
Supercomputing Co-Design for Solving Ill-Posed Linear Inverse

Problems Using Iterative Algorithms

Alexander S. Antonov1 , Vladimir V. Voevodin1 ,

Dmitry V. Lukyanenko2

c© The Authors 2025. This paper is published with open access at SuperFri.org

The paper considers an approach to applying the ideas of supercomputing co-design for the

effective use of arbitrary multiprocessor computing systems with distributed memory when using

iterative regularization algorithms to solve ill-posed linear inverse problems, which are reduced

to solving large overdetermined systems of linear algebraic equations with a dense matrix. The

proposed methodology allows for a large number of algorithms to select the best virtual topol-

ogy of processes (in terms of parallelization efficiency) for solving problems of the class under

consideration within the allocated resources of the supercomputer system being used.

Keywords: supercomputing co-design, parallelization efficiency, parallelism, autotuning,

AlgoWiki, inverse problem, iterative regularization, conjugate gradient method.

Introduction

In many cases, applied inverse problems are linear and come down to the need to solve large

overdetermined systems of linear algebraic equations of the form

Ax = bδ (1)

with a dense matrix. Here A ∈ RM×N , x ∈ RN , bδ ∈ RM . Usually M > N and instead of

the exact right-hand side b its approximation bδ is known, measured in an experiment with an

error δ, i.e., ‖b−bδ‖ 6 δ. The matrix can also be specified with an error, i.e., instead of the exact

matrix A, its approximation Ah is known, where ‖A−Ah‖ 6 h (hereafter, all vector norms are

assumed to be Euclidean, and matrix norms – Frobenius, unless otherwise stated).

Often, such problems are ill-posed, and to solve them, it is necessary to use regularizing algo-

rithms (see, for example, the classical work [10]). One of the most common classes of regularizing

algorithms are iterative regularization algorithms. Most iterative regularization algorithms for

solving problems of the form (1) contain only the following computational operations that allow

for parallel implementation:

1. multiplication of a matrix of size M ×N by a vector of size N (which requires performing

M · N multiplications and M · (N − 1) additions – in the sum of M · (2N − 1) arithmetic

operations);

2. multiplication of a transposed matrix of size N ×M by a vector of size M (requires per-

forming N · (2M − 1) arithmetic operations);

3. scalar product of vectors of size N (N multiplications and N − 1 additions – in the sum of

2N − 1 arithmetic operations) or vectors of size M (requires performing 2M − 1 arithmetic

operations);

4. adding vectors of size N or M or multiplying them by a number (requires performing N

and M arithmetic operations, respectively).

1Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
2Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

DOI: 10.14529/jsfi250402

16 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0003-2820-7196
https://orcid.org/0000-0001-6036-5106
https://orcid.org/0000-0001-5140-3617


Two classical iterative regularization algorithms are given below as examples of such algo-

rithms: the conjugate gradient method and the Nesterov accelerated method (see the description

of the features of these algorithms in [3, 4] and [5, 7], respectively):

Algorithm 1: Conjugate gradient

method.
Data: A, bδ, δ

Result: x

s← 1

x← 0

p← 0

while ‖Ax− bδ‖2 > δ2 do

if s = 1 then

r ← AT (Ax− bδ)
else

r ← r − q

(p, q)

end

p← p+
r

(r, r)
q ← AT (Ap)

x← x− p

(p, q)
s← s+ 1

end

Algorithm 2: Nesterov accelerated

method.
Data: A, bδ, δ, β > −1

Result: x

s← 1

x← 0

p← 0

while ‖Ax− bδ‖2 > δ2 do

if s = 1 then

x← AT bδ
else

xprevious ← x

p← x+
s− 2

s− 1 + β
(x−xprevious)

x← p−AT (Ap− bδ)
end

s← s+ 1
end

Note. Sometimes in the literature, these algorithms are presented in a form that assumes

that the matrix A of the system (1) is symmetric and positive definite. In this case, the corre-

sponding algorithm implementations do not include the operation of multiplying the transposed

matrix by a vector. This type can also be used in the specified implementations of the algo-

rithms if someone replaces A := ATA and bδ := AT bδ. But this replacement is not constructive

when using algorithms in practice to solve large problems. This is due to the following fact.

The computational complexity of the written algorithms at each iteration is O(MN) arithmetic

operations. At the same time, the number of iterations siter that need to be performed is often

significantly less than the number of unknowns N – when developing new algorithms for solving

problems of the class under consideration, the main motivation is to increase the convergence

rate, i.e., to reduce the number of iterations needed to achieve convergence. Thus, the com-

putational complexity of the presented algorithms can often be estimated as O(MN) provided

siter � N . This is one of the main advantages of using iterative algorithms for solving problems

like (1). These substitutions reduce the computational complexity of each iteration by about

2 times, but they require the preliminary execution of O(MN2) arithmetic operations, which

negates the practical advantages of using iterative solution algorithms.

The approaches to the construction of parallel algorithms and their software implementation

used in linear algebra operations in such iterative algorithms are well known. They are usually

based on a two-dimensional partition of the matrix A into blocks. In this case, a Cartesian

virtual topology based on a two-dimensional rectangular process grid is usually used, – in the

address space of each computing process, its own block Apart of the original matrix A is stored

(see Fig. 1). The size of such a process grid is usually chosen intuitively – most often, the number

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 17



of rows and columns of this process grid is made as uniform as possible. However, such a choice

may not be optimal (in terms of parallelization efficiency) in many special cases, as it depends

on various factors, the key ones of which are the following.

First, the optimal choice of the ratio of the sizes of the process grid depends on the problem

being solved, namely, on the sizes M and N corresponding to the matrix. If, in the case of a

square matrix, it is optimal to choose the same sizes of a two-dimensional process grid, then in

the case of significantly different values of M and N , which is quite common in solving applied

problems, such a choice will be far from optimal.

Secondly, the optimal size ratio of the process grid depends on the architecture of the

multiprocessor computing system used. In particular, there may be a significant dependence on

the resources allocated for running the application, which may change with each subsequent

launch. At the same time, even if the application is running on the same number of computing

nodes, each new launch may result in a set of computing nodes with a significantly different

communication profile from the previous set (dedicated processes are located differently in the

physical topology of a multiprocessor system).

Therefore, the purpose of this work is to create a methodology that will allow, within the

framework of solving the problem of supercomputing co-design, to automatically match the size

of the problem being solved and the topology of the computing resources allocated at application

launch with the optimal size of a two-dimensional process grid defining the virtual topology of

processes in a parallel software implementation of the algorithm.

Solving ill-posed linear inverse problems using iterative algorithms is extremely important

for many applied problems in science and technology, while at the same time allowing us to

demonstrate the basic ideas of supercomputing co-design [2]. Therefore, it has been chosen as

a significant reference problem requiring high-performance computing facilities that test the

approaches, methods, tools, techniques and recommendations implemented by the authors of

the project to develop the fundamentals of supercomputing co-design based on the descriptions

of algorithms in the AlgoWiki Open Encyclopedia of Parallel Algorithmic Features [11].

In connection with the above, the structure of this work will be as follows. Section 1 describes

an approach to evaluating the parallelization efficiency of an algorithm for solving a problem of

type (1) with fixed dimensions using the allocated resources of a supercomputer system. Section 2

presents a technique for matching the size of the Cartesian virtual topology of processes with the

size of the problem being solved, the selected algorithm, and the allocated computing resources

in the form of a practice-oriented algorithm. Section 3 demonstrates some of the results of

numerical experiments. Section 4 discusses some of the features of the proposed methodology.

1. An Approach to Evaluating the Parallelization Efficiency

of an Algorithm within the Framework of the Used

Supercomputer System

First, subsection 1.1 will describe the proposed structure for storing problem data in the

distributed address space of computing processes. Taking into account the specifics of the prob-

lem being solved, the data distribution will be used in accordance with the Cartesian virtual

topology of two-dimensional grid type processes. Then, in subsections 1.2–1.5, estimates of the

total running time of computational operations that allow for parallel implementation will be

presented. Finally, subsection 1.6 will provide a formula for calculating the parallelization effi-

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

18 Supercomputing Frontiers and Innovations



Figure 1. An example of the distribution of data across nine computational processes
that form a two-dimensional grid 3× 3

ciency of the proposed software implementation of the algorithm under consideration for solving

the problem (1), depending on the size of the selected virtual process topology. MPI [1] tech-

nology is assumed to be a parallel programming technology for software implementations of the

studied algorithms on a computer with distributed memory.

1.1. Distribution of Data by Processes Involved in Calculations

It is assumed that all task data is distributed over the address space of n computing processes

involved in the calculations as follows.

Each computing process has its own identifier/number rank ∈ 0, . . . , n− 1. The matrix A

of dimensions M ×N is divided among these processes in two dimensions (see Fig. 1) for blocks

Apart(rank) of sizes Mpart(k) ×Npart(l).

It is assumed that the processes form a two-dimensional process grid of size n1 × n2 (with

n1 · n2 = n). Therefore, the process number rank is associated with the indexes k and l, which

determine the coordinates of the process in the two-dimensional process grid as follows:

k =

⌊
rank

n2

⌋
, l = rank−

⌊
rank

n2

⌋
· n2.

Or, if it is necessary to recalculate rank by k and l:

rank = k · n2 + l.

We also note that
n1−1∑

k=0

Mpart(k) = M,

n2−1∑

l=0

Npart(l) = N.

The vector x is divided into n2 parts xpart(l), l = 0, n2 − 1, of sizes Npart(l). In this case, the

part xpart(l) for a fixed index l is stored on all processes in the column of the process grid with

index l (see Fig. 1), that is, on processes with the coordinate (·, l) in a two-dimensional process

grid.

The vector b is divided into n1 parts bpart(k), k = 0, n1 − 1, of sizes Mpart(k). In this case,

the part bpart(k) for a fixed index k is stored on all processes in the row of the process grid with

index k (see Fig. 1), that is, on processes with the coordinate (k, ·) in a two-dimensional process

grid.

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 19



Figure 2. A parallel algorithm for matrix-vector multiplication in the case of two-dimensional
matrix partition into blocks. The figure shows the case of data distribution over nine

computing processes that form a two-dimensional grid 3× 3

Thus, it is assumed that each computing process contains one of the blocks Apart(·) of the

matrix A, as well as one of the parts xpart(·) and bpart(·) of the vectors x and b, respectively.

1.2. Estimation of the Implementation Time of a Parallel Matrix-Vector

Multiplication Algorithm in the Case of Two-Dimensional Matrix

Partition Into Blocks

With the formulated method of storing data on computational processes, the result of mul-

tiplying the matrix A of size M × N by the vector x of size N will be a vector (Ax), which

will be distributed over various computational processes in parts (Ax)part(·). At the same time,

the distribution structure of this vector for various processes should correspond to the distribu-

tion structure of the vector b (see Fig. 1). Part of the vector (Ax) can be calculated using the

following formula:

(Ax)part(k) =

n2−1∑

l=0

Apart(k·n2+l)
xpart(l), k = 0, . . . , n1 − 1. (2)

An example explaining this formula is provided in Fig. 2.

Each process involved in the calculations can compute the term Apart(k·n2+l)
xpart(l) for its

pair of values (k, l), independently of similar calculations performed by other processes. That

is, the terms in the formula (2) can be calculated in parallel. Then the terms located on the

processes of the row of the process grid with index k should be summed up, and the result – vector

(Ax)part(k) – should be placed on all processes of this row of the process grid. The organization of

the interaction of processes entails overhead costs for receiving/transmitting messages containing

the results of intermediate calculations through the physical communication environment of a

multiprocessor computing system.

Let us estimate the total running time of this parallel algorithm, taking into account the

overhead costs of organizing the interaction of computing processes.

First, we note that the running time of the sequential implementation of the operation of

multiplying the matrix A of size M×N by the vector x of size N (totaling M ·(2N−1) arithmetic

operations) can be evaluated using the formula

TAx1 = C1 ·M(2N − 1). (3)

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

20 Supercomputing Frontiers and Innovations



Hereafter, the superscript T denotes the operation being evaluated (in this case, the operation

of multiplying a matrix by a vector – Ax), and the subscript denotes the number of processes

used for calculation (in this sequential case – 1); C1 is the average speed of performing one

arithmetic operation (determined by the architecture of the processor and the computing node

on which the computing process is performed, and is considered known or can be calculated).

At the same time, it is further assumed that the number of processor cycles required for adding

numbers and multiplying them is equal.

If n computing nodes are used for parallel computing within a processor grid of size n1×n2,
the time spent by each computing node on computation can be estimated as

C1(n1, n2) ·
M

n1

(
2
N

n2
− 1
)
≡ C1(n1, n2) ·

M(2N − n2)
n

.

Note. Hereafter, it is assumed that the difference in the sizes of Mpart(k) and Npart(l) data

blocks on various processes can be ignored and considered equal to Mpart(k) ≡ M/n1 and

Npart(l) ≡ N/n2 respectively. This is due to the fact that usually the maximum difference in the

size of data blocks distributed across different processes is no more than 1, which means that in

the case of solving “large” problems, this difference can be ignored.

At the same time, it is specifically noted that the coefficient C1 depends on the sizes n1 and

n2 of the process grid, since these sizes determine the sizes of the blocks (Ax)part(·) of matrix A

that are involved in calculations. Given that in popular programming languages used for parallel

programming (for example, C/C++ and Python), matrices (i.e., two-dimensional arrays) are

stored line-by-line in memory, the sizes of these matrices will determine the access time to their

elements during the software implementation of matrix-vector multiplication.

The overhead time for organizing the interaction of each group of n2 processes included

in each of the rows of the process grid can be estimated as follows. First, the amount of data

transmitted by each process is proportional to
M

n1
(the proportionality coefficient is determined

by the type of data transmitted). Secondly, the number of data transfer operations with optimal

organization of transfers is proportional to log2 n2 (the proportionality coefficient is determined

by the implementation of the corresponding function of interaction of computational processes

within the framework of the parallel programming technology used — for example, the function

of collective interaction of processes Allreduce() from MPI). Thus, the overhead time will be

proportional to
M

n1
· log2 n2, where the proportionality coefficient will take into account both the

already mentioned proportionality coefficients and the technical features of the communication

network, as well as the implemented option for distributing processes across computing nodes.

Thus, the total running time of the corresponding parallel algorithm can be estimated using

the formula

TAxn = C1(n1, n2) ·
M(2N − n2)

n
+ C2(n1, n2) ·

M

n1
· log2 n2. (4)

Here, the coefficient C2 is considered known and 1) depends on the speed of transmission of

a unit of information over a communication network, which, in turn, depends on the relative

location of computing nodes, in particular, as determined by the sizes n1 and n2 of the process

grid, as well as on the implemented option for distributing processes across computing nodes;

2) depends on the implementation of the function of collective interaction of processes.

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 21



Figure 3. A parallel algorithm for multiplying a transposed matrix by a vector in the case of
a two-dimensional matrix partition into blocks. The figure shows the case of data distribution
across nine computing processes that form a two-dimensional 3× 3 grid. Taking into account
the transposition, it is assumed that the rows of the presented process grid are the columns of
the original process grid; similarly, the columns of the presented process grid are the rows of

the original process grid

The estimates (3) and (4) will be used in subsection 1.6 to construct a formula for evaluating

the effectiveness of the parallelization of the software implementation of the algorithm for solving

the problem (1).

1.3. Estimation of the Implementation Time of a Parallel Algorithm

for Multiplying a Transposed Matrix by a Vector in the Case

of a Two-Dimensional Matrix Partition Into Blocks

The result of multiplying the transposed matrix AT of size N ×M by the vector b of size M

will be a vector (AT b), which will be distributed over various computational processes in parts

(ATx)part(·). At the same time, the distribution structure of this vector for various processes

should correspond to the distribution structure of the vector x (see Fig. 1). Part of the vector

(AT b) can be calculated using the following formula:

(AT b)part(l) =

n1−1∑

k=0

ATpart(k·n2+l)
bpart(k), l = 0, . . . , n2 − 1. (5)

An example explaining this formula is provided in Fig. 3.

Each process involved in the calculations can compute the term ATpart(k·n2+l)
bpart(k) for its

pair of values (k, l), independently of the similar calculations performed by other processes.

That is, the terms in the formula (5) can be calculated in parallel. Then the corresponding

terms located on the processes of the column of the process grid with index l should be summed

up, and the result – vector (AT b)part(l) – should be placed on all processes of this column of

the process grid. The organization of the interaction of processes entails overhead costs for

receiving and transmitting messages containing the results of intermediate calculations through

the physical communication environment of a multiprocessor computing system.

Similarly to the method described in the previous subsection, it is possible to obtain an

estimate of the time required for the sequential implementation of this operation.

TA
Tx

1 = C̃1 ·N(2M − 1)

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

22 Supercomputing Frontiers and Innovations



and parallel:

TA
Tx

n = C̃1(n1, n2) ·
N · (2M − n1)

n
+ C2(n1, n2) ·

N

n2
· log2 n1.

The fundamental difference between these formulas and the formulas presented in the pre-

vious subsection is that the coefficient C1 has been replaced by C̃1. This is due to the fact that

the implementation of the multiplication of a transposed matrix by a vector involves sequential

access to the elements of the rows of this matrix; however, the transposed matrix is stored in

memory by columns. In order to save memory when solving “large” problems, the preliminary

transposition of the matrix is not constructive, as it requires additional memory space that may

not be available. A different order of access to the elements of the matrix leads to the fact that

the coefficient C̃1 may differ significantly from the coefficient C1.

1.4. Estimation of the Implementation Time of the Parallel Scalar Product

Algorithm of Vectors

Since the size of the vectors in sequential algorithms for solving the problem (1) is either M

or N , we will use characteristic vectors of these sizes. Therefore, if the vector x is mentioned,

its size will be assumed to be N , and if the vector b is mentioned, its size will be assumed to be

M . It is assumed that these vectors are distributed over computational processes according to

the scheme shown in Fig. 1.

The result of the scalar product of vectors x(1) and x(2) of size N will be the value (x(1), x(2)).

It can be calculated using the following formula:

(x(1), x(2)) =

n2−1∑

l=0

(
x
(1)
part(l)

, x
(2)
part(l)

)
. (6)

Each process involved in the calculations can compute the term
(
x
(1)
part(l)

, x
(2)
part(l)

)
for its

value l, which is independent of similar calculations performed by other processes. That is, the

terms in the formula (6) can be calculated in parallel. Then the corresponding terms located on

the processes of the row of the process grid should be summed up, and the result – the number

(x(1), x(2)) – must be placed on all processes in this row of the process grid. The organization of

the interaction of processes entails overhead costs for receiving/transmitting messages containing

the results of intermediate calculations through the physical communication environment of a

multiprocessor computing system.

The running time of a sequential scalar product operation of vectors can be estimated using

the formula

T
(x(1), x(2))
1 = C1 · (2N − 1),

and the running time of the corresponding parallel algorithm (taking into account overhead

costs) can be estimated using the formula

T (x(1), x(2))
n = C1(n1, n2) ·

2N − n2
n2

+ C2(n1, n2) · log2 n2.

It is necessary to note the following two features of the algorithm. First, the processes of

each row of the process grid perform the same calculations as the processes of the other rows of

the process grid. Thus, scalar product calculations are not parallelized over all n computational

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 23



processes, but only over n2 processes. This approach is constructive, since distributing the vectors

x(1) and x(2) across all n processes (and not just the n2 processes of the row of the process grid),

and then collecting data from all of them, will require additional overhead proportional to

log2 n, which almost always exceeds the gain in reducing the time of direct calculations when

solving “large” problems (C1(2N − 1)/n instead of C1(2N − 1)/n2 in the considered version of

the parallel algorithm). Secondly, it assumes that the parts of the vector are well localized in

the address space of each process. In this regard, the same estimate can be used for the average

execution speed of one arithmetic operation C1 as in subsection 1.2.

Similarly, the result of the scalar product of vectors b(1) and b(2) of size M will be the value

(b(1), b(2)). It can be calculated using the following formula:

(b(1), b(2)) =

n1−1∑

k=0

(
b
(1)
part(k)

, b
(2)
part(k)

)
. (7)

Each process involved in the calculations can calculate the term
(
b
(1)
part(k)

, b
(2)
part(k)

)
for its

value k is independent of similar calculations performed by other processes. That is, the terms

in the formula (7) can be calculated in parallel. Then the corresponding terms located on the

processes of the column of the process grid should be summed up, and the result – the number

(b(1), b(2)) – must be placed on all processes in this column of the process grid. The organization of

the interaction of processes entails overhead costs for receiving/transmitting messages containing

the results of intermediate calculations through the physical communication environment of a

multiprocessor computing system.

The running time of a sequential scalar product operation of vectors can be estimated using

the formula

T
(b(1), b(2))
1 = C1 · (2M − 1),

and the running time of the implementation of the corresponding parallel algorithm (taking into

account overhead costs) can be estimated using the formula

T (b(1), b(2))
n = C1(n1, n2) ·

2M − n1
n1

+ C2(n1, n2) · log2 n1.

1.5. Estimation of the Implementation Time of a Parallel Algorithm

for Adding/subtracting Vectors or Multiplying/dividing a Vector

by a Number

When distributing vectors across computational processes according to the scheme shown

in Fig. 1, in the case of adding two vectors x(1) and x(2) of size N , the following calculations

will be performed on each process:

(x(1) + x(2))part(l) = x
(1)
part(l)

+ x
(2)
part(l)

.

There will be no need to exchange messages between computational processes, since the storage

structure of the resulting vector corresponds to that used in the parallel algorithms of linear

algebra operations described earlier.

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

24 Supercomputing Frontiers and Innovations



Therefore, the time of successive operations of adding vectors of the appropriate size can be

estimated using the formulas

T x
(1)+x(2)

1 = C1 ·N,
T
(b(1)+ b(2))
1 = C1 ·M,

and the operating time of the implementation of the corresponding parallel algorithms can be

estimated using the formulas

T x
(1)+x(2)

n = C1 ·
N

n2
,

T (b(1)+ b(2))
n = C1 ·

M

n1
.

Exactly the same estimates are true for operations of multiplying the corresponding vectors

by a number. Therefore, the formulas for estimating the values of T c·x and T c·b are not written

out separately and are considered equivalent to those described above.

At the same time, similarly to the previous subsection (subsection 1.4), it should be noted

that the processes of each row (column) of the process grid perform the same calculations as

the processes of the other rows (columns) of the process grid. Thus, the corresponding calcula-

tions are not parallelized over all n computing processes, but only over n2 (n1) processes. The

motivation for this approach is similar to that given in subsection 1.4.

1.6. Evaluation of the Parallelization Efficiency of a Parallel Algorithm

The parallelization efficiency of the iterative algorithm for solving the problem (1) can be

estimated by the parallelization efficiency of one iteration using the following formula:

En
(
n1, n2,~k, C1, C̃1, C2,M,N

)
=

∑

op∈
{
Ax; AT b; (x(1), x(2)); (b(1), b(2)); x(1)+x(2); b(1)+b(2)

} k
opT op

1

∑

op∈
{
Ax; AT b; (x(1), x(2)); (b(1), b(2)); x(1)+x(2); b(1)+b(2)

} kopT
op
n n

. (8)

Here:

• n1, n2 are determined by the selected Cartesian topology of parallel processes of the two-

dimensional grid type;

• M , N are determined by the size of the problem being solved;

• ~k =
{
kAx; kA

T b; k(x
(1), x(2)); k(b

(1), b(2)); kx
(1)+x(2)

; kb
(1)+b(2)

}
is determined by the iterative

algorithm for solving the problem (1) and contains the values of the number of corre-

sponding operations (while calculating the values of kx
(1)+x(2)

and kb
(1)+b(2) , the number of

multiplications/divisions of vectors of the appropriate size by a number is also taken into

account);

• C1, C̃1 are determined by the architecture of the processor and computing node;

• C2 is determined by the communication network, the implemented option for distributing

processes across computing nodes, and the selected implementation of the operation for

collective interaction of processes of the Allreduce() type (at the same time, as mentioned

earlier, this parameter also depends on the size (M and N) of the problem and the selected

size (n1 and n2) of virtual process topologies – they determine the volume and number of

messages transmitted over the communication network);

• T op
1 and T op

n are defined by formulas written out in subsections 1.2–1.5.

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 25



Example 1. For the algorithm 1, the expression (8) for the main iterations (s > 2) is

written as

En =
2 · TAx1 + 1 · TAT b

1 + 2 · T (x(1), x(2))
1 + 1 · T (b(1), b(2))

1 + 6 · T x(1)+x(2)

1 + 1 · T b(1)+b(2)1(
2 · TAxn + 1 · TAT b

n + 2 · T (x(1), x(2))
n + 1 · T (b(1), b(2))

n + 6 · T x(1)+x(2)

n + 1 · T b(1)+b(2)n

)
n
,

Example 2. For the algorithm 2, the expression (8) for the main iterations (s > 2) is

written as

En =
2 · TAx1 + 1 · TAT b

1 + 3 · T x(1)+x(2)

1 + 2 · T b(1)+b(2)1(
2 · TAxn + 1 · TAT b

n + 3 · T x(1)+x(2)

n + 2 · T b(1)+b(2)n

)
n
.

2. Choosing the Optimal Size of the Virtual Process Topology

The problem of choosing the optimal sizes n1 and n2 of the virtual process topology can

be set as follows: it is necessary to determine the values of n1 and n2 at which the paralleliza-

tion efficiency of the selected iterative algorithm for solving the problem (1) on the allocated

resources of the supercomputer system will be maximum. Such a statement of the problem can

be formalized in the following form:

(n1, n2) = argmax
n1,n2

n1·n2=n

En(n1, n2;~k,C1, C̃1, C2,M,N). (9)

Here, the first two arguments of the function En are specially separated from the remaining

arguments by a semicolon to emphasize that these arguments are used for maximization, while

the remaining arguments are known parameters.

Therefore, for the practical application of this formula, two questions remain to be solved:

1. How can someone take into account the condition n1 · n2 = n? Obviously, on the one hand,

the formal mathematical solution to the problem (9) in many cases will be non-integers, and

on the other hand, the prime number n cannot be decomposed into factors, each of which

is different from 1.

2. How does someone define the coefficients C1, C̃1, C2? Taking into account the comments

made earlier regarding these constants, it is obvious that the formal evaluation of them can

be extremely difficult. For example, we repeat that the coefficient C2 depends 1) on the

technical features of the communication network, 2) on the sizes n1 and n2 of the selected

virtual process topology, 3) on how well this virtual topology was mapped to the computing

resources allocated at the start of the program, 4) on the implementation option of the

function of collective interaction of processes in the package used for parallel programming.

The first issue can be solved as follows. It is necessary to impose a convenient limit on the

number of computing processes n. Such a natural limitation for many multiprocessor systems

is n = 2k, where k is an integer. Thus, in the algorithm formulated below for determining the

optimal values of n1 and n2, we will assume that n is a power of two, and the values of n1 and

n2 must be found as integers.

The second issue can be solved as follows. On the allocated computing resources, before

starting the main calculations, it is possible to run a preliminary test using matrices and vectors

of characteristic sizes M , N , which will determine C1, C̃1 and C2. That is, the corresponding

coefficients will be determined automatically for the features of the allocated resources and

the selected compiler options that determine the algorithms for implementing the function of

collective interaction of processes. Moreover, the corresponding test runs should be made for

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

26 Supercomputing Frontiers and Innovations



different values of n1 and n2 in order to determine the dependencies of C1(n1, n2), C̃1(n1, n2)

and C2(n1, n2).

Thus, an algorithm is proposed for determining the optimal values n1 and n2 of the virtual

process topology, designed as Algorithm 3.

3. Numerical Experiments

Computational experiments were conducted on the “Lomonosov-2” supercomputer [12] and

were constructed as follows. The sizes M and N , which determine the computational complexity

of the problem (1), were chosen in such a way that, on the one hand, the matrix A of the

system (1) had significant size, and on the other hand, a part Apart(·) of this matrix, which

each individual computing process is responsible for storing, fit into the RAM of the computing

node. For example, for pairs (M,N) ∈ {(105, 105), (106, 104), (107, 103)}, when using the data

type float64 (“double precision”) the matrix A requires 298 GB for its storage in memory

(while Apart(·) requires 1.2 GB when using 64 computing nodes), and for pairs of (M,N) ∈
{(5 · 105, 5 · 105), (5 · 106, 5 · 104), (5 · 107, 5 · 103)} – 1 863 GB (1.8 Tb) (Apart(·) – 29 GB when

using the same number of computing nodes).

At the same time, computational experiments were conducted for a series of these pairs

of (M,N) in order to demonstrate that problems of the same computational complexity can

correspond to completely different values of n1 and n2, which determine the optimal virtual

topology of processes for parallel computing.

The MPI parallel programming technology was used for the software implementation of the

Algorithm 3. The program code implementing the pseudocode from Algorithm 3 is not provided

in this article, since the pseudocode is designed in such a way that the corresponding software

implementation can be recovered from it in an unambiguous way (in the sense of choosing

software solutions that may affect the parallelization efficiency). It should be noted that for the

software implementation of the function of collective interaction of processes Allreduce(), its

blocking version was used.

The computation results are shown in Fig. 4. It is perfectly clear that the values of n1 and

n2, which determine the optimal virtual topology for parallel computing, depend both on the

computational complexity of the problem and on the relative sizes of M and N . In particular,

the intuitive facts are experimentally confirmed that, for example, for “elongated matrices” the

optimal “elongated process topology” is obtained, and the closer the matrix is to the “square”

one, the more optimal it is to use the “square process topology” for calculations.

However, there are some non-obvious results. For example, there may be situations where,

if the virtual topology is chosen incorrectly, the parallelization efficiency may be close to zero.

Although such a result is obtained for extreme cases (for example, M = 5 · 107, N = 5 · 103, i.e.,

the number of equations exceeds the number of unknowns by four orders of magnitude), which

are extremely rare in solving applied problems, it is necessary to keep in mind the possibility of

such effects in practice. It is also necessary to note the effect of a sharp increase in parallelization

efficiency for a limiting process grid of size n1 × n2 ≡ 1× 64 (noted in Fig. 4 by dotted line).

Remark 1. If someone uses a variant of the function Allreduce() implemented using per-

sistent interaction requests from the MPI-4 standard, the results will obviously change. This is

due to the following fact. Functionally (in the sense of the result), the operation of the func-

tion Allreduce() is equivalent to the sequence of launching functions Allreduce init() “+”

start() “+” wait() from the standard MPI-4. Given that the function Allreduce() can be im-

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 27



Algorithm 3: The pseudocode of the algorithm for determining the optimal size of the

virtual topology of processes using the MPI parallel programming technology.

Data: N , M , ~k, n – the power of two

Result: n1, n2

comm← MPI.COMM WORLD

n1 ← n; n2 ← 1

while n1 >= 1 and n1 <= n do
comm cart← comm.Create cart(dims=(n1, n2), periods=True, reorder=True)

rank cart← comm cart.Get rank()

comm col← comm cart.Split(rank cart % n2, rank cart)

comm row← comm cart.Split(rank cart // n2, rank cart)

// formation of arbitrary matrices of characteristic dimensions

Apart ← random(M/n1, N/n2); xpart ← random(N/n2); bpart ← random(M/n1)

// estimation of the value of the coefficient C1

time start← MPI.Wtime()

(Ax)part ← Apart · xpart
time elapsed← MPI.Wtime()− time start

C1 ←
time elapsed · n
M · (2N − n2)

comm cart.Allreduce(C1/n→ C1, op=MPI.SUM) // averaging C1

// estimation of the value of the coefficient C̃1

time start← MPI.Wtime()

(AT b)part ← ATpart · bpart
time elapsed← MPI.Wtime()− time start

C̃1 ←
time elapsed · n
N · (2M − n1)

comm cart.Allreduce(C̃1/n→ C̃1, op=MPI.SUM) // averaging C̃1

// estimation of the value of the coefficient C2

comm cart.Barrier()

time start← MPI.Wtime()

comm col.Allreduce((AT b)part → xpart, op=MPI.SUM)

time elapsed← MPI.Wtime()− time start

if n1 = 1 then C2temp1
← 0 else C2temp1

← time elapsed

N/n2 · log2 n1
comm cart.Barrier()

time start← MPI.Wtime()

comm row.Allreduce((Ax)part → bpart, op=MPI.SUM)

time elapsed← MPI.Wtime()− time start

if n2 = 1 then C2temp2
← 0 else C2temp2

← time elapsed

M/n1 · log2 n2
if n1 = 1 then C2temp2

← 0; if n2 = 1 then C2temp1
← 0

if n1 6= 1 and n2 6= 1 then C2 ← (C2temp1
+ C2temp2

)/2

comm cart.Allreduce(C2/n→ C2, op=MPI.SUM)

// parallelization efficiency estimation

E(n1, n2)← En(n1, n2;~k, C1, C̃1, C2,M,N)

n1 ← n1/2; n2 ← n2 · 2
end

(n1, n2)← argmaxE(n1, n2)

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

28 Supercomputing Frontiers and Innovations



Figure 4. Graphs of the dependence of the parallelization efficiency of Algorithm 1 for
matrices of different dimensions, but with the same number of elements, depending on the

selected virtual topology when computing on a fixed number of nodes of the “Lomonosov-2”
supercomputer [12]

plemented over the same areas of the address space, the same Allreduce init() operation can

be performed outside the while loop. This can significantly reduce the overhead of receiving and

transmitting messages containing the results of intermediate calculations (for more information,

see [6]). As a result, the estimate of C2 may decrease significantly.

Remark 2. It is obvious that the method proposed in the paper for calculating the paral-

lelization efficiency in determining the optimal virtual topology is an estimated one. Therefore,

the question arises: how much does the actual parallelization efficiency differ from the estimated

one in typical tasks? To answer this question, the following experiment was conducted. An

example was chosen for (M,N) = (8 ·104, 8 ·104). In this case, the matrix A will require 47.8 GB

for its storage, as a result of which it will completely fit into the RAM of one computing node

(64 GB) of the “Lomonosov-2” supercomputer, which is required to determine the operating

time T1 of the sequential version of the Algorithm 1. For this matrix A and some model right-

hand side bδ of the system (1), a parallel implementation of the Algorithm 1 was launched in two

versions – using the functions of collective communication of MPI-processes within the MPI-3

standard and with using the functions of collective communication of MPI-processes within the

MPI-4 standard (see previous remark). At the same time, the number of iterations in the Al-

gorithm 1 was forcibly limited to 300 iterations in order to obtain a reasonable counting time

for the sequential implementation of the Algorithm T1 = 864 seconds, which is a fairly repre-

sentative counting time, but at the same time slightly less than the upper limit of 15 minutes,

which limits the counting time on the test queue of the “Lomonosov-2” supercomputer. For this

example, as for similar examples with a square matrix of higher dimensions, the optimal topol-

ogy is a “square” one. Therefore, parallel implementations of the algorithm were launched on

n ∈ {4, 9, 16, 25, 36, 49, 64} MPI-processes so that n1 ≡ n2 ≡
√
n. The running time Tn for each

run was detected, then the speedup of calculations was calculated using the formula Sn = T1/Tn

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 29



Figure 5. Graphs of the dependence of the counting time, speedup, and parallelization
efficiency of the Algorithm 1 depending on the selected number of computing nodes within the

framework of the “quadratic process topology”. The graphs are typical for a typical launch,
rather than the average values for a series of experiments. On the efficiency graph, the points
“estimated” are marked separately, the values of which are calculated using the Algorithm 3

and the parallelization efficiency using the formula En = Sn/n. Based on these data, work sched-

ules, speedup, and efficiency were constructed, as shown in Fig. 5. The key graph here is the

graph of the real parallelization efficiency, which demonstrates certain differences between the

real parallelization efficiency and the estimated one. However, these differences look insignificant

from a practical point of view, which confirms the applicability of the proposed Algorithm 3.

4. Discussion

1. Large-scale autotuning. The ideas for adjusting the algorithm parameters to the charac-

teristics of the target computing system, used in the development of the proposed method-

ology, are consonant with the ideas of autotuning (see, for example, the works [8, 9, 13–15]).

However, in these works, the ideas considered mainly relate to “small-scale autotuning” –

features of adjusting algorithms to the technical capabilities of “small” computing systems

(a multicore processor or a graphics processing unit). The ideas proposed in our work relate

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

30 Supercomputing Frontiers and Innovations



to adjusting the algorithm parameters to the characteristics of a distributed memory super-

computer and have not been previously considered in detail in publicly available sources.

2. The invariance of the proposed algorithm with respect to the properties of the

computing system used. Such important characteristics of a communication network as

latency, data transfer rate, topology of the communication network, and distribution of pro-

cesses across computing nodes are important in the a priori estimation of the coefficient C2.

Also, many technical features of the computing node must be taken into account when a

priori estimating the coefficients C1 and C̃1. In fact, the paper proposes a posteriori method

for determining these constants based on the results of some preliminary tests, which auto-

matically sets in them the corresponding characteristics of the used communication network

and computing nodes. Thus, the proposed algorithm for determining the optimal values

of the virtual topology of processes is relevant for any hardware, any parallel program-

ming technology, any compilation options, and any features of the system and application

software.

3. Possible improvements to the proposed algorithm. In the derivation of all formulas,

the assumption was made that the computational complexity of all arithmetic operations

is equivalent. If desired, the reader can clarify the output of the corresponding formulas,

taking into account that, for example, addition of two numbers requires 1–3 CPU cycles,

multiplication – 1–7 cycles, and division – 10–40 cycles. The values of the coefficients C1

and C̃1 on a processor-homogeneous computing system should not change much from launch

to launch; therefore, they could potentially be calculated once before the start of all exper-

iments, saved and used in the future. However, the distribution of processes across the

computing nodes of a supercomputer can vary from launch to launch, even on the same

set of computing nodes. Therefore, the coefficient C2 must be calculated before each run of

the computational algorithm implementation. The values of the coefficients C1 and C̃1 are

averaged over all application processes. Considering that it is supposed to use a computer

system that is homogeneous in terms of processors, this should not be a serious limitation

and simplification. The coefficient C2 is calculated as the average value for Allreduce()

operations performed across rows and columns of the process grid. For greater accuracy of

the algorithm, one can do without averaging and use two separate coefficients. Next, the

value of the coefficient C2 is averaged over all application processes, and the impact of this

averaging may be significant. Further experiments should demonstrate how significant this

factor is in practice and needs to be taken into account in order to obtain more accurate

results.

4. Theoretical assumptions. Using only powers of two for the values of n1 and n2 does not

represent a serious limitation of generality. This assumption is often used in practice when

evaluating various dynamic characteristics of software implementations.

5. Applicability of the algorithm. The algorithm described in this article is designed to

solve linear algebra problems using a two-dimensional Cartesian topology of processes, but

it can be easily adapted to solve other problems using other topologies.

6. Features of software implementation of algorithms. Some statements made in sub-

sections 1.1–1.5 when estimating the implementation time of parallel algorithms using basic

linear algebra operations may be incomprehensible to readers who have not previously im-

plemented parallel versions of iterative algorithms for solving systems of linear algebraic

equations. For example, the statement may not be obvious (see subsection 1.5), that with

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 31



the chosen data storage structure, when adding vectors, there will be no need to exchange

messages between different computing processes. Therefore, we provide a link to the work [6],

which contains an example of a software implementation of an iterative algorithm from the

class of algorithms under consideration (including using the functions of collective interac-

tion of processes from various MPI standards: MPI-3 and MPI-4).

7. The case of a heterogeneous computing system. The approach discussed in this article

is applicable without additional modifications for computing systems that are homogeneous

in terms of core computing – whether they are central processing units (CPUs) or graphics

accelerators (GPUs), while the system may be heterogeneous over a communication network.

If a supercomputer co-design is required for a more complex heterogeneous system, then a

more complex approach beyond the scope of this article may be required to distribute basic

computing operations across heterogeneous computers.

Conclusion

The paper demonstrates the fundamental possibility of using the ideas of supercomputing

co-design to automatically match the optimal topology of calculations with the features of the

problem being solved, the features of the supercomputer system used and parallel programming

technology. The proposed methodology for algorithms that are in demand in solving applied

problems can increase the efficiency of using supercomputer systems by users.

Acknowledgements

The paper was published with the financial support of the Russian Science Foundation

(project 25-11-00181, https://rscf.ru/en/project/25-11-00181/). The research is carried

out using the equipment of the shared research facilities of HPC computing resources at

Lomonosov Moscow State University [12].

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Antonov, A.S.: MPI and OpenMP Parallel Programming Technologies: Textbook. Moscow

University Press (2012)

2. Antonov, A.S., Maier, R.V., Nikitenko, D.A., Voevodin, V.V.: An approach to solving

the problem of supercomputer co-design. Lobachevskii J Math. 45(7), 2965–2973 (2024).

https://doi.org/10.1134/S1995080224603680

3. Kalitkin, N.N., Kuzmina, L.V.: Improved form of the conjugate gradient method. Mathe-

matical Models and Computer Simulations 4(1), 68–81 (2012). https://doi.org/10.1134/

S2070048212010061

4. Kalitkin, N.N., Kuzmina, L.V.: Improved forms of iterative methods for systems of linear

algebraic equations. Doklady Mathematics 88(1), 489–494 (2013). https://doi.org/10.

1134/S1064562413040133

Supercomputing Co-Design for Solving Ill-Posed Linear Inverse Problems Using Iterative...

32 Supercomputing Frontiers and Innovations

https://rscf.ru/en/project/25-11-00181/
https://doi.org/10.1134/S1995080224603680
https://doi.org/10.1134/S2070048212010061
https://doi.org/10.1134/S2070048212010061
https://doi.org/10.1134/S1064562413040133
https://doi.org/10.1134/S1064562413040133


5. Kindermann, S.: Optimal-order convergence of Nesterov acceleration for linear ill-posed

problems*. Inverse Problems 37(6), 065002 (2021). https://doi.org/10.1088/1361-6420/

abf5bc

6. Lukyanenko, D.: Parallel algorithm for solving overdetermined systems of linear equations,

taking into account round-off errors. Algorithms 16(5), 242 (2023). https://doi.org/10.

3390/a16050242

7. Neubauer, A.: On Nesterov acceleration for Landweber iteration of linear ill-posed problems.

Journal of Inverse and Ill-posed Problems 25(3), 381–390 (2017). https://doi.org/10.

1515/jiip-2016-0060

8. Park, J., Shin, Y., Lee, J., et al.: HYPERF: End-to-End Autotuning Framework for

High-Performance Computing. Proceedings of the 34th International Symposium on High-

Performance Parallel and Distributed Computing (20), 1–14 (2025). https://doi.org/10.

1145/3731545.3731588

9. Petrovič, F., Střelák, D., Hozzová, J., et al.: A benchmark set of highly-efficient CUDA and

OpenCL kernels and its dynamic autotuning with Kernel Tuning Toolkit. Future Generation

Computer Systems 108, 161–177 (2020). https://doi.org/10.1016/j.future.2020.02.

069

10. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical methods for

the solution of ill-posed problems. Dordrecht: Kluwer Academic Publishers (1995)

11. Voevodin, V., Antonov, A., Dongarra, J.: AlgoWiki: an Open Encyclopedia of Parallel

Algorithmic Features. Supercomputing Frontiers and Innovations 2(1), 4–18 (2015). https:

//doi.org/10.14529/jsfi150101

12. Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large scale,

deep monitoring and fine analytics for the user community. Supercomputing Frontiers and

Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

13. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse

matrix kernels. Journal of Physics: Conference Series 16(1), 521 (2015). https://doi.

org/10.1088/1742-6596/16/1/071

14. van Werkhoven B.: Kernel Tuner: A search-optimizing GPU code auto-tuner. Future Gener-

ation Computer Systems 90, 347–358 (2019). https://doi.org/10.1016/j.future.2018.

08.004

15. Wu, X., Balaprakash, P., Kruse, M., et al.: ytopt: Autotuning scientific applications for

energy efficiency at large scales. Concurrency and Computation: Practice and Experience

37(1), e8322 (2023). https://doi.org/10.1002/cpe.8322

A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

2025, Vol. 12, No. 4 33

https://doi.org/10.1088/1361-6420/abf5bc
https://doi.org/10.1088/1361-6420/abf5bc
https://doi.org/10.3390/a16050242
https://doi.org/10.3390/a16050242
https://doi.org/10.1515/jiip-2016-0060
https://doi.org/10.1515/jiip-2016-0060
https://doi.org/10.1145/3731545.3731588
https://doi.org/10.1145/3731545.3731588
https://doi.org/10.1016/j.future.2020.02.069
https://doi.org/10.1016/j.future.2020.02.069
https://doi.org/10.14529/jsfi150101
https://doi.org/10.14529/jsfi150101
https://doi.org/10.14529/jsfi190201
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1002/cpe.8322

	A.S. Antonov, Vl.V. Voevodin, D.V. Lukyanenko

