Novel Oxygen-Deficient Centers and Other Intrinsic Defects in Amorphous SiO2: Quantum Molecular Dynamics Simulations
DOI:
https://doi.org/10.14529/jsfi250407Keywords:
quantum molecular dynamics, amorphous SiO2, point defects, oxygen deficiency, oxygen vacancy, ODCAbstract
The formation of stoichiometric and oxygen-deficient amorphous states of a-SiO2 from a corresponding crystal was simulated using the melting-quenching procedure. To simulate the entire process, quantum molecular dynamics implemented in the VASP program and supercells containing 64 Si atoms and 128 O atoms were used. This size allows modeling the formation of rings with a small number of Si–O–Si bridges. At given heating and cooling rates of 0.5 K/fs, the transformation of the crystal’s atomic network into a disordered structure was studied depending on the melt stabilization temperature. It is shown that despite the strong change in the topology of the atomic network in a-SiO2 compared to the crystal, the bulk of the atoms constitute a continuous network of SiO4 tetrahedra linked by oxygen vertices. Local disturbances of this arrangement of atoms are intrinsic point defects of SiO2, which are given special attention. It has been shown that most of the defects present in oxygen-deficient states are also present in stoichiometric states of a-SiO2. Along with the known intrinsic defects of SiO2, new defects were also identified, including those associated with oxygen deficiency. It is shown that for two generally accepted models of oxygen-deficient centers (ODCs) in a-SiO2, the energy of formation of an oxygen vacancy is significantly lower than the energy of formation of a twofold coordinated silicon atom. The point defects of a-SiO2 identified in this work create a foundation for the interpretation of experimental data on the radiation resistance of optical fibers, the effects of high-power laser radiation on optical coatings, and in microelectronics, where insulating layers based on a-SiO2 are used.
References
Dianov, E.M., Kornienko, L.S., Nikitin, E.P., et al.: Radiation-optical properties of quartz glass fiber-optic waveguides (review). Soviet Journal of Quantum Electronics 13(3), 274 (1983). https://doi.org/10.1070/QE1983v013n03ABEH004145
DiStefano, T.H., Eastman, D.E.: The band edge of amorphous SiO2 by photoinjection and photoconductivity measurements. Solid State Communications 9(24), 2259–2261 (1971). https://doi.org/10.1016/0038-1098(71)90643-0
Feigl, F.J., Fowler, W., Yip, K.L.: Oxygen vacancy model for the E10 center in SiO2. Solid State Communications 14(3), 225–229 (1974). https://doi.org/10.1016/0038-1098(74)90840-0
Friebele, E.J., Griscom, D.L., Stapelbroek, M., Weeks, R.A.: Fundamental defect centers in glass: The peroxy radical in irradiated, high-purity, fused silica. Physical Review Letters 42, 1346–1349 (1979). https://doi.org/10.1103/PhysRevLett.42.1346
Griscom, D.L.: Defect structure of glasses: Some outstanding questions in regard to vitreous silica. Journal of Non-Crystalline Solids 73(1), 51–77 (1985). https://doi.org/10.1016/0022-3093(85)90337-0
Griscom, D.L.: A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on selftrapped holes and how they can be controlled. Physics Research International 2013(1), 379041 (2013). https://doi.org/10.1155/2013/379041
Griscom, D.L., Mizuguchi, M.: Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica. Journal of Non-Crystalline Solids 239(1), 66–77 (1998). https://doi.org/10.1016/S0022-3093(98)00721-2
Hafner, J.: Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
Kitagawa, I., Maruizumi, T.: New intrinsic pair defects in silicon dioxide interface. Applied Surface Science 216(1), 264–269 (2003). https://doi.org/10.1016/S0169-4332(03)00379-9
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
Marsman, M., Paier, J., Stroppa, A., Kresse, G.: Hybrid functionals applied to extended systems. Journal of Physics: Condensed Matter 20(6), 064201 (2008). https://doi.org/10.1088/0953-8984/20/6/064201
Shiga, M., Hirata, A., Onodera, Y., Masai, H.: Ring-originated anisotropy of local structural ordering in amorphous and crystalline silicon dioxide. Communications Materials 4(1), 91 (2023). https://doi.org/10.1038/s43246-023-00416-w
Skuja, L.: Optical properties of defects in silica. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds.) Defects in SiO2 and Related Dielectrics: Science and Technology. pp. 73–116. Springer Netherlands, Dordrecht (2000). https://doi.org/10.1007/978-94-010-0944-7_3
Skuja, L., Tanimura, K., Itoh, N.: Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glassy SiO2. Journal of Applied Physics 80(6), 3518–3525 (1996). https://doi.org/10.1063/1.363224
Skuja, L.: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. Journal of Non-Crystalline Solids 239(1), 16–48 (1998). https://doi.org/10.1016/S0022-3093(98)00720-0
Skuja, L., Kajihara, K., Grube, J., Hosono, H.: Luminescence of non-bridging oxygen hole centers in crystalline SiO2. AIP Conference Proceedings 1624(1), 130–134 (2014). https://doi.org/10.1063/1.4900468
Skuja, L., Kajihara, K., Hirano, M., Hosono, H.: Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2. Physical Review B 84, 205206 (2011). https://doi.org/10.1103/PhysRevB.84.205206
Skuja, L., Streletsky, A., Pakovich, A.: A new intrinsic defect in amorphous SiO2: Twofold coordinated silicon. Solid State Communications 50(12), 1069–1072 (1984). https://doi.org/10.1016/0038-1098(84)90290-4
Sokolov, V.O., Sulimov, V.B.: Semi-empirical calculation of peroxy linkage in vitreous silicon dioxide. Physica Status Solidi (B) 142(1), K7–K12 (1987). https://doi.org/10.1002/pssb.2221420134
Strand, J., Kaviani, M., Gao, D., et al.: Intrinsic charge trapping in amorphous oxide films: status and challenges. Journal of Physics: Condensed Matter 30(23), 233001 (2018). https://doi.org/10.1088/1361-648X/aac005
Sulimov, A.V., Kutov, D.C., Grigoriev, F.V., et al.: Generation of amorphous silicon dioxide structures via melting-quenching density functional modeling. Lobachevskii Journal of Mathematics 41(8), 1581–1590 (2020). https://doi.org/10.1134/S1995080220080193
Sulimov, V.B., Sokolov, V.O., Dianov, E.M., Poumellec, B.: Photoinduced structural transformations in silica glass: the role of oxygen vacancies in the mechanism of formation of refractive-index gratings by UV irradiation of optical fibres. Quantum Electronics 26(11), 988 (1996). https://doi.org/10.1070/QE1996v026n11ABEH000857
Sulimov, V., Kutov, D., Sulimov, A., et al.: Density functional modeling of structural and electronic properties of amorphous high temperature oxides. Journal of Non-Crystalline Solids 578, 121170 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121170
Sulimov, V., Sokolov, V.: Cluster modeling of the neutral oxygen vacancy in pure silicon dioxide. Journal of Non-Crystalline Solids 191(3), 260–280 (1995). https://doi.org/10.1016/0022-3093(95)00293-6
Sulimov, V., Kutov, D., Sulimov, A., et al.: Study of the anomalous behavior of the a-HFO2 refractive index with increasing Si doping by quantum molecular dynamics simulation. Journal of the Optical Society of America B 40(10), 2643–2649 (2023). https://doi.org/10.1364/JOSAB.500520
Sulimov, V.B., Sushko, P.V., Edwards, A.H., et al.: Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz. Physical Review B 66, 024108 (2002). https://doi.org/10.1103/PhysRevB.66.024108
Sushko, P.V., Mukhopadhyay, S., Mysovsky, A.S., et al.: Structure and properties of defects in amorphous silica: new insights from embedded cluster calculations. Journal of Physics: Condensed Matter 17(21), S2115 (2005). https://doi.org/10.1088/0953-8984/17/21/007
Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201
Weinberg, Z.A., Rubloff, G.W., Bassous, E.: Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films. Physical Review B 19, 3107–3117 (1979). https://doi.org/10.1103/PhysRevB.19.3107
Yuan, X., Cormack, A.N.: Efficient algorithm for primitive ring statistics in topological networks. Computational Materials Science 24(3), 343–360 (2002). https://doi.org/10.1016/S0927-0256(01)00256-7
Downloads
Published
How to Cite
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.