems with attached accelerators.

After detailing the nuts and bolts of the system, we have provided a comprehensive descrip-

tion of a PULSAR instance, namely the canonic Cannon’s algorithm for matrix product. We

have shown convincing performance results on Titan, which nicely demonstrate that a limited

programming effort, as required by PULSAR, is not incompatible with an efficient implementa-

tion. Achieving a good trade-off between the ease of programming and the quality of the results

was the primary objective of PULSAR.

Acknowledgements

This work has been supported by the National Science Foundation, under grant SHF-

1117062, Parallel Unified Linear algebra with Systolic ARrays (PULSAR). The authors would

also like to thank the National Institute for Computational Sciences, the Georgia Institute of

Technology and the Oak Ridge National Laboratory for generous computer allocations on their

supercomputers. Yves Robert has been supported by Institut Universitaire de France.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Ahmed, H.M., Delosme, J.M., Morf, M.: Highly concurrent computing struc-

tures for matrix arithmetic and signal processing. Computer 15(1), 65–82 (1982),

DOI: 10.1109/MC.1982.1653828

2. Allen, E., Culpepper, R., Nielsen, J., Rafkind, J., Ryu, S.: Growing a syntax. In: ACM

SIGPLAN Foundations of Object-Oriented Languages workshop. ACM, Savannah, GA, USA

(2009)

3. Annaratone, M., Arnould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O., Webb,

J.A.: The Warp computer: Architecture, implementation, and performance. IEEE Transac-

tions on Computers C-36(12), 1523–1538 (1987), DOI: 10.1109/TC.1987.5009502

4. Arpaci, R., Culler, D., Krishnamurthy, A., Steinberg, S., Yelick, K.: Empirical evaluation of

the CRAY-T3D: A compiler perspective. In: Proceedings of the 22nd Annual International

Symposium on Computer Architecture. pp. 320–331. IEEE, Santa Margherita Ligure, Italy

(June 22-24 1995), iSSN: 1063-6897, Print ISBN: 0-89791-698-0, INSPEC Accession Number:

5086797

5. Augonnet, C.: Scheduling Tasks over Multicore machines enhanced with Accelerators: a

Runtime System’s Perspective. Phd thesis, Universit‘e Bordeaux 1 (December 2011)

Design and Implementation of the PULSAR Programming System for Large Scale...

22 Supercomputing Frontiers and Innovations

6. Barada, H., El-Amawy, A.: Systolic architecture for matrix triangularisation with partial

pivoting. IEE Proceedings E, Computers and Digital Techniques 135(4), 208–213 (1987),

ISSN: 0143-7062

7. Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick, D.L., Stokes, R.A.:

The ILLIAC IV computer. IEEE Transactions on Computers C-17(8), 746–757 (1968),

DOI: 10.1109/TC.1968.229158

8. Bojanczyk, A.W., Brent, R.P., Kung, H.T.: Numerically stable solution of dense systems of

linear equations using mesh-connected processors. SIAM J. Sci. Stat. Comput. 5(1), 95–104

(1984), DOI: 10.1137/0905007

9. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, H., Herault, T., Kurzak,

J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A., Dongarra, J.: Dis-

tibuted Dense Numerical Linear Algebra Algorithms on Massively Parallel Architectures:

DPLASMA. Tech. rep., Innovative Computing Laboratory, University of Tennessee (apr

2010), http://icl.cs.utk.edu/news_pub/submissions/ut-cs-10-660.pdf

10. Cannon, L.E.: A Cellular Computer to Implement the Kalman Filter Algorithm. Ph.D.

thesis, Montana State University (1969)

11. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.: Introduction

to UPC and language specification. Tech. Rep. CCS-TR-99-157, CCS (May 13 1999)

12. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language.

International Journal of High Performance Computing Applications 21(3), 291–312 (August

2007)

13. Chapel language specification 0.750 (2007), http://chapel.cs.washington.edu/spec-0.

750.pdf, accessed: 2017-02-15

14. Chapman, B., Curtis, T., Pophale, S., Koelbel, C., Kuehn, J., Poole, S., Smith, L.: In-

troducing OpenSHMEM, SHMEM for the PGAS community. In: PGAS’10: The Fourth

Conference on Partitioned Global Address Space Programming Models. PGAS, ACM, New

York, NY, USA (October 12-15 2010)

15. Choi, J.: A new parallel matrix multiplication algorithm on distributed-memory concurrent

computers. In: High Performance Computing on the Information Superhighway, 1997. HPC

Asia ’97. pp. 224–229. IEEE, Seoul (April-May 1997), DOI: 10.1109/HPC.1997.592151

16. Choi, J., Walker, D.W., Dongarra, J.J.: PUMMA: parallel universal matrix multiplication

algorithms on distributed memory concurrent computers. Concurrency Computat.: Pract.

Exper. 6(7), 543–570 (1994), DOI: 10.1002/cpe.4330060702

17. Comon, P., Robert, Y.: A systolic array for computing BA−1. IEEE Trans-

actions on Acoustics, Speech and Signal Processing 35(6), 717–723 (1987),

DOI: 10.1109/TASSP.1987.1165208

18. Consortium, U.: Upc language specifications, v1.2. Tech. Rep. LBNL-59208, Lawrence

Berkeley National Laboratory (2005)

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 23

19. Darcy, J.: Writing robust IEEE recommended functions in ”100% pure Java”(tm). Tech.

Rep. CSD-98-1009, Computer Science Division, University of California, Berkeley (Oct 1998)

20. Dennis, J.B., Gao, G.R.: On the feasibility of a codelet based multi-core operating system.

In: 4th Workshop on Data-Flow Execution Models for Extreme Scale Computing (DFM’14).

Edmonton, Alberta, Canada (August 24 2014)

21. Dongarra, J., Graybill, R., Harrod, W., Lucas, R., Lusk, E., Luszczek, P., McMahon, J.,

Snavely, A., Vetter, J., Yelick, K., Alam, S., Campbell, R., Carringon, L., Chen, T.Y.,

Khalili, O., Meredith, J., Tikir, M.: Darpa’s hpcs program: History, models, tools, lan-

guages. Advances in Computers: High Performance Computing 72, 1–100 (2008), iSBN:

978-0-12-374411-1, ISSN: 0065-2458

22. Evans, D.J.: Systolic Algorithms (Topics in Computer Mathematics). Routledge (1991),

ISBN: 2881248047

23. Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., Rouson, D.W.I.: Open-

coarrays: Open-source transport layers supporting Coarray Fortran compilers. In: 8th In-

ternational Conference on Partitioned Global Address Space Programming Models. ACM,

Eugene, Oregon, USA (October 7-10 2014)

24. Fisher, A.L., Kung, H.T.: Special-purpose VLSI architectures: General discussions and a

case study. In: Kung, S.Y., Kailath, T., Whitehouse, H.J. (eds.) VLSI and Modern Signal

Processing, pp. 153–169. Prentice Hall (1984), ISBN: 013942699X

25. Fortes, J.A.B., Wah, B.W.: Systolic arrays-from concept to implementation. Computer

20(7), 12–17 (1987), DOI: 10.1109/MC.1987.1663616

26. Fox, G.C., Otto, S.W., Hey, A.J.G.: Matrix algorithms on a Hypercube I: Matrix multipli-

cation. Parallel Comput. 4(1), 17–31 (1987), DOI: 10.1016/0167-8191(87)90060-3

27. Gao, G.R., Sterling, T., Stevens, R., Hereld, M., Zhu, W.: Parallex: A study of a new

parallel computation model (2007)

28. Gentleman, W.M., Kung, H.T.: Matrix triangularization by systolic arrays. In: SPIE Pro-

ceedings Vol. 298, Advances in Laser Scanning Technology. pp. 19–26. Society for Photo-

Optical Instrumentation Engineers, Bellingham, WA (1981)

29. Gregory, J., McReynolds, R.: The SOLOMON computer. IEEE Transactions on Electronic

Computers EC-12(6), 774–781 (1963), DOI: 10.1109/PGEC.1963.263560

30. Huss-Lederman, S., Jacobson, E.M., Tsao, A., Zhang, G.: Matrix multiplication

on the Intel Touchstone Delta. Concurrency: Pract. Exper. 6(7), 571–594 (1994),

DOI: 10.1002/cpe.4330060703

31. Jin, G., Adhianto, L., Mellor-Crummey, J., III, W.N.S., Yang, C.: Implementation and

performance evaluation of the hpc challenge benchmarks in coarray Fortran 2.0. In: 25th

IEEE International Parallel and Distributed Processing Symposium (IPDPS). Anchorage,

AK, USA (May 16-20 2011)

32. Johnson, K.T., Hurson, A.R., Shirazi, B.: General-purpose systolic arrays. Computer 23(11),

20–31 (1993), DOI: 10.1109/2.241423

Design and Implementation of the PULSAR Programming System for Large Scale...

24 Supercomputing Frontiers and Innovations

33. Jr., G.L.S., Allen, E., Chase, D., Flood, C., Luchangco, V., Maessen, J.W., Ryu, S.: Fortress

(Sun HPCS language). In: Encyclopedia of Parallel Computing, pp. 718–735. Springer, New

York Dordrecht Heidelberg London (2011), DOI 10.1007/978-0-387-09766-4

34. Kaiser, H., Brodowicz, M., Sterling, T.: Parallex: An advanced parallel execution model for

scaling-impaired applications (2009)

35. Kaiser, H., Brodowicz, M., Sterling, T.: Parallex. 2012 41st International Conference on

Parallel Processing Workshops 0, 394–401 (2009)

36. Kale, L.V., Krishnan, S.: CHARM++: A portable concurrent object oriented system based

on C++. SIGPLAN Not. (10), 91–108 (Oct.), DOI: 10.1145/167962.165874

37. Krishnamurthy, A., Culler, D., Yelick, K.: Evaluation of architectural support for global

address-based communication in large-scale parallel machines. Tech. Rep. CSD-98-984, Com-

puter Science Division, University of California, Berkeley (1998)

38. Krishnamurthy, A., Yelick, K.: Optimizing parallel programs with explicit synchronization.

In: Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language Design

and Implementation. pp. 196–204. ACM (Jun 1995)

39. Krishnamurthy, A., Yelick, K.: Analyses and optimizations for shared address space pro-

grams. Journal of Parallel and Distributed Computation 38(2), 130–144 (November 1 1996)

40. Kuck, D.J.: ILLIAC IV software and application programming. IEEE Transactions on Com-

puters C-17(8), 758–770 (1968), DOI: 10.1109/TC.1968.229159

41. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982),

DOI: 10.1109/MC.1982.1653825

42. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Sparse Matrix Proceedings. pp.

256–282. Society for Industrial and Applied Mathematics (1978), ISBN: 0898711606

43. Kung, S.Y., Lo, S.C., Jean, S.N., Hwang, J.N.: Wavefront array processors-concept to

implementation. Computer 20(7), 18–33 (1987), DOI: 10.1109/MC.1987.1663617

44. Liblit, B.: Local Qualification Inference for Titanium. http://www.cs.berkeley.edu/

~liblit/lqi/ (Aug 26 1998), cS263/CS265 semester project report.

45. Liblit, B., Aiken, A.: Type systems for distributed data structures. In: In the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). pp. 199–

213. Boston, Massachusetts (19–21 Jan 2000)

46. Luk, F.T.: Triangular processor array for computing singular values. Lin. Alg. Appl. 77,

259–273 (1986), DOI: 10.1016/0024-3795(86)90171-0

47. Marjanović, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication and

computation by using a hybrid MPI/SMPSs approach. In: Proceedings of the 24th ACM

International Conference on Supercomputing. pp. 5–16. ICS ’10, ACM, New York, NY, USA

(2010), DOI: 10.1145/1810085.1810091

J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra

2017, Vol. 4, No. 1 25

48. Mellor-Crummey, J., Adhianto, L., Jin, G., III, W.N.S.: A new vision for coarray fortran. In:

The Third Conference on Partitioned Global Address Space Programming Models. Ashburn,

VA, USA (October 5-8 2009)

49. Mellor-Crummey, J., Adhianto, L., Scherer, W.N.: A critique of co-array features in fortran

2008 working draft j3/07-007r3 (February 2008), paper J3 08-126 of the Fortran 2008 J3

standard working group

50. Miyamoto, C., Liblit, B.: Themis: Enforcing Titanium Consistency on the NOW. http:

//www.cs.berkeley.edu/~liblit/themis/ (Dec 1997), cS262 semester project report.

51. Numrich, R.W., Reid, J.K.: Co-array Fortran for parallel programming. ACM SIGPLAN

Fortran Forum 17(2), 1–31 (Aug 1998), DOI: 10.1145/289918.289920

52. Quinton, P., Robert, Y.: Systolic Algorithms & Architectures. Prentice Hall (1991),

ISBN: 0138807906

53. Robert, Y.: Impact of Vector and Parallel Architectures on the Gaussian Elimination Algo-

rithm. Manchester University Press (1991), ISBN: 0470217030

54. Scherer, W.N., Adhianto, L., Jin, G., Mellor-Crummey, J., Yang, C.: Hiding latency

in Coarray Fortran 2.0. In: PGAS’10: The Fourth Conference on Partitioned Global

Address Space Programming Models. PGAS, New York, NY, USA (October 12-15),

DOI: 10.1145/2020373.2020387

55. Shterenlikht, A., Margetts, L., Cebamanos, L., Henty, D.: Fortran 2008 CoArrays. ACM

SIGPLAN Fortran Forum 34(1), 10–30 (Apr 2015), DOI:10.1145/2754942.2754944

56. Sorensen, D.C.: Analysis of pairwise pivoting in Gaussian elimination. IEEE Transactions

on Computers C-34(3), 274–278 (1985), DOI: 10.1109/TC.1985.1676570

57. Tan, A.T., Falcou, J., Etiemble, D., Kaiser, H.: Automatic task-based code generation

for high performance domain specific embedded language. International Journal of Parallel

Programming (2015)

58. Van De Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication algorithm.

Concurrency Computat.: Pract. Exper. 9(4), 255–274 (1997), DOI: 10.1002/(SICI)1096-

9128(199704)9:43.0.CO;2-2

59. Report on the experimental language X10, version 1.0.1 (December 2006), http://x10.

sourceforge.net/docs/x10-101.pdf, accessed: 2017-02-15

Design and Implementation of the PULSAR Programming System for Large Scale...

26 Supercomputing Frontiers and Innovations

Workflows for Science: a Challenge when Facing

the Convergence of HPC and Big Data

Rosa M. Badia1,2, Eduard Ayguade1,3, Jesus Labarta1,3

c© The Authors 2017. This paper is published with open access at SuperFri.org

Workflows have been traditionally a mean to describe and implement the computing experi-

ments, usually parametric studies and explorations searching for the best solution, that scientific

researchers want to perform. A workflow is not only the computing application, but a way of

documenting a process. Science workflows may be of very different nature depending on the area

of research, matching the actual experiment that the scientist want to perform. Workflow Man-

agement Systems are environments that offer the researchers tools to define, publish, execute and

document their workflows.

In some cases, the science workflows are used to generate data; in other cases are used to

analyse existing data; only in a few cases, workflows are used both to generate and analyse data.

The design of experiments is in some cases generated blindly, without a clear idea of which points

are relevant to be computed/simulated, ending up with huge amount of computation that is

performed following a brute-force strategy.

However, the evolution of systems and the large amount of data generated by the applications

require an in-situ analysis of the data, thus requiring new solutions to develop workflows that

includes both the simulation/computational part and the analytic part. What is more, the fact

that both components, computation and analytics, can be run together will enable the possibility

of defining more dynamic workflows, with new computations being decided by the analytics in a

more efficient way.

The first part of the paper will review current approaches that a set of scientific communities

follow in the development of their workflows. This paper does not intent to be exhaustive in the

compilation of different approaches available to develop and deploy workflows. We focus on the

Workflow Management Systems used by a set of scientific communities and their representative

use cases, with the objective of understanding their different needs and requirements. The second

part of the paper proposes a new software architecture to develop a new family of end-to-end

workflows that enables the management of dynamic workflows composed of simulations, analytics

and visualization, including inputs/outputs from streams.

Keywords: workflows, scientific applications, Big Data.

Introduction

Workflows appeared last century and have been used in the manufacturing industry as a

mean to optimize their processes. Examples of traditional (non-IT) workflows can be found in

the assembly lines, i.e., the Ford Model T assembly line standardized the production processes

and was the first continuous delivery pipeline for the automotive industry. This process reduced

the costs of manufacturing from $850 to $260 in 1924.

The time and motion studies defined by Taylor [52] and Gilbreth [41] had significant impact

in the manufacturing processes. These studies proposed to break manufacturing activities into

small, simple steps, to determine with accuracy the amount of time required to perform each of

the steps. Then, the sequence of movements taken by the employee has to be carefully observed

to detect and eliminate redundant or wasteful motion, and the precise time invested for each

correct movement is measured. From these measurements, production and delivery times and

1Barcelona Supercomputing Center (BSC), Barcelona, Spain
2 Consejo Superior de Investigaciones Cient́ıficas (CSIC), Madrid, Spain
3 Universitat Politècnica de Catalunya (UPC), Barcelona Spain

DOI: 10.14529/jsfi170102

2017, Vol. 4, No. 1 27

prices can be computed and incentive schemes devised. Methods used in these early times were:

Flow diagrams, Gantt charts, and ERT charts.

Although the term workflow was not used at that time, the same concept is used in current

Workflow Management Systems, a software system that is able to orchestrate a set of tasks.

The tasks show dependencies between them, which can be of data or control, forming a task

graph or workflow. The concept of workflow is used extensively in a large number of scientific

communities.

Scientific users have a plethora of Workflow Management Systems available for their needs.

Traditionally different communities stick to a system or to a set of systems for different reasons:

due to the needs of the community applications, due to the popularity of given systems, due

to historical reasons, to availability of domestic systems that are adopted by others and later

extended, due to the possibility of sharing, avilability of specific functionalities that are needed

by the community applications not present in others, etc. However, we believe that aspects such

as modularity and elegance of the design, portability, genericity of the systems; should be given

more attention.

The paper takes into account a set of Workflow Management Systems used by given scien-

tific communities to implement their workflows: life science (genomics), earth-science (climate),

fusion, and astrophysics. For each of them an example of how the workflows are defined and the

specific features they have is described.

It is very usual that these scientific applications generate a large amount of data, and this

is in-crescendo. Also, the use of parallel systems and High Performance Computing (HPC) is

every time more usual. Traditionally, the phases of computation/simulation of these workflows

have been decoupled from the phases of data analysis. Also, traditionally workflows are defined

quite statically, even loops are possible, but no margin for dynamicity on the decision of what

computations should be performed is left.

Taking into account potential users of next coming exascale architectures, workflow man-

agement systems that support the convergence of the computation and data analysis parts are a

must. Even more, those workflows should support in-situ data-analysis and dynamism, in such

a way that results from previous analysis determine the next steps of the workflow, i.e., which

computation to trigger, searching for new alternatives or going in-depth into a more detailed

simulation.

In section 1 we give an overview of the alternatives in the implementation of a Workflow

Management System. Then, the paper is organized around the different cases that have been

chosen: section 2 describes Kepler, and its usage by the fusion community; section 3 describes

Pegasus, and the case of the LIGO collaboration that has been using this system for more than 10

years; section 4 describes Galaxy and its use in the framework of the Life Sciences community;

section 5 describes the workflow management systems used by the Earth Science (climate)

community; and section 6 describes Taverna and its use by the astrophysics community. Section 7

proposes a new architecture of end-to-end workflows with dynamic management, orchestrating

the computation and analytics of the experiments. Final section concludes the paper.

1. Workflow Management Systems: an Overview

A Workflow Management System can be defined as a software environment able to orches-

trate the execution of a set of interdependent computing tasks that exchange data between them

with the objective of solving a given experiment. A workflow can be graphically described as

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

28 Supercomputing Frontiers and Innovations

a graph, where the nodes denote the computations and the edges data or control dependencies

between them.

Workflow Management Systems became very popular with the appearance of Grid comput-

ing, since they offered the possibility of exploiting this distributed infrastructure. Papers [14, 57]

present taxonomies of Workflow Management Systems from that period. Some of the systems

developed at that time are still alive projects used in current distributed computing platforms

(either High Performance Computing (HPC) clusters, High Throughput Computing (HTC) plat-

forms, clouds or combination of several of these options).

Workflows can be described graphically, with a drag and drop interface where the work-

flow is totally specified with a graphical interface by the user like in Kepler [6],Taverna [26], or

Galaxy [3]. It can be described textually, by specifying the graph in a textual mode, indicat-

ing the nodes and its interconnections like in Pegasus [15] or ASKALON [21]. It can also be

described programmatically, using all the flexibility of a programming language to describe the

behaviour of the workflow that is dynamically built depending on the actual dependencies found

by the workflow system like in PyCOMPSs/COMPSs [32] or Swift [55]. A particular case of this

is the use of simple tagged scripts that are processed by the actual engine, like with Cylc [39],

Autosubmit [34], or ecFlow [33]. Another alternative is to describe the workflow through a set of

commands with a command interface, like with Copernicus [42]. With the objective of offering

a single syntax to describe workflows the initiative of the Common Workflow Language [7] has

appeared. The Common Workflow Language (CWL) is a working group consisting of various

organizations with interest in portability of data analysis workflows, mostly oriented to bioin-

formatics tools and with an emphasis on systems enabled with Docker. CWL offers a syntax to

connect command line tools in order to create workflows that can be used by multiple platforms.

CWL follows JASON or YAML syntaxes, or a mixture of the two.

Some systems orchestrate already deployed web services (Taverna), others compose external

binaries or tools (Galaxy), and a few are able to interoperate directly with methods described in

programming languages (PyCOMPSS/COMPSs). The data exchanged between the computation

nodes of the workflows is typically a file, although in some cases can be objects in memory (like

in PyCOMPSs/COMPSs).

A key component in a Workflow Management System is its engine. The engine is the respon-

sible for coordinating the execution of all the tasks, scheduling them in the available computing

resources and storage devices, transferring the data between distributed storage systems, mon-

itoring the execution of the tasks, etc. The information that can be obtained about the engine

in the literature is very variable: while for some systems (i.e. Pegasus, PyCOMPSs/COMPSs

or Swift) the bibliography details sophisticated engines that implement various optimizations,

either to schedule in parallel the workflow to be executed, to improve data locality, to be able

to exploit heterogeneous computing platforms, ...; for others the information is very scarce and

difficult to find.

On the user side, aspects that are valued by the scientific community are the possibility

of sharing their workflows and data, and the support for workflow provenance. Several systems

report the existence of repositories for workflows or experiments, like the myExperiment [23]

repository, which currently supports inputs from several systems (Taverna, Galaxy and Kepler),

or HUBzero [37] a software platform to support collaborations that is able to launch Pegasus

workflows.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 29

Another characteristic of these systems is the computing platform where the workflows are

executed. As said before, many systems began their developments with the Grid as a computing

platform, and still are able to run in this type of platforms, like the OSG [40] or EGI [30]. Most

systems can execute in distributed environments (either composed of regular servers/clusters or

HPC systems), also support for Clouds is common, and some systems are starting to support

containers. While in most scientific communities the workflow tasks have been mostly sequential,

the trend in general is to take benefit of current multicore architectures and accelerators such

as GPGPUs or FPGAs, including tasks in the workflows that require some level of parallelism

although with a low degree and only intranode (up to a few threads), other communities have

been using large clusters or supercomputers for part of their workflow tasks (like in the climate

or fusion communities). The trend in general is to take benefit of current multicore architectures,

including tasks in the workflows that require some level of parallelism.

Given the amount of systems available, there have been some interoperability initiatives,

like the European project SHIWA [49] and its continuation ER-flow [18] that dealt with in-

teroperability of a dozen of workflow management systems existent at that time. The SHIWA

simulation platform consists of a repository that supports the storage of workflows and meta-

data and of a portal that includes a workflow engine able to orchestrate workflows from different

systems.

2. Kepler - Fusion community

The Kepler system [6] is free and open source, and developed, supported and maintained by

the Kepler Project [29]. Kepler is a successor of the Ptolemy II system [43], and was designed

to help users to create workflows, to perform analysis, to share and reuse workflow components,

models and data between scientists. It was not designed to fulfill the needs of a specific commu-

nity. With regard to data, Kepler is interoperable with a variety of formats, and supports local

and remote data-access. The Kepler Project claims that the system is an effective environment

to integrate software components of different nature, such as “R” scripts and compiled “C”

code, or to facilitate the remote, distributed execution of models. This is done through the Java

Native Interface and by using specific “Actors” (see below).

Kepler is based on a graphical user interface, where users select and connect the elements

that will conform their scientific workflows, from computation, analysis and data sources.

Workflow components in Kepler are called Actors. Actors may contain a hierarchy of Actors,

and in this case are called Composites. The Ports are the elements in the Actors that can receive

Tokens. Tokens may include single or multiple data or messages. The execution of workflows is

controlled by Directors in Kepler. Typically, a Director manages the execution of a set of actors.

Actors can be tuned with Parameters. Kepler was extended to be able to access streaming sensor

data and archived historical data [8]. In fig. 1 we can see a sample Kepler workflow that accesses

sensor data.

Kepler actors are executed as local Java threads, but can also spawn distributed execution

threads via web services or through the Java Native Interface (JNI). The actual execution model

of the workflow depends on the nature of the director: for example, an SDF director will imply

a synchronous execution of the workflow, where each computation node is processed one after

the other; a PN Director will imply an execution of the workflow actors in parallel.

Kepler is a Java-based application that is maintained for the Windows, OSX, and Linux

operating systems.

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

30 Supercomputing Frontiers and Innovations

Figure 1. Sample Kepler analysis workflow which includes sensor data (taken from [8])

2.1. Use of Kepler in the Fusion Community

The fusion community in Europe is organized around EUROfusion, the European consor-

tium for the development of Fusion Energy [20]. In the framework of the EUROfusion project,

the European Integrated Modelling (EU-IM) team has as objective the development of a toka-

mak simulator that considers both the physics and all the machine related data, applicable

to any fusion device. The simulation platform has been designed to be modular, flexible, and

independent of a programming language. In 2011, the community evaluated different existing

workflow engines and selected Kepler for the development of their workflows [27].

With this objective, they built a modelling infrastructure with a generic data structure

that integrates both simulated and experimental data. The elements of this data structure are

identified as “Consistent Physical Objects” (CPO). Thanks to this standardization of elements

as CPOs, modules that solve the physics can be coupled into different integrated simulations

(workflows). Also, modules describing the same physics can be interchanged within the same

workflow. Physics modules are mapped as actors of a Kepler workflow and the data transfer

among actors are performed through CPOs. Thanks to the semantic types that can be defined

in Kepler, different CPOs can be distinguished and it can be verified if the different actors

are correctly connected between them. Another feature interesting to this community is the

functionality that Kepler allows for interactive steering of simulations, enabling to pause the

simulation and reconfigure it, as well as the possibility of visualizing the present state of a

simulation with specific actors.

The applications of the EU-IM require to execute from simple orchestration of workflows

without convergence loops to tightly coupled workflows, involving mutual interactions among

different codes.

An example of tightly coupled workflow has been built by the EU-IM [22] (formerly, EFDA

ITM-TF). The European Transport Simulator (ETS) workflow [13], which couples different codes

and will enable an entire discharge simulation from the start up until the current termination

phase, including controllers and sub-systems. This workflow includes parallel components, like

the GEMHPC one, which is run in 1024 cores. GEMHPC is based in GEM, which is written in

MPI [48].

Within the project EUFORIA, the joint usage of different computing infrastructures (both

HPC and HTC) in the Fusion community was considered. The solution derived by this project

leverages and integrates different existing middleware: Kepler, as a workflow engine, which

accesses the infrastructure using the Roaming Access Server (RAS). RAS provides access to

the different underlying infrastructures using two alternative middlewares: gLite [31] and UNI-

CORE [19]. Also, interactive access to the resources is supported with i2glogin [11].

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 31

The use of the different type of resources in this project took into account that, generally,

simulations generating large amount of data will require large computing power only found in

HPC systems, while the data analysis phase can be performed as independent tasks in HTC

servers.

Figure 2. Sample Hybrid workflow from fusion community

The scenario considered in this project consisted of large simulations performed in HPC

systems and the data produced was transferred to a storage system (see fig. 2). This transfer

can be concurrent to the simulation, thus allowing to begin some of the following steps of the

workflow.

3. Pegasus and the LIGO Collaboration

Pegasus [15] is a system based on the idea that users should define abstract workflows that

include computations and information about the data without a direct mapping into the actual

compute and storage resources. In that system, workflows are described as Direct Acyclic Graphs

(DAGs), where nodes represent computational tasks and the edges represent data and control

dependencies between the tasks. The data is exchanged between tasks in the form of files. From

the abstract workflow, the actual physical location of data and executables is decided by the

Mapper, which converts the abstract workflow into an executable one, with all the information

about the location of the data files, resources where to execute the computations, etc. To locate

the resources and files, catalogs are used that contain all the information.

Pegasus Mapper modifies the initial DAG before execution, therefore, statically. Nodes can

be removed if there is data that is already available. Another optimization that Pegasus performs

is task clustering, that merges a set of short duration nodes into a single one to reduce overhead.

Some of these clustering strategies are guided by the users. The Mapper also associates jobs

with workflow engines (again statically).

The workflow can be submitted to a local computing environment, a remote physical cluster

or grid, or a virtual computing environment like the cloud.

In Pegasus, the workflow management system takes care of all the activities related to the

execution of the workflow, from job and data management, monitoring and failure handling.

Pegasus provides textual interfaces in different programming languages, such as Python,

Java and Perl, but what is described in these languages is the explicit abstract workflow, with

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

32 Supercomputing Frontiers and Innovations

information about the nodes and their interconnections. This textual input, its translated into

an XML description of the abstract workflow (DAX) which is then executed by the Pegasus

engine. The Pegasus team advocates the use of textual workflows versus graphical workflows,

since they consider that complex patters are easier to describe in this way.

Pegasus workflows can be defined in a hierarchical way, with nodes representing another

workflow. This also helps to improve scalability of the system, since Pegasus needs to parse the

whole XML file describing the DAX and for large cases this will not fit in memory. However,

each DAX is managed by a different instance of the Pegasus engine. The hierarchy is used also

in cases where the location of input files is unknown.

Pegasus has a set of execution engines with different features: single-core, which runs a

single task at a time; non-shared file system, which stages in and out the files required by each

computation; and Pegasus MPI Cluster (PMC) which is able to execute a DAG in Petascale

systems by means of running them in an architecture based in a single master and several

workers. PMC handles multi-core tasks but only within a node.

3.1. The LIGO Scientific Collaboration

Pegasus is a workflow environment that has been used for many different applications from

various fields, from genomics, climate modeling, generation of sky mosaics, neuroscience, etc.

The large collaborations where Pegasus has participated and has been key in their workflow

developments are the LIGO Scientific Collaboration [1], the Southern California Earthquake

Center (SCEC) [46] , and the National Virtual Observatory [38].

The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of

gravitational-wave detectors, with observatories in Livingston, LA and Hanford, WA. The pur-

pose of this collaboration is to prove the existence of the gravitational waves predicted by Ein-

stein’s General Theory of Relativity. To try to detect these waves, the scientists use kilometer-

scale interferometric detectors.

The data generated by the instruments is distributed on the partners’ sites, and then work-

flows are executed on the resources of their sites. Pegasus discovers the required data for each

workflow and feeds the sites with them. One example of such an application is a workflow that

searches for compact binary inspiral signals. The LIGO workflows are complex in the number of

tasks (over 1.5 million jobs) and their dependencies, and the size of the datasets being analyzed

(approximately 10 TB).

A characteristic of these workflows is that sometimes the granularity of the tasks is too small:

in these cases, the workflows benefit of the feature of Pegasus that can cluster multiple tasks

into one. Also, sometimes, some parts of the input data is recallibrated, requiring to recompute

the workflow. However, recomputing the whole workflow is very expensive and what Pegasus

offers is the possibility of registering data already being produced with the objective of not

reproducing the part of the workflow that already generated it.

While LIGO workflows were initially (2002) deployed on the LIGO Data Grid, more recently

have been extended to compute in the Open Science Grid and XSEDE. In September 2015

the LIGO collaboration detected gravitational waves. This detection was verified by processing

roughly five terabytes of data by the LIGO workflows, generating many petabytes of exported

data and executed in a distributed computing infrastructure composed of multiple HPC sites.

The PyCBC search pipeline used for this validation is composed of hundreds of thousands

tasks. Although some of the tasks are threaded (like calls to FFTW library), most of them are

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 33

sequential and short tasks. To reduce the overhead of small tasks in a large HPC cluster, the

Pegasus MPI Cluster execution engine was used to submit sub-workflows as monolithic jobs.

4. Life-sciences Community - Galaxy

Galaxy [3] is a web-based platform initially designed for life sciences workflows. It offers a

public service and a collaborative environment which enables to share, through internet, analysis

tools, genomic data, tutorial demonstrations, persistent workspaces, and publication services,

all available through internet in public repositories.

Through a web browser interface, Galaxy users can edit their workflows in a graphical editor

where workflows are created by connecting tools. A Galaxy workflow is a reusable template

analysis that a user can run repeatedly on different data; each time a workflow is run, the

same tools with the same parameters are executed. Interoperability with different programming

languages is done by invoking binaries: Galaxy supports any tool or piece of software for which

a command line invocation can be constructed. Besides the graphical interface, the users can

use BioBlend [51] a Python programmatic API to define their workflows in a textual form and

supporting more complex formats difficult to deal in a graphical way.

Galaxy has a significant community of users and developers. Galaxy pages are the principal

means to communicate research performed using Galaxy. Pages are interactive, web-based doc-

uments that users can create to describe a complete genomics experiment. This allows users to

document and publish their experiments with computational outputs, allowing others to view

the experiment with all the details and enable total reproducibility.

Galaxy enables the users to import datasets from many data warehouses. It relies on the

concept of Object Store, a file interface that acts as a layer between Galaxy and user datasets.

The Object Store supports distributed datasets and the application can exploit data locality and

submit jobs to the resource closer to the data. Also, it automatically generates and maintains

metadata about the different aspects of each analysis: input datasets, tools used, parameter

values, and output datasets.

Users can import existing histories4 and workflows, and rerun them. Also, they can modify

or extend the analysis. Galaxy’s public web server processes about 5,000 jobs per day and there

is a large number of groups not affiliated with the Galaxy team that have been using the system

to perform different types of genomic research and have published their results in prominent

journals as Science or Nature. Besides the public server, a local instance can also be deployed

in the user premises. Additional to the Galaxy server, Galaxy workflows can be executed in the

cloud through the CloudMan platform [4].

One of the drawbacks reported by Galaxy users, is the challenge of installing a Galaxy

instance [25]. This has been recently fixed by making available a Docker image.

Galaxy team is also collaborating in the definition of the Common Workflow Language

support.

4.1. Galaxy Workflows in Life Science

Galaxy is very popular for Next-Gen Sequencing data analysis since it has available a large

collection of tools for genomics and sequence analysis. Galaxy repositories [54] list on the order

of thousand tools, most of them specific to genomics and sequence analysis that are used to

4A history is a series of analysis steps

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

34 Supercomputing Frontiers and Innovations

compose the workflows. Most of these tools are sequential and parallelism is only exploited at

very low levels (for example, up to 16 cores in Stampede [5]).

With regard the data used in these workflows, it can involve many datasets of variable size.

For example, input data sets with 1 - 10 large files of 1 - 10 GB each, during the analysis other

datasets are referenced (genome datasets of 1-40 GB) and although several intermediate datasets

are produced, the final results require a relatively small amount of storage size (<100MB).

ELIXIR [17], the distributed infrastructure for life-science information partly funded by

the European Commission within the Research Infrastructures programme of Horizon 2020, is

an example of usage of Galaxy in this community. Due to the large interest of their scientific

community in Galaxy, they established a Galaxy Working Group to evaluate the technical

strategy for Galaxy within the context of ELIXIR. Between the activities performed by this

group (meetings, surveys and discussions), they generated a report with recommendations on

the use of Galaxy [12].

According to this report, Galaxy is used in that community for data intensive analysis from

different domains: Genomics, Transcriptomics, Proteomics, Systems Biology, Metabolomics, but

also metagenomics, imaging, small RNAs, etc. The popularity of Galaxy in that area is due to

the possibility that offers to users with limited or no knowledge of command line to perform

data-intensive analyses.

The users of Galaxy in this context can execute their workflows in the global Galaxy server

or in local instances of Galaxy installed in the users institutions’ or partner institutions. Most

of the institutions reported in the survey the use of a compute cluster to host the Galaxy server

(52.63%) but the amount of cores available for Galaxy jobs is surprisingly small (for most cases,

from 10 - 49 cores, and only 9% of cases more than 100 cores).

BioExcel [10], the Center of Excellence for Computational Biomolecular Research funded

by the European Commission, also has Galaxy as one of the workflow managers considered to

be used in their activities. However, in this case, other systems have been considered due to

the expertise of the partners: Taverna and PyCOMPSs/COMPSs, or the combination of two of

them, for example, using Galaxy to compose coarse grain workflows and PyCOMPSs/COMPSs

for a finer grain workflows that better exploit the parallelism of the system. Other workflow

management systems considered by this community are KNIME [9] and Copernicus [42].

5. Cylc, Autosubmit and ecFlow and the Earth Science

Community

The Earth Science community (climate) is another community case considered in this pa-

per. Three different workflow management systems were compared by this community in the

European project IS-ENES2 [28] which involved the stakeholders in Europe in that topic. The

community considered: Cylc [39], Autosubmit [34] and ecFlow [33]. Although the community

does not have a clear winner, the Met Office is using Cylc and received funding to continue

development of Cylc.

Cylc is a Python based workflow engine and meta-scheduler. According to the developers,

it specialises in continuous workflows of cycling tasks such as those used in weather and climate

forecasting and research (i.e. workflows that show iterative patterns). Cylc is also easy to use

with non-cycling systems. Cylc was created at the National Institute of Water and Atmospheric

Research (NIWA, New Zealand) and is free software under the GNU GPL v3 license.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 35

Cylc was developed to offer a workflow management system for the weather and climate

community which based its studies on the use of complex scripts. Cylc is widely used by the

community from research to real-time operations including ensemble prediction systems.

To provide robustness when executing the workflows, Cylc dumps state files and writes

information into SQLite databases about the state of the execution. Cylc tasks can be configured

to retry a number of times on failures.

Autosubmit is a solution created at IC3’s Climate Forecasting Unit (CFU) to manage and

run the research group’s experiments. The development of this tool was a result of the lack of in

house HPC facilities that led to a software design with very minimal requirements on the HPC

that will run the jobs. Autosubmit, written in Python, provides a simple workflow definition and

is capable to run experiments on remote clusters or supercomputers and on any GNU/Linux or

Unix host. Autosubmit is currently being developed at the BSC Computational Earth Sciences

group [35].

It has some fault tolerance features, based on check-pointing the tasks that have been

finished: it keeps a list of completed tasks, and if the scheduler does not respond properly, when

restarting the experiment the process will continue from the same point. A number of given

retrials can also be defined for the different jobs that compose an experiment.

ecFlow is a workflow package that enables users to run a large number of programs (with

dependencies on each other and on time) in a controlled environment. It is used at ECMWF to

manage around half of their operational suites across a range of platforms. ecFlow checkpoint

file allows it to restart at the last checkpoint before a failure. Also, a number of retries are

supported on job failure.

The three systems have a similar input interface, based on scripts with tags, which seem

to fulfill the needs of the community to describe their workflows. Cylc and ecFlow have also

graphical interfaces to monitor the evolution of the execution of the experiments. While Cylc

and ecFlow have a Graphical User Interface, Autosubmit only has some visual features through

its monitor command.

5.1. Multi-member Climate Experiments with Autosubmit

The experiments that this community run are (multi-model) multi-member ensemble ex-

periments. These experiments are traditionally organized in multiple simulations executed for

given start dates (the purpose is to simulate weather or climate conditions on that period of

time). The complexity of each experiment can be defined by different axes: number of start

dates, number of members within a start date and number of chunks within a member.

For example, in [34] the authors present two experiments performed with Autosubmit. The

experiments involved three type of resources: the local machine where the whole experiment

is submitted, the MareNostrum3 supercomputer where the parallel simulations were run, and

a post-processing fat node. In this case, each experiment consisted of 10 members of 4-month

length for 34 start dates between 1993 and 2009 (only one chunk per member in this case). The

total experiment consisted of 340 independent cases of 4 months, which is equivalent in cost

to running a single simulation of approximately 113 years. This information is registered in an

input configuration file which is provided as input to Autosubmit – this is how the user specify

the workflow in this system.

Each simulation itself consists of several tasks: input data transfer, compilation, initiali-

sation, chunk simulation, chunk post-processing, cleaning, and results data transfer. The user

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

36 Supercomputing Frontiers and Innovations

needs to supply for each of these tasks the corresponding run scripts and the definition of how

these tasks are to be executed (execution script, reference to computing resource to execute the

task, dependencies with other tasks, number of processors required, etc).

At execution time, Autosubmit takes all the information from the configuration file and

builds a task graph that takes into account the dependencies. Autosubmit is able to execute

in parallel several tasks if dependencies between them allow it, although these type of experi-

ments tend to be highly sequential since results from previous simulations are used as input for

subsequent ones.

For each of these two experiments, Autosubmit ran 2381 jobs: 341 jobs were run in the local

machine, 1360 in MareNostrum3 and 680 in the post-processing fat node. Some of the jobs in

MareNostrum are MPI simulations using between 300-400 processors each.

6. Astrophysics - Taverna and COMPSs

Taverna [56] is another alternative Workflow Management System. Developed and main-

tained by the University of Manchester, it is currently used by several scientific communities.

Written in Java, it is composed of the Taverna Engine (used for enacting workflows), the

Taverna Workbench (a graphical desktop client application, although a command line interface

is also offered) and the Taverna Server (which supports the execution of remote workflows).

Taverna supports local and remote services, and has been used in several domains: from biology,

chemistry and medicine to music, meteorology and social sciences. The system is open source

and it is offered for windows, linux and Mac OS.

Taverna [26] was initially designed as an application to ease the use of molecular biology

tools and databases available on the web, especially web services. Taverna was designed with the

philosophy that scientists could develop their workflows of webservices already published and

then save the workflow in a repository, in such a way that the workflow can be reused and shared.

The workflows are published in a public repository in http://www.myexperiment.org [23]. The

myExperiment workflows repository does not only contain Taverna workflows, but also Galaxy

or Kepler workflows.

New workflows are built with the Taverna Workbench in a graphical way, dragging and

dropping new services in the workflow diagram and connecting their inputs and outputs. Taverna

workflows are traditionally a mixture of web services, scripts (in R, for example) and other type

of services.

In 2013 the Taverna engine was improved in order to be able to support scalable processing

of large data sets, and to be capable of performing implicit iteration, looping and streaming

of data. It was also at that time that the Taverna server was introduced, in order to support

distributed execution.

The workflows can be executed on local machines or in distributed computing infrastructures

(supercomputers, Grids or cloud environments), through the Taverna Server. An installation of

the Server provides access to a collection of workflows (normally through a web interface, called

the Taverna Player). However, in this execution mode users cannot edit the published workflows

in the Server, neither add new workflows to the set of workflows deployed in the Server.

Another feature of Taverna is the possibility of tracking provenance: the Taverna engine

records service invocations, intermediate and final workflow results. Also, Taverna supports

nested workflows.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 37

Figure 3. Sample Taverna workflow that implements Blast Align and Tree (taken from [56])

6.1. Implementing Two-level Workflows for Astronomy with Taverna

and COMPSs

The astrophysics community is facing a huge challenge both in terms of computing and

data with the Square Kilometer Array (SKA [50]), where they expect to reach data rates in

the exascale domain. They expect up to 10 exabytes of data per day, and are planning to build

an exascale computing platform that can deal with this amount of data and that it is able to

process it, sometimes in near real-time.

Taverna has traditionally been used in this area, however, since recently the exploitation

of distributed computing infrastructures with Taverna was quite limited, and in general the

exploitation of the parallelism is not the strong point of the environment. An alternative imple-

mentation of workflows, was considered in [45], with the combination of workflows at two levels:

first level driven by Taverna and a second level driven by COMPSs.

COMPSs [32, 53] is a framework which aims to ease the development and execution of

parallel applications for distributed infrastructures, such as Clusters and Clouds. A COMPSs

application is composed of tasks, which are annotated methods. At execution time, the runtime

builds a task graph that takes into account the data dependencies between tasks, and from this

graph schedules and executes the tasks in the distributed infrastructure, taking also care of the

required data transfers between nodes. COMPSs is written in Java, and supports applications

in Java, Python and C/C++. Between the features of COMPSs, we find that the workflow can

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

38 Supercomputing Frontiers and Innovations

be composed of tasks that are regular methods or web services, and that the whole COMPSs

application can be published as a web service.

Another feature of COMPSs is that their applications are agnostic of the actual computing

infrastructure where they are executed. This is accomplished through a component that offers

different connectors, each bridging to each provider API. COMPSs can run in different Cloud

providers and federation of them, and in clusters and supercomputers. COMPSs runtime also

supports elasticity in clouds and federated clouds.

COMPSs applications can be exposed as web services, and internally these web services

are task-based applications able to run in parallel in distributed computing platforms. These

web services can then be combined with the Taverna Workbench into graphical workflows. This

approach results in a two-level workflow system: at the user level, workflows are built upon web

services, while those services turn out to be workflows as well at the infrastructure level. The

architecture of this solution is shown in fig. 4.

Figure 4. Two-level workflow system architecture for a astrophysics use case (taken from [45])

The cases considered compose a set of of analysis tasks of interest for some user applications

of the SKA community. The focus is on the kinematical modelling of galaxies, which is applied

in the study of galaxies evolution.

A common practice is to run the set of tasks with different parameters, in order to generate

several models. Therefore, several workflows are executed, and later there is a manual phase

from the astronomer to choose the optimal generated model. Given the large amount of data

that it is foreseen to be generated by SKA, the workflows have been designed to execute the

processing tasks where the data is stored.

The web services were deployed in a supercomputing cluster and in a distributed computing

infrastructure (IBERGRID). The COMPSs services were configured to receive either individual

sets of parameters to run a single combination of data or a list of sets of parameters in order to

run multiple time the same workflow. This is easy to be implemented in COMPSs, since offers a

programmatic interface, and it is also executed very fast in its runtime, while in other systems

like the same Taverna Workbech, either was difficult to specify since it is not that simple to

specify a loop in the graphical interface or it was not as efficient as expected.

Taverna Workbench Astronomy 2.5 was used to edit the graphical workflows, a special

edition of the Taverna Workbench that includes support for building and executing astronomy

workflows based on VO services through the Astrotaverna plug-in [44]. The workflows have been

published in the myExperiment repository and can be accessed by the community.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 39

7. Intelligent Workflows

Previous sections have described current approaches to manage scientific workflows and

successful use cases deployed in distributed computing. With the Exascale era around the corner,

the community faces a unique opportunity of implementing a new generation of intelligent

workflows, which involve large simulations together with data analytics.

Figure 5. Architecture of new intelligent workflows

Such workflows (see fig. 5) will be composed of HPC simulations (a single task or node

in the workflow may be a large MPI+X simulation involving several computing nodes), data

analytics (which can be both at the input, interleaved with computation, or at the output) and

visualization. The actual workflow should not be static, but dynamically instantiated according

to the needs of the overall application objective. This will prevent brute force execution of large

simulations, otherwise enabling the dynamic deployment of new simulations or computations in

order to, for example, enact a finer simulation cycle since previous analytics cycle detect a given

anomaly in the previous results.

At a higher level, the system should provide an end-to-end coordination layer that enables

the management of dynamic workflows composed of simulations, analytics and visualization,

including inputs/outputs from streams. Since graphical interfaces usually lack of enough tools

to express dynamicity, a programmatic interface would be probably more appropriate. Program-

matic interfaces does not only support the description of iterative constructions like conditional

loops, but offer the whole expressiveness of the programming language to express complex al-

gorithms, like optimization searches, etc. For example, PyCOMPSs [53] or Swift [55] offer pro-

grammatic/scripting interfaces.

Additionally, taking into account that some application areas may require the possibility of

accepting streamed input data (from sensors or other sources of dynamic data) and streamed

output data (visualization, monitoring, etc) the system should support this type of data acqui-

sition.

This first coarser grain level of workflows will include a set of analytics, implemented as

fine grain workflows. These analytics can be provided as a layer of Analytics as a Service that

can be used by the workflows depending on their requirements. The analytics may implement

algorithms that can be parallelized as well, but usually this type of algorithms does not show

a parallelism easy to deal with traditional parallel programming models such as MPI, that is

why task-based programming models seem to be a better approach to implement such services.

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

40 Supercomputing Frontiers and Innovations

The services will be executed in a set of nodes of the same computing infrastructure, showing

an inherent parallelism described in the form of a finer grain workflow or task-graph.

Alternatives to implement these services can be traditional Big Data programming models,

such as Spark [58] or Hadoop [24], although these systems sometimes lack of the expected per-

formance in HPC systems [16], and environments that include runtimes with more performance

may be required for this purpose. Of special interest to implement these analytics can be the

use of GPUs or accelerators, that have proven to be key in the implementation of fast Neural

Networks used in Deep Learning [47].

The amount of data received, processed and generated with these workflows will require

new solutions for storage that go beyond the traditional file systems. New storage devices such

as Non-volatile RAM and storage class memories support data persistency and byte addressable

access, with a performance between memories and SSDs. These devices enable the availability of

data while being generated, without the need of writing the data to disk. A new type of consumer-

producer applications can be designed, where the data can be stored in these persistent storage

and be accessed during the execution of the producer application or after. While this data can

be stored in files or databases, both are designed to use block devices, while this type of storage

supports other alternatives, as direct object storage [36].

In the environment described before, persistent storage can be used to store the results of

simulations. The data can be consumed by the analytic services as soon as it has been produced

and the results of the analytic steps can also be stored in persistent storage, in order to be used

in visualization steps or in future queries. New challenges that appear are decisions on which

data should be stored in each level of the storage hierarchy, since probably the persistent layer

would have less capacity, or how to perform garbage collection in such memories (since data

is persistent after the execution of the applications), and its integration with the programming

models, since a clean interface should be provided to the programmers.

7.1. Summary and Systems Comparison

As a summary of the paper, this subsection discusses the main features of the Workflow

Management Systems (WFS) described in this paper in comparison with the new WFS archi-

tecture proposed in this section. This comparison is shown in Tab. 1.

Table 1. Workflow Management Systems features comparison

Feature / WMS Galaxy Kepler Autosubmit Taverna Pegasus (COMPSs Int. Workflows

Interface Graphical Graphical Script Graphical Textual Programmatic Programmatic
Parallel tasks Limited Yes Yes Limited Yes Yes Yes

Dynamic workflow No No No No Somehow Yes Yes
Hierarchy No Yes No Yes Somehow Somehow Yes

Support for streams No Yes No Yes No No Yes
Support for visualization Yes Yes No No No No Yes

Support for new stor. tech. No No No No No Yes Yes
Support for accelerators No No No No Somehow Yes Yes

As a general comment, we believe that WMS should be generic enough to cover the require-

ments of different scientific communities. It is reasonable that exists solutions home-made or

ad-hoc which are later adopted by more users and extended, but we consider that this should

not be the best practice.

A graphical interface is sometimes preferred by non expert programmers. However, draw-

ing large workflows that include conditional and loops can be a difficult task. Programmatical

interfaces offer the flexibility and expressiveness of the programming model: the behaviour of a

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 41

complex workflow can be described with a few lines of code. These interfaces can be supported

with graphical tools that visually show the obtained workflow. Also, this interface is able to

naturally support dynamic workflows.

The support for parallel tasks is, in most of the current systems, limited to multi-threaded

intranode tasks. Also, in some systems, although MPI tasks are supported, this support is

through its interaction with the batch system sending the whole task to the queuing system.

However, this is a key feature when considering workflows of HPC applications, with tasks that

are MPI applications executed across multiple nodes of a cluster.

The support for hierarchy is in a similar situation in the existing systems, sometimes sup-

ported through invocation of new instances of the engine, like in Pegasus or in the current

version of PyCOMPSs. This feature is very relevant in order to compose sub-workflows seman-

tically different into larger workflows. For example, a sub-workflow may compose a set of HPC

simulations, while another sub-workflow implement analytics of the results of these simulations.

Support for streaming and visualization are related features with limited support in current

systems (only Kepler supports both of them), but that are key for the support of end-to-end

workflows which involve inputs and outputs from multiple sources.

The support for new storage technologies and new architectures like accelerators have not

been considered so far by most of the current systems, but as technology evolve the WMS should

also consider them to improve performance and functionality.

Conclusions

While the scientific community has a unified view of what is a workflow, the different

instances of Workflow Management Systems available for researchers have large variety: options

for the interface, views on what can be a workflow tasks, types of data being exchanged by the

tasks, engine complexity, computing platform, etc.

This different nature is sometimes explained by the best practices of specific communities and

by the type of workflows each community requires. For example, for some communities, having

an intuitive graphical interface with the possibility of editing their workflows with a simple drag

and drop is essential, while for others, simplifying the access to large supercomputers where they

can run large parallel applications is a must.

However, within a given scientific community WMS with similar characteristics or inter-

operable between them are used. This is the case of Galaxy and Taverna, for example, largely

used in bioinformatics research, for which even exists a system, Tavaxy [2], that supports both

systems’ workflows.

While offering a single workflow management system for all scientific communities does not

seem possible, we believe that interoperability between similar systems should be promoted,

through common workflow description languages or interoperable interfaces. What is more, a

new family of workflow management systems that enable better integration between the compu-

tation and analytics of the workflows should be designed. These systems should enable a smarter

definition of the workflows, which will be more efficient in the usage of computing and storage

resources, and more effective on performing the required computations and analysis that are

required by the scientists. With regard the computing infrastructures, new architectures that

include new computing devices (GPUs, FPGAs and other accelerators), and new storage hier-

archies and technologies should be considered.

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

42 Supercomputing Frontiers and Innovations

Acknowledgments

This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish

Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya

(contracts 2014-SGR-1051 and 2014-SGR-1272). This work is also supported by the Intel-BSC

Exascale Lab. The Human Brain Project receives funding from the EU’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement no 604102.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amin, R., Ander-

son, S., Anderson, W., Arain, M., et al.: Ligo: the laser interferometer gravitational-wave

observatory. Reports on Progress in Physics 72(7), 076901 (2009), DOI: 10.1088/0034-

4885/72/7/076901

2. Abouelhoda, M., Issa, S.A., Ghanem, M.: Tavaxy: Integrating taverna and galaxy workflows

with cloud computing support. BMC bioinformatics 13(1), 77 (2012)

3. Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M., Chilton,

J., Clements, D., Coraor, N., Eberhard, C., et al.: The galaxy platform for accessible,

reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research p.

gkw343 (2016)

4. Afgan, E., Chapman, B., Taylor, J.: Cloudman as a platform for tool, data, and analysis

distribution. BMC Bioinformatics 13(1), 315 (2012), DOI: 10.1186/1471-2105-13-315

5. Afgan, E., Coraor, N., Chilton, J., Baker, D., Taylor, J., Team, T.G.: Enabling cloud burst-

ing for life sciences within galaxy. Concurrency and Computation: Practice and Experience

27(16), 4330–4343 (2015), cPE-15-0018.R1

6. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an exten-

sible system for design and execution of scientific workflows. In: Scientific and Statistical

Database Management, 2004. Proceedings. 16th International Conference on. pp. 423–424.

IEEE (2004)

7. Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov,

A., Leehr, D., Mnager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Stojanovic, L.:

Common Workflow Language, v1.0. Tech. rep. (3 2016), https://figshare.com/articles/

Common_Workflow_Language_draft_3/3115156, DOI: 10.6084/m9.figshare.3115156.v2

8. Barseghian, D., Altintas, I., Jones, M.B., Crawl, D., Potter, N., Gallagher, J., Cornillon, P.,

Schildhauer, M., Borer, E.T., Seabloom, E.W., Hosseini, P.R.: Workflows and extensions to

the kepler scientific workflow system to support environmental sensor data access and analy-

sis. Ecological Informatics 5(1), 42 – 50 (2010), http://www.sciencedirect.com/science/

article/pii/S1574954109000673, special Issue: Advances in environmental information

management

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 43

9. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb,

C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in

Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer (2007)

10. BioExcel website. Web page at http://www.bioexcel.eu, accessed: 2017-02-15

11. Cabellos, L., Campos, I., del Castillo, E.F., Owsiak, M., Palak, B., Pciennik, M.: Scientific

workflow orchestration interoperating htc and hpc resources. Computer Physics Commu-

nications 182(4), 890 – 897 (2011), http://www.sciencedirect.com/science/article/

pii/S0010465510005096

12. Coppens, F., Corpas, M.: Recommendation for actions on Galaxy for ELIXIR HoNs. avail-

able at https://www.elixir-europe.org/about/groups/galaxy-wg, accessed: 2017-02-

15

13. Coster, D.P., Basiuk, V., Pereverzev, G., Kalupin, D., Zagorksi, R., Stankiewicz, R., Huynh,

P., Imbeaux, F., et al.: The European Transport Solver. IEEE Transactions on Plasma

Science 38(9), 2085–2092 (2010)

14. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An overview of

workflow system features and capabilities. Future Generation Computer Systems 25(5), 528 –

540 (2009), http://www.sciencedirect.com/science/article/pii/S0167739X08000861

15. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R.,

Chen, W., da Silva, R.F., Livny, M., et al.: Pegasus, a workflow management system for

science automation. Future Generation Computer Systems 46, 17–35 (2015)

16. Ekanayake, S., Kamburugamuve, S., Wickramasinghe, P., Fox, G.C.: Java thread and pro-

cess performance for parallel machine learning on multicore hpc clusters. In: Proceedings of

the 2016 IEEE International Conference on Big Data (2016)

17. Elixir website. Web page at https://www.elixir-europe.org, accessed: 2017-02-15

18. Building an European Reseach Community through Interoperable Workflows and Data. Web

page at http://www.erflow.eu, accessed: 2017-02-15

19. Erwin, D.W., Snelling, D.F.: Unicore: A grid computing environment. In: European Con-

ference on Parallel Processing. pp. 825–834. Springer (2001)

20. European Consortium for the Development of Fusion Energy. Web page at https://www.

euro-fusion.org, accessed: 2017-02-15

21. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M.,

Truong, H.L., Villazon, A., Wieczorek, M.: Askalon: A grid application development and

computing environment. In: Proceedings of the 6th IEEE/ACM International Workshop on

Grid Computing. pp. 122–131. IEEE Computer Society (2005)

22. Falchetto, G.L., Coster, D., Coelho, R., Scott, B., Figini, L., Kalupin, D., Nardon, E.,

Nowak, S., Alves, L.L., Artaud, J.F., et al.: The european integrated tokamak modelling

(itm) effort: achievements and first physics results. Nuclear Fusion 54(4), 043018 (2014)

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

44 Supercomputing Frontiers and Innovations

23. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D.,

Borkum, M., Bechhofer, S., Roos, M., Li, P., et al.: myexperiment: a repository and social

network for the sharing of bioinformatics workflows. Nucleic acids research 38(suppl 2),

W677–W682 (2010)

24. Apache Hadoop. Web page at http://hadoop.apache.org/ ((Date of last access: 15th

November, 2016))

25. Hospital, A., Montras, A., Soiland-Reyes, S., Bonvin, A., Melquiond, A., Gelṕı, J.L., Lezzi,

D., Newhouse, S., Dianes, J.A., Abraham, M., Apostolov, R., Ippoliti, E., Carter, A., White,

D.J.: D2.1 State of the art and gap analysis. Tech. rep., BioExcel deliverable (2016)

26. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna:

a tool for building and running workflows of services. Nucleic acids research 34(suppl 2),

W729–W732 (2006)

27. Imbeaux, F., Pinches, S., Lister, J., Buravand, Y., Casper, T., Duval, B., Guillerminet,

B., Hosokawa, M., Houlberg, W., Huynh, P., Kim, S., Manduchi, G., Owsiak, M., Palak,

B., Plociennik, M., Rouault, G., Sauter, O., Strand, P.: Design and first applications of

the iter integrated modelling & analysis suite. Nuclear Fusion 55(12), 123006 (2015), http:

//stacks.iop.org/0029-5515/55/i=12/a=123006

28. InfraStructure for the European Network for the Earth System Modelling. Web page at

https://is.enes.org, accessed: 2017-02-15

29. The Kepler Project. Web page at https://kepler-project.org, accessed: 2017-02-15

30. Kranzlmüller, D., de Lucas, J.M., Öster, P.: The european grid initiative (egi). In: Remote

Instrumentation and Virtual Laboratories, pp. 61–66. Springer (2010)

31. Laure, E., Edlund, A., Pacini, F., Buncic, P., Barroso, M., Di Meglio, A., Prelz, F., Frohner,

A., Mulmo, O., Krenek, A., et al.: Programming the grid with glite. Tech. rep. (2006)

32. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F., Lezzi, D.,

Sirvent, R., Talia, D., Badia, R.M.: ServiceSs: An Interoperable Programming Framework

for the Cloud. Journal of Grid Computing 12(1), 67–91 (2014)

33. Manubens-Gil, D., Vegas-Regidor, J., Matthews, D., Shin, M.: Assesment report on auto-

submit, cylc and ecflow. Tech. rep. (2016), https://earth.bsc.es/wiki/lib/exe/fetch.

php?media=tools:isenes2_d93_v1.0_mp.pdf

34. Manubens-Gil, D., Vegas-Regidor, J., Prodhomme, C., Mula-Valls, O., Doblas-Reyes, F.J.:

Seamless management of ensemble climate prediction experiments on hpc platforms. In:

High Performance Computing & Simulation (HPCS), 2016 International Conference on. pp.

895–900. IEEE (2016)

35. Manubens-Gila, D., Vegas-Regidora, J., Acostaa, M.C., Prodhommea, C., Mula-Vallsa, O.,

Serradell-Marondaa, K., Doblas-Reyes, F.J.: Autosubmit: a versatile tool for managing

Earth system models on HPC platforms. Future Generation Computer Systems submited

(2016)

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 45

36. Marti, J., Gasull, D., Queralt, A., Cortes, T.: Towards DaaS 2.0: Enriching data models. In:

Proceedings - 2013 IEEE 9th World Congress on Services, SERVICES 2013. pp. 349–355.

IEEE, IEEE (jun 2013), DOI: 10.1109/SERVICES.2013.59

37. McLennan, M., Clark, S., Deelman, E., Rynge, M., Vahi, K., McKenna, F., Kearney, D.,

Song, C.: Hubzero and pegasus: integrating scientific workflows into science gateways.

Concurrency and Computation: Practice and Experience (2014), DOI: 10.1002/cpe.3257

38. National Virtual Observatory. Web page at http://us-vo.org, accessed: 2017-02-15

39. Oliver, H.J.: Cylc (the cylc suite engine). Tech. rep. (2016)

40. Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., Avery, P., Blackburn,

K., Wenaus, T., Würthwein, F., et al.: The open science grid 78(1), 012057 (2007)

41. Price, B.: Frank and lillian gilbreth and the manufacture and marketing of motion study,

1908-1924. Business and economic history pp. 88–98 (1989)

42. Pronk, S., Larsson, P., Pouya, I., Bowman, G.R., Haque, I.S., Beauchamp, K., Hess, B.,

Pande, V.S., Kasson, P.M., Lindahl, E.: Copernicus: A new paradigm for parallel adaptive

molecular dynamics. In: Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis. pp. 60:1–60:10. SC ’11, ACM, New York,

NY, USA (2011), DOI: 10.1145/2063384.2063465

43. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.

Ptolemy.org (2014), http://ptolemy.org/books/Systems

44. Ruiz, J., Garrido, J., Santander-Vela, J., Sánchez-Expósito, S., Verdes-Montenegro, L.: As-

trotavernabuilding workflows with virtual observatory services. Astronomy and Computing

7, 3–11 (2014)

45. Sánchez-Expósito, S., Mart́ın, P., Rúız, J.E., Verdes-Montenegro, L., Garrido, J., Sirvent,

R., Falcó, A.R., Badia, R., Lezzi, D.: Web services as building blocks for science gateways

in astrophysics. Journal of Grid Computing 14(4), 673–685 (2016)

46. Southern California Earthquake Center. Web page at http://scec.org/, accessed: 2017-

02-15

47. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks 61, 85

– 117 (2015), http://sciencedirect.com/science/article/pii/S0893608014002135

48. Scott, B.D., Weinberg, V., Hoenen, O., Karmakar, A., Fazendeiro, L.: Scalability of the

plasma physics code gem. arXiv preprint arXiv:1312.1187 (2013)

49. SHaring Interoperable Workflows for large-scale scientific simulations on Available DCIs.

Web page at http://www.shiwa-workflow.eu/, accessed: 2017-02-15

50. Square Kilometre Array. Web page at https://www.skatelescope.org, accessed: 2017-

02-15

51. Sloggett, C., Goonasekera, N., Afgan, E.: Bioblend: automating pipeline analyses within

galaxy and cloudman. Bioinformatics 29(13), 1685–1686 (2013)

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

46 Supercomputing Frontiers and Innovations

52. The Principles of Scientific Management. The Mathematics Teacher 4(1), 44–44 (1911),

http://www.jstor.org/stable/27949698

53. Tejedor, E., Becerra, Y., Alomar, G., Queralt, A., Badia, R.M., Torres, J., Cortes, T.,

Labarta, J.: Pycompss: Parallel computational workflows in python. International Journal

of High Performance Computing Applications (2015)

54. Galaxy Tool Sheed. Web page at https://toolshed.g2.bx.psu.edu, accessed: 2017-02-15

55. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: A

language for distributed parallel scripting. Parallel Computing 37(9), 633–652 (2011)

56. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-

Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The taverna workflow suite: designing

and executing workflows of web services on the desktop, web or in the cloud. Nucleic acids

research p. gkt328 (2013)

57. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. Journal

of Grid Computing 3(3-4), 171–200 (2005)

58. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Com-

puting with Working Sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics

in Cloud Computing. HotCloud’10, USENIX Association, Berkeley, CA, USA (2010)

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 47

A Survey: Runtime Software Systems for High Performance

Computing

Thomas Sterling1, Matthew Anderson1, Maciej Brodowicz1

c© The Authors 2017. This paper is published with open access at SuperFri.org

High Performance Computing system design and operation are challenged by requirements

for significant advances in efficiency, scalability, productivity, and portability at the end of Moore’s

Law with approaching nano-scale technology. Conventional practices employ message-passing

programming interfaces; sometimes combining thread-based shared memory interfaces such as

OpenMP. These methods they are principally coarse grained and statically scheduled. Yet, per-

formance for many real-world applications yield efficiencies of less than 10% even though some

benchmarks achieve 80% efficiency or better (e.g., HPL). To address these challenges, strategies

employing runtime software systems are being pursued to exploit information about the status

of the application and the system hardware operation throughout the execution to guide task

scheduling and resource management for dynamic adaptive control. Runtimes provide adaptive

means to reduce the effects of starvation, latency, overhead, and contention. Many share common

properties such as multi-tasking either preemptive or non-preemptive, message-driven computa-

tion such as active messages, sophisticated fine-grain synchronization such as dataflow and future

constructs, global name or address spaces, and control policies for optimizing task scheduling to

address the uncertainty of asynchrony. This survey will identify key parameters and properties

of modern and experimental runtime systems actively employed today and provide a detailed de-

scription, summary, and comparison within a shared space of dimensions. It is not the intent of

this paper to determine which is better or worse but rather to provide sufficient detail to permit

the reader to select among them according to individual need.

Keywords: runtime system, parallel computing, scalability, survey, High Performance Com-

puting.

Introduction

A runtime system or just “runtime” is a software package that resides between the operating

system (OS) and the application programming interface (API) and compiler. An instantiation

of a runtime is dedicated to a given application execution. In this it is differentiated from the

operating system in that the OS is responsible for the behavior of the full hardware system

while the runtime is committed to some critical operational property of a specific user program.

This important complementarity is realized by the OS that has information about the entire

system workload and the objective function to optimize for, perhaps, highest possible job stream

throughput while the runtime does not know about system-wide status. However, the runtime

has direct information about the computational properties and requirements of its assigned

application; information neither available nor actionable by the OS. This paper is a survey of

runtime software systems being developed and employed for high performance computing (HPC)

to improve the efficiency and scalability of supercomputers, at least for important classes of end-

user applications.

In the most general sense, runtimes have been used in one form or another for more than

five decades. In many cases these have served to close the semantic gap by exporting a virtual

machine to the user greatly improving productivity and portability. Examples of such runtime

system software include, but are in no way limited to, LISP, Basic, Smalltalk, and more recently

Java and Python. With perhaps one important exception, very limited use of runtime systems

1Center for Research in Extreme Scale Technologies, Indiana University, Bloomington, USA

DOI: 10.14529/jsfi170103

48 Supercomputing Frontiers and Innovations

has been made in the arena of HPC. This is not absolutely the case as some modest amount

of runtime control has been employed even for the widely used programming interfaces of both

OpenMP and MPI. But these uses are limited to the necessary essentials for the very good reason

of avoiding software overheads. As will be discussed in more detail, the significant exception is

the venerable Charm++ runtime software package that has been evolving for more than two

decades with an emphasis on dynamic applications, in particular molecular dynamics.

There is a renewed, diverse, and expanding interest internationally in the development and

application of advanced runtime systems for enabling progress in high performance computing

with specific focus on applications employing dynamic adaptive behaviors and the range of

emerging Petaflops scale computing systems approaching the realm of 1 Exaflops. The objectives

of the body of work associated with this direction are:

• Efficiency – the gap between the best a system can do and the delivered performance on

a real world application reflects the systems efficiency for that purpose. HPC operation

may be improved by making runtime decisions informed by program and system state

throughout the computation.

• Scalability – increasing the exposed and exploited parallelism may provide more compu-

tational work that can be done simultaneously either increasing throughput with more

applied resources and possibly reducing the time to solution for a fixed size problem.

• User Productivity – much of the programming burden on the HPC user is due to the

need to explicitly control the task scheduling and resource management by hand. Ideally,

the user should be responsible for delineating properties of the problem algorithm leaving

workflow management and distribution to some other mechanism such as a runtime system.

• Performance Portability – optimization of computing is conventionally highly sensitive to

the particulars of HPC system architectures requiring changes, sometimes significant, as

a parallel application is attempted to be ported to different architecture classes, scales,

and generations. Runtime systems may be able to undertake the challenge of matching

the needs of the applications with the particular capabilities and costs of each system to

which it is to run.

Interestingly, although there are many characteristics among current runtime systems that

are shared, they differ in origins and driving motivations. Different research drivers have in-

cluded specific applications that require dynamic control and may benefit from adaptive real

time operation, to support advanced programming languages and interfaces to provide higher

level user semantics, to explore innovations in parallel computer architecture, for domain specific

purposes, or to enable the exploitation of medium grain directed acyclic graph (DAG) represen-

tation of parallelism. In spite of these differentiated catalysts, many commonalities of approach

emerge.

The strategy of employing runtime software for HPC is neither obvious nor assured. Early

evidence suggests that some applications built with conventional programming methods that

exhibit regular structures, uniform computation, and static data distribution and scheduling are

unlikely to benefit from the use of runtimes. Because runtime software actually imposes addi-

tional overhead to the overall computation, if sufficient benefit is not derived, the overheads may

actually degrade the resulting performance. So, why can a runtime work? The opportunity is to

result in superior task scheduling and resources management through exploitation of continuing

runtime information combined with introspective policies for dynamic control.

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 49

In the following section, an extended discussion is presented to identify the fundamental

factors that are driving early work in runtime software, both development and application.

These are related to evolving enabling technology trends, resulting architectures, and future

application requirements. Section 2 presents the key areas of functionality that in one form or

another is associated with many of the promising runtime systems, as well as the ways that they

vary. Section 3 provides detailed descriptions of a set of exemplar runtime systems noteworthy

for their sophistication, their comprehensive capabilities, their breadth of application, and their

leadership in the field. Within this select set are only those runtimes that scale across many nodes.

For a more complete list, Section 4 delivers brief descriptions of a larger number of runtimes,

including some limited to single node SMPs like OpenMP. To summarize as well as compare

and contrast these runtimes, tables are provided in Section 5. Finally, this paper concludes

by considering the future directions for further evolution and improvements of next generation

runtime systems and their impacts on both end user applications and the architectures upon

which they will run.

1. Drivers for HPC Runtime Systems

Conventional practices over the last two decades or more have proven very successful with

exponential technology growth consistent with Moore’s Law and corresponding progress in per-

formance gain as reflected, for example, by dramatic improvements in measured Linpack [5]

performance with a gain of 100,000× demonstrated in the last 20 years. Additional factors con-

tributing to this are in the areas of parallel architecture and application algorithms. But in spite

of these apparent successes, significant changes in technology trends have altered the means by

which extended gains can be achieved. These changes are driving the need for runtime system

development in support of many classes of applications.

Efficiencies which are measured as the ratio of sustained to peak performance may appear

very high for certain favorable benchmarks, but for many real world applications at high scale

the efficiency can be very much lower. Linpack Rmax values have been measured with optimized

codes to in excess of 90% with even typical commodity clusters using Ethernet interconnect

exceeding well beyond 60%. However, routinely sophisticated and complex applications on large

scale systems will often deliver sustained efficiency of less than 10% with even lower values below

5% not uncommon. As long as architecture design is structured to maximize ALU throughput,

these metrics are unsustainable if further significant performance growth within practical oper-

ational constraints is to be viable.

A wide array of computational challenges had been met with parallel algorithms that were

coarse-grained, incorporated regular and often dense matrix data structures, were SPMD pro-

gram flow controlled, and employed global barriers for synchronization. Many applications are

now far more sophisticated than this, combining irregular and time-varying data structures with

medium to fine grained tasks to expose an abundance of parallelism for greater scalability. The

evolution of the application execution is often unpredictable as it is sensitive to intermediate

result data. Adaptive mesh refinement and N-body problems are only two of a large array of

applications that fall into this category. As the underlying physical models increase in dimen-

sionality and speciation for greater accuracy, non-linear sensitivities are exposed yet further

complicating the control flow and inhibiting predictability for task scheduling and resource al-

location at time of compile and launch.

A Survey: Runtime Software Systems for High Performance Computing

50 Supercomputing Frontiers and Innovations

HPC system structures have gone through rapid growth in scale, complexity, and hetero-

geneity, in particular, with the advent of multi-core and GPU accelerated architectures. These

trends have increased since 2004 with the advent of multicore chips and their use in HPC systems

with such systems as the IBM BG/L. The largest supercomputer today, TaihuLight, comprises

on the order of ten million cores. Both memory hierarchies and communication interconnection

networks integrating all of the component subsystems are expanding, aggravating the complex-

ity of resource allocation, data distribution, and task scheduling. An important aspect of system

behavior resulting from this is the uncertainty of asynchrony that is becoming worse. It means

that both the access and service times local and remote across a large scale system can be dra-

matically different from each other and that for any single access may change over time. These

factors clearly demand responsive measures to be included within system control. It has become

clear with the emergence of modern high end machines that there is no single formula of system

architecture but rather a plethora of choices with at least two emerging as front runners causing

major challenges in portability. Fine grained architectures such as the early IBM Roadrunner,

the IBM Blue Gene family of systems, the Chinese TaihuLight, and the Intel Knights Landing

and next generation Knights Hill (such as the planned Aurora at ANL for 2018 operation) are all

examples of this class of system. Alternatively, a design that mixes high speed general purpose

processor cores for fast Amdahl code sequences with GPU accelerators for important numeric

computing idioms exhibiting highly parallel fine grain dataflow is emerging as a second design

point. The US’s largest system, Titan at ORNL, is of this class as will be the follow-on machine

there, Summit in 2018, that will include the IBM POWER9. Other system classes are possible as

well. Portability is greatly challenged with the need for computations to adapt for the diversity

of architecture forms, scales, and future generations.

Pushing the edge of evolution of HPC system architecture to ever greater scales and diverse

forms are fundamental technology trends that have changed dramatically from previous decades,

where the principal means of enhancing performance gain was by riding the exponential growth

of Moore’s Law for semiconductor device density. As silicon fabrication and manufacturing is

converging at nano-scale, Moore’s Law is flat-lining with little margins for marked improvements

in the future. This does not mean that one time improvements in technology will not occur, but

the dependence on exponential growth is ending. This follows the loss of Dennard scaling [4] for

cores including the end of instruction level parallelism which ultimately proved a disappointment.

Further constraints are imposed by having hit the power wall where the amount of energy

that can be consumed is also bounded. Therefore, for greater capability, improved performance

through enhanced efficiency and higher scalability will have to be derived with the future use

of runtime systems as a possible important contributor. Runtimes will improve efficiency, at

least for important classes of application algorithms, and can assist in exploiting a wider range

of parallelism including through parallelism discovery from meta-data such as graph structures

and DAG parallelism.

2. Key Functionality

Runtime systems for HPC vary widely in the specific details of their semantics and software

implementation. But they have proven to be a convergence in general characteristics, although

not complete uniformity. In the broadest sense, the functionality of a given runtime is a tradeoff

between the richness of the semantics for ease of use and the effectiveness with which specific

mechanisms can be implemented for purposes of efficiency and scalability. Runtime systems will

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 51

also be distinguished by how they address a number of key operational factors. This section

describes a number of such functionality factors that are likely to be found as components of

more than one major runtime software package. One similarity among the majority of runtimes

is that they are a work in progress; even the oldest ones. Implementations are being constantly

updated to take advantage of the latest developments in hardware and software environments,

changes to user interfaces and intermediate forms to facilitate interoperability, and new policies,

services, and advanced functional capabilities as experience dictates.

2.1. Multi-Threading

Almost all runtime systems in use have some form of threaded execution, whether directly

employing POSIX Pthreads [23] of the host operating system or providing its own lightweight

user threads package. The motivation is to provide a medium grained form of parallelism both

to improve efficiency and to extend scalability. Static bulk synchronous parallel (BSP [18])

methods tend to leave some large gaps in the effective usage of physical computing resources in

part as a result of the fork-join parallel control flow structures and because of static mapping

of tasks to work units (e.g., cores). Many runtimes use medium grain threads in combination

with dynamic scheduling to fill these gaps as becomes possible. This is enabled often by the use

of over-decomposition and finer granularity when overheads permit. Some runtimes (e.g., ETI

SWARM [24]) have ensured non-preemptive operation such that a thread once scheduled to a

hardware compute resource goes to completion, thus permitting certain execution optimizations.

Others permit preemption to avoid non-blocking due to requests to remote data accesses and

services. The internal structure of flow control within a thread is usually sequentially consistent

with some intra-thread ILP provided by the compiler and the hardware out of order execution

completion. Typically, this is the final manifestation of the executable. But other versions include

more complex intra-thread representations. Where the thread is generalized as a task, then

DAG may be used to better represent parallelism of actions by reflecting control dependencies.

Threads may differ by how they are instantiated. Value passing is popular where only input

values determine a point of departure for starting in the style of dataflow. This can be a form of

event-driven computation. How the thread interrelates with other threads and yet other forms

of actions is in part determined by object naming conventions and synchronization semantics

(see below).

2.2. Name Spaces and Addressing

Runtimes can differ significantly in the way they exchange information and intermediate re-

sults. The two extremes are pure distributed memory semantics and value-oriented data transfer

on the one hand, and global shared memory semantics on the other. Some runtimes will only

work on a SMP (symmetric multiprocessor) platform with hardware support for shared mem-

ory (e.g., Cilk++, OpenMP) which exhibits bounded time to completion and efficient address

translation (e.g., TLB). Others provide greater scalability by taking advantage of multi-node

DSM (distributed shared memory) systems by adapting to the asynchrony that causes vari-

ability of access time. Yet other runtimes assume a hardware structure exporting local shared

memory within nodes with distributed memory mechanisms between nodes frequently with the

equivalent of put/get semantics. That distinguishes between local and remote accesses at the

programming model but still provides a form of global IDs. This allows programmers to ex-

A Survey: Runtime Software Systems for High Performance Computing

52 Supercomputing Frontiers and Innovations

plicitly control application use of locality. Finally, some modes maintain load/store semantics,

both local and remote. These reduce user burden but require additional runtime mechanisms

for efficient exploitation of locality to reduce latency effects.

2.3. Message-Driven Computing

Certainly not required of a runtime system but nonetheless frequently employed is the use of

message-driven computation rather than exclusively message-passing as found with conventional

CSP strategies. Message-driven computation moves work to the data rather than always requir-

ing that data be gathered to the work. In the modern age, this is often referred to as “active

messages” [19] taken from the very good and long-lasting work at UC Berkeley. But in truth the

concepts go back to the 1970s with the dataflow model of computation and the Actors model [8]

of computation. It is manifest in the experimental J-machine of the early 1990s and is implicit in

the remote procedure calls of loosely coupled computing and in the cloud as well as transactional

processing. So there is a long tradition and many forms of message-driven computation with as

almost as many terms (e.g., ‘parcels’ for HPX runtime) for it as well. Its principal effect is to re-

duce the average latency of access and in combination with context-switched multi-threading to

provide latency hiding. But more subtle effects are possible. One of the more important among

these is the migration of continuations and the creation of a higher level of control state as will

be discussed briefly in the next section. This permits the redistribution of the relationship of

the execution on data and the control state that manages it for dynamic load balancing.

A packet of information that serves message-driven computation can and has taken many

forms. Very simple formats are associated with dataflow tokens that merely have to carry a scalar

datum or pointer to a predefined ‘template’ that itself specifies both the action to be performed

and the destination of its own result values. The token/template relationship determines a control

DAG that manages the information flow, exposes fine grain parallelism, and manages out of order

computation and asynchrony. Unfortunately, direct implementations of this structure imposed

too much overhead to be directly efficient as an architecture but the semantic concepts are

important still. Expanded notions of message-driven computation include the specification of

actions to be performed within the message itself, the destination as a virtual object, complex

operand values, structures or sets, and possible information about resulting continuations.

2.4. Synchronization

The flow control guiding the execution of the application with the involvement of a run-

time system requires representation of the constraints to further progress. Such semantics of

synchronization can be as coarse-grained as global barriers such as in the use of BSP or as fine

grained as in the case of binary (two-operand) dataflow control. Runtime systems are taking two

middle forms of synchronization in many cases that provide a richer semantics for small amount

of overhead. One form of control is event driven synchronization to support DAG organized

task-based parallelism. This is used in Parsec and OmpSs among other runtimes. This is similar

to dataflow but not limited to value oriented arguments and fine grained control, thus able to

amortize the overheads incurred.

Futures [1] based synchronization derived from the early Actors model extends the need

for a result to an unbounded set of follow on actions. Using either eager or lazy evaluation the

equivalent of an IOU is provided when an access request is made but the sought for value has

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 53

yet to be determined. This is useful when the variable is manipulated within the meta-data of

a structure such a graph but the actual value is not used. This exposes more parallelism for

greater efficiency and scalability.

3. Major Runtime Exemplars

3.1. Charm++

Charm++ [10, 22] is a portable runtime system developed in the Parallel Programming Lab-

oratory at University of Illinois at Urbana-Champaign by a diverse team directed by Laxmikant

Kale. It targets primarily distributed memory systems and provides working implementations

for clusters of compute nodes or workstations, IBM BlueGene L, P and Q families, and Cray

XT, XE, and XC, but may also be used on isolated multi- and single-core machines as well as

platforms equipped with accelerators such as GPUs and Cell BE. The remote communication

layer natively supports InfiniBand, Ethernet, Myrinet, IBM, and Cray Gemini interconnects

using protocols based on TCP/IP packets, UDP datagrams, IB verbs or vendor-specific LAPI,

PAMI, and GNI interfaces. Charm++ can also utilize MPI [29] libraries if available on the spe-

cific platform. The runtime system accommodates a broad range of operating systems, ranging

from Linux, Mac OS X, MS Windows, Cygwin UNIX emulation layer on Windows, through IBM

AIX and CNK. While the native programming interface is expressed mainly in C++, binding

with C and Fortan codes is also supported. Depending on the platform, CHARM++ programs

may be compiled using GNU and Intel C++ compilers, Clang, PGI compilers, IBM XL C, and

MS Visual C++. The flagship applications include molecular dynamics package NAMD (shown

to scale beyond 500,000 cores), quantum chemistry computation OpenAtom, and collision less

N-body simulator ChaNGa. The current revision of Charm++ software is v6.7.1.

The state in Charm++ programs is encapsulated in a number of objects, or chares. The

objects communicate through invocation of entry methods. These methods may be called asyn-

chronously and remotely. The runtime system distributes the chares across the parallel execu-

tion resources and schedules the invocations of their entry methods. The execution of Charm++

programs is message-driven, reminiscent of active-messages or Actors model. Both object in-

stantiation as well as method call is mediated through proxy objects, or lightweight handles

representing remote chares. Typically, the invocation of entry method on a chare proceeds to

completion without an interruption. To avoid issues related to multiple concurrent updates to

objects state, only one method is allowed to be active at a time. An executing method may

call one or more methods on other chares. The chares are created dynamically at locations de-

termined by dynamic load balancing strategy, although explicit specification of the destination

processor is also possible. Chares may migrate to other locations during program run time by

utilizing specialized migration constructor; migrated objects are then deleted from the origi-

nal locations. Entry methods support arbitrary type signatures as defined by C++ language;

however, they may not return values (the return type is void) thus permitting non-blocking op-

eration. The method arguments are marshalled into messages for remote communication using

PUP serialization layer. A more efficient direct invocation path for local objects that dispenses

with proxy access is also supported by deriving local virtual addresses of target chares. While the

preferred execution model is the structured dagger (SDAG) delineated above, Charm++ also

provides thread-like semantics using its own implementation of user-level threads. In threaded

mode, processing of a method can be suspended and resumed, multiple threads may be synchro-

A Survey: Runtime Software Systems for High Performance Computing

54 Supercomputing Frontiers and Innovations

nized using, for example, futures, and methods may return a limited set of values. Since usage

of global variables is not supported, Charm++ provides read-only variables that are broadcast

to available processing elements after program begins to execute.

To facilitate the management of multiple objects, Charm++ distinguishes three types of

chare collections: arrays, groups, and nodegroups. The first is a distributed array in which chares

may be indexed by integers, tuples, bit vectors or user-defined types in multiple dimensions.

There are several modes of element mapping to execution resources, including round-robin,

block, block-cyclic, etc. in addition to user specified distributions. Arrays support broadcast

(invocation of a method over all array elements) and reduction operations using a number of

arithmetic, logic, and bitwise operators. Groups map each component chare onto individual

processing elements. Analogously, chares belonging to a nodegroup are assigned to individual

processes (logical nodes). Since a method invoked on a nodegroup may be executed by any

processor available to the encompassing process, this may lead to data races as the concurrent

execution of the same method on different processors is not prohibited. Charm++ offers exclusive

entry methods for nodegroups if this behavior is undesirable. A dedicated chare (mainchare) is

used to initiate the program execution. One or more mainchares are instantiated on processing

element zero and create other singleton chares or chare collections as required, and initialize the

read-only variables. Every chare and chare collection has a unique identifier providing a notion

of global address space.

A Charm++ program is developed using standard C++ compiler and programming environ-

ment. Program source consists of header file, implementation file, and an interface file. The first

two contain nominal C++ prototype definitions describing class members and inheritance from

appropriate chare base classes (.h extension), and body code of entry methods (.cpp extension).

The interface description (.ci extension) groups chares into one or more modules (which may

be nested) and provides declarations of read-only variables, chare types, and prototypes of their

entry methods (along with the required attributes, such as threaded or exclusive). The users

compile the programs using Charmc compiler wrapper which is also used to parse the interface

description files and link the object files and runtime libraries into executable binaries. The

Charm++ distribution includes a debugging tool, charmdebug, that may be used to record and

scan execution traces, inspect memory, object and message contents, and freeze and reactivate

selected sections of parallel programs. Also available is a Java-based performance visualization

tool ”projections” that displays the collected trace data showing interval-bound CPU utiliza-

tion graphs, communication characteristics, per-core usage profiles, and histograms of selected

events.

3.2. OCR

The Open Community Runtime (OCR) [17] is developed through collaboration between

the Rice University, Intel Corporation, UIUC, UCSD, Reservoir Labs, Eqware, ET Interna-

tional, University of Delaware, and several national laboratories. The support for the project

was also provided by the DoE Xstack program and DARPA UHPC program. The OCR effort

focuses on development of the asynchronous task-based, resilient runtime system that targets

exascale systems, but can be used on conventional single- and multi-node platforms. A number

of proxy applications and numerical kernels, such as CoMD (molecular dynamics), LULESH

(shock propagation), Cholesky matrix factorization, Smith Waterman algorithm (protein se-

quence comparison), 1D and 2D stencil codes, FFT, and triangle (recursive game tree search),

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 55

have been ported to OCR while several others are works in progress. Source code of OCR is

written in C permitting interfacing with all compatible languages and is distributed under BSD

open source license. The supported processor targets include x86, Xeon Phi, and a strawman

Intel TG exascale architecture as well as different communication environments, such as MPI

and GASNet. OCR is still in active development phase; the revision of its latest release is v1.1.0.

OCR exposes to the programmers three levels of abstraction in global namespace: data ab-

straction, compute abstraction, and synchronization abstraction. The data abstraction includes

explicitly created and destroyed data blocks (DB). Each data block contains a fixed amount of

storage space. Data blocks may migrate across the physical storage resources. Since conven-

tional memory allocation wrappers, such as malloc, cannot be directly used for that purpose,

data blocks are the only construct to provide dynamically allocated global memory for appli-

cation data. The compute abstraction is built on top of event-driven tasks (EDTs). Such tasks

represent fine-grain computation units in the program and are executed only when precedent

input data blocks are ready. They may require zero or more scalar input parameters, zero or

more input dependencies, and produce at most one output event. The output event is satisfied

when the task execution completes. The event-driven tasks may also create other tasks and data

blocks, however the creating EDT may not access the data blocks it created to prevent resiliency

issues. The execution of any OCR program starts with the creation of a mainEDT task which

initializes data blocks and spawns additional tasks as needed. The synchronization abstraction is

used to define dependencies between executing tasks. It relies on events that act as a connector

between producer and consumer EDTs. The information between the involved tasks is passed in

data blocks with the exception of null identifier case that signifies pure synchronization without

data propagation. Finally, the global namespace employs Globally Unique Identifiers (GUIDs)

to track the instances of data blocks, event-driven tasks, and events in use on the machine.

Additionally, GUIDs may identify task templates, or forms of task prototype that are consulted

when creating new tasks. For synchronization, the GUID of a relevant event must be known in

advance to the involved endpoint EDTs.

An arbitrary number of tasks may read from a data block, however, due to lack of ex-

plicit locking mechanisms in OCR, synchronization of exclusive writes is more involved. EDTs

may gain access to data only in the beginning of execution, but can provide data at any mo-

ment. Typically, a given event may be satisfied only once and is automatically deleted after

all dependent on it tasks are satisfied. In many cases, the common mechanism to accomplish

synchronization relies on creation of additional EDTs and intermediate events. To enable more

complex synchronization patterns that may be useful in handling race conditions, OCR provides

other event types that differ in life cycle and semantics. Events of sticky type are retained until

explicitly destroyed, typically by the data acquiring task. Idempotent events are similar to the

sticky events, but subsequent attempts to satisfy them after the first one are ignored. A latch

event contains two input slots and a trigger rule that defines condition when it becomes active;

latch events are automatically deleted once triggered.

While the programmer may utilize the OCR interface directly, its intent is to provide low-

level mechanisms for implementation of more sophisticated APIs. One of them is the CnC [27]

(Intel Concurrent Collections) framework which allows the programmer to specify dependencies

between the executing program entities as a graph by using a custom language. A CnC program

applies step collections that represent computation to item collections representing data. The

framework provides a translator to generate an OCR-CnC project containing Makefile, entry,

A Survey: Runtime Software Systems for High Performance Computing

56 Supercomputing Frontiers and Innovations

exit, and graph initialization functions, skeletons of step functions, and glue code interacting

with OCR. The user then has to fill in the provided function skeletons and compile the project to

executables. Other programming flows are also possible and involve Hierarchically Tiled Arrays

(HTA) model [6], R-Stream compiler [12], Habanero-C [25], and Habanero-UPC++ [11] libraries.

3.3. HPX+

The family of HPX runtimes share a common inspiration of the ParalleX execution model.

Different implementations have been developed to explore separate domains of interest and to

serve possibly different sectors of the HPC community. The original HPX runtime [36], developed

at Louisiana State University, has focused on C++ programming interfaces and has had a direct

and recognized impact on the C++ steering committee and the emerging C++ programming

standard. The HPX-5 runtime software [37] has been developed at Indiana University to serve

as an interface to specific dynamic adaptive applications, some sponsored by DOE and NSF.

HPX-5 has also been employed as an experimental platform to determine overhead costs, derive

advanced introspective policies for dynamic adaptive control, and explore possible hardware

architecture design to dramatically reduce overheads and increase parallelism. HPX+ which is

captured in the table below is a work-in-progress with improved policy interface, real-time exe-

cution, automatic energy optimization, and fault tolerance as well as support for user debugging.

Not all these features are fully functional at the time of writing but are in preparation for release.

Although there are key distinctions between HPX and other runtimes described in this report,

it subsumes most of the primary functionality.

HPX+ is an advanced runtime system software package developed as a first reduction to

practice and proof of concept prototype of the ParalleX execution model. Its design goal is to

dramatically improve efficiency and scalability through exploitation of runtime information of

system and application state for dynamic adaptive resource management and task scheduling

while exposing increased parallelism. HPX+ extends the core of HPX-5 to integrate advanced

functionality associated with the practical concerns of fault tolerance, real-time operation, and

energy management in conjunction with active user computational steering and in situ visu-

alization. HPX+ is based on an extended threaded model that includes intra-thread dataflow

operation precedent constraint specification. These threads are preemptive with fine-grained se-

quences that can be specified as non-preemptive for atomic operation. Threads as implemented

in HPX+ are ephemeral and are first-class in that they are named in the same way as typed

global data objects. They are also migratable; that is they can be moved physically while re-

taining the same virtual names. Message-driven computation is a key element of the strategy

embodied by HPX+ with the parcel messaging model implemented on top of the innovative

lightweight packets Photon system area network protocol with put-with-complete synchroniza-

tion. Parcels target virtual objects, specify actions to be performed, carry argument data to

remote locations, and determine continuations to be executed upon completion of the required

action. Parcels may support remote global accesses and broader system-wide data movement,

instantiate threads either locally or at remote sites, directly change global control state, or cause

I/O functions. HPX+ is a global address space system with a unique hierarchical abstraction

layer referred to as ParalleX processes or Pprocesses. Pprocesses are contexts in which data,

mappings, executing threads, and child Pprocesses are organized. They differ from conventional

processes in a number of ways. They are first class objects and ephemeral like threads. But

unlike threads (or other processes) they may span multiple system nodes, share nodes among

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 57

processes (not limited to space partitioning) and migrate across the physical system, adding,

deleting or swapping physical nodes. Further, Pprocesses may instantiate child processes. The

global address space gives load/store access to first class data anywhere in the ancestry hier-

archy of the naming tree up to the root node or down to the deepest direct descendent. With

cousin Pprocesses, accesses can only be achieved with access-rights and by method calls. Syn-

chronization is achieved principally through dataflow and futures to manage asynchrony, expose

parallelism, and handle both eager and lazy evaluation. A large global graph comprising futures

at the vertices comprises an additional global control state that manages overall parallel opera-

tion including distributed atomic control operations (DCO) and copy semantics. Heterogeneous

computing is supported through percolation, a variation of parcels that moves work to alternate

physical resources such as GPUs.

3.4. Legion

Legion [15] is a programming model for heterogeneous distributed machines developed at

Stanford University with contributions from Los Alamos National Laboratory and NVIDIA.

It is motivated by the need for performance portability between machine architectures which

differ substantially one from another and the need for programmability in an era when increases

in component heterogeneity continue to complicate machine programmability. Legion targets

machines with heterogeneous components that may result in larger component time variabilities

than would be observed in a machine comprised of identical subcomponents.

The Legion programming model centers on three abstractions: tasks, regions, and mapping.

A task is a unit of parallel execution. A region has an index space and fields that are frequently

referred to as a collection of rows (index space) and columns (fields). Tasks work on regions

and declare how they use their regions. Regions may have read, write, or reduction permissions.

The mapper decides where tasks run and where regions are placed. The act of mapping consists

of assigning tasks to a CPU or GPU and assigning regions to one of the appropriate memo-

ries accessible to the corresponding task. Both tasks and regions can be broken into subtasks

or subregions, respectively. The Legion runtime system extracts parallelism by scheduling in-

dependent subtasks concurrently in this way: the runtime will automatically detect ordering

dependencies in an application and create a dependency graph thereby allowing the runtime

scheduler to concurrently schedule tasks as appropriate. The dependency graph is built by the

runtime system and Legion schedules the graph dynamically in conjunction with the mapper,

while the programmer only writes the regions and subtasks for an application.

While generic task dependence analysis is a key component of Legion in order to extract

parallelism and better utilize available compute resources, the application developer can also

break the default sequential semantic behavior of subtasks on a region so that they become

atomic or even simultaneous on a region and thereby enable uncontrolled reads or writes. Ad-

ditional primitives such as acquire, release, make local copies, and phase barriers further refine

this behavior and enable the application developer to bypass the generic dependence analysis

in the runtime. Tasks on a critical path can be scheduled with priority and the mapping, while

computed dynamically, can be controlled by the application to incorporate application specific

knowledge.

Legion provides a C++ interface as well as its own programming language, Regent. When

running on distributed heterogeneous machines, Legion uses GASNet [35] and CUDA and is

still in active development. Legion has demonstrated scalability in combustion simulations using

A Survey: Runtime Software Systems for High Performance Computing

58 Supercomputing Frontiers and Innovations

the S3D mini-application [7] on thousands of nodes of the largest machine in the United States,

Titan. Legion provides several debugging tools for generating and viewing the task graph gener-

ated by the runtime from an application. Optimization of an application when moving between

different machine architectures does not require that the programmer change the regions and

subtasks that have already been written. Only the mapping has to change when moving code

between different machine architectures in order to optimize performance. Mapping changes

such as altering where a task runs or where regions are placed do not affect the correctness of

an application, only its performance.

Not unsurprisingly, the dynamic analysis of the application task dependency graph does add

overhead in Legion that conventional programming models would not have. Legion is able to hide

the additional overhead of the dynamic analysis by building the dependency graph sufficiently far

ahead of the execution thereby making scheduling decisions well before execution, allowing it to

build up work in reserve and deal with high latency and asynchrony of operation by immediately

using compute resources as they become available.

3.5. OmpSs

OmpSs [41] is a task based programming model developed at the Barcelona Supercomputing

Center that aims to address the needs of portability and programmability for both homogeneous

and heterogeneous machines. The name originates from a combination of the OpenMP and the

Star SuperScalar [16] programming model names. A runtime implementation of OmpSs is pro-

vided through the Nanos++ [39] runtime system research tool which provides user-level threads,

synchronization support, and heterogeneity support and through the Mercurium compiler [38] for

handling clauses and directives. OmpSs is often described either as an extension to OpenMP or

as forerunner for OpenMP on emerging architectures, reflecting its aim to support asynchronous

task based parallelism while also incorporating support for heterogeneous architectures in the

same programming model. Like OpenMP, it can be used in a hybrid manner with MPI for

simulations on distributed memory architectures.

The key abstractions in OmpSs are tasks with data-dependencies expressed through clauses

and for-loops. Tasks in OmpSs are independent units of parallel execution. Parallelism is ex-

tracted through concurrent scheduling of tasks by the runtime system. For-loops operate in

almost the same way in OmpSs as in OpenMP except with additional ability to alter the exe-

cution order that is useful for priority scheduling.

Because of the close relationship of OmpSs with OpenMP and because of widespread commu-

nity familiarity with OpenMP, it can be helpful to compare and contrast OmpSs with OpenMP.

Like OpenMP, OmpSs codes will execute correctly even if the OmpSs directives are ignored. Like

OpenMP, OmpSs directives are also supplied as pragmas. However, unlike OpenMP, OmpSs does

not have parallel regions and does not follow the fork-join execution model but rather implicitly

extracts parallelism through concurrent scheduling of tasks. Launching OmpSs results in launch-

ing multiple user-level threads to which tasks are assigned when a task construct is encountered.

The actual execution of the tasks will depend upon the task scheduling, thread availability, and

resource availability.

Data dependencies can alter the order in which a task might execute, and these data depen-

dencies are expressed by adding clauses to the task construct. These clauses, including in, out,

and inout, aid the runtime in creating a data dependence graph for use in scheduling the tasks.

Additionally, a concurrent clause enables the concurrent execution with other similarly labeled

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 59

tasks and places responsibility of uncontrolled read/writes on the programmer but also provides

greater flexibility from using the task dependency graph generated by the runtime for execution.

OmpSs also provides key directives for task switching, where execution on one task may switch

to another. While this would normally occur when a task completes execution, the programmer

may also force this to occur using the ”taskyield” and ”taskwait” directives. The task switching

directive ”taskwait” in OmpSs is frequently used in connection with a task reduction operation

to wait on all child tasks to complete the reduction.

OmpSs is in active development and has a long track record of influencing the development

of OpenMP. Many of the features available in OmpSs have been incorporated into the newest

OpenMP specifications.

3.6. PaRSEC

The Parallel Runtime Scheduling and Execution Controller (PaRSEC) framework [32] is a

task based runtime system which targets fine-grained tasks on distributed heterogeneous archi-

tectures. Like other runtime system frameworks, it aims to address the issues of portability across

many hardware architectures as well as achieving high efficiency for a wide variety of computa-

tional science algorithms. Dependencies between tasks in PaRSEC are represented symbolically

using a domain specific language called the Parameterized Task Graph [2]. The application de-

veloper can use the PaRSEC compiler to translate code written with sequential semantics like

that of the SMPSs task-based shared memory programming model into a DAG and allow the

runtime system to discover parallelism through dynamic execution. In this way, the runtime sys-

tem is naturally well suited for heterogeneous architectures, where a high variability in system

component response time may be expected.

The principal abstractions of PaRSEc are tasks and data. A task in PaRSEC is a parallel

execution unit with input and output data while data itself is a logical unit in the dataflow

description. The Parameterized Task Graph resulting from the PaRSEC compiler is an effectively

compressed representation of the task DAG and is fixed at compile time; it cannot represent

dynamic DAGs nor data dependent DAGs. However, the Parameterized Task Graph provides

an efficient symbolic representation of the task graph that eliminates the need for traversing

the entire graph when making scheduling decisions. A local copy of the entire task graph is

maintained on each node to avoid extra communication. Unlike many other task based runtime

systems, PaRSEC maintains a task scheduler on each core. A user-level thread on each core

alternates executing the scheduler to find new work or executing a task.

PaRSEC is developed at the Innovative Computing Laboratory at the University of Ten-

nessee. It is still in active development with the most recent major release in 2015. Among the

notable projects using PaRSEC is DPLASMA [26], an interface to ScaLAPACK using PaRSEC,

and the open source high-performance computational chemistry tool NWCHEM 6.5, where a

portion of the tool has been implemented with ParSEC capability [3]. PaRSEC also features a

resilience policy with data logging and checkpointing integrated into the runtime model.

A Survey: Runtime Software Systems for High Performance Computing

60 Supercomputing Frontiers and Innovations

4. Other Runtimes

4.1. Qthreads

Sandia’s Qthreads library [20] provides a distributed runtime system based on user-level

threads. The threads are cooperatively scheduled and have small stacks, around 4-8 KB. The

threads are transparently grouped to “shepherds” that refer to specific physical execution re-

sources, memory regions or protection domains. Association with shepherds identifies the loca-

tion of thread execution. The threads are spawned explicitly and may synchronize their operation

through mutexes and full-empty bits (FEBs). While mutexes may only be locked and unlocked,

FEBs support explicit setting of FEB state (to full or empty) in a non-blocking fashion and

blocking reads and writes to FEB-protected memory cells. The reads block on FEB until the

contents is provided; the subsequent read of memory contents may clear or retain the full bit

status of related FEB. Analogously, the writes come in two variants: one that blocks until the

target FEB becomes empty and one that does not. A variant of thread called “future” permits

the user to limit the total number of thread instances to conserve the system resources. A num-

ber of convenience constructs, such as parallel threaded loops and reduction operations are also

provided. The remote operation is built on top of Portals4 library [14]. Qthreads execute on

POSIX-compliant machines and have been tested on Linux, Solaris, and Mac OS using GNU,

Intel, PGI, and Tilera compilers. The library has been ported to multiple CPU architectures,

including x86, PowerPC, IA-64, and MIPS.

4.2. DARMA

The Distributed Asynchronous Resilient Models and Applications (DARMA) co-design pro-

gramming model [21] is not a runtime system in itself but rather a translation layer between

front end that provides a straightforward API for application developers based on key function-

alities in asynchronous multitasking (AMT) runtime systems and a back end that is an existing

AMT runtime system. Consequently, an application developer can write a DARMA code and

run it using several different runtime system back ends as well as explore and improve the fron-

tend DARMA API to reflect needs from the application developer community. Current back

ends in DARMA include Charm++, Pthreads, HPX, and OCR with more back ends under

development.

4.3. OpenMP and OpenACC

OpenMP [31], along with the OpenACC [30] extension targeting accelerators, is a directive

based shared memory programming model utilizing concurrent OS threads. Both OpenMP and

OpenACC require a suitable compiler of C, C++ or Fortran language that parses and converts

to executable code segments of source suitably annotated by #pragma directives (or properly

formed comments in Fortran). The primary focus of the implementation is simplicity and porta-

bility, hence not all semantic constructs provided by other multithreading runtime systems are

supported. The model effectively subdivides the program code into sequentially executed and

parallel sections. The latter are launched after implicit fork operation that creates or assigns

a sufficient number of threads to perform the work. Parallel section is followed by an implicit

join point which serves as a synchronization before proceeding to the following sequential region

of the code. As the model does not specify communication environment, execution of OpenMP

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 61

enabled programs on a distributed platform typically requires third party networking library,

such as MPI. The compiler transformations applied to program code most commonly distribute

iterations of a possibly mutiple-nested loop across the available execution resources (proces-

sor or GPU cores). The user also has a possibility to declare individual variables accessed in

the loop scope as shared, private (with several variants) or reduction variables. The interface

permits atomic, critical section, and barrier synchronization across the executing threads. One

of the recent additions was explicit task support. It is expected that OpenMP and OpenACC

specifications will merge in not too distant future.

4.4. Cilk

The Cilk [13] family with its variants Cilk++ and Cilk Plus [9] is another compiler-driven

approach to extracting task-level parallelism from application code. At its simplest, this is con-

trolled by just two keywords, spawn and join, that respectively inform the compiler about

possibility of instantiation of new parallel task(s) and enforce a logical barrier waiting for com-

pletion of all previously spawned tasks. The scheduler decides whether computations identified

by spawn are offloaded to another OS thread or are continued in a different invocation frame

by the calling thread. Cilk++ by Cilk Arts extended the use of fork-join model to C++. Cilk

Plus, created by Intel after acquisition of Cilk Arts, introduced support for parallel loops and

hyperobjects that enable multiple tasks to share the computational state without race conditions

and need for locking. Common application of hyperobjects are monoid (reduction) operations.

Cilk Plus functionality is supported by recent revisions of proprietary Intel C++ compiler, and

open-source efforts GCC and Clang.

4.5. TBB

Intel TBB [42] is a C++ template library supporting generation and scheduling of multiple

fine-grain tasks on shared memory multi-core platforms. The primary scheduling algorithm is

work-stealing coupled with uniform initial distribution of computations across the available cores.

TBB supports a wide range of parallel algorithms, including for loop, for-each loop, scan, reduce,

pipeline, sort, and invoke. They may be applied to a number of concurrent containers, such as

queues, hash maps, unordered maps and sets, and vectors. Synchronization primitives comprise

basic atomic functions, locks, mutexes, and equivalents of C++11 scoped locking and condition

variables. Task groups may be defined and dynamically extended for concurrent execution of

specific tasks. Both blocking and continuation-passing task invocation styles are supported.

4.6. Argobots

Argobots [33] is a tasking runtime system that both supports concurrent task execution with

dynamic scheduling and message-driven execution. Argobots is developed at Argonne National

Laboratory and is well integrated with many of the other runtime systems reviewed here, includ-

ing Charm++, PaRSEC, and OmpSs. Argobots interoperates with MPI and can be used as the

threading model for OpenMP. An example of this is the BOLT implementation of OpenMP [34]

which utilizes Argobots to provide OpenMP performance specialized for fine-grained application

execution.

A Survey: Runtime Software Systems for High Performance Computing

62 Supercomputing Frontiers and Innovations

4.7. XcalableMP

XcalableMP (XMP) [28] targets distributed memory architectures with user specified direc-

tives to enable parallelization. These directives are intended to be simple and require minimal

modifications to the original source code to enable parallelization similar to OpenMP but for

distributed memory architectures. It incorporates a Partitioned Global Address Space (PGAS)

model and is influenced in design by High Performance Fortran. XMP also supports explicit

message passing. An extension of XMP for heterogeneous clusters is under development known

as XcalableACC. XMP and XcalableACC are part of the Omni compiler project [40] at RIKEN

and the University of Tsukuba.

5. Summary Table

The key aspects of discussed runtime systems are compared in Table 1 and 2.

Conclusions and Future Work

Runtime system software packages are emerging as an augmenting way to possibly dra-

matically improve efficiency and scalability, at least for important classes of applications and

hardware systems. There are a number of runtime systems at various stages of development and

proven experience demonstrating a diversity of concepts and implementation methods. Many

different choices are represented to satisfy a varying set of requirements including semantics

of underlying execution models, integration with bindings to preferred programming models,

exploitation of available libraries and other software packages, tradeoffs between overheads and

parallelism, and policies for dynamic adaptive resource management and task scheduling. Yet,

it is also apparent with closer scrutiny that although such runtimes are derived from different

starting conditions they have converged to a certain degree exhibiting many common properties.

This should be reassuring as it seems that similar answers are derived in spite of disparate initial

conditions. This does not mean that the community is agreed upon a single runtime semantics

let alone syntax. But rather that there appears to be many likely conceptual elements that will

contribute to one or a few selected runtimes. It is premature to standardize as more experience

is required to identify best practices. But that process has begun.

Still, there are significant obstacles. Among these are overheads, exposure of parallelism, load

balancing, scheduling policies, and programming interfaces. These represent areas of future work.

A particular challenging problem is integrating many node hardware systems into a single system

image seamlessly without the intrinsically greater latencies of data movement dominating the

effectiveness of parallel processing. Policies of load balancing that minimize long distance data

transfers can mitigate this concern but must be closely associated with the specific details of the

application parallel algorithms and the time-varying data structures associated with the evolving

computations. If this cannot be resolved, it may demonstrate that prior practices engaging

explicit programmer control may be necessary after all. On the other hand, it is found that some

applications exhibit highly unpredictable behavior and data structures require similar forms of

adaptive control. Applications like AMR must include this dynamic control whether provided

by a runtime system or by the programmer. Finally, in the long term, if runtimes are to prove

broadly useful, they will require some architecture support as part of the hardware to minimize

overheads, limit latencies, and expose as much parallelism as possible for scalability. Thus it

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 63

Table 1. Comparison of primary runtime system properties

R
u

n
ti

m
e

D
is

tr
ib

u
te

d

b
a
se

d
d

ep
en

d
en

cy
T

a
sk

S
ch

ed
u

le
r

H
et

er
o
g
en

eo
u

s

in
te

rf
a
ce

P
ro

g
ra

m
m

in
g

P
re

em
p

ti
ve

T
h

re
ad

su
p

p
or

t

Argobots Y N FIFO N C Y Y

Charm++ Y N structured DAG (FIFO) N C++,

custom

N Y

Cilk Plus N N work-stealing N C,

C++

N N

DARMA Y N dynamic, dependency based Y C++ Y Y

HPX+ Y N FIFO, work-stealing Y C,

C++

N Y

Legion Y Y dynamic, dependency based Y Regent,

C++

N Y

OCR Y Y FIFO, work-stealing,

priority work-sharing,

heuristic

N C N N

OmpSs N∗ Y dynamic, dependency based Y C,

C++,

Fortran

Y Y

OpenMP

OpenACC

N N static, dynamic, dependency

based

Y C,

C++,

Fortran

OS

level

Y

PaRSEC Y Y static, dynamic, dependency

based

Y C,

Fortran

Y Y

Qthreads Y N FIFO, LIFO, centralized

queue, work-stealing, and

others

N C N Y

TBB N N LIFO, work-stealing,

continuation-passing style,

affinity, work-sharing

N C++ N Y

XcalableMP Y N static, dynamic N∗∗ C,

Fortran

Y Y

∗ The COMPSs project is the programming model implementation from the StarSs family intended for

distributed computing.
∗∗ The XcalableACC project is corresponding project for heterogeneous computing.

is possible that the near term explorations of runtime software for optimizing applications will

ultimately drive changes in the HPC hardware system design.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

A Survey: Runtime Software Systems for High Performance Computing

64 Supercomputing Frontiers and Innovations

Table 2. Comparison of primary runtime system properties (continued).

R
u

n
ti

m
e

P
ri

o
ri

ty
q
u

eu
e

M
es

sa
g
e-

d
ri

ve
n

G
A

S
su

p
p

o
rt

S
y
n

ch
ro

n
iz

a
ti

o
n

T
a
sk

D
A

G
su

p
p

o
rt

n
a
m

es
p

a
ce

L
o
g
ic

a
l

h
ie

ra
rc

h
ic

a
l

T
er

m
in

at
io

n
d

et
ec

ti
o
n

Argobots Y Y N locks, mutexes N N Y

Charm++ message

prioritization

Y Y actors model, futures Y N Y

Cilk Plus N N N join, hyperobjects N N N

DARMA N N N dependencies Y N Y

HPX+ N Y Y futures (local control

objects)

Y Y Y

Legion Y N N coherence modes:

exclusive, atomic,

concurrent

Y N Y

OCR Y Y Y events, dependencies Y N N

OmpSs Y N N events, dependencies Y N Y

OpenMP

OpenACC

Y N N join, atomics, critical

section, barrier

N N N

PaRSEC Y N N locks, mutexes,

dependencies

Y N Y

Qthreads Y Y N FEB, mutex N N N

TBB 3 level static &

dynamic

N N locks, mutexes,

atomics, condition

variables

N N N

XcalableMP N N Y barrier, post, wait N N Y

References

1. Baker, H.C., Hewitt, C.: The incremental garbage collection of processes. In: SIGART Bull.

pp. 55–59. ACM, New York, NY, USA (August 1977), DOI: 10.1145/872736.806932

2. Danalis, A., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: PTG: An abstraction

for unhindered parallelism. In: 2014 Fourth International Workshop on Domain-Specific

Languages and High-Level Frameworks for High Performance Computing. pp. 21–30 (Nov

2014), DOI: 10.1109/wolfhpc.2014.8

3. Danalis, A., Jagode, H., Bosilca, G., Dongarra, J.: Parsec in practice: Optimizing a legacy

chemistry application through distributed task-based execution. In: 2015 IEEE International

Conference on Cluster Computing. pp. 304–313 (Sept 2015), DOI: 10.1109/cluster.2015.50

4. Dennard, R.H., Gaensslen, F., Yu, H.N., Rideout, L., Bassous, E., LeBlanc, A.: Design of

ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid State

Circuits 9(5) (October 1974), DOI: 10.1109/jssc.1974.1050511

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 65

5. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present

and future. Concurrency and Computation, Practice and Experience 15(9) (July 2003),

DOI: 10.1002/cpe.728

6. Fraguela, B.B., Bikshandi, G., Guo, J., Garzarán, M.J., Padua, D., Von Praun, C.: Op-

timization techniques for efficient HTA programs. Parallel Comput. 38(9), 465–484 (Sep

2012), DOI: 10.1016/j.parco.2012.05.002

7. Grout, R., Sankaran, R., Levesque, J., Woolley, C., Posy, S., Chen, J.: S3D direct

numerical simulation: preparation for the 10-100 PF era (May 2012), http://on-demand.

gputechconf.com/gtc/2012/presentations/S0625-GTC2012-S3D-Direct-Numerical.

pdf

8. Hewitt, C., Baker, H.G.: Actors and continuous functionals. Tech. rep., Cambridge, MA,

USA (1978)

9. Intel Corp.: Intel R© Cilk
TM

Plus Language Specification (2010), version 0.9, docu-

ment number 324396-001US, https://www.cilkplus.org/sites/default/files/open_

specifications/cilk_plus_language_specification_0_9.pdf

10. Kale, L.V., Krishnan., S.: Charm++: Parallel programming with message-driven objects.

In: Wilson, G.V., Lu, P. (eds.) Parallel Programming using C++, pp. 175–213. MIT Press

(1996)

11. Kumar, V., Zheng, Y., Cavé, V., Budimlić, Z., Sarkar, V.: HabaneroUPC++: A compiler-

free PGAS library. In: Proceedings of the 8th International Conference on Partitioned Global

Address Space Programming Models. pp. 5:1–5:10. PGAS ’14, ACM, New York, NY, USA

(2014), DOI: 10.1145/2676870.2676879

12. Lethin, R., Leung, A., Meister, B., Schweitz, E.: R-stream: A parametric high level com-

piler (2006), Reservoir Labs Inc., Talk abstract, http://www.ll.mit.edu/HPEC/agendas/

proc06/Day2/21_Schweitz_Abstract.pdf

13. MIT: Cilk 5.4.6 Reference Manual (1998), http://supertech.csail.mit.edu/cilk/

manual-5.4.6.pdf

14. Schneider, T., Hoefler, T., Grant, R.E., Barrett, B.W., Brightwell, R.: Protocols for fully

offloaded collective operations on accelerated network adapters. In: 42nd International Con-

ference on Parallel Processing. pp. 593–602 (Oct 2013)

15. Slaughter, E., Lee, W., Jia, Z., Warszawski, T., Aiken, A., McCormick, P., Ferenbaugh,

C., Gutierrez, S., Davis, K., Shipman, G., Watkins, N., Bauer, M., Treichler, S.: Legion

programming system (Feb 2017), version 16.10.0, http://legion.stanford.edu/

16. Subotić, V., Brinkmann, S., Marjanovi, V., Badia, R.M., Gracia, J., Niethammer, C.,

Ayguade, E., Labarta, J., Valero, M.: Programmability and portability for exascale:

Top down programming methodology and tools with StarSs. Journal of Computational

Science 4(6), 450 – 456 (2013), http://www.sciencedirect.com/science/article/pii/

S1877750313000203, scalable Algorithms for Large-Scale Systems Workshop (ScalA2011),

Supercomputing 2011

A Survey: Runtime Software Systems for High Performance Computing

66 Supercomputing Frontiers and Innovations

17. Tim, M., Romain, C.: OCR, the open community runtime interface (March 2016), ver-

sion 1.1.0, https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/

spec/ocr-1.1.0.pdf

18. Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM

33(8), 103–111 (1990)

19. Von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: A

mechanism for integrated communication and computation. Proceedings of The 19th

Annual International Symposium on Computer Architecture, 1992 pp. 256–266 (1992),

DOI: 10.1109/isca.1992.753322

20. Wheeler, K., Murphy, R., Thain, D.: Qthreads: An API for programming with millions of

lightweight threads. In: Proceedings of the 22nd IEEE International Parallel and Distributed

Processing Symposium (MTAAP ’08 workshop) (2008), http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=4536359

21. Wilke, J., Hollman, D., Slattengren, N., Lifflander, J., Kolla, H., Rizzi, F., Teranishi, K.,

Bennett, J.: DARMA 0.3.0-alpha specification (March 2016), version 0.3.0-alpha, SANDIA

Report SAND2016-5397

22. The Charm++ parallel programming system manual, version 6.7.1, http://charm.cs.

illinois.edu/manuals/pdf/charm++.pdf, accessed: 2017-02-15

23. IEEE Standard for Information Technology – Portable Operating System Interface

(POSIX R©). IEEE Standard (2008), http://standards.ieee.org/findstds/standard/

1003.1-2008.html, accessed: 2017-02-15

24. SWARM (SWift Adaptive Runtime Machine) (2011), white paper, http://www.

etinternational.com/files/2713/2128/2002/ETI-SWARM-whitepaper-11092011.pdf,

accessed: 2017-02-15

25. Habanero-C (2013), website, https://wiki.rice.edu/confluence/display/HABANERO/

Habanero-C, accessed: 2017-02-15

26. DPLASMA: distributed parallel linear algebra software for multicore architectures (April

2014), version 1.2.0 http://icl.utk.edu/dplasma/, accessed: 2017-02-15

27. Intel R© concurrent collections C++ API (June 2014), website, https://icnc.github.io/

api/index.html, accessed: 2017-02-15

28. XcalableMP: a directive-based language extension for scalable and performance-aware paral-

lel programming (Nov 2014), version 1.2.1 http://www.xcalablemp.org/, accessed: 2017-

02-15

29. MPI: A Message-Passing Interface Standard (June 2015), specification document, http:

//mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, accessed: 2017-02-15

30. The OpenACC application programming interface (October 2015), version 2.5, http://

www.openacc.org/sites/default/files/OpenACC_2pt5.pdf, accessed: 2017-02-15

T. Sterling, M. Anderson, M. Brodowicz

2017, Vol. 4, No. 1 67

31. OpenMP application programming interface (November 2015), version 4.5, http://www.

openmp.org/wp-content/uploads/openmp-4.5.pdf, accessed: 2017-02-15

32. The PaRSEC generic framework for architecture aware scheduling and management of

micro-tasks (Dec 2015), version 2.0.0 http://icl.cs.utk.edu/parsec/index.html, ac-

cessed: 2017-02-15

33. Argobots: a lightweight low-level threading/tasking framework (Nov 2016), version 1.0a1

http://www.argobots.org/, accessed: 2017-02-15

34. BOLT: a lightning-fast OpenMP implementation (Nov 2016), version 1.0a1 http://www.

mcs.anl.gov/bolt/, accessed: 2017-02-15

35. GASNet low-level networking layer (Oct 2016), version 1.28.0, https://gasnet.lbl.gov/,

accessed: 2017-02-15

36. HPX (July 2016), version 0.9.99, http://stellar.cct.lsu.edu/, accessed: 2017-02-15

37. HPX-5 (Nov 2016), version 4.0.0 http://hpx.crest.iu.edu/, accessed: 2017-02-15

38. The Mercurium source-to-source compilation infrastructure (June 2016), version 2.0.0

https://pm.bsc.es/mcxx, accessed: 2017-02-15

39. The Nanos++ runtime system (June 2016), version 0.10 https://pm.bsc.es/nanox, ac-

cessed: 2017-02-15

40. Omni (Nov 2016), version 1.1.0 http://omni-compiler.org/, accessed: 2017-02-15

41. The OmpSs programming model (June 2016), version 16.06 https://pm.bsc.es/ompss,

accessed: 2017-02-15

42. Intel R© Threading Building Blocks (Intel R© TBB) (2017), website, http://www.

threadingbuildingblocks.org, accessed: 2017-02-15

A Survey: Runtime Software Systems for High Performance Computing

68 Supercomputing Frontiers and Innovations

xSDK Foundations: Toward an Extreme-scale Scientific

Software Development Kit

Roscoe Bartlett1, Irina Demeshko2, Todd Gamblin3, Glenn Hammond1,

Michael Heroux1, Jeffrey Johnson4, Alicia Klinvex1, Xiaoye Li5, Lois

Curfman McInnes6, J. David Moulton2, Daniel Osei-Kuffuor3, Jason

Sarich6, Barry Smith6, Jim Willenbring1, Ulrike Meier Yang3

c© The Authors 2017. This paper is published with open access at SuperFri.org

Extreme-scale computational science increasingly demands multiscale and multiphysics for-

mulations. Combining software developed by independent groups is imperative: no single team

has resources for all predictive science and decision support capabilities. Scientific libraries provide

high-quality, reusable software components for constructing applications with improved robust-

ness and portability. However, without coordination, many libraries cannot be easily composed.

Namespace collisions, inconsistent arguments, lack of third-party software versioning, and addi-

tional difficulties make composition costly.

The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to

improve code quality and compatibility across independently developed packages (hypre, PETSc,

SuperLU, Trilinos, and Alquimia) and provides a foundation for addressing broader issues in

software interoperability, performance portability, and sustainability. The xSDK provides turnkey

installation of member software and seamless combination of aggregate capabilities, and it marks

first steps toward extreme-scale scientific software ecosystems from which future applications can

be composed rapidly with assured quality and scalability.

Keywords: xSDK, Extreme-scale scientific software development kit, numerical libraries, soft-

ware interoperability, sustainability.

1. Software Challenges for Extreme-scale Science

Extreme-scale architectures provide unprecedented resources for scientific discovery. At the

same time, the computational science and engineering (CSE) community faces daunting pro-

ductivity and sustainability challenges for parallel application development [1, 12, 13, 21]. Dif-

ficulties include increasing complexity of algorithms and computer science techniques required

by coupled multiscale and multiphysics applications. Further complications come from the im-

perative of portable performance in the midst of dramatic and disruptive architectural changes

on the path to exascale, the realities of large legacy code bases, and human factors arising in

distributed multidisciplinary research teams pursuing leading edge parallel performance. More-

over, new architectures require fundamental algorithm and software refactoring, while at the

same time demand is increasing for greater reproducibility of simulation and analysis results for

predictive science.

This confluence of challenges brings with it a unique opportunity to fundamentally change

how scientific software is designed, developed, and sustained. The demands arising from so many

challenges force the CSE community to consider a broader range of potential solutions. It is this

setting that makes possible a collaborative effort to establish a scientific software ecosystem of

1Sandia National Laboratories, USA
2Los Alamos National Laboratory, New-Mexico, USA
3Lawrence Livermore National Laboratory, Livermore, USA
4Salesforce, San-Francisco, USA
5Lawrence Berkeley National Laboratory, Berkeley, USA
6Argonne National Laboratory, Lemont, USA

DOI: 10.14529/jsfi170104

2017, Vol. 4, No. 1 69

reusable libraries and community policies to guide common adoption of practices, tools, and

infrastructure. Incremental change is not a viable option, so migration to a new model for CSE

software is possible.

The xSDK has emerged as a first step toward a new ecosystem, where application codes

are composed via interfaces from a common base of reusable components more than they are

developed from a clean slate or derived from monolithic code bases. To the extent that this com-

positional approach can be reliably used, new CSE applications can be created more rapidly, with

greater robustness and scalability, by smaller teams of scientists, enabling them to focus more

attention on obtaining science results than on the incendentals of their computing environment.

1.1. Related Work

The scientific software community has a rich tradition of defining de facto standards for col-

lections of capabilities. EISPACK [11, 23], LINPACK [7], BLAS [8, 9, 16, 17], and LAPACK [2]

delivered a sound foundation for numerical linear algebra in libraries and applications. Com-

mercial entities such as the Numerical Algorithms Group (NAG) [26], the Harwell Subroutine

Library (HSL) [30] and IMSL have provided high quality, unified software capabilities to users

for decades.

More recently, the TOPS [14], ITAPS [5], and FASTMath [6] SciDAC institutes brought

together developers of large-scale scientific software libraries. While these libraries were indepen-

dently developed by distinct teams and version support lacked coordination, the collaborations

sparked exchange of experiences and discussion of practices that avoided potential pitfalls and

facilitated the combined use of the libraries [19] as needed by scientific teams. Prior efforts to

provide interoperability between solver libraries can be found in PETSc [3], which allows users

to access libraries such as hypre [25] and SuperLU [28] by using the PETSc interface, sparing

users the effort to rebuild their problems through hypre’s or SuperLU’s interfaces. Trilinos [31],

a collection of self-contained software packages, also provides ways for users to gain uniform

access to third-party scientific libraries.

2. xSDK Vision

The complexity of application codes is steadily increasing due to more sophisticated sci-

entific models and the continuous emergence of new high-performance computers, making it

crucial to develop software libraries that provide needed capabilities and continue to adapt to

new computer architectures. Each library is complex and requires different expertise. Without

coordination, and in service of distinct user communities, this circumstance has led to difficulties

when building application codes that use 8 or 10 different libraries, which in turn might require

additional libraries or even different versions of the same libraries.

The xSDK represents a different approach to coordinating library development and deploy-

ment. Prior to the xSDK, scientific software packages were cohesive with a single team effort, but

not across these efforts. The xSDK goes a step further by developing community policies followed

by each independent library included in the xSDK. This policy-driven, coordinated approach

enables independent development that still results in compatible and composable capabilities.

The initial xSDK project is the first step toward a comprehensive software ecosystem. As

shown in Figure 1, the vision of the xSDK is to provide infrastructure for and interoperability

of a collection of related and complementary software elements—developed by diverse, indepen-

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

70 Supercomputing Frontiers and Innovations

dent teams throughout the high-performance computing (HPC) community—that provide the

building blocks, tools, models, processes, and related artifacts for rapid and efficient develop-

ment of high-quality applications. Our long-term goal is to make the xSDK a turnkey standard

software ecosystem that is easily installed on common computing platforms, and can be assumed

as available on any leadership computing system in the same way that BLAS and LAPACK are

available today.

Figure 1. The xSDK intends to provide the foundation for a modern extreme-scale scientific software

ecosystem, where application development is accomplished by composition of high-quality, reusable soft-

ware components rather than by tangential use of libraries. Application developers produce a small

portion of custom code that expresses the particular purpose of the software and then gain the bulk of

functionality by parameterized use of xSDK components and libraries, which are developed by diverse,

independent groups throughout the community. xSDK frameworks for documentation, testing, and code

quality, as well as established software policies and best practices, can be adapted and adopted as appro-

priate by the application developers to provide compatible, high-quality, and sustainable software. As we

move toward this new ecosystem, application development times from first concept to scalable production

code should drop dramatically. Success hinges on the quality, interoperability, usability, and diversity of

xSDK capabilities and our ability to deliver the xSDK to domain scientists

R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex...

2017, Vol. 4, No. 1 71

2.1. Elements of an Extreme-scale Scientific Software Ecosystem

Rapid, efficient production of high-quality, sustainable applications is best accomplished

using a rich collection of reusable libraries, tools, lightweight frameworks, and defined software

methodologies, developed by a community of scientists who are striving to identify, adapt, and

adopt best practices in software engineering. Although the software engineering community has

ongoing debate about the precise meaning of terms, we define the basic elements of a scientific

software ecosystem to include:

• Library: High-quality, encapsulated, documented, tested and multi-use software that

is incorporated into the application and used as native source functionality. Libraries can

provide control inversion via abstract interfaces, call-backs, or similar techniques such that

user-defined functionality can be invoked by the library, e.g., a user-defined sparse matrix

multiplication routine. Libraries can also provide factories that facilitate construction of

specific objects that are related by a base type and later used as an instance of the base

type. Libraries can include domain-specific software components that are designed to be

used by more than one application.

• Domain component: Reusable software that is intended for modest reuse across appli-

cations in the same domain. Although this kind of component is a library, the artifacts

and processes needed to support a component are somewhat different than for a broadly

reusable library.

• Framework: A software environment that implements specific design patterns and per-

mits the user to insert custom content. Frameworks include documentation, build (compi-

lation), and testing environments. These frameworks are lightweight and general purpose.

Other frameworks, such as multiphysics, are considered separately, built on top of what

we describe here.

• Tool: Software that exists outside of applications, used to improve quality, efficiency, and

cost of developing and maintaining applications and libraries.

• Software development kit (SDK): A collection of related and complementary software

elements that provide the building blocks, libraries, tools, models, processes, and related

artifacts for rapid and efficient development of high-quality applications.

Given these basic elements, we define an application code as the following composition:

• Native data and code: Every application will have a primary routine (often a main

program) and its own collection of source code and private data. Historically, applications

have been primarily composed of native source and data, using libraries for a small portion

of functionality, such as solvers. We foresee a decrease in the amount of native code required

to develop an application by extracting and transforming useful native code into libraries

and domain components, making it available to other applications.

• Component and library function calls: Some application functionality is provided by

invoking library functions. We expect to increase usage of libraries as a part of our efforts.

• Library interface adapters: Advanced library integration often involves invoking the

control inversion facilities of the library in order to incorporate application-specific knowl-

edge. In the case of sensitivity analysis, embedded optimization, and related analyses,

control inversion via these adapters is essential in order to permit the solver to invoke the

application with specific input data.

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

72 Supercomputing Frontiers and Innovations

• Component and library parameter lists: Libraries tend to provide a broad collection

of functionality for which parameters must be set.

• Shared component and library data: Most libraries require the user to provide non-

trivial data objects, such as meshes or sparse matrices, and may provide functions to assist

the application in constructing these objects. Unlike parameter list definitions, which repre-

sent a narrow interface dependency between the application and library, application-library

data interfaces can be very complicated.

• Documentation, build, and testing content: The application-specific text, data, and

source used by the documentation, build, and testing frameworks to produce the derived

software documentation, compilation, and test artifacts.

3. xSDK Approach

The xSDK approach to developing software has two distinguishing features from previous

efforts in the scientific computing community:

• Peer-to-peer interoperability: Some previous efforts7 attempted to use additional ab-

straction layers that would hide differences in the underlying packages. The xSDK ap-

proach uses the existing extensibility features of the libraries to enable peer-to-peer access

of capabilities at various levels of interoperability through the native interfaces of the pack-

ages. For example, if a user has already integrated PETSc data structures into their code,

the xSDK approach preserves that approach, but permits use of capabilities in hypre,

SuperLU, and Trilinos with PETSc.

• Software policies: Most existing scientific software efforts rely on close collaboration of

a single team in order to assure that collective efforts are compatible and complementary.

The xSDK relies instead on policies that promote compatibility and complementarity of in-

dependently developed software packages. By specifying only certain expectations for how

software is designed, implemented, documented, supported, and installed, the xSDK en-

ables independent development of separate packages, while still ensuring complementarity

and composability.

The xSDK can assure interoperability and compliance with community policies because the

leaders and developers of xSDK packages are members of the xSDK community. If interface

changes are required in a package or a version of a third-party solver needs to be updated, these

changes will be made in the member package. For example, in order for Trilinos and PETSc

to use the same version of SuperLU and hypre, the Trilinos and PETSc developers commit

to agreeing on changes to Trilinos and PETSc that are needed for compatibility. Similarly,

changes to interfaces for interoperability and inversion of control (see the next Section 3.1) are

done within the xSDK packages, and regularly tested for regressions. xSDK interoperability is

possible because of the commitment of xSDK member package development teams.

7A notable example is the Equation Solver Interface (ESI), which defined an abstraction layer to present a common

client interface to distinct software products. The challenge of this approach is that the unique features of the

underlying products were difficult to access. The very use of a common abstraction reduced the usability of these

products.

R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex...

2017, Vol. 4, No. 1 73

3.1. xSDK Library Interoperability

A fundamental objective of the xSDK project is to provide interoperability layers among

hypre, PETSc, SuperLU, and Trilinos packages, as appropriate, with the ultimate goal of mak-

ing all mathematically meaningful interoperabilities possible in order to fully support exascale

applications.

Software library interoperability refers to the ability of two or more libraries to be used

together in an application, without special effort by the user [18]. For simplicity, we discuss in-

teroperability between two libraries; extension to three or more libraries is conceptually straight-

forward. Depending on application needs, various levels of interoperability can be considered:

• Interoperability level 1: both libraries can be used (side by side) in an application

• Interoperability level 2: both libraries can exchange data (or control data) with each other

• Interoperability level 3: each library can call the other library to perform unique compu-

tations

The simplest case (interoperability level 1) occurs when an application needs to call two

distinct libraries for different functionalities (for example, an MPI library for message-passing

communication and HDF5 for data output). As discussed in [19, 20], even this basic interop-

erability requires consistency among libraries to be used in the same application, in terms of

compiler, compiler version/options, and third-party capabilities. If both libraries have a depen-

dency on a common third party, the libraries must be able to use a single common instance

of it. For example, more than one version of the popular SuperLU linear solver library exists,

and interfaces have evolved. If two libraries both use SuperLU, they must be able to work with

the same version of SuperLU. In practice, installing multiple independently developed packages

together can be a tedious trial-and-error process. The definition and implementation of xSDK

community policies standards have overcome this difficulty for xSDK-compatible packages.

Interoperability level 2 builds on level 1 by enabling conversion, or encapsulation, and ex-

change of data between libraries. This level can simplify use of libraries in sequence by an

application. In this case, the libraries themselves are typically used without internal modifica-

tion to support the interoperability. Future work on node-level resource management is essential

to support this deeper level of software interoperability for emerging architectures.

Interoperability level 3 builds on level 2 by supporting the use of one library to provide

functionality on behalf of another library. This integrated execution provides significant value to

application developers because they can access capabilities of additional libraries through the

familiar interfaces of the first library.

The remainder of this section discusses proposed work on integrated execution, where our

guiding principles are to provide interoperability that is intuitive and easy to use, and to expose

functionality of each library where feasible.

Control inversion. Interoperability between two (or more) existing library components

can be achieved by one of two basic mechanisms: (i) create an abstraction layer that sits on

top of both components to act as an intermediary between the user and both components or

(ii) permit users to write directly to the interface of one component and provide peer-level

interoperability between the two components. For example, consider the matrix construction

capabilities in PETSc and Trilinos. Both libraries provide extensive support for piecewise con-

struction of sparse matrices, as needed for building objects in applications based on finite ele-

ments/volumes/differences. It would be possible, in principle, to create a top-level abstraction

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

74 Supercomputing Frontiers and Innovations

layer that could be used to build a sparse matrix or other data objects for PETSc or Trilinos,

depending on an input option to select either target. Alternatively, the user can construct the

data object by using the PETSc or Trilinos functions directly, and then we can create adapters

in Trilinos and PETSc to wrap the respective matrix object and make it behave like one of its

own.

Although the first approach may seem attractive, it is difficult to develop in a sustainable

and effective way. PETSc and Trilinos data object construction processes are targeted to specific

programming, language, and usage models. The differences in approach may appear small, but

are very important in terms of developer productivity, code portability, and expressiveness. Any

abstraction layer that would sit on top of both would discard the simplicity of one approach or

the expressiveness of the other.

Peer-to-peer interoperability is much more attractive than a general abstraction layer. The

xSDK libraries have mechanisms to work with or easily transform existing data objects that

were built outside their own construction processes. For example, a PETSc sparse matrix can be

used within Trilinos, without copying, by using an adapter class. A similar approach can work

with a Trilinos matrix used by PETSc.

The hypre and SuperLU libraries do not directly support control inversion in the same

way as PETSc and Trilinos, but do advertise their input data structures such that PETSc and

Trilinos can construct compatible data structures that are passed to hypre and SuperLU without

copying.

The current release of xSDK does not support all possible opportunities for interoperability.

Level 1 interoperability is complete within the current xSDK. Level 2 interoperability is partial,

with Trilinos being able to accept PETSc data structures. Level 3 interoperability is also partially

available with PETSc and Trilinos able to call use hypre and SuperLU.

3.2. xSDK Community Policies

In [19, 20] various software quality engineering practices for ‘smart libraries’ are discussed

that, when followed, can alleviate generation of an application executable that depends on many

libraries, reduce mistakes in how to use these libraries, and provide help to users to identify and

correct errors when they occur.

The first xSDK release demonstrated the impact of defining xSDK commmunity policies,

including standard GNU autoconf and CMake options to simplify the combined use, portability,

and sustainability of independently developed software packages (hypre, PETSc, SuperLU, and

Trilinos) and provide a foundation for addressing broader issues in software interoperability and

performance portability.

xSDK community package policies [22], briefly summarized in Figure 2, are a set of minimum

requirements (including topics of configuring, installing, testing, MPI usage, portability, contact

and version information, open source licensing, namespacing, and repository access) that a

software package must satisfy in order to be considered xSDK compatible. The designation of

xSDK compatibility informs potential users that a package can be easily used with others.

xSDK community installation policies [4] help make configuration and installation of xSDK

software and other HPC packages as efficient as possible on common platforms, including stan-

dard Linux distributions and Mac OS X, as well as on target machines currently available at DOE

computing facilities (ALCF, NERSC, and OLCF) and eventually on new exascale platforms.

R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex...

2017, Vol. 4, No. 1 75

xSDK Mandatory Policies

Must:

M1. Support xSDK community GNU Autoconf or CMake options [4].

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called packages.

M7. Come with an open source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name space.

M10. Provide an accessible repository (not necessarily publicly available).

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64 bit pointers. 32 bit is optional.

xSDK Recommended Policies

Should:

R1. Have a public repository.

R2. Possible to run test suite under valgrind in order to test for memory corruption issues.

R3. Adopt and document consistent system for error conditions/exceptions.

R4. Free all system resources it has acquired as soon as they are no longer needed.

R5. Provide a mechanism to export ordered list of library dependencies.

Figure 2. xSDK community policies specify expectations that any software library or framework (hence-

forth referred to as package) must satisfy in order to be xSDK compatible. The designation of a package

being xSDK compatible informs potential users that the package can be easily used with other xSDK

libraries and components and thus helps to address issues in long-term sustainability and interoperability

among packages

Community policies for the xSDK promote long-term sustainability and interoperability

among packages, as a foundation for supporting complex multiphysics and multiscale ECP ap-

plications. In addition, because new xSDK packages will follow the same standard, installation

software and package managers (for example, Spack [10]) can easily be extended to install many

packages automatically.

Figure 3 illustrates a new Multiphysics Application C, built from two complementary ap-

plications that can readily employ any libraries in the xSDK (hypre, PETSc, SuperLU, and

Trilinos, shown in green). Application domain components are represented in orange. Of partic-

ular note is Alquimia [24], a domain-specific interface that support uniform access to multiple

biogeochemistry capabilities, including PFLOTRAN [27]. The arrows among the xSDK libraries

indicate current support for a package to call another to provide scalable linear solvers func-

tionality on its behalf. For example, Application A could use PETSc for an implicit-explicit

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

76 Supercomputing Frontiers and Innovations

time advance, which in turn could interface to SuperLU to solve the resulting linear systems

with a sparse direct solver. Application B could use Trilinos to solve a nonlinear system, which

in turn could interface to hypre to solve the resulting linear systems with algebraic multigrid.

Of course, many other combinations of solver interoperability are also possible. The website

https://xsdk.info/example-usage and [15] provide examples of xSDK usage, including in-

teroperability among linear solvers in hypre, PETSc, SuperLU, and Trilinos.

3.3. xSDK Coordinated Software Releases and Current Status

Alquimia hypre

Trilinos

PETSc

SuperLU

More
contributed

libraries More
contributed

domain
components

xSDK

Installer

HDF5

BLAS

More
external
software

Multiphysics Application C

Application A Application B

Libraries	

•  Solvers,	
 etc.	

•  Interoperable.	

Frameworks	
 &	
 tools	

•  Doc	
 generators.	

•  Test,	
 build	
 framework.	

Extreme-­‐Scale	
 Scien/fic	
 So2ware	
 Development	
 Kit	
 (xSDK)	

SW	
 engineering	

•  ProducAvity	
 tools.	

•  Models,	
 processes.	

Domain	
 components	

•  ReacAng	
 flow,	
 etc.	

•  Reusable.	

xSDK functionality,
April 2016

Tested on key machines
at ALCF, NERSC, OLCF,
also Linux, Mac OS X

Notation:
A B:
A can use B to provide
functionality on behalf of A

Figure 3. xSDK schematic diagram

The first critical step

in producing the initial re-

lease of the xSDK in April

2016 was to define what

the release should look

like. On the loosely cou-

pled end of the spectrum,

one possibility would have

been to certify that spe-

cific release versions of the

different packages are com-

patible with one another

and not coordinate the dis-

tribution of the release be-

yond that. On the other end of the spectrum were possibilities such as a common test or even

build infrastructure. The xSDK team decided on a strategy that provided a single point of dis-

tribution for all xSDK component packages, but did not force a common infrastructure on the

packages, beyond the agreed upon community policies.

The chosen distribution mechanism was, at its core, the existing PETSc distribution mech-

anism [3]. This was a stable, well-supported option that required a relatively small amount of

effort to extend for the xSDK use case, because it already supported the majority of xSDK

component packages, and very little additional ongoing maintenance beyond what the PETSc

team was already doing. The latter was a key consideration because, when possible, the xSDK

team actively avoids solutions that create long-term maintenance beyond what is needed for the

component packages.

In addition to creating and updating interfaces between xSDK packages to provide new

functionality, significant work was done to make it possible to install all of the xSDK packages

together. For example, PETSc and Trilinos depended on different versions of SuperLU, and no

single version of SuperLU could be used with both the PETSc and Trilinos SuperLU interfaces

enabled.

As the coordinated release effort began (initially work began with package-to-package com-

patibility and interface efforts), the xSDK installer was used to test release versions of the

component packages together to avoid the churn of the various development versions. Testing

was set up by multiple xSDK component package teams using their own resources. Again, sus-

tainability was a focus. Having the individual teams manage separate test builds in which each

team had a vested interest was a better choice than a centralized effort that would have no

clear owner in the absence of an xSDK-level funding source. The test builds included release

R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex...

2017, Vol. 4, No. 1 77

and development versions, but leading up to the release, primary focus was given to the release

testing.

The existing release processes of the various xSDK component packages varied greatly in

terms of testing and overall rigor. However, since each component package had a release process

that the individual development teams had determined was sufficient for their needs, the decision

was made to focus on requirements outside of typical release requirements. Specifically, this

involved providing the name of a branch to use for release candidate testing, setting up tests for

xSDK-level build configurations most relevant to the component package, and being responsive

to any issues found.

In addition to the testing conducted by each package team, the xSDK 0.1 release was

ported to three target platforms at three different computing facilities: Mira at ALCF, Edi-

son at NERSC, and Titan at OLCF. One developer was primarily responsible for each of the

three porting efforts, and those people coordinated with other xSDK developers and component

package team developers to resolve porting issues as necessary.

The official tag for the initial xSDK release was chosen to be v0.1.0. After the initial release,

a patch release, v0.1.1, was completed. The versions of the component packages used for this

subsequent release were either the same version used for the initial 0.1 release, or a patch release

of the component package based on the release used for the initial release. According to xSDK

release policy, only patch-level updates for component packages are to be used for xSDK patch

releases, and only patch or minor release version updates for component packages are to be used

for xSDK minor releases.

Prior to selecting the PETSc distribution capability for the xSDK 0.1 release, Spack [10] was

also seriously considered. Spack is a multi-platform package manager that supports a variety of

compilers, libraries, and applications, as well as the installation of multiple concurrent versions

and software configurations. Because of the increasing popularity and robustness of Spack, and

the need to expand the xSDK to include several additional component packages, the xSDK

team decided to use Spack to build an alpha release version of the xSDK, to be released in early

2017. Going forward, the intent is to use Spack as the principal supported xSDK distribution

capability.

4. Next Steps

The first xSDK releases focused on discovery of collaboration models and community build-

ing among four of the major open source scientific library projects in the international scientific

computing community: hypre, PETSc, SuperLU and Trilinos. The xSDK project will continue

over the next few years under the United States Department of Energy Exascale Computing

Project (ECP) [29].

Our efforts so far have established a baseline for expanding the xSDK scope under ECP

funding in several important directions:

1. Include more libraries: The xSDK will expand to include all library efforts under ECP

funding. Spcifically, widely used libraries such as SUNDIALS and Magma will become xSDK

compatible, as will new efforts that address the performance challenges of exascale comput-

ing platforms.

2. Further refine and expand community policies: While the current xSDK community

policies, summarized in Figure 2, are extremely useful as a mechanism to improve interop-

erability and compatibility of independently developed scientific libraries, we believe we can

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

78 Supercomputing Frontiers and Innovations

further refine and expand these policies to better assure software quality and further realize

the scientific software ecosystem sketched in Figure 1.

3. Include more domain components: As described in Section 1, the vision of the xSDK is

to create a software ecosystem where new scientific applications are composed via interfaces

from a common base of reusable domain components and libraries. We will work with

science teams to identify opportunities for creating collections of domain components for

their communities.

4. Explore the use of community installation tools, including Spack: While the ex-

tended PETSc installer has been very useful for establishing xSDK as a unified project,

Spack [10] promises to provide a tool that serves and is supported by a larger community,

making it very appealing as the principal long term installation tool for xSDK libraries.

5. Process control transfer interfaces: The ever-increasing use of concurrency within the

top-level MPI processes requires that computational resources used by an application or

library can be transferred to another library. Transfer of these resources is essential for

obtaining good performance. The xSDK project will develop interfaces to support sharing

and transfer of computational resources.

Conclusions

The extreme-scale scientific community faces numerous disruptive challenges in the coming

decade. Fundamental limits of physics are forcing changes that dramatically impact all system

layers from architecture to application software design. These disruptive changes drive us to

move beyond incremental change in scientific application design and implementation. Establish-

ing a scientific software ecosystem that focuses more on the composition of scalable, reusable

components for application software development can provide an attractive alternative and the

xSDK is the first step toward the ecosystem described in Figure 1.

Community policies for the xSDK promote long-term sustainability and interoperability

among packages, as a foundation for supporting complex multiscale and multiphysics applica-

tions. The designation of xSDK compatibility informs potential users that a package can be

easily used with other xSDK libraries and components. In addition, because new xSDK pack-

ages will follow the same standard, installxSDK and package managers can easily be extended

to install many packages automatically.

Interoperability of xSDK member packages, when wrapped with adequate testing, enables

a sustainable coupling of capabilities that enable applications to use xSDK member packages as

a cohesive suite. The first xSDK releases demonstrate the impact of xSDK community policies,

testing and examples to simplify the combined use, interoperability, and portability of indepen-

dently developed software packages, establishing the first step toward realizing an extreme-scale

scientific software ecosystem.

Acknowledgements

This material is based upon work funded by the U.S. Department of Energy Office of Science,

Advanced Scientific Computing Research and Biological and Environmental Research programs.

We thank program managers Thomas Ndousse-Fetter, Paul Bayer, and David Lesmes for their

support. The work of ANL authors is supported by the U.S. Department of Energy, Office of

Science, under Contract DE-AC02-06CH11357. The work of LBNL authors is partially supported

R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex...

2017, Vol. 4, No. 1 79

by the Director, Office of Science, Office of Advanced Scientific Computing Research of the US

Department of Energy under contract no. DE-AC02-05CH11231.

Prepared by LLNL under Contract DE-AC52-07NA27344. Work of LANL authors is funded

by the Department of Energy at Los Alamos National Laboratory under contract DE-AC52-

06NA25396. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy’s National Nuclear Security

Administration under contract DEAC04-94AL85000.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Almgren, A., DeMar, P., Vetter, J., et al.: DOE Exascale Requirements Review for Ad-

vanced Scientific Computing Research (2016), u.S. Department of Energy, Office of Science,

Advanced Scientific Computing Research, see http://exascaleage.org/ascr/, Sept 27–

29, 2016

2. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du Croz,

J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ Guide

(Third Ed.) (1999), DOI: 10.1137/1.9780898719604

3. Balay, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D.,

Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc

Web page. http://www.mcs.anl.gov/petsc

4. Bartlett, R., Sarich, J., Smith, B., Gamblin, T., xSDK developers: xSDK

community installation policies: GNU Autoconf and CMake options (2016),

DOI: 10.6084/m9.figshare.4495133

5. Diachin (PI), L.: Interoperable Technologies for Advanced Petascale Simulations, SciDAC

Institute. http://www.scidac.gov/math/ITAPS.html, accessed: 2017-02-15

6. Diachin (PI), L.: SciDAC-3 Frameworks, Algorithms, and Scalable Technologies for Mathe-

matics (FASTMath) Institute. http://www.fastmath-scidac.org/, accessed: 2017-02-15

7. Dongarra, J.J., Bunch, J., Moler, C., Stewart, G.: LINPACK Users’ Guide. SIAM Pub.

(1979), DOI: 10.1137/1.9781611971811

8. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A set of level 3 basic linear algebra

subprograms. ACM Trans. Math. Software 16(1), 1–17 (March), DOI: 10.1145/77626.79170

9. Dongarra, J., DuCroz, J., Hammarling, S., Hanson, R.: An extended set of Fortran basic lin-

ear algebra subprograms. ACM Trans. Math. Software 14 (1988), DOI: 10.1145/42288.42291

10. Gamblin, T., LeGendre, M.P., Collette, M.R., Lee, G.L., Moody, A., de Supinski, B.R.,

Futral, W.S.: The Spack Package Manager: Bringing order to HPC software chaos. In:

Supercomputing 2015 (SC’15). Austin, Texas (November 15-20), lLNL-CONF-669890

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

80 Supercomputing Frontiers and Innovations

11. Garbow, B.S., Boyle, J.M., Dongarra, J.J., Moler, C.B.: Matrix Eigensystem Routines –

EISPACK Guide Extension, Lecture Notes in Computer Science, vol. 51. Springer–Verlag,

New York (1977), DOI: 10.1007/3-540-08254-9

12. Heroux, M.A., Allen, G., et al.: Computational Science and Engineering Software Sus-

tainability and Productivity (CSESSP) Challenges Workshop Report (September 2016),

https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf

13. Johansen, H., McInnes, L.C., Bernholdt, D., Carver, J., Heroux, M., Hornung, R., Jones, P.,

Lucas, B., Siegel, A., Ndousse-Fetter, T.: Software Productivity for Extreme-Scale Science

(2014), report on DOE Workshop, January 13-14, 2014, available via http://www.orau.

gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

14. Keyes (PI), D.: Towards Optimal Petascale Simulations, SciDAC Institute. http://www.

scidac.gov/math/TOPS.html, accessed: 2017-02-15

15. Klinvex, A.M.: xSDKTrilinos user manual. Tech. Rep. SAND2016-3396 O, Sandia (2016)

16. Lawson, C., Hanson, R., Kincaid, D., Krogh, F.: Algorithm 539: Basic linear algebra subpro-

grams for Fortran usage. ACM Trans. Math. Software 5 (1979), DOI: 10.1145/355841.355848

17. Lawson, C., Hanson, R., Kincaid, D., Krogh, F.: Basic linear algebra subprograms for

Fortran usage. ACM Trans. Math. Software 5 (1979), DOI: 10.1145/355841.355848

18. McInnes, L.C., Heroux, M., Li, X.S., Smith, B., Yang, with contributions from all xSDK

developers, U.: What are Interoperable Software Libraries: Introducing the xSDK, version

0.1, April 25, 2016, available via https://ideas-productivity.org/resources/howtos/

19. Miller, M.C., Diachin, L., Balay, S., McInnes, L.C., Smith, B.: Package management prac-

tices essential for interoperability: Lessons learned and strategies developed for FASTMath

(2013), DOI: 10.6084/m9.figshare.789055.v1

20. Miller, M.C., Reus, J.F., Matzke, R.P., Koziol, Q.A., Cheng, A.P.: Smart libraries: Best

SQE practices for libraries with emphasis on scientific computing. In: Proceedings of the

Nuclear Explosives Code Developer’s Conference (2004), available via https://wci.llnl.

gov/codes/smartlibs/UCRL-JRNL-208636.pdf

21. Rüde, U., Willcox, K., McInnes, L.C., De Sterck, H., Biros, G., Bungartz, H., Corones, J.,

Cramer, E., Crowley, J., Ghattas, O., Gunzburger, M., Hanke, M., Harrison, R., Heroux, M.,

Hesthaven, J., Jimack, P., Johnson, C., Jordan, K.E., Keyes, D.E., Krause, R., Kumar, V.,

Mayer, S., Meza, J., Mørken, K.M., Oden, J.T., Petzold, L., Raghavan, P., Shontz, S.M.,

Trefethen, A., Turner, P., Voevodin, V., Wohlmuth, B., Woodward, C.S.: Research and

education in computational science and engineering (2016), available via https://arxiv.

org/abs/1610.02608, submitted to SIAM Review

22. Smith, B., Bartlett, R., xSDK developers: xSDK community package policies (2016), version

0.3, December 2, 2016, DOI: 10.6084/m9.figshare.4495136

23. Smith, B.T., Boyle, J.M., Dongarra, J.J., Garbow, B.S., Ikebe, Y., Klema, V.C., Moler,

C.B.: Matrix Eigensystem Routines – EISPACK Guide, Lecture Notes in Computer Science,

vol. 6. Springer–Verlag, New York, second edn. (1976), DOI: 10.1007/3-540-07546-1

R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex...

2017, Vol. 4, No. 1 81

24. Alquimia Web page. https://bitbucket.org/berklab/alquimia, accessed: 2017-02-15

25. Hypre Web page. http://www.llnl.gov/CASC/hypre, accessed: 2017-02-15

26. NAG Web page. https://www.nag.com, accessed: 2017-02-15

27. PFLOTRAN Web page. http://www.pflotran.org, accessed: 2017-02-15

28. SuperLU Web page. http://crd.lbl.gov/~xiaoye/SuperLU, accessed: 2017-02-15

29. The Exascale Computing Project. https://exascaleproject.org, accessed: 2017-02-15

30. The HSL Mathematical Software Library. http://www.hsl.rl.ac.uk, accessed: 2017-02-15

31. Trilinos Web page. https://trilinos.org, accessed: 2017-02-15

xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit

82 Supercomputing Frontiers and Innovations

Performance Portability of HPC Discovery Science Software:

Fusion Energy Turbulence Simulations at Extreme Scale

William Tang1, Bei Wang1, Stephane Ethier2, Zhihong Lin3

c© The Authors 2017. This paper is published with open access at SuperFri.org

As High Performance Computing Research and Development moves forward on a variety

of “path to exascale” architectures today, an associated objective is to demonstrate performance

portability of discovery-science-capable software. Important application domains, such as Mag-

netic Fusion Energy (MFE), have improved modeling of increasingly complex physical systems –

especially with respect to reducing “time-to-solution” as well as “energy to solution.” The emer-

gence of new insights on confinement scaling in MFE systems has been aided significantly by

efficient software capable of harnessing powerful supercomputers to carry out simulations with

unprecedented resolution and temporal duration to address increasing problem sizes. Specifically,

highly scalable particle-in-cell (PIC) programing methodology is used in this paper to demonstrate

how modern scientific applications can achieve efficient architecture-dependent optimizations of

performance scaling and code portability for path-to-exascale platforms. Keywords: Turbulence

Simulations, Particle-In-Cell, Portability, HPC.

Introduction

A major challenge for supercomputing today is to demonstrate how advances in HPC tech-

nology translate to accelerated progress in key grand challenge application domains. This is the

focus of an exciting new program in the US called the “National Strategic Computing Initiative

(NSCI)” that was announced on July 29, 2015 involving all research & development (R&D)

programs in the country to “enhance strategic advantage in HPC for security, competitiveness,

and discovery.” A strong focus in such prominent application domains is to accelerate progress

in modern codes capable of modeling complex physical systems – especially with respect to re-

duction in “time-to-solution” as well as “energy to solution.” In general, the demise of Dennard

Scaling [1] coupled with the desire for processor and application performance to continue to track

Moore’s Law [10] has necessitated the switch from traditional superscalar processors to increas-

ingly efficient processors built from lightweight cores and a hierarchical memory architecture. It

is understood that if properly validated against experimental measurements/observational data

and verified with mathematical tests and computational benchmarks, advanced codes can greatly

improve much-needed predictive capability in many strategically important areas of interest.

As an illustrative example, computational advances in Magnetic Fusion Energy – a key sci-

entific application area that was identified by the 2015 CNN “Moonshots for the 21st Century”

series as one of five such prominent grand challenges – have produced particle-in-cell (PIC) sim-

ulations of turbulent kinetic dynamics for which computer run-time and problem size scale very

well with the number of processors on massively parallel many-core supercomputers. For ex-

ample, the GTC-Princeton (GTC-P) code, which has been developed with a “co-design” focus,

has demonstrated the effective usage of the full power of current leadership class computational

platforms worldwide at the petascale and beyond to produce efficient nonlinear PIC simula-

tions that have advanced progress in understanding the complex nature of plasma turbulence

and confinement in fusion systems for the largest problem sizes. Unlike fluid-like computational

1Princeton Institute for Computational Science and Engineering, Princeton University, Princeton, USA
2Princeton Plasma Physics Laboratory, Princeton, USA
3University of California Irvine, Irvine, USA

DOI: 10.14529/jsfi170105

2017, Vol. 4, No. 1 83

fluid dynamics (CFD) codes, PIC codes are characterized by having less than 10 key operations

which can then be the focus of advanced computer science performance optimization methods.

Results from these truly cross-disciplinary investigations have provided strong encouragement

for being able to include increasingly realistic dynamics in extreme-scale computing campaigns

with the goal of enabling predictive simulations characterized by unprecedented physics resolu-

tion/realism needed to help accelerate progress in delivering fusion energy.

1. Background

As the global energy economy makes the transition from fossil fuels toward cleaner alter-

natives, fusion becomes an attractive potential solution for satisfying the growing needs. Fusion

energy, which is the power source for the sun, can be generated on earth, for example, in

magnetically-confined laboratory plasma experiments (called “tokamaks”) when the isotopes of

hydrogen (e.g., deuterium and tritium) combine to produce an energetic helium “alpha” particle

and a fast neutron, with an overall energy multiplication factor of 450:1. Building the scientific

foundations needed to develop fusion power demands high-physics-fidelity predictive simulation

capability for magnetically-confined fusion energy (MFE) plasmas. To do so in a timely way re-

quires utilizing the power of modern supercomputers to simulate the complex dynamics governing

MFE systems, including ITER, a multi-billion dollar international burning plasma experiment

supported by 7 governments representing over half of the world’s population. Currently under

construction in France, ITER will be the world’s largest tokamak system, a device that uses

strong magnetic fields to contain the burning plasma in a doughnut-shaped vacuum vessel. In

tokamaks, unavoidable variations in the plasma’s ion temperature profile drive microturbulence,

fluctuating electromagnetic fields, which can grow to levels that can significantly increase the

transport rate of heat, particles, and momentum across the confining magnetic field. Since the

balance between these energy losses and the self-heating rates of the actual fusion reactions will

ultimately determine the size and cost of an actual fusion reactor, understanding and possibly

controlling the underlying physical processes is key to achieving the efficiency needed to help

ensure the practicality of future fusion reactors. The associated motivation drives the pursuit

of sufficiently realistic calculations of turbulent transport that can only be achieved through

advanced simulations. The present paper on advanced Particle-in-Cell (PIC) global simulations

of plasma microturbulence at the extreme scale is accordingly associated with this fusion energy

science (FES) grand challenge [11, 13].

Particle dynamics are well represented either by the 5D gyrokinetic (GK) equation (for low-

frequency turbulence) or the 6D fully kinetic equation (for high frequency waves). The flagship

GTC code [5] and it’s “co-design” partner GTC-P [14, 15] are massively parallel particle-in-cell

(PIC) codes designed to carry out first principles, integrated simulations of thermonuclear plas-

mas, including the future burning plasma International Thermonuclear Experimental Reactor

(ITER). These codes solve the 5D GK equation in full, global toroidal geometry to address

kinetic turbulence issues in magnetically-confined fusion experimental facilities.

GTC is the key production code for the fusion SciDAC Center “Gyrokinetic Simulation

of Energetic Particle Turbulence and Transport (GSEP)” and for the Accelerated Application

Readiness (CAAR) program at the Oak Ridge Leadership Computing Facility (OLCF). It is

the only PIC code in the world fusion program capable of multiscale simulations of a variety of

important physics processes in fusion-grade plasmas including microturbulence, energetic parti-

cle dynamics, collisional (neoclassical) transport, kinetic magnetohydrodynamic (MHD) modes,

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence...

84 Supercomputing Frontiers and Innovations

and nonlinear radio-frequency (RF) waves. GTC interfaces with MHD equilibrium solvers for

addressing realistic toroidal geometry features that include both axisymmetric tokamaks and

non-axisymmetric stellarators. A recent upgrade enables this code to carry out global PIC sim-

ulations covering both the tokamak core and scrape-off layer (SOL) regions. It should also be

noted that the current comprehensive version of GTC can carry out both perturbative (δ f) and

non-perturbative (full-f) simulations with capability of dealing with kinetic electrons, electro-

magnetic fluctuations, multiple ion species, collisional (neoclassical) effects using Fokker-Planck

collision operators, equilibrium current and radial electric field, plasma rotation, sources/sinks,

and external antennae for auxiliary wave heating. Beyond the conventional application domain

of gyrokinetic simulation of microturbulence, the GTC code has a long history in pioneering the

development and application of gyrokinetic simulations of meso-scale electromagnetic Alfven

eigenmodes excited by energetic particles (EP) in toroidal geometry. This is one of the most im-

portant scientific challenges that must be addressed in future burning plasma experiments such

as ITER. Accordingly, the GTC work-scope has recently been extended to include simulation of

macroscopic kinetic-MHD modes driven by equilibrium currents. The associated importance is

that such efforts could ultimately lead to key knowledge needed to systematically analyze and

possibly help avoid or mitigate highly dangerous reactor relevant thermonuclear disruptions.

The GTC-P code is a performance-optimized, highly portable modern PIC code that serves

as a “co-design” proxy for the flagship GTC code. It serves to help accelerate progress on

architecture-dependent optimization including scalability and portability for emerging exascale

computers with heterogeneous architectures including both the GPU-accelerated Summit avail-

able in 2018 at ORNL and many-core system Aurora available in 2019 at ANL. The associated

focus of GTC-P involves evaluation and implementation into GTC the emerging standards-

based programming models that may enable performance portability across many-core and

GPU-accelerated architectures.

The current transition from traditional superscalar processors to increasingly energy-efficient

processors built from lightweight cores and a hierarchical memory architecture can be expected

to be a trend that will persist into the next 5 years. Many-core processors (Intel KNL/KNH)

and NVIDIA’s GPU-accelerators provide a management technology that frees end users from

needing to micromanage data movement and data locality. Over the past decade, strong collabo-

rative interactions between Princeton and LBNL have delivered increasingly improved versions of

GTC-P on some of the fastest supercomputers in the world including a series of GPU-accelerated

systems and the first generation of Intel many-core coprocessors – culminating in the recent pub-

lication [14] that also involved key contributions from ETH-Zurich. The increased prominence

of highly threaded architectures coupled with the desire to minimize memory usage has led to

the need to implement novel domain decomposition, synchronization, and particle binning tech-

niques. For example, the deployment of domain decomposition in the radial dimension has been

demonstrated in GTC-P [15] to dramatically reduce the memory footprint and the associated

computational work for grid-based subroutines. This unique capability, which has not been im-

plemented in most fusion codes, is targeted for implementation into GTC. More generally, the

novel techniques developed in GTC-P including the use of floating-point atomics on GPUs, as

well as the pragmatic approaches required for efficient vectorization on the Knights family will

also be integrated into GTC. We will plan to continue our exploration of pipelined, one-sided

communication (MPI or UPC++) in order to efficiently and productively implement electron

particle pushing and shifting. GTC-P is expected to have an increasingly enhanced role as the

W. Tang, B. Wang, S. Ethier, Z. Lin

2017, Vol. 4, No. 1 85

GTC co-design proxy for interaction with both the computational centers (OLCF at ORNL,

ALCF at ANL, and NERSC at LBNL) and vendors (Intel, NVDIA, IBM), who can tweak their

respective offerings for the computational requirements of GTC in the pre-exascale and exascale

timeframes. This will all help achieve the goal of efficiently carrying out architecture-dependent

optimization of GTC kernels to help ensure performance portability across both large many-core

and GPU systems.

2. Scientific Methodology

The GTC and GTC-P codes include all of the important physics and geometric features cap-

tured in numerous global PIC simulation studies of plasma size scaling over the years, extending

from the seminal work in the Phys. Rev. Letter (PRL) by Z. Lin, et al. [4] up to the more recent

PRL paper by B. F. McMillan, et al. [9] on system size effects on gyrokinetic turbulence. The

current generally supported picture is that size-scaling follows an evolution from a “Bohm-like”

trend where the confinement degrades with increasing system size, to a “Gyro-Bohm-like” trend

where the confinement for JET-sized plasmas begins to “plateau” and then exhibits no fur-

ther confinement degradation as the system size further increases toward ITER-sized plasmas.

A number of physics papers over the past decade have proposed theories, such as turbulence

spreading, to account for this transition to Gyro-Bohm scaling with plasma size for large sys-

tems. From a physics perspective, this key decade-long fusion physics picture of the transition

or “rollover” trend associated with toroidal ion temperature gradient micro-instabilities that are

highly prevalent in tokamak systems, should be re-examined by modern supercomputing-enabled

simulation studies which are now capable of being carried out with much higher phase-space

resolution and duration. With a focused approach based on performance optimization of key

functions within PIC codes in general, GTC-P, the “co-design” focus, has demonstrated the

effective usage of the full power of current leadership class computational platforms worldwide

at the petascale and beyond to produce efficient nonlinear PIC simulations that have advanced

progress in understanding the complex nature of plasma turbulence and confinement in fusion

systems for the largest problem sizes. Unlike fluid-like computational fluid dynamics (CFD)

codes, GTC-P has concentrated on the fact that PIC codes are characterized by having less

than 10 key operations which can then be an especially tractable target for advanced computer

science performance optimization methods. As illustrated in [14], these efforts have resulted in

accelerated progress in a discovery-science-capable global PIC code that models complex phys-

ical systems with unprecedented resolution and produces valuable new insights into reduction

in “time-to-solution” as well as “energy to solution” on a large variety of leading supercomput-

ing systems. In a sense, GTC-P is a “co-desing proxy” for the “flagship” electromagnetic GTC

code which is the most comprehensive PIC code with respect to the complex physics included.

GTC has delivered many scientific advances while using increasingly powerful supercomputing

systems over the years. For example, it is the first large-scale fusion code to deliver production

run stimulations at the terascale in 2002 [4] and on a petaflop system in 2009 [17]. Several key

associated computational methodologies will be elaborated upon in the subsequent sections of

this paper.

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence...

86 Supercomputing Frontiers and Innovations

2.1. Global PIC Geometric Models

In plasma turbulence studies, the standard approach is to divide the physical quantities

into an equilibrium part and a fluctuating part. The GTC code uses two set of meshes, one

for the specification of the equilibrium and the other to represent fluctuating turbulent fields.

In particular, the turbulence mesh is an unstructured field-aligned mesh for finite difference or

finite element in 3D space.

The equilibrium quantities are governed by the Grad-Shafranov equation for toroidal geom-

etry, while the fluctuating part is driven by various instabilities that lead to turbulent transport.

Equilibrium magnetic configurations typically used in gyrokinetic simulations either come from:

(i) analytic models such as the simple circular cross section or the Miller equilibrium; and (ii)

numerical equilibrium codes such as EFIT or VMEC. For the rapidly evolving optimization

studies that deliver very high resolution results from investigations of plasmas with increasing

problem size on the most powerful supercomputing systems, the practical choice, as exemplified

by the “co-design” GTC-P code – is the category (i) analytically-based equilibria. On the other

hand, comprehensive production runs carried out by the flagship GTC code demand interfacing

with the numerical equilibria of category (ii) that properly represent the actual experimental

conditions.

The most accurate representation of the equilibrium in tokamaks is by using magnetic flux

coordinates rather than Cartesian coordinates. This is due to the fact that most important

equilibrium quantities, such as plasma temperature and density, can be shown to depend on

the magnetic flux only. The flagship GTC code employs magnetic flux coordinates (Ψ, θ, ζ) to

represent the electromagnetic fields and plasma profiles, where Ψ is the poloidal flux function,

θ is the poloidal angle, and ζ is the toroidal angle. Specifically, the inputs come from the nu-

merical magnetic equilibrium and plasma profiles obtained from EFIT/VMEC by transforming

the equilibrium quantities defined in the cylindrical coordinates (R,φ, Z) to those defined in the

magnetic coordinates (Ψ, θ, ζ). The equilibrium data are provided by MHD equilibrium codes

for the magnetic field strength B, and cylindrical coordinates (R,φ, Z) of points forming mag-

netic flux surfaces. Additionally, the flux functions representing poloidal g(Ψ) and toroidal I(Ψ)

currents, magnetic safety factor q(Ψ), and minor radius r(Ψ) – defined as a distance from the

magnetic axis along the outer mid-plane – are provided. First-order continuous B-splines are

implemented for the 1D, 2D, and 3D functions to interpolate the complicated magnetic geom-

etry and plasma profiles which provide a good compromise between high numerical confidence

and reasonable computational efficiency.

The GTC capability to carry out simulations of problems with general toroidal geometry has

recently been extended to also include non-axisymmetric configurations. For non-axisymmetric

devices, the equilibrium data are presented on the uniform (Ψ, θ) grid for all n=(1, 2, · · · , N)

toroidal harmonics. To reduce the computational load and memory usage, the transformation

of non-axisymmetric variables into spline functions of ζ is chosen for implementation in GTC,

with spline coefficients associated with a particular grid point ζi being stored by processors with

corresponding toroidal rank using message passing interface (MPI) parallelization.

The GTC-P code deploys the so-called large aspect ratio equilibrium, which is an analytical

model describing a simplified toroidal magnetic field with a circular cross-section. The associ-

ated model takes into account the key geometric and physics properties needed to carry out

a meaningful study of the influence of increasing plasma size on magnetically-confined fusion

plasmas. Such an approach enables working with a sufficiently straightforward but nevertheless

W. Tang, B. Wang, S. Ethier, Z. Lin

2017, Vol. 4, No. 1 87

Figure 1. Illustrative Figure showing the grid structure of the GTC-P code on a 3D torus

discovery-science-capable physics [4,5] code that makes more tractable the formidable task of

developing the algorithmic advances needed to take advantage of the rapidly evolving modern

platforms featuring, for example, both homogenous and hybrid architectures. The associated

physics approach is to deploy GTC-P plasma size-scaling studies because it is a fast streamlined

modern code with the capability to efficiently carry out computations at extreme scales with

unprecedented resolution and speed on present-day multi-petaflop computers [14]. The corre-

sponding scientific goal is to accelerate progress toward capturing new physics insights into the

key question of how turbulent transport and associated confinement characteristics scale from

present generation laboratory plasmas to the much larger ITER-scale burning plasmas. This

includes a systematic characterization of the spectral properties of the turbulent plasma as the

confinement scaling evolves from a “Bohm-like” trend where the confinement degrades with in-

creasing system size to a “Gyro-Bohm-like” trend where the confinement basically “plateaus”,

exhibiting no further confinement degradation as the system size further increases. “Lessons

learned” achieved in a timely way from this co-design effort can be expected to expedite associ-

ated advances in the flagship GTC code in particular as well as to generally providing valuable

information on PIC performance modeling advances to ongoing and future efforts in improving

PIC code deployment on multi-petaflop supercomputers on the path to exascale and beyond.

2.2. Global PIC Grid Considerations

To accurately track the key physics in magnetically-confined toroidal plasmas, the GTC

and GTC-P codes utilize a highly specialized grid that follows the magnetic field lines as they

twist around the torus (see Figure 1). This allows the code to retain the same accuracy while

using fewer toroidal planes than a regular, non-field-aligned grid. From relevant physics consid-

erations, since short wavelength waves parallel to the magnetic field are suppressed by Landau

damping, increasing the grid resolution in the toroidal dimension will leave the results essentially

unchanged. Consequently, a typical production simulation run usually consists of a constant

number of poloidal planes (e.g., 32 or 64) wrapped around the torus. Each poloidal plane is

represented by an unstructured grid, where the grid sizes in the radial and poloidal dimensions

correspond approximately to the size of the gyro-radius of the particles. As we consider larger

plasma sizes (e.g., 2x in major and minor radius), the number of grid points in each 2D plane

increases 4x. The number of grid points for a 3D grid increases 4x as well since the number

of planes in the toroidal dimension remains the same for all problem sizes. For a modest-sized

fusion device (e.g, the DIII-D tokamak at General Atomics in San Diego, CA), the associated

plasma simulation typically uses ∼128 thousand grid points in a 2D plane. As we move to the

larger Joint European Torus (JET) device and then eventually to the ITER size plasmas, the

number of grid points increases 4x and 16x, respectively. Using a fixed number of 64 toroidal

planes, the total number of grid points for an ITER-sized plasma will be ∼131 million. With

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence...

88 Supercomputing Frontiers and Innovations

100 particles per cell resolution, an ITER-sized simulation will accordingly involve ∼13 billion

particles. For E&M and full-f simulation with 3 particle species, the particle number can even

increase to 1011. Tracking the dynamics of this large number of particles would of course be an

extremely daunting task without access to leadership-class supercomputers.

3. Programming Approach

The basic parallel programming approach for global PIC codes such as GTC and GTC-

P includes: (i) explicit message passing using MPI; (ii) architecture-specific models such as

CUDA for computing on GPUs; and (iii) directive-based compiler options such as OpenMP and

OpenACC with possible promise of being more cross-machine portable between architectures.

A more detailed recent description of global PIC code characteristics/considerations with

respect to scalability, performance, portability, modern computational platforms, and external

libraries, associated discussions will touch on the rationale for the chosen programming ap-

proach, and the associated balance between performance and portability can be found in [14]. In

future R&D, attention must of course be focused on the many specific challenges for global PIC

applications in achieving efficiency on exascale architectures. A preview is given in the following

sections.

3.1. PIC Scalability

In describing efforts to improve the performance scalability of the global PIC codes – well

represented by GTC and GTC-P, key topics include: (i) on-node thread scaling; and (ii) between

node scaling. The GTC/GTC-P codes have been designed with four levels of parallelism: (i) an

inter-node distributed memory domain decomposition via MPI, (ii) an inter-node distributed

memory particle decomposition via MPI, (iii) an intra-node shared memory work partition

implemented with OpenMP; and (iv) a SIMD vectorization within each core. This approach was

shown to lead to nearly-perfect scaling with respect to the number of particles [2].

In order to efficiently address large grid sizes and the associated significant memory increase,

the domain decomposition in GTC-P is further extended in the radial dimension (beyond the

toroidal dimension) [15]. This leads to a 2D domain decomposition and enables carrying out true

weak scaling studies, where both particle and grid work are appropriately scaled. The multi-

level particle and domain decompositions provide significant flexibility in distributed-memory

task creation and layout. While the ranks in the toroidal dimension are usually fixed as 32

or 64 due to Landau damping physics, there is freedom to choose any combination of process

partitioning along the radial and particle dimensions. For scaling with a fixed problem size,

the procedure involves partitioning along the radial direction and using particle decomposition.

The decompositions were implemented with three individual communicators in MPI (toroidal,

radial, and particle communicator), and further tuning is made available via options to change

the order of MPI rank placement.

It is important to note that gyrokinetic PIC simulations typically exhibit highly anisotropic

behavior – with the velocity parallel to the magnetic field being an order of magnitude larger than

that in the perpendicular direction. Consequently, the message sizes in the toroidal dimension

can be many times larger (e.g., an order) than those in the radial dimension at each time step.

On the IBM Blue Gene systems with explicit process mapping, it was found to be convenient and

effective to group processes to favor the MPI communicator in the toroidal dimension. For other

W. Tang, B. Wang, S. Ethier, Z. Lin

2017, Vol. 4, No. 1 89

systems, assigning consecutive ranks for processes within each toroidal communicator generally

leads to improved performance.

Looking toward the ongoing and future challenge of maximizing on-node performance and

efficiency, it is already clear that modern processor architectures have evolved with more cores

and wider vector units in a single node. In order to fully exploit the emerging architectures on

the path to exascale, it is important that application scientists design their software such that

the algorithms and the implementations map well on the hardware for maximum scalability.

In GTC/GTC-P, this translates to multicore parallelism using shared-memory multi-threading

and implementation changes to enable SIMD vectorization. For example, in an earlier version

of GTC-P, “holes” were used to represent non-physical “invalid” particles, i.e., in a distributed

environment, at every time step, the particles that are being moved to other processes are marked

as “holes” and considered to be “invalid” in the local particle array. These invalid particles are

then removed from the array periodically to empty memory space for new incoming particles. In

this type of implementation, two particles in consecutive memory locations may have different

operations in charge and push depending on if they belong to the same type of particles (valid or

invalid) or not. This accordingly introduces difficulty for automatic vectorization. To maximize

the usage of vector units, the latest version of GTC-P includes removing the holes completely

for charge and push by filling the holes at the end of shift and using the new incoming particles

sent from neighboring processors at every time step. If a process has sent more particles than

received, then the remaining holes are filled with the last particles in the array. A similar strategy

has been applied for the GPU implementation to remove the branch statement caused by the

“holes”.

3.2. PIC Performance Challenges

PIC algorithms are challenging to optimize on modern computer architectures due to issues

such as data conflict and data locality. In GTC and GTC-P, parallel binning algorithms have

been developed to improve data locality for charge and push. More specifically, several choices are

provided to bin the particles, i.e., along the radial dimension and along the poloidal dimension.

The best binning strategy will be used for production runs by first running a few benchmarks.

In GTC-P, the additional use of intrinsics has helped improve the vectorization of the binning

implementation. On GPU’s, the CUDA version of the binning algorithm was implemented using

the Thrust Library.

To address the data conflict issue in charge, optimization strategies have been explored via

static replication of grid segments that are coupled with synchronization via atomics, where the

size of the replica may be traded for increased performance [7, 8]. The best performance is often

obtained by employing the full poloidal grid for each OpenMP thread. In GTC with only toroidal

domain decomposition, the full poloidal grid replication dramatically increases the temporary

grid-related storage for large size grid on manycore architectures such as the Intel Xeon Phi

systems. As such, static replication of grid segments that are coupled with synchronization via

atomics will likely be the best strategy. In GTC-P, the radial domain decomposition solves

locality and memory pressure without resorting to costly atomics. In essence, since only a small

segment of the full poloidal grid is required for a hazard-free charge deposition, the private grid

replication strategy can be readily employed on a per thread basis for the best performance.

In dealing with heterogenous supercomputing platforms such as “Titan”, the approach fol-

lowed in the deployment of global PIC codes involves off-loading the computationally intensive

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence...

90 Supercomputing Frontiers and Innovations

and highly scalable subroutines to GPU’s, while the communication-dominant subroutines re-

main on CPU’s [3]. Performance, however, is known to be impeded due to the synchronization

of atomic operations and the unavoidable memory transpose associated with the structure-of-

array to array-of-structure data layout. To address this issue, the time-consuming global memory

atomic operations have been replaced with local shared memory atomic operation. This R&D

activity falls generally in the category of advances and challenges involving heterogeneous ar-

chitectures.

3.3. Portability

Global PIC codes such as GTC and GTC-P have demonstrated increasing capability for

portability over the past few years across different architectures. In this section the associated

techniques applied for doing so are discussed along with examples of success achieved. In general,

a high priority is being placed on portability in HPC because of the significant differences between

quite different architectural approaches such as the upcoming 200 PF systems: SUMMIT at the

OLCF and AURORA at the ALCF. Since both approaches have significant exciting potential

for enabling accelerated performance at scale, most advanced applications, including prominent

global PIC codes such as GTC/GTC-P, will continue to focus attention on achieving both

performance enhancement as well as portability. For example, performance portability of these

advanced codes helps ensure, in a risk mitigation sense, the capability to perform very well on

whichever platform proves to provide the greater eventual computing at extreme scale advantage.

GTC-P has been particularly successful in porting modern optimized versions across a wide

range of multi peta-flop platforms at full or near-to-full capability. Benefit is associated in

part from the fact that GTC-P is not critically dependent on any third-party libraries. This

includes the implementation a highly-optimized Poisson solver with multi-threading capability.

Additional performance enhancement for both GTC and GTC-P has been obtained by utilizing

a specialized damped Jacobi iterative solver [6]. In this iterative solver, the damping parameter

was carefully chosen to favor the desired range of wavelengths for the fastest growing modes

in plasma turbulence simulations. As a result, a small and fixed iteration count is sufficient to

achieve the desired accuracy.

Although achieving the best performance on each explored architecture requires platform-

specific optimization strategies, a “pluggable” software component approach in architecting the

GTC/GTC-P application codes have proven to be a quite successful approach. Specifically, the

interface is preserved across all implementations targeting CPU-based codes as well as GPU

(or Xeon Phi) hybrid implementations. Components are chosen based on the target platform

during the application build process. This enables having a unified code base with the best-

possible performance, without sacrificing portability. Behind the unified interface, platform-

specific optimization strategies are systematically investigated.

Some optimizations, such as sorting particles and vectorization, are common to all platforms,

but implementation details differ. Other optimizations, such as handling NUMA issues and load

imbalance, are specific to certain platforms. Designing routine interfaces is of crucial importance

to allow portability without compromising performance-tuning opportunities.

GTC-P uses the MPI-3 standard for distributed-memory communication, including the ex-

ploration of one-sided communication. The motivation here is again to provide better portability

for diverse architectures and programming models.

W. Tang, B. Wang, S. Ethier, Z. Lin

2017, Vol. 4, No. 1 91

103

104

105

106

 1536 3072 6144 12288 24576 49152 98304

co
m

pu
te

 p
ow

er
 (m

illi
on

s
nu

m
be

r o
f p

ar
tic

le
s

pe
r s

ec
on

d
pe

r s
te

p)

number of nodes

A200	

B200	

C200	

D200	

Sequoia*

 BG-Q Performance: Weak Scaling Results

• Mira @ ANL & Sequoia @ LLNL
• C-Version of GTC-P Global GK PIC Code: 200 ppc resolution
• Plasma system size increases from A to D with D being ITER

Mira	

	
 	
 	
 	
 	
 Mira	

Mira	

Bei Wang (Princeton U.) & S. Ethier (PPPL)

*NNSA’s Sequoia (16.3 PF)
• excellent scaling to all 1,572,864 processor
cores (capable of pushing over 130B particles)
• hybrid MPI+OpenMP in “GTC-P C” took full
advantage of highly multi-threaded nodes and
large scalable interconnect in BG-Q

Figure 2. GTC-P Code Performance on World-Class IBM BG/Q Systems

Significant advances in GTC-P on many-core processors with respect to portability and

scalability have been recently achieved by porting the code to GPU systems with OpenACC

2.0 as a viable option instead of CUDA. This has led to the very recent success in porting and

optimizing an OpenACC 2.0 version of GTC-P on the Sunway TaihuLight Supercomputer [16]

– the new No. 1 system on the international Top500 as of June 2016. The only approach for

achieving good performance on TaihuLight requires software compatibility with their SWACC

compiler, a customized OpenACC 2.0 syntax supported software.

In common with the large majority of codes in the fusion energy science/plasma physics

application domain, GTC-P was originally written in Fortran language. However, to better

facilitate interdisciplinary collaborations with computer science and applied math colleagues,

modern versions of this code have been developed in C language as well as a CUDA implemen-

tation for dealing with GPU’s. As just noted, this capability has recently been further advanced

with the development and implementation of an OpenACC 2.0 version of GTC-P. Although the

original Fortran version of this code is still used for verification purposes in cross-checking and

benchmarking results, the primary utilization has involved the C and CUDA versions for per-

formance studies and physics production runs on supercomputing systems such as the ALCF’s

“Mira” and the OLCF’s “Titan”.

4. Scaling Results

Using resources from INCITE, previous early Science Projects (ESP) at the ALCF, and

Director’s Discretionary allocations from both the ALCF and OLCF in the past few years, GTC-

P has demonstrated excellent scalability to more than 100,000 cores on leadership computing

facilities at ANL and ORNL. It has been successfully deployed for major scientific production

runs on the IBM BG/Q/“Mira”, where the excellent weak scaling performance was carried over

to much larger scale on LLNL’s more powerful Sequoia system. These results are illustrated in

Figure 2.

In addition, it is relevant to note that the GTC-P code was the featured U.S. code in the

G8 international exascale project in nuclear fusion energy, “NuFuSE” that was supported in

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence...

92 Supercomputing Frontiers and Innovations

Figure 3. Weak Scaling of the GTC-P code Achieved on the Fujitsu-K Computer in Japan

the U.S. by the National Science Foundation (NSF). The G8 program helped provide unique

access to a variety of international leadership class computational facilities such as the Fujitsu

K Computer in Japan. Results from weak-scaling studies carried out on the K-computer are

illustrated in Figure 3.

As seen from subsequent stimulating new results [12], substantive impact can be expected to

help stimulate progress in preparing for actual research engagement on ITER. In order to do so

in a timely way, it is critically important that new software for extreme concurrency systems that

demand increasing data locality be developed to help accelerate progress toward the ultimate goal

of computational fusion research, a predictive simulation capability that is properly validated

against experiments in regimes relevant for practical fusion energy production.

Having demonstrated the ability to effectively utilize the most powerful homogeneous su-

percomputing platforms worldwide, GTC-P R&D efforts have also examined performance char-

acteristic on heterogeneous architectures. More generally, these studies represent productive

investigations of extreme scale science across advanced scientific computing basic research pro-

grams with fusion energy science as an illustrative application domain. Here the focus was on

developing new algorithms for advanced heterogeneous supercomputing systems such as the

GPU/CPU “Titan” at DOE’s OLCF and the Intel Xeon Phi/Intel Xeon “Stampede” at NSF’s

TACC. In doing so, a new version of GTC-P code was developed that features algorithms which

include new heterogeneous capabilities for deployment on hybrid GPU (Nvidia K20)/CPU as

well as the Intel Xeon Phi/Intel Xeon systems such as Stampede and also TH-2 in China. From

a verification perspective, this research effort also includes systematic comparison of new results

against the successful work described earlier in studies that featured high resolution, long tem-

poral scale simulation results obtained on world-class homogeneous systems such as the IBM

BG/Q Mira at the ALCF, Sequoia at LLNL, and the K-Computer in Kobe, Japan. A weak

scaling performance of GTC-P across a wide-range of systems is shown in Figure 4. Interested

readers can also find more details in [14].

The CAAR program has enabled GTC architecture-dependent optimization including scala-

bility and portability for heterogeneous architectures. Figure 5 has shown the GTC hybrid weak

scaling study (i.e., same number of particles but increasing number of grid points per process)

where we scale both the grid size and the total number of particles from DIIID to ITER sim-

ulations on Titan up to 16384 nodes [18]. Compared with CPU (16 cores AMD 6274), GPU

(NVIDIA K20x) has boosted the overall performance by 1.5-2.8x. The decrease of the perfor-

W. Tang, B. Wang, S. Ethier, Z. Lin

2017, Vol. 4, No. 1 93

A2 B2 C2

D2

5

10

15

256 1024 4096 16384

Number of Nodes

W
al

lc
lo

ck
 t

im
e

p
er

 io
n

st
ep

 (
s)

Mira

TH−2

Titan

Titan (CPU)

Piz Daint

Piz Daint (CPU)

Stampede

Stampede (OFLD)

Figure 4. GTC-P weak scaling performance using a fixed problem size per node across all systems allows

comparisons of node performance. Solid lines indicate model-predicted running times (shown for Mira,

Titan (CPU), Piz Daint (CPU), Stampede), dashed line joins actual running times

 GTC CODE PERFORMANCE SCALING:
 Weak Scaling on TITAN using ITER-like parameters

Figure 5. GTC hybrid weak scaling study where we scale both the grid size and total number of particles

from DIIID to ITER simulations on Titan up to 16384 nodes

mance speed up in large processor counts is due to the increased portion of non-GPU accelerated

subroutines.

5. Time-to-Solution and Energy-to-Solution Comparative

Studies

As evident from the increasingly strong attention paid to “Green 500” in addition to the

traditional “Top 500” supercomputer rankings, energy is clearly being recognized as a prominent

impediment to advances in HPC development. Since the interplay between performance and

power is highly dependent on algorithm and architecture, assessing the net energy efficiency of

large scientific simulations can be particularly non-intuitive as one moves from one processor

or network architecture to the next. In Table 1 (also shown in Table V of [14]), the energy

per time step was illustrated for 4K nodes of Mira, Titan, and Piz Daint when using 80M

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence...

94 Supercomputing Frontiers and Innovations

Table 1. Energy per ion time step (KWh) by platform for the

weak-scaled, kinetic electron configuration at 4096 nodes. Power

is obtained via system instrumentation including compute node,

network, blades, AC to DC conversion

CPU-Only CPU+GPU
Mira Titan Piz Daint Titan Piz Daint

Nodes 4096 4096 4096 4096 4096
Power/node (W) 69.7 254.1 204.9 269.4 246.5
Time/step (s) 13.77 15.46 10 10.11 6.56
Energy (KWh) 1.09 4.47 2.33 3.10 1.84

grid points, 8B ions, and 8B electrons. The power measured under actual load via system

instrumentation was used. Attention should be paid to the fact that although Mira required the

most wall clock time per time step, it also required the least power per node. Taken as whole,

the conclusion was that Mira required the least energy per time step of all platforms considered.

Conversely, using the host-only configurations on Titan and Piz Daint required between 2x

and 4x the energy with the difference largely attributable to the relative lack of scalability on

Titan. It is especially interesting to highlight that while code acceleration on these platforms

significantly reduced the wall clock time per time step, the associated power expended was

only slightly increased. Consequently, the energy required for the GPU-accelerated systems was

reduced nearly proportionally with run time.

With regard to energy-efficient scientific computing, instrumenting scientific applications to

measure energy when running on large supercomputing installations today can be cumbersome

and obtrusive – requiring significant interaction with experts at each center. As such, most ap-

plications have little or no information on energy-to-solution across the architecture design space

spectrum. In order to affect energy-efficient co-design of supercomputers, energy measurement

must always-on by default with, at a minimum, total energy and average power reported to

the user at the end of an application. By reporting energy by component (memory, processor,

network, storage, etc...), scientists and vendors could co-design their applications and systems

to avoid energy hotspots and produce extremely energy-efficient computing systems.

Conclusions

Portability across many-core and GPU-accelerated architectures is important to the success

of this illustrative PIC GTC framework highlighted in this paper. This discovery science software

will have a large user community and needs to efficiently utilize all computational resources of

the next generation computers. Further studies will continue to explore the efficacy of using

the OpenMP 4.5 offload model and the use of OpenACC to provide performance portability

across architectures in lieu of using both CPU-specific OpenMP implementations and GPU-

specific OpenACC implementations. We note that the performance portability of OpenACC has

not been studied on Intel’s KNL/KNH processors and the OpenMP offload model is not fully

supported on many compilers. Moreover, given the offload model has been rendered irrelevant

by KNL’s self-hosted nature coupled with its use of MCDRAM as a hardware-managed cache,

there is a distinct possibility that standards-based single-source performance portability will

prove elusive and some specialization will remain essential. We will continue to leverage GTC-P

as GTC’s co-design proxy for interaction with both the computational centers (OLCF at ORNL,

ALCF at ANL, and NERSC at LBNL) and vendors (Intel, NVDIA, IBM), who can tweak their

W. Tang, B. Wang, S. Ethier, Z. Lin

2017, Vol. 4, No. 1 95

respective offerings for the computational requirements of GTC in the pre-exascale and exascale

timeframes.

As a final comment, it is appropriate to note that a broader impact of the work presented in

this paper is the delivery of benefits to particle-in-cell codes in general since the associated codes

share a common algorithmic foundation. For example, the continuing developments targeted in

the global PIC GTC project can be expected to have a strong impact in dealing with the

multi-threading challenges for efficient deployment of a large number of processors on modern

homogeneous and heterogeneous systems advances that should prove beneficial to any particle-

mesh algorithm.

Acknowledgements

The authors are very grateful to our many collaborative colleagues. We are especially in-

debted to Sam Williams and Khaled Ibrahim from LBNL.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of

ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-State

Circuits 9(5), 256–268 (Oct 1974), DOI: 10.1109/jssc.1974.1050511

2. Ethier, S., Tang, W.M., Lin, Z.: Gyrokinetic particle-in-cell simulations of plasma microtur-

bulence on advanced computing platforms. Journal of Physics: Conference Series 16, 1–15

(2005), DOI: 10.2172/1222712

3. Ibrahim, K.Z., Madduri, K., Williams, S., Wang, B., Ethier, S., Oliker, L.: Analy-

sis and optimization of gyrokinetic toroidal simulations on homogenous and heteroge-

nous platforms. International Journal of High Performance Computing Applications (2013),

DOI: 10.1145/2063384.2063415

4. Lin, Z., Ethier, S., Hahm, T.S., Tang, W.M.: Size scaling of turbulent trans-

port in magnetically confined plasmas. Phys. Rev. Lett. 88, 195004 (Apr 2002),

DOI: 10.1145/1654059.1654108

5. Lin, Z., Hahm, T.S., Lee, W.W., Tang, W.M., White, R.B.: Turbulent transport reduc-

tion by zonal flows: Massively parallel simulations. Science 281(5384), 1835–1837 (1998),

DOI: 10.1126/science.281.5384.1835

6. Lin, Z., Lee, W.W.: Method for solving the gyrokinetic poisson equation in general geometry.

Phys. Rev. E 52, 5646–5652 (Nov 1995), DOI: 10.1145/2063384.2063415

7. Madduri, K., Ibrahim, K.Z., Williams, S., Im, E.J., Ethier, S., Shalf, J., Oliker, L.: Gy-

rokinetic toroidal simulations on leading multi- and manycore HPC systems. In: Proc. Int’l.

Conf. for High Performance Computing, Networking, Storage and Analysis (SC ’11). pp.

23:1–23:12. ACM, New York, NY, USA (2011), DOI: 10.2172/1273408

Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence...

96 Supercomputing Frontiers and Innovations

8. Madduri, K., Williams, S., Ethier, S., Oliker, L., Shalf, J., Strohmaier, E., Yelick, K.:

Memory-efficient optimization of gyrokinetic particle-to-grid interpolation for multicore pro-

cessors. In: Proc. ACM/IEEE Conf. on Supercomputing (SC 2009). pp. 48:1–48:12 (Nov

2009), DOI: 10.1145/2616498.2616526

9. McMillan, B.F., Lapillonne, X., Brunner, S., Villard, L., Jolliet, S., Bottino, A., Görler, T.,

Jenko, F.: System size effects on gyrokinetic turbulence. Phys. Rev. Lett. 105, 155001 (Oct

2010), DOI: 10.1103/physrevlett.105.155001

10. Moore, G.E.: Cramming more components onto integrated circuits, reprinted from elec-

tronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society

Newsletter 11(5), 33–35 (Sept 2006), DOI: 10.1088/1742-6596/16/1/001

11. Rosner, R., et al.: Opportunities and challenges of exascale computing - doe advanced

scientific computing advisory committee report (2010), https://science.energy.gov/~/

media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf, accessed: 2017-

02-15

12. Tang, W., Wang, B., Ethier, S.: Scientific discovery in fusion plasma turbulence sim-

ulations at extreme scale. Computing in Science Engineering 16(5), 44–52 (Sept 2014),

DOI: 10.1103/physrevlett.103.085004

13. Tang, W., Keyes, D.: Scientific grand challenges: Fusion energy science and

the role of computing at the extreme scale. In: PNNL-19404. p. 212 (2009),

DOI: 10.1177/1094342013492446

14. Tang, W., Wang, B., Ethier, S., Kwasniewski, G., Hoefler, T., Ibrahim, K.Z., Madduri, K.,

Williams, S., Oliker, L., Rosales-Fernandez, C., Williams, T.: Extreme scale plasma tur-

bulence simulations on top supercomputers worldwide. In: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis. pp. 43:1–

43:12. SC ’16, IEEE Press, Piscataway, NJ, USA (2016), http://dl.acm.org/citation.

cfm?id=3014904.3014962, DOI: 10.1145/2063384.2063415

15. Wang, B., Ethier, S., Tang, W., Williams, T., Ibrahim, K.Z., Madduri, K., Williams, S.,

Oliker, L.: Kinetic turbulence simulations at extreme scale on leadership-class systems.

In: Proceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis. pp. 82:1–82:12. SC ’13, ACM, New York, NY, USA (2013),

DOI: 10.1103/physreve.52.5646

16. Wang, Y., Lin, J., Cai, L., Tang, W., Ethier, S., Wang, B., See, S., Matsuoka, S.: Porting

and optimizing gtc-p on taihulight supercomputer with sunway openacc. In: HPC China

(2016)

17. Xiao, Y., Lin, Z.: Turbulent transport of trapped-electron modes in collisionless plasmas.

Phys. Rev. Lett. 103, 085004 (Aug 2009), DOI: 10.1109/n-ssc.2006.4785860

18. Zhang, W.L.: CAAR project mid-term report. To be submitted (2016)

W. Tang, B. Wang, S. Ethier, Z. Lin

2017, Vol. 4, No. 1 97

	J. Kurzak, P. Luszczek, I. Yamazaki, Y. Robert, J. Dongarra
	R. M. Badia, E. Ayguade, J. Labarta
	T. Sterling, M. Anderson, M. Brodowicz
	R. Bartlett, I. Demeshko, T. Gamblin, G. Hammond, M. Heroux, J. Johnson, A. Klinvex, X. Li, L. C. McInnes, J. D. Moulton, D. Osei-Kuffuor, J. Sarich, B. Smith, J. Willenbring, U. M. Yang
	W. Tang, B. Wang, S. Ethier, Z. Lin

