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This paper presents an efficient computational approach for calculating the characteristics of

multi-port antenna systems using boundary integral equations. Modeling of antenna radiation is

based on finding surface currents placed on the antenna structural elements. Numerical solution

of integral equations for unknown currents is carried out by the Galerkin method using RWG

basis functions. The antennas excitation is modeled by placing a system of lumped ports. A key

challenge addressed is the calculating of mutual coupling characteristics (mutual impedance ma-

trices, S-parameters) for various conditions of ports loading. This requires multiple solutions of

a system of linear equations. In each case, the system matrix undergoes a change in blocks con-

sisting of elements responsible for the interaction of the antenna ports with each other and with

surface currents. To overcome this, an algorithm based on the Woodbury formula is developed,

significantly reducing computational costs by leveraging the low-rank nature of port-related ma-

trix modifications. The method’s effectiveness is demonstrated for both wire and patch antenna

arrays, showing substantial speedups – approximately proportional to the number of ports for di-

rect solvers and significant gains for iterative solvers using mosaic-skeleton approximations while

maintaining solution accuracy.

Keywords: matrix methods, numerical algorithms, computational electrodynamics, antenna

radiation, boundary integral equations, Woodbury formula.

Introduction

The Method of Moments (MoM) approach allows for the simulation of the performance

of antennas with metal and dielectric parts. In case of metallic antennas, the electromagnetic

field has an integral representation via surface currents on their metal parts, and the problem of

antenna radiation can be treated as the scattering problem of some primary field generated by the

antenna itself. One common mathematical model for such fields is the lumped port model, also

known as the delta-gap model [2]. With a known primary field, MoM reduces antenna simulation

to a system of surface integral equations [2, 13]. Some common performance characteristics, such

as impedance, S-parameters, and the Voltage Standing Wave Ratio (VSWR), can be expressed

in terms of electric currents, which are the solution of these integral equations.

MoM holds an advantage over volume-discretization techniques, as it does not require mesh-

ing the entire problem space, only the surfaces. Furthermore, it inherently satisfies the radiation

condition at infinity.

In multi-port systems, mutual coupling between ports significantly affects the overall radia-

tion characteristics. Matrices of mutual impedance and S-parameters are central to the analysis

of this coupling. These matrices are computed through a series of numerical simulations, where

individual ports are activated sequentially as active sources while the others are terminated with

passive loads (e.g., matched feeder lines). This approach requires one simulation for each active

port, leading to specific computational challenges.

A well-known challenge of MoM is that discretizing the integral equations yields linear

systems with large dense matrices. Solving these systems is the dominant computational cost of

the numerical simulation.
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For antenna systems, the main part of the system matrix describes the electromagnetic

interaction between surface discretization elements (e.g., mesh cells). However, some rows and

columns are modified according to the current active port. Thus, computing the complete mutual

coupling matrices involves solving a series of linear systems, each with a modified system matrix.

Such matrices can be represented as the sum of a fixed matrix (from the structure) and a low-rank

correction per port configuration. A naive approach, solving each modified system independently,

results in a computational cost proportional to the number of ports.

To address this inefficiency, we propose an algorithm based on the Woodbury matrix iden-

tity [3]. This identity allows for the efficient computation of the inverse of a matrix after it

has been modified by a low-rank update. For a system of n equations, a direct solution via

LU decomposition requires Ω = O(n3) operations and iterative solution requires Ω = O(n2I0)

operations (I0 is the number of iterations). Solving for m ports naively would therefore scale

as mΩ. Our algorithm leverages the Woodbury formula to obtain the exact solution for all

port configurations by solving only one linear system with m right-hand sides. This requires

Ω + O(nm2 + m3) operations, making the time for the multi-port solution comparable to that

of a single simulation when m� n.

For systems with a moderate number of unknowns (up to approximately 40,000), we em-

ploy a direct solver. For larger problems, we use an iterative solver – the Generalized Minimal

Residual Method (GMRES) [7] – accelerated by performing matrix-vector multiplications in

the mosaic-skeleton format [10]. This format is a data-sparse approximation that operates on a

compressed representation of the dense matrix [11]. The proposed method applies both direct

and iterative solvers. We present computational examples of antenna arrays with numerous feed

points, demonstrating the significant efficiency gains achieved by our method.

The article is organized as follows. The first section contains the statement of the problem,

the boundary integral equation method, the numerical scheme and the description of antenna

model. The algorithm based on the Woodbury matrix identity is also described in this section.

The second section includes the testing of the developed algorithm on two examples: wire

antenna array and patch antenna array. The discussion of the results is given in the conclusion

section.

1. Mathematical Model

We consider a perfectly conducting antenna system. The antenna system includes a set of

radiating elements connected to a feeder. Each such element can operate either for radiation or

for signal reception.

Let Σ denote the union of all perfectly conducting surfaces forming the antenna structure.

We consider the problem of antenna system radiation as a scattering problem. The primary field

is created by a system of antenna ports. The antenna excitation is described in subsection 1.3.

Let us consider the general formulation of the problem of scattering a given primary field

for monochromatic wave [13]. The electric and magnetic fields are sought in the form:

~E(x, t) = E(x)e−iωt, ~H(x, t) =

√
ε0

µ0
H(x)e−iωt, (1)

where ε0 and µ0 are the electric and magnetic constants, ω is the angular frequency. The problem

is reduced to the spatial components of the electric and magnetic fields E(x) and H(x).
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The surrounding medium is assumed to be isotropic, homogeneous, and without conductiv-

ity. The electromagnetic field everywhere outside the antenna structural elements is described

by Maxwell’s equations. In the monochromatic case they have the following form:

rotE = iωkH,

rotH = −iωkE,
(2)

here k is the wave number, defined by the formula k = ω
√
ε0µ0.

The magnetic field can be excluded from equation (2). The equations for the electric field

are:

∆E + k2E = 0, divE = 0, (3)

provided that the magnetic field has the form

H =
rotE

ik
. (4)

We assume that the total electric and magnetic fields have the form [2, 13]

Etot = Einc + E, Htot = Hinc + H. (5)

Here Einc(x) and Hinc(x) are the primary electric and magnetic fields created by the antenna

excitation, E(x) and H(x) are the unknown secondary electric and magnetic fields. These sec-

ondary fields must satisfy equations (3)–(4) outside the antenna structural elements. The total

field must satisfy the boundary condition on the antenna surface Σ:

n×Etot = 0, x ∈ Σ. (6)

Also the secondary fields have to satisfy the Sommerfeld radiation condition at infinity:

E(x) = O

(
1

|x|

)
,

∂E(x)

∂|x| − ikE(x) = o

(
1

|x|

)
, |x| → ∞. (7)

H(x) = O

(
1

|x|

)
,

∂H(x)

∂|x| − ikH(x) = o

(
1

|x|

)
, |x| → ∞. (8)

1.1. Method of Moments

In this subsection we describe the integral representation for the electric field and the integral

equation system [2].

The electric field:

E(x) =
i

k0
K[Σ, g](x), x ∈ R3 \ Σ, (9)

where K[Σ, g] is the electric field operator:

K[S, g](x) = rot rot

∫

S

g(y)F (x− y)dσy. (10)

In formula (10), S is random surface, g is a tangential vector field defined on the surface S, F

is the Green’s function F (x− y) = eik|x−y|

|x−y| .

In expression (9), g is the unknown surface current.
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The integral operator K in (10) is defined everywhere outside the integration domain S. The

field defined by this operator for a sufficiently smooth function g has boundary values on both

sides of the surface S, for which the formula [15] is:

K±[S, k, g](x) = K[S, k, g](x)± 2πn(x) Div g(x), x ∈ S, (11)

where x is a point of smoothness of the surface, not lying on its edge, n(x) is the unit vector of

the positive normal at point x, the signs ± correspond to the boundary values from the side of

the normal vector (from the positive side of the surface) and from the opposite side (from the

negative side of the surface), respectively. Here K[S, k, g](x) is the direct value of the operator

on the surface. It arises if the value of the point x ∈ S is substituted directly into the expression:

K[S, g](x) =

∫

S

rot xrot x(g(y)F (x− y))dσy. (12)

In this case the hypersingular integral on the right-hand side is a Hadamard finite part integral.

We substitute expression (9) into the boundary condition (6) and apply the formula (11)

for the boundary values of the integral operator (11) to obtain the boundary integral equation

for the unknown function g ∈ Σ:

i

k0
n(x)×K[Σ, g](x) = −n×Einc(x), x ∈ Σ. (13)

Note that in equation (13), the operator K is defined by the formula (12) with the hypersingular

integral on the right-hand side.

We solve these equations and substitute the obtained currents into formulas (9) and (4) to

calculate the values of the secondary electric and magnetic fields at an arbitrary point outside

the surface Σ.

1.2. Numerical Method

For the numerical solution of equation (13) we employ a widely used numerical scheme of the

Galerkin method with piecewise linear basis functions (RWG functions). This numerical scheme

was first described in [6] and its modern version is described in [2, 13].

The surface Σ is approximated by a conformal system of triangular cells. Let Σ̃ =
⋃
i=1,N σi

be the approximation of the original total surface Σ.

The approximation of the unknown currents g is a linear combination of RWG basis func-

tions [6].

g(x) =
∑

i=1,M

givi(x) (14)

Each basis function vi(x), i = 1, ...,M is associated with an edge common to two cells σ1
i and σ2

i

and characterizes the flux of the vector field through this edge. If an edge is common to exactly

two mesh cells, then one basis function from the list of functions with indices i = 1, ...,M is

associated with this edge. If an edge is a junction of p > 2 cells σj1 , ..., σjp (these cells are

numbered in a clockwise order), then p − 1 basis functions are associated with this edge. Each

basis function corresponds to a pair of cells (σj1 , σj2), (σjp−1
, σjp). Thus an ordered pair of cells

σ1
i and σ2

i is associated with each basis function vi(x), i = 1, ...,M (see [14]). Let s1
i and s2

i be

the areas of cells σ1
i and σ2

i . We also denote the vertices that lie opposite to the common edge

of cells σ1
i and σ2

i as C1
i and C2

i for each basis function vi(x).
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The Bubnov–Galerkin method is used for the numerical solution of the boundary integral

equations (vi,Kvj)Σ̃ = (vi,K[Σ̃,vj ])Σ̃. The scalar product of two vector functions is understood

as the integral over the surface Σ: (g,f)Σ̃ =
∫

Σ̃(g,f)dσ.

The scalar product with the electric operator is defined by the following expression:

(vi,Kvj)Σ̃ =

∫

σ1
i∪σ2

i

∫

σ1
j∪σ2

j

(
k2vi(x) · vj(y)−DiDj

)
F (x− y)dσydσx =

=
∑

p=1,2

∑

q=1,2

(−1)p+q

spi s
q
j

∫

σp
i

∫

σq
j

(
k2(Cpi − x) · (Cqj − y)− 4

) eikr
r
dσydσx. (15)

To compute the integral in expression (15), we use formulas with analytical extraction

and integration of the singularity [2]. For regular integrals we developed an adaptive integration

procedure based on Gaussian quadrature with subdivision of cells into smaller ones and accuracy

control.

The system of boundary integral equations (13) is reduced to a system of linear algebraic

equations.

i

k0

M∑

j=1

(vi,Kvj)Σ̃ gj = −(vi,Einc)Σ̃, i = 1, ...,M. (16)

After the system (16) is solved for the variables gi, i = 1, ...,M , the surface currents g are

computed using formula (14).

1.3. Antenna Model

1.3.1. Antenna excitation

We use the well-known delta-gap model [2]. A port is a small gap of width d between certain

mesh edges. There is a potential difference in this gap. A port is called active if a voltage U

created by an EMF ε is applied across it. A port is called passive if a resistance R is connected

across it. It is possible to specify both voltage and resistance simultaneously, but such cases

are not considered in this work. A port is approximated as a line consisting of one or several

consecutive edges. Let Θ denote the set of indices i for which the edge between cells σ1
i and σ2

i

lies on the port line.

The primary field Einc is defined as

Einc =
U

d
e0, (17)

where e0 is the unit vector indicating the current direction. The voltage on each edge from the

set of port edges Θ satisfies the formula

U = ε−R(e0, gc), (18)

where gc is the value of the surface current on this edge.

In case of an active port the EMF ε is given and the resistance R = 0. The scalar product

of the primary field and the basis function is the following:

(vi,Einc)Σ̃ =
U

d
(vi, e0) =

U

d

∫

D

(Ci − x, e0)

si
dσ =

U

d

∫

D

2

L
dσ = 2U, i ∈ Θ, (19)
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D is the part of the surface Σ where the gap is located. If the i-th edge does not belong to the

set Θ, then (vi, Einc)Σ̃ = 0. That is, the right-hand side is a vector consisting of two values: 0

or 2U . In case of a passive port (vi, Einc) = 0 for i 6∈ Θ, as well for the active port.

Now let us consider the passive port edges

(vi,Einc)Σ̃ = 2U = −2R(e0, gc) = = −2R
∑

k∈Θ

gk(e0,vi) = −4R
∑

k∈Θ

gk, i ∈ Θ. (20)

This term is not included into the right-hand side. It is added to the system of equations as a

sparse matrix B where bik = −4R if i, k ∈ Θ.

1.3.2. Current and impedance

Important antenna characteristics are the port current, input impedance, S-parameters,

and standing wave ratio (VSWR). The input impedance of an antenna is the complex ratio

of the voltage to the current at its feed point. S-parameters (scattering parameters) describe

how electromagnetic power propagates through a multi-port network, quantifying reflection and

transmission coefficients. The VSWR is a measure of the impedance mismatch between the

antenna and its feed line, defined as the ratio of the maximum to the minimum voltage of the

standing wave along the line.

First we consider a single antenna. The current through the port is the flux of the vector g

through the line consisting of all port edges

Y = (e0, gc) = 2
∑

k∈Θ

gk. (21)

We denote Z as the port impedance, S as the S-parameter, η as the VSWR, and R0 as the

matching impedance (a given value). According to [5], the following formulas are used for these

characteristics:

Z =
U

Y
, (22)

S =
Z −R0

Z +R0
, (23)

η =
1 + |S|
1− |S| . (24)

Now we consider an antenna system consisting of m active ports. Each port consists of a

set of edges Θm. In this case, the calculation of the antenna system characteristics is performed

according to the following scheme. Each port is sequentially considered active with an EMF

ε = 1 V, while the others are set as passive with the same resistance R0. The currents Yij are

computed:

Yij = 2
∑

k∈Θi

gk, ε 6= 0 on Θj .
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As a result, a current matrix Y is obtained. The mutual impedance matrix Z, S-parameter

matrix, and VSWR values are calculated using the formulas [5]:

Z = Y −1, (25)

S =

(
Z

R0
+ I

)−1( Z

R0
− I
)
, (26)

ηi =
1 + |Sii|
1− |Sii|

. (27)

Here Y , Z and S are complex matrices of size m×m, and η is a real vector of size m.

1.3.3. Optimization of calculations

Now let us consider an antenna system with a number of ports m > 1, for which it is required

to compute the mutual impedance, S-parameter and VSWR of all ports. In the resulting system

of equations, the main part of the matrix is independent of the ports and is assembled according

to formula (16). However, when passive ports are present, the addition term (20) appears. If

the problem is solved “head-on”, the matrix is calculated m times and the system is solved m

times. To avoid an increase in the computational complexity of the problem, we used a well-

known formula from linear algebra, namely the Woodbury formula, which is a generalization of

Sherman–Morrison formula [3].

Let us introduce the notation: A ∈ Cn×n, U ∈ Cn×m, V ∈ Ck×n, and Im ∈ Rm×m is the

identity matrix.

B = A+ UV ⇒ B−1 = A−1 −A−1U(Im + V A−1U)−1V A−1. (28)

If the rank of the correction is m � n, then this formula has an asymptotic complexity of

O(nm2 + m3), which is insignificant compared to complexity of matrix invertion O(n3). So

we can get all the required antenna characteristics with O(n3) instead of O(mn3) in case of

sequentially solving the problems.

However for large linear systems, constructing the inverse matrix A−1 is impossible. The

problem is solved approximately using one or another iterative method. To apply the Woodbury

formula to the iterative method for solving the problem described above, we do the following.

For each port we form an indicator vector up = {0, 1}n, p ∈ {1, . . . ,m}, where ones are only in

those rows that correspond to the edges of this port. If this port is the only passive one, and its

input impedance is R0, then the system matrix is equal to

B = A− 4R0upu
T
p . (29)

Since the ports do not intersect, U = [u1, . . . , um] is a matrix with linearly independent columns.

Let us split U into up and Ũp = [u1, . . . , up−1, up+1, . . . , um]. If port p is the only active one,

then the system takes the form

(A− 4R0 ŨpŨ
T
p )y = −2up. (30)

The construction of the solution for all ports is carried out according to Algorithm 1. This

algorithm is applicable to both direct and iterative methods for solving the system AY = U .

Thus, instead of solving m systems with different matrices, it is sufficient to solve one system

with m right-hand sides and compute the currents using the specified formula.
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Algorithm 1 Computation of currents using the Woodbury formula

1: Solve AY = U

2: X ← Y ∗ 2R0

3: for p = 1 to m do

4: xp, X̃p ← X

5: gp ← xp − X̃p

(
Im−1 + ŨTp X̃p

)−1
ŨTp xp

6: end for

7: return g

2. Results

The calculations were performed using the authors’ program “edmpis” [4]. This program al-

lows to solve the problems of electromagnetic wave scattering and antenna radiation not only for

perfectly conducting but also for dielectric objects. For small-scale problems (up to 40,000 equa-

tions), a direct LU-decomposition method from LAPACK library is employed. For large-scale

problems, the matrix is computed using the mosaic-skeleton approximation method [1, 8], and

the system of linear algebraic equations is solved using the minimal residual method optimized

for multiple right-hand sides [9].

The “edmpis” program uses MPI and OpenMP libraries to accelerate computations. When

using the direct LU solver, matrix assembly is accelerated using OpenMP. When using the

iterative solver with matrix approximation, MPI is used, and to a lesser extent, OpenMP. The

testing of acceleration of parallel program was performed in [8].

It should be noted that the fast multipole algorithm is considered to be the classical method

for compression of dense matrices in the electrodynamic problems. We use the mosaic-skeleton

approximation because of its universality and good compression. The testing of acceleration

of mosaic-skeleton approximation [12] shows almost linear speedup with the increase of MPI

processes.

The calculations were performed on the cluster of the Marchuk Institute of Numerical Math-

ematics, Russian Academy of Sciences. The main cluster specifications are provided below.

Computational nodes “normal”:

• 40 cores (two 20-core Intel Xeon Gold 6230@2.10GHz processors);

• 384 GB RAM;

• 480 GB SSD storage;

• Operating system: SUSE Linux Enterprise Server 15 SP6 (x86 64).

Computational nodes “short”:

• 24 cores (two 12-core Intel Xeon Silver 4214@2.20GHz processors);

• 128 GB RAM;

• 480 GB SSD storage;

• Operating system: SUSE Linux Enterprise High Performance Computing 15 SP4 (x86 64).

2.1. Wire Antenna

As a simple example we consider a thin wire with a radius of 1 cm and a length of 50 cm.

Such a wire can be considered as a linear antenna. The calculation was performed on a single

“short” type node using 24 cores. In this case the system of linear equations was solved by a

direct method.
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(a) wire1x1 (b) wire2x2 (c) wire4x2 (d) wire4x4

Figure 1. Antenna arrays composed of wire antennas and their VSWR

Figure 1 shows a single antenna (“strip1x1”) and three antenna systems obtained by copying

this antenna: “strip2x2”, “strip4x2”, “strip4x4”. The numbers indicate the calculated VSWR

values of the antenna system elements in the case where this element is active and the other

elements are passive.

Table 1. Program execution time for wire antennas

Geometry m Neq TW T0

wire1x1 1 1788 5.35 5.31

wire2x2 4 7152 31.03 131.48

wire4x2 8 14304 90.77 730.25

wire4x4 16 28608 317.01 5169.51

Table 1 shows the program execution time for calculations without optimization (T0) and

with optimization using the Woodbury formula (TW ). Time is measured in seconds. Neq is the

number of equations. It can be noted that the optimization sped up the program by a factor of

m as expected.

For illustration, Fig. 2 shows the radiation patterns of the antenna systems at a frequency

of 0.3 GHz for one of the port loading variants. In all cases, the only active antenna is the one

in the lower left corner of Fig. 1. The radiation patterns reflect the dependence of the radiation

power asymptote at large distances on the direction to the receiver:

F = lim
R→∞

4π|E(x)|2
R2

, x = Rτ , (31)

where τ is a unit vector indicating the direction to the receiver.

The radiation patterns, VSWR, and other characteristics calculated by the direct method

and using the Woodbury formula coincide with a relative accuracy of 10−5. This is due only to

rounding errors, since the Woodbury formula allows for an exact, not an approximate, solution.
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(a) wire1x1 (b) wire2x2

(c) wire4x2 (d) wire4x4

Figure 2. Radiation patterns of antenna arrays composed of wire antennas

at a frequency of 0.3 GHz

2.2. Patch Antenna

Another example is a system of patch antennas. Each patch antenna consists of two plates.

The excitation of the antenna is defined by a narrow strip connecting the antenna patches, where

a lumped port is placed.

The calculation was performed on a single “normal” type node using 40 cores. The problem

was solved by an iterative method with an accuracy of 10−2, which influenced the difference

between the solution with optimization and without it.

Figure 3 shows a single patch antenna and three antenna arrays obtained by copying this

antenna: “patch2x2”, “patch4x2”, “patch4x4”. Unlike the previous example, the VSWR of the

patch antennas is mostly independent of the array configuration and the position of the specific

antenna. The VSWR of the active antenna is approximately 1.7 for all patch antennas in these
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(a) patch1x1 (b) patch2x2 (c) patch4x2 (d) patch4x4

Figure 3. Antenna arrays composed of patch antennas

systems. The mutual influence of patch antennas on each other is significantly less than that of

strip antennas. For the mutual impedances the relation Zij

Zii
' 10−2, i 6= j is typical.

Figure 4 shows the radiation patterns of the antenna arrays at a frequency of 4.25 GHz

for one of the loading variants. In all cases the only active antenna is the one in the lower left

corner. It can be observed how the increase in the number of antennas in the system increases

the noise level of the radiation pattern.

Table 2. Program execution time for patch antennas

Geometry m Neq TW T0 IW I0

patch1x1 1 8879 38.18 38.16 323 323

patch2x2 4 35516 181.32 610.9 1589 2592

patch4x2 8 71032 506.92 2530.08 3285 6306

patch4x4 16 142064 1829.72 9987.38 7071 14380

Table 2 shows the program execution time for calculations without optimization and with

optimization using the Woodbury formula. IW is the number of GMRES iterations in the op-

timized program, I0 is the total number of GMRES iterations when solving m systems in the

program without optimization. The radiation patterns, VSWR, and other characteristics coin-

cide with the accuracy of 10−2, which corresponds to the accuracy of the iterative method.

Conclusion

The purpose of this paper was to accelerate the calculation of characteristics of mutual

coupling of elements in antenna arrays by the optimization with the Woodbury formula. The

numerical experiment demonstrated that in case of direct method the execution time of the

optimized program differs from the execution time of the program without optimization by

approximately a factor of m, where m is the number of antennas in the system (calculation of

the linear antenna system). In the case of iterative method with a low-rank approximation of the

system matrix (example with the patch antenna system), optimization also achieves a significant

acceleration of computations, but with a smaller factor. For instance, the computation time for

a system of 16 antennas decreased by approximately 5.5 times.
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(a) patch1x1 (b) patch2x2

(c) patch4x2 (d) patch4x4

Figure 4. Radiation patterns of antenna arrays composed of patch antennas

at a frequency of 4.25 GHz

The difference in the acceleration of computations when applying direct and iterative meth-

ods is as follows. In the direct algorithm, an LU decomposition of the matrix is constructed

using the LAPACK library, after which the problem is solved for one or m right-hand sides

in approximately the same time. For the patch antenna first the matrix is approximated and

then the GMRES solver is called. When using optimization, the matrix approximation is per-

formed once instead of m times. Also, the used iterative solver is optimized for problems with

multiple right-hand sides: the Krylov basis built for previous right-hand sides is used for the

next one. However in this example the total number of iterations increases with the number of

ports compared to the case of a single port, but with a smaller factor than the number of ports.

When using optimization, the number of iterations decreases by 1.5 to 2 times compared to the

total number of iterations without optimization. It is known that the right-hand side vectors up,
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p = 1, . . . ,m, are orthogonal to each other, but this information is insufficient to predict the

behavior of the iterative method on an arbitrary antenna array.

To sum up, the developed method sufficiently accelerates the calculation of characteristics

of an antenna system with many active excitation elements.
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