
Data Exploration at the Exascale

Hank Childs 1

c© The Author 2017. This paper is published with open access at SuperFri.org

In situ processing — i.e., coupling visualization routines to a simulation code to generate

images in real-time — is predicted to be the dominant form for visualization on upcoming super-

computers. Unfortunately, traditional in situ techniques are largely incongruent with exploratory

visualization, which is an important activity to enable understanding of simulation data. In re-

sponse, a new paradigm is emerging: data is transformed and massively reduced in situ and then

the resulting form is explored post hoc. The fundamental tension in this approach is between the

extent of the data reduction and the loss in integrity in the resulting data. However, new oppor-

tunities, in terms of increased access to data, may blunt this tension and allow for both sufficient

data reduction and also more accurate analysis. With this paper, we describe the trends behind

“data exploration at the exascale” and also summarize some recent results that confirmed that

this new paradigm can produce superior results compared to the traditional one.
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Introduction

This paper describes the fundamental challenges behind “data exploration at the exascale,”

the strategy behind the proposed solution, and some recent evidence that supports the merits

of this strategy. It is organized as follows:

• Section 1 provides background. Specifically, Section 1.1 describes the high-performance

computing trends that will compel the usage of in situ processing and Section 1.2 describes

the importance of data exploration and why the traditional approach for this exploration

is incongruent with in situ processing.

• Section 2 gives an overview of the new paradigm for achieving data exploration with in

situ.

• Section 3 describes a success story using this new paradigm. One of the main lessons from

this example is that increased access to data can lead to more accurate analysis and also

reduced storage costs.

1. Background

1.1. In Situ

The justification for in situ [6] is discussed extensively in the Report for the DOE ASCR

2011 Workshop on Exascale Data Management, Analysis, and Visualization [2]: the ability to

generate data is going up much faster than the ability to store it, with the limitations in storage

being both in I/O bandwidth and in power costs due to data movement. This summary presented

here focuses mostly on the I/O costs, as the the I/O subsystem is undergoing a significant change

on upcoming supercomputers.

As supercomputers get ever larger, the cost of achieving sufficient I/O bandwidth is, un-

surprisingly, increasing. But supercomputing architects have been experimenting with a new

approach to decrease this cost. Where the typical approach has a simulation write data directly

to a parallel file system (i.e., “spinning disk”), the new approach introduces an additional par-

ticipant, solid state drives (SSDs) and has the simulation write data to the SSDs instead. The
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simulation can then immediately resume, while, concurrently, the data is copied from the SSDs

to the file system, shielding the simulation from slow parallel file system performance. Although

the SSDs introduce a new cost, they lessen the importance of I/O bandwidth, allowing for the

SSDs to be coupled with a slower (and less expensive) parallel file system, providing an overall

cost reduction.

To applications, this I/O configuration appears to have two distinct bandwidth characteris-

tics. On write, the bandwidth appears to be good, since it is be accelerated by SSDs. On read,

however, the bandwidth will be poor, since the reads are backed by a slower parallel file system

and the presence of SSDs can not accelerate this activity.

The write performance on exascale machines, relative to data size, is expected to be compa-

rable to that of petascale machines (taking into accounts SSDs). But the read performance will

be at least one order of magnitude less. Further, as shown in [7], I/O is already the bottleneck

on massive data sets. As a result, the I/O bottleneck will be even more extreme at the exascale

for visualization programs that attempt to load data at its full resolution.

As a result of these trends, in situ processing has become increasingly popular with many

successful usages in recent years [8, 12, 14, 17, 20]. Further, an additional advantage of in situ

processing is that it can access all of the simulation data, which has never previously been

possible with post hoc analysis. Phrased another way, where supercomputing trends are leading

simulations to store data less often, in situ processing allows for dramatic increases in temporal

frequency, equal to that accessible in the simulation code itself.

1.2. Data Exploration

Bergeron argued in [4] that visualization and analysis usage falls into three categories: de-

scriptive, analytical, and exploratory. Bergeron defined descriptive visualization as useful “when

the phenomena represented in the data is known, but the user needs to present a clear visual

verification of this phenomenon (usually to others).” He described analytical visualization (or

directed search) as “the process we follow when we know what we are looking for in the data.”

Finally, he defined exploratory visualization (or undirected search) as the process we follow when

“we do not know what we are looking for; visualization may help us understand the nature of

the data by demonstrating patterns in that data.”

Descriptive and analytical use cases can often benefit from a priori knowledge, making them

ideal for in situ processing. But exploratory visualization can not benefit from a priori knowledge:

it is for when “we do not know what we are looking for.”

Exploratory analysis is an iterative process. An analyst forms a hypothesis, poses a ques-

tion to analysis software, interprets the result, and then forms new hypotheses and/or additional

questions. The analyst is the part of this loop and his/her decision making process (i.e. forming

questions and hypotheses and interpreting results) is the part of the total time to do the explo-

ration. The time spent by the analyst varies greatly: it is sometimes seconds or minutes, but

it is more frequently hours, days, or weeks, and it is not uncommon for an analyst to study a

simulation for months. Time scales beyond seconds are clearly not a match for in situ process-

ing, since the exascale machine is such an expensive resource to “hold hostage.” But exploratory

analysis is too important to marginalize when doing exascale computing, as this category is the

one responsible for new scientific insights: it directly leads to “new science.”
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2. New Paradigm: In Situ Reduction and Post Hoc Exploration

The new paradigm resembles the traditional post hoc model, in that the simulation writes

data to disk and stand-alone programs visualize this data by reading it from disk. However, the

new paradigm introduces a key new step to this model: it substantially reduces the data using in

situ processing before writing it to disk (see fig. 1). With enough reduction, the amount of data

to store for post hoc processing can become tractable, although actual sizes that are “tractable”

will depend on the details of each individual supercomputer.

Figure 1. The new paradigm for exploring exascale simulation data via in situ transformation

and reduction and post hoc analysis

Of course, the goals of data reduction and data integrity are in tension. Thinking of a simple

compression scheme, too much reduction can sacrifice data integrity, while requiring high data

integrity often leaves opportunities for only minimal reduction. So our community must perform

significant research to find techniques that balance these tensions. Further, we must constrain

ourselves to only considering reduction operators that are viable in an exascale setting.

This new paradigm will represent a significant change for users. Users often distrust any

reduction in data; many users believe the integrity of their data can only be preserved if it is

displayed or analyzed at its full and native resolution. But this desire is not realistic for exascale

computing. I/O and power limitations will restrict how much data can be read in and how

much can be stored for subsequent analysis. Given these limitations, users will not be able to

continue with “business as usual.” This new paradigm is responsive to the fundamental issues,

but, ultimately, users will need to accept tradeoffs and guide how decisions are made. Further,

significant research is needed to enable users to make informed decisions, e.g., “this level of data

integrity comes at the cost of this much time, storage, and power.”

More and more research has been devoted to this new paradigm in recent years [11, 15, 16,

18, 19]. A particularly noteworthy research result in this space is ParaView Cinema [3]. With

this work, the in situ reduction comes from extracting many explorable images, and the post

hoc exploration is on these images, often in forms that feel interactive for users.

In the following section, we present another research result following this new paradigm,

specifically targeting flow visualization. This research result is somewhat different from the

other results described previously, in that it makes use of the opportunity provided by in situ

processing to access more data than ever before, enabling it to create more accurate answers

than are possible with a strictly post hoc approach.
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3. Lagrangian Flow

Doing flow analysis with Lagrangian flow is a relatively new concept for visualization. So,

this section begins with an overview of the traditional method for flow analysis (Eulerian flow) in

Section 3.1, for the sake of comparison. Section 3.2 then describes the new, Lagrangian method,

and Section 3.3 describes results, contrasting them with the traditional method.

3.1. Traditional Method

Particle advection — calculating the trajectory a massless particle follows in a flow field —

is foundational for many flow visualization and analysis techniques. McLouglin et al. recently

surveyed the state of the art in flow visualization [13], and the large majority of techniques

they described, such as line integral convolution [5], finite-time Lyapunov exponents [9], and

streamsurfaces [10], depended on advection. Advection assumes access to a vector field, i.e., a

continuous function over a four-dimensional domain. If x is the spatial location of a point and t

is a time, then the vector field v maps the tuple (x, t) to its velocity as v(x, t).

Advection constructs integral curves, which are continuous functions tangential to the vector

field. Each integral curve is called a pathline, and it encodes the trajectory of a single mass-less

particle. The path of an integral curve I is the solution to an ordinary differential equation, and

is represented as:

d

dt
I(t) = v(I(t), t) (1)

where I(t0) = x0, for a seed point at time t0 and location x0.

For some approaches, visualization techniques focus on the special case of stationary flows

which vector fields do not vary over time (“steady state”). With this research, the focus was on

the general case: transient flows, where the vector fields are time-varying (“unsteady state”).

The traditional method for calculating particle trajectories is not particularly well-suited

to exploratory analysis. With post hoc analysis, simulations write time slices of data to disk

and then this time slice data is explored afterwards. But solving the advection equation requires

evaluating the velocity field at many temporal locations. Oftentimes, the necessary time locations

are not the ones saved out, so the visualization program instead does a temporal interpolation.

This temporal interpolation introduces an error, making the particle follow the wrong trajectory.

Further, the increased access provided by in situ processing cannot be leveraged by this model

when doing data exploration — since the required particles are not known ahead of time, the

necessary velocity evaluations cannot be performed, and so the only data that can be used is

the time slice data stored for traditional post hoc processing.

3.2. Lagrangian Method

Fluid mechanics considers two frames of reference for an observer watching a flow field:

Eulerian and Lagrangian. With the Eulerian frame of reference, the observer is at the fixed

position and observes flow going by. This is the traditional frame of reference for visualization

(i.e., Section 3.1). With the Lagrangian frame of reference, the observer is attached to a particle

and moves through space and time. The concept of the Lagrangian frame of reference can be

applied to visualization by taking a basis of known trajectories (Lagrangian flows), and then

interpolating new particle trajectories from this basis.
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Agranovsky et al. [1] explored the Lagrangian approach in the context of in situ reduction

and post hoc exploration (i.e., the new paradigm described in Section 2). The in situ transforma-

tion and reduction operator placed “basis” particles in the Eulerian vector field and calculated

their corresponding trajectories. The storage costs were proportional to the number of particles,

so storage reductions could be achieved by limiting the number of these particles. Critically,

unlike the traditional/Eulerian method, the Lagrangian method made use of all spatio-temporal

data, specifically when calculating the trajectories that their “basis” particles followed. As a

result, the spatio-temporal data was encoded into the trajectories, and so subsequent explo-

ration — which happened by interpolating between trajectories — was able to make use of the

spatio-temporal data.

3.3. Experiments

Here, we describe experiments comparing Lagrangian and Eulerian techniques. The results

presented extend the previous study done by Agranovsky et al.

Three data sets were considered:

• Arnold-Beltrami-Childress (ABC): A three-dimensional analytic vector field from dynam-

ical systems theory, on a regular grid of dimensions 256× 256× 256 with 3000 time steps.

• Double Gyre: A common two-dimensional benchmark of two counter-rotating gyres with

perturbations over time, on a regular grid of dimensions 512 × 256 with 3000 time steps.

• Jet: A three-dimensional simulation of a high-speed jet entering a medium at rest, on a

regular grid of dimensions 260 × 520 × 260 with 2000 time steps.

Although the frequency a simulation saves state can vary based on many factors, our exper-

iments made the simplifying assumption that a simulation would save at regular intervals, i.e.,

“every N th cycle.” We then considered six different scenarios for how often the simulation code

saved state: 10, 20, 30, 40, 50, and 60 cycles. We refer to the rate a simulation saves its data as

the “storage frequency.”

For a given data set and a given storage frequency, we calculated the following information:

• Lagrangian basis trajectories. Particles were placed at even spatial intervals and allowed

to advect for the duration of the storage frequency. The resulting displacement (from start

to end) was then saved.

• Eulerian time slices, i.e., traditional vector field information at the current time slice.

• Baseline particles. Particles were placed in the flow and their trajectory was calculated.

These particles, although calculated in the same way as the Lagrangian basis trajectories,

were kept separate, to serve as a baseline.

Then we wanted to compare error between the Lagrangian and Eulerian techniques against

the baseline particles. We defined an error metric, which was set to be the difference between

the calculated end position (whether Lagrangian or Eulerian) versus the actual end position for

that baseline particle. The distances were normalized by the scale of the mesh into units of cells

of sizes.

Fig. 2 contains the results of the study. While error increases for both methods as the storage

frequency gets larger, the Lagrangian technique is consistently more accurate than its Eulerian

counterpart. Further, the Lagrangian technique is still more accurate when reducing the number

of basis flows used, meaning that the technique can be both more accurate and take less storage

compared to the traditional Eulerian approach.
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Figure 2. Comparison of Eulerian and Lagrangian techniques

The study varies over three factors: data set, storage frequency, and the number of La-

grangian basis flows. The graphs are organized by data set, and then grouped left-to-right by

storage frequency. Traditional Eulerian advection is colored red. When the number of Lagrangian

basis flows takes the same storage as the Eulerian method does for saving time slices, then we

denote this as “Lagrangian Full” and color the results green. When there are half as many basis

flows, and so the storage costs are half that of the Eulerian method, then we denote this “La-

grangian Half” and color the results blue. One-quarter and one-eighth variants are purple and

cyan, respectively. In all cases, the results show the average error in the end position over a set

of baseline particles, meaning that bigger numbers are worse. This error is normalized by the

size of a cell in each data set’s mesh.
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Summary

The new paradigm of transforming and reducing simulation data in situ and then exploring

data post hoc has received increased attention for the research community in recent years. This

paradigm appears to be responsive to the fundamental drivers in high-performance computing,

and has the potential to retain the important use case of data exploration, which is often the

activity that realizes the value of a simulation. Further, the access to increased temporal resolu-

tion creates the opportunity to do better analysis than was previously possible. The Lagrangian

technique described in this paper shows that the benefits from incorporating increased temporal

resolution can be substantial. For this example, the traditional method was unable to take ad-

vantage of increased spatio-temporal data, but the new method was — and the increased access

led to superior results.
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