
INMOST Parallel Platform: Framework for Numerical

Modeling

Alexander A. Danilov1, Kirill M. Terekhov1,2, Igor N. Konshin1,

Yuri V. Vassilevski1

c© The Authors 2015. This paper is published with open access at SuperFri.org

INMOST program platform allows a user to work with distributed data on general meshes.

Description of the platform structure, interrelation of mesh elements, work with ghost cells, dis-

tribution and redistribution of mesh data is presented, as well as special aspects of the program

platform implementation and usage. This paper aims to cover the following research topics: effi-

cient distributed unstructured mesh representation data structure, flexible templates for numerical

schemes implementation, convenient framework for parallel linear systems assesment and solution.

For one of the specific tasks the exploiting of INMOST program platform is demonstrated on all

stages of numerical modeling: distributed meshes construction, attachment of data to mesh ele-

ments, use of mesh data for problem discretization, as well as parallel solution of resulting linear

systems. INMOST is a newly developed, flexible, and efficient numerical analysis framework that

provides scientists with the infrastructure for creating highly scalable high performance computing

modeling applications.

Keywords: distributed mesh, polyhedral mesh, parallel framework, numerical modeling.

Introduction

The amount of software for unstructured mesh generation, mesh adaptation, numerical anal-

ysis, and graphical visualization is huge. The problem escalates and the computational power of

modern computer systems increases rapidly, hence, recent software development requires the use

of parallel algorithms with distributed data. All these applications undoubtedly have a common

set of needs for representing and manipulating distributed unstructured meshes. The typical

infrastructure needed by these applications is a set of data structures for representing mesh and

software mechanisms for accessing and modifying mesh data. A mesh representation consists of

topological mesh entities (vertices, edges, faces, cells) and topological adjacencies (interentity

connections). The combination of a mesh representation and a set of access mechanisms for

mesh data is called a mesh framework or meshing infrastructure. Although the need of common

infrastructure to enable the rapid and efficient development of mesh based programs is obvi-

ous, no single framework is considered flexible enough and commonly accepted. One reason for

scarcity of general meshing infrastructures is that the needs of the various meshing and analysis

applications vary widely and there is little agreement on computational efficiency of different

mesh data representation. Therefore, a large number of mesh representations are in use in the

computational community each tailored to a specific application. Some simple numerical analy-

sis programs use only a minimal representation consisting of elements (quads, tetrahedra, etc.)

defined by nodes (or points). Other more sophisticated applications like complex finite volume

schemes for general polyhedral meshes find it useful to exploit a much wider mesh representa-

tion consisting of a full set of mesh entities with an extensive set of topological adjacencies [1].

Therefore, to gain widespread acceptance it is important to have a full mesh framework which

allows applications to access all types of mesh entities. At the same time, the infrastructure

should be lightweight and efficient to have sufficient utilities for real world applications.

1Institute of Numerical Mathematics RAS, Moscow, Russia
2Stanford University, Stanford, USA

DOI: 10.14529/jsfi150404

2015, Vol. 2, No. 4 55

Fortunately, the need for general parallel meshing infrastructure is increasingly being rec-

ognized and several development efforts have been introduced in the last few years. These in-

clude the following packages: MSTK (Mesh Toolkit) [2], STK (Sierra Toolkit) [3], MOAB (A

Mesh-Oriented datABase) [4, 5], FMDB (Flexible distributed Mesh DataBase) [6]. Some of these

packages do not support dynamic modification of the mesh, some of them do not provide enough

parallel functionality like several layers of ghost cells and some of them are still not reliable.

Due to lack of appropriate parallel mesh framework for complex numerical analysis applica-

tions in early 2010s our group decided to design a convenient framework based on MSTK and

MOAB which later evolved to the development of new parallel platform with flexibility and

efficiency in mind – INMOST (Integrated Numerical Modeling Object-oriented Supercomputing

Technologies).

INMOST is a newly developed, flexible, and efficient numerical analysis framework that pro-

vides application developers low-level infrastructure for reading, writing, creating, manipulating,

and partitioning distributed unstructured meshes without having to design and implement their

own mesh data structures. INMOST provides a convenient infrastructure for matrix assembling

hence simplifying rapid development of discretization techniques. INMOST also provides frame-

work for parallel linear system solvers including third party solver packages PETSc [7, 8] and

Trilinos [9]. Newly developed parallel linear system solvers may be easily incorporated in or built

upon INMOST infrastructure.

In this paper a brief description of INMOST is provided including details on design of the

framework and software mechanisms for interacting with it. INMOST is in active development

and some of the capabilities are not described here since their functionality may change in

near future. However, the core functionality is considered stable and is described in this paper.

INMOST is currently used to implement several applications such as safety analysis of nuclear

and radioactive facilities [10], free surface computational fluid dynamics modeling [11], and black

oil modeling [12] within Institute of Numerical Mathematics RAS Nuclear Safety Institute RAS

and Stanford University. INMOST is currently available to general public under Modified BSD

License at http://www.inmost.org/.

1. Platform structure

Only one general assumption on the mesh type is in place. The volume mesh is considered

to be a conformal mesh with arbitrary polyhedral cells, i.e. any two cells either do not have

common points or have one common vertex: either have one common edge or have one common

face. INMOST platform have a modular structure allowing development of new modules and

interfacing with third party software packages. The two core modules, mesh framework module

and linear system solver module, will be covered in the current paper.

INMOST mesh is a dynamic distributed database representing unstructured grid. Opera-

tions of mesh modification and parallel mesh redistribution for load balancing require special

data structure which is capable of data relocation, pruning, and compactification. Fast data ac-

cess is one of the key features of INMOST. The direct memory access interface is used avoiding

unnecessary data copying. This requires special attention to platform implementation ensuring

continuous direct element data access during mesh modification at least until the mesh element

is moved or deleted. Memory fragmentation during massive mesh modifications becomes a sig-

nificant concern. INMOST platform utilizes a set of average size memory blocks for big data

arrays. Each block is considered nonrelocatable, hence, ensuring continuous direct access the

INMOST Parallel Platform: Framework for Numerical Modeling

56 Supercomputing Frontiers and Innovations

blocks may be freed only during data compactification. INMOST implementation of mesh data

structure is simple, flexible, and memory efficient with wide range of supported functionality.

The detailed analysis of different mesh representations and supporting algorithms was performed

by R. Garimella in his work [13]. INMOST mesh framework is based on full mesh representation

with circular adjacencies vertex–edge–face–cell–vertex providing the balance between memory

requirements and parallel algorithms efficiency (fig. 1).

Figure 1. Downstream hierarchical representation of mesh elements

INMOST platform provides infrastructure for parallel grid generation. The user may rely

on internal topology consistency checks and geometry calculators. The user decides which type

of computed metric data for each type of mesh entities should be precomputed, cached, and

updated on modification. The minimalistic parallel structured mesh generator will be presented

below. Optionally the user can import and export the mesh in commonly used formats; internal

cross architecture portable binary format is used to store the full set of mesh features.

One of the key points in parallel implementation of numerical analysis applications is the

idea of domain decomposition and overlapping grids with ghost cells [14]. Ghost cells on one

process are cells mirroring the corresponding cells from another process. Different discretization

schemes may require different types and width of overlapping layers. In INMOST each mesh

entity have exactly one process owner and a specific state for each sharing process: a “owned”

one for entities which is only owned by the current process, a “shared” one for own entities which

have copies on other processes, and a “ghost” one for copies of entities from other processes. Each

shared entity also stores the list of processes it is copied to. INMOST automatically computes

and distributes the ghost cells given the number of layers and connectivity type: neighbours

through the faces, edges or vertices. Special attention is given to handling of multiple ghost

layers, since cross-process transfers occur commonly. The user can also provide an explicit ghost

map for specific applications.

The second key point in effective parallel computation is the load balancing. INMOST

provides flexible interface for repartitioning and redistribution of the mesh. The user chooses one

of the internal partitioners, the external widely used partitioners Zoltan [15] and Parmetis [16],

or provides the partitioning map explicitly. Redistribution process effectively utilizes the ghost

layers if any of them have been computed in advance and ensures that the ghost layers structure

is preserved after redistribution.

INMOST platform provides flexible infrastructure for organization of mesh entities into

hierarchical sets and associate user data with mesh entities. The user data is identified by

named tags. Each tag may be associated with vertices, edges, faces, cells, sets, entire mesh or

any combinations of them (fig. 2). Each tag stores real, integer or byte data or references to

elements. Fixed and dynamic length arrays are natively supported. Tags may be dense, i.e. all

appropriate mesh entities have the associated tag, or sparse, i.e. only some of the entities store

the tag data. Markers are used in the same way as a boolean type dense tags. The tags data is

A. Danilov, K. Terekhov, I. Konshin, Yu. Vassilevski

2015, Vol. 2, No. 4 57

mirrored on demand to ghost cells, in addition INMOST supports common reduce operations

to gather data from ghost cells back to owner.

Figure 2. Mesh entities: vertex, edge, face and cell

INMOST solver class provides methods for sparse matrix assembling without prior knowl-

edge of matrix sparsity structure. The linear solver infrastructure may be used to develop and

implement specific iterative linear solver with special preconditioners. Several internal solvers are

provided natively and convenient interfaces to PETSc and Trilinos solver packages are included

as well.

The detailed algorithms and data structures are presented in [17].

2. User interface

#include ” inmost . h”

using namespace INMOST;

int main (int argc , char ∗argv [])

{
// I n i t i a l i z e INMOST a c t i v i t i e s

So lve r : : I n i t i a l i z e (&argc ,&argv , ””) ;

Mesh : : I n i t i a l i z e (&argc ,& argv) ;

P a r t i t i o n e r : : I n i t i a l i z e (&argc ,& argv) ;

. . .

// F ina l i z e INMOST a c t i v i t i e s

P a r t i t i o n e r : : F i n a l i z e () ;

So lve r : : F i n a l i z e () ;

Mesh : : F i n a l i z e () ;

return 0 ;

}

Figure 3. Initialization and finalization of INMOST modules

The INMOST code is written in C++ language, it is a cross-platform and may be built using

wide range of compilers. Modular structure of INMOST code allows the user to enable and

disable optional components including interfaces to third party software. The code is organized

in a way that the user does not need to exploit any of MPI specific procedures in order to

create a parallel application. If any INMOST module is used it should be properly initialized

and finalized before and after of its use respectively; see Fig. 3 for examples of several modules

usage.

INMOST Parallel Platform: Framework for Numerical Modeling

58 Supercomputing Frontiers and Innovations

a)

 0

 2

 6

 4

 1

 3

 7

 5

b)

0
1

2

0

3

1

4

2

5

3
4

7
6

5

Figure 4. Minimalistic parallel cubic grid: a) one cell with local vertices, b) distributed grid

with NP=8

Mesh ∗m = new Mesh () ;

int rank = m−>GetProcessorRank () ; // Get proces s rank

int s i z e = m−>GetProcessorsNumber () ; // Get number o f p roce s s e s

ElementArray<Node> v e r t s (m) ; // Create l o c a l v e r t i c e s

for (int k=0; k<2; k++)

for (int j =0; j <2; j++)

for (int i =0; i <2; i++)

{
double xyz [3]={ rank+i , j , k } ; // Define node coord ina t e s

v e r t s . push back (m−>CreateNode (xyz)) ; // Add new ve r t e x

}
// Define face c onn e c t i v i t y temp la te f o r cub i c c e l l , r f . Fig . 4a

const int f a c e node s [2 4] = {0 ,4 ,6 ,2 , 1 , 3 , 7 , 5 , 0 , 1 , 5 , 4 ,

2 , 6 , 7 , 3 , 0 , 2 , 3 , 1 , 4 , 5 , 7 , 6} ;

const int num nodes [6] = {4 , 4 , 4 , 4 , 4 , 4} ;

m−>CreateCe l l (ver t s , f ace nodes , num nodes , 6) ; // Create the cub i c c e l l

m−>ResolveShared () ; // Reso lve d up l i c a t e nodes

m−>Save (”mesh . pvtk”) ; // Export mesh to p a r a l l e l VTK format

delete m;

Figure 5. Minimalistic parallel mesh generation

In order to create a parallel mesh the user should set an MPI communicator, an alias

INMOST MPI COMM WORLD is provided for convenience by default. Once the

communicator is set the process may obtain its rank and the total number of processes

becomes known. We demonstrate minimalistic distributed mesh generation process below (see

Figs. 4b, 5). One way to create a polyhedral cell is to define all nodes, all edges using nodes, all

faces using edges, and a cell using faces. Alternatively short way is to define nodes and create a

cell using connectivity template for its faces. In our example we use the second way: we define

8 nodes and create a cell with six faces, each face containing four nodes and their indices are

prescribed by face nodes template (see Fig. 4a). Once local grids are created we use

ResolveShared() procedure to resolve duplicate nodes and assign global IDs to mesh entities.

The distributed mesh is exported using Save() method.

The same idea is used to construct the distributed rectangular mesh, the only difference is that

more vertices are defined and the cells are constructed in loop. The INMOST source package

provides “GridGen” example which creates a distributed rectangular mesh for a unit cube.

A. Danilov, K. Terekhov, I. Konshin, Yu. Vassilevski

2015, Vol. 2, No. 4 59

This example can also be used to create a prismatic mesh. The readers are refered to the

example source code for further details.

Mesh ∗m = . . . // crea t e or load mesh from f i l e

m−>ExchangeGhost (1 ,FACE) ;

Mesh : : GeomParam ta b l e ;

t a b l e [BARYCENTER] = CELL;

t a b l e [NORMAL] = FACE;

t a b l e [MEASURE] = CELL | FACE;

m−>PrepareGeometricData (t a b l e) ;

So lve r : : Matrix A;

So lve r : : Vector b ;

// I t e r a t e over a l l f a c e s

for (Mesh : : i t e r a t o r F a c e f = m−>BeginFace () ; f != m−>EndFace () ; ++f)

{
Ce l l r1 = f−>BackCell () , r2 = f−>FrontCel l () ;

// Skip face i f c e l l s are gho s t s or not a v a i l a b l e

i f ((! r1−>i s V a l i d () | | r1−>GetStatus () == Element : : Ghost) &&

(! r2−>i s V a l i d () | | r2−>GetStatus () == Element : : Ghost)) continue ;

i f (r1−>i s V a l i d () && r2−>i s V a l i d ()) { // In t e rna l f ace case

double f a r e a = f−>Area () ; // Get the face area

double f nrm [3] , r 1 cn t [3] , r 2 cn t [2] ;

f−>Normal (f nrm) ; // Get the face normal

r1−>Barycenter (r 1 cn t) ; // Get the barycen ter o f the c e l l r1

r2−>Barycenter (r 2 cn t) ; // Get the barycen ter o f the c e l l r2

double c o e f = . . . // Compute f l u x c o e f f i c i e n t s

// us ing f area , f nrm , r1 cnt , r2 cn t

int id1 = r1−>GlobalID () , id2 = r2−>GlobalID () ; // Get g l o b a l IDs

// F i l l matrix c o e f f i c i e n t s on ly f o r normal c e l l s

i f (r1−>GetStatus () != Element : : Ghost)

A[id1] [id1] += −coe f , A[id1] [id2] += c o e f ;

i f (r2−>GetStatus () != Element : : Ghost)

A[id2] [id1] += coef , A[id2] [id2] += −c o e f ;

} else {
. . . // Boundary face case

}
}
// I t e r a t e over a l l c e l l s

for (Mesh : : i t e r a t o r C e l l c = m−>BeginCel l () ; c != m−>EndCell () ; ++c)

i f (c−>GetStatus () != Element : : Ghost)

b [c−>GlobalID ()] += c−>Volume ()∗ c−>Mean(rhs , 0) ; // In t e g r a t e rhs ()

Figure 6. Assemble matrix of linear system

Different discretization techniques result in matrix assembling. We demonstrate the template

for finite volume (FV) scheme shown in Fig. 6. The detailed example is packed within

INMOST Parallel Platform: Framework for Numerical Modeling

60 Supercomputing Frontiers and Innovations

So lve r S(So lve r : : INNER ILU2) ; // Spec i f y the l i n e a r s o l v e r

S . SetMatrix (A) ; // Compute the p r e cond i t i one r f o r the o r i g i n a l matrix

S . So lve (b , x) ; // So lve the l i n e a r system with the p r econd i t i one r

Tag phi = m−>CreateTag (” So lu t i on ” , DATA REAL, CELL, NONE, 1) ;

for (Mesh : : i t e r a t o r C e l l c = m−>BeginCel l () ; c != m−>EndCell () ; ++c)

i f (c−>GetStatus () != Element : : Ghost)

c−>Real (phi) = x [c−>GlobalID ()] ;

Figure 7. Solve linear system and attach solution to mesh cells

INMOST source package as “FVDiscr” example. In general case matrix elements depend on

the neighboring ones, thus, a layer of ghost cells is usually needed. ExchangeGhost() method is

used to create one or several layers of ghost cells. We use two point flux approximation in FV

scheme, hence, for each internal face we need its area and barycenters of neighboring cells. We

also need cell volumes for right-hand side calculation. INMOST can precompute and cache the

needed geometric information using PrepareGeometricData() method. Several entity iterators

are available in INMOST. In our FV scheme we iterate over all faces and compute matrix

coefficients for neighboring cells BackCell() and FrontCell(). Global cell identificators

GlobalID() are used as indices to create matrix and right-hand side vector.

Once the matrix is assembled one can utilize internal BiCGStab(L) solver with second order

ILU factorization as preconditioner. The code example is presented in Fig. 7. The computed

solution is stored in tag “Solution”, a single real value is attached to all cells. A more detailed

example of linear system solution is presented in “MatSolve” example from INMOST source

code.

More complicated examples and test cases are bundled in INMOST package and demonstrate

in more detail mesh generation, mesh partitioning and redistribution, matrix assembling for

FV scheme of diffusion problem and linear system solution using different solvers and

packages. The user is advised to consult with online documentation available on project site

and take a look at unit tests for mesh and solver modules.

3. Numerical experiments

In this section several performance tests are presented using the code introduced above and

included as code examples in INMOST package.

The code is used to solve the problem −∇ · (K∇U) = f with Dirichlet boundary conditions,

where K is unit tensor and the right-hand side f is computed from the exact solution:

U = sin(πx) sin(πy) sin(πz). The parallel code creates a rectangular grid in unit cube, this

stage is called “GridGen” below. The simplest two-point FVM scheme is used to assemble

local matrices. Using ghost cells effectively links local matrices in a global matrix. This matrix

assembly stage is refered to as “Assemble” below. At the final stage the linear system is solved,

namely “MatSolve” stage below.

To perform parallel numerical experiments, two parallel computer systems were used: the INM

RAS computer cluster and the “Lomonosov” computer cluster. We exploited the nodes of the

“x6core” queue of the INM RAS cluster with the total of 12 nodes. These are Xeon

X5650@2.67GHz nodes with 24 GB of memory and 12 cores per node. We also exploited the

nodes of “regular4” queue of Lomonosov cluster with the total of 64 nodes. These are Xeon

A. Danilov, K. Terekhov, I. Konshin, Yu. Vassilevski

2015, Vol. 2, No. 4 61

 1

 10

 100

 1000

 1 10 100 1000
S

p
e

e
d

u
p

NP

Ideal
GridGen

Assemble
MatSolve

Figure 8. Strong scalability test on INM RAS computer cluster, speedup graph

 1

 10

 100

 1000

 1 10 100 1000

S
p

e
e

d
u

p

NP

Ideal
GridGen

Assemble
MatSolve

Figure 9. Strong scalability test on “Lomonosov” computer cluster, speedup graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000

E
ff

ic
ie

n
cy

NP

Ideal
GridGen

Assemble
MatSolve

Figure 10. Strong scalability test on INM RAS computer cluster, efficiency graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000

E
ff

ic
ie

n
cy

NP

Ideal
GridGen

Assemble
MatSolve

Figure 11. Strong scalability test on “Lomonosov” computer cluster, efficiency graph

X5570@2.93Ghz nodes with 12 GB of memory and 8 cores per node. In both cases Intel

Compilers with Intel MPI were used.

INMOST Parallel Platform: Framework for Numerical Modeling

62 Supercomputing Frontiers and Innovations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000
E

ff
ic

ie
n

cy

NP

Ideal
GridGen

Assemble
MatSolve

Figure 12. Weak scalability test on INM RAS computer cluster, efficiency graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000

E
ff

ic
ie

n
cy

NP

Ideal
GridGen

Assemble
MatSolve

Figure 13. Weak scalability test on “Lomonosov” computer cluster, efficiency graph

Table 1. Strong scalability test on INM RAS computer

cluster

GridGen Assemble MatSolve

NP T S E T S E T S E

1 11.435 1.00 1.000 19.029 1.00 1.000 28.841 1.00 1.000

2 7.994 1.43 0.715 9.785 1.94 0.972 18.759 1.54 0.769

4 5.566 2.05 0.514 5.025 3.79 0.947 12.641 2.28 0.570

8 4.035 2.83 0.354 2.624 7.25 0.906 8.519 3.39 0.423

16 2.985 3.83 0.239 1.464 13.00 0.813 6.060 4.76 0.297

32 1.793 6.38 0.199 0.735 25.89 0.809 2.557 11.28 0.352

64 1.356 8.43 0.132 0.461 41.29 0.645 1.436 20.09 0.314

128 3.803 3.01 0.023 0.237 80.37 0.628 0.762 37.84 0.296

Both strong and weak scalability tests were performed on both clusters. The strong scalability

test was performed using uniform 96× 96× 96 cubic grid on INM RAS cluster (fig. 8, fig. 10),

and uniform 100× 100× 100 cubic grid on “Lomonosov” cluster (fig. 9, fig. 11). Total times,

speedups, and efficiencies are presented in tab. 1 and tab. 2. Weak scalability test was

performed using 64× 64× 64 cubic grid on each process on INM RAS cluster (fig. 12), and

50× 50× 50 cubic grid on each process on “Lomonosov” cluster (fig. 13). Total times and

efficiencies are presented in tab. 3 and tab. 4.

Numerical experiments have showen reasonable scalability of “Assemble” and “MatSolve”

examples during strong scalability tests. The “Assemble” example also results in high

efficiency during weak scalability tests. Minor reduction in efficiency observed with NP = 8 on

A. Danilov, K. Terekhov, I. Konshin, Yu. Vassilevski

2015, Vol. 2, No. 4 63

Table 2. Strong scalability test on “Lomonosov” computer

cluster

GridGen Assemble MatSolve

NP T S E T S E T S E

1 15.882 1.00 1.000 28.552 1.00 1.000 64.849 1.00 1.000

2 11.204 1.42 0.709 14.279 2.00 1.000 38.129 1.70 0.850

4 7.783 2.04 0.510 7.446 3.83 0.959 22.438 2.89 0.723

8 5.335 2.98 0.372 3.946 7.24 0.904 13.561 4.78 0.598

16 3.677 4.32 0.270 2.082 13.71 0.857 7.960 8.15 0.509

32 2.359 6.73 0.210 1.069 26.71 0.835 4.594 14.12 0.441

64 3.768 4.22 0.066 0.561 50.85 0.795 2.308 28.10 0.439

128 2.956 5.37 0.042 0.311 91.68 0.716 1.283 50.55 0.395

256 2.737 5.80 0.023 0.179 159.76 0.624 0.800 81.03 0.317

512 3.488 4.55 0.009 0.117 243.08 0.475 0.550 117.94 0.230

Table 3. Weak scalability test on INM RAS computer

cluster

GridGen Assemble MatSolve

NP T E T E T E

1 3.484 1.000 5.589 1.000 7.469 1.000

2 4.583 0.760 5.592 0.999 7.580 0.985

4 6.406 0.544 5.925 0.943 13.393 0.558

8 10.106 0.345 6.566 0.851 21.050 0.355

16 12.924 0.270 7.757 0.720 26.350 0.283

32 15.409 0.226 6.876 0.813 32.199 0.232

64 20.233 0.172 7.809 0.716 39.109 0.191

128 20.767 0.168 7.938 0.704 41.319 0.181

Table 4. Weak scalability test on “Lomonosov” computer

cluster

GridGen Assemble MatSolve

NP T E T E T E

1 2.042 1.000 3.364 1.000 7.037 1.000

2 2.706 0.754 3.471 0.969 6.346 1.109

4 4.254 0.480 4.770 0.705 9.149 0.769

8 5.329 0.383 6.078 0.554 13.953 0.504

16 6.935 0.294 4.005 0.840 12.892 0.546

32 8.396 0.243 3.993 0.843 15.606 0.451

64 11.507 0.177 4.004 0.840 19.111 0.368

128 13.485 0.151 4.004 0.840 17.883 0.394

“Lomonosov” cluster (fig. 13) can be attributed to the limited memory access bandwidth on

one node. Starting with NP = 16 the number of physical nodes increases and the overall

INMOST Parallel Platform: Framework for Numerical Modeling

64 Supercomputing Frontiers and Innovations

bandwidth increases as well. Poor performance of “GridGen” example can be attributed to

mesh generator design flaw. The final step of ResolveShared() procedure involves multiple

communications for huge grids. A better approach would be to generate coarse grid first,

resolve shared entities, and only then refine the mesh on each processor.

Conclusions

INMOST program platform is presented which allows a user to work with distributed data on

general meshes. Internal platform structure is addressed to showing flexibility and efficiency of

the infrastructure. Several user interface examples are used for minimalistic demonstration

purposes of mesh generation, matrix assembling and linear system solution. Numerical results

demonstrate reasonable scalability of matrix assembly and linear system solution stages.

The work is partially supported by the Russian Foundation for Basic Research (RFBR) grants

No.14-01-00830 and No.15-35-20991.

This paper is distributed under the terms of the Creative Commons Attribution-Non

Commercial 3.0 License which permits non-commercial use, reproduction and distribution of

the work without further permission provided the original work is properly cited.

References

1. Danilov AA, Vassilevski YV. A monotone nonlinear finite volume method for diffusion equa-

tions on conformal polyhedral meshes. Russian Journal of Numerical Analysis and Mathe-

matical Modelling. 2009;24(3):207–227.

2. Garimella RV. MSTK – A Flexible Infrastructure Library for Developing Mesh Based Appli-

cations. In: 13th International Meshing Roundtable, September 19-22, 2004, Williamsburg,

Virginia, USA, Proceedings; 2004. p. 203–212.

3. Edwards HC, Williams AB, Sjaardema GD, Baur DG, Cochran WK. SIERRA Toolkit Com-

putational Mesh Conceptual Model. Technical Report SAND2010-1192, Sandia National

Laboratories; 2010.

4. Tautges TJ. MOAB-SD: Integrated Structured and Unstructured Mesh Representation. En-

gineering With Computers. 2004;20(3):286–293.

5. Tautges TJ, Meyers R, Merkley K, Stimpson C, Ernst C. MOAB: A Mesh-Oriented

Database. Technical Report SAND2004-1592, Sandia National Laboratories; 2004.

6. Seol ES. FMDB: flexible Distributed Mesh Database for Parallel Automated Adaptive Anal-

ysis, Ph.D. Thesis, Rensselaer Polytechnic Institute; 2005.

7. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, et al. PETSc users

manual. Argonne National Laboratory, ANL-95/11 - Revision 3.5; 2014.

8. Balay S, Gropp WD, McInnes LC, Smith BF. Efficient Management of Parallelism in Object

Oriented Numerical Software Libraries. In: Modern Software Tools in Scientific Computing,

Birkhäuser Press; 1997. p. 163–202.

A. Danilov, K. Terekhov, I. Konshin, Yu. Vassilevski

2015, Vol. 2, No. 4 65

9. Heroux MA, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM,

et al. An overview of the Trilinos project. ACM Transactions on Mathematical Software.

2005;31(3):397–423.

10. Kapyrin I, Konshin I, Kopytov G, Nikitin K, Vassilevski Y. Hydrogeological modeling in

radioactive waste disposal safety assessment using the GeRa code. Russian Supercomputing

Days: Proceedings of the international conference (September 28-29, 2015, Moscow, Russia).

Moscow State University; 2015. p. 122–132. Russian.

11. Terekhov KM, Nikitin KD, Olshanskii MA, Vassilevski YV. A semi-Largangian method on

dynamically adapted octree meshes, to appear in Rus.J.Num.Anal.Math.Model.

12. Konshin I, Kaporin I, Nikitin K, Vassilevski Y. Parallel linear systems solution for multiphase

flow problems in the INMOST framework. Russian Supercomputing Days: Proceedings

of the international conference (September 28-29, 2015, Moscow, Russia). Moscow State

University; 2015. p. 96–103.

13. Garimella RV. Mesh Data Structure Selection for Mesh Generation and FEA Applications.

International Journal of Numerical Methods in Engineering. 2002;55(4):451–478.

14. Bertsekas DP, Tsitsiklis JN. Parallel and Distributed Computation: Numerical Methods.

Prentice-Hall; 1989.

15. Boman EG, Catalyurek UV, Chevalier C, Devine KD. The Zoltan and Isorropia parallel

toolkits for combinatorial scientific computing: partitioning, ordering, and coloring. Scien-

tific Programming. 2012;20(2):129–150.

16. Schloegel K, Karypis G, Kumar V. Parallel static and dynamic multi-constraint graph par-

titioning. Concurrency and Computation: Practice and Experience. 2002;14(3):219–240.

17. Vassilevski Y, Konshin I, Kopytov G, Terekhov K. INMOST – a software platform and

a graphical environment for development of parallel numerical models on general meshes.

Moscow State Univ. Publ., Moscow; 2013. Russian.

INMOST Parallel Platform: Framework for Numerical Modeling

66 Supercomputing Frontiers and Innovations

