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In Situ Exploration of Particle Simulations with CPU Ray

Tracing

Will Usher1, Ingo Wald2, Aaron Knoll1, Michael Papka3, Valerio Pascucci1
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We present a system for interactive in situ visualization of large particle simulations, suit-

able for general CPU-based HPC architectures. As simulations grow in scale, in situ methods are

needed to alleviate IO bottlenecks and visualize data at full spatio-temporal resolution. We use a

lightweight loosely-coupled layer serving distributed data from the simulation to a data-parallel

renderer running in separate processes. Leveraging the OSPRay ray tracing framework for visu-

alization and balanced P-k-d trees, we can render simulation data in real-time, as they arrive,

with negligible memory overhead. This flexible solution allows users to perform exploratory in situ

visualization on the same computational resources as the simulation code, on dedicated visual-

ization clusters or remote workstations, via a standalone rendering client that can be connected

or disconnected as needed. We evaluate this system on simulations with up to 227M particles in

the LAMMPS and Uintah computational frameworks, and show that our approach provides many

of the advantages of tightly-coupled systems, with the flexibility to render on a wide variety of

remote and co-processing resources.

Keywords: in situ rendering, parallel systems, point-based data, CPU and GPU clusters.

Introduction

In the coming era of exascale computing, simulations will produce data far in excess of

what can be effectively archived in parallel file systems. Although numerous solutions exist for

addressing IO bottlenecks at scale, including filtering of data attributes, sacrificing temporal or

spatial resolution, or compression [1, 2], these approaches often assume a priori knowledge of

the data and sacrifice some flexibility. Ultimately, to enable the broadest exploratory analysis

of unadulterated simulation data at scale, visualization software must adapt to in situ use cases

in which data are not stored to disk, and analysis and, potentially, rendering occur while the

simulation is running. In situ visualization can add additional compute cost to the simulation

which may change its performance characteristics. However, it comes with the benefit of reducing

or eliminating time spent in file IO.

In situ is often used as an umbrella term encompassing numerous different approaches

currently being classified in an effort led by Childs [3]. Much in situ research has emphasized

sidestepping IO through specific analysis, data reduction or filtering [4, 5], optimizations to

existing IO frameworks enabling scalable co-processing, streaming or offline visualization [6–8],

and data forwarding mechanisms coupling simulations with production visualization software [9].

Due to the nature of large-scale simulations, most in situ approaches are designed to operate

in batches. Relatively fewer in situ applications have targeted interactive use, enabling live,

exploratory visualization from simulation. Here, one has the choice of tightly-coupled visualiza-

tion embedded directly in the simulation code and running on the compute resource [10], or

asynchronous loosely-coupled approaches that forward data from the simulation into separate

visualization processes (e.g. [11]), either on the same machine or a different cluster. In either case,

in situ rendering or analysis requires consideration of distributed data spread across multiple

simulation nodes and potentially too large to be marshaled to a single node for processing.
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Figure 1. A coal particle combustion simulation in Uintah at three different timesteps with (left

to right): 34.61M, 48.46M and 55.39M particles, with attribute based culling showing the full

jet (top) and the front in detail (bottom). Using our in situ library to query and send data to

our rendering client in OSPRay these images are rendered interactively with ambient occlusion,

averaging around 13 FPS at 1920 × 1080. The renderer is run on 12 nodes of the Stampede

supercomputer and pulls data from a Uintah simulation running on 64 processes (4 nodes). Our

loosely-coupled in situ approach allows for live exploration at the full temporal fidelity of the

simulation, without prohibitive IO cost

In this paper we describe a system for interactive in situ exploration of particle data. Our

system employs a loosely-coupled or in-transit approach, but retains many of the advantages

of tightly-coupled methods. Using the OSPRay ray tracing framework for visualization [12],

the system can run natively on CPUs on either compute or visualization resources, requiring

no dedicated hardware for visualization. Leveraging memory-efficient approaches for particle

ray tracing [13], our approach requires minimal overhead for geometry and acceleration struc-

tures. Moreover, to the best of our knowledge, this system represents the first utilization of an

interactive ray tracer for in situ visualization. Our key contributions are:

• An interactive in situ rendering client that can connect and disconnect to the simulation at

the user’s discretion, minimizing the impact of the renderer on the simulation and enabling

live exploration of the simulation state.

• A flexible in situ layer integrated with OSPRay which enables the renderer to run on the

same nodes as the simulation or asynchronously on a different resource.

• Pairing in situ data query with memory-efficient ray tracing data structures and mecha-

nisms for direct rendering and filtering of particle data.

We demonstrate the flexibility and performance of our system with two simulations,

LAMMPS [14, 15] and Uintah [16]; deployed on a NUMA workstation, a visualization cluster

(Maverick) and compute resource (Stampede). We evaluate the communication characteristics

and scalability of our system across these different resources. Though exploratory in situ poses

numerous human and logistical obstacles, it is ultimately desirable for users to be able to explore

simulations as they run.

1. Background and Previous Work

1.1. In Situ Analysis

As simulations grow in scale, in situ analysis and data reduction have become popular tools

in the computation-visualization workflow. Generally, these analyses are designed to operate

alongside computation in batches. For example, Woodring et al. [5] sample an interesting subset

of data to save during the simulation. Peterka et al. and Zhang et al. compute and save out
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derived data from the simulation for further analysis instead of the raw simulation timesteps,

reducing IO requirements [17, 18].

Various methods have also been proposed to couple the analysis and simulation depending on

how much modification of the simulation code is desired. Peterka et al. [17] integrate a distributed

parallel Voronoi tessellation into the HACC cosmology simulation enabling this meshing to be

performed more efficiently than as a post-process. Zhang et al. propose a less tightly coupled

approach and share data between the simulation and a distributed feature tracking algorithm

using an on node data staging process [18]. Fabian et al. design adaptors for integration into

existing simulations which hand off to a ParaView coprocessing API, allowing for a variety of

algorithms to be implemented without requiring additional modification of the simulation for

each algorithm [9].

GLEAN provides a flexible framework for coupling analysis and can be called directly by

the simulation or by embedding into existing higher-level IO libraries [19]. In an effort to require

no modification to existing simulation code Fogal et al. [20] intercept calls to IO libraries and

pass the data on to visualization tools. This approach allows for easier development of in situ

analysis as no changes to the simulation code are required.

In situ batch style analysis is desirable as a way to produce analysis products at a higher

spatio-temporal resolution, but the user must know a priori what analysis products are interest-

ing to compute. For exploratory analysis direct in situ visualization is still desirable, and in fact

some of the works mentioned previously provide a live rendering component [17, 19] or allow

modification of analysis parameters on the fly [9].

1.2. In Situ Visualization

In situ visualization has long been proposed as an alternative to offline visualization, first

discussed by McCormick et al. [21]. Numerous visualization and analysis tools have been written

to run tightly or loosely coupled with a simulation depending on the requirements of the appli-

cation and how much modification of the simulation was desired. For example, SCIRun [22] and

pV3 [23] were designed to directly integrate with the simulation and allow for computational

steering. VMD [24] was initially conceived as a visualization counterpart for NAMD.

Tu et al. proposed an end-to-end approach which tightly couples all components of a simu-

lation pipeline from meshing to visualization [25]. A loosely coupled in situ renderer for weather

forecast models is described by Ellsworth et al. [26] where simulation data is sent over the net-

work to a separate rendering cluster, minimizing the impact of the rendering system on the

simulation. Rizzi et al. [11] interconnect LAMMPS and vl3 in a similar manner to our work and

run a one-to-one mapping of render nodes to simulation nodes. This approach allows for shared

memory to be used instead of network transfers when sending data from the simulation to the

renderer. Currently, vl3 relies on OpenGL and GPUs for efficient rendering and compositing.

Most similar to our work, Yu et al. [10] directly couple a software renderer to S3D for

in situ rendering of mixed particle and volume data. While directly integrating the renderer

into the simulation removes the IO cost of communicating between the processes, the renderer

can now only provide a new frame every timestep, limiting interactivity. Relatively few in situ

papers have emphasized direct in situ visualization, instead focusing on a mix of analysis and

simulation steering as well as rendering [9, 22]. Our system is unique not only in that it employs

CPU ray tracing for better memory-efficiency and platform portability, but in that it fosters
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more direct visualization through a lightweight rendering client which can be trivially connected

or disconnected to the simulation as needed.

1.3. Particle Visualization

Point data rendering has been widely explored in graphics and visualization [27]. In this

paper we are primarily interested in volumetric particle data coming from scientific simulations,

where the particles fill some space and have one or more attributes (temperature, atom type,

pressure, strain, etc.). Common approaches for rendering these data can be roughly split into

glyph, volumetric and implicit surface approaches.

Glyph techniques represent the point with some non-singular object such as a sphere, cube,

or arrow. Various techniques have been proposed for efficiently ray tracing millions of opaque

sphere glyphs [13, 28] on CPU. On GPU, MegaMol [29] combines rasterization, ray casting

of sphere glyphs and image space filtering to render millions of atoms. By applying LOD and

out-of-core techniques Fraedrich et al. implemented an extremely fast out-of-core LOD particle

renderer for real-time rendering of astro-physics data with billions of particles [30].

1.4. Data Parallel Rendering

Data parallel rendering in the context of rendering large volume datasets has been widely

studied, producing a body of work covering the data distribution, rendering and compositing to

form the final image. Early work by Hsu and Ma et al. [31, 32] partition the volume among the

processors for rendering then composite the resulting partial images with direct send or binary

swap to compute the complete frame. Recent work has focused on scaling up to large numbers

of nodes where compositing becomes the bottleneck [33, 34].

While particle rendering has been long explored on the CPU and GPU, to our knowledge

there has not been as much work in a distributed data setting. Recently and most similar to our

work, Rizzi et al. perform in situ distributed rendering of LAMMPS data using sphere glyphs

with the vl3 framework [11]. Our own work builds on the balanced P-k-d method of Wald et

al. [13], which has demonstrated interactive direct ray tracing of up to 30 billion particles on a

single workstation. Though the P-k-d was not originally deployed in a data-parallel setting, we

show how it can be extended to distributed data applications as well. In our renderer we build

on an existing data parallel renderer in the OSPRay ray tracing system (next section), subject

to modifications to make it suitable for handling particle data and indirect shading effects such

as ambient occlusion (see section 3.2.1).

1.5. OSPRay

OSPRay [12] is a ray tracing framework for visualization on CPUs, which provides existing

visualization tools an efficient ray tracing API for rendering. OSPRay allows for interactive

rendering on compute resources that do not have GPUs, and supports advanced shading effects,

large models, non-polygonal primitives, etc.

Stock OSPRay already supports efficient techniques for rendering large numbers of parti-

cles [13], and provides some infrastructure for MPI-parallel and data-parallel volume ray casting.

Though a complete description of OSPRay’s data-parallel renderer is beyond the scope of this

paper, in general its implementation distributes “bricks” of volume data as well as “tiles” of

the frame buffer among the render nodes. Each node then iterates over all the bricks of volume
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data it owns, and renders all the tiles required for this brick. Each such brick-specific tile is then

sent to the node that owns the corresponding region of the frame buffer, which composites it

with the other bricks’ tiles computed by other nodes. Conceptually this rendering technique is

similar to Hsu et al.’s Segmented Ray Casting [31]. As a sort-last compositing approach, this

technique is well suited to large data bricks because it communicates neither data nor rays, but

is inherently designed for simple shading of primary rays, not ray tracing.

2. In Situ Data Handling and Live Connection

libIS-sim

Simulation Rendering 
Client Distributed across

renderer ranks, 
with ghost zones

Distributed across
simulation ranks

libIS-render

Figure 2. Overview of the in situ library, libIS. In our system, data are forwarded via MPI

from the simulation to a distributed renderer. When the simulation and visualization are run

on different resources (left) all data queries go over the network. When running on the same

resource (right), data can be forwarded locally from one process to another on the same physical

machine via shared memory or transferred over the network

To access timesteps as they are produced by the simulation a visualization client queries

data through a library linked into the simulation code and client code, which communicate over

MPI. By extracting a lightweight, simple to use API from these libraries we make it easy to

integrate them into existing simulation and rendering codes.

The loose coupling of the simulation-side and render-side libraries to each other allows for a

variety of configurations of the simulation and in situ client processes. The client can be run on

the simulation nodes, a separate vis cluster or on a single workstation, as illustrated in Figure 2.

Since the rendering client and simulation can have different scaling qualities this flexibility allows

for each to be run in the most favorable configuration, and lets us adjust the simulation’s data

layout to be suitable for distributed rendering.

With a simple sockets handshake mechanism, end users can easily connect to and discon-

nect from the simulation at will, allowing them to easily connect and interactively explore the

simulation at any time. This approach may be preferable to tightly-coupled in situ methods that

require visualization parameters and output to be specified a priori before running a batch job.

Moreover, when no OSPRay clients are connected to the simulation, no data are communicated

over the networkl; employing the in situ library effectively incurs no cost when not in use.

2.1. Simulation-side Library

The simulation side library libIS-sim acts as a spatially queryable server of the most recent

timestep from the simulation, allowing clients to pull blocks of data as desired. The library

In Situ Exploration of Particle Simulations with CPU Ray Tracing
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exports two C–callable functions, making it available for integration into simulations written in

almost any language. The simulation first initializes the library by calling ospIsInit which will

perform some one time setup for MPI communication in the library and launch a background

polling thread to watch for new clients. The simulation can then call ospIsTimestep each

timestep, passing the list of particles for the current timestep when data is ready to be sent to

clients.

The first rank on the client side connects to the polling thread on the first rank of the

simulation over sockets and sends its MPI port name, which will be used to uniquely identify

the client. The simulation side library maintains a list of clients who have requested a timestep

during computation, and when a timestep is ready will connect to each client so it can request

parts of the data.

When the simulation is ready to send a timestep it traverses the list of clients and responds

to queries. Using the port name stored previously, the simulation and client either set up a new

MPI communicator or reuse a previously created one. The library then sends each client the

simulation world bounds so it can request regions of data in the simulation space. Each client

process sends back a list of boxes bounding the regions it wants particle data within. To satisfy

the query each simulation rank finds which particles it has in these boxes and sends them to the

client. In order to reduce the amount of data transferred the simulation only sends the particle

positions and the single particle attribute being displayed in the renderer.

2.2. Rendering-side Library

The rendering-side library libIS-render acts as a counterpart to the simulation library, al-

lowing render processes to request regions of the current timestep from the simulation. The

rendering side library provides a single function, ospIsPullRequest, which is called when the

client wants to request a new timestep from the simulation. As mentioned previously the client

will send its MPI port name and wait for a connection back from the simulation, either on a new

communicator or one created previously. This allows for easy disconnection from the simulation

by simply not requesting a new timestep, and easy reconnection since a client just needs to send

its new MPI port name over to request data.

After getting the world bounds from the simulation the client process computes a grid that

partitions the world among the ranks. Each rank finds the bounds of its boxes in the world and

requests them the simulation, getting back a list of particles to render. Each node may also

extend its bounds by some ghost region, resulting in overlap between ranks. The ghost region

size can be zero if no overlap is needed. However, in our renderer some duplication is required to

properly render particles at the boundary of two nodes and compute ambient occlusion. After

getting the list of particles from the simulation ospIsPullRequest returns the list of boxes and

the particles contained within to the caller.

3. Rendering

Using the library described above we implement an interactive in situ particle renderer as

an OSPRay module. The module makes use of the memory-efficient balanced P-k-d tree [13] to

render the particle and extends it to make this acceleration structure suitable for data parallel

rendering. OSPRay is primarily designed for static geometry that is updated externally through
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the OSPRay API and difficulties arise in this case where the geometry is internally responsible

for querying the next timestep and updating itself.

3.1. Rendering Client

The rendering client is designed for a distributed environment and is split into two parts: an

OSPRay geometry module responsible for querying and rendering data, and an OSPRay scene

graph module which instantiates this geometry in OSPRay’s interactive viewer.

The master process is an interactive viewer which displays frames from the render workers,

and allows the user to move the camera and edit transfer functions. We add a new node to

the scene graph used by this viewer which instantiates the geometry provided by our geometry

module. This node also launches a background thread to receive the updated world bounds from

the first worker process so we can synchronize when the workers switch to the new data.

The geometry module uses libIS-render to pull data from the simulation. When the geometry

is first added to the scene we perform a blocking query to get an initial timestep, then continue

to query asynchronously. After each node has built a P-k-d tree for the first timestep it spawns a

background thread to request data from the simulation at some user set frequency. This thread

pulls a new timestep and builds a P-k-d tree on the particles to prepare it to be swapped with the

current data. Once each worker’s data is ready the first rank informs the master process running

the viewer that the geometry in the world should be updated by sending it the new world bounds,

at which time the viewer re-commits the geometry, synchronizing when the workers swap to the

new data. This approach is similar to ping-pong buffer and texture strategies in GPU renderers,

which take care to avoid trampling data that is in flight in the rendering pipeline.

3.2. Rendering on a Shared-Memory Workstation

If a workstation with enough memory is available, a simple option is to run the renderer

on it and pull data from a simulation running on the same machine or a remote cluster. Since

OSPRay internally uses multiple threads for rendering, only two processes are required: one to

display the interactive viewer, and another to poll for updates from the simulation and render

the data. If the simulation is running on the same workstation as the renderer MPI will use

shared memory to transfer data between the processes, minimizing data transfer cost.

3.2.1. Data-Distributed Rendering

OSPRay includes functionality for writing a distributed renderer and includes a data dis-

tributed volume renderer (described in [12]) the design of our renderer is motivated by this

volume renderer and takes a similar form. While the P-k-d tree is well suited to rendering par-

ticles on a single node, it provides no functionality for data parallel rendering across multiple

processes. Since our particle data is volumetric in nature we can take a similar approach to

volume rendering and render ”bricks” of P-k-d trees. This fits well with libIS-render, which

returns a list of blocks that the node is responsible for rendering. We build a P-k-d on each

of these bricks and then proceed similarly to a distributed volume renderer. Each node renders

its bricks of particle data and then performs sort-last compositing using OSPRay’s distributed

framebuffer to compute the final image.

Since particles are represented with sphere glyphs it’s possible for a node’s glyphs to overlap

with another node’s domain resulting in non-disjoint regions of data, leading to incorrect com-
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Figure 3. Without clipping nodes render overlapping regions, resulting in compositing artifacts

(left). Always clipping rays against the node’s domain (middle) incorrectly clips spheres on

unshared boundaries. By extending unshared boundaries of the domain and clipping primary

rays to the partially extended bounds both compositing and clipping artifacts can be avoided

(right)

Figure 4. Depth perception of raycasting

(left) vs. ambient occlusion (right) on a 1M

atom nanosphere

Figure 5. Replicated nanosphere scaling

datasets used in LAMMPS with 1.05M (left)

to 227M (right) atoms

positing as seen in fig. 3. This is corrected by clipping primary rays against the node’s domain

to only find hits within the assigned domain. If a sphere straddles the split between two workers

each is responsible for rendering just the piece in their domain.

To aid depth perception of the simulation data we render the data with ambient occlusion,

which adds local shadowing effects. Ambient occlusion is especially useful in large or dense

particle datasets where it becomes challenging to determine the position of particles relative to

each other [35], also see fig. 4. In the case of distributed data some particles on a node may

need data from another node to properly determine this occlusion term. Since the shadowing

effect is local distant particles don’t shadow each other so we can solve this without introducing

much overhead by adding small ghost regions to each node, similar to Ancel et al.’s approach

for volume data [36].

Raycasting: In extremely memory constrained environments, where the small overhead

needed to compute ambient occlusion on the data is not available, we can fall back to raycasting.

With raycasting each worker only needs data for those particles whose glyph is at least partially

in their domain, requiring less data duplication.

4. Results

We evaluate our in situ data library and renderer on the Stampede and Maverick clusters at

TACC in several configurations, rendering data in situ from LAMMPS and Uintah simulations.

The LAMMPS simulations consist of a thermal annealing study of a carbon nanosphere [37],

synthetically replicated in a uniform grid to evaluate how our system scales with data size.

The Uintah [16] simulation is a Lagrangian fluid dynamics code studying combustion of coal

W. Usher, I. Wald, A. Knoll, M. Papka, V. Pascucci

2016, Vol. 3, No. 4 11



particles in a boiler system. Since our renderer can be run directly on the simulation nodes or

a separate visualization cluster compare rendering performance and time spent sending data in

these configurations.

4.1. Experimental Setup

The synthetic data are grids of nanospheres in LAMMPS; a single nanosphere is 1.05M

atoms to examine the scalability of our system we test grids up to 6 × 6 × 6 tiled nanospheres

for a total of 227M atoms (fig. 5). In Uintah we use a particle injection simulation which injects

approximately 57M particles per second and start from checkpoints in the simulation which

range from 27.70M particles at t = 0.12 to 55.39M at t = 0.24.

Maverick has 132 nodes with two Intel Xeon E5-2680 v2 Ivy Bridge processors per node

for a total of 20 cores, each node has 256GB of memory. On Maverick we use the Intel 15.0.3

compiler and Intel MPI 5.0.3.

Stampede has 6400 nodes with two Xeon E5-2680 Ivy Bridge processors per node for a

total of 16 cores, each node has 32GB of memory. On Stampede we use the Intel 15.0.2 compiler

and Intel MPI 5.0.2.

4.1.1. Separate Nodes

Running the renderer on a separate allocation of nodes allows for improved rendering and

simulation performance compared to sharing nodes, and is ideal for exploring the simulation

over a long period. In this configuration the simulation data must be sent over the network or

high-speed interconnect to the renderer but this remains much faster than writing to disk.

We measure time spent sending data from LAMMPS to the rendering client at various sizes

of the nanosphere grid data sets and compare this to time spent writing the same data to a

file using LAMMPS ”custom/mpiio” output mode in fig. 6 or sending it to our renderer in a

shared node configuration, fig. 7a. Our in situ library allows for rendering each timestep of the

data at a fraction of the cost of writing files at an equivalent frequency, especially as the data

size increases. For this comparison we changed the ”custom/mpiio” output mode to dump raw

binary data equivalent to what we send our in situ client, instead of the LAMMPS’s current

method of serializing the data to ASCII, which would give an unfair data and work comparison.

We also evaluate send vs. write performance in Uintah running the particle injection sim-

ulation on 64 ranks and sending data to 12 render nodes on Stampede, fig. 8a. Uintah writes

one binary file per process along with some XML metadata files describing the contents and

locations of these binary files. The time spent writing files or sending data is comparable at

lower particle counts, however as the data size grows the parallel file system becomes overloaded

and file IO performance decreases, while our performance remains relatively flat.

4.1.2. Shared Nodes

Running the renderer on the same nodes as the simulation does impact the performance of

both the simulation and the renderer, but only requires a single interactive node to display the

viewer (or none when rendering to a file). This provides a non-intrusive way of checking in on

a running simulation, particularly if the viewer will not be run for a long period of time, but

rather connected occasionally to check in on the simulation state.
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Figure 6. Sending data vs. writing files for a separate run with 80 LAMMPS ranks sending to

16 OSPRay ranks. We did not measure file writing beyond 67M particles as it becomes too time

consuming
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Figure 7. Performance of sending data and rendering for the replicated nanosphere data. De-

pending on the layout of ranks in a shared configuration it’s likely that MPI will use shared

memory to transfer data to our renderer, reducing send time compared to separate runs at the

same number of nodes, as seen here. Although rendering performance is impacted when sharing

nodes it remains interactive and scales reasonably well with data size
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To launch the renderer on the simulation nodes we request a single visualization node,

then use an MPI separate app/worker invocation to spawn OSPRay worker processes on the

simulation nodes and a single viewer process on the interactive node. In this configuration, there

is the possibility that shared memory will be used instead of network transfers to send data from

the simulation to the client, though this is not currently guaranteed by our library.

Ideally, clients should pull data from local simulation processes when the simulation and

renderer are run on the same nodes, however in practice this poses some challenges. When

coupling to arbitrary simulations there is no guarantee that the simulation’s data partitioning is

suitable for distributed rendering. Sort-last compositing requires that each rank renders a convex,

disjoint subregion of the data and there’s no guarantee that the simulation has partitioned

the particles in this manner. Further difficulty is introduced in handling m 6= n simulation to

renderer ranks, requiring a merging or scattering approach to distribute data evenly to the render

processes while preserving the disjoint and convex requirements. Depending on the configuration

of the simulation and renderer we may request data from local simulation ranks and in this case

MPI will use shared memory to transfer the data (see fig. 2(b)). Even in the worst case where

all requests go over the network this is still faster than writing to disk [9].

We measure scaling with data size in two configurations on Maverick. We run LAMMPS with

320 ranks (16 nodes) and the renderer on 8 or 16 of the same nodes and examine performance

as the data size increases. As expected, we find that the framerate of both shared configurations

is lower than the separate configuration (fig. 7b), but remains generally interactive.

More interesting is comparing the time spent sending data in the different configurations,

fig. 7a. While we don’t guarantee that our library will pull data from the simulation processes on

the same node we find that when sharing nodes we spend much less time sending data than with

equivalent process counts on separate nodes. This indicates that we do still gain from shared

memory transfers even though we have no strict enforcement they will be used. Since OSPRay

is run with one rank per node there are 20 LAMMPS ranks sharing the same node and it’s likely

that at least some of the data it will render is on one of these local ranks.

The separate run with 80 LAMMPS ranks performs better than the shared runs up to

131.38M particles where it falls only slightly behind the 320 LAMMPS to 8 OSPRay shared

configuration. In this separate run, there is less communication overall between the render pro-

cesses and LAMMPS as there are fewer LAMMPS processes to talk to. This reduces bandwidth

needs and communication overhead compared to even the shared runs which coordinate with

4× as many simulation processes.

5. Summary and Discussion

We have presented a system for interactive in situ visualization of large particle simulations,

suitable for general CPU-based HPC architectures. Our system is loosely coupled, allowing for

simple connection and disconnection to the rendering client, and is easy to integrate with simu-

lations. Running our system on the same nodes as the simulation offers some of the benefits of

tightly coupled systems, i.e. using shared memory instead of network for data transfer. Using the

P-k-d trees to represent particles in the we can classify and directly render the data efficiently

with low memory overhead. We also adapt local shading effects (specifically, ambient occlusion)

to be suitable for OSPRay’s compositor for distributed rendering of particle data. To demon-

strate the scalability and effectiveness of our system compared to traditional IO approaches we

study its performance on data sets up to 227M particles. Our system enables exploration at the
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Figure 8. Performance of streaming data to our in situ renderer for the Uintah particle injection

on Stampede with 64 simulation ranks streaming to 12 render nodes. In a) initially we’re only

marginally faster than writing to disk but as the data size grows the file system gets overloaded

and write performance drops, while our in situ data streaming remains relatively flat. Rendering

performance decreases a very small amount as we increase the data size

same spatio-temporal resolution as the simulation due to significantly reduced IO costs com-

pared to saving data to disk. The code for libIS and our rendering client in OSPRay is available

on Github: github.com/Twinklebear/in-situ-particles.

The HPC batch workflow itself remains the greatest barrier to adoption of interactive,

exploratory in situ visualization. For many scientific users, lack of familiarity with general-

purpose visualization software, paired with potentially high memory overhead and the need for

dedicated GPU HPC resources, make interactive in situ techniques too impractical for everyday

use. The practical effect of the high cost of IO has been far less data archived to disk. Our system

aims at making interactive in situ visualization practical, by providing a lightweight library and

rendering framework that let the user explore a simulation at runtime without interruption, on

either a compute or visualization resource. Though our system is not yet competitive at scale

with state-of-the-art IO forwarding frameworks like GLEAN [7] and ADIOS [8] or optimized

distributed-parallel compositors [33, 38], this work shows that CPU ray tracing can provide an

interactive in situ solution for a range of mid-size simulations.

5.1. Future work

An important limitation of our system compared to tightly coupled solutions is that we do

not guarantee that when sharing nodes with the simulation the library will pull data from these

local simulation ranks. This is challenging in the general case as we have no knowledge of how

the simulation data is distributed across the nodes but it is reasonable to assume some spatial

coherence. To this end, we would like to examine methods to preferentially pull data from local

simulation ranks while keeping the data layout on each render node suitable for data parallel

rendering.

We would also like to explore in situ rendering of mixed simulation data, simulations in

Uintah often contain both volume and particle data and supporting these mixed simulations

would make our situ library and renderer of use to a broader set of applications. Moreover, we

would like to incorporate techniques of scalable IO forwarding frameworks and compositing-
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based renderers [6, 33, 38] into OSPRay along with view dependent data querying to effectively

ray trace larger simulations at scale.
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In Situ Visualization and Production of Extract Databases
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Simulations running at high concurrency on HPC systems generate large volumes of data

that are impractical to write to disk due to time and storage constraints. Applications often adapt

by saving data infrequently, resulting in datasets with poor temporal resolution. This can make

datasets difficult to interpret during post hoc visualization and analysis, or worse, it can lead to lost

science. In Situ visualization and analysis can enable efficient production of small data products

such as rendered images or surface extracts that consist of polygonal geometry plus fields. These

data products are far smaller than their source data and can be processed much more economically

in a traditional post hoc workflow using far fewer computational resources. We used the SENSEI

and Libsim in situ infrastructures to implement rendering workflow and surface data extraction

workflows in the AVF-LESLIE combustion code. These workflows were then demonstrated at high

levels of concurrency and showed significant data reductions and limited impact on the simulation

runtime.

Keywords: In Situ, High Performance Computing, Visualization, Extract Database, SENSEI,

Libsim, Workflow.

Introduction

Today’s large scale simulations run on HPC systems and generate far more data than can be

practically saved or analyzed. HPC system design emphasises fast computations and I/O to and

from these systems is often a secondary concern, leading to an asymmetry in which computed

data often cannot be written to disk without resorting to strategies that sacrifice the temporal

resolution of the data (saving infrequently). Recent developments explore the use of node local

storage such as burst buffers that give applications a fast, convenient buffer to store results while

they are staged out to the main I/O system. However, such hardware is not yet commonplace

and other strategies such as in situ computations are emerging in production software as a

mechanism to manage the data problem by reducing data that must be stored. Without in situ,

the traditional post hoc workflow requires large simulation data to make costly trips to and

from the I/O system, slowing both the simulation and later the visualization and analysis codes

invoked to process the data. In Situ works by integrating analysis and visualization with the

simulation so these operations may take place while the data are still in main memory, and are

thus far less expensive to access. The data products produced in situ, whether they are statistics,

rendered images, or even surface geometry extracts, are often orders of magnitude smaller than

the memory-resident data and can be saved out far more economically.

In situ visualization is usually inexpensive enough to be applied frequently, actually improv-

ing access to spatio-temporal data that is often not saved or is undersampled due to time and

storage constraints. Sometimes in situ does have limitations if the data products saved during

the simulation run lack enough information for analysis. For instance, in situ is often ideal for

creating statistics and rendered images but those data products may be less useful for actual

exploration of data unless many images are saved. To permit better exploration of data after the

fact, in situ can be extremely useful in the generation of extract databases. An extract database

consists of extracted polygonal geometry plus scalar and vector field data. Extract databases

can drastically reduce the amount of data being saved while still providing enough information
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to perform useful post hoc visualization and data analysis. The use of extract databases enables

flexibility since most of the costly data reductions occur in situ and the reduced datasets can be

visualized on more modest compute resources. By storing the geometry and fields in an extract

database, it is still possible to create derived fields, render the geometry from various viewpoints,

perform surface integrations, and many other operations that would not be possible on strictly

image-based data products. The potential for massive data reduction, massive time eliminated

when extracting dataset features, and the ability to later visualize features of interest, as opposed

to static rendered images, are what make extract databases compelling.

In this study, we implement a workflow that uses in situ to perform both rendering and

extract database generation to highlight “interesting” features in a turbulence simulation and

save them out for later analysis in a visualization tool. The combination of in situ to avoid the

time and storage costs of massive I/O and the ability to perform further analysis or rendering

on the generated data produces a powerful, streamlined workflow.

1. Background

AVF-LESLIE [11, 12] is a reactive flow solver used for Direct Numerical Simulation or

Large Eddy Simulation (DNS/LES) investigation of canonical reactive flows. It solves the re-

active multi-species compressible Navier-Stokes equations using a finite volume discretization

upon a Cartesian grid. We used AVF-LESLIE to simulate an unsteady, turbulent mixing layer

(TML) between two fluids. The simulation demonstrates the evolution of turbulent, braided flow

structures (our features of interest) that form as the system breaks down into homogeneous tur-

bulence. AVF-LESLIE can output results to PLOT3D or HDF5/Xdmf format for later analysis

and visualization.

The quick evolution of turbulent structures requires access to many simulation time steps

to produce a faithful visualization. For the TML case, each time step produced many gigabytes

of data. This made it impractical to save enough time steps to produce a times series suitable

for purposes such as animation. The sheer size of the saved volume datasets would quickly

overwhelm available disk space and make post-processing the results require as much compute

resources as the original solver to fit the solution in memory and read it back from disk in a

reasonable time.

Previous integration of VisIt’s Libsim library [6, 13] into solvers such as CREATE-AVTM

Kestrel to enable in situ generation of surface extracts yielded good results [14]. When run on

1024 cores and saving isosurfaces of structured and unstructured grid data for helicopter geome-

tries, the coupled Kestrel/Libsim was able to frequently output extracts while using no more

then 2-3% of the solver runtime. As the simulation produced extracts, a separate visualization

job processed them into images, resulting in an efficient automated workflow.

The same in situ workflow would be applicable to combat the challenges of isolating features

of interest from AVF-LESLIE’s TML flow field. Polygonal surface geometry and the fields defined

on those surfaces of interest are extracted and exported to FieldView eXtract DataBase (XDB)

files for later post hoc analysis and rendering using Intelligent Light’s parallel FieldView [2]

software. XDB files are designed to save line and mesh geometries and the associated scalar and

vector fields defined on those geometries. XDB files preserve numerical precision of the stored

data making it possible to perform accurate analysis such as surface integration using the extract

data in lieue of the original volume data. The resulting workflow decouples feature extraction
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from rendering. This enables scheduling flexibility and it lets each phase of the workflow use

different amounts of compute resources.

The separation of feature extraction and actual visualization into distinct phases that run

asynchronously is a feature that is shared by certain in transit infrastructures. In Transit in-

frastructures such as ADIOS [8] provide an I/O interface to the simulation, which then “writes”

its data to other compute resources and then continues. This has the advantage of not stalling

the simulation while extracting data or rendering. However, this approach requires additional

compute resources to receive the simulation data and further process it, which might be a down-

side when operating at the limits of the compute resource. A more problematic downside of I/O

based systems is that they can be too low-level. I/O interfaces such as ADIOS provide functions

for writing arrays. Complicated data structures such as meshes often consist of multiple arrays

to represent coordinates and connectivity. Such data structures are encoded into multiple data

arrays using various conversions. By necessity, analysis routines that run on the other side of

the in transit pipeline must support conventions to reassemble array data back into useful mesh

structures. Paraview Catalyst [1, 5] is a powerful in situ infrastructure that also supports in

transit. Data are exposed to Catalyst as VTK [10] datasets via user-provided adaptor code that

is developed for each simulation. The adaptor code defines how simulation data are translated

into VTK datasets and permits simulation data arrays to be wrapped as VTK data arrays,

allowing zero-copy data passing. Once the data are represented as VTK datasets, they can be

operated on by user-defined rendering and data analysis pipelines or they may be shipped to

other compute resources for in transit visualization and data analysis. Though it does not have

its own in transit mode, VisIt’s Libsim otherwise provides similar functionality to Catalyst and

provides rendering, data analysis, and extract functionality. VisIt’s large set of plots and oper-

ators enable the creation of complicated visualization pipelines that can be used for rendering

and data extraction. In addition, VisIt provides an export plug-in to the FieldView XDB file

format, which enables analysis and rendering of extract data using FieldView.

These infrastructures can all form the building blocks of higher-level infrastructures. For ex-

ample, Cinema [3] assembles images that are produced in situ into databases that can be interac-

tively explored in a lightweight viewer. The images are produced by a simulation instrumented

with Catalyst, or another suitable in situ infrastructure. SENSEI [4] is another higher-level

infrastructure. SENSEI provides a unified interface to multiple in situ infrastructures, includ-

ing ADIOS, Catalyst, and Libsim. SENSEI simplifies the process of in situ instrumentation by

providing data abstractions that enable creation of a write-once simulation adaptor to expose

simulation data structures to SENSEI using the VTK data model. Once inside SENSEI, the

VTK data can be passed to any of the coupled in situ infrastructures, even combining multiple

infrastructures in a single analysis. For the purposes of this analysis, we coupled AVF-LESLIE

through SENSEI to enable future flexibility in connecting to infrastructures such as Catalyst or

ADIOS. Once instrumented using SENSEI, we selected the Libsim analysis back end to permit

the creation of FieldView XDB files. XDB files were read and processed as they were created by

separate FieldView jobs running on a workstation.

2. Instrumentation

Producing a working instrumented version of AVF-LESLIE capable of running on a large

scale HPC system required changes to several software packages.
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2.1. VisIt / Libsim

VisIt is a visualization and analysis software package that was started at Lawrence Livermore

National Laboratory in the year 2000. From the start VisIt was designed to work efficiently on

large distributed-memory HPC systems. As such, VisIt’s compute server runs in parallel using

MPI message passing to coordinate multiple processes that each operate on a subset of the

overall dataset. VisIt’s compute server is architected such that it can be loaded dynamically

from simulations via the Libsim library, a VisIt library that is added to simulations to enable

them to perform VisIt-enabled in situ rendering and analysis. VisIt is normally built using

shared libraries which are dynamically loaded when Libsim detects that in situ operations are

requested. This approach works well up to a few thousand cores after which the file system may

introduce delays while loading VisIt’s shared libraries and plugins.

The ultimate target concurrency for this study would be in the range of tens of thousands

to hundreds of thousands of cores so long delays incurred loading shared libraries would not

be acceptable. To avoid such delays, we modified to VisIt’s CMake-based static build process

to create a statically-built version of Libsim. The static Libsim includes all VisIt libraries and

plugins in a single library that simplifies addition of VisIt functionality into simulations such as

AVF-LESLIE.

2.2. XDB Library

VisIt’s FieldView XDB export capability uses an export plugin that passes VisIt’s inter-

nal VTK datasets to the XDB library for writing FieldView XDB files for later consumption

by FieldView. The XDB library enables the client program to create extract entities such as

streamline rakes or polygonal surfaces, record relevant metadata, and define scalar and vector

fields on those geometries. The format preserves the precision of the data when saved so it can be

used for analyses that would have been appropriate for the original volume data. The metadata

saved by the XDB format provides clues to Fieldview about how the surfaces were generated

during the data extraction process. For instance, an isosurface extract will record the variable

and isocontour value used to generate the surface.

Prior enhancements to the XDB export plugin in VisIt enabled support for write groups

(described in [7]), which let VisIt perform partial data aggregation during production of XDB

files. However, improved support for parallel writes was desired and the XDB library was not

designed for parallel. Consequently, we undertook a redesign of the library that would decouple

the data model that describes the XDB surface extracts from the methods used to write and

read the data. This effort yielded a second version of the XDB library, which could read/write

the XDB format while providing a future path to using parallel data transports such as ADIOS.

The resulting XDB library also can represent its data objects using zero-copy constructs that

support various memory layouts, a feature necessary to reduce overhead when running in situ.

The VisIt XDB export plugin was enhanced to use the new version of the XDB library and this

was the version used during instrumentation of AVF-LESLIE.

2.3. Integration with AVF-LESLIE

SENSEI enables simulations to integrate with multiple in situ infrastructures while creating

just one code adaptor. An adaptor exposes simulation data structures so their data may be

used by the in situ infrastructure. We modified previous adaptor code that had been created to
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integrate directly with Libsim so AVF-LESLIE could also integrate SENSEI, opening the door

to future workflows where ADIOS is used for in transit data staging to a separate “endpoint”

analysis program running on an alternate set of compute nodes. At this time, we have not yet

attempted using that feature but have verified that our XDB workflow continues to operate

using the SENSEI infrastructure.

The SENSEI adaptor follows a pattern that requires just a few insertions of extra adaptor

functions into AVF-LESLIE’s main routine: an initialize function, a coprocess function, and a

finalize function. The initialize function is used to set up SENSEI, which in turn performs the

relevant initialization for its subservient in situ analysis infrastructures. The coprocess function

passes pointers to AVF-LESLIE arrays to some book-keeping code that associates the buffer

addresses and sizes with variable names. The coprocess function’s role is to package the simu-

lation’s buffers (zero-copy when possible) as a VTK curvilinear grid dataset with various fields

defined on its nodes. For the purposes of this study, the adaptor also calculates the vorticity

field, which is not computed in the solver, yet is needed to identify vortex features of interest for

in situ rendering and data extraction. After packaging the simulation data as a VTK dataset,

the VTK dataset is passed through SENSEI to a secondary analysis adaptor that shares the

dataset with an analysis infrastructure, in this case Libsim. The analysis adaptor created for

Libsim accepts the VTK dataset from the SENSEI analysis adaptor and exposes that data to

VisIt via Libsim function calls and adaptor callback functions. In addition, the adaptor creates

a set of VisIt plots based upon commands from an extract input file and uses those plots to

export the desired extract surfaces into XDB files. Plots can also be restored from a VisIt session

file which is an XML file that is useful for creating visualizations that can be rendered since

plot attributes and colors are preserved. The finalize function is called when AVF-LESLIE has

completed its main loop and needs to clean up prior to exiting. The overall schematic for the

instrumented simulation is shown in fig. 1.

3. Performance

In this study, AVF-LESLIE was configured to simulate unsteady dynamics of a temporally

evolving planar mixing layer at the interface between two fluids, a configuration that gives

rise to a temporal mixing layer (TML). This type of fundamental flow mimics the dynamics

encountered when two fluid layers slide past one another and is found in atmospheric and ocean

fluid dynamics as well as combustion and chemical processing. The two sliding fluid layers are

subject to inviscid instabilities and can evolve from largely 2D laminar flow into fully developed,

3D homogeneous turbulent flow as shown in [9]. Visualizations of the TML flowfield in fig. 2

show isosurfaces of the vorticity field, at 10,000, 50,000, 100,000, and 200,000 time steps where

the flow evolves from the initial flow field, vortex braids begin to form, wrap and then the flow

breaks down leading to homogeneous turbulence, respectively.

We conducted scaling studies using AVF-LESLIE on Titan at Oak Ridge Leadership Class

Compute Facility. Titan is a Cray XK7 with 18,688 compute nodes, each containing a 16-core

AMD Opteron CPU, 32GB of memory, and an Nvidia Tesla K20X GPU. The scaling studies

used a Cartesian grid size of 10253 and physical non-dimensional domain size of 4π x 4π x 2π.

The size of the 10253 grid was held constant during scaling, resulting in a strong scaling study

that reduces the average simulation workload per core as the number of cores increases. Two

types of in situ computations were performed: a rendering workflow, and an extract-based XDB

workflow.
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Figure 1. AVF-LESLIE simulation instrumented with SENSEI, VisIt/Libsim, and XDB library

3.1. Rendering Workflow

The rendering workflow was scaled up to 131,072 cores on Titan using all 16 cores in a

compute node. The workflow demonstrated that the instrumented simulation can create and

render a visualization based on the data directly from the solver memory as in [4]. In this

case, the simulation was initialized using a VisIt session file, which directed Libsim to create 3

isosurfaces of the derived vorticity field and 3 planar slices. The visualization was rendered into a

1600x1600 pixel image image and saved to PNG format. Each measurement in the scaling study

was performed using 100 time steps of AVF-LESLIE where in situ rendering was performed

every 5th solver time step. Timing measurements were obtained from log files produced by the

instrumented solver, which called the MPI Wtime() library function around blocks of code being

timed.

The timings measured time spent in the solver time step and overall time performing in

situ rendering, which includes data extraction, rendering, image compositing, and image saving.

The time spent in the solver decreased as the number of cores was increased due to the strong

scaling induced by holding the grid size constant. It is worth noting that the complexity of the

visualization resulted in long rendering times. The total time spent rendering is amortized over

5 solver time steps, resulting in an image saving cost on the order of 1-2 seconds when compared

against the average solver time step. Also, the time spent on in situ increased with scale, largely

due to image compositing.

Image compositing is an operation whereby full scale images from each MPI rank are com-

bined in a tree-based reduction among all MPI ranks ultimately resulting in one MPI rank

having a single image containing contributions from all of the input images on other MPI ranks.
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Figure 2. The Evolution of Temporal Mixing Layer from Initial to Vortex Breakdown
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Figure 3. Strong Scaling Performance of AVF-LESLIE and In Situ Rendering Workflow for

IsoSurface and Coordinate Cuts Rendered to 1600x1600 Pixel Image

Image compositing represents a different type of workload from the solver computation. As the

number of processors increases, the number of images to be composited increases, as does the

depth of the communication tree of processors which must communicate their images and depth

buffers. Thus, image compositing can grow more expensive with larger numbers of processors

as shown in fig. 3. In this study, VisIt relied on custom image compositing code which overlaps

image communication with the actual pixel compositing operations. Unfortunately, the custom

image compositing code appears to degrade in performance after 16K cores. In future work,

Ice-T, a powerful image compositing library that is known to scale well and provides many com-

munication optimizations could be used to further reduce the overhead associated with image

compositing.

3.2. XDB Workflow

The XDB workflow was scaled up to 32,768 cores on Titan using all 16 cores of the allocated

compute nodes. As with the rendering workflow the scaling numbers were obtained by running

AVF-LESLIE for 100 time steps, with in situ operations every 5 solver time steps, and analysing

its output logs. At each in situ time step, the AVF-LESLIE adaptor made Libsim function calls

to create isosurfaces of vorticity and save them to a FieldView XDB file. The surface was specified

using an input file to the adaptor which was interpreted and translated into Libsim function calls

for creating a VisIt plot to generate an isosurface. Export to XDB was performed by partitioning

the total MPI ranks with geometry into smaller write groups of 96 MPI ranks. Each write group

aggregated isosurface geometry locally within the group to a single MPI rank responsible for

writing a XDB file. When all groups completed writing their XDB file, the lead MPI rank wrote

a FieldView layout file, which contains a list of XDB files to later read in parallel to recreate

the entire surface extract geometry.

Over the course of the 100 time step runs, the time spent by AVF-LESLIE can be divided

into three main categories: solver time steps, I/O, and in situ. The solver time steps represented

the time that AVF-LESLIE spent solving and updating its physics variables. The AVF-LESLIE

runs were configured to output an initial plot file in PLOT3D format, followed by additional
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plot files every 100 time steps. Over the course of the short run, 2 sets of plot files were created

where the size of each plot file was roughly 51842 MB as shown in tab. 1. Over the same run, the

in situ routines created an isosurface of vorticity and wrote XDB files with the extract geometry

every 5 time steps. The size of the average set of XDB files for a single in situ time step was

between 260 MB and 266 MB, depending on the number of cores. When comparing the size of a

single plot file containing volume data and a set of XDB files representing an isosurface extract,

the extracts are around 200 times smaller. Given that the in situ extracts were written 20 times

more frequently than the plot files, adding up the total size of the XDB extracts is still 10 times

smaller than a single plot file.

Table 1. File Size Comparison

Cores 1 Volume File

(MB)

1 Extract

(MB)

1 Extract/

1 Volume

20 Extracts/

1 Volume

8192 51842 260 0.005 0.100

16382 51842 262 0.005 0.101

32768 51842 266 0.005 0.102

˜200x reduction ˜10x reduction

The relative timings of solver time steps, I/O, and in situ are shown in fig. 4. The over-

whelming majority of time is spent in the 2 calls to the I/O routines that write the full size

PLOT3D files. That is followed by the time spent computing 100 solver time steps, followed at

last by the in situ operations which were the least expensive in terms of time. When consider-

ing the actual overhead percentage added to the runtime of the simulation, for each 100 time

steps, in situ added between 1.6% and 2.4% to the simulation runtime. If one was to consider

an AVF-LESLIE run that performed absolutely no PLOT3D I/O then the overhead of in situ

increases to between 21% and 28% for writing isosurface extracts every 5 solver time steps. As

with any configurable operation, the overhead of in situ with respect to the overall runtime will

depend on its frequency of use. In this case, for 1/30th to 1/50th the cost of full I/O, 10 times

better temporal sampling was achieved and much less disk space was consumed by using in situ

extracts. The time spent further post-processing the XDB extract files in FieldView on a 12-core

MacOS X workstation with 64GB of memory was on the order of a few seconds per time step

to produce rendered images.

Conclusions

AVF-LESLIE was successfully instrumented for in situ using a combination of SENSEI,

Libsim+VisIt, and the XDB library. The instrumented version of AVF-LESLIE can produce

extract databases in the form of FieldView XDB files, which has proven to be a useful feature

that greatly reduces the data that would otherwise need to be saved. The savings were mea-

sured in both time and storage costs. Extract databases took 2-3% of the solver runtime when

also performing limited volume I/O and would further reduce the time spent during post hoc

analysis. The entire size of the extract database was 10 times smaller than PLOT3D volume

data while saving extracts 20 times more frequently. The surfaces in the extract database were

able to be visualized on a workstation instead of requiring a visualization cluster coupled to the
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Figure 4. AVF-LESLIE Timings with In Situ Data Extraction

supercomputer. In Situ technologies are maturing to the point that they can begin to accelerate

science and make the best use of HPC systems in spite of whatever I/O limitations might exist.
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3. James Ahrens, Sébastien Jourdain, Patrick O’Leary, John Patchett, David H. Rogers, and

Mark Petersen. An image-based approach to extreme scale in situ visualization and analysis.

In Proceedings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis, SC ’14, pages 424–434, Piscataway, NJ, USA, 2014. IEEE Press.

4. Utkarsh Ayachit, Andrew Bauer, Earl P. N. Duque, Greg Eisenhauer, Nicola Ferrier, Jun-

min Gu, Kenneth Jansen, Burlen Loring, Zarija Lukić, Suresh Menon, Dmitriy Morozov,
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The computation power of supercomputers grows faster than the bandwidth of their storage

and network. In particular, applications using hardware accelerators like Nvidia GPUs cannot save

enough data to be analyzed in a later step. There is a high risk of losing important scientific infor-

mation. We introduce the in situ template library ISAAC which enables arbitrary applications like

scientific simulations to live visualize their data without the need of deep copy operations or data

transformation using the very same compute node and hardware accelerator the data is already

residing on. Arbitrary meta data can be added to the renderings and user defined steering com-

mands can be asynchronously sent back to the running application. Using an aggregating server,

ISAAC streams the interactive visualization video and enables user to access their applications

from everywhere. Keywords: HPC, in situ, visualization, live rendering, petascale, particle-in-cell,

C++11, CUDA, Alpaka, FOSS.

Introduction

Supercomputers are getting faster every year. 2016 the National Supercomputing Center in

Wuxi released its Sunway TaihuLight with over 93 PFLOP/s peak performance in the LINPACK

Benchmark [23]. The system provides over 1.3 petabytes main memory enabling scientists having

a glimpse at the upcoming exascale area.

Unfortunately neither the mass memory, nor the network interconnect, not even the system’s

internal interconnect (e.g. PCIe) are fast enough to be able to transfer or save all data created

in high performance computing (HPC) applications, e.g. scientific simulations, running on such

systems without unacceptable latencies. Consequently only a small subset of the processed data

can be analyzed afterwards with the classical post processing approach which means loosing

maybe important scientific data.

One solution is to analyze the data on the same system they are produced on while they are

produced, called in situ processing. The benefits are the reduction of the system’s bandwidth

bottlenecks, especially the network disk bandwidth, and the instantaneous feedback from the

HPC application. It becomes apparent that analyzing the data of the application without going

in situ will become impossible in the age of exascale computing [19]. However, in situ processing

creates new challenges: A connection between the application and the in situ process must be

enabled, maybe even the application may need to be changed. Furthermore, using live in situ

analysis, the user cannot just queue an application and forget about it until it is done, analyzing

it sometime afterwards. The scientist must be connected to the application while it’s running

to steer the analysis process. Data not been analyzed at this point are gone. Last but not least

HPC clusters are not suited for a direct connection of users observing and steering from the

outside. You cannot decide or know beforehand, which compute nodes your job will be executed

on. Additionally, most of the time computation nodes are not accessed from outside the cluster.

For most systems, a direct connection is not possible at all.
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In this paper we present ISAAC, an open-source, in situ visualizing and steering library

which addresses the stated isssues. Not only does ISAAC enable arbitrary applications to create

volume renderings of their scientific data, it also establishes an easy to use way of passing and

receiving messages from and to the application. Using C++ metaprogramming techniques no

deep copy of already existing data is needed. The visualizing algorithm can work on the original

data of the application itself, but is still independent of domain-specific layouts, alignments or

shifts of the underlying data.

Right now six different architectures are present in the world wide top 10 supercomputers,

including the well-known X86, Sparc, or PowerPC CPU architectures and hardware accelerators

like Nvidia Tesla and Intel Xeon Phi. The previously mentioned TaihuLight introduces a new

architecture SW26010. To be able to interact with all these different architectures without loos-

ing performance portability, ISAAC uses Alpaka, an open-source library for the zero overhead

abstraction of highly parallel CPUs and hardware accelerators [36]. Alpaka abstracts from differ-

ent parallel programming models like CUDA, OpenMP and std::thread to a single programming

model, similar in structure to CUDA, enabling host CPUs to be abstracted as hardware accel-

erators. In the future support for OpenACC, Intel Thread Building Blocks or AMD HIP is also

envisaged. With this approach, ISAAC can concentrate on a single programming model while

still being able to run on every hardware of the top 10 systems. In this paper we will concentrate

on one of these systems, Piz Daint, to test the performance of ISAAC in a real-world situation.

For this we have used ISAAC to visualize the open-source plasma simulation PIConGPU

running on GPUs [5, 6]. For the evaluation 4096 Nvidia Kepler GPUs of the Piz Daint cluster

are used. We show that ISAAC is capable of visualizing a highly parallel petascale application

and scales for the upcoming exascale era.

1. Related Work

In situ processing, especially visualizing, is a well-investigated topic, not only presenting

some theoretical thoughts, but also with a lot of ready to use libraries and tool sets.

Besides visualizing the application data, other data compressions are possible. Lakshmi-

narasimhan et al. showed that a lossy compression of 85% of scientific data is possible with a

guaranteed correlation of > 0.99 with the original data [14]. The libraries zfp and zplib have

similar approaches for lossy and lossless compressing of floating point arrays and 2D and 3D

fields to decrease the amount of data to save or transfer [15, 16]. Another method is to filter

the data before saving or transferring it for classical post processing using only a representative

sample of the whole dataset [31].

The literature furthermore distinguishes the distance of computation and visualization [2].

Tightly coupled in situ processing uses the very same hardware, whereby loosely-coupled pro-

cessing uses dedicated but with a fast interconnect connected visualizing nodes. To differentiate

these two, the last is also called in-transit processing [2]. The tight coupled approach has the

benefit of reusing the simulation data without the need of copying [10, 29, 33]. Internal applica-

tion data and functions can be used for a faster visualization as shown from Yu et al. [32]. Apart

from that, application and visualization then compete for the same resources. Load balancing

may be needed for the most efficient usage of the hardware [11]. Hybrid systems first filter and

compress data before the loosely-coupled visualization [26].

Hardware accelerators in particular often only have limited memory compared to the host

system which is already fully used by the HPC application. The analysis of application data
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often requires creation of consecutive transformations of the raw data, often stored in a new

temporary buffer. Beside stealing memory from the HPC application, this approach also does

not allow CPUs to cache data before the next analysis step. Most of the cycles are used writing

or reading data to and from memory. Moreland et al. describe a much faster approach defining a

chain of so called worklets describing the transformations which are executed at every timestamp

from the raw data to the final transformation without storing it in temporary buffers [24].

An intrinsic challenge of in situ is that users must to be connected to the HPC application

to be able to steer it. Kageyama et al. use a different approach called Light-Field-Rendering,

in which the application is visualized from dozens or even thousands of different directions and

the videos saved automatically. Using modern compression algorithms like H264 the produced

videos are much smaller than the raw application data and much easier to be saved to hard disk.

Later the user can analyze the visualization choosing and interpolating the correct video based

on the viewing angle [13].

Ahrens et al. implemented a similar solution called ParaView Cinema. Based on options

set right before the run, like camera position and angles, iso surface thresholds, cutting planes,

and similar visualization parameters, a database with millions of images is created live in situ.

Although this database is multiple terabytes in size, it is still smaller than saving the raw

scientific data directly. The post processing application can then query for specific images similar

to the approach of Kageyama et al., but as no videos but an image database is created, the iso

surface images can consist, for example, of normals and the hit values instead of colors, enabling

the user to adjust coloring and lighting interactively [1].

ParaView [7] and VisIt [8] are two of the most used tools for scientific visualization. As they

are open-source, other groups were able to extend them to enable in situ rendering [26]. The

library Libsim implements the tightly coupled approach for VisIt [30], whereas two in-transit

approaches exist for ParaView. As most scientific applications are able to write to the de facto

standard for scientific data, HDF5, the library ICARUS implements an HDF5 driver which

sends the data to a ParaView visualization server instead of being written to a hard disk [3].

The built-in library ParaView Coprocessing of ParaView uses a similar approach, but defines a

C-like interface like Libsim which needs to be used from the HPC application [9].

Besides these general solutions, some attempts have been made to add in situ visualization

to already existing application codes directly [17, 25]. The benefit is in the possibility to directly

reuse the existing data structures. In particular applications running on hardware accelerators

don’t need to deep copy the data to the host interface of the generic in situ libraries [28].

Although being very fast these solution have the disadvantage of being very hard to port to

another application. In fact one would just rewrite the visualization code.

2. System design

The goal of ISAAC is to combine the benefits of a generic library solution with the speed

of custom-built in situ visualizations. For this ISAAC is implemented as a header only library

meaning that the included C++-header does not only contain the interface but the whole library

code and thus does not need to be linked against in the end. With this approach we can use the

same types defined and used by the HPC application and the underlying hardware whereby no

data conversion is needed at all.

In its current version ISAAC provides the following visualization features

• volume rendering,
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• iso surface rendering,

• clipping planes,

• freely definable transfer functions,

• data interpolation,

• zero data copy capability with the ability to directly operate on the simulation data,

• freely configurable data transformation using functors and

• a server-client architecture allowing for simulation steering and remote visualization.

2.1. Design concept

The idea behind ISAAC is to work on the simulation data in-memory. This means that the

simulation data structure is transformed to be suitable for visualization without the need for

copying the data. This is important to reach optimum performance for current multi- and many-

core compute hardware. On such systems, the fastest memory with the highest bandwidth and

the lowest latency is usually small compared to the overall memory available in a node. Deep

copies between levels in the memory hierarchy, for example from the accelerator memory to the

main memory of a node, usually come with a degradation in performance.

With its zero copy philosophy, ISAAC operates directly on the simulation data at the highest

bandwidth and lowest latency available while keeping memory consumption at a minimum.

It makes extensive use of C++ template metaprogramming techniques in order to transform

data by reindexing during compile time and abstracting parallel computations using the library

Alpaka.

With this, ISAAC can define its rendering algorithm completely independent from the ap-

plication. Instead of defining a C library interface like Libsim or ParaView Coprocessing, ISAAC

defines a type independent interface which the application needs to feed with accessors to the

real data which handle the alignment and pitch, but also can perform a reordering of the domain

dimensions. The accessor itself can be removed at compile time (zero overhead abstraction).

Instead of deciding on which data transformations to apply at runtime using a large loop

which includes all data sources and visualization features and selecting them based on user input,

ISAAC unrolls this loop, compiling all possible combinations of features during the generation

of the final executable. This is important to enable hardware-dependent optimization at compile

time and for keeping branch divergence in the code to a minimum. Using the functor chain

concept introduced later, this enables the user to choose arbitrary visualization features at

runtime while providing for optimum code performance.

To be able to interact with arbitrary application code, ISAAC abstracts the HPC application

describing a cuboid-shaped 3D volume, in which each compute node has its own disjoint, also

cuboid-shaped local part of the global volume. Applications often use copies of other local

volumes of other nodes called ghost regions or guards. These regions are exploited from ISAAC

for interpolation over node borders, but are not part of the disjoint volume and thus not directly

accessed in the ray casting. The data calculated in the application are abstracted as sources. A

source assigns a scalar value or a vector for every regularly spaced position in the global volume,

defining a field this way. Thereby every compute node only needs to know the assignment for

its local sub volume.

On the local volume ISAAC performs a ray casting over all sources on every node. The local

images of all nodes are then composited. Afterwards the application gets back the focus and

ISAAC returns for all except for the first node on which the image is compressed and sent to a
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Figure 1. The full ISAAC concept. First a local ray casting is done. The resulting images

are composited using the interconnect. The whole image is only on the first node in the end.

Afterwards the application gets back the focus on every node, but on the first node the image

is also compressed and sent to the ISAAC server in parallel

central streaming server in the background as seen in figure 1. The details will be described in

the following sub sections.

2.2. Class–based interface

Listing 1 shows a local description of a source. An application defines such a class for every

source. It consists of three static, constant attributes and three member functions. The attribute

f dim defines the dimension of the vector field called feature dimension. ISAAC supports vectors

with up to 4 dimensions. A vector field with more than four dimensions could be implemented

as two or more sources with smaller dimensions sorted in semantic groups. The data accessor

operator[] is used to assign a value for an integer index position nIndex in the local volume

of the compute node. In this example the accessor does not have to read from memory at all.

Even an analytic description of a source is possible. This example source, for example, defines a

homogeneous scalar field which is 42 everywhere.

ISAAC works on a 3D location domain, but it is still possible to define sources for 2D

applications by simply ignoring the z component of the position. If possible application wise,

past timesteps could be mapped to the z component using time as the third dimension.

Although the ray casting algorithm does only work on the local volume it might be handy to

access the most outer region of a neighbor volume residing on another device or compute node

for interpolation between the integer positions. ISAAC itself does not communicate these guards

or ghost regions between the nodes, but can use it if the underlying application transparently

provides those. The flag has guard deactivates a border check if interpolation is activated to

tell ISAAC that such a region exists outside the local volume.

Right before ISAAC starts the ray casting for each source the feedback function update is

called which can also be used to forward frame–dependent information (like the time step) to

the sources. This function shall be used to prepare the accessors to deliver the correct fields
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1 struct TSource

2 {

3 // Feature dimension of the source. 1 => scalar field

4 static const size_t f_dim = 1;

5 //Option , whether the algorithm may read data outside the devices local volume

6 static const bool has_guard = true;

7 //Non persistent data need to be copied before rendering

8 static const bool persistent = true;

9

10 //Name of the source

11 static std:: string getName ()

12 {

13 return std:: string("Test Source");

14 }

15

16 // Function to be called for every source right before the rendering starts

17 void update(bool enabled , void* pointer) {}

18

19 // Accessor for the field data of the source

20 float_vec <f_dim > operator [] (const int_vec <3>& nIndex) const

21 {

22 float_vec <f_dim > result = { 42 };

23 return result;

24 }

25 };

Listing 1. Definition of a source in ISAAC

when the rendering begins. ISAAC is primary meant to visualize already existing fields which

are called persistent. But an application can also create secondary fields just for the visualization

at this point. As some applications have only one temporary buffer for such fields, but can have

more than one source using it, it is also possible to tell ISAAC to make a copy of this field using

the data accessor by setting the flag persistent to false, so that the update functions of the

following sources are safely able to reuse the temporary buffer.

For every scan point of the ray casting, the volume rendering algorithm iterates over all

sources, checks for the has guard and persistent flags, uses the []operator (subscript opera-

tor) to get a date from the source, applies a functor chain (see next sub section), classifies it by

color and opacity, and finally uses these data to calculate a global color and opacity for the scan

point to be used in the classical front to back ray cast algorithm. Figure 2 shows all renderings

loops and the metaprogramming optimizations as a flow chart.

Iterating over all sources for every scan point for every pixel of the resulting image and

checking for flags in every round would add an enormous looping and comparison overhead. To

avoid this, all sources need to be defined at compile time and the iteration is done via C++

metaprogramming. The whole loop over all sources is evaluated and unrolled at compile time and

does not produce overhead at runtime. Furthermore, the static const flags can be evaluated at

compile time and the compiler can optimize the data access having detailed informations about

the data accessors and their arithmetical connection. Also if different sources use the same or

very close data in the background, the compiler can optimize the data access such that it is read

only once although it may be abstracted differently sourcewise.
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Figure 2. Simplified flow chart of the ray casting of ISAAC. The inner loop over all sources is

evaluated at compile time

However, looping over all sources at compile time has the big disadvantage that every source

is touched, even if it may not be of current interest at all. Even a classification assigning the

opacity zero to every position in the local domain would still read the source data despite it being

discarded in the end. To avoid this, 2n different render functions are created at compile time for

every combination of activated sources, where n is the total number of sources. Although the

rendering functions are generated at compile time, ISAAC chooses the right function at runtime

based on interactive user settings. Deactivated sources are not touched at all, but we still have

the benefit of looping over all activated sources at compile time.

Although this approach is quite fast, the number of rendering functions needed grows ex-

ponentially especially for big n. However, in the field n should not be bigger than 10 for most

applications resulting in a manageable amount of 1024 rendering functions. If an application

defines more sources, at this time it is only possible to preselect the most interesting ones at

compile time.

In the future ISAAC could be improved in such a way that n sources may be defined,

but only m activated at the same time which can be calculated with the binomial coefficient(
n
m

)
= n!

m!·(n−m)! instead of with 2n. For n = 20 and only three sources of interest at the same

time (m = 3) this would resolve to
(
20
3

)
= 1140 instead of 220 = 1048576 render functions.

To use ISAAC, an application has to define the mentioned classes for every source, enqueue

them in a C++ metaprogramming sequence and pass this list with some additional options as

template parameters to the main ISAAC visualization class providing an optimized solution for

the specific application without ISAAC needing to know anything about the application at all.

An instance of this class can then be used for creating visualizations of the HPC application.

Every time a frame shall be sent to the user, only the render method of the object needs to be

called. ISAAC gets the focus from the application, creates the rendering and returns afterwards.

In situ, steerable, hardware-independent and data-structure agnostic visualization with...

36 Supercomputing Frontiers and Innovations



With this approach the developer has total control over ISAAC and no unpredictable behavior

is happening in the background to interfere with the application, see also figure 1.

2.3. Functor chains

ISAAC works on the original application data to avoid any deep copy in the main memory.

However, not all application data is suited for a direct visualization. The transfer function from

volume date to color and opacity needs a value range to work on. Of course this range could be

set as static const option like for guard and persistence, but sometimes even the application

users cannot estimate what the maximum range may be, as it can depend on run time parameters

or non-linear processes.

Furthermore, the classification works on scalar values, but often applications have vector

fields, too, and it is not obvious before running the application and actually seeing the data

which dimension or transformation from a vector value to a scalar value fits best.

As solution to this problem, ISAAC uses an approach similar to the worklets of Moreland

et al. [24]. We define a small set of very basic functions, called functors, like multiplication or

addition with a constant vector or scalar value, calculating the length, or summarizing all vector

elements to one scalar value. These functors can be concatenated with the pipe sign | to more

complex functions called functor chains successively applying functors to a date. At the moment

functor chains are limited to work on one source only. Table ?? shows the predefined functors

of ISAAC. Notice that the functor may change the domain of the input vector or scalar value

to a vector of a different dimension or a scalar value.

Table 1. Five predefined functors in ISAAC for addition, multiplication, length, summarization

and exponentiation. Functors may change the domain of the vector or scalar value and may have

constant arguments

Predefined functors add(v) mul(v) length sum pow(v)

Functionality
Adds the

vector v

Multiplies the

vector v

Calculates the

length

Summarizes

all vector

components

Exponentiates

component-

wise with

v

Domain change Rn → Rn Rn → Rn Rn → R Rn → R Rn → Rn

A functor chain could be as an example mul(2,3,4) | add(1) | length. This exemplary

function takes the raw date from the source, multiplies with vector
(

2
3
4

)
, adds the vector

(
1
1
1

)
and

calculates the length of the resulting vector returning a scalar value in the end. If no reduction

to a scalar value is done explicitly, the first component of the resulting vector is used by default

for the following classification in the ray casting.

If only selected vector components are of peculiar interest, the functor sum can be used in

this way: mul(0,1,0) | sum. In this case, the first and third component get extinguished and

afterwards all values are summarized to a scalar value representing the second component of the

original vector.

Most of the needed transformations for sources can be described with this functors. If a

functor is missing, it can easily be added to the code at compile time. Internally the functors

are just classes which need to implement four versions of a method for all four possible fea-

ture dimensions, e.g. using templates. A needed dimension reduction (or enhancement) can be
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expressed via the return type of the methods. These classes are enlisted in a C++ metapro-

gramming sequence and parsed at compile time. Without changing ISAAC itself, an application

developer can add a functor; useful for a specific application domain.

The functor chains can be defined at run time and are executed right after reading the data

from the source. The result of the functor chain execution is then used in the classification.

However, checking for every functor of all sources in the ray casting loop would, again, be slow

because of the lookup overhead – and useless as the functor chains do not change while rendering

the image. Unfortunately it is not possible to create an own render function for every functor

chain combination as every source can have a different functor chain. If we limit the maximum

count of functors usable per source to c, this would create f c different combinations per source

and f cn combinations of combinations for all n sources. Even without involving the already

mentioned 2n render functions, if we choose the quite small values f = 4, c = 3, and n = 3 we

would already have 262144 render functions. With n = 5 it would be over one billion.

Instead, we compile one function for every possible combination of functor chains for the

total number of functors f and user defined maximum functor chain length c. At run time, if

the functor chain is changed, the corresponding function pointer of the precompiled function is

chosen and set up for the source. Only 4 · f c functions need to be generated. The factor 4 comes

from the four different feature dimensions possible in ISAAC. For the mentioned examples n = 3

and n = 5 this solves to 256 or 4096 needed versions, whereby n > c is questionable anyway as

this would mean that one functor is used twice which should not be needed. But even with this

unrealistic number this can be handled by the compiler in finite time.

Using function pointers the compiler cannot do cross-function optimization at this point

anymore. We tried to exploit as much compile time optimization as possible but had to draw

a line at the point that is reached here with thousands of already fused functor chains being

created. In use, further integration of the functor chains into the rendering function would have

only a small or even no impact on the rendering time, but increase the compile time radically.

CUDA-specific optimization makes sense for the functor chains nevertheless. Alpaka ab-

stracts the hardware accelerators in such a way that all available parallelization layers and

performance gainers are part of the interface, but ignored for hardware not supporting them.

ISAAC uses this to store the functor chain function pointers and the parameters of the functors

in constant memory if the hardware supports this. Especially on Nvidia GPUs this improves the

performance of the rendering noticeably.

2.4. Parallel Rendering

A typical cluster design can be seen in figure 3. The heart of a cluster consists of a high

number of compute nodes doing the main computation tasks. Among themselves they shall be

connected over a high performance network like InfiniBand. Sometimes they are also connected

to the head node via such a network, but often only a slower connection, like Ethernet, is

available. The task of cluster head nodes is to manage the jobs running on the cluster and

sometimes compile the cluster applications before distributing them to the compute nodes.

Often the cluster itself is just a small part of a bigger IT infrastructure of a company or research

site. To access this network from the outside, login servers are used. However, the connection

inside the global site network is only using Ethernet most of the time which is fast enough

for most activities, but cannot handle the raw data produced in a modern cluster. ISAAC is

designed to work well in those environments.
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Figure 3. Simplified design of a typical cluster with multiple firewalls. The only connection
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Figure 4. ISAAC consists of a library running integrated with the application on the compute

nodes, a server running on one the head or login nodes, and an arbitrary amount of clients

running anywhere. With this a connection between the compute nodes and the outside of the

cluster can be established. Furthermore, the server can compress the data for slower networks

After the local image of every local domain is rendered, ISAAC composites one big image

out of it using the compositing library IceT [27]. IceT composites the renderings over MPI using

balancing techniques like binary swap [18] or 2–3 swap [34]. These algorithms ensure that the

network load and the computing load are well distributed over the whole cluster.

IceT supports collection of the composited image on a node not involved in a rendering of a

sub-domain at all. As the merged image needs to leave the cluster sooner or later, we considered

collecting the final image on the head node. However, two problems occurred with this idea: First

of all IceT works with MPI by default, whereas the head node is not part of the clusters MPI

world and often of a different architecture. This could be solved with extending the open-source

library IceT, but would mix MPI and Ethernet socket calls in IceT. Second, the user allocates

time on the compute nodes but not the head node. It is not meant for being an important part

of the HPC application itself.

Instead, the image is collected in the very first compute node (MPI rank 0). However, it is

not good practice to let computers outside the cluster connect to the compute nodes ensured by

internal firewalls. Considering this, ISAAC introduces a central server as seen in figure 4. Besides

forwarding and managing connections of ISAAC sessions on the cluster and to an arbitrary

amount of clients, it also has the possibility to compress the images and, e.g., to create streams.
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At the moment the ISAAC server supports creating RTP streams with H264 and JPEG encoded

videos and RTMP for streaming services like Twitch or Youtube, but defines a simple interface

to add other or future streaming services, too.

2.5. Steering arbitrary HPC applications using open standards

The connection between the server and the ISAAC library uses TCP/IP. To be able to

exchange library or server or to extend the behavior of both, every message is formatted in the

easy to use and well documented JavaScript Object Notation (JSON) [4].

The server is designed in such a way that both the streaming service and the client connected

to the server can be exchanged. We provide a ready to use HTML5 reference client which uses

Websockets to establish a TCP/IP connection to the server. Again, JSON is used for easy

extensibility. As JSON directly defines a JavaScript object, using the received objects in HTML5

and sending feedback back to applications is straightforward. The client can easily be adapted

to the specific needs of an application.

All JSON commands sent and understood by the ISAAC library and the server are docu-

mented [20]. Additionally a metadata object is defined which can be used from the application

as the root object for arbitrary information which will be added to an image after it is created

but before it is sent to the clients. ISAAC does not care for the content of this object, but

ensures that the resulting JSON object is still valid by removing objects with the same name

as every node can add its own metadata which are merged by ISAAC before being sent to the

server. Nevertheless, it is possible to gather information on all instances of the application binary

running on the cluster using JSON arrays which are just concatenated by ISAAC.

A client can send arbitrary information or requests to a running application in the same

way. The application gets ready-to-use JSON objects with the steering data of all connected

clients. With this the application can be paused at a state of interest, to investigate the data,

modify the functor chains or even change the application parameters themselves, e.g. decreasing

the step width in a numerical integration. Additionally, unsuccessful application runs can be

identified early and corrected or restarted with better settings. Especially as jobs often need a

long waiting time on a cluster before they are started, an application restart inside the job can

decrease waiting times and improve researchers productivity.

2.6. Exploiting heterogeneous systems

As the root rank and the server are often not connected with a high performance network,

sending a raw bitmap takes more time than compressing the image and sending the smaller

image. Because of this, a JPEG compression (with adjustable quality) is done on the root rank.

The JPEG image itself is then included as string in the JSON message to the server using base64

encoding. This again adds an overhead of 33%, but ensures maintainability and extensibility as

everything is still JSON. Furthermore adding a second binary channel would make the server

more complex.

For applications using hardware accelerators we noticed that although the acceleration de-

vice itself is working to capacity, the host idles most of the time. For example, the GPU-

accelerated plasma simulation PIConGPU used for the evaluation uses only one CPU per GPU

for busy waiting for events of other ranks. As most compute nodes have more CPU cores than

dedicated GPUs, this leads to a poor utilization of CPU resources.
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Figure 5. As ISAAC and the HPC application work on the same hardware accelerator and both

use MPI, they cannot be executed in parallel. Only compressing and sending the final image is

invariant of the application and MPI and can run in background while the application continues.

Only if both concurrent tasks finish, the next frame can be rendered

To exploit this, ISAAC tries to do as much CPU tasks in parallel as possible. Unfortunately

most of ISAAC’s CPU tasks involve MPI. Even concurrent rendering can need changed scene

settings propagated over MPI beforehand. The MPI standard does in fact define ways to use

it on the same rank in different threads, but even if vendor support is given, the performance

is worse than without threading. We assume that this is because of synchronization overhead

between the concurrent MPI calls. Because of this, only the compressing and sending of the

image is done in background on the root rank while the application continues.

The Petri net in figure 5 depicts this. The scene setting propagation, the volume rendering

and the IceT compositing need to pause the application, but the compression and sending can be

done in parallel to the application. Only if both concurrent tasks have finished, the transition to

render the next frame is activated again. If an application step is much faster than compressing

and sending the image, a solution is to call ISAAC only every nth frame which may result in a

lower framerate but increases the utilization of the whole system.

3. Evaluation

To demonstrate that ISAAC works well together with existing applications running on mod-

ern HPC systems (especially those equipped with hardware accelerators), the plasma simulation

PIConGPU running on Nvidia GPUs was visualized and steered with ISAAC. The simulation

code defines a plugin interface which enables user defined code to extend the simulation without

the need of changing the core code. Just three new classes needed to be written: two for the two

possible field types of PIConGPU and one plugin class. Besides rendering a live visualization,

some meta data, like the particle count, are also sent to the clients and the plugin listens to

those enabling them to pause or even exit it.

3.1. Run Time on a Petascale System

We ran PIConGPU and ISAAC on the supercomputer Piz Daint of the Swiss National

Supercomputing Centre on up to 4096 Nvidia Tesla K20X GPUs [22]. The cluster itself consists

of 5272 GPUs, but because of availability and single user scheduling policies only 4096 were

accessible for these tests. Each GPU has a single precision theoretical peak performance of

3.95 TFLOP/s. All used 4096 GPUs together reach a peak performance of ∼ 16.2 PFLOPS/s.

PIConGPU is memory bound, but still capable to use over 12% of the single precision peak
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Figure 6. PIConGPU with ISAAC running on up to 4096 Nvidia Tesla K20X GPUs (∼ 16.2

PFLOPS/s theoretical peak performance, single precision) on Piz Daint simulating a Kelvin-

Helmholtz instability. Every GPU node simulates a volume of 1283. Adding more GPUs increases

the global, simulated volume. PIConGPU shows perfect weak scaling [6], while ISAAC gets faster

as the resolution of the image per GPU shrinks and thus the number of needed ray casting rays

performance on the Kepler architecture [35]. On the investigated sub set of Piz Daint this

means ∼ 1.9 PFLOP/s are actually executed.

A Kelvin-Helmholtz instability is simulated. The simulation was parameterized with the

Boris pusher, Esirkepov current solver, Yee field solver, trilinear-interpolation in field gath-

ering, three spatial dimensions (3D3V), 128 cells in each dimension, electron and ion species

with each sixteen particles per cell, and quadratic-spline interpolation (TSC) [12]. PICon-

GPU was compiled with nvcc 7.0 using the compiler flags --use fast math --ftz=false

-Xcompiler=-pthread -m64 -O3 -g. With increasing the number of GPUs the local domain

stays the same, but the global domain grows (weak scaling). The resolution of the ISAAC render-

ing was 1920×1080 (Full HD), interpolation was activated, two sources (electric field and current

density) were rendered with complex functor chains including a square root operation, and 26

different view angles chosen such that well and poorly cacheable memory accesses happened.

Figure 6 shows the results of the runs. PIConGPU showed perfect weak scaling and always

needed around 0.93 seconds per time step independent from the number of GPUs. ISAAC on

the other hand decreased the run time depending on the count of GPUs. The reason is that

with a growing number of GPUs, the local image size decreases. There is not a large difference

between 512 and 4096 GPUs anymore: the rendering time itself reaches its minimum and the

execution time is dominated by the render preparation and the IceT compositing which cannot

be decreased easily anymore.

To show the effect of the 26 different camera angles, table ?? shows the average, best, and

worst runtime for 1, 8, 64, 512, and 4096 GPUs. The worst value may be up to three times slower

than the best for some cases. This is because of the previously mentioned inefficient caching as

the ray casting algorithm may move perpendicular to the cache lines using only a few or even

only one element of them.

Figure 7 shows the ISAAC run time compared to the total run time of the simulation in

dependence of number of GPUs used. It shows that ISAAC is capable of visualizing a petascale
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Table 2. Average, minimum, and maximum runtime for 1, 8, 64, 512, and 4096 GPUs. Due to

inefficient caching for some view angles the worst value may be up to three times slower than

the best

Number of GPUs 1 8 64 512 4096

Average runtime 300 ms 171 ms 107 ms 77 ms 76 ms

Minimum runtime 212 ms 88 ms 61 ms 51 ms 53 ms

Maximum runtime 369 ms 229 ms 131 ms 98 ms 102 ms
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Figure 7. Percentage of ISAAC run time compared to the total run time of the simulation run.

With decreasing number of GPUs, ISAAC settles down at ∼ 8%

Figure 8. Time series of a laser wakefield accelerator

application running on modern hardware accelerators without interrupting it for a too long time:

From 256 GPUs on, ISAAC needs less than 10% of the total run time and finally settles down

at ∼ 8%.

The parameters of ISAAC were thereby set up quite conservatively. Enabling interpolation

creates better visualization if iso surface rendering is used, but may be deactivated for a vi-

sualization as glowing gas for performance reasons. The chosen resolution shows that Full HD

(resolution of 1920× 1080) renderings are possible, but most of the time smaller resolutions will

fit the needs anyway and will be chosen as other client elements also need to fit on the screen.

Accordingly the run time can still be decreased easily if needed.

3.2. PIConGPU Renderings

This section will give some examples of PIConGPU renderings and why they are useful for

the users.
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(a) Laser wakefield Accelerator (b) Two stream instability

Figure 9. Laser wakefield accelerator and two stream instability with iso surface rendering

Figure 8 shows a time series of a so called laser wake field accelerator. A laser pulse (red and

green) is ionizing and penetrating a gas. The electric-magnetic field of the laser pulse pushes

the electrons (purple) off their ions (not shown). The moving electrons create a current which

is shown in blue. As ions and electrons are seperated now, a plasma is created. Behind the laser

pulse a bubble without electrons is created which is thereby positively charged as only inert

ions remain. An electron can now be injected in this region as it can be seen in the both last

images of the series, in which electrons from the back border enter the zone which is called self

injection.

A physicist can see quite soon whether the simulation parameters show the expected phe-

nomena, how long it takes until a self injection is happening, how the shape of the wake looks

like, and how it changes over time.

Beside the visualization as glowing gas as seen in figure 8, ISAAC also supports visualization

with iso surfaces as seen in figure 9. In (a) the bubble behind the laser pulse can be seen directly

as 3D object and even the self injection and its shape is easily recognizable. The picture (b)

shows a so called two stream instability, in which plasma flows in opposite directions creating

long standing filaments and magnetic fields. While the simulation is running, the user can see

the tubes appear, disappear and change their shape. The simulation can be paused at any time,

the visualization parameters changed, a record of data started in the simulation or more (meta)

data requested to be sent to the client. Going back in time would be an option, too, if the

simulation supports this, e.g. with loading a slightly older checkpoint.

Using different colors and color maps may also help understanding the behavior of the

simulation. Figure 10 shows a Kelvin-Helmholtz instability, where plasma flows in two streams

side by side with different speeds, whereas vortexes are created. The green and red color identify

both electrons, but with every color showing a different stream. The vortex effect can easily be

spotted and observed over time. Furthermore, the electric field created by the moving electrons

is shown in blue.

Conclusion

In this paper we presented ISAAC, an open-source library for the in situ visualization and

steering of applications running on HPC computers using multi-core CPUs or hardware accel-
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Figure 10. Kelvin-Helmholtz instability

erators like Nvidia GPUs. It is designed to work on the original application data structures and

types without the need of deep copies or data format conversions. It provides volume rendering

visualization as well as iso surface rendering and supports clipping planes, free transfer functions,

and data interpolation for the fine tuned control of the output image.

Beside live rendering we showed that it is possible with ISAAC to ship arbitrary meta

data packed in the open JSON format and to send feedback back to the application. A central

server manages connections from supercomputer applications and clients and forwards messages

between them as well as creates streams out of the raw pictures reducing the needed bandwidth.

The central server enables exploration of these applications even from outside the site network.

To demonstrate the capabilities of ISAAC on a real world application, we added it to the

world fastest particle-in-cell code PIConGPU [6] and ran it on the supercomputer Piz Daint. We

showed that ISAAC is capable of visualization such a petascale simulation with only using 8%

of the compute time for high quality Full HD images. We provided examples of how ISAAC’s

live visualizations help scientists on three different plasma effects simulateable with PIConGPU.

In the future, ISAAC must be tested on other large-scale high performance compute systems

and hardware platforms. We expect the performance of ISAAC on a system to mainly depend

on the scalability and performance of the Alpaka and IceT libraries used.

ISAAC is open-source under the GNU Lesser General Public License (LGPL) Version

3+ [21]. This project has received funding from the European Unions Horizon 2020 research

and innovation programme under grant agreement No 654220. Travel costs for the presentation

on ISAAC at the ISC Workshop On In situ Visualization 2016 were supported by the Nvidia

GPU Center of Excellence Dresden. Furthermore we want to thank the PIConGPU contributors

for their help including and evaluating ISAAC with their simulation.

A. Matthes, A. Huebl, R. Widera, S. Grottel, S. Gumhold, M. Bussmann

2016, Vol. 3, No. 4 45



This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References
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Preparing for In Situ Processing on Upcoming Leading-edge
Supercomputers
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High performance computing applications are producing increasingly large amounts of data and plac-
ing enormous stress on current capabilities for traditional post-hoc visualization techniques. Because of the
growing compute and I/O imbalance, data reductions, including in situ visualization, are required. These re-
duced data are used for analysis and visualization in a variety of different ways. Many of the visualization and
analysis requirements are known a priori, but when they are not, scientists are dependent on the reduced data
to accurately represent the simulation in post hoc analysis. The contributions of this paper is a description of
the directions we are pursuing to assist a large scale fusion simulation code succeed on the next generation
of supercomputers. These directions include the role of in situ processing for performing data reductions, as
well as the tradeoffs between data size and data integrity within the context of complex operations in a typical
scientific workflow.

Keywords: Scientific Visualization, In Situ Methods, Data Staging Methods, Data Reductions, High Per-
formance Computing.

Introduction

As leading-edge supercomputers get increasingly powerful, scientific simulations running on these
machines are generating ever larger volumes of data. However, the increasing cost of data movement, in
particular moving data to disk, is increasingly limiting the ability to process, analyze, and fully compre-
hend simulation results [1], hampering knowledge extraction. Specifically, while I/O bandwidths regu-
larly increase with each new supercomputer, these increases are well below corresponding increases in
computational ability and data generated. Further, this trend is predicted to persist for the foreseeable
future.

Given this reality, many large-scale simulation codes are attempting to bypass the I/O bottleneck
by using in situ visualization and analysis, i.e., processing simulation data when it is generated. A key
question for in situ analysis is whether there is a priori knowledge of which visualizations and analy-
ses to produce. If this a priori knowledge exists, then in situ processing is often superior to post hoc
processing on leading-edge supercomputers, since it avoids disk usage. However, it is not guaranteed
that the required visualizations and analyses are known a priori. That is, a domain scientist may need to
explore the data in an interactive fashion, or unanticipated analysis may be required. With this research,
we consider the model where in situ processing is used to reduce the data to a form small enough that it
can be saved to disk and later read back for post hoc exploration.

Data reductions under this model could take on many different forms. A few examples of data
reduction types could be compression (lossy or lossless), summary data (vector fields, min/max in a
region, etc.), and reduced precision data formats. Importantly, data reductions should consider the types
of analysis that will be done in the future, as to not introduce errors or artifacts that are not expected.
This means that data reductions should be done within a set of known error bounds that is acceptable to
the researchers doing the post hoc analysis.
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With this work, we consider in situ data reduction in the context of a cutting-edge fusion simulation
code, XGC1. We collaborate closely with XGC1 domain scientists and have been considering which
reductions will be appropriate for this code as their ability to store data further and further decreases.
We consider two distinct approaches, both of which we believe will be necessary for successfully main-
taining meaningful analysis and visualization as XGC1 simulations are run on the next generation of
supercomputers. In both cases, the techniques we consider keep in mind the balance between reduction
and integrity. The contribution of the paper, then, is the description of the directions we pursue for XGC1
to succeed on the next generation of supercomputers, and our results to date in these directions. XGC1
contains two different types of data — particle data and mesh-based field data — and we consider tech-
niques for both. For particle data, we consider sub-selection of particles and how to carry this out in a
meaningful fashion. For mesh-based field data, we consider reduced precision and its effects.

In the remainder of this paper we discuss related work in Section 1, briefly discuss XGC1 in Sec-
tion 2, present two example problems motivating in situ data reductions in Sections 3 & 4, and conclude
with a discussion of areas of continuing and future research.

1. Related Work

Our work builds off of the momentum from the in situ movement, as well as past visualization work
within XGC1. We present the related work for in situ data reduction in three sub-categories: (1) in situ
visualization, (2) XGC1 visualization, and (3) HPC data compression.

1.1. In Situ Visualization

Visualization algorithms are particularly sensitive to I/O bandwidth [3, 4], causing the community
to turn to in situ techniques to alleviate this growing problem. There has been significant work and
successes with the in situ visualization paradigm. For instance, ParaView Catalyst coprocessing [7]
and VisIt LibSim [33] are frameworks that are tightly-coupled to the simulation, i.e, the visualization
runs at scale with the simulation. Visualization and analytics can be performed during the transport
of the simulation data to the I/O layer as well. Three examples of this loosely coupled approach are
Nessie [26], GLEAN [32], and ADIOS [18]. For a more thorough overview of the three loosely-coupled
in situ visualization frameworks, we refer the reader to [23].

1.2. XGC1 Visualization

Early work on production visualization for XGC1 mainly focused on addressing the immediate data
needs of scientists during the course of a simulation run. One example of this was an online dashboard
that was developed for XGC1 simulation monitoring called eSimon [30]. This dashboard was launched
in conjunction with each simulation run, and was responsible for performing common visualization
and analysis tasks in XGC1. First, the dashboard was responsible for creating and updating plots of
approximately 150 different variables every 30 seconds and plotting 65 different planes from the live
simulation. At the conclusion of a run, the dashboard would automatically output movies of each of these
plots of interest for quick review. In addition this dashboard catalogued simulation output, allowing users
to search for and retrieve data of interest, without having to locate and search through simulation output
files. Finally, this dashboard was available to scientists anywhere in the world through their internet
browsers, making the data quickly and readily available.
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More recent work has focused on expanding the visualization capabilities and opportunities for
XGC1 through the utilization of in situ methods. For example, they utilized the features of ADIOS
and EAVL [28], and demonstrated the effectiveness of loosely coupled in situ visualization for large
scale simulation codes using a workflow consisting of ADIOS, data staging, and EAVL. In that work,
they focused on the performance, scalability, and ease of use of visualization plugins that were used on
the output of the XGC1 simulation code. One component of this study looked at optimizing the parallel
rendering pipeline in situ, and gave insight into getting high performing renderings in continuing studies.

Following this effort, work shifted towards researching in transit visualization opportunities for
XGC1 on the wide area network [27]. This research looked at data coupling and near-real-time analysis
and visualization between two geographically separated sites using ADIOS and its ICEE [5] transport
method. This capability is important when considering future use cases for visualization and analysis,
when both simulation and experimental data need to be used and streamed together.

1.3. HPC Data Compression

Data compression strategies for HPC data are typically split into two categories, lossless and lossy
compression. Typical lossless compression techniques include Huffman encoding [10], LZ77 [34],
Gzip [8] and Fpzip [15]. Huffman encoding is an entropy-based compression method that identifies
common occurrences in the data and assigns them unique codes. The LZ77 algorithm uses a sliding
window to search for repeated sequences and then replaces them with a single copy that occurred previ-
ously in the data. Gzip is a general purpose compression technique for compressing any type of data, and
makes use of both Huffman encoding and the LZ77 algorithm. Fpzip is a lossless compression method
that is focused on floating point data. To improve the compression ratio, a variety of lossy compression
methods have been developed over the years, including ISABELA [13] and ZFP [14]. ISABELA applies
a pre-conditioner to the data, and then fits the data with B-spline interpolation to achieve very impressive
compression rates for floating point data. ZFP is a fixed-rate compression scheme that encodes structured
scientific data into 4× 4× 4 blocks using a lifting scheme. Although designed for encoding scientific
codes, ZFP was used for lossy disk storage compression for full-3D seismic waveform tomography, and
reduced the strain-field disk storage by at least an order of magnitude [16].

Work in mesh decimation and simplification is a well researched topic, and Luebke [19] provides an
overview of the various strategies including simplification and view-dependent methods. Also included
are the approaches for each strategy, including sampling, decimation, vertex merging, topology driven,
and error minimization techniques.

2. XGC1 Overview

XGC1 [2] is a 5D gyrokinetic ion-electron particle in cell (PIC) code used to study fusion of mag-
netically confined burning plasmas. XGC1 is used in particular to study turbulence in the outer region
of the plasma called the edge. The simulation proceeds by computing the interactions of a very large
number of particles (ions and electrons), and depositing them onto a finite element mesh at each time
step. The mesh consists of a number of 2D planes positioned uniformly around the toroidal shape of the
tokamak, as shown in Figure 1. At each time step, the particles, which interact within the toroidal space
of the mesh, are statistically deposited as scalar fields onto the mesh. This deposition step provides a
statistical view of simulation, and also helps optimize the simulation runtime.
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Figure 1. Example of a mesh in XGC1. Its planes are equally spaced around the central axis of the
tokamak

3. Data Reduction in Staging

In situ methods allow access to all of a simulations output at each simulation time step. This is a
powerful technique that is enabling new types of analysis and finer spatiotemporal resolutions than ever
before. However, this newfound access to all of the simulation’s data brings with it challenges in how
to efficiently process that much data. With our workflow, we will show that in situ data summaries of
a very large number of particles is possible using a data staging environment, enabling a new type of
analysis for the simulation scientists.

This portion of our study used the particle data from XGC1. Particle data is the largest output dataset
from this simulation. This data can be very large, generally ranging from over 900 GB to nearly 20 TB
per time step. Furthermore, in order to get good bulk particle velocity vector fields as the particles move
around the tokomak, we were required to access the particles at each time step of the simulation. Since
this analysis routine is still being developed however, we did not run the simulation at full scale, instead
we used smaller test scale run on 256 processors with 100,000 particles per core. Our final particle files
were 4 GB. We do however relate our experience from this smaller run to how larger in situ runs will
need to be handled in our conclusion.

3.1. Analysis Workflow

Our workflow consists of three primary elements: (1) the simulation code, (2) a data transfer system
to move data from the simulation to the visualization nodes, and (3) an efficient parallel visualization
library. This study was conducted on the Sith cluster at the Oak Ridge Leadership Computing Facility.
Each of the 39 nodes in Sith contains four 2.3 GHz 8 core AMD Opteron processors and 64 GB of
memory, configured with an 86 TB Lustre file system for scratch space. The components of the workflow
that interact with XGC1 are described below, followed by a description of how the components of the
workflow interact.

3.1.1. ADIOS Data Staging

The Adaptable I/O System (ADIOS) [17] is a componentization of the I/O layer accessible via a
posix-style interface. The ADIOS API abstracts the operation away from implementation, allowing users
to compose their applications independent of the underlying software and hardware. This capability,
along with the functionality of DataSpaces [6], allows this same API to support read and write operations
to and from the memory space of visualization staging nodes.

The loosely coupled paradigm in ADIOS and DataSpaces provides for a clean interface and sepa-
ration from XGC1 that provides ease of use and fault tolerance. Also, this method allows the resource
requirements for the visualization and staging tasks to be tailored for specific purposes.
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For this study, we utilized two nodes on Sith to launch eight staging servers to handle the data con-
nections from both the simulation and visualization nodes. Staging servers are used to store in memory
the data coming from the simulation until the visualization routines call for it. This server configuration
gave the best performance, and is easily scaled as more simulation or visualization nodes are added to
the workflow.

3.1.2. Visualization Library

We designed our visualization routines as flexible, light weight plugins. Our plugins are based on
the Extreme-scale Analysis and Visualization Library (EAVL) [20]. EAVL was developed to address
three primary objectives: update the traditional data model to handle modern simulation codes, inves-
tigate the efficiency of I/O, computation and memory on an updated data and execution model, and
explore visualization algorithms on next-generation architectures. EAVL defines more flexible mesh,
and data structures which more efficiently supports the traditional types of data supported by de-facto
standards like VTK, but also allows for efficient representations of non-traditional data. Examples of
non-traditional data includes graphs, mixed data types (e.g. molecular data, high order field data, unique
mesh topologies (e.g. unstructured adaptive mesh refinement and quad-trees)). EAVL uses a functor
concept in the execution model to allow users to write operations that are applied to data. The functor
concept in EAVL has been abstracted to allow for execution on either the CPU or GPU, and the execution
model manages the movement of data to the particular execution hardware.

For this study, we ran our visualization routines on four nodes, with four processes per node. The
number of visualization nodes can readily be scaled up as the data size increases so as not in slow down
the simulation as each time step is processed.

3.1.3. Workflow Composition

Our visualization and analysis workflow combines three separate elements: the XGC1 simulation,
the staging servers, and the visualization libraries. The workflow is launched as three separate binaries,
with resources for each partitioned as follows: (1) 256 XGC1 processors; (2) 8 Staging servers; and (3)
16 visualization processors. Data flows through the workflow for every XGC1 time step as follows:

• When a new time step is ready from XGC1, it is immediately sent to our staging servers and
subsequently consumed by the visualization routine. The visualization routine does a parallel read
of the restart file, with each process taking 1/nProcs of the data. As consecutive time steps become
available they are consumed.
• Next, the visualization routine statically maps particle ID’s based on the visualization rank.
• Once each rank has the correct particles, a vector is computed between time step n and n+ 1.

These vectors are then averaged onto an unstructured grid. Since the XGC1 mesh is very finely
resolved, we use a coarser version of the mesh in this depositing step.

The resulting vector field is then written to disk for further analysis. It is important to note that this step
is a major data reduction. As shown in Table 1, by performing the vector computation in situ, we are
reducing the amount of data written to disk by between 95 and 476,190 times. This reduction factor is
based on the output particle size of our Test-Scale Run, and the output size of a Large-Scale Run.

3.2. Results

Using the workflow setup described in the previous section, we are able to successfully create
effective bulk plasma particle velocity vector fields for XGC1. We are in the early stages of the analysis
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Table 1. Showing the output particle size in relation to the actual data size being written to disk
at each simulation time step by performing the particle vector analysis in situ

XGC1 Sim Run Size Particle Size Mesh Size Reduction
Test-Scale Run 4 GB 42 MB 95x

Large-Scale Run 20 TB 42 MB 476,190x

of these new fields, so our main highlighted results are that this analysis is now feasible, as well as
the timings that we have gathered from our different analysis runs. A few of the analysis routines that
we plan to explore with the physicists using this data include streamlines, FTLE (Figure 2), Poincaré
plots [29], and more.

From the runs we performed to create the effective bulk plasma particle velocity vector fields, we
measured the amount of time used by the visualization routine, XGC1, and staging. Timings are an
important metric for this simulation, as additional time impacts to the simulation are carefully scrutinized
for production runs. From the timings that we gathered, we found that the impacts of the analysis routine
on the XGC1 simulation are minimal. The only impact to the simulation occurs during the particle write
at each time step. We are currently writing at each time step in order to achieve maximum temporal
resolution with our vectors, but this number can be tuned with future runs as we perform further analysis.

We performed timings of the particle write step of XGC1 using the two currently possible mech-
anisms for accessing the particles for vector analysis: staging and file based. As shown in Table 2, we
found that by staging the particles, we were able to get a 3.2x time reduction with staging versus writing
the particles to disk. This meant that the simulation was impacted less, as it was paused for a shorter
period of time with staging versus the file based method. It is important to note that the time to write the
file to disk will exponentially increase as the run is scaled up to production sizes, while we believe that
staging times will rise at a much lower rate.

Another important data point that we found is that we are able to easily complete the analysis portion
of the pipeline during the time that XGC1 uses to compute a new time step, using only on average 35%

(a). Advection
time 0.10

(b). Advection
time 1.0

(c). Advection
time 5.0

(d). Advection
time 10.0

Figure 2. A slice of an FTLE plot using the effective bulk plasma particle velocity vector field. The
shorter advection times demonstrate smaller scale features (plots a and b), while longer advection times
bring larger scale features to light (plots c and d). The red values correspond to areas where the flow
tends to separate, and blue is where the flow stays together
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Table 2. Runtime of a single XGC time step using our test-scale run size when either
sending data to staging or writing it to a file. The time variance is due to staging being
much faster than the file based method, impacting the simulation less

XGC1 Simulation
Time step Time (sec)

XGC1 Simulation Particle
Write Time (sec)

Staging File Staging File Reduction
96.6 102.8 1.8 5.8 3.2x

of that time. This is good news as we progress towards using production runs, as we should be able
to scale the visualization nodes in order to keep up with each simulation time step, and even add other
analysis tasks to the workflow to fill in idle analysis periods.

4. Data Reduction Through Reduced Precision

In this example, we motivate and explore the implications of using reduced representations of data
for analysis, and the impacts on preservation of information, and the associated errors.

The errors associated with data reduction techniques, where f is the original data, and f̃ is the
reduced data, are typically defined as follows:

E = | f (x, t)− f̃ (x, t)| (1)

However, scientists will typically require derived quantities or operations, G( f ), on their data, and these
derived quantities are not always known a priori. And so the errors that scientists care about becomes:

E = |G( f (x, t))−G( f̃ (x, t))| (2)

These post-simulation analyses span a large space of possibilities. The simplest cases involve anal-
ysis and visualization of additional simulation variables, additional slice planes, subsets of data, or
isovalues for contouring, as examples. More complicated examples involve transformations of the data,
for example, changes of coordinate systems, different mappings, or analysis in different spaces such
as the Fourier Transform. Derived variables can involve simple mathematical operations such as sum,
difference, product, or division, or more complicated operations such as gradient, curl, divergence, and
norms. More complex operations can include things such as feature detection and tracking, or particle
advection for streamlines, pathlines, Poincaré plots, and Lagrangian Coherent Structures.

While there are a number of ways to reduce the size of scientific data, in this motivating example
we focus on two lossy data reduction methods. The first is the floating point precision of the variable
data, and the second is the spatial resolution of the underlying mesh. We also consider a combination of
these two methods. In order to understand these methods in practice, we have applied these methods to
primary variables from a simulation, derived variable calculations, feature detection, and more complex
analysis operations.

Our work with reduced precision arose from our collaborations with the SIRIUS [11] project. The
SIRIUS project is researching methods for the management and layout of large scientific data across
the memory hierarchy of an HPC system. This layout might include breaking the data up into separate,
dependent pieces. For example, 3 digits of precision in fast memory, and the rest of the precision in
lower levels of the memory hierarchy. If needed, for particular operations, the extra precision can be
combined with the lower precision representation.
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(a). Full mesh. (b). Uniform decima-
tion of the full mesh.

(c). Adaptive decima-
tion of the full mesh,
preserving detail along
the edge of the plasma.

Figure 3. Different types of decimation for the simulation mesh in XGC1

Scientific simulations are typically done using double precision values, which are represented with
64 bits. While this level of precision is required for solving the equations in a simulation, it is typically
not required for basic analysis and visualization operations. For example, when mapping the values of
a variable through a color map, the resolution of the color map is often quite small compared to the
range of the floating point values. The resulting pixels are then a quantized representation of the actual
values. Because of this, very similar, or, in some cases, identical images can be produced from greatly
reduced data. However, as stated previously, one under-explored area is the implications of these reduced
precision data when more complex operations are applied to the data.

The spatial resolutions of the meshes for scientific simulations are determined by the convergence
requirements of the underlying mathematics. This resolution may be appropriate for downstream pro-
cessing of analysis and visualization operations, or it may be overkill. In this paper we explore two
different types of mesh decimation: uniform and adaptive (see Figure 3). Adaptive decimation reduces
the resolution of the mesh in a manner consistent with the underlying science. For example, in Fig-
ure 3(c), which is from an XGC1 fusion simulation, the plasma profiles near the edge region have sharp
gradients, and so the resolution is higher in the edge region of the mesh to capture the fine-scale physics
in this region. On the other hand, using uniform decimation, the mesh is reduced without this underlying
knowledge. To adaptively decimate the mesh, we use a scheme based on quadric decimation [9]. For the
error metric that drives the decimation, we use the proximity of mesh points to the edge region of the
tokamak.

4.1. Results

To explore these ideas, we have been working with the XGC1 fusion simulation code. In this work,
we are focusing on the field variables on the unstructured mesh in XGC1. The primary variables we
are examining include the scalar potential (φ ), and the magnetic field (B). We are interested in examin-
ing derived variables computed using mathematical expressions on these primary variables, as well as
particle tracing through the magnetic field.
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(a). Full data with 48
features

(b). Reduced precision
data with same 48 fea-
tures

(c). Reduced precision
and mesh decimation
with 13 features

Figure 4. Feature detection of reduced representations of a primary variable

Figure 4 shows an example of feature detection on the scalar potential (φ ) in XGC1. In Figure 4(a),
an edge detection algorithm has detected a set of 48 features from the full data set. In Figure 4(b), the
same set of 48 features are identified using a 3 digit precision (5X data reduction) version of φ .
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3

6

Full

(a).

3 6 Full

3

6

Full

(b).

Figure 5. Relative error for fluid velocity using differing amounts of precision. Full cross section is shown
in (a), and a zoomed in section in shown in (b)
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In Figure 4(c), 3 digits of precision, and a 20X adaptively reduced mesh results in 13 features. The
3 digits of precision (5X reduction) and 20X reduced mesh results in a total data reduction of 100X . The
question of whether or not the reduced data in Figure 4(c) provides an adequate representation of the
underlying physics is something that we are in the process of evaluating with our collaborators in the
XGC1 application team.

As an example of a derived variable, periodically scientists want to examine the perpendicular
velocity of the plasma driven by the electric field (VF ), which is defined as follows:

VF =
∇φ ×B
|B| (3)

The relative error in the derived quantity of varying levels of precision in the primary variables is
shown in Figure 5. Note that in this particular case, the error is clearly dependent on the precision of
the variable φ . The precision of B has a much smaller impact on the errors in the derived variable. This
leads to important insights about the relationship between errors and data reductions on variables, and
can result in more efficient use of very limited data resources in an HPC system.

Relying solely on preserving scientific features in the primary variables can be problematic, as illus-
trated in Figure 6. In this example, by looking only at the reduced precision and decimated meshes for
primary variables, φ and B, the main features appear to be preserved. However, when computing derived
variables, in this case the fluid velocity, VF , the features are not preserved using a uniform decimation
scheme. This highlights the imperative to understand the implications of reduced data representations

Full

Reduced
Precision

and
Adaptive

Decimation

Reduced
Precision

and
Uniform

Decimation

B

φ

∇φ×B
|B|

Figure 6. An example where features are preserved in the primary variables across different types of data
reduction, but are lost when the derived variable is computed
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1 Digit Precision 3 Digit Precision 6 Digit Precision

Full
Section

Detail
Section

Figure 7. Poincaré plots using differing levels of precision in the magnetic field. The original data are
shown in blue, and the reduced data are shown in red

on down stream analysis and visualization operations, and the unanticipated implications of reduced on
data.

The magnetic field, B, is a fundamental driving mechanism in a fusion device. There are a number of
ways to analyze and visualize the magnetic field in a fusion simulation, but one of the most common is by
using particle advection based techniques. In particle advection methods, a set of massless particles are
traced through the mesh by the vector field. As the magnetic field in a tokamak is cyclical, one common
analysis technique is the Poincaré, or puncture plot. Each particle is traced through the vector field, and
each time it intersects a plane perpendicular to the field, the intersection point is marked. Since each
particle travels along a magnetic surface, after the particle has circulated enough, a 2D representation of
the magnetic surface can be seen.

The images in Figure 7 show Poincaré plots of several reduced versions of the magnetic field. The
full data are shown in blue, and the reduced data are shown in red. The first row shows the entire Poincaré
plot, and the second row shows a zoomed in section. As shown in the far left column, a single digit of
precision produces results with significant errors, particularly near the center of the plasma. However,
using only three digits of precision produces results that are very good visual approximations of the full
data.

Conclusions and Future Work

The growing disparity between compute and I/O on HPC systems will require simulation codes
to radically alter how results are output and analyzed, and how scientific information is obtained. This
transformation will require simulations to compute and output analysis and visualizations that are greatly
reduced in size and complexity. These reduced outputs include a wide variety of data, including results
that are more easily analyzed like images, movies, plots and graphs, as well as outputs that require
post-hoc processing to understand, such as data summaries, and mesh-based data. At times, additional
downstream processing is required in order to fully understand output results.

In situ and in transit processing methods will play a critical role for both categories of outputs
mentioned above. For situations where a priori knowledge is available, these outputs should be computed
in situ and output to disk. For situations where a priori knowledge is not available, and post-hoc analysis,
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Figure 8. Current and expected I/O in bytes per 1 Million FLOPS. Data derived from forecasts on past,
current and future HPC systems [12, 25, 31]

visualization, and processing are required, in situ and in transit methods will play a crucial role in
producing integrity preserving reduced data that can be analyzed later. Because all the data are available,
in situ methods play a crucial role in performing data reductions with specified error bounds. These error
bounds should be valid for the simulation variables which are saved, as well as for post-hoc operations
on data that are anticipated on the scientific workflows associated with the simulation.

While the growing disparity between compute and I/O is a reality, there is still significant I/O
capability in current and future HPC systems, and efforts should be taken to ensure that a maximum
amount of information is saved. The challenge is determining the proper set of data to be saved. As
shown above in Figure 8, the expected trend for I/O is one byte per one million floating points operations
on an exascale computer. The challenge then becomes to make sure that each byte written accurately
represents the information produced from the one million floating point operations. In situ methods will
play a critical role in determining the proper byte to be output. In transit methods, where data staging is
used, will also play an important role in providing asynchronous computational capability. Additionally,
because data staging nodes use a separate set of resources, analysis and visualization algorithms that
require communication can operate on reduced data much more efficiently, and with a limited impact on
the simulation.

Because of the breadth of issues involved, solutions to these problems will require collaborative
research between a number of disciplines, including applied mathematics, analysis, visualization and
middleware.

From a visualization perspective, a better understanding is required of the errors bars associated
with operations on data, and how these errors propagate through visualization and analysis workflows.
The data models for visualization tools needs to be expressive enough to represent data in new and
unique forms. For example, native operations on data streams with compressed, or reduced precision
data, efficient operations for variables that are on different meshes.

To address the widening of the memory hierarchy on HPC systems, projects like SIRIUS, in con-
junction with middleware systems like ADIOS, are working to optimize the placement of data. SIRIUS
aims to place the most valuable data in memory locations that are easily accessible, and data that are less
important are pushed down the memory hierarchy, and eventually to long term storage systems, such
as tape. Collaborations with this type of system would involve reduced, approximated representations
in faster memory and the ability to pull up increasingly more accurate representations of the data as
needed. Analysis and visualization processes should work seamlessly in these types of environments to
operate on, and meet the error bars required by scientists. As such, developing the appropriate interfaces
between these different layers is an important research direction.
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We have demonstrated the advantage of these techniques through our work with the particle and
mesh data in the XGC1 fusion code. We have focused on techniques for reducing the data in ways that
preserve information for the scientists. For the particles we have shown how in transit processing can be
used to compute the bulk velocity field, which is a reduced representation of the particle data. For mesh
variables we have shown that care must be taken to reduce data in ways that preserve scientific informa-
tion. We have focused on eddy’s and features in the potential and fluid velocity field, and magnetic field
analysis using streamlines and Poincaré methods.

In Section 3 we have shown how data staging can be used to perform data reductions on particle
data in XGC1. Data staging proves useful in two distinct ways. First, the non-trivial data reduction task
can be performed asynchronously, and not interfere with the simulation. Second, the communication
required to derive the bulk velocity field can be done much more efficiently on a smaller set of nodes.
We have developed these techniques using small runs of XGC1 on a moderately sized cluster. These
small runs allowed us to operate on all of the simulation particles. A full production run of XGC1 on an
HPC system would produce significantly more particles than could processed in a staging environment.
For a full production run a subset of particles would be required that is statistically equivalent to the
entire set of particles. In particular, given a total of N simulation particles, we need a query that will
return a set of M (where M << N) particles uniformly distributed within the spatial extents of the
simulation. Because the particles move at each time step, the representative set of particles must be
periodically recomputed. As a result we will need methods for determining the quality of the particle
subset, and deciding when it is required to recompute. We are currently collaborating with the ADIOS
project to develop such particle queries in order to facilitate production runs on HPC systems. We are
also working to determine the appropriate interface between the visualization tools and the middleware
for these types of operations.

In Section 4 we have shown how reduced representations of XGC1 data can be used in visualiza-
tion, and the unforseen issues that arise on derived quantities. Resolution of these issues will require a
significantly better understanding of data reductions, and the propagation of errors. To formalize these
ideas, we must understand the mathematical implications of these reductions, and be able to provide
error bounds on the use of these reduced data under a variety of operations. These include simple oper-
ations like sum, difference, product and division, as well more complex operations like cross product,
gradient, and curl. With a better understanding of the relationship between errors on input data, and
operations in complex workflows, scientists can accurately specify the requirements for their analyses,
and be confident in the results derived using reduced data.

From an analysis and visualization perspective, we need data models that provide the flexibility
to operate on reduced data in a zero-copy paradigm. Tradeoffs exist between converting reduced data
streams to floating point data and performing on-the-fly conversions as data are used. We are currently
exploring how the data model in VTK-m [21] [22] [24] can be used to address these issues and explore
the tradeoffs of reduced data size and efficiency of computations, particularly as it relates to computa-
tions on accelerators.

We have shown the clear benefits to using an adaptive decimation technique for XGC1. We are
actively exploring techniques for other codes, as well as more generalized methods. When performing
operations with variables on different meshes, collaborative research with applied mathematics is needed
on how best to calculate the derived quantities in a way that minimizes the error. Solutions might be to
interpolate from one mesh to another, or to derive a new mesh that meets the error requirements.

Finally, all of this work takes place in context of a middleware system that manages and coordinate
the movement of data within the HPC system. We are actively collaborating with the ADIOS and SIRIUS
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projects that provide methods to manage data across the the memory hierarchy, as well as the data staging
capabilities in order to provide asynchronous processing. We are also collaborating with these projects
to explore the proper interfaces between analysis and visualization components, and the middleware
system components.
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Analysis of CPU Usage Data Properties and their possible

impact on Performance Monitoring
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CPU usage data (CPU user, system, iowait etc. load levels) are often the basic data used

for performance monitoring. The source of these data is the operating system. In this paper we

analyze some properties of CPU usage data provided by the Linux kernel. We examine the kernel

source code and provide test results to find which level of accuracy and precision one may expect

when using CPU load level data.

Keywords: performance monitoring, sensor properties, sampling rate, CPU usage, CPU load

level.

Introduction

Today supercomputers show very impressive performance for their peak values and with

some benchmarks like LINPACK [1]. Other benchmarks like HPCG [2] as well as real-world

applications produce much worse results, often not reaching even 10% of peak performance.

Performance monitoring is one of the methods used to evaluate applications while they

are running and determine the obstacles to higher sustained performance of applications. The

idea of performance monitoring is to collect metrics which describe the state of the application

being run. These data are collected for all compute nodes running the given application. Some

performance monitoring approaches [3] try to analyze metrics obtained from components which

are shared for the whole system and correlate those data to specific applications.

The source of metrics data, which we call sensors, may be hardware like performance coun-

ters in modern CPU, or software, like various data provided by the operating system such as

CPU usage data, load average, memory usage etc. Some sensors may be somewhere on the bor-

der between software and hardware like InfiniBand interface counters, which are maintained by

InfiniBand card firmware.

There are questions about the properties of such sensors and their suitability for performance

monitoring in different modes. Of course all those sensors are widely used for a long time for

performance monitoring and give useful data which lead to useful results in application analysis.

But as performance monitoring systems evolve we may encounter some limitations of such sensors

which may lead to their unsuitability for new approaches or new modes of usage. For example

SuperMon [4] can achieve up to 6000 Hz sampling rate while reading Linux kernel data from

/proc [5] filesystem. But do we need such sampling rate and are the results obtained at such a

high rate reliable? Will such high rate affect the precision of the data?

This question is not widely discussed for every type of data used for performance monitoring.

When performance counters were introduced in processors, hardware performance counters were

analyzed [6–9] from the point of accuracy, predictability, reproducibility and so on. Paper [10]

compares two modes of using performance counters and compares the results obtained in these

modes. A discussion about Load Average data in Linux kernel aroused on mailing lists [11]. This

discussion resulted in some patches on kernel source code to make Load Average results more

accurate, but it is not clear if today kernel load average data are accurate enough, and we found

no such analysis for sensors other than performance counters and load average.
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CPU usage data are obtained from Linux kernel and are widely used for performance mon-

itoring. In this paper we try to analyze Linux kernel source code and make some testing to

evaluate CPU usage data properties which are vital for analyzing application behavior.

The paper is organized as follows. Section 1 describes how the CPU usage data in their

conventional form are obtained from the kernel. Section 2 gives results of analysis of Linux

kernel source code in parts which relate to CPU usage data. Section 3 provides results of testing

supporting the results which were given in Section 2. The last section contains the conclusion.

1. How CPU usage data are obtained

The Linux kernel gives CPU usage data in /proc/stat file. For every active CPU in the

system the kernel gives the amount of time, measured in 1/100 ths of a second, that the sys-

tem spent in different modes of execution [5] since boot. These different modes are: user mode

(running user processes), user mode with low priority (nice), system mode (running kernel),

idle, iowait (idle while waiting for IO request to complete), irq (processing interrupts), softirq

(processing software interrupts) and a few other modes related to virtualization. To obtain CPU

usage in the form we are accustomed to with top or other utilities (we call it CPU load level

hereafter), one should take the difference in one mode values between two successive measure-

ments and divide it by the sum of such differences for all modes. If T i
m is the time spent in m-th

mode at time moment i (these values are given in /proc/stat), than the CPU load level Lm

for the mode m is

Lm =
T i
m − T i−1

m∑
m

(T i
m − T i−1

m )

One can also try to get CPU load level by dividing T i
m−T i−1

m by the time difference between

i and i−1 time moments, but as obtaining precise time is quite an expensive operation involving

system call, this method is usually not used.

One consequence of this calculation method is that CPU usage values are discrete in nature.

The number of different values they can take depends on sampling interval. The more time

passes between successive samples, the more levels CPU usage value can take. top utility gives

us CPU usage percent with precision of 1 decimal place (1000 possible different values in range

from 0 to 100%). The data supplied by the kernel which are used for calculations are measured

in 1/100 ths of a second; to have real precision of 1/10 th of percent for CPU load level value

we should take the measurements more rarely than once in 10 seconds. With more frequent

sampling the precision of CPU load level will be less than 1 decimal place.

2. Source code analysis

We examined the Linux kernel source code to find how these values (time spent in different

modes) are calculated.

These per-CPU values (and per-process values for time spent in user and system mode, too)

are updated during timer interrupt processing. Timer interrupt frequency is a parameter set

during kernel compilation (it is named HZ). The most common values for this parameter are 1000

and 250 (timer interrupt is raised 1000 or 250 times per second, respectively). When executing the

timer interrupt handler (generally it is executed on every CPU with some exceptions described

later), the kernel finds the mode in which the given CPU was before switching to interrupt
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handler and which process was running. The whole tick is accounted to the mode and to the

process which was active before the CPU received timer interrupt. The modes which were active

in period between timer interrupts are not accounted in any way.

Internally, CPU usage times are calculated in kernel as numbers of 1/HZ second time inter-

vals. When the results are returned to the user, they are scaled to 1/100 ths of a second. Such

rescaling may introduce some rounding errors but they are not expected to be high.

When NO_HZ [12] kernel compilation parameter is active (true by default for modern SMP

kernels), timer interrupts are not delivered to idle CPUs. When CPU usage values are requested,

idle and iowait times are calculated at the moment of the request by finding the time since the

given CPU became idle. When the CPU comes out of idle state, the values for idle and iowait

are calculated and saved to accounting data structures.

The outcome of this calculation method is that the CPU usage times for user, system, and

nice modes are updated only on timer interrupts and that some frequent changes from running

to idle or between other modes may pass unnoticed by the accounting code.

3. Experiments

3.1. Measuring interval between CPU usage data changes

Our first experiment was designed to prove that CPU usage times for user, system, and

nice modes are updated only on some periodic events. To check this we performed a test which

was constantly requesting CPU usage time and calculated time which passed between successive

CPU usage changes. The results are presented in fig. 1. Time interval in milliseconds between
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Figure 1. Distribution of time between CPU usage values increments for user, system, and nice

modes

CPU usage increments is on X-axis, and number of increments that occurred at these intervals

is shown on Y-axis. We see that most of CPU usage values updates happen at intervals that are
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multiples of 1 millisecond, which is 1/HZ second (HZ=1000 for OS installed on our test machine).

The peak at 10.0 milliseconds (1/100 th of a second) is caused by the fact that the data exported

to user is rescaled to units of 1/100 ths of a second.

The load for the test was produced by two threads both bound to the same CPU. One thread

was mostly iterating in an empty loop and sometimes performed nanosleep [13] system call with

incorrect input parameters, thus creating a bit of system mode load. nanosleep system call

delays the calling process for a time measured in nanoseconds, but in fact nanosleep resolution

is rougher than nanosecond. Argument to nanosleep is a structure with separate members for

seconds and nanoseconds to sleep, so when the nanoseconds member is set to a value higher than

109, the value is incorrect and the call returns immediately, quickly switching to system mode

and back. The second thread was mostly performing nanosleep call with incorrect parameter

thus creating mostly system mode load and sometimes making some iterations in an empty loop.

This mix of user mode and system mode load on single CPU made system update values for

user, and system modes happen frequently.

When we changed the test to look for intervals between increments of CPU usage data

for all modes (thus including idle, iowait, irq, softirq and virtualization-related modes into

consideration), the results changed, see fig. 2. CPU usage data increments happen mostly at

intervals that are multiples of 0.2 millisecond, which definitely can’t happen only on timer

interrupts as they are known to happen at intervals of 1 millisecond.
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Figure 2. Distribution of time between CPU usage values increments for all modes

The load for this test was produced by a thread with mixed user mode load and idle state.

The thread performed an empty loop (for user mode load) and made nanosleep call to introduce

some idle time for the CPU to allow idle CPU usage values to be incremented.

We can’t explain why the intervals between CPU usage value increments are the multiples

of 0.2 milliseconds. We propose that this value is somehow connected with hardware timer

resolution, but this requires further research.

K. S. Stefanov, A. A. Gradskov

2016, Vol. 3, No. 4 69



3.2. Estimating the accuracy of CPU usage data

Our second experiment tries to estimate the error introduced by the fact that CPU state (for

user and system mode) is examined only when timer interrupt occurs and no changes between

interrupts are accounted for. The test pseudocode is shown in fig. 3

for (int j = 0; j < 10000000; ++j)

nanosleep(&delay, NULL);

Figure 3. Test pseudocode

The test is just a nanosleep call in a loop. We use different values for the delay. To have

zero-length delay we use an incorrect value so nanosleep returns immediately. Thus we can

measure the time needed for performing all the work except sleep itself. The results are shown

in fig. 4 and fig. 5, and the data with some uninteresting points omitted are given in tab. 1.

Run time for different delays is shown in fig. 4. The ‘Real’ line is the total run time for

the test measured with the time [14] Linux utility. The ‘Estimated’ line is the requested delay

length multiplied by the number of iterations. Both lines are parallel for delays greater than

200 microseconds, so we may assume that the real delay introduced by nanosleep is quite

accurate for such delays. For delays less than 200 microseconds the real delay seems to be less

accurate, but still it is approximately equal to the requested delay.
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Figure 4. Real and estimated runtime for the delay test

But the values measured for the times the test program spent in user and system mode

during execution are not so accurate (see fig. 5). We expected beforehand that the values for

user and system time will be the same as in a no-delay run (0.29 and 0.32 seconds, respectively),

as user mode and system mode work done by the processor seem to be independent of the delay
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value. But the results are not so trivial. For the delays greater than 200 microseconds user time

is approximately constant, but for the lesser delays the values are a bit chaotic. For system time

the results are even more strange. System time is approximately constant for the delays in range

from 200 to 700 microseconds, but has unpredictable values outside that range.
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Figure 5. User and system mode times for the delay test

The only explanation we see is that some of the delays are somehow synchronized with timer

interrupts, and as check for the CPU mode is done on timer interrupts, the results for user and

system time depend on the fraction of delays which overlap with timer interrupts.

For example, if we compare a no delay run and a run with 90-microseconds delay, the

same loop with the same system call is accounted 30 times more for user time when inserting

a real sleep, more than 7 times for system time. For this example we chose a delay value to

have the overaccounting effect high. But how high is the probability that such synchronization

occurs in real world applications? Of course this question demands further research, but at

least scheduling events are done in timer interrupt handler, and it is known that in networks

seemingly unconnected independent events tend to synchronize [15]. As HPC applications use

network for communication, we may expect similar effect as well.

Conclusion and Future Work

We analyzed CPU usage data provided by the Linux kernel and how CPU load level is

calculated based on these data. The result is that to have the precision of CPU load level

percentage of 1 decimal place (when CPU load level is measured in percent of full load) one

should sample CPU usage data no more frequently than once every 10 seconds. CPU usage data

are not continuously updated, they are updated on timer interrupt which occurs HZ (common

values are 250 or 1000) times per second. When calculating accounting data for user, system,
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Table 1. The results of the delay test

Delay, µsec Run time, sec User time, sec System time, sec

0 0.62 0.29 0.32

1 541.05 2.99 17.98

5 586.24 1.55 18.69

10 631.19 0.77 21.13

20 730.32 2.31 18.51

30 831.06 2.96 17.46

40 927.86 2.15 10.88

50 1036.01 2.23 10.8

60 1128.32 1.8 10.81

70 1454.09 6.07 29.1

80 1681.41 7.16 35.08

90 1690.68 6.15 29.82

100 1789.82 6.13 29.62

150 2446.33 8.05 38.35

200 3211.62 10.24 48.81

700 8246.95 10.17 50.38

750 8741.05 10.69 57.66

1000 11329.95 11.16 61.4

and nice modes, only the state of the system at the moment of the interrupt is examined, no

changes in between the interrupts are accounted. Our experiments show that the same amount

of work may be measured very differently when delays are introduced between work periods.

Our future task is to run more elaborate tests and find real application examples when delays

between periods of work (calculations) affect the accuracy of CPU load level measurements. We

think that it will be especially interesting if the delays are done by waiting for communications

which is quite a common case for HPC applications.

The reported study was supported by the RFBR research project No. 16-07-01121.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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Parallel algorithm for 3D modeling of monochromatic acoustic

field using integral equations
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We present a parallel algorithm for solution of the three-dimensional Helmholtz equation in

the frequency domain using volume-integral equations. The algorithm is applied to seismic forward

modeling. The method of integral equations reduces the size of the problem by dividing the geologic

model into the anomalous and background parts, but leads to a dense system matrix. Tolerable

memory consumption and numerical complexity were achieved by applying an iterative solver,

accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier

transform. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used

to speed up the equation system solver, and also for parallelizing across multiple sources. Practical

examples and efficiency tests are presented.

Keywords: integral equations, acoustics, seismics, MPI, OpenMP.

Introduction

The integral equations method (IE) is a well-known wavefield modeling technique [2, 9]. It

has a number of attractive properties. It requires discretization for the anomalous volume only.

It drastically reduces the size of a problem in many applications. The IE formulation does not

require boundary conditions. It also can be naturally used to compute the Fréchet derivatives

and for this reason it is very attractive for inverse problems.

The IE method is based on the discretization of the original integral equation and results in

a complex-valued dense matrix. In a straightforward implementation, the computational burden

becomes prohibitive for large three-dimensional problems, encountered in seismology. Yet some

studies, many of them for the two-dimensional solution, have been reported [4–6, 8, 11]. Recently,

the full IE method, accompanied by an iterative solver, was applied to the visco-acoustic three-

dimensional modeling [1]. The authors of [1] have implemented Green’s integral operator for the

free space background model via the Fourier transform (this idea itself is quite old). An effective

matrix-free implementation allowed them to apply the BiCGStab method [10] to the resulting

system of linear equations with the cost per iteration of O(NlogN), where N is the number of

model cells. They showed that a realistically large acoustic model can be simulated almost as

effectively with the IE method, as it is for finite-different schemes.

In this study, we design a parallel version of the solver for the half-space host medium, and

study the efficiency of parallelization.

1. Problem formulation

We consider a 3D model consisting of a half-space host medium and an anomalous volume

D, confined within the lower half-space. The host medium has piece-wise constant density and

acoustic velocity: ρ0 and c0 for the upper half-space; ρb and cb for the lower half space. The

anomalous volume has the same background density ρb, and arbitrary distribution of velocity

c = c(r), where r is the position vector. Let ω be the circular frequency. Assuming a lossless
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medium, we define the anomalous velocity as ca = c− cb, wavenumber as k = ω/c, background

wavenumber as kb = ω/cb and parameter χ = 1/c2 − 1/c2b . The pressure response p to a point

source at a given frequency ω satisfies to the Helmholtz equation, which can be transformed to

the following integral equation:

p− G[ω2χp] = pb, (1)

where pb is the background field, G is the integral operator, defined for any scalar field f ,

G[f ] =

∫

D

g(r|r′)f(r′)dV ′, (2)

where g is the background Green’s function.

Let the anomalous volume be covered by N = NxNyNz cubical cells. After discretization

we receive the following matrix equation:

Au = b, (3)

where u = (p1..pN ) is the vector of N unknown values approximating p in the center of each

cell, b = (pb,1..pb,N ) are known values of the background field in each cell, A is the scattering

matrix,

A = (I −GX), (4)

where I is the identity matrix, X = diag(χ1..χN ) is a diagonal matrix formed by contrasts for

each cell, G contains integrals of Green’s function over cells,

Gmn =

∫

Dn

g(rm|r′)dV ′, m, n = 1..N. (5)

Matrix A is a dense complex-valued non-hermitian matrix with real-valued spectrum. Its

condition number substantially improves at lower frequencies since in this case matrix spectrum

has a weak dependence on the grid step size and velocity model. These properties make the IE

equation system more attractive for iterative solution than that of the finite-difference method.

To solve system (3) we use the unpreconditioned BiCGStab iterative solver. An effective

implementation of the matrix-vector multiplication is critical for iterative solutions.

In case of a layered background medium Green’s function g has lateral symmetry, i.e.

g(r|r′) = g(x− x′, y − y′, z, z′). (6)

Thus, for interior points (r ∈ D),

Inml =

Nz∑

k=1




Ny∑

j=1

Nx∑

i=1

G(xn − xi, ym − yj , zl, zk)f(xi, yj , zk),


 (7)

where Inml is the value of G[f ] for a cell located at (xn, ym, zl). The expression inside the outer

parenthesis is essentially a 2D convolution for given k and l. Being implemented with 2D FFT,

it takes O(NxNylog(NxNy)). This should be performed N2
z times (for every k-l combination).

Finally, the total complexity for matrix-vector multiplication in the case of a layered host model

is O(NNzlog(NxNy)). The memory requirements is O(NNz), though this amount can be reduced

to O(N) at the expense of increased running time if the values of G are calculated on-the-fly.
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2. Parallelization

Our code exploits three levels of parallelism: parallel execution of the matrix-vector product,

parallel system solution, and data decomposition across multiple acoustic sources (Figure 1).

Figure 1. Layers of parallelism on a hybrid cluster

The BiCGStab solver requires four inner products and two matrix-vector products per

iteration. The inner products are easily parallelized, though in distributed-memory systems some

collective communication is required. In this study we have used the standard MPI collective

communication routines. This overhead is negligible for our typical tasks.

The matrix-vector multiplications are easily parallelized within a single computational node

with OpenMP. On a distributed-memory system, this operation becomes the most problematic

part, because each model cell is connected with all other cells through the integral operator. No

matter what distribution scheme is selected (splitting the matrix into strips across MPI processes

with subsequent assembling the resulting vector on a single MPI process, or splitting the matrix

into vertical strips and subsequent reduction of resulting vectors on a single MPI process), when

the matrix-vector product is computed, it must be sent to all other MPI processes to update their

copies. It can be expected that this level scales to O(logP ) where P is the number of processes

that communicate during the system solutions [7]. This may create huge network traffic for large

P .

The highest level of parallelism is the distribution of different seismic sources across several

MPI groups. In our tasks a forward problem typically has to be solved for many sources (several

thousand) for the same model. Naturally, the available pool of MPI processes is divided into

several groups. All processes in a group have their copies of model parameters and simultaneously

work on a subset of sources, processing them one by one.

3. Numerical tests

In this section we present the results of numerical experiments. We used two types of hard-

ware. All tests, involving several computing nodes, such as those shown in Figure 2a and Fig-

ure 2b (labels ”Type 1”), have been performed on a hybrid cluster. Each node consisted of

twelve-core Intel Xeon (Westmere X5660) processors running at 2.8GHz and was equipped with

24Gb RAM and QDR Infiniband interconnect. All tests on a shared-memory system (Figure 2b,

labels ”Type 2”, and Figure 2c) have been performed on a workstation with a single twelve-core

Intel Xeon E5-2620 processor running at 2.10GHz.

The highest level of parallelism, i.e. the distribution of seismic sources across different MPI

groups, should scale almost linearly in K, where K is the number of equally-sized MPI groups.

In our tests, which involved a moderate number of nodes, the overhead can be neglected. For
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Figure 2. Scalability tests. (a) - distribution of sources across MPI groups, (b) - system solution

with several MPI processes, (c) - matrix-vector parallelization with OpenMP threads

the first test we selected a model with 2;097;152 cells (128 cells in each direction). There were

32 seismic sources, located at the surface. The size of a single MPI group was constant and set

to 1. We ran computations with 1, 4, 8, 16, and 32 nodes, i.e. each node had to solve 32, 8, 4,

2, and 1 forward problems, respectively. The resulting speedup (Figure 2a) confirmed, that the

task decomposition has produced a good acceleration.

In the next test, only one forward problem (a single source) was solved. The iterative solver

ran in parallel on varying number of MPI processes. The curve labeled ”Type 1” (Figure 2b)

was obtained on a cluster, on which one MPI process was running on a single node with 12

cores. The curves named ”Type 2” have been obtained on a single 12-core node, where each

core was running one MPI process. For this test we used four different models, in which the

number of cells varied from 40;960 cells to 2;097;152 cells (see the plot legend). The speedup

rapidly deteriorates as the number of processes per system grows. For the largest model, the

computational time dominates the communication time until 16 process per system. For smaller

models the speedup began to deteriorate at lower K.

In the third test, we studied the performance of the matrix-vector multiplication leveraged

with the shared-memory parallelization. There were three runs with three models of different

sizes (Figure 2c). The resulting speedup curves revealed fairly good scaling versus the number

of cores. The speedup for the smallest model suffered from the fact that the background field

pb was computed on the master thread. However, for the larger models where the matrix-vector

operations dominated, the efficiency was above 86%.

Conclusion

We have designed a parallel solver for 3D frequency-domain modeling of an acoustic field.

The equation system is solved iteratively; the matrix-vector product is performed via FFT. It

makes the computational complexity and memory requirements tolerable for realistically large

problems. We have extended this approach by parallelizing the code at three levels: the dis-

tribution of seismic sources across different groups of MPI processes, solution of the equation

system with several MPI processes, and parallelization of the matrix-vector multiplication over

OpenMP threads.

We have studied the efficiency of all three levels of parallelism. The parallelization of the

system solution has been found to be the most difficult part, because the system matrix is

dense. This limited the speedup of this level. Presumably, any algorithms, based on the volume
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integral equations would have similar problems. On the other hand, coarse-grained (distribu-

tion of sources) and fine-grained parallelism (matrix-vector product) have good scalability. We

expect, that the presented approach might be quite effective on CPU-GPU clusters, especially

in case of multi-frequency and multi-source simulation, which are often encountered in seismic

applications.

The presented results confirm that the integral-equation modeling can be applied to realistic

problems, and is quite promising for seismic applications involving multiple sources/frequencies.
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