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We introduce a method of constructing classes of graphs by algorithmic removal of entire

groups of edges. Our approach to creating new classes of graphs is to focus entirely on the structure

and properties of an adjacency matrix. At an initialisation step of the algorithm we start with a

complete (fully connected) graph.

In Part I we present MOD and arrested MOD graphs resulting from removal of square blocks

of edges at each iteration and substitution of removed blocks with a diagonal matrix with one extra

pivotal element along the main diagonal. The MOD graphs possess unique and useful properties.

All important graph measures are easily expressed in analytical form and are presented in the

paper. Several important properties of MOD graphs are compared very favourably with graphs

representing common interconnect topologies: hypercube, 3D and 5D tori, TOFU and dragonfly.

This lead us to consider MOD and arrested MOD graphs as interesting candidates for effective

supercomputer interconnects.

In Part II, at each iterative step we successively remove triangular shapes from the adjacency

matrix. This iterative process leads to the final matrix which has two Sierpiński gaskets aligned

along the main diagonal. It will be shown below that this new class of graphs is not a Sierpiński

graph, since it is the adjacency matrix which has a structure of a Sierpiński gasket, and not a graph

described by this matrix. We call this new class of graphs Sierpiński-Michalewicz-Or lowski-Deng

(SMOD) graphs. The most remarkable property of the SMOD class of graphs, is that irrespective

of the graph order, the diameter is constant and equals 2. The size of the graph, or the total

number of edges, is about 10% of the size of a complete graph of the same order.

We analyse important graph theoretic characteristics related to the topology such as diameter

as a function of graph order, size, mean path length, ratio of the graph size to the size of a complete

graph of the same order, and some spectral properties.

Keywords: supercomputer interconnects, big data, exascale computing, graph theory, topology

of graphs, classes of graphs, graph generation.

Introduction

The critical design characteristics of the future exascale supercomputer systems will be their

interconnect topology, routing algorithms, and connect bandwidths. In this paper we propose a

new algorithmic method of constructing well connected graphs, with reasonably small diameter,

and low mean path, which may be useful in consideration of future exascale systems. We focus

exclusively on the graph theoretic characteristics of the interconnect, hence the analysis of real

supercomputer interconnects is restricted to properties derived from graph topology.

During the past 30 years, graphs like hypercube [16], tori [11], and trees [24] have been widely

adopted as the topologies of choice for supercomputer networks [18]. More recently, butterfly

graphs [22] and dragonfly [13, 19, 21] are entering the market. As the number of computing

units in a supercomputer grows to a few million processing cores such as the fastest Tianhe-

2 [1, 20] computer in June 2015 with 3.12 million cores, conventional wisdom in selecting a
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topology might not lead to the optimal interconnect design. We must leverage on mathematics

to discover the state-of-the-art topologies for more efficient networks.

Design of efficient networks requires optimization in multiple dimensions. First, in mathe-

matical dimension, we must design the best network topologies. Second, in engineering dimen-

sion, these topologies must be implementable using existing electronic technologies and fit the

current architecture standards. Third, in computer science dimension, the wired topologies must

be consistent with an efficient routing scheme to generate reliable and fast networks that are

easy to use. Finally, in economics dimension, the system must not be too costly. In this report,

we focus on optimization of the first dimension, i.e., mathematical aspect. Hence, we are not

concerned here with the study of bi-sectional bandwidth, routing tables and routing or physical

layout of cables and fibres.

Our method is to explore graph generation techniques that start with adjacency matrices of

arbitrary size and subsequently operate solely on adjacency matrices, which yield graphs, rather

than generating graphs via diagram constructions first and treating the adjacency matrix as a

derived characteristic [15]. Additionally, in our approach we always start with a complete graph

of a given order and we proceed by eliminating the edges, never by starting from a smaller order

graph and growing it bigger by embedding or other decorations.

We only focus on the topology design, excluding the underlying fabric, therefore the adja-

cency matrices that we build, and in what follows always denote by A, are symmetric with values

of 0 when there is no edge, and 1 when vertices are connected. This translates into unweighted,

undirected and connected graphs.

We study graphs whose topologies would potentially yield optimal interconnects for Super-

computers and Big Data systems, hence we turn our attention to the following characteristics:

1. Minimum diameter

2. Good paths distribution

3. Low mean path length

4. Small size, i.e. number of edges

5. Small degrees of vertices

Part I

1. Michalewicz-Or lowski-Deng (MOD) Algorithm

We consider graphs G = (N,L), where N is a set of vertices and L is a set of undirected

edges (i.e. set of unordered pairs of vertices). The graph order |N |, i.e. numbers of vertices, is

restricted to powers of 2: |N | = n = 2m, m ∈ N, m ≥ 2.

Michalewicz-Or lowski-Deng (MOD) algorithm begins with a complete graph and in every

step reduces the number of remaining edges by about a half, resulting in a graph with O(nlog2n)

edges. The algorithm converges in log2n− 1 = m− 1 steps.

1.1. The algorithm sequence

The MOD algorithm proceeds through the following sequence of steps:

1. Start with an adjacency matrix of a complete graph

2. Treat the entire adjacency matrix as a single block on the main diagonal
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3. Split the block(s) on the main diagonal into quadrant(s) of 4 sub blocks: two diagonal blocks

and; upper and lower counter-diagonal blocks

4. Substitute every upper counter-diagonal block with a sum of identity matrix plus pivotal

edge

5. Substitute every lower counter-diagonal block with transpose of upper counter-diagonal

block of step 4.

6. Repeat steps 3-5 or stop if the size of blocks is 2.

Mathematically, the algorithm looks in the following way:

A = J − I

a) Initialization of the MOD

algorithm - step 1 above

A←




B
(1)
d B

(1)
u

B
(1)
l B

(1)
d




B(1)
u = I + Pe

B
(1)
l = B(1)T

u

b) Iteration 1 of the MOD

algorithm - steps 2-5 above

B
(1)
d ←




B
(2)
d B

(2)
u

B
(2)
l B

(2)
d




B(2)
u = I + Pe

B
(2)
l = B(2)T

u

c) Iteration 2 of the MOD

algorithm - step 6 above

...

B
(m−1)
d ←




B
(m)
d B

(m)
u

B
(m)
l B

(m)
d




B(m)
u = I + Pe

B
(m)
l = B(m)T

u

d) Final, mth iteration of the

algorithm.

Figure 1. Sequence of steps of the MOD algorithm

here J is an all-ones matrix, I is an identity matrix, B
(p)
d ∈ Rk×k are a diagonal block

in the pth step of the algorithm, Pe ∈ Rk×k is the pivotal element matrix defined as (Pe)ij ={
1 i = k, j = 1

0 otherwise

B
(p)
u and B

(p)
l are respectively upper and lower counter-diagonal blocks in the pth step of the

algorithm and k = n
2p .
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1.2. Visualisation of steps of the MOD algorithm

The figure below illustrates adjacency matrices generated in every step of the MOD algo-

rithm (on the left) and the diagrams of graphs with a group of edges removed at every step (on

the right).

a) Initialization

b) Iteration 1

c) Iteration 2

d) Iteration 3, final

Figure 2. Steps of the MOD algorithm generating MOD graph with 16 vertices
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1.3. Visualisation of low order MOD graphs

The following figure exemplifies adjacency matrices generated by the MOD algorithm,

along with corresponding graphs representation.

a) 4 vertex MOD b) 8 vertex MOD c) 16 vertex MOD

Figure 3. MOD graphs and their adjacency matrices for small |N | = n = 2m graphs with

2 ≤ m ≤ 4

a) 32 vertex MOD b) 64 vertex MOD c) 128 vertex MOD

Figure 4. MOD graphs and their adjacency matrices for small |N | = n = 2m graphs with

5 ≤ m ≤ 7
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2. Properties of MOD graphs

In this section we collect results for several basic MOD graph properties such as the diameter,

mean path length, size of the graph (i.e. number of edges), the ratio of MOD graph size to

complete graph size of the same order, and the vertex degrees. It turns out that most of these

properties can be derived analytically and are expressed by simple relationships. We also study

the spectra of adjacency matrices and attempt to relate them to other graph properties.

2.1. Diameter and mean path length

Two very important properties of graphs are the diameter and mean path length. The

diameter of a graph is the greatest distance between any two vertices in a graph, where distance

between two vertices is defined as the shortest of all paths connecting these vertices.

The diameter of MOD graphs is found to be

dMOD(n) = log2n = m, for 2 ≤ m ≤ 3 (1)

dMOD(n) = log2n− 1 = m− 1, for m ≥ 4 (2)

The mean path length, lG, is the average of distances between any two vertices in a graph,

defined as follows

lG =
1

n(n− 1)

∑

i 6=j

d(vi, vj) =
1

n(n− 1)

∑

i 6=j

(D)ij (3)

where d(vi, vj) denotes distance between ith and jth vertex and D denotes a distance matrix

corresponding to a graph G. The latter formula provides a prescription for computation of lG.

The mean path length of the MOD graphs converges to half of the diameter, for large n.

lim
n→∞


 1

n(n− 1)

∑

i 6=j

(D)ij


 =

1

2
dMOD(n) =

1

2
(m− 1) (4)

The figure below depicts a diameter and mean path of the MOD graphs as a function of

graph order n.

M. Michalewicz, L. Orlowski, Y. Deng

2015, Vol. 2, No. 4 21



Figure 5. Diameter and mean path of the MOD graphs as a function of graph order n

2.2. Size of MOD graphs and their vertex degrees

Theorem 1. The size of a MOD graph of order n is given by:

|L| = n

2
(log2n+ 1)− 1

= (m+ 1)2m−1 − 1
(5)

Where n = 2m

Proof. We prove the formula by counting the edges removed at every step of the algorithm.

|L| = 1

2

[
n(n− 1)− 2(

n

2
)2 + n+ 2− 22(

n

22
)2 + n+ 22 + ...− 2m(

n

2m
) + n

]

=
1

2

[
n(n− 1)− n2

m∑

i=1

1

2i
+ nm+

m−1∑

i=1

2i

]
=

1

2

[
nm+ 2n2 − n− n2

m∑

i=0

1

2i
+

m−1∑

i=0

2i − 1

]

=
1

2

[
nm+ 2n2 − n− n2

2m
(21+m − 1) + 2m − 2

]
=

1

2

[
nm+ 2n2 − n− 2n2 +

n2

2m
+ 21+m − 2

]

=
n

2
(log2n+ 1)− 1.

The following figure shows how the size of the MOD graphs increases as a function of the

graph order n = 2m grows from 4 to 16,384 (or m grows from 2 to 14).
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Figure 6. Size of MOD graphs for 2 ≤ m ≤ 14

All the vertices of the MOD graph have a constant degree m + 1 = log2n + 1, except for

two vertices, numbered 1st and nth in adjacency matrices which are of degree m = log2n. This

property can be expressed in the following way:

Au = (m,m+ 1, ...,m+ 1,m)T . (6)

where A is the adjacency matrix and uT = (1, . . . , 1)

2.3. Bisections of MOD graphs

Bisection is a subset of edges, that, when removed, separates a graph into two disconnected

components of equal order (or almost equal for graphs of odd order). In the network theory, the

quantity of interest is the bisection bandwidth, which can be derived from minimum bisection (a

graph theoretic property) by multiplying each edge from the cut by its weight (or bandwidth in

the network theory language). Here we assume that each edge has weight equal 1, which provides

the best basis for topology comparisons. In this section we look at the minimum bisection of

MOD graphs. We do not formally derive the formula for the number of edges in the minimum

bisection, but instead arrive at the formula after a discussion to give the intuition of what is the

minimum bisection of a MOD graph.

Let us observe, that every vertex vk in a MOD graph of order n is directly connected to a

vertex v(k+n/2) mod n. Furthermore every vertex vk is connected to vk−1 and vk+1, except for v1

and vn. This means that the minimum bisection (i.e. a bisection with the minimum number of

edges) has to contain all the edges connecting the vk with v(k+n/2) mod n for 1 ≤ k ≤ n/2 plus

one edge connecting vn/2 and vn/2+1. This is presented in the following figure:
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Figure 7. Minimum bisection of MOD graph of order 16 presented in graph (the cut in blue)

and its adjacency matrix (entries in blue)

This leads us to an observation that the number of edges in the minimum bisection in a

MOD graph is

| min
bisections

B(V1, V2)| =
n

2
+ 1 = 2m−1 + 1 (7)

Where V1 and V2 are two disjoint sets of vertices of equal size, whose sum is V .

In terms of graphs suited for topologies of interconnects, the higher the size of the minimum

bisection, the better, meaning that the network based on such topology allows more data to flow

from one half of the network to the other under uniform traffic pattern [18].

The following table summarises the minimum bisections and some other parameters of

topologies that most resemble MOD graphs.

Table 1. Formulas for most important parameters

including bisection width of hypercube, tori and MOD.

Note that MOD has two vertices of degree m as depicted

in (6)

Topology Order Degree Diameter Bisection

Hypercube 2m m m 2m−1

3D Torus m3 6 3m/2 2m2

5D Torus m5 10 5m/2 2m4

MOD 2m m+ 1 m− 1 2m−1 + 1

2.4. Edge ratio of MOD graphs

Definition 1. Edge ratio of a graph G = (N,L) is a ratio of the size of a graph, |L|, to the

size of a complete graph of the same order, i.e.:

Lratio =
2|L|

|N |(|N | − 1)
. (8)
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The edge ratio of the MOD graphs follows immediately from (5) and is given by:

Lratio =
nlog2n+ 2n− 2

n2 − n (9)

=
(m+ 2)2m − 2

2m(2m − 1)
(10)

In the limit of large n an edge ratio of the MOD graph converges to 0, i.e.

lim
n→∞

Lratio = 0 (11)

2.5. Eigenvalues of the MOD graphs

Although the interpretation and meaning of all eigenvalues of adjacency matrices is yet

unclear and subject to the study of spectral graph theory [17, 25], there are a few properties of

MOD graphs which we understand and discuss here. The distribution of eigenvalues for MOD

graphs with 2 ≤ m ≤ 14 is represented below:

Figure 8. Distribution of eigenvalues for MOD graphs with 2 ≤ m ≤ 14.

We denote the greatest eigenvalues as λ1 and the least one as λn. We also observe that the

average vertex degree is bounded by λ1

1

n
uTAu =

1

n

n∑

i,j

(A)ij = 2
|L|
|N | < λ1 (12)

and approaches λ1 as the order of graph grows large. It follows trivially from Eq. 5 that

lim
n→∞

λ1 = lim
n→∞

2
|L|
|N | = m+ 1 (13)
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Furthermore, one sees that

λn−1 = −m+ 1 (14)

λn ≈ −m (15)

We observe from Eq. 12 and Eq. 14 that for MOD graphs the greatest eigenvalue is equal to the

spectral radius i.e. λ1 = ρ(A(G)). The eigenvalues are bound as follows

−m < λi < m+ 1, for all i ∈ [1, n] (16)

Finally, since: i) trace of the matrix is invariant with respect to similarity transformations, and,

ii) the sum of all eigenvalues of an adjacency matrix of a graph with no self-loops is 0: tr(A) = 0.

n∑

i=1

λi = 0 (17)

Figure 9. Absolute values of eigenvalues for the MOD graphs of order n = 213 (red) and

n = 214 (blue). NB For j ≥ n
2 , λj ≤ 0

The Figure 7 above represents the absolute values of all eigenvalues of the MOD graphs of

order n = 213 (red) and n = 214 (blue). It is clearly seen that there are regions of the spectra

where all eigenvalues assume natural number value, and are highly degenerate. For m odd, the

integer eigenvalues are even, for m even, they are odd. Another fact that can be observed from

the plots, is that very nearly half of eigenvalues are negative and half positive. The minimum of

the absolute value of eigenvalues is non-degenerate for even values of m and degenerate for odd

values of m and in both cases falls at or is centred (respectively) at n/2. For odd values of m

the minimum of the absolute value of eigenvalues is equal zero, and for even m is slightly above

zero.
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2.6. Distance distribution of MOD graphs

The histogram of all distances expresses the discrete probability distribution of a distance

between any two vertices in a graph. This distribution is an essential signature of a graph. It

relates to the mean path length and the maximum distance, i.e. the graph diameter. In the

context of practical supercomputer interconnect topologies distance distribution translates to

network latency between the given pair of ports in the network. There are important implications

of distribution of distances on the graph traversal, which in terms of network topologies translate

to flow control and routing algorithms.

a) 8 vertices (m = 3) b) 16 vertices (m = 4) c) 32 vertices (m = 5)

d) 64 vertices (m = 6) e) 128 vertices (m = 7) f) 256 vertices (m = 8)

g) 512 vertices (m = 9) h) 1,024 vertices (m = 10) i) 2,048 vertices (m = 11)

j) 4,096 vertices (m = 12) k) 8,192 vertices (m = 13) l) 16,384 vertices (m = 14)

Figure 10. Distribution of distances in MOD graphs with 4 ≤ m ≤ 14
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Figure 10 depicts histograms of distances in MOD graphs of order

n = 2m, for 4 ≤ m ≤ 14 overlaid with probability density functions of normally distributed

random variable with the same mean value and variance as respective samples. Although at

first it might seem that distances are normally distributed - they are not. The histograms of

distances in MOD graphs have heavier tails than normal distribution.

A normal distribution (and centralised distributions) results in very predictable distances,

meaning that the expected value of path length is equal (or close) to mean path length. Right

skewed distributions (those with positive skewness or third standardised moment) have majority

of short paths, a desirable characteristic, which may give a performance boost to a routing

algorithm, however the vertices which are far away from each other will have negative impact on

global communication e.g. gather and scatter. Left skewed distributions (with negative skewness)

might intuitively seem undesirable. However, for topologies with a very short diameter, such as

the dragonfly topology, skewness is not a decisive feature which might disqualify the topology

from being a very effective solution.

The most important final point here is that irrespective of the underlying topology, and how

good the distance distribution might seem, the ultimate criterion is a communication pattern

within the algorithm, and how well it matches the hardwired supercomputer network topology.

This topic deserves entirely separate treatment. Of course, some common stencils and known im-

plemented algorithms might map very well on standard supercomputing interconnect topologies

(see Section 5).

3. Graphs resulting from halted MOD algorithm: arrested

MOD graphs

One very attractive feature of the graph creation algorithms presented here, and especially

the MOD algorithm, is an ability to halt the iterative process at any step 0 ≤ c ≤ m − 1 to

create what we define as arrested MOD graphs, or aMOD, in short.

We introduce notation to describe arrested MOD graph of order n = 2m and halted at cth

iteration as aMOD(m, c), for example, if m = 10 and c = 6, we write: aMOD(10, 6) and it

describes the arrested MOD graph of order n = 210 = 1024 and halted at the 6th iteration

resulting in all-to-all fully connected blocks of 2m−c = 16 vertices.

This process leads to creating 2c complete sub-graphs of order 2m−c, or in the language of

graph theory 2c of 2m−c-vertex cliques.

Why is this important? It turns out that the most efficient supercomputer interconnect

topology (currently) on the market is the dragonfly topology [13, 19, 21], exemplified by the

Cray XC30 Aries topology5. It is complete at back-plane level, or at what we would attribute

in the aMOD context (in our aMOD topology) to 2m−c = 16. Please note that for the sake of

simplification we consider Aries NIC as the end-node (vertex) in a dragonfly topology. This is

partially justifiable since all connections between Aries and CPUs run as printed circuit lines,

and are not realised as copper or optic links. The adjacency matrices of the aMOD(10, 6) graph

and the dragonfly graph of order n = 1152 are presented below.

5see Table 2
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a) Adjacency matrix of aMOD(10, 6)

graph, and

b) .. the dragonfly graph of order

n = 1152.

Figure 11. Comparison of adjacency matrices of aMOD and dragonfly

N.B. The plot of dragonfly contains the whole set of separate connections (dots on our

representation of the adjacency matrix) which are too tiny to be resolved in this picture. In

contrast, aMOD has connections which run in off-diagonal arrangement and are more clearly

visible. Further discussion of similarities and differences is presented in Section 5.

Figure 10 below illustrates how the MOD algorithm for the MOD graph of order n = 1024

or m = 10, which is halted at every iteration c = 0, ..., 9

Figure 12. Diameter and mean path length of the aMOD(m,c) graph vs. c; m=10, c-iteration

step

The arrested algorithm results in one complete graph (c = 0), seven aMOD graphs for

c = 1, 2, ..., 8, and a saturated MOD algorithm, MOD graph for c = 9.

Please note that the adjacency matrices and aMOD graphs for m = 4 and c = 0, 1, 2, 3 were

represented in Figure 2.
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The mean path length is about half of the graph diameter, and what is clearly seen, the

interesting property of the arrested aMOD graphs - the diameter of the aMOD(m,c) graph is:

daMOD(m,c) = c+ 1 1 ≤ c ≤ m− 2 (18)

daMOD(m,c) = c c = m− 1 (19)

The topologies of aMOD graphs could be utilised in the future highly connected and very dense

systems, where lot more nodes could be tightly interconnected in all-to-all manner. There is,

of course, a price to pay for all-to-all communication: the number of links increases and this

adds substantial costs to the entire system cost. However, we believe that the future, ultra-dense

systems with on-chip interconnects will allow this type of topology to be implemented. Figure

11 below illustrates the exponential decrease of the size of the aMOD graph as a function of

iterations (translated to fully connected blocks (cliques) of sub-systems).

Figure 13. Size of the aMOD(m,c) graph vs. c; m=10, c is the iteration step

4. How all this fits to real Supercomputer interconnect

topologies?

The most powerful supercomputer in the world in June 2015 [2], Tianhe-2 has more than

3,000,000 cores. It is well recognised that with limits imposed on increases of clock speed of the

new, more powerful systems, the most obvious way to greater computational performance is by

increase of parallelism, or in other words, the number of separate computational units: cores in

processors or accelerators and a number of nodes in a system. This prospect immediately leads

to incredible increase of complexity of possible interconnect networks. Again, the importance of

communication, data placement (to minimise communication) and the requirement for robust

and well performing network topologies has been well documented [9, 10, 23].
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Table 2. Comparison of basic graph properties of MOD

and aMOD graphs with graph topologies used in the

world’s leading supercomputer systems and for recently

proposed SlimFly [14] for three different graph orders.

*Note that MOD and aMOD graphs have 2 vertices, whose

degree is lower by 1 than that of the remaining vertices -

see (6).

**Dragonfly topology as implemented in Cascade has 20

edges per Aries within an electrical group (a two-cabinet

arrangement) plus at least one link connecting to a

different electrical group

Topology Graph Order/ Order Size Deg. Diam. Mean path Bisec.

Dimensions length

MOD 1,024 1,024 5,631 11* 9 4.55 513

aMOD 1,024;16 1,024 10,815 22* 7 3.82 513

Dragonfly 1,152 1,152 11,586 ≥21** 5 4.31 12

SlimFly q = 23 1,058 18,515 35 2 1.97 6,095

3D torus 8× 8× 16 1,024 3,072 6 16 8.01 128

5D torus 4× 4× 4× 4× 4 1,024 5,120 10 10 5.00 512

Hypercube 10D 1,024 5,120 10 10 5.00 512

TOFU 3× 4× 8× 2× 3× 2 1,152 5,760 10 10 5.38 288

MOD 2,048 2,048 12,287 12* 10 5.03 1,025

aMOD 2,048;16 2,048 22,655 23* 8 4.29 1,025

aMOD 2,048;32 2,048 37,951 38* 7 3.86 1,025

Dragonfly 2,400 2,400 24,300 ≥21** 5 4.43 156

SlimFly q = 31 1,922 45,167 47 2 1.98 14,927

3D torus 8× 16× 16 2,048 6,144 6 20 10.00 256

5D torus 4× 4× 4× 4× 8 2,048 10,240 10 12 6.00 512

Hypercube 11D 2,048 11,264 10 11 5.50 1,024

TOFU 5× 5× 8× 2× 3× 2 2,400 12,000 10 11 6.07 600

MOD 4,096 4,096 26,623 13* 11 5.52 2,049

aMOD 4,096;16 4,096 47,359 24* 9 4.78 2,049

aMOD 4,096;32 4,096 77,951 39* 8 4.34 2,049

aMOD 4,096;128 4,096 270,367 133* 6 3.41 2,049

Dragonfly 4,032 4,032 41,181 ≥21** 5 4.48 441

SlimFly q = 37 2,738 75,295 55 2 1.98 25,382

3D torus 16× 16× 16 4,096 12,288 6 24 12.00 512

5D torus 4× 4× 4× 8× 8 4,096 20,480 10 14 7.00 1,024

Hypercube 12D 4,096 24,576 10 12 6.00 2,048

TOFU 6× 7× 8× 2× 3× 2 4,032 20,160 10 13 6.88 1008

In Table 2 we compare our MOD and aMOD graph topologies with the most common

topologies implemented in the largest and most powerful supercomputers in the world: 3D torus
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exemplified by Gemini interconnect in Cray XE6 and XK7 [3, 4], 5D torus implemented in IBM

BlueGene/Q [5], hypercube partially implemented in SGI Pleiades Ice X at NASA [6, 16]; and

Fujitsu K-computer with TOFU proprietary interconnect [12]. Dragonfly network is exemplified

by Cascade/Aries technology implemented in Cray XC 30 [19]. Currently the largest Cray XC

30 in the world is Piz Daint at Swiss National Supercomputer Center [7]. Its theoretical peak

performance Rpeak is close to 7.8 PFLOPS and actual peak performance Rmax is 6.2 PFLOPS.

Piz Daint has 5,272 nodes, but each node has one Aries NIC and there are four nodes per

Aries. Hence there are 1,318 Aries switches, or in our representation of dragonfly topology, 1,318

vertices in the graph representing Piz Daint supercomputer. It means that a graph representing

the 6th most powerful supercomputer in the world according to June 2015 Top500 list [2] has

the mean path length ∼ 4.3.

We have included arrested aMOD(10,6) graph which is the most similar to dragonfly in terms

of clique size and graph size. It is interesting to note that our aMOD(10,6) and aMOD(11,7)

graphs have less links (smaller size) than the corresponding dragonfly graphs and also slightly

better mean path length. This should perhaps translate to slightly better computational perfor-

mance, if aMOD topologies were tested, subject to network bandwidth and efficiency of routing

algorithms comparable to Cascade systems. This superiority is regained by dragonfly graph

topology for a network of order 4,096 or higher. Note, that the the two largest Cray XC series

systems ever built: Piz Daint at CSCS and Shaheen II at KAUST [8] have about 1,536 Aries

routers, which are treated in our analysis as the vertices of the Cray’s implementation of the

dragonfly topology interconnect. Hence the largest currently implemented dragonfly topology

with 1,536 vertices are well within the orders of graphs analysed and presented in Table 2.

For comparison we have also included SlimFly [14] topology which has a very small diameter

of 2 and attracted a lot of attention lately. From our analysis, it is clear that SlimFly does not

scale well since its size is based on prime numbers. There are no HPC systems built with

interconnect based on SlimFly topology yet. Of course SlimFly significantly outperforms both

MOD and aMOD graphs with respect to diameter and minimum bisection, but this comes at

the price of very high degree and size (see Table 3).

The second very important observation is that all other interconnect topologies perform

rather poorly if we compare them on just two scores: diameter and mean path length for the

same or very similar order. On the other hand, they do have substantially smaller size (less

edges) - which normally translates to cheaper system. However - that is not a fair comparison

with dragonfly topology of Cray XC 30 - as we noted previously we do not count all the cores

of the four nodes per Aries - the more adequate comparison between various supercomputers

would need to include exact core count, routing technology and total bisectional bandwidth.
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Figure 14. Diameters of MOD graphs and of graph topologies used in the world’s leading

supercomputer systems as function of graph order

Figure 13 above illustrates the diameter of a graph as a function of its order. This is an

important feature in practical interconnect design considerations, since a graph diameter is the

upper bound for all distances in a graph. The smaller the diameter, the better, especially for

the systems designed for big data, where a program has no control over the placement and

locality of data. In 3D torus the diameter grows quite fast and we would expect this topology

to be good for a special class of well structured problems with good data locality and very close

communication among nearest neighbours, such as regular 3D mesh problems. The diameters

of 5D torus and hypercube overlap in the plot since they are the same for graph orders up to

1,024. For larger orders 5D torus diameter is larger than that of hypercube. TOFU performs

slightly better than 5D torus and hypercube only for graphs of orders between 512 and 1,024,

outside of this range it has larger diameter than both 5D torus and hypercube. Dragonfly has

a constant diameter of 5, which is an important property of that graph topology. MOD graphs

exhibit moderate growth of diameter as a function of the graph order. MOD graphs’ diameters

are uniformly better (by 1) than the diameters of hypercube (see Formula 4).

Figure 14 below shows mean path lengths as functions of the order of graphs. Mean path

length of 3D torus, 5D torus and hypercube is always half of their diameter, which follows from

the periodic boundary conditions of torus (hypercube is a special case of a torus), therefore a

rate of growth of mean path length for those three topologies is exactly the same as that of

their diameters. Similar behaviour can be observed for TOFU, however its mean path length

is slightly more a half of its diameter. MOD graphs have lower diameter than all other graph

topologies considered here, bar dragonfly, and the mean path length is expressed by Eq. 3 (in

the limit of large graph order). Dragonfly shows a different behaviour. As the order of Dragonfly

grows, so does the mean path length, approaching the constant diameter of 5 asymptotically

(see Figure 14 and Table 1).
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Figure 15. Mean path lengths of MOD graphs and graph topologies used in the world’s

leading supercomputer systems as function of graph order

The sizes of graphs representing typical supercomputer interconnects are shown in Figure 14.

Sizes of graphs grow exponentially, as their orders grow. For dragonfly, the lowest diameter and

mean path length is achieved with additional cost of rapid growth of size. MOD and hypercube

have similar rate of growth of their size. MOD graphs have more edges though. 5D torus and

TOFU both have similar size as the order grows, since they have the same constant vertex

degrees. Finally 3D torus whose diameter grows most rapidly, has the slowest rate of size growth.

Figure 16. Sizes of MOD graphs and graph topologies used in the world’s leading

supercomputer systems as function of graph order
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Part II

In Part I we presented MOD and arrested MOD graphs resulting from removal of square

blocks of edges at each iteration and substituting them with a diagonal matrix with one pivotal

element along the main diagonal. Here, we follow similar edge removal strategy, but instead

of square shapes we remove triangular shapes from the adjacency matrix, which leads to the

final matrix which has two Sierpiński gaskets aligned along the main diagonal. It will be shown

below that a graph belonging to this new class of graphs is not a Sierpiński graph, since it is

the adjacency matrix which has a structure of a Sierpiński gasket, and not a graph described

by this matrix. We call this new class of graphs Sierpiński-Michalewicz-Or lowski-Deng (SMOD)

graphs.

5. Sierpiński-Michalewicz-Or lowski-Deng (SMOD) Algorithm

Again, as in Section 1, we consider undirected, unweighted graphs. This time, for simplicity

of algorithm construction, we restrict the order of SMOD graphs to odd numbers expressed as

|N | = n = 2m + 1,m ∈ N+.

The SMOD algorithm is also based on edge removal. The algorithm starts with a complete

graph and edges are removed with every iteration, leaving 3log2(n−1) = 3m edges upon finishing.

The algorithm finishes in m− 1 steps.

5.1. The SMOD algorithm

The SMOD algorithm has the following steps:

1. Start with an adjacency matrix of a complete graph of order n+ 1 = 2m + 1 for m ≥ 2.

2. The diagonal divides the matrix into two triangular sections: upper-right triangular one

(UR) and, lower-left triangular one (LL). We follow exactly Sierpiński iterative process

within each of the triangles, with the following qualification: the triangular shapes (matrices)

are not equilateral but isosceles right angled triangles.

3. At pth step we subtract 2 · 3p−1 triangular shapes.

4. Repeat steps 2 and 3 for remaining regions.

5. Stop when triangles reduce to single entry.

5.2. Visualisation of steps of the SMOD algorithm

The figure below illustrates adjacency matrices generated in every step of the SMOD algo-

rithm and the diagrams of graphs with a group of edges removed at every step.
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a) Initialization

b) Iteration 1

c) Iteration 2

d) Final iteration 3

Figure 17. Steps of SMOD algorithm generating a graph with 17 vertices
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5.3. Visualisations of SMOD graphs of small size

Figure 16 illustrates adjacency matrices generated by the SMOD algorithm and corre-

sponding graphs representation for SMOD graphs with 2 ≤ m ≤ 7.

a) 5 vertex SMOD b) 9 vertex SMOD c) 17 vertex SMOD

d) 33 vertex SMOD e) 65 vertex SMOD f) 129 vertex SMOD

Figure 18. SMOD graphs with 2 ≤ m ≤ 7
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6. Properties of SMOD graphs

This section outlines basic properties of SMOD graphs such as the relationship between

order and the size of SMOD graphs, their diameter and mean path length as well as distance

and vertex degree distributions. Most of these properties can be easily expressed analytically.

We also look into the spectra of SMOD graphs and attempt to understand what information

can be extracted from them.

6.1. Size of SMOD graphs

Theorem 2. If n = 2m + 1 is the order of a SMOD graph, then its size is given by

|L| = 3m = 3log2(n−1) (20)

Proof. Counting the edges removed at each step of the SMOD algorithm one gets the following

formula

|L| = 1

2

[
n(n− 1)−

m−1∑

k=1

3k−1
(
n− 1

2k
− 1

)(
n− 1

2k

)]

=
1

2

[
(2m + 1)2m −

m−1∑

k=1

3k−1
(

2m

2k
− 1

)(
2m

2k

)] (21)

By mathematical induction let’s show that

1

2

[
(2m + 1)2m −

m−1∑

k=1

3k−1
(

2m

2k
− 1

)(
2m

2k

)]
= 3m (22)

The simplest SMOD graph has order n = 5, which corresponds to m = 2. The formula holds for

such m as

1

2

[
(22 + 1)22 − 2

]
=

1

2
(20− 2) = 9 = 32 (23)

Let’s assume that the formula holds for some m > 2. We shall show that it also holds for m+ 1.

Before we proceed, let’s note that

(2m+1 + 1)2m+1 = 2
[
1 + 2 + 3 + · · ·+ 2m+1

]

= 2
[
1 + 2 + 3 + · · ·+ 2m + (2m + 1) + · · ·+ (2m + 2m)

]

= 2
[ 2m∑

k=1

k + 2m2m +

2m∑

k=1

k
]

= 2
[
2

2m∑

k=1

k + 4m
]

= 2(2m + 1)2m + 2 · 4m

(24)

and that
(

2m+1

2k
− 1

)(
2m+1

2k

)
=
(
2m−k+1 − 1

)
2m−k+1

= 2
[
1 + 2 + 3 + · · ·+ (2m−k − 1) + 2m−k + (2m−k + 1) + · · ·+ (2m−k + 2m−k − 1)

]

= 2
[ 2m−k−1∑

k=1

k + 2m−k2m−k +

2m−k−1∑

k=1

k
]

= 2(2m−k − 1)2m−k + 2 · 4m−k

(25)
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Applying the inductive step and using (23) and (24) we get

1

2

[
(2m+1 + 1)2m+1 −

m∑

k=1

3k−1
(

2m+1

2k
− 1

)(
2m+1

2k

)]

=
1

2

[
2(2m + 1)2m + 2 · 4m − 2

m∑

k=1

3k−1[(2m−k − 1)2m−k + 4m−k]

]

= (2m + 1)2m −
m−1∑

k=1

3k−1(2m−k − 1)2m−k + 4m − 4m

3

m−1∑

k=1

(
3

4

)k

= 2 · 3m + 4m − 4m

3

m−1∑

k=1

(
3

4

)k

= 3m+1 − 3m + 4m − 4m

3

m−1∑

k=1

(
3

4

)k

= 3m+1 − 3m + 4m − 4m

3

(
3/4− (3/4)m+1

1− 3/4

)

= 3m+1 − 3m + 4m − 4m

3

(
3− 3m+1

4m

)
= 3m+1 − 3m + 4m − 4m + 3m

= 3m+1

(26)

By the induction assumption the formula holds for m+ 1, hence it holds for any m ≥ 2.

The figure below shows how the size of SMOD graphs changes as a function of m, where

n = 2m + 1 as n grows from 5 to 1, 025 (or 2 ≤ m ≤ 10)

Figure 19. Sizes of SMOD graph with 2 ≤ m ≤ 10

6.2. Diameter, mean path length and distances

Every SMOD graph of order n contains three Sn (n-star) subgraphs. Those three subgraphs

are seen in the SMOD graphs’ adjacency matrices as fully filled (except of the diagonal element)

rows (or columns) 1, n−1
2 and n. This trivially corresponds to vertices that are connected to all

other vertices. The Sn subgraphs are the minimum spanning trees of SMOD graphs. Since their

diameter is 2 this implies that every SMOD graph has diameter 2.
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An interesting conclusion follows from the above observation:

Theorem 3. There are no mutually orthogonal vectors in the column (or row) space of an

adjacency matrix of a SMOD graph.

Proof. An SMOD graph of order n has exactly three Sn n-star subgraphs, which are also the

minimum spanning trees. This means that the diameter of an SMOD graph of order n is 2 and

thus the distance is at most 2, hence there always exists a walk of length 2 between any two

vertices i and j. By Lemma 3 in [25] for any undirected graph the number of walks of length k

between vertices i and j is equal (Ak)ij , thus, since for all pairs of vertices i and j in SMOD graph

there is always a walk corresponding to a distance ≤ 2 hence (A2)ij = (ATA)ij > 0. Therefore

the scalar product of any two columns of an adjacency matrix of an SMOD is non-zero, and

thus no pair of vectors from column space is orthogonal.

The following Figure depicts how fast the mean path length approaches the diameter. This

means that as the order of the graph grows, so does the number of pairs of vertices that are 2

hops away with respect those that are directly connected.

Figure 20. Graph diameters and mean path lengths of SMOD graphs

Since the diameter of any SMOD graph is 2, the distance between any two vertices can be

either 1 or 2. This means that if two vertices i and j are not connected, then they are 2 hops

away. In terms of the distance matrix, this says that wherever there is an off-diagonal 0 in the

adjacency matrix there is 2 in the distance matrix. By this argument we see that the following

formula holds for the distance matrix.

D = 2J − 2I −A (27)

where J is all-ones matrix.

Creating interconnect topologies by algorithmic edge removal: MOD and SMOD graphs

40 Supercomputing Frontiers and Innovations



Using the argument leading to Eq. 26 and Theorem 2 one sees that the number of pairs of

vertices, the distance between which is 2 is expressed by the following formula

∑

i 6=j

d(vi, vj)

∣∣∣∣
2

=
1

2
(2m + 1)2m − 3m =

1

2
n(n− 1)− 3log2(n−1) (28)

The following figure shows the distance distribution in SMOD graphs.

a) 5 vertices (m = 2) b) 9 vertices (m = 3) c) 17 vertices (m = 4)

d) 33 vertices (m = 5) e) 65 vertices (m = 6) f) 129 vertices (m = 7)

g) 257 vertices (m = 8) h) 513 (m = 9) i) 1,025 vertices (m = 10)

Figure 21. Distribution of path lengths in SMOD graphs with 2 ≤ m ≤ 10

The figure depicts what can also be seen from Eq. 27: for m ≥ 5 the pairs of vertices 2 hops

away outnumber directly connected pairs.

6.3. Vertex degrees and their distribution

In general, a low diameter of a graph implies existence of vertices of high degree. This is the

case with SMOD graphs, which have diameter 2 regardless of the graph order, but at the same

time three vertices have degree n − 1 = 2m and large number of vertices are of relatively high

degree.
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a) 5 vertices (m = 2) b) 9 vertices (m = 3) c) 17 vertices (m = 4)

d) 33 vertices (m = 5) e) 65 vertices (m = 6) f) 129 vertices (m = 7)

g) 257 vertices (m = 8) h) 513 vertices (m = 9) i) 1,025 vertices (m = 10)

Figure 22. Vertex degree vs. number of vertices of that degree in SMOD graphs with

2 ≤ m ≤ 10

6.4. Eigenvalues of SMOD graphs

Here again, we denote the greatest eigenvalue by λ1 and the least eigenvalue by λn. As with

MOD graphs, SMOD graphs have the the greatest eigenvalue equal to the spectral radius, that

is λ1 = ρ(A(G)).

Figure 23. Distribution of eigenvalues for SMOD graphs with 2 ≤ m ≤ 10.

Figure 21 above represents the distribution of eigenvalues for SMOD graphs of order n =

2m + 1 for 2 ≤ m ≤ 10. There is a noticeable gap between λ1 and λ2. Detailed study of exact

interpretation of the SMOD graph eigenvalues is outside the scope of this paper.
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6.5. Edge ratio of SMOD graphs

Regardless of the order, SMOD graphs have diameter 2. From Eqs. 19 and 27 and the

definition of the mean path length of an undirected graph it follows that the mean path length

of a SMOD graph approaches 2 for large m. It is also seen in Figure 18. A question we raise here

is how does SMOD graph size is compared with complete graph size. First, we compute sizes of

all graphs of order n = 2m + 1, for 2 ≤ m ≤ 10. The results are depicted in the figure below.

Figure 24. Comparison of graph sizes for SMOD graphs and complete graphs

Figure 23 below illustrates edge ratio of SMOD graphs which we define as a size ratio of a

SMOD graph to a complete graph. The tick marks in the figure correspond to consecutive values

of m, where n = 2m + 1. For m = 2, the ratio is 0.9 and it drops to 0.1 for m = 10. The edge

ratio converges exponentially to 0 as m grows large.

This is expressed analytically in the following manner

lim
m→∞

Lratio = lim
m→∞

3m

1
2(2m + 1)2m

= 0 (29)

Table 3 on the following page summarises the order, size, diameter and mean path length

of SMOD graphs for 2 ≤ m ≤ 10.

Figure 25. Size ratio Comparison of SMOD and fully connected graphs
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Table 3. Comparison of SMOD, SlimFly [14] and the

complete graphs. SlimFly is compared wherever it can

attain similar order. See Table 2 for comparison of SlimFly

with other graphs

Graph Order Size Diameter Mean Bisection

path length bandwidth

SMOD 5 9 2 1.10 5

Complete 5 10 1 1.00 6

SMOD 9 27 2 1.25 14

Complete 9 36 1 1.00 20

SMOD 17 81 2 1.40 41

SlimFly 18 45 2 1.70 15

Complete 17 136 1 1.00 72

SMOD 33 243 2 1.54 130

Complete 33 528 1 1.00 272

SMOD 65 729 2 1.64 276

SlimFly 50 539 2 1.86 65

Complete 65 2,080 1 1.00 1,056

SMOD 129 2,187 2 1.74 794

Complete 129 8,256 1 1.00 4,158

SMOD 257 6,561 2 1.80 2,317

SlimFly 242 2,057 2 1.93 671

Complete 257 32,896 1 1.00 16,500

SMOD 513 19,683 2 1.85 7,068

Complete 513 131,328 1 1.00 65,736

SMOD 1,025 59,049 2 1.89 20,262

SlimFly 1058 18,515 2 1.97 6,095

Complete 1,025 524,800 1 1.00 262,446

Conclusions

We present a novel method and algorithms for generating new classes of MOD and SMOD

graphs. We stress that our primary objective in the present work is to propose fast and effective

algorithms for creating sparse adjacency matrices by iterative removal of entire groups of edges.

This translates to creating well connected graphs of arbitrarily large order but of reasonably small

size and also having other properties that render some of them to be interesting candidates for

supercomputer interconnect topologies. However, we do not claim that this process will lead

to ”optimal” interconnect network topologies - irrespective of the definition of ”optimal”. The

central object for this method is the adjacency matrix, and we derive the graphs, and all their

properties from this matrix. The starting graph is always the complete graph. We construct

graphs of arbitrary order n = 2m or n = 2m + 1, for MOD and SMOD graphs, respectively, and

gradually, by algorithmic removal of edges, arrive at the final graph. We also propose a halted
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MOD algorithm which leads to graphs aMOD(m, c) with cliques of order 2m−c. We compare

the main graph properties such as diameter, mean path length, histogram of distances and

size to all typical graph topologies represented in the most important supercomputers that are

currently on the market. It turns out that our MOD graphs are better than almost all of these

supercomputer interconnect topologies, with the exception of dragonfly topology, for graphs of

some large orders.

The algorithm was designed to introduce a systematic and simple way of removing as large

number of edges as possible at each iterative step, starting from the complete graph, and at the

same time to preserve good graph connectivity, and arrive at final graphs of reasonably small

size. The method is fast, almost all important graph properties can easily be derived from the

combinatorics of the algorithm.

Clearly, besides the two algorithms described here, there may be great number of similar

schemes leading to other graphs of similarly interesting, and perhaps even ”better”, properties.

Here are some examples of the other schemes that have not been investigated here. We plan

to investigate these alternatives and report detailed results in the future.

1. A trivial modification of MOD algorithm described in Fig. 1 would be to substitute Pe at

the first iteration step with the symmetric matrix Ps ∈ Rn/2×n/2 defined as

(Ps)ij =





1 i = n/2, j = 1

1 i = 1, j = n/2

0 otherwise

this will lead to a regular graph i.e. a graph with all vertices of the same degree. Eq. 6 for

such a variant of MOD graph would read: Au = (m+1,m+1, ...,m+1,m+1)T . This graph

will have a size bigger by 1 than our MOD graph, i.e. |L| = n
2 (log2n+ 1) = (m+ 1)2m−1.

2. Modification of SMOD algorithm to remove 3p−1 extra edges - ”the centres of star graphs”

at each pth iteration. This is illustrated below in Fig. 24 (a)-(c) and should be compared

with Fig. 16 (a)-(c). Three most important implications of such a new augmented algorithm

are: i) this will also lead to graphs of diameter 2, ii) the graphs will have smaller size,

iii) all vertices with of the highest order will be removed (see Fig. 20 (a)-(i)). All these

characteristics make such modified SMOD graphs better candidates for interconnects in Big

Data era (up to some reasonable size n = 2m + 1).

a) 5 vertex modified SMOD b) 9 vertex modified SMOD c) 17 vertex modified SMOD

Figure 26. Adjacency matrices of modified SMOD graphs with lowered maximum vertex

degrees
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3. Combination of MOD and SMOD algorithms. This process will start with several steps

performed with one of the algorithms, and than switch to the other one. Clearly this will

lead to graphs with ”off-diagonal” parts further away from the main diagonal akin to the

first graph, with all blocks adjacent to the main diagonal having a character of the second

graph family. It is also clear that such combined graphs are also embedded graphs of one in

to the other graph class.

A cursory glance at Figs. 3, 16 and 24 leads us to an immediate conclusion that each MOD,

SMOD or modified SMOD graph is composed of self-similar graphs of all smaller orders. Again,

this can be cast in the statement that these graph families are embeddings of graphs of smaller

order. The most remarkable property of the SMOD graphs is that irrespective of the graph

order, the diameter is constant and equals 2. However, the size of the graph, or the total number

of edges, is about 10% of the size of a complete graph of the same order and there are vertices

of rather high order. These characteristics may prove useful in considering SMOD graphs as

possible candidates for interconnect topologies for Big Data computer architectures, provided

the vertex order does not exceed technological capabilities, i.e. the number of ports in a typical

switch. One may however speculate that if such topology is implemented as printed circuit

paths or in optical switch - the high radix may not be a serious obstacle anymore, considering

substantial reduction in the number of required links. It would be also interesting to investigate

further how well MOD and SMOD graphs topologies match communication patterns in typical

computational algorithms. We plan to devote a separate study to this open problem.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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