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Researchers face a daunting task to provide scientific visualization capabilities for exascale

computing. Of the many fundamental changes we are seeing in HPC systems, one of the most pro-

found is a reliance on new processor types optimized for execution bandwidth over latency hiding.

Multiple vendors create such accelerator processors, each with significantly different features and

performance characteristics. To address these visualization needs across multiple platforms, we are

embracing the use of data parallel primitives that encapsulate highly efficient parallel algorithms

that can be used as building blocks for conglomerate visualization algorithms. We can achieve per-

formance portability by optimizing this small set of data parallel primitives whose tuning conveys

to the conglomerates. In this paper we provide an overview of how to use data parallel primitives

to solve some of the most common problems in visualization algorithms. We then describe how

we are using these fundamental approaches to build a new toolkit, VTK-m, that provides effi-

cient visualization algorithms on multi- and many-core architectures. We conclude by reviewing

a comparison of a visualization algorithm written with data parallel primitives and separate ver-

sions hand written for different architectures to show comparable performance with data parallel

primitives with far less development work.
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Introduction

Although the basic architecture for high-performance computing platforms has remained

homogeneous and consistent for over a decade, revolutionary changes are coming. Power con-

straints and physical limitations are impelling the use of new types of processors, heterogeneous

architectures, and deeper memory and storage hierarchies. Such drastic changes propagate to

the design of software that is run on these high-performance computers and how we use them.

The predictions for extreme-scale computing are dire. Recent trends, many of which are

driven by power budgets, which max out at 20 MW [18], indicate that future high-performance

computers will have different hardware structure and programming models to which software

must adapt. The predicted changes from petascale to exascale are summarized in tab. 1.

A particularly alarming feature of tab. 1 is the increase in concurrency of the system: up

to 5 orders of magnitude. This comes from an increase in both the number of cores as well as

the number of threads run per core. (Modern cores employ techniques like hyperthreading to

run multiple threads per core to overcome latencies in the system.) We currently stand about

halfway through the transition from petascale to exascale and we can observe this prediction

coming to fruition through the use of accelerator or many-core processors. In the November 2014

Top500 supercomputer list, 75 of the computers contain many-core components, including half

of the top 10 computers.

A many-core processor achieves high instruction bandwidth by packing many cores onto a

single processor. To achieve the highest density of cores at the lowest possible power requirement,

these cores are trimmed of latency-hiding features and require careful coordination to achieve

peak performance. Although very scalable on distributed memory architectures, our current

parallel scientific visualization tools, such as ParaView [2] and VisIt [6], are inadequate on these

machines.
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Table 1. Comparison of a petascale supercomputer to an expected exascale

supercomputer [1]

Exascale (Prediction)

System Parameter Petascale Swim Lane 1 Swim Lane 2 Factor Change

System Peak 2 PF 1 EF 500

Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32–64 PB 100–200

Node Performance 125 GF 1 TF 10 TF 8–80

Node Core Count 12 1,000 10,000 83–830

Core Concurrency 1 10 100 10–100

Node Concurrency 12 10,000 1,000,000 830–83,000

System Size (nodes) 18700 1,000,000 100,000 50–500

Total Concurrency 225 K 1 B×10 1 B×100 40,000–400,000

Network BW 1.5 GB/s 100 GB/s 1,000 GB/s 66–660

I/O Capacity 15 PB 300–1,000 PB 20–67

I/O BW 0.2 TB/s 20–60 TB/s 100–300

Overhauling our software tools is one of the principal visualization research challenges to-

day [7]. A key strategy has been the use of data parallel primitives, since the approach enables

simplified algorithm development and helps to achieve portable performance.

1. Data Parallel Primitives

Data parallelism is a programming model in which processing elements perform the same

task on different pieces of data. Data is arranged in long vectors, and the base tasks apply

an operation across all the entities in one or more vectors. Using a sequence of data parallel

primitives simplifies expressing parallelism in an algorithm and simplifies porting across different

parallel devices. It takes only a few select data parallel primitives to efficiently enable a great

number of algorithms [5].

Scientific visualization algorithms typically use data parallel primitives like map, scan, re-

duce, and sort, which are commonly available in parallel libraries [4, 16]. Several recent research

projects for visualization software on next-generation architectures such as Dax [13], PISTON [9],

and EAVL [11] use this data parallel approach to execute algorithms [17]. Based on this core

similarity, a new project — VTK-m — is combining their respective strengths in execution and

data models into a unified framework.

2. Patterns for Data Parallel Visualization

Using data parallel primitives greatly simplifies the process of implementing algorithms on

highly-threaded machines and makes these algorithms performance portable. However, imple-

menting many scientific algorithms in terms of data parallel primitives like scan and sort is not

straightforward. Fortunately, many scientific visualization algorithms follow familiar algorithmic

structures [14], and common patterns emerge.
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Figure 1. Mesh for contour algorithm examples

Three very common patterns in scientific visualization are stream compaction, reverse index

lookup, and topology consolidation. In this section we describe these patterns using a Marching-

Square-like algorithm applied to the simple example mesh shown in fig. 1.

2.1. Stream Compaction

One common feature of visualization algorithms is that the size of the output might depend

on the data values in the input and cannot be determined without first analyzing the data. For

example, in the mesh of fig. 1 we note that there is no contour in cells 0 and 2, a single contour

line in cells 1, 3, and 5, and two contour lines in cell 4. When generating these contour segments

in parallel, it is not known where to place the results. We could allocate space assuming the

worst case scenario that every cell has the maximum number of contour segments, but that

guess tends to be much larger than the actual required memory. Instead, we want to pack the

result tightly in an array. This process is known as stream compaction. Stream compaction can

be performed in two data parallel operations, which are demonstrated in fig. 2 (adapted from

Lo, Sewell, and Ahrens [9]).

0 1 2 3 4 5

0 1 1210

0 0 4211

Original Cells

Output Cell Count
Map Classi�cation Function

Output Array Location
Exclusive Pre�x Sum of Cell Count

Write New Cells
Scatter based on location and count

(0,0)

x
(1,0)

x
(0,1) (1,1) (2,2) (4,1)

Figure 2. Steps to perform the stream compaction pattern using data parallel primitives

Firstly, a mapping operation is performed to count the size of the output per cell. Secondly,

an exclusive prefix sum (scan) operation is performed. The result of the prefix sum for each

entry is the sum of all output up to that point. This sum can be directly used as an index into

the compact output array. A final map of the per-element algorithm can now run, placing its

results into the appropriate location of the output array.
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2.2. Reverse Index Lookup

Directly using the indices from the stream compaction operation results in a scatter oper-

ation where each thread takes data from an input element and writes to one or more output

elements using random access. Although the scatter done by the basic stream compaction is

functionally correct, it is known that current many-core processors tend to perform better with

gather operations where each thread is assigned a single output element but can access ran-

dom input elements [19]. The steps to reverse the index lookup from a scatter to a gather are

demonstrated in fig. 3.
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Figure 3. Steps to perform a reverse lookup after stream compaction using data parallel

primitives

We start with an array that maps each input to the location in its corresponding output

location. However, we generate this output array location using an inclusive scan rather than an

exclusive scan. This has the effect of shifting the array to the left by one to make the indexing of

the next step work better. The next step is to search for the upper bound of the array location

for each output element index. The upper bound will be the first entry greater than the value

we search for. This search requires the target array location indices to be sorted, which it is

assuredly because it is generated from a prefix sum. The search for every index can be done

independently in parallel.

The results from the upper bound give the reverse map from output index to input index.

However, a problem that arises is that multiple output elements may come from the same input

elements but are expected to produce unique results. In this example input cell 4 produces two
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contour elements, so two entries in the output array point to the same input cell. How are the

two threads running on the same input cell know which element to produce? We solve this

problem by generating what we call a visit index.

The visit indices are generated in two steps. First, we perform a lower bound search of each

value in the input array location map into the same map. The lower bound search finds the last

entry less than or equal to the value we search for in parallel. The result is the index to the first

entry in the input array location map for the group associated with the same input element.

Then we take this array of indices and subtract them from the output index to get a unique

index into that group. We call this the visit index. Using the pair from input array location map

and the visit index, each thread running for a single output element can uniquely generate the

data it is to produce.

2.3. Topology Consolidation

Another common occurrence in visualization algorithms is for independent threads to re-

dundantly create coincident data. For example, output elements 0 and 3 from fig. 2 and fig. 3

come from cells 1 and 4, respectively, in fig. 1 and share a vertex. This shared vertex is inde-

pendently interpolated in separate threads and the connection of these output elements is lost.

It is sometimes required to consolidate the topology by finding these coincident elements and

merging them.

The general approach to topology consolidation is to define a simple hash for each element

that uniquely identifies the element for all instances. That is, two hash values are equal if and

only if the associated elements are coincident. Once hashes are generated, a sort keyed on the

hashes moves all coincident elements to be adjacent in the storage arrays. At this point it is

straightforward to designate groups of coincident elements and reduce the groups to a single

element in parallel.

For the specific case of merging vertices, Bell [3] proposes using the point coordinate triple as

the hash. However, that approach is intolerant to any numerical inaccuracy. A better approach is

to use integer-based hashes, which can usually be derived from the input topology. For example,

contour algorithms like Marching Cubes always define contour vertices on the edges of the input

mesh. These edges (and therefore the vertices) can be uniquely defined either by an enumerated

index or by the pair of indices for the edge’s vertex endpoints. Miller, Moreland, and Ma [12]

show this approach is faster than using point coordinates and can also be applied to topological

elements other than vertices.

3. Building a Framework

We are taking the concepts of data parallel primitives and the patterns built on top of

them and using them to build a visualization toolkit for multi- and many-core systems called

VTK-m. VTK-m is a separate project from the similar VTK software and has a very different

organization although the two toolkits can be used together to great effect.

At its core, VTK-m uses data parallel primitives to achieve performance portability. VTK-m

defines a unit named a device adapter on which all parallel features within VTK-m are based.

The device adapter of course provides the basic routines necessary to control the device such

as allocating memory, transferring data, and scheduling parallel jobs. Additionally, the device

adapter comes replete with the data parallel primitives scan, sort, and reduce with several
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variations. It is typical for these data parallel primitives to have very different implementations

on different architectures, and while the implementation of efficient versions on each architecture

can be challenging, this ultimately comprises only a small section of the code within VTK-m.

Also, these data parallel primitives are very general, so the VTK-m implementation often shares

the implementation provided elsewhere for more general purposes.

The patterns discussed in Section 2, which build upon data parallel primitives to form

common visualization operations are also well utilized within VTK-m, but elsewhere in the

framework. Rather, a unit called a dispatcher stands in between the device adapter and a specific

algorithm implementation, and this is where these design patterns are employed. A dispatcher

is responsible for analyzing the needs of an algorithm (inputs and outputs as well as execution

requirements) and builds the necessary infrastructure to allow the algorithm to run without

concern about parallel operation.

Depending on the type of algorithm a dispatcher is invoking, it might implement any number

of these patterns. For example, if an algorithm does not have a one-to-one mapping between

input and output values, the dispatcher will likely require the use of the stream compaction and

reverse index lookup patterns. If an algorithm is generating new topology, it likely will have

replicated elements that will benefit from the topology consolidation pattern.

4. Results

One of the promises of using data parallel primitives to build scientific visualization algo-

rithms is performance portability. That is, a single implementation using data parallel primitives

should work well across computing devices with vastly different performance characteristics from

traditional latency-optimized multi-core CPUs to bandwidth-optimized many-core GPUs. Fur-

thermore, portable data parallel primitive implementations should have close to the performance

of a non-portable algorithm designed and optimized specifically for a particular device. Recent

research indicates that data parallel primitive algorithms are in fact quite performance portable.

Maynard et al. [10] compare a threshold algorithm written with data parallel primitives

across many devices. The algorithm shows good performance on both multi-core CPU and

many-core GPU devices. Interestingly, the data parallel primitive algorithm running serially on

a single CPU core still beats the equivalent VTK implementation.

Lo, Sewell, and Ahrens [9] demonstrate the performance of a Marching Cubes algorithm

implemented with data parallel primitives. Their algorithm is compared with the equivalent

CUDA reference implementation optimized for that architecture. The two implementations get

comparable performance. The data parallel primitive implementation is also shown to get good

performance and scalability on multi-core CPUs.

But perhaps the most encouraging evidence comes from a recent performance study con-

ducted by Larsen et al. [8] for ray tracing in the context of data parallel primitives. Ray tracing

is a challenging use case since it is computationally intense and contains both regular and irreg-

ular memory access patterns. Moreover, this is an algorithm with “guaranteed not to exceed”

standards, in the form of Intel’s Embree [20] and NVIDIA’s OptiX [15]. These products each are

supported by teams of developers and have been under development for multiple years. Further,

they make full use of architectural knowledge, including constructs like intrinsics, and tune for

Intel and NVIDIA products, respectively.

Larsen implements his ray tracer within EAVL and provides a performance study against

OptiX on multiple NVIDIA GPUs and against Embree on Intel Xeon and Xeon Phi architectures.
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Figure 4. Rendering from ray tracing study on an isosurface of 650,000 triangles

His study includes both scientific data sets and standard ray tracing data sets (e.g., Stanford

dragon). Fig. 4 shows one of the scientific data sets.

Encouragingly, the performance comparison finds that the EAVL ray tracer is competitive

with the industry standards. It is within a factor of two on most configurations and does par-

ticularly well on the scientific data sets. In fact, it even outperforms the industry standards on

some older architectures (since the industry standards tend to focus on the latest architectures).

Overall, this result is encouraging regarding the prospects for portable performance with

data parallel primitives, in that a single, architecture-agnostic implementation was comparable

to two highly-tuned, architecture-specific standards. Although the architecture-specific stan-

dards are clearly faster, the gap is likely acceptable for our use case. Further, the data parallel

primitive approach is completed by a graduate student in a period of months whereas the in-

dustry standards take experts years (or more); the encumbrence from data parallel primitives

could actually be even smaller given additional effort and expertise.

5. Conclusion

Visualization software will need significant changes to excel in the exascale era, both to deal

with diverse architectures and to deal with massive concurrency within a node. Recent results

show that data parallel primitives are a promising technology to deal with both challenges.

Firstly, exploration into multiple algorithms have shown recurring trends, and will hopefully

serve as a precursor to porting many of our community’s algorithms reusing these same trends.

Secondly, studies comparing performance with architecture-specific implementations have shown

that the performance is very good. Researchers in this area — including the authors of this

paper — are so encouraged that they have banded together to form a new effort, VTK-m, in an

endeavor to provide production visualization software to the HPC community.
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