DOI: 10.14529/jsfi250402
Supercomputing Co-Design for Solving Ill-Posed Linear Inverse

Problems Using Iterative Algorithms

Alexander S. Antonov' ', Vladimir V. Voevodin' ',
Dmitry V. Lukyanenko’

© The Authors 2025. This paper is published with open access at SuperFri.org

The paper considers an approach to applying the ideas of supercomputing co-design for the
effective use of arbitrary multiprocessor computing systems with distributed memory when using
iterative regularization algorithms to solve ill-posed linear inverse problems, which are reduced
to solving large overdetermined systems of linear algebraic equations with a dense matrix. The
proposed methodology allows for a large number of algorithms to select the best virtual topol-
ogy of processes (in terms of parallelization efficiency) for solving problems of the class under
consideration within the allocated resources of the supercomputer system being used.

Keywords: supercomputing co-design, parallelization efficiency, parallelism, autotuning,
AlgoWiki, inverse problem, iterative reqularization, conjugate gradient method.

Introduction

In many cases, applied inverse problems are linear and come down to the need to solve large
overdetermined systems of linear algebraic equations of the form

Az = b (1)

with a dense matrix. Here A € RM*N 2 ¢ RN, bs € RM. Usually M > N and instead of
the exact right-hand side b its approximation bs is known, measured in an experiment with an
error 4, i.e., |[b—bs|| < . The matrix can also be specified with an error, i.e., instead of the exact
matrix A, its approximation Ay is known, where ||A — Ay|| < h (hereafter, all vector norms are
assumed to be Euclidean, and matrix norms — Frobenius, unless otherwise stated).

Often, such problems are ill-posed, and to solve them, it is necessary to use regularizing algo-
rithms (see, for example, the classical work) One of the most common classes of regularizing
algorithms are iterative regularization algorithms. Most iterative regularization algorithms for
solving problems of the form contain only the following computational operations that allow
for parallel implementation:

1. multiplication of a matrix of size M x N by a vector of size N (which requires performing
M - N multiplications and M - (N — 1) additions — in the sum of M - (2N — 1) arithmetic
operations);

2. multiplication of a transposed matrix of size N x M by a vector of size M (requires per-
forming N - (2M — 1) arithmetic operations);

3. scalar product of vectors of size N (N multiplications and N — 1 additions — in the sum of
2N — 1 arithmetic operations) or vectors of size M (requires performing 2M — 1 arithmetic
operations);

4. adding vectors of size N or M or multiplying them by a number (requires performing N
and M arithmetic operations, respectively).

'Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
2Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

16 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0003-2820-7196
https://orcid.org/0000-0001-6036-5106
https://orcid.org/0000-0001-5140-3617

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

Two classical iterative regularization algorithms are given below as examples of such algo-
rithms: the conjugate gradient method and the Nesterov accelerated method (see the description
of the features of these algorithms in and , respectively):

Algorithm 1: Conjugate gradient Algorithm 2: Nesterov accelerated

method. method.
Data: A, bs, 6 Data: A, bs, 6, 8 > —1
Result: z Result: x
s+ 1 s+ 1
<+ 0 <+ 0
p+0 p<0
while |[Az — bs]]? > 6% do while || Az — bs]|?> > 62 do
if s =1 then if s =1 then
\ 74— AT(Ax — bs) |z« ATbhs
else else
q Tprevious < T
P — —— s—9
end (p7 q) P < .’B—f—m(ﬂ?_l'preyious)
ey T z +p— AT(Ap — bs)
PP end
q < AT (Ap) s+ s+1
T4 T — _p end
(r,q)
s+ s+1
end

Note. Sometimes in the literature, these algorithms are presented in a form that assumes
that the matrix A of the system is symmetric and positive definite. In this case, the corre-
sponding algorithm implementations do not include the operation of multiplying the transposed
matrix by a vector. This type can also be used in the specified implementations of the algo-
rithms if someone replaces A := AT A and bs := ATbs. But this replacement is not constructive
when using algorithms in practice to solve large problems. This is due to the following fact.
The computational complexity of the written algorithms at each iteration is O(M N) arithmetic
operations. At the same time, the number of iterations s;. that need to be performed is often
significantly less than the number of unknowns N — when developing new algorithms for solving
problems of the class under consideration, the main motivation is to increase the convergence
rate, i.e., to reduce the number of iterations needed to achieve convergence. Thus, the com-
putational complexity of the presented algorithms can often be estimated as O(M N) provided
Siter << IN. This is one of the main advantages of using iterative algorithms for solving problems
like . These substitutions reduce the computational complexity of each iteration by about
2 times, but they require the preliminary execution of O(M N?) arithmetic operations, which
negates the practical advantages of using iterative solution algorithms.

The approaches to the construction of parallel algorithms and their software implementation
used in linear algebra operations in such iterative algorithms are well known. They are usually
based on a two-dimensional partition of the matrix A into blocks. In this case, a Cartesian
virtual topology based on a two-dimensional rectangular process grid is usually used, — in the
address space of each computing process, its own block Ay, of the original matrix A is stored
(see Fig.. The size of such a process grid is usually chosen intuitively — most often, the number

2025, Vol. 12, No. 4 17

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

of rows and columns of this process grid is made as uniform as possible. However, such a choice
may not be optimal (in terms of parallelization efficiency) in many special cases, as it depends
on various factors, the key ones of which are the following.

First, the optimal choice of the ratio of the sizes of the process grid depends on the problem
being solved, namely, on the sizes M and N corresponding to the matrix. If, in the case of a
square matrix, it is optimal to choose the same sizes of a two-dimensional process grid, then in
the case of significantly different values of M and N, which is quite common in solving applied
problems, such a choice will be far from optimal.

Secondly, the optimal size ratio of the process grid depends on the architecture of the
multiprocessor computing system used. In particular, there may be a significant dependence on
the resources allocated for running the application, which may change with each subsequent
launch. At the same time, even if the application is running on the same number of computing
nodes, each new launch may result in a set of computing nodes with a significantly different
communication profile from the previous set (dedicated processes are located differently in the
physical topology of a multiprocessor system).

Therefore, the purpose of this work is to create a methodology that will allow, within the
framework of solving the problem of supercomputing co-design, to automatically match the size
of the problem being solved and the topology of the computing resources allocated at application
launch with the optimal size of a two-dimensional process grid defining the virtual topology of
processes in a parallel software implementation of the algorithm.

Solving ill-posed linear inverse problems using iterative algorithms is extremely important
for many applied problems in science and technology, while at the same time allowing us to
demonstrate the basic ideas of supercomputing co-design . Therefore, it has been chosen as
a significant reference problem requiring high-performance computing facilities that test the
approaches, methods, tools, techniques and recommendations implemented by the authors of
the project to develop the fundamentals of supercomputing co-design based on the descriptions
of algorithms in the AlgoWiki Open Encyclopedia of Parallel Algorithmic Features .

In connection with the above, the structure of this work will be as follows. Sectiondescribes
an approach to evaluating the parallelization efficiency of an algorithm for solving a problem of
type (1) with fixed dimensions using the allocated resources of a supercomputer system. Section
presents a technique for matching the size of the Cartesian virtual topology of processes with the
size of the problem being solved, the selected algorithm, and the allocated computing resources
in the form of a practice-oriented algorithm. Section |3| demonstrates some of the results of
numerical experiments. Sectiondiscusses some of the features of the proposed methodology.

1. An Approach to Evaluating the Parallelization Efficiency
of an Algorithm within the Framework of the Used
Supercomputer System

First, subsectionwill describe the proposed structure for storing problem data in the
distributed address space of computing processes. Taking into account the specifics of the prob-
lem being solved, the data distribution will be used in accordance with the Cartesian virtual
topology of two-dimensional grid type processes. Then, in subsections estimates of the
total running time of computational operations that allow for parallel implementation will be
presented. Finally, subsectionwill provide a formula for calculating the parallelization effi-

18 Supercomputing Frontiers and Innovations

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

=0 l=ny

rank=0 | rank=1 | rank=2 rank=0 | rank=1 | rank=2 rank=0 | rank=1 | rank=2

k=0 —>|
Ap(u‘t((;) Ap(u‘t(]) Apart(g) Lpart o) | Lpartir) | Lpartgs) bpart o) | Dpartgo) | bpartg)
rank=3 | rank=4 | rank=5 rank=3 | rank=4 | rank=5 rank=3 | rank=4 | rank=5
Apart/g) Apart(w Apart(,;) J;part(()) xparta) xpart(g) bpa,rt(l) bpa,rt(]) bpa,rt(])
rank=6 | rank=7 | rank=8 rank=6 | rank=7 | rank=8 rank=6 | rank=7 | rank=8

k=n; —»|
! Apart/g) Apartm Apart(g) xpart(()) xparm) xpart(g) bpa?“t(g) bpart(g) bpart(g)

A x b

Figure 1. An example of the distribution of data across nine computational processes
that form a two-dimensional grid 3 x 3

ciency of the proposed software implementation of the algorithm under consideration for solving
the problem , depending on the size of the selected virtual process topology. MPI tech-
nology is assumed to be a parallel programming technology for software implementations of the
studied algorithms on a computer with distributed memory.

1.1. Distribution of Data by Processes Involved in Calculations

It is assumed that all task data is distributed over the address space of n computing processes
involved in the calculations as follows.

Each computing process has its own identifier/number rank € 0,...,n — 1. The matrix A
of dimensions M x N is divided among these processes in two dimensions (see Fig. for blocks
Apart(rank) of sizes Mpart(k) X Npart(l)-

It is assumed that the processes form a two-dimensional process grid of size ny x ny (with
ni - ng = n). Therefore, the process number rank is associated with the indexes k and [, which
determine the coordinates of the process in the two-dimensional process grid as follows:

rank rank
= , | =rank— “N2.
no no

Or, if it is necessary to recalculate rank by k and I:
rank = k- ng + L.

We also note that

T'Llfl nzfl
> Mparegy =M, D Npartgy = N.
k=0 =0

The vector x is divided into no parts Tpart (1) [l =0,n9 — 1, of sizes Npmt(l). In this case, the
part Tpart 0 for a fixed index [is stored on all processes in the column of the process grid with
index [(see Fig. , that is, on processes with the coordinate (-,1) in a two-dimensional process
grid.

The vector b is divided into ni parts bpart(k), k = 0,n1 — 1, of sizes Mpart(k). In this case,
the part by, k) for a fixed index k is stored on all processes in the row of the process grid with
index k (see Fig., that is, on processes with the coordinate (k,-) in a two-dimensional process
grid.

2025, Vol. 12, No. 4 19

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

=0 N l=ny
,,,,,,,,,,,,, ¢ CUpart(g) (Ax)part(g)
k O#prr‘tm) A[)U/”t(]) Apur't(g)
M Apart((;) Apm‘tm Apart(g) X — + ||+ —

ki"l‘y*Apart(ﬁ) Apart/f/) prt(g)

(Az)
Allreduce(..., comm_row)
rank=6,7,8

A

8

Figure 2. A parallel algorithm for matrix-vector multiplication in the case of two-dimensional
matrix partition into blocks. The figure shows the case of data distribution over nine
computing processes that form a two-dimensional grid 3 x 3

Thus, it is assumed that each computing process contains one of the blocks Apmnt(,) of the
matrix A, as well as one of the parts x4 0 and bpgrt B of the vectors x and b, respectively.

1.2. Estimation of the Implementation Time of a Parallel Matrix-Vector
Multiplication Algorithm in the Case of Two-Dimensional Matrix
Partition Into Blocks

With the formulated method of storing data on computational processes, the result of mul-
tiplying the matrix A of size M x N by the vector z of size N will be a vector (Ax), which
will be distributed over various computational processes in parts (Az:)pa,ﬂt(.). At the same time,
the distribution structure of this vector for various processes should correspond to the distribu-
tion structure of the vector b (see Fig. . Part of the vector (Az) can be calculated using the

following formula:

nzfl

(A;E)pm"t(k) = Z Apart(k,n2+l)$part(l), k = 0, ey ny — 1 (2)
=0

An example explaining this formula is provided in Fig.

Each process involved in the calculations can compute the term Apg,¢ (kng-+1) Tpart (1) for its
pair of values (k,!), independently of similar calculations performed by other processes. That
is, the terms in the formula can be calculated in parallel. Then the terms located on the
processes of the row of the process grid with index k should be summed up, and the result — vector
(A;v)pmnt(k) should be placed on all processes of this row of the process grid. The organization of
the interaction of processes entails overhead costs for receiving/transmitting messages containing
the results of intermediate calculations through the physical communication environment of a
multiprocessor computing system.

Let us estimate the total running time of this parallel algorithm, taking into account the
overhead costs of organizing the interaction of computing processes.

First, we note that the running time of the sequential implementation of the operation of
multiplying the matrix A of size M x N by the vector z of size N (totaling M -(2N —1) arithmetic
operations) can be evaluated using the formula

T/ = Cy - M(2N —1). (3)

20 Supercomputing Frontiers and Innovations

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

Hereafter, the superscript 7' denotes the operation being evaluated (in this case, the operation
of multiplying a matrix by a vector — Ax), and the subscript denotes the number of processes
used for calculation (in this sequential case — 1); Cj is the average speed of performing one
arithmetic operation (determined by the architecture of the processor and the computing node
on which the computing process is performed, and is considered known or can be calculated).
At the same time, it is further assumed that the number of processor cycles required for adding
numbers and multiplying them is equal.

If n computing nodes are used for parallel computing within a processor grid of size ni X no,
the time spent by each computing node on computation can be estimated as

2— — 1) = Cl(nl,ng) . M

N9 n

M/ N
Ci(ni,ng) - *(

ny

Note. Hereafter, it is assumed that the difference in the sizes of Mpart(k) and Npart(l) data
blocks on various processes can be ignored and considered equal to Mpaﬁ(k) = M/n; and
Npart W= N/ng respectively. This is due to the fact that usually the maximum difference in the
size of data blocks distributed across different processes is no more than 1, which means that in
the case of solving “large” problems, this difference can be ignored.

At the same time, it is specifically noted that the coefficient C'y depends on the sizes ny and
ng of the process grid, since these sizes determine the sizes of the blocks (Az)part 0 of matrix A
that are involved in calculations. Given that in popular programming languages used for parallel
programming (for example, C/C++ and Python), matrices (i.e., two-dimensional arrays) are
stored line-by-line in memory, the sizes of these matrices will determine the access time to their
elements during the software implementation of matrix-vector multiplication.

The overhead time for organizing the interaction of each group of ng processes included

in each of the rows of the process grid can be estimated as follows. First, the amount of data
transmitted by each process is proportional to — (the proportionality coefficient is determined
n

by the type of data transmitted). Secondly, the number of data transfer operations with optimal
organization of transfers is proportional to log, no (the proportionality coefficient is determined
by the implementation of the corresponding function of interaction of computational processes
within the framework of the parallel programming technology used — for example, the function
of collective interaction of processes Allreduce() from MPI). Thus, the overhead time will be

M
proportional to — -log, na, where the proportionality coefficient will take into account both the
n

already mentionecll proportionality coefficients and the technical features of the communication
network, as well as the implemented option for distributing processes across computing nodes.

Thus, the total running time of the corresponding parallel algorithm can be estimated using
the formula

M(QN — 712)

M
Tﬁé‘x = C1(n1,n2) - + C2(n1,m2) - o logy n2. (4)

Here, the coefficient Cy is considered known and 1) depends on the speed of transmission of
a unit of information over a communication network, which, in turn, depends on the relative
location of computing nodes, in particular, as determined by the sizes n1 and no of the process
grid, as well as on the implemented option for distributing processes across computing nodes;
2) depends on the implementation of the function of collective interaction of processes.

2025, Vol. 12, No. 4 21

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

k=0 k=
,,,,,,, M S JL] b[mrt(()) (ATb) part(p)

T
=0 4’ A part(g) A part(s) A part(s)

LT T T
N Apart(j) Apart(4) Apart(r;) X — + + —

l=ny 4? A part(2) A parts) A part(s)

(A"))
Alll‘edl,l(‘e(..., comm (’o])
rank=2,5,8

S

AT

Figure 3. A parallel algorithm for multiplying a transposed matrix by a vector in the case of

a two-dimensional matrix partition into blocks. The figure shows the case of data distribution

across nine computing processes that form a two-dimensional 3 x 3 grid. Taking into account

the transposition, it is assumed that the rows of the presented process grid are the columns of

the original process grid; similarly, the columns of the presented process grid are the rows of
the original process grid

The estimates and 1h will be used in Subsectionto construct a formula for evaluating
the effectiveness of the parallelization of the software implementation of the algorithm for solving

the problem .

1.3. Estimation of the Implementation Time of a Parallel Algorithm
for Multiplying a Transposed Matrix by a Vector in the Case
of a Two-Dimensional Matrix Partition Into Blocks

The result of multiplying the transposed matrix A” of size N x M by the vector b of size M
will be a vector (A7), which will be distributed over various computational processes in parts
(ATx)part(.). At the same time, the distribution structure of this vector for various processes
should correspond to the distribution structure of the vector x (see Fig. . Part of the vector
(ATb) can be calculated using the following formula:

ni—1

(A b part(l Z Apart (knatl) bpart(k) [=0,...,n9 — 1. (5)

An example explaining this formula is provided in Fig.

Each process involved in the calculations can compute the term Ap,mf (ko 1)

pair of values (k,l), independently of the similar calculations performed by other processes.

bpart *) for its

That is, the terms in the formula can be calculated in parallel. Then the corresponding
terms located on the processes of the column of the process grid with index [should be summed
up, and the result — vector (ATb)pam(l) — should be placed on all processes of this column of
the process grid. The organization of the interaction of processes entails overhead costs for
receiving and transmitting messages containing the results of intermediate calculations through
the physical communication environment of a multiprocessor computing system.

Similarly to the method described in the previous subsection, it is possible to obtain an
estimate of the time required for the sequential implementation of this operation.

T = Cp - N(2M —1)

22 Supercomputing Frontiers and Innovations

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

and parallel:

N-(QM—TLl)

’I’ATr = C’l(nl,n2) .
n

n

N
+ Co(n1,n2) - — - logg ny.
no

The fundamental difference between these formulas and the formulas presented in the pre-
vious subsection is that the coefficient C has been replaced by C’l. This is due to the fact that
the implementation of the multiplication of a transposed matrix by a vector involves sequential
access to the elements of the rows of this matrix; however, the transposed matrix is stored in
memory by columns. In order to save memory when solving “large” problems, the preliminary
transposition of the matrix is not constructive, as it requires additional memory space that may
not be available. A different order of access to the elements of the matrix leads to the fact that
the coefficient C; may differ significantly from the coefficient C1.

1.4. Estimation of the Implementation Time of the Parallel Scalar Product
Algorithm of Vectors

Since the size of the vectors in sequential algorithms for solving the problem is either M
or N, we will use characteristic vectors of these sizes. Therefore, if the vector = is mentioned,
its size will be assumed to be N, and if the vector b is mentioned, its size will be assumed to be
M. Tt is assumed that these vectors are distributed over computational processes according to
the scheme shown in Fig.

The result of the scalar product of vectors z(!) and z(?) of size N will be the value (21, z(2)).
It can be calculated using the following formula:

TLQ—I
1) .(2)) _ (1) (2)
(x()733()) = Z (mpart(l)’xpart(l))' (6)
1=0
Each process involved in the calculations can compute the term (:Uﬁ)rt (l),az](ﬁl)rt (l)) for its

value [, which is independent of similar calculations performed by other processes. That is, the
terms in the formula @ can be calculated in parallel. Then the corresponding terms located on
the processes of the row of the process grid should be summed up, and the result — the number
(a;(l), :z:(z)) — must be placed on all processes in this row of the process grid. The organization of
the interaction of processes entails overhead costs for receiving/transmitting messages containing
the results of intermediate calculations through the physical communication environment of a
multiprocessor computing system.

The running time of a sequential scalar product operation of vectors can be estimated using
the formula

T — 0y (2N - 1),

and the running time of the corresponding parallel algorithm (taking into account overhead
costs) can be estimated using the formula

2N—n2

M) £
TT(L) = Cl(nl,ng) .
n2

+ Cg(nl, nz) . 10g2 ng.

It is necessary to note the following two features of the algorithm. First, the processes of
each row of the process grid perform the same calculations as the processes of the other rows of
the process grid. Thus, scalar product calculations are not parallelized over all n computational

2025, Vol. 12, No. 4 23

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

processes, but only over ny processes. This approach is constructive, since distributing the vectors
() and £ across all n processes (and not just the ngy processes of the row of the process grid),
and then collecting data from all of them, will require additional overhead proportional to
logy n, which almost always exceeds the gain in reducing the time of direct calculations when
solving “large” problems (C1(2N — 1)/n instead of C1(2N — 1)/ng in the considered version of
the parallel algorithm). Secondly, it assumes that the parts of the vector are well localized in
the address space of each process. In this regard, the same estimate can be used for the average
execution speed of one arithmetic operation C7 as in subsection

Similarly, the result of the scalar product of vectors b") and b of size M will be the value
(0™, b)), It can be calculated using the following formula:

ni—1
1) 7(2)y — (1) (2)
(b()7b()) - Z (bpart(k)7bpart(k))‘ (7)
k=0
Each process involved in the calculations can calculate the term (bz(,z)rt (k),bl(i)rt (k)) for its

value k is independent of similar calculations performed by other processes. That is, the terms
in the formula can be calculated in parallel. Then the corresponding terms located on the
processes of the column of the process grid should be summed up, and the result — the number
(b(l), b(z)) — must be placed on all processes in this column of the process grid. The organization of
the interaction of processes entails overhead costs for receiving/transmitting messages containing
the results of intermediate calculations through the physical communication environment of a
multiprocessor computing system.

The running time of a sequential scalar product operation of vectors can be estimated using
the formula

T = oy (20 1),

and the running time of the implementation of the corresponding parallel algorithm (taking into

account overhead costs) can be estimated using the formula

2M—n1

b(1) b2
Tt) = C1(ny,ng) - -
1

+ Ca(n1,n2) - logy ny.

1.5. Estimation of the Implementation Time of a Parallel Algorithm
for Adding/subtracting Vectors or Multiplying/dividing a Vector
by a Number

When distributing vectors across computational processes according to the scheme shown
in Fig.|1] in the case of adding two vectors (1) and z(3 of size N, the following calculations
will be performed on each process:

1 2 _ M (2)
(.T() + .’L‘())part(l) - mpart(l) + wpart(l)’

There will be no need to exchange messages between computational processes, since the storage
structure of the resulting vector corresponds to that used in the parallel algorithms of linear
algebra operations described earlier.

24 Supercomputing Frontiers and Innovations

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

Therefore, the time of successive operations of adding vectors of the appropriate size can be
estimated using the formulas

Tlx(l)ﬂ(z) =C1-N,
T1(b<1l|-b(2>) - M,

and the operating time of the implementation of the corresponding parallel algorithms can be
estimated using the formulas

)y 4(2)
T — oy
n2
(1 (2) M
TEH) — o 2
ni

Exactly the same estimates are true for operations of multiplying the corresponding vectors
by a number. Therefore, the formulas for estimating the values of T7¢* and T°? are not written
out separately and are considered equivalent to those described above.

At the same time, similarly to the previous subsection (subsection, it should be noted
that the processes of each row (column) of the process grid perform the same calculations as
the processes of the other rows (columns) of the process grid. Thus, the corresponding calcula-
tions are not parallelized over all n computing processes, but only over ny (n1) processes. The
motivation for this approach is similar to that given in subsection

1.6. Evaluation of the Parallelization Efficiency of a Parallel Algorithm

The parallelization efficiency of the iterative algorithm for solving the problem can be
estimated by the parallelization efficiency of one iteration using the following formula:

o op
> koPTy
0p6{A$; ATb; (x(1) 2(2); (b(1)b2)); (W42 b(l)—i-b(z)}
korToPp’

ope{A:p; ATb; (W) z@)); (b(1)b2)); (422, b(1>+b<2)}

En(m,m,g,ChCH,Cz,M,N) = (8)

Here:
e 11, ny are determined by the selected Cartesian topology of parallel processes of the two-
dimensional grid type;
e M, N are determined by the size of the problem being solved;
o k= {kA, EAT, @z ®). p(0Mb®), paa®, kb(mrbm} is determined by the iterative
algorithm for solving the problem and contains the values of the number of corre-

(yp@
kY™ the number of

sponding operations (while calculating the values of ke and
multiplications/divisions of vectors of the appropriate size by a number is also taken into
account);

o (4, C, are determined by the architecture of the processor and computing node;

e (U5 is determined by the communication network, the implemented option for distributing
processes across computing nodes, and the selected implementation of the operation for
collective interaction of processes of the Allreduce () type (at the same time, as mentioned
earlier, this parameter also depends on the size (M and N) of the problem and the selected
size (n; and ng) of virtual process topologies — they determine the volume and number of

messages transmitted over the communication network);

e TP and T,” are defined by formulas written out in subsections 1.5
2025, Vol. 12, No. 4 25

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

Example 1. For the algorithm the expression for the main iterations (s > 2) is
written as
2. TAT 4 1. TA™ 4o 1) Ly P g e ® g pp e

E, =) .2 1) p2 1 2 1 2 ’
@ T 1 T 2) o) g e g ey

Example 2. For the algorithm the expression for the main iterations (s > 2) is

WI‘itten as T (1) (2) (1) (2)
2. TA 4 1. TA™ 4 3. 7r e g Tp Dt

E - 1 2 1 2 .
n (2'Tﬁ4x+1'Tr‘L4Tb+3~T7f<)+x()+2-T7[;()+b())n

2. Choosing the Optimal Size of the Virtual Process Topology

The problem of choosing the optimal sizes n; and nsy of the virtual process topology can
be set as follows: it is necessary to determine the values of n; and ny at which the paralleliza-
tion efficiency of the selected iterative algorithm for solving the problem on the allocated
resources of the supercomputer system will be maximum. Such a statement of the problem can
be formalized in the following form:

(n1,n2) :argmaxEn(nl,ng;E, Cy1,C1,Co, M, N). (9)

Here, the first two arguments of the function F,, are specially separated from the remaining
arguments by a semicolon to emphasize that these arguments are used for maximization, while
the remaining arguments are known parameters.

Therefore, for the practical application of this formula, two questions remain to be solved:

1. How can someone take into account the condition n - ng = n? Obviously, on the one hand,
the formal mathematical solution to the problem @ in many cases will be non-integers, and
on the other hand, the prime number n cannot be decomposed into factors, each of which
is different from 1.

2. How does someone define the coefficients C, Cy, Co? Taking into account the comments
made earlier regarding these constants, it is obvious that the formal evaluation of them can
be extremely difficult. For example, we repeat that the coefficient Cy depends 1) on the
technical features of the communication network, 2) on the sizes n; and ny of the selected
virtual process topology, 3) on how well this virtual topology was mapped to the computing
resources allocated at the start of the program, 4) on the implementation option of the
function of collective interaction of processes in the package used for parallel programming.
The first issue can be solved as follows. It is necessary to impose a convenient limit on the

number of computing processes n. Such a natural limitation for many multiprocessor systems
is n = 2%, where k is an integer. Thus, in the algorithm formulated below for determining the
optimal values of n1 and ng, we will assume that n is a power of two, and the values of n; and
ne must be found as integers.

The second issue can be solved as follows. On the allocated computing resources, before
starting the main calculations, it is possible to run a preliminary test using matrices and vectors
of characteristic sizes M, N, which will determine C;, C; and Cy. That is, the corresponding
coefficients will be determined automatically for the features of the allocated resources and
the selected compiler options that determine the algorithms for implementing the function of
collective interaction of processes. Moreover, the corresponding test runs should be made for

26 Supercomputing Frontiers and Innovations

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

different values of n; and ng in order to determine the dependencies of Cj(nq,ng), C1(n1,n2)
and 02(77,1, ng).

Thus, an algorithm is proposed for determining the optimal values n; and ngy of the virtual
process topology, designed as Algorithm

3. Numerical Experiments

Computational experiments were conducted on the “Lomonosov-2” supercomputer and
were constructed as follows. The sizes M and N, which determine the computational complexity
of the problem , were chosen in such a way that, on the one hand, the matrix A of the
system had significant size, and on the other hand, a part Apart(,) of this matrix, which
each individual computing process is responsible for storing, fit into the RAM of the computing
node. For example, for pairs (M, N) € {(105,10°), (105,10%), (107,10%)}, when using the data
type float64 (“double precision”) the matrix A requires 298 GB for its storage in memory
(while Apart(_) requires 1.2 GB when using 64 computing nodes), and for pairs of (M, N) €
{(5-10°,5-10%),(5-10%,5 - 10%), (5 - 107,5 - 10%)} — 1863 GB (1.8 Th) (Apart(— 29 GB when
using the same number of computing nodes).

At the same time, computational experiments were conducted for a series of these pairs
of (M,N) in order to demonstrate that problems of the same computational complexity can
correspond to completely different values of n; and ng, which determine the optimal virtual
topology of processes for parallel computing.

The MPI parallel programming technology was used for the software implementation of the
Algorithm The program code implementing the pseudocode from Algorithmis not provided
in this article, since the pseudocode is designed in such a way that the corresponding software
implementation can be recovered from it in an unambiguous way (in the sense of choosing
software solutions that may affect the parallelization efficiency). It should be noted that for the
software implementation of the function of collective interaction of processes Allreduce(), its
blocking version was used.

The computation results are shown in Fig. It is perfectly clear that the values of n; and
ne, which determine the optimal virtual topology for parallel computing, depend both on the
computational complexity of the problem and on the relative sizes of M and N. In particular,
the intuitive facts are experimentally confirmed that, for example, for “elongated matrices” the
optimal “elongated process topology” is obtained, and the closer the matrix is to the “square”
one, the more optimal it is to use the “square process topology” for calculations.

However, there are some non-obvious results. For example, there may be situations where,
if the virtual topology is chosen incorrectly, the parallelization efficiency may be close to zero.
Although such a result is obtained for extreme cases (for example, M =5-107, N = 5-103, i.e.,
the number of equations exceeds the number of unknowns by four orders of magnitude), which
are extremely rare in solving applied problems, it is necessary to keep in mind the possibility of
such effects in practice. It is also necessary to note the effect of a sharp increase in parallelization
efficiency for a limiting process grid of size n; X ng =1 x 64 (noted in Fig. by dotted line).

Remark 1. If someone uses a variant of the function Allreduce () implemented using per-
sistent interaction requests from the MPI-4 standard, the results will obviously change. This is
due to the following fact. Functionally (in the sense of the result), the operation of the func-
tion Allreduce() is equivalent to the sequence of launching functions Allreduce_init() “4”
start() “4+” wait () from the standard MPI-4. Given that the function Allreduce () can be im-

2025, Vol. 12, No. 4 27

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

Algorithm 3: The pseudocode of the algorithm for determining the optimal size of the
virtual topology of processes using the MPI parallel programming technology.

Data: N, M, E, n — the power of two
Result: nq, no

comm <— MPI.COMM_WORLD

Ny n;ng <1

while ny >=1 and n1 <=n do
comm cart <— comm.Create_cart(dims=(n;, ng), periods=True, reorder=True)

rank_cart < comm cart.Get_rank()

comm_col < comm cart.Split(rank cart % no, rank cart)

comm_row ¢<— comm cart.Split(rank cart // ng, rank cart)

// formation of arbitrary matrices of characteristic dimensions
Apart < random(M /ny, N/ng); xpert < random(N/ng); bpare <— random(M/n;)
// estimation of the value of the coefficient C}

time_start < MPI.Wtime ()

(Ax)part — Apart * Tpart

time_elapsed < MPI.Wtime() — time_start
time_elapsed - n
Cl <

M - (2N — ng)
comm _cart.Allreduce(Cy/n — C1, op=MPI.SUM) // averaging C)

// estimation of the value of the coefficient C’l
time_start < MPI.Wtime ()
(ATb)part < AT bpart

part
time_elapsed < MPI.Wtime() — time_start
time_elapsed-n

N - (2M —ny)
comm cart.Allreduce(Cy/n — C1, op=MPI.SUM) // averaging C}

61<—

// estimation of the value of the coefficient Cj
comm_cart.Barrier ()

time_start < MPI.Wtime ()

comm_col.Allreduce ((ATb),art — Tpart, op=MPI.SUM)

time _elapsed < MPI.Wtime() — time start

time_elapsed

if n1 =1 then C + 0 else C -
1 2temp1 2tempq N/NQ] 10g2 n

comm_cart.Barrier()

time_start <+ MPI.Wtime()

comm_row.Allreduce ((AZ)pert — bpart, op=MPI.SUM)

time _elapsed < MPI.Wtime() — time start

time_elapsed
if no = 1 then C +— 0else Cotorppy & ————
2 2tempo 2tempy M/?’Ll . 10g2 no

if n; =1 then Cyyepypy < 05 if ng =1 then Coyepypy < 0
if n1 # 1 and nz # 1 then Co < (Coemp; + Cotempy) /2
comm cart.Allreduce(Cy/n — Co, op=MPI.SUM)

// parallelization efficiency estimation

E(nl, ng) — En(nl, na; E, Cl, C’l, 02, M, N)

n1 <—n1/2; Nng < N9 - 2

end

(n1,n2) < argmax E(ni,n2)

28

Supercomputing Frontiers and Innovations

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

1.0 ‘
0‘8] E maxr E maxr - - ’,
/
0.6 - /
E, /
0.4 1 A(10°x10% //
A10°x10%) —
0.21 4007x10% 7
298 Gb /
0 T T T ? u
1.0
\ \E maxr / 1
0.8 a E maxr /
7 7 d
0.6 /
E, /
041 4(510°x5:107) //
A(5:10%x5-10%) /
021 A(5107x5-10% /
. 1863 Gb #/

(64x1) (32x2) (16x4) (8x8) (4x16) (2x32) (1x64) <— (1, xM,)

Figure 4. Graphs of the dependence of the parallelization efficiency of Algorithmfor
matrices of different dimensions, but with the same number of elements, depending on the
selected virtual topology when computing on a fixed number of nodes of the “Lomonosov-2”

supercomputer

plemented over the same areas of the address space, the same Allreduce_init () operation can
be performed outside the while loop. This can significantly reduce the overhead of receiving and
transmitting messages containing the results of intermediate calculations (for more information,
see @) As a result, the estimate of Co may decrease significantly.

Remark 2. It is obvious that the method proposed in the paper for calculating the paral-
lelization efficiency in determining the optimal virtual topology is an estimated one. Therefore,
the question arises: how much does the actual parallelization efficiency differ from the estimated
one in typical tasks? To answer this question, the following experiment was conducted. An
example was chosen for (M, N) = (8-10%,8-10%). In this case, the matrix A will require 47.8 GB
for its storage, as a result of which it will completely fit into the RAM of one computing node
(64 GB) of the “Lomonosov-2" supercomputer, which is required to determine the operating
time 77 of the sequential version of the Algorithm For this matrix A and some model right-
hand side bs of the system , a parallel implementation of the Algorithmwas launched in two
versions — using the functions of collective communication of MPI-processes within the MPI-3
standard and with using the functions of collective communication of MPI-processes within the
MPI-4 standard (see previous remark). At the same time, the number of iterations in the Al-
gorithmwas forcibly limited to 300 iterations in order to obtain a reasonable counting time
for the sequential implementation of the Algorithm 77 = 864 seconds, which is a fairly repre-
sentative counting time, but at the same time slightly less than the upper limit of 15 minutes,
which limits the counting time on the test queue of the “Lomonosov-2” supercomputer. For this
example, as for similar examples with a square matrix of higher dimensions, the optimal topol-
ogy is a “square” one. Therefore, parallel implementations of the algorithm were launched on
n € {4,9, 16,25, 36,49, 64} MPI-processes so that n; = ng = y/n. The running time T, for each
run was detected, then the speedup of calculations was calculated using the formula S,, = 17 /T,

2025, Vol. 12, No. 4 29

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

300
MPI-4
250 A MPI-3
200 A
Tn’ 5
100 A
50 1
0 T T T T
60 -
\'\(\,e:‘}:’é’i\o(\
50 1 2
40 1
S’L 30 A
20 A
MPI-4
101 MPI-3
1.0 —— e
estimated estimated —»¢
0.8 1
0.6 «
E,
0.4
0.2 1 MPI-4
MPI-3
0 T T T T
1 9 16 25 36 49 64 <«—

number
of nodes

Figure 5. Graphs of the dependence of the counting time, speedup, and parallelization
efficiency of the Algorithmdepending on the selected number of computing nodes within the
framework of the “quadratic process topology”. The graphs are typical for a typical launch,
rather than the average values for a series of experiments. On the efficiency graph, the points
“estimated” are marked separately, the values of which are calculated using the Algorithm

and the parallelization efficiency using the formula E,, = S,,/n. Based on these data, work sched-
ules, speedup, and efficiency were constructed, as shown in Fig.|5| The key graph here is the
graph of the real parallelization efficiency, which demonstrates certain differences between the

real parallelization efficiency and the estimated one. However, these differences look insignificant

from a practical point of view, which confirms the applicability of the proposed Algorithm

4. Discussion

1. Large-scale autotuning. The ideas for adjusting the algorithm parameters to the charac-

teristics of the target computing system, used in the development of the proposed method-
ology, are consonant with the ideas of autotuning (see, for example, the works @).
However, in these works, the ideas considered mainly relate to “small-scale autotuning” —

features of adjusting algorithms to the technical capabilities of “small” computing systems

(a multicore processor or a graphics processing unit). The ideas proposed in our work relate

30

Supercomputing Frontiers and Innovations

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

to adjusting the algorithm parameters to the characteristics of a distributed memory super-
computer and have not been previously considered in detail in publicly available sources.

2. The invariance of the proposed algorithm with respect to the properties of the
computing system used. Such important characteristics of a communication network as
latency, data transfer rate, topology of the communication network, and distribution of pro-
cesses across computing nodes are important in the a priori estimation of the coefficient Cs.
Also, many technical features of the computing node must be taken into account when a
priori estimating the coefficients C'7 and C,. In fact, the paper proposes a posteriori method
for determining these constants based on the results of some preliminary tests, which auto-
matically sets in them the corresponding characteristics of the used communication network
and computing nodes. Thus, the proposed algorithm for determining the optimal values
of the virtual topology of processes is relevant for any hardware, any parallel program-
ming technology, any compilation options, and any features of the system and application
software.

3. Possible improvements to the proposed algorithm. In the derivation of all formulas,
the assumption was made that the computational complexity of all arithmetic operations
is equivalent. If desired, the reader can clarify the output of the corresponding formulas,
taking into account that, for example, addition of two numbers requires 1-3 CPU cycles,
multiplication — 1-7 cycles, and division — 10-40 cycles. The values of the coefficients C}
and C} on a processor-homogeneous computing system should not change much from launch
to launch; therefore, they could potentially be calculated once before the start of all exper-
iments, saved and used in the future. However, the distribution of processes across the
computing nodes of a supercomputer can vary from launch to launch, even on the same
set of computing nodes. Therefore, the coefficient Cy must be calculated before each run of
the computational algorithm implementation. The values of the coefficients C; and C, are
averaged over all application processes. Considering that it is supposed to use a computer
system that is homogeneous in terms of processors, this should not be a serious limitation
and simplification. The coefficient Cs is calculated as the average value for Allreduce()
operations performed across rows and columns of the process grid. For greater accuracy of
the algorithm, one can do without averaging and use two separate coeflicients. Next, the
value of the coefficient Cy is averaged over all application processes, and the impact of this
averaging may be significant. Further experiments should demonstrate how significant this
factor is in practice and needs to be taken into account in order to obtain more accurate
results.

4. Theoretical assumptions. Using only powers of two for the values of n; and no does not
represent a serious limitation of generality. This assumption is often used in practice when
evaluating various dynamic characteristics of software implementations.

5. Applicability of the algorithm. The algorithm described in this article is designed to
solve linear algebra problems using a two-dimensional Cartesian topology of processes, but
it can be easily adapted to solve other problems using other topologies.

6. Features of software implementation of algorithms. Some statements made in sub-
sectionswhen estimating the implementation time of parallel algorithms using basic
linear algebra operations may be incomprehensible to readers who have not previously im-
plemented parallel versions of iterative algorithms for solving systems of linear algebraic
equations. For example, the statement may not be obvious (see subsection, that with

2025, Vol. 12, No. 4 31

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

the chosen data storage structure, when adding vectors, there will be no need to exchange
messages between different computing processes. Therefore, we provide a link to the work @,
which contains an example of a software implementation of an iterative algorithm from the
class of algorithms under consideration (including using the functions of collective interac-
tion of processes from various MPI standards: MPI-3 and MPI-4).

7. The case of a heterogeneous computing system. The approach discussed in this article
is applicable without additional modifications for computing systems that are homogeneous
in terms of core computing — whether they are central processing units (CPUs) or graphics
accelerators (GPUs), while the system may be heterogeneous over a communication network.
If a supercomputer co-design is required for a more complex heterogeneous system, then a
more complex approach beyond the scope of this article may be required to distribute basic
computing operations across heterogeneous computers.

Conclusion

The paper demonstrates the fundamental possibility of using the ideas of supercomputing
co-design to automatically match the optimal topology of calculations with the features of the
problem being solved, the features of the supercomputer system used and parallel programming
technology. The proposed methodology for algorithms that are in demand in solving applied
problems can increase the efficiency of using supercomputer systems by users.

Acknowledgements

The paper was published with the financial support of the Russian Science Foundation
(project 25-11-00181, https://rscf.ru/en/project/25-11-00181/). The research is carried
out using the equipment of the shared research facilities of HPC computing resources at
Lomonosov Moscow State University .

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References

1. Antonov, A.S.: MPI and OpenMP Parallel Programming Technologies: Textbook. Moscow
University Press (2012)

2. Antonov, A.S., Maier, R.V., Nikitenko, D.A., Voevodin, V.V.: An approach to solving
the problem of supercomputer co-design. Lobachevskii J Math. 45(7), 2965-2973 (2024).
https://doi.org/10.1134/51995080224603680

3. Kalitkin, N.N.; Kuzmina, L.V.: Improved form of the conjugate gradient method. Mathe-
matical Models and Computer Simulations 4(1), 68-81 (2012). https://doi.org/10.1134/
S52070048212010061

4. Kalitkin, N.N., Kuzmina, L.V.: Improved forms of iterative methods for systems of linear
algebraic equations. Doklady Mathematics 88(1), 489-494 (2013). https://doi.org/10.
1134/51064562413040133

32 Supercomputing Frontiers and Innovations

https://rscf.ru/en/project/25-11-00181/
https://doi.org/10.1134/S1995080224603680
https://doi.org/10.1134/S2070048212010061
https://doi.org/10.1134/S2070048212010061
https://doi.org/10.1134/S1064562413040133
https://doi.org/10.1134/S1064562413040133

A.S. Antonov, V0I.V. Voevodin, D.V. Lukyanenko

10.

11.

12.

13.

14.

15.

. Kindermann, S.: Optimal-order convergence of Nesterov acceleration for linear ill-posed

problems™. Inverse Problems 37(6), 065002 (2021). https://doi.org/10.1088/1361-6420/
abfbbc

Lukyanenko, D.: Parallel algorithm for solving overdetermined systems of linear equations,
taking into account round-off errors. Algorithms 16(5), 242 (2023). https://doi.org/10.
3390/a16050242

Neubauer, A.: On Nesterov acceleration for Landweber iteration of linear ill-posed problems.
Journal of Inverse and Ill-posed Problems 25(3), 381-390 (2017). https://doi.org/10.
1515/3iip-2016-0060

Park, J., Shin, Y., Lee, J., et al.: HYPERF: End-to-End Autotuning Framework for
High-Performance Computing. Proceedings of the 34th International Symposium on High-
Performance Parallel and Distributed Computing (20), 1-14 (2025). https://doi.org/10.
1145/3731545.3731588

Petrovic, F., Streldk, D., Hozzova, J., et al.: A benchmark set of highly-efficient CUDA and
OpenCL kernels and its dynamic autotuning with Kernel Tuning Toolkit. Future Generation
Computer Systems 108, 161-177 (2020). https://doi.org/10.1016/j.future.2020.02.
069

Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical methods for
the solution of ill-posed problems. Dordrecht: Kluwer Academic Publishers (1995)

Voevodin, V., Antonov, A., Dongarra, J.: AlgoWiki: an Open Encyclopedia of Parallel
Algorithmic Features. Supercomputing Frontiers and Innovations 2(1), 4-18 (2015). https:
//doi.org/10.14529/3s£1150101

Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large scale,
deep monitoring and fine analytics for the user community. Supercomputing Frontiers and
Innovations 6(2), 4-11 (2019). https://doi.org/10.14529/js£1190201

Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse
matrix kernels. Journal of Physics: Conference Series 16(1), 521 (2015). https://doi.
org/10.1088/1742-6596/16/1/071

van Werkhoven B.: Kernel Tuner: A search-optimizing GPU code auto-tuner. Future Gener-
ation Computer Systems 90, 347-358 (2019). https://doi.org/10.1016/j.future.2018.
08.004

Wu, X., Balaprakash, P., Kruse, M., et al.: ytopt: Autotuning scientific applications for
energy efficiency at large scales. Concurrency and Computation: Practice and Experience
37(1), e8322 (2023). https://doi.org/10.1002/cpe.8322

2025, Vol. 12, No. 4 33

https://doi.org/10.1088/1361-6420/abf5bc
https://doi.org/10.1088/1361-6420/abf5bc
https://doi.org/10.3390/a16050242
https://doi.org/10.3390/a16050242
https://doi.org/10.1515/jiip-2016-0060
https://doi.org/10.1515/jiip-2016-0060
https://doi.org/10.1145/3731545.3731588
https://doi.org/10.1145/3731545.3731588
https://doi.org/10.1016/j.future.2020.02.069
https://doi.org/10.1016/j.future.2020.02.069
https://doi.org/10.14529/jsfi150101
https://doi.org/10.14529/jsfi150101
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1002/cpe.8322

	A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

