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By modeling of predominant conformations of mobile loops in previously unresolved regions

of 2-hydroxybiphenyl 3-monooxygenase structure (PDB ID: 5BRT) using GPU-accelerated

metadynamics simulations integrated with artificial intelligence and high-performance computing

the full-length protein model was built. Combined with bioinformatic analysis of the

flavin-dependent monooxygenases it allowed to propose the functional role of amino acid

residues in the 2-hydroxybiphenyl 3-monooxygenase catalysis. Three subfamily-specific residues

Glu359, Lys339, Arg360 and the Asp332 residue, conservative throughout the entire family of

flavin-dependent monooxygenases, form salt bridges Glu359-Lys339 and Arg360-Asp332, which

stabilize alpha helices preserving the integrity of the Rossmann fold of the FAD-binding domain;

subfamily-specific residues Trp338 and Glu359 provide the correct positioning of alpha-helices by

interacting with two conservative residues Asp557 and Arg555 from the hydroxylase domain.

NAD binding pocket is formed by a number of subfamily-specific residues Trp38, Ser40,

Ser42, Arg46, Ser47, Ala180, Asn205, Ser291, Trp293 located in an elongated pocket adjacent to

the FAD binding site. The Asp313 residue, conservative in the entire family of flavin-dependent

monooxygenases, directly interacts with FAD through hydrogen bonding with 2’-OH-ribitol,

contributing to the binding and orientation of the cofactor. The Arg46, Ser47, Gly202, Ser203,

Asn205, Arg242, Val253, Trp293, Met321, and Pro320, conservative for the entire family,

play a crucial role forming the substrate binding site. The binding of cofactors and substrate

in a quaternary complex and their orientation due to interactions with subfamily-specific

positions Arg46, Ala180, His181 and Trp293 allows to perform the hydride transfer to the

substrate stereospecifically. The triple stacking interaction between the FAD isoalloxazine ring,

NADH nicotinamide ring and the subfamily-specific residue Trp293 leads to the formation of

a highly stable charge-transfer complex and preferential Pro-S position in 2-hydroxybiphenyl

3-monooxygenase catalysis.

Keywords: flavin-dependent monooxygenases, 2-hydroxybiphenyl 3-monooxygenase from

Pseudomonas azelaica, mobile loop structure prediction, full-length protein modeling,

bioinformatics analysis, functional amino acid residues.

Introduction

Establishing the relationship between the structure and function of proteins, and enzymes

in particular, is one of the most important tasks of modern biology. Despite the development of

experimental techniques in structural biology (e.g., X-ray crystallography, NMR and cryo-EM),

currently the PDB database [https://rcsb.org, https://wwpdb.org [3]] contains information

on experimentally determined structures of 246,005 proteins (1,068,557 structures are presented

in a separate section of Calculated Structure Models), although Uniprot [https://uniprot.

org [1]] contains 199,006,239 amino acid sequences (mainly with unknown function, whereas
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annotated are 573,661), and effective approaches need to be developed to bridge the gap between

these information arrays.

Expectations of a breakthrough in this area are associated with the use of computer modeling

and artificial intelligence. Indeed, the development of methods for predicting protein structure

based on a known amino acid sequence has allowed to propose multiple spatial models (more

than 200 million structures in the AlphaFold Protein Structure Database [https://alphafold.

ebi.ac.uk/, [46]]), but the success of prediction is largely due to the presence of homologues of

the protein under study and similar structures in training sets. The complexity of the problem

also lies in the fact that many experimentally determined protein structures contain unresolved

regions. Therefore, one of the not yet solved difficult problems is the prediction of the state of

mobile elements, including loops, in the protein structure. The presence of such “blank spots” in

the available information greatly complicates the search for the relationship between a full-length

structure and a function. The mobile elements of the structure play an important role in the

functioning of the protein/enzyme, ensuring its conformational plasticity and controlling access

of the regulatory ligand or substrate to the complementary binding site, on the one hand, as

well as their retention in a bound state, isolation of the formed complex from the environment

and ensuring the specific microenvironment in the complex.

Since among the experimentally determined structures accumulated in the Protein Data

Bank (PDB) over half contain unresolved segments (that often represent loops [38, 48]), accurate

modeling of their structure is of high importance for preparing full-length protein models. Even in

the post-AlphaFold era loop positioning remains one of the most challenging yet indispensable

tasks in full-length protein modeling. Loops are often located on the protein surface, exhibit

dynamic movement and adopt multiple distinct conformations that are not represented in PDB

structures or adequately predicted [2, 30]. Accounting for loop dynamics has been recognized to

be a key issue studying protein-ligand as well as protein-protein or antigen-antibody interaction

and allosteric regulation, protein design, etc. [14, 16, 24, 29, 32]. Loop dynamics in enzyme

structure has been recognized as an extremely important factor for catalytic activity, specificity

as well as stability, evolution and design of improved enzyme variants [5, 7, 8, 25–28, 31, 49].

Flexible loop modeling using computational approaches in combination with artificial intelligence

can provide an essential progress studying loop structural organization and their flexibility

(appear to be open direction for exploration). Separate publications on the use of machine

learning methods on this topic began to appear starting in the mid-80s, but a noticeable increase

in research activity has been observed over the past 20 years (Fig. 1). These approaches allow

to solve a number of problems and indicate the promise of supercomputer molecular modeling

methods combined with the use of artificial intelligence approaches [21, 45].

Flavin-dependent monooxygenases are involved in a wide range of biological processes often

playing a key role in the catabolism of natural and anthropogenic compounds or participating

in the biosynthesis of numerous physiologically active compounds like hormones, vitamins and

antibiotics [33]. Enzymes of this superfamily can be used as catalysts for large scale practical

applications starting from lignin degradation or detoxification of xenobiotic compounds to the

biocatalytic synthesis of key intermediates in pharmaceutical industry [9, 15]. The detailed

mechanistic and structural studies of the FMO family enzymes are therefore of fundamental and

practical interest. In this work the role of key amino acid residues in the catalytic mechanism of

2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica was analyzed
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Figure 1. Publications on the topics of machine learning / artificial intelligence / neural
networks and protein unresolved/non resolved/unstructured/non structured region modelling

(PubMed)

based on the bioinformatics analysis of flavin-dependent monooxygenase family enzymes as well

as supercomputer molecular modeling applying methods of artificial intelligence.

1. Materials and Methods

1.1. Bioinformatic Analysis

Bioinformatic analysis of a large representative set of flavin-dependent monooxygenases was

used to study their structural and sequence variability by implementing a combination of protein

sequence and structure comparison algorithms to account for structural and functional variability

within this superfamily. The multiple structure-guided sequence alignment was constructed

using the Mustguseal web-server (https://biokinet.belozersky.msu.ru/mustguseal) [42].

The server sequentially utilizes several bioinformatics algorithms: structural similarity search is

used to find evolutionarily distant related proteins that have acquired functional/regulatory

diversity due to significant changes in amino acid sequences and structures during natural

selection (step 1); structural alignment to superpose the identified evolutionarily distant proteins

that represent different families within a large superfamily (step 2); amino acid sequence

similarity search to find evolutionarily close proteins, representatives of the selected families,

and subsequent amino acid sequence alignment to superpose the sequences of evolutionarily

close proteins (representatives of the same family, step 3). In the final step, the alignment

of available structures of evolutionarily distant homologs is used as a framework for aligning

the amino acid sequences of all collected representatives of the superfamily (step 4). Thus

the selected PDB structures and their corresponding complete amino acid sequences were

used to perform a structural alignment. The obtained structural core alignment was further

used by the Mustguseal web-server to construct a larger alignment by incorporating all

available sequences of related proteins. Each representative protein was used as a query for

a sequence similarity search in Swiss-Prot and TrEMBL databases to collect its evolutionary

close relatives. The obtained sequence sets were further filtered using the default parameters

to remove redundant entries (at the 95% pairwise sequence identity threshold) within each

family and superimposed using the core structural alignment of the representative proteins as a

guide. The final structure-guided sequence alignment contained 4417 sequences and structures

of monooxygenases with high structural, but low sequence similarity to 2-hydroxybiphenyl
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3-monooxygenase from Pseudomonas azelaica. This representative set of homologs was

automatically clustered into groups by maximizing sequence conservation within the groups

and sequence variability between the groups using the Zebra2 web-server (https://biokinet.

belozersky.msu.ru/zebra2) [40]. The predicted clusters corresponded to different subfamilies

of flavin-dependent monooxygenases that can be further analyzed according to the available

functional annotation of members in each predicted group. Web-servers pocketZebra (http://

biokinet.cmm.msu.ru/index.php/pocketzebra) and visualCMAT (http://biokinet.cmm.

msu.ru/visualcmat) were used to find the NADH binding site and evaluate the function of

residues in this site [39, 42].

1.2. Molecular Modeling

Neural network models with the architecture of hyperspherical variational autoencoders

(S-VAE) were used as a component in modelling of the position of mobile loops. A critical

choice in VAE design is the structure of the latent space, which significantly affects the model’s

capacity to represent underlying data properties [19]. For systems described by dihedral or

torsional angles, such as molecular structures, a hyperspherical latent space offers an elegant

solution [10]. The autoencoder was trained on the set of dihedral angles of unresolved loops,

obtained by molecular dynamics. Dihedral spaces represent angular relationships between atoms

in a molecular system. These angles, ranging from [0, 2π), are inherently periodic. The periodicity

implies that a dihedral space is better represented as a flat torus. The mathematical relationship

between flat tori and hyperspheres further substantiates this choice. Embedding a flat torus

in a hypersphere allows the model to naturally preserve properties such as smoothness and

periodicity, ensuring that adjacent angular values in the data space (e.g., 2π − ε and 0 + ε)

remain adjacent in the latent representation [20]. The hypersphere inherently respects the

periodic boundary conditions of these angles. This feature contrasts with Euclidean latent spaces,

which are not naturally suited to handle periodicity or modular arithmetic, often leading to

discontinuities or distortions in the latent representation.

The autoencoder is based on multiple narrowing convolutional layers and uses

reparameterization of the three-dimensional von Mises-Fisher distribution. A weighted sum of

the cumulative data reconstruction function (cosine distance) and Kullback–Leibler divergence

is used as a metric for the error function. KL divergence assumes the hyperspherical nature of

the latent space being calculated between the determined three-dimensional von Mises–Fisher

distribution and a two-dimensional uniform hyperspherical distribution. The coefficient for

accounting for KL divergence in the error function is 1.2, and the learning rate is 1 · 10−2.

The AdamW optimizer was used to train the model during 500 epochs. To find the optimal

structure of protein sites, GPU accelerated metadynamics simulations were performed, using the

Amber 20 molecular dynamics package [35] in conjunction with the Plumed 2.9 metadynamics

package [12, 43]. The collective variable was defined using the PYTORCH MODEL function [4], which

consisted of compiled JIT PyTorch model (encoding part of the S-VAE) and the corresponding

set of dihedral angles. Metadynamics was performed on three outputs of the model using a

“well-tempered” scheme. The initial height of the Gaussian was set to 6.0 kJ/mol, the width

to 0.06 for each measurement. A new potential was added every 400 steps. The bias factor

was set to 10.0 and the simulation temperature to 300 K. For one computational experiment,

10 tasks (“walkers”) were run simultaneously with a common metadynamics potential. All

classical parameters for molecular dynamics modeling were as described above.
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1.3. Mobile Loop Structure Prediction

The AlphaFold 2 model [17] was used to predict the structure of missing sites. An enzyme

sequence from the UniProt database with the identifier O06647 was provided to the model. The

model was run with standard settings in the “monomer” mode, producing 5 predicted structures

using 5 different models from AlphaFold.

Rosetta [37] and MODELLER [13] were used as well for modeling of the missing sections in

the 5BRT [18] structure. Using the MODELLER software, a Gln195-Ser201 segment from the

6EM0 [6] crystal structure was inserted into the original structure. Using Rosetta Remodel, a

fully atomic model with the starting positions of the loops from the monomer of the protonated

original structure was created. All protein atoms that were not included in the modeled regions

were fixed in their positions, and the method of preserving the initial protein’s protonation state

was used. In the next step, 100 models of the 2-hydroxybiphenyl 3-monooxygenase monomer

with alternative loop positions were generated using the Rosetta LoopModel. The coordinates of

FAD and 2-hydroxybiphenyl were added to the model as user-defined residues. Next Generation

KIC method was used to model 10000 loop conformations. The top 10 structures were selected

based on Rosetta energy score and conformational reasonableness.

2. Results and Discussion

2.1. Bioinformatic Analysis

A search for homologous enzymes was performed using the CATH superfamily database [11].

The 2-hydroxybiphenyl 3-monooxygenase belongs to the CATH 3.50.50.60 superfamily. Since

the CATH database is updated with a delay, a structural similarity search in the PDB database

was additionally used to search for new homologues of the 2-hydroxybiphenyl 3-monooxygenase

enzyme using the superpose algorithm (PDBeFOLD service) [23]. For comparative analysis

of specific proteins, pairwise structural alignments were constructed using the Combinatorial

Extension method [36]. The PDB structure 5BRT of 2-hydroxybiphenyl 3-monooxygenase,

a flavoprotein from Pseudomonas azelaica, was used as a query for a structure similarity

search in the PDB database to collect a nonredundant set of 16 proteins which shared 20%

pairwise sequence similarity with 5BRT and represented different families within the superfamily

(8FHJ,2R0G,3IHG,4K2X,2DKH,6UI5,4ICY,7YJ0,1PN0,6AIN,8JQP,3GMB,5EOW,6SW2,5TUI).

Bioinformatic analysis revealed six distinct subfamilies of enzymes within the flavin-dependent

monooxygenase family. The number of identified subfamilies corresponds well to the classification

of external flavoprotein monooxygenases developed two decades ago on the basis of amino acid

sequence, tertiary structure and cofactor preference when the 309 annotated bacterial genomes

available at that time in the NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) were screened for

the presence of monooxygenase homologs using the prototype protein sequence and the BLAST

tool. Review by Van Berkel W.J., Kamerbeek N.M. and Fraaije M.W. provided an inventory of

known flavoprotein monooxygenases belonging to these different subclasses and highlighted the

biocatalytic potential of this family of enzymes [44].

Currently, thanks to the accumulation of vast amounts of structural data, including even

unannotated protein sequences, it has become possible to investigate distant evolutionary

relationships within protein superfamilies and identify key amino acid residues critical to

the entire family, as well as variable residues responsible for functional divergence and being

specific to subfamilies of homologous enzymes. Thus, using bioinformatics analysis of protein
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families, it is possible to identify amino acid residues conserved across the entire family or only

within individual subfamilies (subfamily-specific positions in multiple structure-based sequence

alignments) [40]. As a result, 21 amino acid residues were identified as conservative ones for

the entire family (eight Gly residues in positions 13, 15, 18, 62, 176, 179, 312, 325, three Leu

residues in positions 25, 336, 340, three Asp residues in positions 178, 313, 332, two Ala185 and

Ala314, one residue of Ser182, Arg307, His316, Pro320 and Tyr356) (Fig. 2). These residues are

located in the most structurally conservative FAD/NAD binding domain D1.

Figure 2. Conservative positions in the FAD-binding domain

2.2. Functional Role of Amino Acid Residues Identified by Bioinformatics

Analysis. Binding of Substrates and Cofactors

Since the focus of this article is on the role of amino acid residues in the structure and

catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica, we

will discuss the information obtained from bioinformatic analysis in relation to this protein

(Fig. 3).

Bioinformatic analysis takes into account the evolutionary relationships in protein families,

and amino acid residues conservative in subfamilies may indicate functionally important, but

variable positions in the protein structure.

The most typical for the entire family is a FAD binding subsite. On the one side, this area is

bounded by two alpha-helices. Three subfamily-specific positions (Glu359, Lys339, Arg360) and

the Asp332 residue, conservative throughout the entire family, form two structurally important

salt bridges Glu359-Lys339 and Arg360-Asp332, which stabilize alpha helices in the dynamic
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Figure 3. The subfamily-specific positions shown in 2-hydroxybiphenyl 3-monooxygenase
from Pseudomonas azelaica

protein structure, preserving the integrity of the Rossmann fold of the FAD-binding domain D1

(Fig. 4). Such salt bridges are present in most subfamilies, however, in some cases Arg360 is

replaced by Cys or Met, Lys339 by Cys, Ala or Glu, and Glu359 by Asn or Thr. One more

subfamily-specific position, Trp338, participates in the correct positioning of these alpha-helices

by interacting with the Asp557 along with the additional interaction of Glu359 with the Arg555

residue, i.e., two conservative residues from the hydroxylase domain.

Figure 4. Salt bridges formed by subfamily-specific and correlating amino acid residues
in 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica
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On the other side, in the conformationally flexible region limiting the FAD binding site,

there are two glycine residues: Gly325, a conservative position for the entire family, and Gly323,

a specific position for the 2-hydroxybiphenyl-3-monooxygenase subfamily. Molecular dynamics

simulations indicate that their role is to provide conformational flexibility for the transfer of

the isoalloxazine ring of FAD occurring in the catalytic mechanism. Only the Asp313 residue,

which is conservative in the entire family, is directly interacting with the FAD molecule through

hydrogen bonding with 2’-OH-ribitol, thereby contributing to the binding and orientation of the

cofactor both in the static structure and in molecular dynamics simulations.

Earlier identified NAD binding pocket located next to the FAD binding subsite [22] is also

formed by a number of subfamily-specific residues (Trp38, Ser40, Ser42, Arg46, Ser47, Ala180,

Asn205, Ser291, Trp293). These residues are located in an elongated pocket adjacent to the FAD

binding site, some of them are also involved in the formation of the substrate delivery tunnel

(Fig. 5). Subfamily-specific positions Arg46, Ser47, Gly202, Ser203, Asn205, Arg242, Val253,

Trp293, Met321, and Pro320, conservative for the entire family, play a crucial role forming the

substrate binding site in 2-hydroxybiphenyl 3-monooxygenase structure. Functional role of some

of them (Arg46, Arg242, Trp293) was earlier described [18, 22], the others (Ser201, Met223,

Trp225, Val236, Val238, Ala240, Trp 254, Leu 375, Leu428) have not been observed in the

course of bioinformatic analysis.

Figure 5. A tunnel for the entrance of the substrate to the active site of 2-hydroxybiphenyl
3-monooxygenase from Pseudomonas azelaica. The sticks highlight functionally important

residues. The green color shows the substrate 2-hydroxybiphenyl

2.3. Subfamily-specific Amino Acid Residues in a Catalytic Mechanism

2-Hydroxybiphenyl 3-monooxygenase is capable to carry out stereospecific transformations

because two hydrogen atoms at the C4 carbon of the dihydropyridine ring of NADH or

NADPH as well as the sides of FAD isoalloxazine ring are not equivalent; the binding of

cofactors and substrate in a quaternary complex and their orientation due to interactions with

subfamily-specific positions Arg46, Ala180, His181 and Trp293 allows to perform the hydride
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transfer to the substrate stereospecifically. In particular, the triple stacking interaction between

the FAD isoalloxazine ring, NADH nicotinamide ring and the subfamily-specific residue Trp293

leads to the formation of a highly stable charge-transfer complex and preferential Pro-S position

in 2-hydroxybiphenyl 3-monooxygenase catalysis. As in the course of catalytic conversion the

Trp293 residue is pushed aside, forming a cavity for the NADH nicotinamide ring, it is important

to control dynamic changes in the active site. The efficiency of the stacking interaction is

regulated by the Arg46 and Trp293 residues, and their relationship with the catalytic His48

residue located in the substrate binding site controls the interaction between the centers of the

oxidative and reduction stages of the reaction mechanism [22].

2.4. Flexible Elements of the Structure

Along with the structure of the binding sites of cofactors and substrates, mobile structural

elements play an important role in the catalytic mechanism, ensuring enzymes conformational

plasticity thus controlling entrance to the channels and delivery of substrates and cofactors to

the active site, as well as their retention in a bound state, isolation from the environment

and ensuring the unique microheterogenicity of the medium for the effective catalytic

transformations. In most cases, when constructing a full-scale structural model of an enzyme, it

is necessary to determine the state of the mobile loops so that molecular modeling of the catalytic

stages of the enzymatic reaction can be carried out adequately. There are four mobile regions in

the structure of the substrate binding domain of 2-hydroxybiphenyl 3-monooxygenase formed

by the polypeptide chain fragments Gln195-Ser201, Arg219, Tyr256-Ile265, and Arg228-Val236.

Three loops, Gln195-Ser201, Tyr256-Ile265, and Arg228-Val236, are located in close proximity

to the active site (Fig. 6).

Figure 6. Unresolved structural fragments in the structure (PDB ID 5BRT)
of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica: the blue color shows
the Gln195-Ser201 region, green – Arg219, pink – Tyr256-Ile265, yellow – Arg228-Val236.
The FAD cofactor is shown in orange, the 2-hydroxybiphenyl substrate is shown in green

Full-length 2-hydroxybiphenyl 3-monooxygenase models with different positions of the

loops predicted using different methods: LoopModel module of the Rosetta package, Modeller

software, Alphafold v2.3.0 [13, 17, 34] are presented below (Fig. 7). Obviously, there is a

K.E. Kopylov, M.A. Shchepetov, V.K. Švedas

2025, Vol. 12, No. 4 133



remarkable discrepancy in the predicted positions of flexible loops. Subfamily-specific residues

are not present in these regions, however Gly194 and Gly202 as well as Gly255 and Thr266

are located next to flexible loops and can make a remarkable impact on conformational

dynamics of 2-hydroxybiphenyl 3-monooxygenase structure. We suggested to apply an integrated

approach combining metadynamics simulations in latent space using variational autoencoders

on supercomputers to explore initial approximations of these flexible region structures derived

from modeling tools such as AlphaFold, RosettaFold, Modeller, SwissModel, etc. [21]. The

predominant conformations of previously unresolved mobile regions in the active site of

flavin-dependent 2-hydroxybiphenyl 3-monooxygenase identified using this approach are shown

in Fig. 7.

Figure 7. The positions of the loops in the active site of 2-hydroxybiphenyl 3-monooxygenase
from Pseudomonas azelaica, predicted by Alphafold and Rosetta and optimized using

molecular dynamics with hyperspherical variational autoencoder (S-VAE)

The coevolutionary relationship between the subfamily-specific residues Arg46 and Trp293,

which regulate the efficiency of the stacking interaction between FAD and NADH was established

using the visualCMAT server [41], as well as their relationship with the catalytic His48 residue

located in the substrate binding site, which controls the interaction between the centers of

the oxidation and reduction stages of the reaction mechanism. The important role of amino

acid residues of the active site in the stabilization of the transition state should be noted:

Trp293 forms a stacking interaction with the NADH nicotinamide ring, and His318 in the

protonated form participates in stabilization due to the hydrogen bond formed between the

backbone carbonyl oxygen and the NADH amide group. However, the catalytic mechanism of

2-hydroxybiphenyl 3-monooxygenase has not been fully understood yet. From two parts of the

catalytic cycle, the reduction and oxidation half-reaction, only the first one was characterized on

a molecular level: the reduction of FAD with NADH leading to the formation of FADH− anion,
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i.e., the step when hydrogen atoms are transferred between the coenzymes and the substrate.

Stabilization of the transition state in 2-hydroxybiphenyl 3-monooxygenase catalysis occurs due

to the induced fit formation of a specific pocket for binding the nicotinamide ring of NADH, which

is connected to the active site by interacting subfamily-specific residues Arg46 and Trp293 [22].

Thus, bioinformatic analysis has helped to elucidate or suggest previously unknown roles for some

amino acid residues, as well as to identify a list of residues that appear to play an important role

in the evolution of this enzyme family, although the influence of these positions on the structural

and functional properties is still unknown and should be investigated.

Conclusion

The bioinformatic analysis of the flavin-dependent monooxygenases used together with

the modeling of predominant conformations of mobile loops in previously unresolved

regions of 2-hydroxybiphenyl 3-monooxygenase structure using GPU-accelerated metadynamics

simulations integrated with artificial intelligence and high-performance computing allowed to

elucidate previously unknown functional roles for some amino acid residues in the reduction

half-reaction. Three subfamily-specific residues Glu359, Lys339, Arg360 and the Asp332 residue,

conservative throughout the entire enzyme family, were shown to form structurally important

salt bridges Glu359-Lys339 and Arg360-Asp332, which stabilize alpha helices preserving the

integrity of the Rossmann fold of the FAD-binding domain; subfamily-specific residues Trp338

and Glu359 were shown to provide the correct positioning of alpha-helices by interacting with

two conservative residues Asp557 and Arg555 from the hydroxylase domain. Subfamily-specific

residues Trp38, Ser40, Ser42, Arg46, Ser47,Ala180, Asn205, Ser291, Trp293 form the elongated

NAD binding pocket adjacent to the FAD binding site. The conservative Asp313 residue makes

important contribution to the binding and orientation of the cofactor through hydrogen bonding

with 2’-OH-ribitol of FAD. The Arg46, Ser47, Gly202, Ser203, Asn205, Arg242, Val253, Trp293,

Met321, and conservative Pro320 residue play a crucial role forming substrate binding site.

The binding of cofactors and substrate in a quaternary complex and their orientation due to

interactions with subfamily-specific residues Arg46, Ala180, His181 and Trp293 allows to perform

the hydride transfer to the substrate stereospecifically. The triple stacking interaction between

the FAD isoalloxazine ring, NADH nicotinamide ring and the subfamily-specific residue Trp293

leads to the formation of a highly stable charge-transfer complex and preferential Pro-S position

in 2-hydroxybiphenyl 3-monooxygenase catalysis. A primary challenge for the future remains

the role of amino acid residues in the mechanism of the oxidation half-reaction of the complete

catalytic cycle of 2-hydroxybiphenyl 3-monooxygenase.
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20. Kirilin, E.M., Švedas, V.K.: Study of the Conformational Variety of the Oligosaccharide

Substrates of Neuraminidases from Pathogens using Molecular Modeling. Moscow Univ.

Chem. Bull. 73(1), 39–45 (Jan 2018). https://doi.org/10.3103/S0027131418020050

21. Kopylov, K., Kirilin, E., Voevodin, V., Švedas, V.: Characterization of conformational
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