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By modeling of predominant conformations of mobile loops in previously unresolved regions
of 2-hydroxybiphenyl 3-monooxygenase structure (PDB ID: 5BRT) using GPU-accelerated
metadynamics simulations integrated with artificial intelligence and high-performance computing
the full-length protein model was built. Combined with bioinformatic analysis of the
flavin-dependent monooxygenases it allowed to propose the functional role of amino acid
residues in the 2-hydroxybiphenyl 3-monooxygenase catalysis. Three subfamily-specific residues
Glu359, Lys339, Arg360 and the Asp332 residue, conservative throughout the entire family of
flavin-dependent monooxygenases, form salt bridges Glu359-Lys339 and Arg360-Asp332, which
stabilize alpha helices preserving the integrity of the Rossmann fold of the FAD-binding domain;
subfamily-specific residues Trp338 and Glu359 provide the correct positioning of alpha-helices by
interacting with two conservative residues Asp557 and Arg555 from the hydroxylase domain.

NAD binding pocket is formed by a number of subfamily-specific residues Trp38, Ser40,
Serd2, Argd6, Serd7, Alal80, Asn205, Ser291, Trp293 located in an elongated pocket adjacent to
the FAD binding site. The Asp313 residue, conservative in the entire family of flavin-dependent
monooxygenases, directly interacts with FAD through hydrogen bonding with 2’-OH-ribitol,
contributing to the binding and orientation of the cofactor. The Argd6, Serd7, Gly202, Ser203,
Asn205, Arg242, Val253, Trp293, Met321, and Pro320, conservative for the entire family,
play a crucial role forming the substrate binding site. The binding of cofactors and substrate
in a quaternary complex and their orientation due to interactions with subfamily-specific
positions Arg46, Alal80, His181 and Trp293 allows to perform the hydride transfer to the
substrate stereospecifically. The triple stacking interaction between the FAD isoalloxazine ring,
NADH nicotinamide ring and the subfamily-specific residue Trp293 leads to the formation of
a highly stable charge-transfer complex and preferential Pro-S position in 2-hydroxybiphenyl
3-monooxygenase catalysis.

Keywords: flavin-dependent monooxygenases, 2-hydrorybiphenyl 3-monoozygenase from
Pseudomonas azelaica, mobile loop structure prediction, full-length protein modeling,

bioinformatics analysis, functional amino acid residues.

Introduction

Establishing the relationship between the structure and function of proteins, and enzymes
in particular, is one of the most important tasks of modern biology. Despite the development of
experimental techniques in structural biology (e.g., X-ray crystallography, NMR and cryo-EM),
currently the PDB database [https://rcsb.org, https://wwpdb.org ] contains information
on experimentally determined structures of 246,005 proteins (1,068,557 structures are presented
in a separate section of Calculated Structure Models), although Uniprot [https://uniprot.
org ] contains 199,006,239 amino acid sequences (mainly with unknown function, whereas
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annotated are 573,661), and effective approaches need to be developed to bridge the gap between
these information arrays.

Expectations of a breakthrough in this area are associated with the use of computer modeling
and artificial intelligence. Indeed, the development of methods for predicting protein structure
based on a known amino acid sequence has allowed to propose multiple spatial models (more
than 200 million structures in the AlphaFold Protein Structure Database [https://alphafold.
ebi.ac.uk/, }), but the success of prediction is largely due to the presence of homologues of
the protein under study and similar structures in training sets. The complexity of the problem
also lies in the fact that many experimentally determined protein structures contain unresolved
regions. Therefore, one of the not yet solved difficult problems is the prediction of the state of
mobile elements, including loops, in the protein structure. The presence of such “blank spots” in
the available information greatly complicates the search for the relationship between a full-length
structure and a function. The mobile elements of the structure play an important role in the
functioning of the protein/enzyme, ensuring its conformational plasticity and controlling access
of the regulatory ligand or substrate to the complementary binding site, on the one hand, as
well as their retention in a bound state, isolation of the formed complex from the environment
and ensuring the specific microenvironment in the complex.

Since among the experimentally determined structures accumulated in the Protein Data
Bank (PDB) over half contain unresolved segments (that often represent loops ), accurate
modeling of their structure is of high importance for preparing full-length protein models. Even in
the post-AlphaFold era loop positioning remains one of the most challenging yet indispensable
tasks in full-length protein modeling. Loops are often located on the protein surface, exhibit
dynamic movement and adopt multiple distinct conformations that are not represented in PDB
structures or adequately predicted . Accounting for loop dynamics has been recognized to
be a key issue studying protein-ligand as well as protein-protein or antigen-antibody interaction

and allosteric regulation, protein design, etc. . Loop dynamics in enzyme

structure has been recognized as an extremely important factor for catalytic activity, specificity
as well as stability, evolution and design of improved enzyme variants .
Flexible loop modeling using computational approaches in combination with artificial intelligence
can provide an essential progress studying loop structural organization and their flexibility
(appear to be open direction for exploration). Separate publications on the use of machine
learning methods on this topic began to appear starting in the mid-80s, but a noticeable increase
in research activity has been observed over the past 20 years (Fig. . These approaches allow
to solve a number of problems and indicate the promise of supercomputer molecular modeling
methods combined with the use of artificial intelligence approaches .

Flavin-dependent monooxygenases are involved in a wide range of biological processes often
playing a key role in the catabolism of natural and anthropogenic compounds or participating
in the biosynthesis of numerous physiologically active compounds like hormones, vitamins and
antibiotics . Enzymes of this superfamily can be used as catalysts for large scale practical
applications starting from lignin degradation or detoxification of xenobiotic compounds to the
biocatalytic synthesis of key intermediates in pharmaceutical industry @ . The detailed
mechanistic and structural studies of the FMO family enzymes are therefore of fundamental and
practical interest. In this work the role of key amino acid residues in the catalytic mechanism of

2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica was analyzed
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Number of publications

Figure 1. Publications on the topics of machine learning / artificial intelligence / neural
networks and protein unresolved /non resolved/unstructured /non structured region modelling
(PubMed)

based on the bioinformatics analysis of flavin-dependent monooxygenase family enzymes as well
as supercomputer molecular modeling applying methods of artificial intelligence.

1. Materials and Methods

1.1. Bioinformatic Analysis

Bioinformatic analysis of a large representative set of flavin-dependent monooxygenases was
used to study their structural and sequence variability by implementing a combination of protein
sequence and structure comparison algorithms to account for structural and functional variability
within this superfamily. The multiple structure-guided sequence alignment was constructed
using the Mustguseal web-server (https://biokinet.belozersky.msu.ru/mustguseal) [42].
The server sequentially utilizes several bioinformatics algorithms: structural similarity search is
used to find evolutionarily distant related proteins that have acquired functional/regulatory
diversity due to significant changes in amino acid sequences and structures during natural
selection (step 1); structural alignment to superpose the identified evolutionarily distant proteins
that represent different families within a large superfamily (step 2); amino acid sequence
similarity search to find evolutionarily close proteins, representatives of the selected families,
and subsequent amino acid sequence alignment to superpose the sequences of evolutionarily
close proteins (representatives of the same family, step 3). In the final step, the alignment
of available structures of evolutionarily distant homologs is used as a framework for aligning
the amino acid sequences of all collected representatives of the superfamily (step 4). Thus
the selected PDB structures and their corresponding complete amino acid sequences were
used to perform a structural alignment. The obtained structural core alignment was further
used by the Mustguseal web-server to construct a larger alignment by incorporating all
available sequences of related proteins. Each representative protein was used as a query for
a sequence similarity search in Swiss-Prot and TrEMBL databases to collect its evolutionary
close relatives. The obtained sequence sets were further filtered using the default parameters
to remove redundant entries (at the 95% pairwise sequence identity threshold) within each
family and superimposed using the core structural alignment of the representative proteins as a
guide. The final structure-guided sequence alignment contained 4417 sequences and structures
of monooxygenases with high structural, but low sequence similarity to 2-hydroxybiphenyl
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3-monooxygenase from Pseudomonas azelaica. This representative set of homologs was
automatically clustered into groups by maximizing sequence conservation within the groups
and sequence variability between the groups using the Zebra2 web-server (https://biokinet.
belozersky.msu.ru/zebra2) . The predicted clusters corresponded to different subfamilies
of flavin-dependent monooxygenases that can be further analyzed according to the available
functional annotation of members in each predicted group. Web-servers pocketZebra (http://
biokinet.cmm.msu.ru/index.php/pocketzebra) and wvisualCMAT (http://biokinet.cmm.
msu.ru/visualcmat) were used to find the NADH binding site and evaluate the function of

residues in this site .

1.2. Molecular Modeling

Neural network models with the architecture of hyperspherical variational autoencoders
(S-VAE) were used as a component in modelling of the position of mobile loops. A critical
choice in VAE design is the structure of the latent space, which significantly affects the model’s
capacity to represent underlying data properties . For systems described by dihedral or
torsional angles, such as molecular structures, a hyperspherical latent space offers an elegant
solution . The autoencoder was trained on the set of dihedral angles of unresolved loops,
obtained by molecular dynamics. Dihedral spaces represent angular relationships between atoms
in a molecular system. These angles, ranging from [0, 27), are inherently periodic. The periodicity
implies that a dihedral space is better represented as a flat torus. The mathematical relationship
between flat tori and hyperspheres further substantiates this choice. Embedding a flat torus
in a hypersphere allows the model to naturally preserve properties such as smoothness and
periodicity, ensuring that adjacent angular values in the data space (e.g., 2mr — € and 0 + €)
remain adjacent in the latent representation . The hypersphere inherently respects the
periodic boundary conditions of these angles. This feature contrasts with Euclidean latent spaces,
which are not naturally suited to handle periodicity or modular arithmetic, often leading to
discontinuities or distortions in the latent representation.

The autoencoder is based on multiple narrowing convolutional layers and uses
reparameterization of the three-dimensional von Mises-Fisher distribution. A weighted sum of
the cumulative data reconstruction function (cosine distance) and Kullback—Leibler divergence
is used as a metric for the error function. KL divergence assumes the hyperspherical nature of
the latent space being calculated between the determined three-dimensional von Mises—Fisher
distribution and a two-dimensional uniform hyperspherical distribution. The coefficient for
accounting for KL divergence in the error function is 1.2, and the learning rate is 1 - 1072
The AdamW optimizer was used to train the model during 500 epochs. To find the optimal
structure of protein sites, GPU accelerated metadynamics simulations were performed, using the
Amber 20 molecular dynamics package in conjunction with the Plumed 2.9 metadynamics
package . The collective variable was defined using the PYTORCH_MODEL function , which
consisted of compiled JIT PyTorch model (encoding part of the S-VAE) and the corresponding
set of dihedral angles. Metadynamics was performed on three outputs of the model using a
“well-tempered” scheme. The initial height of the Gaussian was set to 6.0 kJ/mol, the width
to 0.06 for each measurement. A new potential was added every 400 steps. The bias factor
was set to 10.0 and the simulation temperature to 300 K. For one computational experiment,
10 tasks (“walkers”) were run simultaneously with a common metadynamics potential. All
classical parameters for molecular dynamics modeling were as described above.
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1.3. Mobile Loop Structure Prediction

The AlphaFold 2 model was used to predict the structure of missing sites. An enzyme
sequence from the UniProt database with the identifier O06647 was provided to the model. The
model was run with standard settings in the “monomer” mode, producing 5 predicted structures
using 5 different models from AlphaFold.

Rosetta and MODELLER were used as well for modeling of the missing sections in
the 5BRT structure. Using the MODELLER software, a GIn195-Ser201 segment from the
6EMO @ crystal structure was inserted into the original structure. Using Rosetta Remodel, a
fully atomic model with the starting positions of the loops from the monomer of the protonated
original structure was created. All protein atoms that were not included in the modeled regions
were fixed in their positions, and the method of preserving the initial protein’s protonation state
was used. In the next step, 100 models of the 2-hydroxybiphenyl 3-monooxygenase monomer
with alternative loop positions were generated using the Rosetta LoopModel. The coordinates of
FAD and 2-hydroxybiphenyl were added to the model as user-defined residues. Next Generation
KIC method was used to model 10000 loop conformations. The top 10 structures were selected
based on Rosetta energy score and conformational reasonableness.

2. Results and Discussion

2.1. Bioinformatic Analysis

A search for homologous enzymes was performed using the CATH superfamily database .
The 2-hydroxybiphenyl 3-monooxygenase belongs to the CATH 3.50.50.60 superfamily. Since
the CATH database is updated with a delay, a structural similarity search in the PDB database
was additionally used to search for new homologues of the 2-hydroxybiphenyl 3-monooxygenase
enzyme using the superpose algorithm (PDBeFOLD service) . For comparative analysis
of specific proteins, pairwise structural alignments were constructed using the Combinatorial
Extension method . The PDB structure 5BRT of 2-hydroxybiphenyl 3-monooxygenase,
a flavoprotein from Pseudomonas azelaica, was used as a query for a structure similarity
search in the PDB database to collect a nonredundant set of 16 proteins which shared 20%
pairwise sequence similarity with 5BRT and represented different families within the superfamily
(8FHJ,2R0G,3IHG,4K2X,2DKH,6UI5,4ICY,7YJ0,1PN0,6 AIN,8JQP,3GMB,5EOW,6SW2,5TUI).
Bioinformatic analysis revealed six distinct subfamilies of enzymes within the flavin-dependent
monooxygenase family. The number of identified subfamilies corresponds well to the classification
of external flavoprotein monooxygenases developed two decades ago on the basis of amino acid
sequence, tertiary structure and cofactor preference when the 309 annotated bacterial genomes
available at that time in the NCBI (http://www.ncbi.nlm.nih.gov/BLAST/)) were screened for
the presence of monooxygenase homologs using the prototype protein sequence and the BLAST
tool. Review by Van Berkel W.J., Kamerbeek N.M. and Fraaije M.W. provided an inventory of
known flavoprotein monooxygenases belonging to these different subclasses and highlighted the
biocatalytic potential of this family of enzymes .

Currently, thanks to the accumulation of vast amounts of structural data, including even
unannotated protein sequences, it has become possible to investigate distant evolutionary
relationships within protein superfamilies and identify key amino acid residues critical to
the entire family, as well as variable residues responsible for functional divergence and being
specific to subfamilies of homologous enzymes. Thus, using bioinformatics analysis of protein
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families, it is possible to identify amino acid residues conserved across the entire family or only
within individual subfamilies (subfamily-specific positions in multiple structure-based sequence
alignments) . As a result, 21 amino acid residues were identified as conservative ones for
the entire family (eight Gly residues in positions 13, 15, 18, 62, 176, 179, 312, 325, three Leu
residues in positions 25, 336, 340, three Asp residues in positions 178, 313, 332, two Alal85 and
Ala314, one residue of Ser182, Arg307, His316, Pro320 and Tyr356) (Fig.. These residues are
located in the most structurally conservative FAD/NAD binding domain D1.

Figure 2. Conservative positions in the FAD-binding domain

2.2. Functional Role of Amino Acid Residues Identified by Bioinformatics
Analysis. Binding of Substrates and Cofactors

Since the focus of this article is on the role of amino acid residues in the structure and
catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica, we
will discuss the information obtained from bioinformatic analysis in relation to this protein
(Fig.[3).

Bioinformatic analysis takes into account the evolutionary relationships in protein families,
and amino acid residues conservative in subfamilies may indicate functionally important, but
variable positions in the protein structure.

The most typical for the entire family is a FAD binding subsite. On the one side, this area is
bounded by two alpha-helices. Three subfamily-specific positions (Glu359, Lys339, Arg360) and
the Asp332 residue, conservative throughout the entire family, form two structurally important
salt bridges Glu359-Lys339 and Arg360-Asp332, which stabilize alpha helices in the dynamic
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Figure 3. The subfamily-specific positions shown in 2-hydroxybiphenyl 3-monooxygenase
from Pseudomonas azelaica

protein structure, preserving the integrity of the Rossmann fold of the FAD-binding domain D1
(Fig. . Such salt bridges are present in most subfamilies, however, in some cases Arg360 is
replaced by Cys or Met, Lys339 by Cys, Ala or Glu, and Glu359 by Asn or Thr. One more
subfamily-specific position, Trp338, participates in the correct positioning of these alpha-helices
by interacting with the Asp557 along with the additional interaction of Glu359 with the Argh55
residue, i.e., two conservative residues from the hydroxylase domain.

oe®

Figure 4. Salt bridges formed by subfamily-specific and correlating amino acid residues
in 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica
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On the other side, in the conformationally flexible region limiting the FAD binding site,
there are two glycine residues: Gly325, a conservative position for the entire family, and Gly323,
a specific position for the 2-hydroxybiphenyl-3-monooxygenase subfamily. Molecular dynamics
simulations indicate that their role is to provide conformational flexibility for the transfer of
the isoalloxazine ring of FAD occurring in the catalytic mechanism. Only the Asp313 residue,
which is conservative in the entire family, is directly interacting with the FAD molecule through
hydrogen bonding with 2’-OH-ribitol, thereby contributing to the binding and orientation of the
cofactor both in the static structure and in molecular dynamics simulations.

Earlier identified NAD binding pocket located next to the FAD binding subsite is also
formed by a number of subfamily-specific residues (Trp38, Ser40, Serd2, Argd6, Serd7, Alal80,
Asn205, Ser291, Trp293). These residues are located in an elongated pocket adjacent to the FAD
binding site, some of them are also involved in the formation of the substrate delivery tunnel
(Fig. . Subfamily-specific positions Argd6, Serd7, Gly202, Ser203, Asn205, Arg242, Val253,
Trp293, Met321, and Pro320, conservative for the entire family, play a crucial role forming the
substrate binding site in 2-hydroxybiphenyl 3-monooxygenase structure. Functional role of some
of them (Argd6, Arg242, Trp293) was earlier described , the others (Ser201, Met223,
Trp225, Val236, Val238, Ala240, Trp 254, Leu 375, Leud28) have not been observed in the

course of bioinformatic analysis.

Figure 5. A tunnel for the entrance of the substrate to the active site of 2-hydroxybiphenyl
3-monooxygenase from Pseudomonas azelaica. The sticks highlight functionally important
residues. The green color shows the substrate 2-hydroxybiphenyl

2.3. Subfamily-specific Amino Acid Residues in a Catalytic Mechanism

2-Hydroxybiphenyl 3-monooxygenase is capable to carry out stereospecific transformations
because two hydrogen atoms at the C4 carbon of the dihydropyridine ring of NADH or
NADPH as well as the sides of FAD isoalloxazine ring are not equivalent; the binding of
cofactors and substrate in a quaternary complex and their orientation due to interactions with
subfamily-specific positions Arg46, Alal80, His181 and Trp293 allows to perform the hydride
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transfer to the substrate stereospecifically. In particular, the triple stacking interaction between
the FAD isoalloxazine ring, NADH nicotinamide ring and the subfamily-specific residue Trp293
leads to the formation of a highly stable charge-transfer complex and preferential Pro-S position
in 2-hydroxybiphenyl 3-monooxygenase catalysis. As in the course of catalytic conversion the
Trp293 residue is pushed aside, forming a cavity for the NADH nicotinamide ring, it is important
to control dynamic changes in the active site. The efficiency of the stacking interaction is
regulated by the Argd6 and Trp293 residues, and their relationship with the catalytic His48
residue located in the substrate binding site controls the interaction between the centers of the
oxidative and reduction stages of the reaction mechanism .

2.4. Flexible Elements of the Structure

Along with the structure of the binding sites of cofactors and substrates, mobile structural
elements play an important role in the catalytic mechanism, ensuring enzymes conformational
plasticity thus controlling entrance to the channels and delivery of substrates and cofactors to
the active site, as well as their retention in a bound state, isolation from the environment
and ensuring the unique microheterogenicity of the medium for the effective catalytic
transformations. In most cases, when constructing a full-scale structural model of an enzyme, it
is necessary to determine the state of the mobile loops so that molecular modeling of the catalytic
stages of the enzymatic reaction can be carried out adequately. There are four mobile regions in
the structure of the substrate binding domain of 2-hydroxybiphenyl 3-monooxygenase formed
by the polypeptide chain fragments GIn195-Ser201, Arg219, Tyr256-11e265, and Arg228-Val236.
Three loops, GIn195-Ser201, Tyr256-11e265, and Arg228-Val236, are located in close proximity
to the active site (Fig. @

Figure 6. Unresolved structural fragments in the structure (PDB ID 5BRT)
of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica: the blue color shows
the Gin195-Ser201 region, green — Arg219, pink — Tyr256-1le265, yellow — Arg228-Val236.
The FAD cofactor is shown in orange, the 2-hydroxybiphenyl substrate is shown in green

Full-length 2-hydroxybiphenyl 3-monooxygenase models with different positions of the
loops predicted using different methods: LoopModel module of the Rosetta package, Modeller
software, Alphafold v2.3.0 are presented below (Fig. . Obviously, there is a
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remarkable discrepancy in the predicted positions of flexible loops. Subfamily-specific residues
are not present in these regions, however Gly194 and Gly202 as well as Gly255 and Thr266
are located next to flexible loops and can make a remarkable impact on conformational
dynamics of 2-hydroxybiphenyl 3-monooxygenase structure. We suggested to apply an integrated
approach combining metadynamics simulations in latent space using variational autoencoders
on supercomputers to explore initial approximations of these flexible region structures derived
from modeling tools such as AlphaFold, RosettaFold, Modeller, SwissModel, etc. . The
predominant conformations of previously unresolved mobile regions in the active site of
flavin-dependent 2-hydroxybiphenyl 3-monooxygenase identified using this approach are shown

in Fig.

oy

op Tyr256-11e265

Loop Arg228-Val236
(Rosetta predicted)

Figure 7. The positions of the loops in the active site of 2-hydroxybiphenyl 3-monooxygenase
from Pseudomonas azelaica, predicted by Alphafold and Rosetta and optimized using
molecular dynamics with hyperspherical variational autoencoder (S-VAE)

The coevolutionary relationship between the subfamily-specific residues Argd6 and Trp293,
which regulate the efficiency of the stacking interaction between FAD and NADH was established
using the visual CMAT server , as well as their relationship with the catalytic His48 residue
located in the substrate binding site, which controls the interaction between the centers of
the oxidation and reduction stages of the reaction mechanism. The important role of amino
acid residues of the active site in the stabilization of the transition state should be noted:
Trp293 forms a stacking interaction with the NADH nicotinamide ring, and His318 in the
protonated form participates in stabilization due to the hydrogen bond formed between the
backbone carbonyl oxygen and the NADH amide group. However, the catalytic mechanism of
2-hydroxybiphenyl 3-monooxygenase has not been fully understood yet. From two parts of the
catalytic cycle, the reduction and oxidation half-reaction, only the first one was characterized on
a molecular level: the reduction of FAD with NADH leading to the formation of FADH™ anion,
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i.e., the step when hydrogen atoms are transferred between the coenzymes and the substrate.
Stabilization of the transition state in 2-hydroxybiphenyl 3-monooxygenase catalysis occurs due
to the induced fit formation of a specific pocket for binding the nicotinamide ring of NADH, which
is connected to the active site by interacting subfamily-specific residues Arg46 and Trp293 .
Thus, bioinformatic analysis has helped to elucidate or suggest previously unknown roles for some
amino acid residues, as well as to identify a list of residues that appear to play an important role
in the evolution of this enzyme family, although the influence of these positions on the structural
and functional properties is still unknown and should be investigated.

Conclusion

The bioinformatic analysis of the flavin-dependent monooxygenases used together with
the modeling of predominant conformations of mobile loops in previously unresolved
regions of 2-hydroxybiphenyl 3-monooxygenase structure using GPU-accelerated metadynamics
simulations integrated with artificial intelligence and high-performance computing allowed to
elucidate previously unknown functional roles for some amino acid residues in the reduction
half-reaction. Three subfamily-specific residues Glu359, Lys339, Arg360 and the Asp332 residue,
conservative throughout the entire enzyme family, were shown to form structurally important
salt bridges Glu359-Lys339 and Arg360-Asp332, which stabilize alpha helices preserving the
integrity of the Rossmann fold of the FAD-binding domain; subfamily-specific residues Trp338
and Glu3b9 were shown to provide the correct positioning of alpha-helices by interacting with
two conservative residues Asp557 and Argh55 from the hydroxylase domain. Subfamily-specific
residues Trp38, Ser40, Serd2, Argd6, Serd7,Alal80, Asn205, Ser291, Trp293 form the elongated
NAD binding pocket adjacent to the FAD binding site. The conservative Asp313 residue makes
important contribution to the binding and orientation of the cofactor through hydrogen bonding
with 2’-OH-ribitol of FAD. The Argd6, Ser47, Gly202, Ser203, Asn205, Arg242, Val253, Trp293,
Met321, and conservative Pro320 residue play a crucial role forming substrate binding site.
The binding of cofactors and substrate in a quaternary complex and their orientation due to
interactions with subfamily-specific residues Arg46, Alal80, His181 and Trp293 allows to perform
the hydride transfer to the substrate stereospecifically. The triple stacking interaction between
the FAD isoalloxazine ring, NADH nicotinamide ring and the subfamily-specific residue Trp293
leads to the formation of a highly stable charge-transfer complex and preferential Pro-S position
in 2-hydroxybiphenyl 3-monooxygenase catalysis. A primary challenge for the future remains
the role of amino acid residues in the mechanism of the oxidation half-reaction of the complete
catalytic cycle of 2-hydroxybiphenyl 3-monooxygenase.
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