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This work presents an automatic adjoint-model construction within the Carbon Cycle Model

Constructor (CCMC) that enables variational data assimilation (VDA) for estimating the initial

state of soil dynamic carbon models. The adjoint is generated once from the generic pool-flux rep-

resentation used in CCMC, which allows efficient gradient evaluation and iterative optimization

of the initial pool vector without constructing a model-specific adjoint. The proposed approach is

tested with two soil carbon models: SOCS (Soil Organic Carbon Saturation) and RothC (Rotham-

sted model). Data assimilation experiments are performed using long-term field observations of

soil carbon content. The entire VDA workflow, including the adjoint solver and optimization al-

gorithm, is implemented in the same Fortran code base as CCMC. CCMC+VDA implementation

is fully compatible with the MPI+OpenMP TerM land surface model and provides a reusable,

scalable foundation for variational soil-carbon data assimilation on modern supercomputers.

Keywords: data assimilation, carbon dynamic models, adjoint model, automatic differentia-

tion.

Introduction

Variational data assimilation (VDA) is a class of mathematical methods and numerical

techniques used to reduce uncertainty in the external parameters of mathematical models by

optimizing performance metrics (objective or cost function) with respect to observed data and

prior estimates. VDA relies on the adjoint-equation framework to compute the gradient of the

objective (cost) function. Among geophysical models, hydrodynamical models of the atmosphere

and the ocean have most benefited from deep integration of VDA into research and operational

systems over the last decades [18]. Land surface models have benefited less from VDA, even

though they include many parameters and initial states that are not directly measurable. Specif-

ically, this relates to terrestrial carbon-cycle models, where soil carbon pools are rarely measured

in situ, and equation parameters are usually phenomenological, suggesting no method of field

assessment. For the carbon cycle, VDA can potentially align model parameters and states with

a variety of observations (e.g., soil carbon content, CO2 fluxes, sensible and latent heat fluxes,

etc.).

Over the past decade, the practical effectiveness of VDA-based modeling systems has been

demonstrated at both regional and global levels [7, 8, 11, 17, 22, 23]. In [11], the authors pro-

pose a step-by-step data assimilation system that sequentially optimizes the parameters of the

ORCHIDEE model to improve the model’s estimation of terrestrial carbon uptake using three

data streams: Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Differ-

ence Vegetation Index (NDVI) satellite observations, net ecosystem exchange (NEE) and latent

heat (LE) flux measurements from FLUXNET stations, and atmospheric CO2 concentrations

modeled using the general circulation model (GCM) of the Laboratoire de Météorologie Dy-
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namique (LMDz). In [17], the posterior parameter covariance obtained by applying a variational

method to the BETHY land surface model is used to quantify forecast errors of CO2 fluxes and

atmospheric concentrations.

In these studies, adjoint model construction relies on source-to-source automatic differen-

tiation (AD) to obtain adjoint code; the most widely used tool is TAF [7, 8, 11, 12, 16]. An

alternative is to build the model within the YAO variational-assimilation platform, where the

model is described as a modular graph for which an adjoint is generated automatically, as in [2].

These approaches are tightly coupled to specific model implementations. Using TAF requires

restructuring and annotating the Fortran code to satisfy the constraints of the AD toolchain,

YAO requires rewriting the model as a component graph within its own modeling language. As

a result, adjoints must be rebuilt and revalidated for each individual model and model version.

In this work, we develop a module for automatic adjoint construction for models specified

in the Carbon Cycle Model Constructor (CCMC) [5] to seek the initial conditions by VDA.

The constructor is a general-purpose tool for building carbon-cycle models and is intended for

integration into the INM RAS-MSU land active-layer model TerM (Terrestrial Model) [20]. By

integrating adjoint generation into CCMC itself, we obtain a reusable, model-agnostic adjoint

solver that automatically adapts to any CCMC-defined model without rewriting model code.

The paper is organized as follows. Section 1 briefly reviews the basic VDA framework to

be then applied for carbon cycle models. Next, Section 2 presents the concept of carbon cycle

model constructor (CCMC), which has been recently proposed and implemented by the authors;

introduction of the VDA algorithm to CCMC code is described. Numerical experiments for

testing the created CCMC+VDA code are performed with RothC and SOCS model, as detailed

in Section 3; the code scalability towards larger scale problems and multicore computer systems

and distributed-memory supercomputers is discussed. The Conclusions section summarizes the

demonstrated properties of the developed CCMC+VDA code and draws prospects for future

research.

1. Variational Data Assimilation

The variational data assimilation problem can be formulated as follows [9, 10, 14, 15]. Let

us consider a model described by a system of differential equations:

{
dC(t)
dt = F (C, t), t ∈ (0, T ),

C(0) = C0,
(1)

where C is the state vector of the model (for carbon-cycle models, C typically represents a vector

of carbon pools); F is the models dynamical operator; and C0 is the unknown initial state to be

determined. The optimal initial state Ca
0 is found as the solution to the following minimization

problem:

Ca
0 = arg min

C0

J(C0), (2)

J(C0) =
1

2

(
C0 − Cb0

)>
B−1

(
C0 − Cb0

)
+

1

2

∫ T

0

[
HC(t)− yobs(t)

]>
R−1

[
HC(t)− yobs(t)

]
dt,

(3)

where Cb0 is the background (prior) initial state, B and R are the covariance matrices of back-

ground and observation errors, respectively, yobs denotes the observation vector, and H is the
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corresponding observation operator, projecting the model state vector to the vector of obser-

vations. In the variational assimilation approach, the gradient of the cost function J(C0) is

computed by solving the adjoint problem, yielding the optimality system (1), (4), (5), which

can be derived, for example, via the method of Lagrange multipliers:

{
dC∗(t)

dt = − [∇CF (C, t)]>C∗(t) +H>R−1
(
HC(t)− yobs(t)

)
, t ∈ (0, T ),

C∗(T ) = 0.
(4)

∇C0
J = B−1(C0 − Cb0)− C∗(0) = 0. (5)

We then solve, in sequence, the forward model (1) and the adjoint model (4); their outputs are

inserted into (5) to compute the cost-function gradient, which drives an update of C0 using an

appropriate gradient-based optimization method. Iterations proceed until the change between

successive estimates of C0 becomes sufficiently small or until a maximal number of iterations is

exceeded.

2. Carbon Cycle Model Constructor and Data Assimilation

2.1. CCMC Concept and Implementation

The Carbon Cycle Model Constructor [5] enables the implementation of models repre-

sentable as a system of differential equations that describe the dynamics of Np carbon pools:

dCi
dt

= Fi =

Np∑

j=1

Nf
i,j∑

k=1

F ki,j , F ki,j =

Nm
i,j,k∏

m=1

fmi,j,k
(
ψmi,j,k

)
, i = 1, . . . , Np, (6)

where Ci is the carbon content in the i-th pool (a scalar variable); Nf
i,j is the number of fluxes

between pools i and j; F ki,j is the k-th flux between pools i and j; Nm
i,j,k is the number of

multiplicative factors in the expression for the k-th flux between pools i and j; fmi,j,k(·) is the

m-th single-argument function in the expression for the k-th flux between pools i and j; and

ψmi,j,k is the argument of the m-th function, representing a biotic or abiotic driver of the process,

which can be either one of the pools or an external given variable.

The set of possible forms of fmi,j,k(ψ
m
i,j,k) in most carbon cycle models reduces to a number

of standard functional dependencies (linear, exponential, Michaelis–Menten, etc.). This allows

most models to be implemented within a single code in which the model structure is specified

by a collection of standardized multiplicative factors f = f(ψ). Accordingly, the constructor

provides an interface for setting the number of pools, the graph of fluxes between pools, and the

factors fmi,j,k so that a solver for the general system (6) implements the model in a such specified

configuration.

In order to implement a data assimilation system in CCMC for initial-state estimation for

any model specified in CCMC, it is necessary to set the initial guess Cb0, the error-covariance

matrices B and R, and the observation operator H, as well as construct the adjoint model. As can

be seen from (4), this requires computing partial derivatives of the models dynamics operator

with respect to the carbon pools. The next section describes how this differentiation can be

automated for models formulated within CCMC framework, i.e., those that can be specified

by (6).
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2.2. Automatic Construction of Adjoint Models in CCMC

CCMC solves the forward problem (1) numerically using a first-order explicit time-stepping

scheme with a fixed time step ∆t. The adjoint problem (4) for the general CCMC equation (6)

takes the form:

dC∗(t)
dt

= −
[
∂F

∂C
(C(t), t)

]>
C∗(t) +H>R−1

[
HC(t)− yobs(t)

]
, F = (F1, . . . , FNp

). (7)

To construct the adjoint problem (7), it is necessary to evaluate ∂Fi

∂Cl
, where i, l = 1, . . . , Np. It

can be shown that

∂Fi
∂Cl

=

Np∑

j=1

Nf
i,j∑

k=1

F ki,j

Nm
i,j,k∑

m=1

1

fmi,j,k

(
ψmi,j,k

)
∂fmi,j,k

(
ψmi,j,k

)

∂Cl
, l = 1, . . . , Np. (8)

In the numerical implementation, to avoid division by zero, we replace 1
fm
i,j,k(ψm

i,j,k)
with

1
fm
i,j,k(ψm

i,j,k)+ε
, where ε is a small regularization constant. In the current CCMC programming

code, eight basic multiplicative factor functions are available: constant, linear, hyperbolic,

Michaelis–Menthen, a step function, an exponential, and two piecewise-linear functions, which

form the extendable library of functions. By specifying, for each function, the form of its deriva-

tive with respect to Cl (using a library of derivatives df/dψ), i.e.,
∂fm

i,j,k

∂Cl
, one can compute

and store ∂Fi

∂Cl
alongside the evaluation of Fi. With ∂Fi

∂Cl
available, the adjoint problem can be

integrated in CCMC using the explicit solver used for the forward model.

2.3. Code Modifications to CCMC

To enable automatic adjoint solver construction within CCMC and to solve the data-

assimilation system for restoring the initial-state vector, the constructor code was modified

as follows:

1. For each base factor function fmi,j,k implemented in the constructor, their derivatives with

respect to Ci were added.

2. A function returning ∂Fi

∂Cl
using formula (8) was added to the method that calculates the

right-hand side Fi. The computed derivatives are stored over all time levels, since the adjoint

solver requires access to their full temporal history when integrating backward in time.

3. A module was added in which, after solving the forward problem, the adjoint one is solved

numerically using an explicit time scheme. The error-covariance matrices B,R, the obser-

vation operator H, and the first approximation for the optimized initial state Cb0 are also

specified in this module.

4. A function was added which computes the gradient of the cost function J(C0) via (5).

5. The iterative adaptive gradient method Adagrad [4] was implemented to update the initial

condition C0 values according to the following formulas:

gk = ∇C0
J(C0,k−1),

Gk = Gk−1 + gk � gk,
C0,k = C0,k−1 − α

gk√
Gk + ε

.

(9)

Here, � denotes the elementwise product of vectors, and the operations of squaring, division,

and taking square roots of vectors are all taken elementwise; k is the iteration number, α
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is the learning rate, and ε is a small constant for numerical stability. Adagrad was chosen

because the scale of the pools can vary greatly, and dynamically recalculating the learning

step at each iteration for each pool allows this to be taken into account, thus achieving

better convergence [4]. Figure 1 illustrates the schematic flow of CCMC with the embedded

adjoint and optimization components.

CCMC + Adjoint-based Data Assimilation (Initial-State Estimation)
Forward model (CCMC)

Forward solver

Adjoint & Optimization (Data Assimilation)

Init carbon model
(pools, fluxes, factor multipliers)

Loop over:
• time t

• grid (i, j)

Compute Fᵢ

Compute ∂Fᵢ/∂Cₗ

Integrate state C(t)

Write outputs
(NetCDF, diagnostics)

Set DA components
(B, R, H, C₀ᵇ)

misfit
J(C₀ₖ)

B: background
covariance

R: observation
covariance

H: observation
operator

C₀ᵇ: background
initial state

Run adjoint model
(backward in time)

Compute gradient
∇J(C₀)

Adagrad update:
Gₖ = Gₖ₋₁ + gₖ ⊙ gₖ

C₀ₖ = C₀ₖ₋₁ − α · gₖ / √(Gₖ + ε)

Converged?

No: update C₀ₖ
and rerun forward

Save optimal C₀*
export outputs

Yes

Figure 1. Flowchart of the variational data assimilation module in the carbon cycle model

constructor

3. Numerical Experiments

The data-assimilation system for initial-state estimation within CCMC was tested for the

two carbon-soil models implemented in CCMC: SOCS (Soil Organic Carbon Saturation) [13] and

RothC (Rothamsted model) [3]. In both cases the optimization is performed in a low-dimensional

state space: in a single site (zero-dimensional column) the control vector C0 has dimension Np,

with Np = 2 for SOCS and Np = 4 for RothC.

3.1. SOCS Model

This model describes the dynamics of two soil-organic-matter (SOM) pools: a free (un-

protected) pool and a protected pool formed through organo-mineral interactions and physical
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occlusion within microaggregates [13]. The model equations read:

dC1

dt
= I − (1− r) · k · C1 − rkC1 ·

(
1− C2

Cm

)
+ kdC2,

dC2

dt
= r · k · C1 · (1−

C2

Cm
)− kd · C2,

(10)

where C1 is carbon in the free (unprotected) SOM pool; C2 is carbon in the protected SOM

pool; Cm is the maximum amount of organic carbon that can be protected in soil (the soils

protective capacity); I is the input of organic carbon to the soil; r is the fraction of carbon

transferred to the protected pool during decomposition of C1; (1 − r) are respiration losses;

k is the decomposition-rate coefficient for C1; and kd is the rate coefficient for the transition of

carbon from C2 to C1 due to desorption and aggregate breakdown.

3.2. RothC Model

In CCMC, the soil component of the RothC model is implemented, with the prescribed rate

of plant litter input to the soil. The evolution of carbon stocks is described by the following

differential equations [3]:

dCDPM

dt
= fdpm · Flit −RDPM,

dCRPM

dt
= (1− fdpm) · Flit −RRPM,

dCBIO

dt
= fbio · βRRS −RBIO,

dCHUM

dt
= fhum · βRRS −RHUM,

(11)

where βR is the clay fraction (particles < 0.002 mm) in the soil; Flit is the input of organic matter

to the soil from vegetation, crop residues, and organic fertilizers, RS is the total respiration rate

over the four pools (RS =
∑

iRi, where i ∈ {DPM,RPM,BIO,HUM}); RBIO, RHUM, RRPM,

and RDPM are the respiration rates of the microbial biomass (BIO), long lived humified (HUM),

resistant plant material (RPM), and decomposable plant material (DPM) pools, respectively;

fdpm is the litter-quality function; and fbio and fhum are partitioning coefficients that allocate

incoming organic matter to the BIO and HUM pools during mineralization.

The inert organic matter (IOM) pool is calculated from the total soil carbon at the initial

time and kept constant during the simulation:

CIOM = aq1C
aq2

tot , (12)

where Ctot is the total soil carbon content (the sum of all pools), aq1 = 0.049, aq2 = 1.139 –

empirical dimensionless constants.

The terms Ri are computed as

Ri = ksiFT (Tsoil)Fs(s)Fv(v)Ci, (13)

where i ∈ {DPM,RPM,BIO,HUM}, ksi is the respiration rate per unit mass of pool i under

standard conditions [1/s]; FT (Tsoil) is the soil-temperature factor; Fs(s) is the soil-moisture

factor; and Fv(v) accounts for vegetation cover. The standard respiration rates ksi used in this
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study are

ks,DPM = 3.22, ks,RPM = 9.65, ks,BIO = 2.12, ks,HUM = 6.43.

The IOM pool has no respiration term (ks,IOM = 0).

The soil temperature function reflects temperature variations in the upper active soil layer

(0–30 cm) and is defined as

FT (Tsoil) =
b1

1 + eb2/(Tsoil−b3) , (14)

where Tsoil is the mean monthly soil temperature [K]; b1 = 47.9 (dimensionless), b2 = 106 K,

and b3 = 254.85 K are empirical parameters.

The soil moisture factor is parameterized as

Fs(s) =





1− d1 · (s− so), for s > so,

d2 + d1 ·
(
s−smin

so−smin

)
, for smin < s ≤ so,

d2, for s ≤ smin,

(15)

where s is the moisture of the upper (unfrozen) soil layer; so is the optimal soil moisture at

which Fs(s) attains its maximum (i.e., equals one); and d1 = 0.8, d2 = 0.2 are dimensionless

empirical coefficients, chosen so that d1 + d2 = 1, a condition ensuring continuity of Fs. The

wilting moisture is determined experimentally:

so = 1
2 · (1 + sw),

smin = c · sw,
(16)

where sw is the wilting moisture, and c = 1.7 is a dimensionless empirical coefficient.

The vegetation-cover factor is given by

Fv(v) = e1 + e2 · (1− v), (17)

where v ∈ [0, 1] indicates the presence of vegetation cover. The dimensionless empirical coeffi-

cients e1 and e2 are 0.6 and 0.4, respectively.

3.3. Results and Discussion

For validation of the variational data assimilation algorithm embedded into CCMC, we used

experimental time series of soil carbon content from long-term fertilization field experiments [1]

conducted at the Donskoy Federal Agrarian Research Center (Rostov Oblast) and at DAOS-3,

the Dolgoprudny Agrochemical Experimental Station (Moscow Oblast). The external forcing

time series used in the SOCS and RothC models were compiled from the above-mentioned

field stations (soil temperature, soil moisture, organic carbon inputs, mean vegetation cover)

together with ERA5 reanalysis data (clay content and wilting-point soil moisture). Both models

were integrated with the time step of one month. Their parameter values were set as follows:

r = 0.45, Cm = 12, kd = 0.007, k = 7.5 for SOCS and βR = 0.2, sw = 0.75, v = 0.8 for RothC.

The observation operator is H = (1, 1, . . . , 1) ∈ Rn, since the measured soil carbon content

is the sum of all model pools. The observation-error covariance matrix R is diagonal. Since

the observations are of order 10 kg m−2, we assume an absolute measurement uncertainty of

0.1 kg m−2, and therefore set R−1 = 1/0.1. The background covariance matrix B is also diagonal.
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Its diagonal entries are taken as 10% of the characteristic magnitude of each pool, assuming that

pool errors are uncorrelated and that no detailed prior covariance information is available. The

initial guess for the pool vector C0 in each model was constructed using expert-based estimates

of the typical distribution of soil carbon among pools for the corresponding soil type.

The optimization employs the Adagrad algorithm with learning rate α = 1 which was chosen

empirically as a compromise between convergence speed and stability. A total of 20 iterations

were performed for both models. The convergence of the cost function J(C0) for the SOCS and

RothC models is shown in Fig. 2. Figure 2 demonstrates that, for both SOCS and RothC, the

VDA scheme systematically reduces the cost function over the course of the Adagrad iterations

and approaches a nearly stationary value by the end of the optimization.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration number

100

101

102

J(C
0)

Cost function J(C0) over iterations (log scale)

(a) SOCS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration number

100

101

102

J(C
0)

Cost function J(C0) over iterations (log scale)

(b) RothC

Figure 2. Cost function J(C0) over Adagrad iterations

for the SOCS (a) and RothC (b) models

Figures 3 and 4 show the simulated soil carbon stock dynamics obtained with the prior initial

conditions and with those estimated via data assimilation for the Rostov Oblast site. Blue dots

indicate observations. Tables 1 and 2 compare the prior and optimal initial conditions and report

the root-mean-square error (RMSE) of the simulated total soil carbon stocks with respect to the

observed time series at the site. In both cases the reference values are the measurements, while the

“prior” RMSE is computed from the forward model run started from the background initial state

Cb
0 and the “posterior” RMSE from the run started from the optimized state Ca

0 . Quantitatively,

the VDA-based initialization leads to a strong reduction of the model–data misfit. For SOCS, the

RMSE decreases from 1.864 to 0.096 kg m−2 and for RothC, the RMSE decreases from 1.88 to

0.152 kg m−2. In Figs. 3 and 4 the prior simulations systematically underestimate the measured

soil carbon stocks, whereas the trajectories obtained with VDA-based initial conditions closely

track the observed levels and reproduce the temporal evolution of the carbon stocks.

The established way of initializing the pools in carbon cycle models is to run the forward

model under statistically stationary external forcing (litter input) for a sufficiently long time

period until a quasi-steady-state of the pools is reached [21, 24]. This approach relies on long-

term reconstructions of climate, carbon inputs, and land-use history, although such records are

typically uncertain. It also presumes that soil carbon is close to equilibrium at the beginning of

the simulation, which is often not the case [6, 24]. In our method, the initial pool vector C0 is

treated as an unknown control variable and is estimated directly from the observed soil carbon

time series using VDA. This removes the need for uncertain multi-decadal forcing and does not
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Figure 3. Soil carbon stocks at the Rostov Oblast site simulated by the SOCS model using

the prior initial conditions (blue) and initial conditions estimated via data assimilation. Blue

dots indicate observations
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Figure 4. Same as Fig. 3, but simulations are performed with RothC model

Table 1. The prior and optimal initial conditions for SOCS model, and corresponding

root-mean-square errors (RMSE)

Pool
Background

(prior)
Analysis

(posterior)

C1(0) 0. 0.09

C2(0) 6 8.76

RMSE 1.864 0.096

rely on the equilibrium assumption. A limitation of the presented VDA-based initialization is

that it requires a time series of soil carbon observations, whereas spin-up can be applied when

only a single measurement is available.

The developed CCMC+VDA programming code is intended for implementation into TerM

land surface model. The VDA driver, adjoint solver, and Adagrad iterations are implemented in
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Table 2. Same as Tab. 1, but simulations are performed with RothC model

Pool
Background

(prior)
Analysis

(posterior)

CDPM (0) 0.01 0.2

CRPM (0) 0.1 0.32

CBIO(0) 0.05 0.24

CHUM (0) 5. 7.13

RMSE 1.88 0.152

the same Fortran code base as CCMC and TerM. The parallel implementation of TerM uses MPI

and OpenMP. The TerM computational domain is a rectangular latitude-longitude grid that is

decomposed across MPI processes with nested OpenMP threads; each process/node computes

all grid points in its subdomain independently of the others [19]. This decomposition is valid

because TerM solves a system of one-dimensional vertical equations in the longitude-latitude cells

with no horizontal coupling. CCMC+VDA module, including the Adagrad optimizer, follows

the same domain decomposition and performs all optimization steps locally within each grid

column, requiring no additional inter-process communication. As a result, the Adagrad-based

VDA algorithm is fully compatible with the existing MPI+OpenMP parallelization of TerM and

scales naturally from a single multicore node to multi-node supercomputers.

All numerical experiments reported in this paper were performed in a single-core mode on an

M3 Pro processor (ARM64 architecture). The code was compiled using the GNU Fortran com-

piler version 15.2.0. For this configuration, a single forward model run required approximately

0.004 s for the SOCS model and 0.006 s for the RothC model. A complete variational data

assimilation cycle, including 20 Adagrad iterations, required approximately 0.038 s for SOCS

and 0.097 s for RothC.

Conclusion

In this work, we have implemented automatic construction of an adjoint model to the model

specified in the carbon cycle model constructor (CCMC), and made the necessary modifications

to the constructor code. Based on that, we have also built a solution to the system of variational

data assimilation equations for restoring the initial conditions of the carbon model dynamics sys-

tem. Numerical experiments with data assimilation using the SOCS and RothC models showed

a substantial reduction in the model-observations misfit, confirming both the correctness of the

data assimilation implementation and the practical value of the variational approach for state

variables initialization.

The prospects of extending the variational assimilation method and its implementation

presented in this paper include the following:

• moving from initial state estimation to joint optimization of initial state and model pa-

rameters; this requires adding derivatives of the base functions not only with respect to

pools but also with respect to model parameters;

• adding quantification of uncertainty of the optimal solution via the posterior error-

covariance matrix;

• further integrating CCMC into the land surface model TerM and optimizing the memory

usage of variational data assimilation on modern supercomputers.
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Thus, we have established a reproducible and scalable foundation for variational assimilation in

CCMC – from automatic adjoint construction and gradient evaluation to practical validation on

real soil data.
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