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As observed from the last TOP5002 list - November 2015 -, GPUs-accelerated clusters emerge

as clear evidence. But exploiting such architectures for combinatorial problem resolution remains

a challenge.

In this context, this paper focuses on the resolution of an academic combinatorial problem, known

as the Langford pairing problem, which can be solved using several approaches. We first focus on a

general solving scheme based on CSP (Constraint Satisfaction Problem) formalism and backtrack

called the Miller algorithm. This method enables us to compute instances up to L(2, 21) using

both CPU and GPU computational power with load balancing.

As dedicated algorithms may still have better computation efficiency we took advantage of

Godfrey’s algebraic method to solve the Langford problem and implemented it using our multiGPU

approach. This allowed us to recompute the last open instances, L(2, 27) and L(2, 28), respectively

in less than 2 days and 23 days using best-effort computation on the ROMEO3 supercomputer

with up to 500,000 GPU cores.

Keywords: Combinatorial problems, parallel algorithm, GPU accelerators, CUDA, Langford

problem.

Introduction

For many years now, GPUs usage has increased in the field of High Performance Computing.

The TOP500 list of the world’s most powerful supercomputers contains more than 52 systems

powered by NVIDIA Kepler GPUs. In the latest list a number of hybrid machines increased

compared fourfold with the previous list.

Since 2007, NVIDIA has offered a general GPUs programming interface: Compute Unified De-

vice Architecture (CUDA). This study is based on this physical and logical architecture which

requires massively parallel programming and a new vision for the implementation of resolution

algorithms.

The Langford pairing problem is a very irregular combinatorial problem and thus is a bad

candidate for GPU computation which requires vectorized and regularized tasks. Hopefully there

are many ways to regularize the computation in order to take advantage of the multiGPU cluster

architectures.

This paper is structured as follows: we first present the background with the Langford

problem and multiGPU cluster. The next section describes our method concerning the Miller

algorithm on such architectures. Then we expose our multiGPU solution to solve the Langford

problem based on the Godfrey algorithm. Finally, we present some concluding remarks and

perspectives.
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Table 1. Solutions and time with differents methods

Instance Solutions Method Computation time

L(2,3) 1 Miller algorithm -

L(2,4) 1 -

... ... ...

L(2,16) 326,721,800 120 hours

L(2,19) 256,814,891,280 2.5 years (1999) DEC Alpha

L(2,20) 2,636,337,861,200 Godfrey algorithm 1 week

L(2,23) 3,799,455,942,515,488 4 days with CONFIIT

L(2,24) 46,845,158,056,515,936 3 months with CONFIIT

L(2,27) 111,683,611,098,764,903,232 -

L(2,28) 1,607,383,260,609,382,393,152 -

1. Background

1.1. Langford problem

C. Dudley Langford gave his name to a classic permutation problem [1, 2]. While observing

his son manipulating blocks of different colors, he noticed that it was possible to arrange three

pairs of different colored blocks (yellow, red, blue) in such a way that only one block separates

the red pair - noted as pair 1 - , two blocks separate the blue pair - noted as pair 2 - and finally

three blocks separate the yellow one - noted as pair 3 - , see Fig. 1.

Yellow
(3)

Red
(1)

Blue
(2)

Red
(1)

Yellow
(3)

Blue
(2)

Figure 1. L(2,3) arrangement

This problem has been generalized to any number n of colors and any number s of blocks

having the same color. L(s, n) consists in searching for the number of solutions to the Langford

problem, up to a symmetry. In November 1967, Martin Gardner presented L(2, 4) (two cubes

and four colors) as being part of a collection of small mathematical games and he stated that

L(2, n) has solutions for all n such that n = 4k or n = 4k − 1 (k ∈ N \ {0}). The central

resolution method consists in placing the pairs of cubes, one after the other, on free places and

backtracking if no place is available (see Fig. 3 for a detailed algorithm).

The Langford problem has been approached in different ways: discrete mathematics re-

sults, specific algorithms, specific encoding, constraint satisfaction problem (CSP), inclusion-

exclusion . . . [3–6]. In 2004, the last solved instance, L(2, 24), was computed by our team using

a specific algorithm. (see Table 1); L(2, 27) and L(2, 28) have just been computed but no details

were given.

The main efficient known algorithms are the following: the Miller backtrack method, the

Godfrey algebraic method and the Larsen inclusion-exclusion method. The Miller technique is

based on backtracking and can be modeled as a CSP; it allowed us to move the limit of explicits

solutions building up to L(2, 21) but combinatorial explosion did not allow us to go further.
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Then, we use the Godfrey method to achieve L(2, 24) more quickly and then recompute L(2, 27)

and L(2, 28), presently known as the last instances. The Larsen method is based on inclusion-

exclusion [6]; although this method is effective, practically the Godfrey technique is better. The

lastest known work on the Langford Problem is a GPU implementation proposed in [7] in 2015.

Unfortunately this study does not provide any performance considerations but just gives the

number of solutions of L(2, 27) and L(2, 28).

1.2. MultiGPU clusters and the ROMEO supercomputer

GPUs always come with CPUs which delegate them part of their computation. Let us

consider a cluster as a set of one CPU and one or more GPU(s), which we call machines. We

see these clusters as 3-level parallelism structures (as described in 2.1.4), with communications

between nodes and/or machines, CPUs that prepare computation and finally delegate part

of it to the GPUs. When the problem can be split into a finite number of independent

tasks, it is possible to distribute them over the machines. That permits to make an efficient

use of the cluster hardware. Depending on the way of computation submission we can

use either a static multinode reservation with one job including MPI client-server tasks dis-

tribution, or a best-effort dynamic reservation using several one-node jobs for independent tasks.

As the execution model of GPUs is based on SIMT (Single Instruction Multiple Threads),

the same instruction flow is shared by all the threads that execute synchronously by warp

teams [8, 9]. The divergences in this flow are handled by the NVIDIA GPUs scheduler, but lead

to synchronization between threads and an efficiency loss. This is the reason why we intend to

provide regular resolution algorithms for an efficient use of the GPU capabilities and, moreover,

with multiGPU clusters.

ROMEO supercomputer - All the tests below were led on the ROMEO cluster available at

the University of Reims Champagne-Ardenne (France). It provides 130 nodes, each composed

of 2 Ivy Bridge CPUs (8 cores), 2.6GHz and 2 Tesla K20Xm GPUs.

We use the nodes as two independent machines with one eight core CPU and one GPU

attached, linked by PCIe-v3. This allows having 260 machines for computation, each containing

32GB RAM memory. A K20Xm GPU has 6GB memory, 250GB/s of bandwidth, 2688 CUDA

cores including 896 double precision cores.

2. Miller algorithm

In this part we present our multiGPU cluster implementation of the Miller’s algorithm.

First, we introduce the backtrack method. Then we present our implementation in order to fit

the GPUs architecture. The last section presents our results.

2.1. Backtrack resolution

As presented above, the Langford problem is known to be a highly irregular combinatorial

problem. We first present here the general tree representation and the ways we regularize the

computation for GPUs. Then we show how to parallelize the resolution over a multiGPU cluster.
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2.1.1. Langford’s problem tree representation

In [10], we propose to formalize the Langford problem as a CSP (Constraint Satisfaction

Problem), first introduced by Montanari in [11], and show that an efficient parallel resolution is

possible. CSP formalized problems can be transformed into tree evaluations. In order to solve

L(2, n), we consider the following tree of height n: see example of L(2, 3) in Fig. 2.

color  1  cubes
positions  of  both  

positions  of  both  
color  3  cubes

color  2  cubes
positions  of  both  

(1,3)(2,4)(3,5)(4,6)(1,3)(2,4) ...

...

(1,5) (2,6)
...

(1,4) (2,5) (3,6)

Figure 2. Search tree for L(2, 3)

• Every level of the tree corresponds to a color.

• Each node of the tree corresponds to the placement of a pair of cubes without worrying

about the other colors. Color p is represented at depth n − p + 1, where the first node

corresponds to the first possible placement (positions 1 and p+2) and ith node corresponds

to the placement of the first cube of color p in position i, i ∈ [1, 2n− 1− p].

• Solutions are leaves generated without any placement conflict.

There are many ways to browse the tree and find the solutions: backtracking, forward-

checking, backjumping, etc [12]. We limit our study to the naive backtrack resolution and choose

to evaluate the variables and their values in a static order; in a depth-first manner, the solutions

are built incrementally and if a partial assignment can be aborted, the branch is cut. A solution

is found each time a leaf is reached.

The recommendation for performance on GPU accelerators is to use non test-based pro-

grams. Due to its irregularity, the basic backtracking algorithm, presented on Fig. 3, is not

supposed to suit the GPU architecture. Thus a vectorized version is given when evaluating the

assignments at the leaves’ level, with one of the two following ways: assignments can be pre-

pared on each tree node or totally set on final leaves before testing the satisfiability of the built

solution (Fig. 4).

while not done do

test pair <- test

if successful then

if max depth then

count solution

higher pair

else

lower pair <- remove

else

higher pair <- add

Figure 3. Backtrack algorithm

for pair 1 positions

assignment <- add

for pair 2 positions

assignment <- add

for ...

for pair n positions

assignment <- add

if final test ok then

count solution

Figure 4. Regularized algorithm
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2.1.2. Data representation

In order to count every Langford problem solution, we first identify all possible combinations

for one color without worrying about the other ones. Each possible combination is coded within

an interger, one bit to 1 corresponding to a cube presence, a 0 to its absence. This is what we

called a mask. This way Fig. 5 presents the possible combinations to place the one, two and

three weight cubes for the L(2, 3) Langford instance.

Furthermore, the masks can be used to evaluate the partial placements of a chosen set of

colors: all the 1s correspond to occupied positions; the assignment is consistent iff there are as

many 1s as the number of cubes set for the assignment.

With the aim to find solutions, we just have to go all over the tree and sum one combination

of each of the colors: a solution is found iff all the bits of the sum are set to 1.

Each route on the tree can be evaluated individually and independently; then it can be

evaluated as a thread on the GPU. This way the problem is massively parallel and can be,

indeed, computed on GPU. Fig. 6 represents the tree masks’ representation.

0 0 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 1 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

0 1 0 0 0 1

1 0 0 0 1 0

pair 1 pair 2 pair 3

1

2

3

4

Figure 5. Bitwise representation of

pairs positions in L(2, 3)

... ...

0 0 0 0 ]

...

0 000 0 0
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0 1 1 1

1

0
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0 0 0 0 [1 1

1 111

11

111

11 11 1 1

   

Figure 6. Bitwise representation of the Langford

L(2, 3) placement tree

2.1.3. Specific operations and algorithms

Three main operations are required in order to perform the tree search. The first one, used for

both backtrack and regularized methods, aims to add a pair to a given assignment. The second

one, allowing to check if a pair can be added to a given partial assignment, is only necessary

for the original backtrack scheme. The last one is used for testing if a global assignment is an

available solution: it is involved in the regularized version of the Miller algorithm.

Add a pair - Top of Fig. 7 presents the way to add a pair to a given assignment. With a

binary or, the new mask contains the combination of the original mask and of the added pair.

This operation can be performed even if the position is not available for the pair (however the

resulting mask is inconsistent).

Test a pair position - On the bottom part of the same figure, we test the positioning of

a pair on a given mask. For this, it is necessary to perform a binary and between the mask and

the pair.

= 0: success, the pair can be placed here

6= 0: error, try another position

Final validity test - The last operation is for a posteriori checking. For example the

mask 101111, corresponding to a leaf of the tree, is inconsistent and should not be counted

among the solutions. The final placement mask corresponds to a solution iff all the places are

occupied, which can be tested as ¬mask = 0.
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Using this data representation, we implemented both backtrack and regularized versions of

the Miller algorithm, as presented in Fig. 3 and 4.

The next section presents the way we hybridize these two schemes in order to get an efficient

parallel implementation of the Miller algorithm.

2.1.4. Hybrid parallel implementation

This part presents our methodology to implement Miller’s method on a multiGPU cluster.

Tasks generation - In order to parallelize the resolution we have to generate tasks. Con-

sidering the tree representation, we construct tasks by fixing the different values of a first set of

variables [pairs] up to a given level. Choosing the development level allows to generate as many

tasks as necessary. This leads to a Finite number of Irregular and Independent Tasks (FIIT

applications [13]).

Cluster parallelization - The generated tasks are independent and we spread them in

a client-server manner: a server generates them and makes them available for clients. As we

consider the cluster as a set of CPU-GPU(s) machines, the clients are these machines. At the

machine level, the role of the CPU is, first, to generate work for the GPU(s): it has to generate

sub-tasks, by continuing the tree development as if it were a second-level server, and the GPU(s)

can be considered as a second-level client(s).

The sub-tasks generation, at the CPU level, can be made in parallel by the CPU cores. Depend-

ing on the GPUs number and their computation power the sub-tasks generation rhythm may be

adapted to maintain a regular workload both for the CPU cores and GPU threads: some CPU

cores, not involved in the sub-tasks generation, could be made available for sub-tasks computing.

This leads to the 3-level parallelism scheme presented in Fig. 8, where p, q and r respectively

correspond to: (p) the server-level tasks generation depth, (q) the client-level sub-tasks genera-

tion one, (r) the remaining depth in the tree evaluation, i.e. the number of remaining variables

to be set before reaching the leaves.

Backtrack and regularized methods hybridization - The Backtrack version of the

Miller algorithm suits CPU execution and allows to cut branches during the tree evaluation,

reducing the search space and limiting the combinatorial explosion effects. A regularized version

must be developed, since GPUs execution requires synchronous execution of the threads, with as

few branching divergence as possible; however, this method imposes to browse the entire search

space and is too time-consuming.

We propose to hybridize two methods in order to take advantage of both of them for the

multiGPU parallel execution: for tasks and sub-tasks generated at sever and client levels, the

tree development by the CPU cores is made using the backtrack method, cutting branches as

soon as possible [and generating only possible tasks]; when computing the sub-tasks generated

at client-level, the CPU cores involved in the sub-tasks resolution use the backtrack method and

the GPU threads the regularized one.

2.2. Experiments tuning

In order to take advantage of all the computing power of the GPU we have to refine the way

we use them: this section presents the experimental study required to choose optimal settings.

This tuning allowed us to prove our proposal on significant instances of the Langford problem.
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Figure 7. Testing and adding position
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GPUs
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masks generated by clients
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r

Figure 8. Server client distribution

Figure 9. Time depending on grid and block size on n = 15

2.2.1. Registers, blocks and grid

In order to use all GPUs capabilities, the first way was to fill the blocks and a grid. To

maximize occupancy (ratio between active warps and the total number of warps) NVIDIA

suggests to use 1024 threads per block to improve GPU performances and proposes a CUDA

occupancy calculator4. But, confirmed by the Volkov’s results [14], we experimented that better

performances may be obtained using lower occupancy. Indeed, another critical criterion is the

inner GPU registers occupation. The optimal number of registers (57 registers) is obtained by

setting 9 pairs placed on the client for L(2, 15), thus 6 pairs are remaining for GPU computation.

In order to tune the blocks and grid sizes, we performed tests on the ROMEO architecture.

Fig. 9 represents the time in relation with a number of blocks per grid and a number of threads

per block. The most relevant result, observed as a local minimum on the 3D surface, is obtained

near 64 or 96 threads per block; for the grid size, the limitation is relative to the GPU global

memory size. It can be noted that we do not need shared memory because their are no data

exchanges between threads. This allows us to use the total available memory for the L1 cache

for each thread.

4http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
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2.2.2. Streams

A client has to prepare work for GPU. There are four main steps: generate tasks, load them

into the device memory, process the task on the GPU and then get results.

CPU-GPU memory transfers cause huge time penalties (about 400 cycles latency for trans-

fers between CPU memory and GPU device memory). At first, we had no overlapping between

memory transfer and kernel computation because the tasks generation on CPU was too long

compared to the kernel computation. To reduce the tasks generation time we used OpenMP in

order to use eight available CPU cores. Thus, CPU computation was totally hidden by memory

transfers and GPU kernel computation. We tried using up to 7 streams; as shown by Fig. 10,

using only two simultaneous streams did not improve efficiency, because the four steps did not

overlap completely; the best performances were obtained with three streams; the slow increase

in the next values is caused by synchronization overhead and CUDA streams management.

Figure 10. Computing time depending on

streams number
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Figure 11. CPU cores optimal distribution for

GPU feeding

2.2.3. Setting up the server, client and GPU depths

We now have to set the depths of each actor, server (p), client (q) and GPU (r) (see Fig. 8).

First we set the r = 5 for large instances because of the GPU limitation in terms of registers

by threads, exacerbated by the use of numerous 64bits integers. For r ≥ 6, we get too many

registers (64) and for r ≤ 4 the GPU computation is too fast compared to the memory load

overhead.

Clients are the buffers between the server and the GPUs: q = n − p − r. So we have

conducted tests by varying the server depth, p. The best result is obtained for p = 3 and

performance decreases quickly for higher values. This can be explained since more levels on the

server generates smaller tasks; thus GPU use is not long enough to overlap memory exchanges.

2.2.4. CPU: Feed the GPUs and compute

The first work of CPU cores is to prepare tasks for GPU so that we can generate overlapping

between memory load and kernel computation. In this configuration using eight cores to generate

GPU tasks under-uses CPU computation power. It is the reason why we propose to use some

of the CPU cores to take part of the sub-problems treatment. Fig. 11 represents computation

time in relation with different task distributions between CPU and GPU. We experimentally

demonstrated that only 4 or 5 CPU cores are enough to feed GPU, the other ones can be used

to perform backtrack resolution in competition with GPUs.
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2.3. Results

2.3.1. Regularized method results

We now can show the results obtained for our massively parallel scheme using the previous

optimizations, comparing the computation times of successive instances of the Langford problem.

These tests were performed on 20 nodes of the ROMEO supercomputer, hence 40 CPU/GPU

machines.

The previous limit with Miller’s algorithm was L(2, 19), obtained in 1999 after 2.5 years

of sequential effort and at the same time after 2 months with a distributed approach [3]. Our

computation scheme allowed us to obtain it in less than 4 hours (Table 2), this being not only

due to Moore law progress.

Note that the computation is 1.6 faster with CPU+GPU together than using 8 CPU cores. In

addition, the GPUs compute 200000× more nodes of the search tree than the CPUs, with a

faster time.

Table 2. Regularized method (seconds)

n CPU (8c) GPU (4c) + CPU (4c)

15 2.5 1.5

16 21.2 14.3

17 200.3 120.5

18 1971.0 1178.2

19 22594.2 13960.8

Table 3. Backtrack (seconds)

n CPU (8c) GPU (4c) + CPU (4c)

17 29.8 7.3

18 290.0 73.6

19 3197.5 803.5

20 – 9436.9

21 – 118512.4

The computation time between two different consecutive instances being multiplied by 10

approximately, this could allow us to obtain L(2, 20) in a reasonable time.

2.3.2. Backtracking on GPUs

It appears at first sight that using backtracking on GPUs without any regularization is a bad

idea due to threads synchronization issues. But in order to compare CPU and GPU computation

power in the same conditions we decide to implement the original backtrack method on GPU (see

Fig. 3) with only minor modifications. In these conditions we observe very efficient work of the

NVIDIA scheduler, which perfectly handles threads desynchronization. Thus we use the same

server-client distribution as in 2.1.4, each client generates masks for both CPU and GPU cores.

The workload is then statically distributed on GPU and CPU cores. Executing the backtrack

algorithm on a randomly chosen set of sub-problems allowed us to set the GPU/CPU distribution

ratio experimentally to 80/20%,

The experiments were performed on 129 nodes of the ROMEO supercomputer, hence 258

CPU/GPU machines and one node for the server. Table 3 shows the results with this config-

uration. This method first allowed us to perform the computation of L(2, 19) in less than 15

minutes, 15× faster than with the regularized method; then, we pushed the limitations of the

Miller algorithm up to L(2, 20) in less than 3 hours and even L(2, 21) in about 33 hours5.

5Even if this instance has no interest since it is known to have no solution
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This exhibits the ability of the GPU scheduler to manage highly irregular tasks. It proves

that GPUs are adapted even to solve combinatorial problems, which they were not supposed to

do.

3. Godfrey’s algebraic method

The previous part presents the Miller algorithm for the Langford problem, this method

cannot achieve bigger instances than the L(2, 21).

An algebraic representation of the Langford problem has been proposed by M. Godfrey in 2002.

In order to break the limitation of L(2, 24) we already used this very efficient problem specific

method. In this part we describe this algorithm and optimizations, and our implementation on

multiGPU clusters.

3.1. Method description

Consider L(2, 3) and X = (X1, X2, X3, X4, X5, X6). It proposes to modelize L(2, 3) by

F (X, 3) = (X1X3 + X2X4 + X3X5 + X4X6)× (X1X4 + X2X5 + X3X6)× (X1X5 + X2X6)

In this approach each term represents a position of both cubes of a given color and a solution

to the problem corresponds to a term developed as (X1X2X3X4X5X6); thus the number of

solutions is equal to the coefficient of this monomial in the development. More generally, the

solutions to L(2, n) can be deduced from (X1X2X3X4X5...X2n) terms in the development of

F (X,n).

If G(X,n) = X1...X2nF (X,n) then it has been shown that:∑
(x1,...,x2n)∈{−1,1}2n

G(X,n)(x1,...,x2n) = 22n+1L(2, n)

So
∑

(x1,...,x2n)∈{−1,1}2n

( 2n∏
i=1

xi
) n∏
i=1

2n−i−1∑
k=1

xkxk+i+1 = 22n+1L(2, n)

That allows to get L(2, n) from polynomial evaluations. The computational complexity of L(2, n)

is of O(4n × n2) and an efficient big integer arithmetic is necessary. This principle can be

optimized by taking into account the symmetries of the problem and using the Gray code: these

optimizations are described below.

3.2. Optimizations

Some works focused on finding optimizations for this arithmetic method [15]. Here we explain

the symmetric and computation optimizations used in our algorithm.

3.2.1. Evaluation parity

As [F (−X,n) = F (X,n)], G is not affected by a global sign change. In the same way the

global sign does not change if we change the sign of each pair or impair variable.

Using these optimizations we can set the value of two variables and accordingly divide the

computation time and result size by four.
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3.2.2. Symmetry summing

In this problem we have to count each solution up to a symmetry; thus for the first pair of

cubes we can stop the computation at half of the available positions considering

S′1(x) =
∑n−1

k=1 xkxk+2 instead of S1(x) =
∑2n−2

k=1 xkxk+2. The result is divided by 2.

3.2.3. Sums order

Each evaluation of Si(x) =
∑2n−i−1

k=1 xkxk+i+1, before multiplying might be very important

regarding to the computation time for this sum. Changing only one value of xi at a time, we

can recompute the sum using the previous one without global recomputation. Indeed, we order

the evaluations of the outer sum using Gray code sequence. Then the computation time is

considerably reduced.

Based on all these improvements and optimizations we can use the Godfrey method in order

to solve huge instances of the Langford problem. The next section develops the main issues of

our multiGPU architecture implementation.

3.3. Implementation details

In this part we present specific adaptations required to implement the Godfrey method on

a multiGPU architecture.

3.3.1. Optimized big integer arithmetic

In each step of computation, the value of each Si can reach 2n− i− 1 in absolute value, and

their product can reach (2n−2)!
(n−2)! . As we have to sum the Si product on 22n values, in the worst

case we have to store a value up to 22n (2n−2)!
(n−2)! , which corresponds to 1061 for n = 28, with about

200 bits.

So we need few big integer arithmetic functions. After testing existing libraries like GMP for

CPU or CUMP for GPU, we have come to the conclusion that they implement a huge number

of functionalities and are not really optimized for our specific problem implementation: product

of ”small” values and sum of ”huge” values.

Finally, we developed a light CPU and GPU library adapted to our needs. In the sum for

example, as maintaining carries has an important time penalty, we have chosen to delay the

spread of carries by using buffers: carries are accumulated and spread only when useful (for

example when the buffer is full). Fig. 12 represents this big integer handling.

nbWords

�����
�����
�����

�����
�����
�����

03163

buffer

(carries) standard
nbBits

(on all used words)

nbWordsUsed

   

       

Figure 12. Big integer representation, 64 bits words
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3.3.2. Gray sequence in memory

The Gray sequence cannot be stored in an array, because it would be too large (it would

contain 22n byte values). This is the reason why only one part of the Gray code sequence is stored

in memory and the missing terms are directly computed from the known ones using arithmetic

considerations. The size of the stored part of the Gray code sequence is chosen to be as large as

possible to be contained in the processor’s cache memory, the L1 cache for the GPUs threads:

so the accesses are fastened and the computation of the Gray code is optimized. For an efficient

use of the E5-2650 v2 ROMEO’s CPUs, which disposes of 20 MB of level-3 cache, the CPU

Gray code sequence is developed recursively up to depth 25. For the K20Xm ROMEO’s GPUs,

which dispose of 8 KB of constant memory, the sequence is developed up to depth 15. The rest

of the memory is used for the computation itself.

3.3.3. Tasks generation and computation

In order to perform the computation of the polynomial, two variables can be set among the

2n available. For the tasks generation we choose a number p of variables to generate 2p tasks

by developing the evaluation tree to depth p.

The tasks are spread over the cluster, either synchronously or asynchronously.

Synchronous computation - The first experiment was carried out with an MPI distribu-

tion of tasks of the previous model. Each MPI process finds its tasks list based on its process id ;

then converting each task number into binary gives the task’s initialization. The processes work

independently; finally the root process (id = 0) gathers all the computed numbers of solutions

and sums them.

Asynchronous computation - In this case the tasks can be computed independently. As

with the synchronous computation, the tasks’ initializations are retrieved from their number.

Each machine can get a task, compute it, and then store its result; then when all the tasks have

been computed, the partial sums are added together and the total result is provided.

3.4. Experimental settings

This part presents the experimental context and methodology, and the way experiments

were carried out. This study has similar goals as for the Miller’s resolution experiments.

3.4.1. Experimental methodology

We present here the way the experimental settings were chosen. Firstly, we define the tasks

distribution, secondly, we set the number of threads per GPU block; finally, we set the CPU/GPU

distribution.

Tasks distribution depth - This value being set it is important to get a high number of

blocks to maintain sufficient GPU load. Thus, we have to determine the best number of tasks

for the distribution. As presented in part 3.3.3, the number p of bits determines 2p tasks. On

the one hand, too many tasks are a limitation for the GPU that cannot store all the tasks in

its 6GB memory. On the other hand, not enough tasks mean longer tasks and too few blocks

to fill the GPU grid. Fig. 14 shows that for the L(2, 23) instance the best task number is with

generation depth 28.
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Number of threads per block - In order to take advantage of the GPU computation

power, we have to determine the threads/block distribution. Inspired by our experiments with

Miller’s algorithm we know that the best value may appear at lower occupancy. We perform

tests on a given tasks set varying the threads/block number and grid size associated. Fig. 13

presents the tests performed on the n = 20 problem: the best distribution is around 128 threads

per block.
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Figure 13. L(2, 20), number of threads per block
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Figure 15. Influence of tasks repartition

CPU vs GPU distribution - The GPU and CPU computation algorithm will approximately

be the same. In order to take advantage of all the computational power of both components we

have to balance tasks between CPU and GPU. We performed tests by changing the CPU/GPU

distribution based on simulations on a chosen set of tasks. Fig. 15 shows that the best distribution

is obtained when the GPU handles 65% of the tasks. This optimal load repartition directly results

from the intrinsics computational power of each component; this repartition should be adapted

if using a more powerful GPU like Tesla K40 or K80.

3.4.2. Computing context

As presented in part 1.2, we used the ROMEO supercomputer to perform our tests and

computations. On this supercomputer SLURM [16] is used as a reservation and a job queue

manager. This software allows two reservation modes: a static one-job limited reservation or an

opportunity to dynamically submit several jobs in a Best-Effort manner.

Static distribution - In this case we used the synchronous distribution presented in 3.3.3.

We submited a reservation with the number of MPI processes and the number of cores per

process. This method is useful to get the results quickly if we can get at once a large amount of

computation resources. It was used to perform the computation of small problems, and even for

L(2, 23) and L(2, 24).

As an issue, it has to be noted that it is difficult to quickly obtain a very large reservation on

such a shared cluster, since many projects are currently running.

Best effort - SLURM allows to submit tasks in the specific Best-Effort queue, which does

not count in the user fair-share. In this queue, if a node is free and nobody is using it, the
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reservation is set for a job in the best effort queue for a minimum time reservation. If another

user asks for a reservation and requests this node, the best effort job is killed (with, for example,

a SIGTERM signal). This method, based on asynchronous computation, enables a maximal use

of the computational resources without blocking for a long time the entire cluster.

For L(2, 27) and even more for L(2, 28) the total time required is too important to use

the whole machine off a challenge period, thus we chose to compute in a Best-Effort manner.

In order to fit with this submission method we chose a reasonable time-per-task, sufficient to

optimize the treatments with low loading overhead, but not too long so that killed tasks are not

too penalizing for the global computation time. We empirically chose to run 15-20 minute tasks

and thus we considered p = 15 for n = 27 and p = 17 for n = 28.

The best effort based algorithm is presented on Fig. 16. The task handler maintains a

maximum of 256 tasks in the queue; in addition the entire process is designed to be fault-

tolerant since killed tasks have to be launched again. When finished, the tasks generate an

ouput containing the number of solutions and computation time, that is stored as a file or

database entry. At the end the outputs of the different tasks are merged and the global result

can be provided.
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Job
256 

max active 
Tasks
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queue

Task 
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tasks

Finite 
tasks queue

Queue feeding

Job
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Figure 16. Best-effort distribution

3.5. Results

After these optimizations and implementation tuning steps, we conducted tests on the

ROMEO supercomputer using best-effort queue to solve L(2, 27) and L(2, 28). We started the

experiment after an update of the supercomputer, that implied a cluster shutdown. Then the

machine was restarted and was about 50% idle for the duration of our challenge. The com-

putation lasted less than 2 days for L(2, 27) and 23 days for L(2, 28). The following describes

performances considerations.

Computing effort - For L(2, 27), the effective computation time of the 32,768 tasks was

about 30 million seconds (345.4 days), and 165,000” elapsed time (1.9 days); the average time

of the tasks was 911”, with a standard deviation of 20%. For the L(2, 28) 131,072 tasks the total

computation time was about 1365 days (117 million seconds), as 23 day elapsed time; the tasks

lasted 1321” on average with a 12% standard deviation.

Best-effort overhead - With L(2, 27) we used a specific database to maintain information

concerning the tasks: 617 tasks were aborted [by regular user jobs] before finishing (1.9%), with

an average computing time of 766” (43% of the maximum requested time for a task). This

consumed 472873”, which overhead represents 1.6% of the effective computing effort.
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Cluster occupancy - Fig. 17 presents the tasks resolution over the two computation days

for L(2, 27). The experiment elapse time was 164700” (1.9 days). Compared to the effective

computation time, we used an average of 181.2 machines (CPU-GPU couples): this represents

69.7% of the entire cluster.

Fig. 18 presents the tasks resolution flow during the 23 days computation for L(2, 28). We

used about 99 machines, which represents 38% of 230 available nodes.
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Figure 18. L(2, 28) tasks grouped by 1 hour slots

For L(2, 27), these results confirm that the computation took great advantage of the low

occupancy of the cluster during the experiment. This allowed us to obtain a weak best-effort

overhead, and an important cluster occupancy. Unfortunately, for L(2, 28) on such a long period

we got a lower part of the supercomputer dedicated to our computational project. Thus, we are

confident in good perspectives for the L(2, 31) instance if computed on an even larger cluster or

several distributed clusters.

Conclusion

This paper presents two methods to solve the Langford pairing problem on multiGPU clus-

ters. In its first part the Miller’s algorithm is presented. Then to break the problem limitations

we show optimizations and implementation of Godfrey’s algorithm.

CSP resolution method - As any combinatorial problem can be represented as a CSP, the

Miller algorithm can be seen as a general resolution scheme based on the backtrack tree browsing.

A three-level tasks generation allows to fit the multiGPU architecture. MPI or Best-Effort are

used to spread tasks over the cluster, OpenMP for the CPU cores distribution and then CUDA

to take advantage of the GPU computation power. We were able to compute L(2, 20) with this

regularized method and to get an even better time with the basic backtrack. This proves the

proposed approach and also exhibits that the GPU scheduler is very efficient at managing highly

divergent threads.

MultiGPU clusters and best-effort - In addition and with the aim to beat the Langford

limit we present a new implementation of the Godfrey method using GPUs as accelerators. In

order to use the supercomputer ROMEO, which is shared by a large scientific community, we

have implemented a distribution that does not affect the machine load, using a best-effort queue.

The computation is fault-tolerant and totally asynchronous.
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Langford problem results - This study enabled us to compute L(2, 27) and (L2, 28) in

respectively less than 2 days and 23 days on the University of Reims ROMEO supercomputer.

The total number of solutions is:

L(2,27) = 111,683,611,098,764,903,232

L(2,28) = 1,607,383,260,609,382,393,152

Perspectives - This study shows the benefit of using GPUs as accelerators for combinatorial

problems. In Miller’s algorithm they handle 80% of the computation effort and 65% in Godfrey’s.

As a near-term prospect, we want to scale and show that it is possible to use the order of 1000

or more GPUs for pure combinatorial problems.

The next step of this work is to generalize the method to optimization problems. This adds an

order of complexity since shared information has to be maintained over a multiGPU cluster.

This work was supported by the High Performance Computing Center of the University of

Reims Champagne-Ardenne, ROMEO.
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