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This work presents an automatic adjoint-model construction within the Carbon Cycle Model
Constructor (CCMC) that enables variational data assimilation (VDA) for estimating the initial
state of soil dynamic carbon models. The adjoint is generated once from the generic pool-flux rep-
resentation used in CCMC, which allows efficient gradient evaluation and iterative optimization
of the initial pool vector without constructing a model-specific adjoint. The proposed approach is
tested with two soil carbon models: SOCS (Soil Organic Carbon Saturation) and RothC (Rotham-
sted model). Data assimilation experiments are performed using long-term field observations of
soil carbon content. The entire VDA workflow, including the adjoint solver and optimization al-
gorithm, is implemented in the same Fortran code base as CCMC. CCMC+VDA implementation
is fully compatible with the MPI+OpenMP TerM land surface model and provides a reusable,
scalable foundation for variational soil-carbon data assimilation on modern supercomputers.

Keywords: data assimilation, carbon dynamic models, adjoint model, automatic differentia-
tion.

Introduction

Variational data assimilation (VDA) is a class of mathematical methods and numerical
techniques used to reduce uncertainty in the external parameters of mathematical models by
optimizing performance metrics (objective or cost function) with respect to observed data and
prior estimates. VDA relies on the adjoint-equation framework to compute the gradient of the
objective (cost) function. Among geophysical models, hydrodynamical models of the atmosphere
and the ocean have most benefited from deep integration of VDA into research and operational
systems over the last decades . Land surface models have benefited less from VDA, even
though they include many parameters and initial states that are not directly measurable. Specif-
ically, this relates to terrestrial carbon-cycle models, where soil carbon pools are rarely measured
in situ, and equation parameters are usually phenomenological, suggesting no method of field
assessment. For the carbon cycle, VDA can potentially align model parameters and states with
a variety of observations (e.g., soil carbon content, COq fluxes, sensible and latent heat fluxes,
etc.).

Over the past decade, the practical effectiveness of VDA-based modeling systems has been
demonstrated at both regional and global levels . In , the authors pro-
pose a step-by-step data assimilation system that sequentially optimizes the parameters of the
ORCHIDEE model to improve the model’s estimation of terrestrial carbon uptake using three
data streams: Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Differ-
ence Vegetation Index (NDVI) satellite observations, net ecosystem exchange (NEE) and latent
heat (LE) flux measurements from FLUXNET stations, and atmospheric COy concentrations
modeled using the general circulation model (GCM) of the Laboratoire de Météorologie Dy-
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namique (LMDz). In , the posterior parameter covariance obtained by applying a variational
method to the BETHY land surface model is used to quantify forecast errors of CO2 fluxes and
atmospheric concentrations.

In these studies, adjoint model construction relies on source-to-source automatic differen-
tiation (AD) to obtain adjoint code; the most widely used tool is TAF . An
alternative is to build the model within the YAO variational-assimilation platform, where the
model is described as a modular graph for which an adjoint is generated automatically, as in .
These approaches are tightly coupled to specific model implementations. Using TAF requires
restructuring and annotating the Fortran code to satisfy the constraints of the AD toolchain,
YAO requires rewriting the model as a component graph within its own modeling language. As
a result, adjoints must be rebuilt and revalidated for each individual model and model version.

In this work, we develop a module for automatic adjoint construction for models specified
in the Carbon Cycle Model Constructor (CCMC) to seek the initial conditions by VDA.
The constructor is a general-purpose tool for building carbon-cycle models and is intended for
integration into the INM RAS-MSU land active-layer model TerM (Terrestrial Model) . By
integrating adjoint generation into CCMC itself, we obtain a reusable, model-agnostic adjoint
solver that automatically adapts to any CCMC-defined model without rewriting model code.

The paper is organized as follows. Sectionbrieﬂy reviews the basic VDA framework to
be then applied for carbon cycle models. Next, Sectionpresents the concept of carbon cycle
model constructor (CCMC), which has been recently proposed and implemented by the authors;
introduction of the VDA algorithm to CCMC code is described. Numerical experiments for
testing the created CCMC+VDA code are performed with RothC and SOCS model, as detailed
in Section the code scalability towards larger scale problems and multicore computer systems
and distributed-memory supercomputers is discussed. The Conclusions section summarizes the
demonstrated properties of the developed CCMC+VDA code and draws prospects for future
research.

1. Variational Data Assimilation

The variational data assimilation problem can be formulated as follows @ . Let
us consider a model described by a system of differential equations:

(1)

€0 — p(C,t), te(0,T),
C(0) = Cy,

where C' is the state vector of the model (for carbon-cycle models, C typically represents a vector
of carbon pools); F' is the models dynamical operator; and Cjy is the unknown initial state to be
determined. The optimal initial state C§ is found as the solution to the following minimization
problem:

Cg = argmin J(Co), (2)

J(Cy) = % (Co . CS)T B! (Cg - Cg) 41 /0 ! [HC(t) - yObS(t)] Tt [HC(t) - yobS(t)} dt,

2
3)

where CJ is the background (prior) initial state, B and R are the covariance matrices of back-
ground and observation errors, respectively, y°* denotes the observation vector, and H is the
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corresponding observation operator, projecting the model state vector to the vector of obser-
vations. In the variational assimilation approach, the gradient of the cost function J(Cjp) is
computed by solving the adjoint problem, yielding the optimality system , , , which
can be derived, for example, via the method of Lagrange multipliers:

{ 1C0 — _[(veF(C, )] C*(t) + HTR™ (HC(t) — y°™(t)), te€ (0,T), ”

C*(T) = 0.

Ve,J = B7H(Cy—CY) — C*(0) =0. (5)

We then solve, in sequence, the forward model and the adjoint model ; their outputs are
inserted into to compute the cost-function gradient, which drives an update of Cjy using an
appropriate gradient-based optimization method. Iterations proceed until the change between
successive estimates of Cp becomes sufficiently small or until a maximal number of iterations is
exceeded.

2. Carbon Cycle Model Constructor and Data Assimilation

2.1. CCMC Concept and Implementation

The Carbon Cycle Model Constructor enables the implementation of models repre-
sentable as a system of differential equations that describe the dynamics of N, carbon pools:

N N/, N

dc; SRR :

R S) L ) (R T RO ©
j=1k=1 m=1

where Cj is the carbon content in the i-th pool (a scalar variable); NZ{ ; 1s the number of fluxes
between pools i and j; Ffj is the k-th flux between pools 7 and j; Ni”}k is the number of
multiplicative factors in the expression for the k-th flux between pools ¢ and j; f[gk() is the
m-~th single-argument function in the expression for the k-th flux between pools ¢ and j; and
w?} ;. is the argument of the m-th function, representing a biotic or abiotic driver of the process,

which can be either one of the pools or an external given variable.
ik
of standard functional dependencies (linear, exponential, Michaelis-Menten, etc.). This allows

The set of possible forms of (zpﬁk) in most carbon cycle models reduces to a number
most models to be implemented within a single code in which the model structure is specified
by a collection of standardized multiplicative factors f = f(¢). Accordingly, the constructor
provides an interface for setting the number of pools, the graph of fluxes between pools, and the
factors f[’;‘ 1. S0 that a solver for the general system @ implements the model in a such specified
configuration.

In order to implement a data assimilation system in CCMC for initial-state estimation for
any model specified in CCMC, it is necessary to set the initial guess CU, the error-covariance
matrices B and R, and the observation operator H, as well as construct the adjoint model. As can
be seen from , this requires computing partial derivatives of the models dynamics operator
with respect to the carbon pools. The next section describes how this differentiation can be
automated for models formulated within CCMC framework, i.e., those that can be specified

by @
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2.2. Automatic Construction of Adjoint Models in CCMC

CCMC solves the forward problem numerically using a first-order explicit time-stepping
scheme with a fixed time step At. The adjoint problem for the general CCMC equation @
takes the form:
do*(t) B {BF

.
n (%,(C(t),t)} C*(t)+ H'R! [HC(t) — yObS(t)} , F=(F,....,Fyn). (7)

To construct the adjoint problem , it is necessary to evaluate 2 60 , where 1,0 =1,...,Np. It
can be shown that

N, Ni, N m m
gkz Dy (1 - )af”’ggf”’k), [=1,...,N, 8)

m
m=1 [ 1 \ ik

In the numerical implementation, to avoid division by zero, we replace ﬁ with
4,k 4,k

L where ¢ is a small regularization constant. In the current CCMC programming

e (V0 )+
code, eight basic multiplicative factor functions are available: constant, linear, hyperbolic,
Michaelis—-Menthen, a step function, an exponential, and two piecewise-linear functions, which
form the extendable library of functions. By specifying, for each function, the form of its deriva-

tive with respect to C; (using a library of derivatives df /dv), i 82%”“, one can compute

and stor CI available, the adjoint problem can be

integrated in CCMC using the explicit solver used for the forward model.

2.3. Code Modifications to CCMC

To enable automatic adjoint solver construction within CCMC and to solve the data-
assimilation system for restoring the initial-state vector, the constructor code was modified
as follows:

1. For each base factor function f/™ ;5 implemented in the constructor, their derivatives with
respect to C; were added.

2. A function returning ggj using formula was added to the method that calculates the
right-hand side F;. The computed derivatives are stored over all time levels, since the adjoint
solver requires access to their full temporal history when integrating backward in time.

3. A module was added in which, after solving the forward problem, the adjoint one is solved
numerically using an explicit time scheme. The error-covariance matrices B, R, the obser-
vation operator H, and the first approximation for the optimized initial state Cg are also
specified in this module.

4. A function was added which computes the gradient of the cost function J(Cp) via .

5. The iterative adaptive gradient method Adagrad [4| was implemented to update the initial
condition Cj values according to the following formulas:

gk = Ve, J(Cok-1),
Gk = Gg—1+ gk © gk, (9)

9k
Co,k = Cﬂ,k—l -« m-

Here, ® denotes the elementwise product of vectors, and the operations of squaring, division,
and taking square roots of vectors are all taken elementwise; k is the iteration number, «
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is the learning rate, and ¢ is a small constant for numerical stability. Adagrad was chosen
because the scale of the pools can vary greatly, and dynamically recalculating the learning
step at each iteration for each pool allows this to be taken into account, thus achieving
better convergence . Figureillustrates the schematic flow of CCMC with the embedded
adjoint and optimization components.

CCMC + Adjoint-based Data Assimilation (Initial-State Estimation)

Forward model (CCMC) Adjoint & Optimization (Data Assimilation)
Init carbon model B: background R: observation H: observation CoP: background
(pools, fluxes, factor multipliers) covariance | covariance | operator | | initial state

Forward solver
Loop over:
stimet
 grid (i, j)

@ute Fi
_ No: update Cox Compute gradient
Compute aF/aC, ~.and rerun forward V)(Co)

{ Adagrad update:

Set DA components
(B, R, H, Cob)

Run adjoint model
(backward in time)

misfit
J(Col)

Gk = Gk1 + gk © gk

[Integrate state C(t)] oo R g

Write outputs [
[(NetCDF, diagnostics) }/ Conve@

Yes
Save optimal Co*
export outputs

Figure 1. Flowchart of the variational data assimilation module in the carbon cycle model

constructor

3. Numerical Experiments

The data-assimilation system for initial-state estimation within CCMC was tested for the
two carbon-soil models implemented in CCMC: SOCS (Soil Organic Carbon Saturation) and
RothC (Rothamsted model) . In both cases the optimization is performed in a low-dimensional
state space: in a single site (zero-dimensional column) the control vector Cp has dimension N,
with N, = 2 for SOCS and N,, = 4 for RothC.

3.1. SOCS Model

This model describes the dynamics of two soil-organic-matter (SOM) pools: a free (un-
protected) pool and a protected pool formed through organo-mineral interactions and physical
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occlusion within microaggregates . The model equations read:

dCl 02

—— =I—(1-7)-k-C—rkCy- (1= =) + kqCo,
c o 1)
d—;:r‘k‘Cl-(l—C—;)—kd'C%

where C is carbon in the free (unprotected) SOM pool; Cy is carbon in the protected SOM
pool; C,, is the maximum amount of organic carbon that can be protected in soil (the soils
protective capacity); I is the input of organic carbon to the soil; r is the fraction of carbon
transferred to the protected pool during decomposition of Ci; (1 — r) are respiration losses;
k is the decomposition-rate coefficient for C7; and kg4 is the rate coefficient for the transition of
carbon from Cs to C due to desorption and aggregate breakdown.

3.2. RothC Model

In CCMC, the soil component of the RothC model is implemented, with the prescribed rate
of plant litter input to the soil. The evolution of carbon stocks is described by the following
differential equations :

dC
CZPM = fapm - Fiit — Rppwm,

dC
;;PM = (1= fapm) - Fiit — Rrp™;,

(11)
dC
d]ilo = fbio - BrRRs — RB10,

dC
;{tUM = fhum - BrEs — Ruuwm,

where (g is the clay fraction (particles < 0.002 mm) in the soil; Fj; is the input of organic matter
to the soil from vegetation, crop residues, and organic fertilizers, Rg is the total respiration rate
over the four pools (Rg = ), R;, where i € {DPM,RPM, BIO, HUM}); Rpio, Raum, RrpM,
and Rppwm are the respiration rates of the microbial biomass (BIO), long lived humified (HUM),
resistant plant material (RPM), and decomposable plant material (DPM) pools, respectively;
fdpm is the litter-quality function; and fi, and fhum are partitioning coefficients that allocate
incoming organic matter to the BIO and HUM pools during mineralization.

The inert organic matter (IOM) pool is calculated from the total soil carbon at the initial
time and kept constant during the simulation:

Ciom = aq Cet, (12)

where Cio is the total soil carbon content (the sum of all pools), aqi = 0.049, aqe = 1.139 -
empirical dimensionless constants.

The terms R; are computed as
Rz’ = ksiFT(Tsoil)FS(s)Fv(U)Ci (13)

where i € {DPM, RPM, BIO, HUM}, ks, is the respiration rate per unit mass of pool i under
standard conditions [1/s]; Fr(Tyq) is the soil-temperature factor; Fs(s) is the soil-moisture
factor; and F,,(v) accounts for vegetation cover. The standard respiration rates kg; used in this
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study are
ksppm = 3.22, ksrpMm = 9.65, kspio = 2.12, ksnum = 6.43.

The IOM pool has no respiration term (ksom = 0).
The soil temperature function reflects temperature variations in the upper active soil layer

(0-30 ¢cm) and is defined as
b1

FT(TSOII) = 1 _|_ ebg/(Tsoilfbfi) ’

(14)

where Ty is the mean monthly soil temperature [K|; by = 47.9 (dimensionless), by = 106 K,
and b3 = 254.85 K are empirical parameters.

The soil moisture factor is parameterized as

1—dy-(s—50), for s > s,,
Fy(s) = { datdy - (32200, for smin < s < 5, (15)
da, for s < smin,

where s is the moisture of the upper (unfrozen) soil layer; s, is the optimal soil moisture at
which F(s) attains its maximum (i.e., equals one); and d; = 0.8, d2 = 0.2 are dimensionless
empirical coefficients, chosen so that d; + do = 1, a condition ensuring continuity of Fs. The
wilting moisture is determined experimentally:

80:%-(14—3“}),

(16)
Smin = € * Sw),
where s, is the wilting moisture, and ¢ = 1.7 is a dimensionless empirical coefficient.
The vegetation-cover factor is given by
Fy(v) =e1 +e2-(1—v), (17)

where v € [0,1] indicates the presence of vegetation cover. The dimensionless empirical coeffi-

cients e; and e are 0.6 and 0.4, respectively.

3.3. Results and Discussion

For validation of the variational data assimilation algorithm embedded into CCMC, we used
experimental time series of soil carbon content from long-term fertilization field experiments
conducted at the Donskoy Federal Agrarian Research Center (Rostov Oblast) and at DAOS-3,
the Dolgoprudny Agrochemical Experimental Station (Moscow Oblast). The external forcing
time series used in the SOCS and RothC models were compiled from the above-mentioned
field stations (soil temperature, soil moisture, organic carbon inputs, mean vegetation cover)
together with ERAD reanalysis data (clay content and wilting-point soil moisture). Both models
were integrated with the time step of one month. Their parameter values were set as follows:
r=10.45,C,, = 12,k; = 0.007, k = 7.5 for SOCS and g = 0.2, s, = 0.75,v = 0.8 for RothC.

The observation operator is H = (1,1,...,1) € R", since the measured soil carbon content
is the sum of all model pools. The observation-error covariance matrix R is diagonal. Since

2

the observations are of order 10 kg m™=, we assume an absolute measurement uncertainty of

0.1 kg m~2, and therefore set R~! = 1/0.1. The background covariance matrix B is also diagonal.
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Its diagonal entries are taken as 10% of the characteristic magnitude of each pool, assuming that
pool errors are uncorrelated and that no detailed prior covariance information is available. The
initial guess for the pool vector Cj in each model was constructed using expert-based estimates
of the typical distribution of soil carbon among pools for the corresponding soil type.

The optimization employs the Adagrad algorithm with learning rate o = 1 which was chosen
empirically as a compromise between convergence speed and stability. A total of 20 iterations
were performed for both models. The convergence of the cost function J(Cy) for the SOCS and
RothC models is shown in Fig. Figuredemonstrates that, for both SOCS and RothC, the
VDA scheme systematically reduces the cost function over the course of the Adagrad iterations
and approaches a nearly stationary value by the end of the optimization.

Cost function J(Co) over iterations (log scale) Cost function J(Cp) over iterations (log scale)

102 4 102 4

J(Co)
J(Co)
-
<

10° 4
100 4

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Iteration number Iteration number

(a) SOCS (b) RothC

Figure 2. Cost function J(Cp) over Adagrad iterations
for the SOCS (a) and RothC (b) models

F iguresandshow the simulated soil carbon stock dynamics obtained with the prior initial
conditions and with those estimated via data assimilation for the Rostov Oblast site. Blue dots
indicate observations. Tablesandcompare the prior and optimal initial conditions and report
the root-mean-square error (RMSE) of the simulated total soil carbon stocks with respect to the
observed time series at the site. In both cases the reference values are the measurements, while the
“prior” RMSE is computed from the forward model run started from the background initial state
C’g and the “posterior” RMSE from the run started from the optimized state C§. Quantitatively,
the VDA-based initialization leads to a strong reduction of the model-data misfit. For SOCS, the
RMSE decreases from 1.864 to 0.096 kg m~2 and for RothC, the RMSE decreases from 1.88 to
0.152 kg m~2. In Figs.andthe prior simulations systematically underestimate the measured
soil carbon stocks, whereas the trajectories obtained with VDA-based initial conditions closely
track the observed levels and reproduce the temporal evolution of the carbon stocks.

The established way of initializing the pools in carbon cycle models is to run the forward
model under statistically stationary external forcing (litter input) for a sufficiently long time
period until a quasi-steady-state of the pools is reached . This approach relies on long-
term reconstructions of climate, carbon inputs, and land-use history, although such records are
typically uncertain. It also presumes that soil carbon is close to equilibrium at the beginning of
the simulation, which is often not the case @ . In our method, the initial pool vector Cjy is
treated as an unknown control variable and is estimated directly from the observed soil carbon

time series using VDA. This removes the need for uncertain multi-decadal forcing and does not
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Figure 3. Soil carbon stocks at the Rostov Oblast site simulated by the SOCS model using
the prior initial conditions (blue) and initial conditions estimated via data assimilation. Blue
dots indicate observations
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Figure 4. Same as Fig.[3| but simulations are performed with RothC model

Table 1. The prior and optimal initial conditions for SOCS model, and corresponding
root-mean-square errors (RMSE)

Background — Analysis
Pool (prior) (posterior)

C1(0) 0. 0.09
C5(0) 6 8.76
RMSE 1.864 0.096

rely on the equilibrium assumption. A limitation of the presented VDA-based initialization is
that it requires a time series of soil carbon observations, whereas spin-up can be applied when
only a single measurement is available.

The developed CCMC+VDA programming code is intended for implementation into TerM
land surface model. The VDA driver, adjoint solver, and Adagrad iterations are implemented in
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Table 2. Same as Tab. but simulations are performed with RothC model

Background — Analysis
Pool (prior) (posterior)

Cppum(0) 0.01 0.2
Crpm(0) 0.1 0.32
Cp1o(0) 0.05 0.24
Cruum(0) 5. 7.13
RMSE 1.88 0.152

the same Fortran code base as CCMC and TerM. The parallel implementation of TerM uses MPI
and OpenMP. The TerM computational domain is a rectangular latitude-longitude grid that is
decomposed across MPI processes with nested OpenMP threads; each process/node computes
all grid points in its subdomain independently of the others . This decomposition is valid
because TerM solves a system of one-dimensional vertical equations in the longitude-latitude cells
with no horizontal coupling. CCMC+VDA module, including the Adagrad optimizer, follows
the same domain decomposition and performs all optimization steps locally within each grid
column, requiring no additional inter-process communication. As a result, the Adagrad-based
VDA algorithm is fully compatible with the existing MPI+OpenMP parallelization of TerM and
scales naturally from a single multicore node to multi-node supercomputers.

All numerical experiments reported in this paper were performed in a single-core mode on an
M3 Pro processor (ARM64 architecture). The code was compiled using the GNU Fortran com-
piler version 15.2.0. For this configuration, a single forward model run required approximately
0.004 s for the SOCS model and 0.006 s for the RothC model. A complete variational data
assimilation cycle, including 20 Adagrad iterations, required approximately 0.038 s for SOCS
and 0.097 s for RothC.

Conclusion

In this work, we have implemented automatic construction of an adjoint model to the model
specified in the carbon cycle model constructor (CCMC), and made the necessary modifications
to the constructor code. Based on that, we have also built a solution to the system of variational
data assimilation equations for restoring the initial conditions of the carbon model dynamics sys-
tem. Numerical experiments with data assimilation using the SOCS and RothC models showed
a substantial reduction in the model-observations misfit, confirming both the correctness of the
data assimilation implementation and the practical value of the variational approach for state
variables initialization.

The prospects of extending the variational assimilation method and its implementation
presented in this paper include the following:

e moving from initial state estimation to joint optimization of initial state and model pa-
rameters; this requires adding derivatives of the base functions not only with respect to
pools but also with respect to model parameters;

e adding quantification of uncertainty of the optimal solution via the posterior error-
covariance matrix;

e further integrating CCMC into the land surface model TerM and optimizing the memory

usage of variational data assimilation on modern supercomputers.
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Thus, we have established a reproducible and scalable foundation for variational assimilation in
CCMC - from automatic adjoint construction and gradient evaluation to practical validation on
real soil data.
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