Supercomputer Methods of Ultrasound Tomographic Imaging in NDT Based on Lamb Waves

Authors

DOI:

https://doi.org/10.14529/jsfi250403

Keywords:

supercomputer, mathematical modeling, guided wave tomography, inverse problems, Lamb waves

Abstract

This article concerns the developing of supercomputer methods for solving inverse problems of ultrasonic tomography in application to nondestructive testing of thin plates using Lamb waves. Such problems are computationally expensive, as longitudinal, shear, and other waves propagate in solids, requiring the use of vector elastic models of wave propagation. Iterative methods for solving the inverse problem have been developed. The methods are based on gradient descent methods of minimizing the residual functional. Efficiency of the proposed algorithms is illustrated on model problems. The field of wave tomography, which is currently under development, requires powerful computing resources. Parallel computations in this study have been performed on generalpurpose processors of the Lomonosov supercomputer complex. Solving the Helmholtz equation is the core element of the developed algorithms for solving inverse problems of wave tomography. The most demanding computations involve solving linear equations with large-scale sparse matrices using LU-decomposition method. The algorithms were implemented using linear algebra libraries with serial and parallel code. Effectiveness, scalability and performance of the method has been evaluated on CPU computing platforms.

References

Ruiter, N.V., Zapf, M., Hopp, T., et al.: USCT data challenge. Proc. SPIE. Medical Imaging: Ultrasonic Imaging and Tomography 10139, 101391N (2017).

Duric, N., Littrup, P., Sak, M., et al.: A novel marker, based on ultrasound tomography, for monitoring early response to neoadjuvant chemotherapy. J. Breast Imaging 2(6), 569–576 (2020). https://doi.org/10.1093/jbi/wbaa084

Wiskin, J., Borup, D., Andre, M., et al.: Three-dimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. J. Acoust. Soc. Am. 133(5), 3229–3229 (2013). https://doi.org/10.1121/1.4805138

Lucka, F., Pérez-Liva, M., Treeby, B.E., Cox, B.T.: High resolution 3D ultrasonic breast imaging by time-domain full waveform inversion. Inverse Problems 38(2), 025008 (2022). https://10.1088/1361-6420/ac3b64

Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency ultrasonic tomography: Mathematical methods and experimental results. Moscow University Physics Bulletin 74(1), 43–51 (2019). https://doi.org/10.3103/S0027134919010090

Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Supercomputer technologies in tomographic imaging applications. Supercomputing Frontiers and Innovations 3(1), 41–66 (2016). https://doi.org/10.14529/jsfi160103

Goncharsky, A.V., Kubyshkin, V.A., Makan, I.I., et al.: Supercomputer simulations in designing medical ultrasound tomographic imaging devices. Lobachevskii Journal of Mathematics 45(7), 3038–3050 (2024). https://doi.org/10.1134/S199508022460393X

Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Multistage Iterative Method to Tackle Inverse Problems of WaveTomography. Supercomputing Frontiers and Innovations 9(1), 87–107 (2022). https://doi.org/10.14529/jsfi220106

Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Computational Efficiency of Iterative Methods for Solving Inverse Problems. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds.) Supercomputing. RuSCDays 2023. Lecture Notes in Computer Science, vol. 14388, pp. 35–46. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-49432-1 3

Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Parallel CPU- and GPU-algorithms for inverse problems in nondestructive testing. Lobachevskii Journal of Mathematics 39(4), 486–493 (2018). https://doi.org/10.1134/S1995080218040030

Yang, P., Brossier, R., Metivier, L., Virieux, J.: A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium. Geophys. J. Int. 207, 129–149 (2016). https://doi.org/10.1093/gji/ggw262

Virieux, J., Asnaashari, A., Brossier, R., et al.: An introduction to full waveform inversion. Society of Exploration Geophysicists 6, R1-1–R1-40 (2014). https://doi.org/10.1190/1.9781560803027.entry6

Pan, W., Innanen, K.A.: Elastic full-waveform inversion: density effects, cycle-skipping, and inter-parameter mapping. CREWES Research Report 28, 62.1–62.18 (2016).

Li, Y., Gu, H.: Full waveform inversion for velocity and density with rock physical relationship constraints. Journal of Applied Geophysics 167, 106–117 (2019). https://doi.org/10.1016/j.jappgeo.2019.04.005

Lechleiter, A., Schlasche, J.W.: Identifying Lamé parameters from time-dependent elastic wave measurements. Inverse Problems in Science and Engineering 25(1), 2–26 (2017). https://doi.org/10.1080/17415977.2015.1132713

Plessix, R.E.: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167, 495–503 (2006). https://doi.org/10.1111/j.1365-246X.2006.02978.x

Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Inverse problems of ultrasonic tomography in nondestructive testing: Mathematical methods and experiment. Russian Journal of Nondestructive Testing 55(6), 453–462 (2019). https://doi.org/10.1134/S1061830919060020

Huthwaite, P., Simonetti, F.: High-resolution guided wave tomography. Wave Motion 50(5), 979–993 (2013). https://doi.org/10.1016/j.wavemoti.2013.04.004

Rao, J., Ratassepp, M., Fan, Z.: Guided Wave Tomography Based on Full Waveform Inversion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 63(5), 737–745 (2016). https://doi.org/10.1109/TUFFC.2016.2536144

Zhao, X., Rose, J.L.: Ultrasonic guided wave tomography for ice detection. Ultrasonics 67, 212–219 (2016). https://doi.org/10.1016/j.ultras.2015.12.005

Tong, J., Lin, M., Wang, X., et al.: Deep learning inversion with supervision: A rapid and cascaded imaging technique. Ultrasonics 122, 106686 (2022). https://doi.org/10.1016/j.ultras.2022.106686

Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, Vol. 7: Theory of Elasticity. Pergamon, Oxford (1995).

Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–629 (1977). https://doi.org/10.1090/s0025-5718-1977-0436612-4

Viktorov, I.A.: Lamb’s Ultrasonic Waves. Soviet Physics. Acoustics 11(1), 1–18 (1965).

Natterer, F., Sielschott, H., Dorn, O., et al.: Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math. 62(6), 2092–2113 (2002). https://doi.org/10.1137/S0036139901386375

Virieux, J.: P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference method. Geophysics 51(4), 889–901 (1986). https://doi.org/10.1190/1.1442147

Lisitsa, V.V.: Numerical Methods and Algorithms for Calculating Wave Seismic Fields in Media with Local Complicating Factors. Doctoral Thesis in Physics and Mathematics (Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, 2017). https://www.dissercat.com/content/chislennye-metody-i-algoritmyrascheta-volnovykh-seismicheskikh-polei-v-sredakh-s-lokalnymi, accessed: 2023-07-10

Belyaev, A.S., Goncharsky, A.V., Romanov, S.Y.: Development of Numerical Algorithms for Solving the Direct Problem of Propagation of Ultrasonic Waves in Thin Plates. Numerical Methods and Programming 24(3), 275–290 (2023). https://doi.org/10.26089/NumMet.v24r320 (in Russian)

Eigen as a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. https://eigen.tuxfamily.org/, accessed: 2025-11-14

Voevodin, Vl., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

Vetter, J., Chambreau, C.: mpiP: Lightweight, Scalable MPI Profiling (2005). http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiP %20Lightweight,%20Scalable%20MPI%20Profiling.pdf

Description of Top-Down approach. https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysismethod.html, accessed: 2025-10-15

Downloads

Published

2026-01-21

How to Cite

Belyaev, A. S., Goncharsky, A. V., Romanov, S. Y., & Voevodin , V. V. (2026). Supercomputer Methods of Ultrasound Tomographic Imaging in NDT Based on Lamb Waves. Supercomputing Frontiers and Innovations, 12(4), 34–51. https://doi.org/10.14529/jsfi250403