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This article concerns the developing of supercomputer methods for solving inverse problems

of ultrasonic tomography in application to nondestructive testing of thin plates using Lamb waves.

Such problems are computationally expensive, as longitudinal, shear, and other waves propagate

in solids, requiring the use of vector elastic models of wave propagation. Iterative methods for

solving the inverse problem have been developed. The methods are based on gradient descent

methods of minimizing the residual functional. Efficiency of the proposed algorithms is illustrated

on model problems. The field of wave tomography, which is currently under development, requires

powerful computing resources. Parallel computations in this study have been performed on general-

purpose processors of the Lomonosov supercomputer complex. Solving the Helmholtz equation is

the core element of the developed algorithms for solving inverse problems of wave tomography.

The most demanding computations involve solving linear equations with large-scale sparse matrices

using LU-decomposition method. The algorithms were implemented using linear algebra libraries

with serial and parallel code. Effectiveness, scalability and performance of the method has been

evaluated on CPU computing platforms.

Keywords: supercomputer, mathematical modeling, guided wave tomography, inverse problems,

Lamb waves.

Introduction

This paper concerns the developing of developing ultrasonic tomographic imaging methods

for non-destructive testing of solids. Immediately after the advent of the first medical X-ray

tomographs, the idea of ultrasonic tomographic imaging devices arose. Solving this problem

would eliminate the use of ionizing radiation in medical imaging. Ultrasonic tomography opens

up fundamentally new possibilities for nondestructive imaging of solids. However, developing

wave tomography devices has proven much more complex than X-ray ones, primarily due to

the mathematical challenges involved. While the inverse problems in X-ray tomography can be

solved using linear mathematical models, wave tomography imaging requires solving nonlinear

inverse problems.

Over the past 20 years, breakthrough results in ultrasound tomography have been achieved

in soft tissue diagnostics. One of the key challenges in modern medicine is the diagnosis of

breast cancer in the early stages of the disease. This problem can be successfully solved using

ultrasound tomography [1–5]. A unique feature of breast cancer diagnostics is the ability to

interpret tomography data in a scalar wave model, since soft tissues are more than 90% water.

Mostly the pressure waves propagate through soft tissues. However, even in this simple model,

the inverse problem is nonlinear, and its solution requires the use of supercomputers [6]. Efficient

iterative algorithms for interpreting experimental data have been developed using the explicit

formulation of the gradient of the residual functional between the calculated and measured wave

fields at the detectors [7, 8]. Effectiveness of the developed methods has been evaluated on

supercomputers using various computing platforms [9, 10].

Inverse problems of ultrasound tomography in NDT are much more complex, since the

mathematical model must describe the propagation of both longitudinal and shear waves. The
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displacement of a point is described by a vector, and a system of second-order differential

equations is constructed for the components of the displacement vectors [11–14]. The inverse

problem is reduced to minimizing a functional dependent on three unknowns: density and two

elasticity coefficients as functions of spatial coordinates. As in the scalar case, a representation

for the gradient of the residual functional with respect to these three parameters is obtained in

the vector elastic model [13, 15, 16]. Thus, from a mathematical standpoint, in both the scalar

and vector models, the objective is to solve a coefficient inverse problem for differential equations.

Iterative methods for finding an approximate solution employ the explicit representation for the

gradient of the residual functional.

However, in this formulation, the inverse problem is computationally very expensive. For

a number of practically important non-destructive testing (NDT) problems, the use of sim-

pler mathematical models appears promising [17]. One such problem is ultrasonic diagnostics

of defects in thin plates [18–21]. This study evaluates the supercomputer implementation of the

ultrasonic tomographic imaging method for NDT using Lamb waves. Capabilities of the approx-

imate solution method for the inverse problem of detecting surface defects in metal plates are

examined in detail. Solving the Helmholtz equation is the core element of the proposed imaging

algorithms. A specialized scalar model for thin-plate defect diagnostics allows for determining

not only shapes, but also the depth map of defects. Even in this simplified model, a super-

computer is required to implement the developed algorithms in practice. The effectiveness of

tomographic image reconstruction algorithms on a CPU platform is discussed in detail.

The article is organized as follows. Sections 1, 4.1, 4.2 are devoted to the formulation and

model computations of the direct problem of ultrasound tomography. Sections 2, 3, 4.3, 4.4 are

devoted to the formulation and model computations of the inverse problem. Section 5 contains

performance analysis of a supercomputer implementation. Conclusion summarizes the study.

1. Statement of the Direct Problem of Ultrasound Tomography

in a Vector Elastic Model

The object of tomographic imaging in this study is a thin, homogeneous flat plate, the

thickness of which is on the order of the central wavelength of the sounding pulse (Fig. 1).

Defect detection in thin plates and pipes is a pressing practical issue [18, 19]. The specificity of

this problem is that Lamb waves of different modes propagate in thin plates and pipes. Defects

in the imaged sample can be internal, associated with a local change in the parameters of the

medium, or surface defects, associated with a local change in the plate thickness. First, we

present the formulations of the direct and inverse problems for the case of internal defects.

Figure 1 shows a diagram of a tomographic imaging experiment, including sources and

detectors of ultrasonic radiation. The sources sequentially emit ultrasonic sounding pulses, which

are recorded by the detectors.

Figure 1. Scheme of the tomographic experiment
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We assume that the sounding waves propagate in isotropic, linear, perfectly elastic media

described by the Lame parameters and the density of the material. To simulate the wave prop-

agation process in elastic media, the problem is often formulated in terms of particle velocity

and stress. The dynamic equations in R3 describing wave propagation in an elastic volumetric

plate in the velocity-stress formulation have the form of a first-order hyperbolic system [22]
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(1)

Here u (t, r) = (u1, u2, u3) is the shear velocity vector, σ (t, r) = σij is the stress tensor of size

3× 3; µ (r), λ (r) are the Lame coefficients; ρ (r) is the bulk density; f (t, r) = fij is the tensor

defining the external force. For these equations, we should also specify the initial conditions of

rest at the time t = 0

u (0, x) = 0, σ (0, x) = 0. (2)

When solving the direct problem of elastic wave propagation, the functions µ (r), λ (r),

ρ (r) are known, and the components of the wave field for each point of the region Ω are to be

determined. Boundary conditions are applied on the boundary ∂Ω of the plate Ω. The lateral

sides of the boundary Γ⊂∂Ω are assumed stationary with the following boundary conditions

u (t, r) |Γ= 0. (3)

The rest of the boundary (the upper and lower sides of the plate) ∂Ω \ Γ is assumed a free

boundary, i.e., no external forces act on ∂Ω \ Γ, and we apply the conditions

σ (t, r)n |∂Ω\Γ= 0, (4)

where n is the outer normal vector to the boundary at point r.

In all the computations presented, the following sounding waveform was used as the external

disturbance

f33(x1, x2, x3 = 0, t) =

{
C sin (2

3πν0t) sin (2πν0t), 0 < t < 3/w0,

0, otherwise,
(5)

and the remaining components of the force tensor fij = 0. Here w0 is the central frequency of

the sounding pulse. The constant C determines the amplitude of the external disturbance. For

the simulations presented below, we assume C = 1 GPa/µs = 10−6 kg/(mm · µs3). The time

dependence of the pulse is a smooth function with a zero time derivative at the boundaries and

a zero integral over the time of action. Under these conditions, the pulse spectrum does not

contain very low and very high frequencies. The external disturbance is applied at a certain

point on the upper surface of the plate.
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2. Statement of the Inverse Problem of Ultrasonic

Tomographic Imaging of Internal Defects in a Plate

in Elastic Vector Models

Let us consider the inverse problem of ultrasonic tomography for the velocity-stress equa-

tions for detecting internal defects in a plate. Figure 1 shows a diagram of ultrasonic tomog-

raphy of a plate. A defect with three unknown parameters of the medium (µ (r) , λ (r) , ρ(r))

occupies a region G. A plate Ω has a known constant thickness d0 and parameters (µ0, λ0, ρ0)

outside the defect G. Ultrasound emitters and detectors are placed around the defect G on the

surface of the plate. The emitters are located at points qj with a total of M emitter positions

j = 1, . . . ,M . Wave field v(t, r; qj) is measured at the boundary S surrounding the region G. Let

V (t, s; qj) denote the experimental data collected for detector position s∈S, source position qj ,

j = 1, . . . ,M , over the time interval [0, T ]. A known function f (t, r) describes the sounding

pulse. In the inverse problem, the goal is to determine the unknown parameters of the medium

(µ (r) , λ (r) , ρ(r)) for r∈G, knowing the measured experimental data V (t, s; qj). The displace-

ment function v(t, r; qj ;µ, λ, ρ) is obtained by solving the main problem (1)–(4) for velocities

and stresses, followed by integrating the velocity function using the formula v(t, r) =
∫ t

0 u(t, r)dt.

The wave field v(t, s; qj ;µ, λ, ρ) computed for the parameters (µ (r) , λ (r) , ρ(r)) must satisfy

the equation v
(
t, s; qj ;µ, λ, ρ

)
= V (t, s; qj), where s∈S, for all source positions qj and for the

exact (unknown) values of the parameters (µ (r) , λ (r) , ρ(r)).

Let us introduce the residual functional Φ(µ, λ, ρ) of the arguments (µ(r), λ(r), ρ(r)), which

is the difference between the experimental data and the computed data

Φ(µ, λ, ρ) =
∑M

j=1

1

2

∫ T

0

∫

S
(v(t, s, qj ;µ, λ, ρ)− V (t, s; qj))

2dsdt. (6)

For multiple wave sources, the residual functional is the sum of the values j = 1, . . . ,M

obtained for each source. For each fixed source j, the integrals over the time interval [0, T ]

and over the boundary S are calculated for all the detectors in S. Mathematically, the inverse

problem is posed as the problem of finding functions (µ(r), λ(r), ρ(r)) that minimize the residual

functional (6) (µ(r), λ(r), ρ(r)) : min
µ,λ,ρ

Φ(µ, λ, ρ) = Φ(µ, λ, ρ). The functions (µ(r), λ(r), ρ(r))

constitute an approximate solution to the inverse problem.

To minimize the residual functional, we use gradient descent methods. A rigorous mathemat-

ical formulation for the gradient of the residual functional Φ (µ, λ, ρ) with respect to parameters

(µ, λ, ρ) was obtained in [15] and has the following form:

Φµ(r;µ, λ, ρ) =
∑M

j=1

∫ T

0
ε(v(t, r; qj ;µ, λ, ρ)) : ε(h(t, r; qj ;µ, λ, ρ))dt,

Φλ(r;µ, λ, ρ) =
∑M

j=1

∫ T

0
div(v(t, r; qj ;µ, λ, ρ)) · div(h(t, r; qj ;µ, λ, ρ))dt,

Φρ(r;µ, λ, ρ) =
∑M

j=1

∫ T

0
(vt(t, r; qj ;µ, λ, ρ),ht(t, r; qj ;µ, λ, ρ))dt.

(7)

Here, ε(v(t, r)) = (Dv(t, r) + (Dv(t, r))T )/2; Dv is the Jacobian of v(t, r) with respect to r;

and similarly for h(t, r). In the first line, the operator (A : B) =
∑

ij AijBij denotes the element-

wise scalar product of two matrices, and in the third line (·, ·) is the scalar product of vectors

from R3. Equation (7) uses the displacement functions v(t, r; qj ;µ, λ, ρ) and h(t, r; qj ;µ, λ, ρ).

The displacement function v(t, r; qj ;µ, λ, ρ) is obtained by solving the main problem (1)–(4)
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for velocities and stresses, followed by integrating the velocity function using the formula

v(t, r) =

∫ t

0
u(t, r)dt, (8)

where the initial conditions of rest are used for u(t, r). Function h(t, r; qj ;µ, λ, ρ) is obtained

from the solution of the following adjoint velocity-stress problem (9)–(10) for the given values

(µ, λ, ρ) followed by integration of the velocity function using formula (11).

{
ρ(r)∂ω(t,r)

∂t − div σ(t, r) = u(t, s; qj ;µ, λ, ρ)−U(t, s; qj),
∂σ(t,r)
∂t = 2µ(r)∂ε(t,r)

∂t + λ(r)div ω(t, r) I.
(9)

ω(t = T, r, qj ;µ, λ, ρ) = 0, σ(t = T, r, qj ;µ, λ, ρ) = 0, ω(t, r) |Γ= 0, σ(t, r)n |∂Ω\Γ= 0. (10)

h(t, r, qj ;µ, λ, ρ) = −
∫ T

t
ω(t, r, qj ;µ, λ, ρ)dt. (11)

Here, ε(t, r)=(Dω(t, r)+(Dω(t, r))T )/2 ; Dω is the Jacobian of ω(t, r); I is the identity matrix.

For numerical integration over time in formulas (8) in order to obtain v(t, r, qj ;µ, λ, ρ),

it is convenient to use the formula for integration in reverse time v(t, r) =
∫ t

0 u(t, r)dt =∫ T
0 v(t, r)dt−

∫ T
t v(t, r)dt, where the value

∫ T
0 v(t, r)dt is computed in advance during solving

the main problem (1)–(4). In order to compute the gradient using formulas (7), the functions

vt(t, r, qj ;µ, λ, ρ) and ht(t, r, qj ;µ, λ, ρ) are replaced by u(t, s, qj ;µ, λ, ρ) and ω(t, r, qj ;µ, λ, ρ),

respectively, which are obtained explicitly from the solution of the main and adjoint problems.

If the lateral boundaries of the plate Ω are located sufficiently far away, it is convenient to re-

place boundary condition (3) u(t, r) |Γ= 0 with some boundary transparency condition on Γ [23]

in the computations of the main and adjoint problems. Iterative gradient-descent methods have

proven highly effective in solving inverse coefficient problems. It is expected that the inverse

problem in the presented formulation can be solved using high-performance computers.

3. Statement of the Inverse Problem of Ultrasonic Tomography

for Detecting Surface Defects in a Plate Using a Scalar

Model

To solve the inverse problem of detecting defects inside a plate rigorously, it is necessary to

formulate the inverse problem in a three-dimensional vector model, as described in Section 2.

However, such a formulation is associated with a huge amount of computations, which is a

demanding task even for HPC systems.

Figure 2a shows a tomographic scheme for examining surface defects on a plate. Let the

defect represent a localized change in plate thickness d(r); outside the defect, the plate thickness

is constant and equal to d0 (Fig. 2b). Ultrasonic radiation sources 1 are located around the defect.

The wave field is recorded on line 2. The case where the defect is located on the side opposite

to the sources and detectors (lower side on Fig. 2a) is of greatest interest.

Based on a number of considerations, among the various Lamb wave modes, the A0 mode [24]

is suitable for tomographic imaging. Let us consider a simplified formulation of the inverse

problem for detecting surface defects. For a plate thickness that smoothly varies in the region
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(a) location of sources 1 and detectors 2 (b) mathematical model of a 2D inverse problem

of plate thickness reconstruction d(r)

Figure 2. Scheme of tomographic diagnostics of surface defects

of defects, the propagation of Lamb waves of A0 mode is approximately described by a two-

dimensional scalar wave model with varying wave velocity in the defect region. We introduce a

two-dimensional coordinate system XY on the lower surface of the plate, where the sources and

detectors are located. A point r on the surface thus has the coordinates r = (x, y)∈R2. The

propagation of vertical oscillations of A0 mode Lamb waves on the lower surface of the plate

is approximately described by a two-dimensional scalar model. Since the wave velocity of A0

mode depends on the frequency, we use the Helmholtz equations for a certain set of frequencies

from the spectrum of the sounding pulse

∆ru(wi, r, qj) + (wi/c(r, wi, d(r)))2u(wi, r, qj) = F δ(r − qj), (12)

where u(wi, r, qj) is a scalar wave at a point r∈R2 on the lower surface of the plate; wi is the

sounding frequency (i = 1, . . . , N); qj∈R2 (j = 1, . . . ,M) is the position of the source on the

lower surface of the plate; c(r, wi, d(r)) is the velocity of A0 mode waves, which depends on the

frequency wi and plate thickness d(r) at a point r in accordance with the dispersion relation [24].

F is the amplitude of the sounding wave. Non-reflecting boundary condition is applied at the

boundary of the computational domain.

The inverse 2D problem is to determine the thickness d(r) that minimizes the residual

functional Φ(d(r)), which depends on the thickness d(r)

Φ(d(r)) =
∑M

j=1

∑N

i=1

∫

S
(u(wi, s, qj , d(r))−U(wi, s, qj))

2ds. (13)

Here, U(wi, s, qj) are the experimental data, which represent vertical oscillations of the A0 mode

Lamb wave at the detector locations s. The gradient of the residual functional can be computed

explicitly

δΦ(d(r))

δd(r)
=

N∑

i=1

2c2
0(wi)

c3(wi, d(r))

δc(wi, d(r))

δd(r)

M∑

j=1

(
wi

c0(wi)

)2

Re(u(wi, r, qj , d(r))z(wi, r, qj , d(r))),

(14)

where z(wi, r, q,d(r)) is the solution to the adjoint problem [25]; c(wi,d(r)) and its derivative

is determined from the dispersion relation [24]. Knowing the gradient, we can use iterative

gradient-descent methods for minimizing the residual functional in order to solve the inverse

problem.
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4. Model Computations

4.1. Numerical Method for Solving the Direct Problem of Elastic Wave

Propagation in a Solid Body

For the numerical solution of the system of equations of the dynamic elasticity theory (1),

a standard explicit finite-difference scheme on staggered grids is used [26–28]. The grid consists

of integer and half-integer nodes. We will use the following notation

(x1)i = ih1, (x1)i+1/2 = (i+ 1/2)h1, (x2)j = jh2, (x2)j+1/2 = (j + 1/2)h2,

(x3)k = kh3, (x3)k+1/2 = (k + 1/2)h3, tn = nτ, tn+1/2 = (n+ 1/2)τ,

where hm is the grid step along the coordinate xm, and τ is the time step. Discretized functions

at integer and half-integer grid points are introduced

(u1)ni+1/2,j,k = u1((x1)i+1/2, (x2)j , (x3)k, t
n), (u2)ni,j+1/2,k = u2((x1)i, (x2)j+1/2, (x3)k, t

n),

(u3)ni,j,k+1/2 = u3((x1)i, (x2)j , (x3)k+1/2, t
n), (σ11)

n+1/2
i,j,k = σ11((x1)i, (x2)j , (x3)k, t

n+1/2),

(σ22)
n+1/2
i,j,k = σ22((x1)i, (x2)j , (x3)k, t

n+1/2), (σ33)
n+1/2
i,j,k = σ33((x1)i, (x2)j , (x3)k, t

n+1/2),

(σ23)
n+1/2
i,j+1/2,k+1/2 = σ23((x1)i, (x2)j+1/2, (x3)k+1/2, t

n+1/2),

(σ13)
n+1/2
i+1/2,j,k+1/2 = σ13((x1)i+1/2, (x2)j , (x3)k+1/2, t

n+1/2),

(σ12)
n+1/2
i+1/2,j+1/2,k = σ12((x1)i+1/2, (x2)j+1/2, (x3)k, t

n+1/2).

To construct an explicit finite-difference scheme, the following approximations for time deriva-

tives are used Dt [f ]NI,J,K =
(
f
N+1/2
I,J,K − fN−1/2

I,J,K

)
/τ , where f is the differentiated function.

Lowercase subscripts denote integer values, while uppercase subscripts are used for both in-

teger and half-integer values. Spatial derivative of f with respect to x1 is approximated as

D1 [f ]NI,J,K =
(
fNI+1/2,J,K − fNI−1/2,J,K

)
/τ .

Approximations of other spatial derivatives are constructed similarly. The numerical ap-

proximation of the system of equations (1) takes the following form:

ρi+1/2,j,kDt[u1]
n−1/2
i+1/2,j,k = D1[σ11]

n−1/2
i+1/2,j,k +D2[σ12]

n−1/2
i+1/2,j,k +D3[σ13]

n−1/2
i+1/2,j,k,

ρi,j+1/2,kDt[u2]
n−1/2
i+1/2,j,k = D1[σ12]

n−1/2
i,j+1/2,k +D2[σ22]

n−1/2
i,j+1/2,k +D3[σ23]

n−1/2
i,j+1/2,k,

ρi,j,k+1/2Dt[u3]
n−1/2
i,j,k+1/2 = D1[σ13]

n−1/2
i,j,k+1/2 +D2[σ23]

n−1/2
i,j,k+1/2 +D3[σ33]

n−1/2
i,j,k+1/2,

Dt[σ11]ni,j,k = (λi,j,k + 2µi,j,k)D1[u1]ni,j,k + λi,j,kD2[u2]ni,j,k + λi,j,kD3[u3]ni,j,k + [f11]ni,j,k,

Dt[σ22]ni,j,k = λi,j,kD1[u1]ni,j,k + (λi,j,k + 2µi,j,k)D2[u2]ni,j,k + λi,j,kD3[u3]ni,j,k + [f22]ni,j,k,

Dt[σ33]ni,j,k = λi,j,kD1[u1]ni,j,k + λi,j,kD2[u2]ni,j,k + (λi,j,k + 2µi,j,k)D3[u3]ni,j,k + [f33]ni,j,k,

Dt[σ23]ni,j+1/2,k+1/2 = µi,j+1/2,k+1/2(D2[u3]ni,j+1/2,k+1/2 +D3[u2]ni,j+1/2,k+1/2) + [f23]ni,j+1/2,k+1/2,

Dt[σ13]ni+1/2,j,k+1/2 = µi+1/2,j,k+1/2(D3[u1]ni+1/2,j,k+1/2 +D1[u3]ni+1/2,j,k+1/2) + [f13]ni+1/2,j,k+1/2,

Dt[σ12]ni+1/2,j+1/2,k = µi+1/2,j+1/2,k(D1[u2]ni+1/2,j+1/2,k +D2[u1]ni+1/2,j+1/2,k) + [f12]ni+1/2,j+1/2,k.

(15)

The stability condition for scheme (15) has the form of cp

√(
1
h2
1

+ 1
h2
2

+ 1
h2
3

)
≤1, where cp is the

longitudinal wave velocity in the material.
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4.2. Model Computations of the Direct Problem of Wave Propagation

in Thin Plates

The problem of computing the wave field in thin plates is of particular interest in this work.

Due to the complex effects of interference in thin plates, the resulting waves are so-called normal

waves or Lamb waves. We consider Lamb waves in plates with a thickness comparable to the

wavelength. Lamb waves have different modes, each traveling at a different speed. A distinction

is made between symmetric modes (denoted as Si) and asymmetric modes (denoted as Ai) of

Lamb waves. In symmetric modes, the upper and lower surfaces of the plate move in opposite

directions along the Z-axis perpendicular to the surfaces, while in asymmetric modes the surfaces

move in the same direction.

An important feature of Lamb waves is that for a given plate thickness only the zero-order A0

and S0 modes are excited for frequencies below a certain threshold frequency. As the frequency

increases, additional higher-order modes appear. In tomographic experiments, it is advisable

to use the frequencies below this threshold frequency to avoid the appearance of additional

modes. The fewer modes are present, the simpler and more reliable are the experimental data

obtained. The A0 mode is excited much more easily than the S0 mode by striking the plate

from above. Furthermore, with this type of pulse excitation, as shown by model computations,

the amplitude of the A0 mode is significantly higher than the amplitude of the S0 mode. The

propagation velocities of the A0 and S0 modes in the frequency range under consideration differ

by approximately a factor of 2, which allows for reliable separation of these modes in processing

the experimental data for solving inverse problems of thin plate diagnostics.

As an example, we present a computation of the wave field in a plate (Fig. 3) with a notch-

shaped defect, with a depth smoothly increasing from zero toward the defect center as a cosine

function. The parameter values used in the computation effectively excite only the A0 Lamb

wave mode:

• ω = 75 kHz is the central frequency of the pulse;

• R = 5 mm is the radius of the circle of force application;

• L= 62.5 cm is the plate length;

• d= 1.0 cm is the plate thickness;

• a1 = 106.3 mm, b1 = 156.3 mm are the coordinates of the center of the force application;

• L = 8.5 cm; h = 0.5 cm are the diameter and maximum depth of the defect.

(a) 25 µs (b) 50 µs (c) 75 µs

Figure 3. Velocity u3 on the plate surface at different moments of time
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As can be seen from this figure, the defect significantly distorts the wavefront (the defect is

highlighted by the black line in Fig. 3a. This distortion appears due to the fact that the residual

plate thickness under the defect is 70% of the initial plate thickness, which leads to a decrease

in the propagation velocity of the A0 Lamb waves, since their velocity decreases with decreasing

plate thickness.

4.3. Numerical Method for Solving the Inverse Problem of Plate Thickness

Reconstruction

The inverse problem of plate thickness reconstruction was solved using a two-dimensional

scalar model approximation, described by the Helmholtz equation (12) for a certain set of

frequencies. To numerically solve the inverse problem of minimizing the residual functional

Φ (d (r)) (13), an iterative process was constructed consisting of the following steps:

1. The initial approximation at the first iteration is d1 (r) =d0=const , where d0 is the thickness

of the plate without defects.

2. For a given dn (r), the direct problem (12) of computing the wave field is solved using the

finite difference approximation (16).

3. Using the simulated measured values of the wave field on the detectors U (wi, s, qj) and

computed u (wi, s, qj , d (r)) for a given d (r), the adjoint problem is solved in finite difference

approximation.

4. Using the obtained values z (wi, r, qj , d (r)) and u (wi, r, qj , d (r)), the gradient of the residual

functional Φ
′

d (d (r)) is computed by formula (14).

5. Knowing the gradient, we compute the next iterative approximation using the formula

dn+1 (r) =dn (r) -γ (n) Φ
′

d (d (r)). The step size at the first iteration is determined based on

prior considerations. If the value of the residual functional increases at the next iteration,

γ (n) is reduced by a factor of 2. The process returns to step 2.

The Helmholtz equation is discretized on a uniform rectangular grid, and the correspond-

ing derivatives are approximated by finite differences using standard formulas. The discretized

Helmholtz equation takes the following form:

ui+1j − 2uij + ui−1j

∆x2
+

uij+1 − 2uij + uij−1

∆y2
+

ω

c2(ω, d(rij))
uij = Fi,j . (16)

The system of algebraic equations is constructed as the indices i, j run through all the values

within the workspace. The matrix of this system is sparse and stored in CSR format. The Eigen

library is used for sparse matrix manipulation and solving the problem. We will discuss the

implementation details in Section 5.

4.4. Model Computations of the Inverse Problem of Plate Thickness

Reconstruction

A series of computational experiments were conducted on solving the inverse problem of

surface defect imaging. The experiment involved solving the forward problem using a three-

dimensional vector wave model and recording the detector data. These data were then used

as simulated experimental data to solve the inverse problem for a two-dimensional scalar wave

equation.
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The direct problem was solved for a three-dimensional thin steel plate (Fig. 2) with a

thickness d and a size of L×L. Free boundary conditions were applied on the upper and lower

boundaries. The size of the computational domain and the locations of the sources and detectors

were chosen such that the wave reflected from the boundary of the computational domain arrived

at the detector sufficiently later than the wave reflected from the defect. A square workspace is

located in the center of the computational domain. Defects, which are cylindrical depressions on

the underside of the plate, are located within the workspace. Sources and detectors are located

at the edges of the workspace on the upper side of the plate.

The sources generate sounding pulses defined by formula (5). The detectors are uniformly

distributed around the perimeter of the workspace and record the vertical component of the

displacement velocity u3(t, r) on the upper side of the plate. Data is recorded with the same

time step as in the forward problem calculation. For each source-detector pair, the data recorded

is a function of time. For each detector, the data undergoes a Fourier transform, and the result

is used as U(w, s; qj) to solve the inverse problem for the Helmholtz equation. An example of

a recorded signal is shown in (Fig. 4a), and a plot of the Fourier transform modulus for one

detector is shown in (Fig. 4b).

t, µs

(a) example of a recorded signal

ν, kHz

(b) spectrum of a recorded signal

x,m

(c) real part of the Fourier

transform. u3. Blue (solid) is a

vector model, red (dashed) is a

scalar model, yellow is difference

Figure 4. Signal and its spectrum and comparison u3 in vector model with u3 in scalar model

A key aspect in solving the inverse problem in a scalar two-dimensional wave model described

by the Helmholtz equation is the correct selection of the amplitude and phase of the source

perturbation and the wave propagation velocity for each harmonic. These parameters cannot be

obtained explicitly with the required accuracy, even if the source and medium parameters in the

forward three-dimensional problem for an elastic vector medium are known. In a real physical

experiment, these parameters are unknown or approximate, making the case even worse.

In order to determine the missing parameters, data fitting was performed on a single-source

problem with standardly positioned detectors on a defect-free plate. The vector model was used

to compute the wave field at the detectors, perform a Fourier transform, and obtain complex-

valued data at the detectors for the selected frequency. The phase, velocity, and amplitude of

the harmonics in the scalar model were determined by minimizing the norm of the difference

between the complex-valued data at the detectors for a given frequency in the scalar and vector

problems.
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Figure 4c shows the data fitting error between the two models. Blue line represents the

data from the vector model, red line represents the data from the scalar model, and yellow

line represents their difference. The root-mean-square fitting error is approximately 0.02%. The

procedure for determining these parameters was performed for each frequency used in solving

the inverse problem.

To demonstrate the algorithm for solving the inverse problem of plate thickness imaging,

a computational experiment was conducted with 12 sources located 10 cm inwards from the

midpoints of the sides of a 30×30 cm square computational domain. 1200 detectors were placed

equally spaced around the perimeter of the square. The computations used 41 frequencies in the

range of 23–147 kHz. The simulated sample object contains a collection of defects in the form

of cylindrical depressions.

(a) sample (b) gradient at the first iteration

(c) reconstructed image after 50 iterations (d) reconstructed image after 140 iterations

Figure 5. Simulation experiment

Figure 5 shows the sample, the gradient at the first iteration, and the reconstructed image

after 50 and 140 iterations. The results demonstrate that defects are localized with high accuracy,

and their shape is precisely reconstructed. A large number of model simulations were performed

with defects of varying shapes and depths. These simulations demonstrated that the developed
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algorithm reliably detects both point-like and extended defects, precisely reconstructs their shape

and depth, and has high spatial resolution.

5. Performance Analysis of a Supercomputer Implementation

for Solving Inverse Problems of Ultrasound Tomography

Using the Lamb Wave

Solving the inverse problems under consideration requires huge computational resources.

During the iterative solution process, the Helmholtz differential equation (12) must be solved

for both the direct and the adjoint problem at each iteration, for each source position, and for

each frequency used. Typical numbers of sources and frequencies can vary from a few to several

dozen. For the model computations presented in Section 4.4, 12 sources and 41 frequencies were

used, in which case the Helmholtz equation must be solved 12 × 41 × 2 = 984 times for every

iteration.

A finite-difference approximation was used for the Helmholtz equation, resulting in a system

of linear algebraic equations (SLAE), the solution of which is the most computationally expensive

and time-consuming task. Third-party linear algebra libraries were used for SLAE solution. The

SLAE matrix has a size equal to the number of grid points and is highly sparse, with a fill-factor

of approximately 0.0008%. The matrix is stored in CSR format. For the model computations

from Section 4.4, the matrix size was approximately 6.4·105×6.4·105 with the number of nonzero

elements approximately 3.2× 106. Note that the matrix in this problem is not symmetric.

An inverse problem solution algorithm was implemented using C++ language plus MPI for

parallelization, and Eigen library [29] to fill in the matrix, the right-hand side, and solving the

SLAE. In this Section, we analyze the performance of the developed application for solving in-

verse problems. The computations were performed in the “compute” section of the Lomonosov-2

supercomputer [30]. In this section, each node contains a single 14-core Intel Xeon E5-2697 v3

CPU with 64 GB of RAM. The application was run on 164 processes. Intel MPI 2017 was used

to compile and run the distributed MPI version. For this performance analysis, the program

was configured to run for ∼5 minutes, this was achieved by reducing the number of iterations.

The iterations are essentially identical, so the overall picture in this case matches the program’s

behavior when using the number of iterations used for real-life calculations.

First, it was necessary to determine the optimal number of processes per node. This program

is quite memory-intensive, and in such cases, it is sometimes beneficial to occupy only a part of

processor cores in order to reduce memory contention. Experiments with 8 to 14 processes per

node were performed in the “compute” section, with 10 launches of every experiment performed

in order to obtain enough statistics. A smaller number of processes per node was not considered

in this case because it involves too many compute nodes, which was considered inexpedient.

Table 1 shows the minimum execution times obtained. We consider the minimum value, not

average or mean, because supercomputers often experience different external factors that can

slow down a user program (such as influence of other users’ applications running concurrently,

the overload of distributed file system, OS noise, etc.). This leads to periodic anomalous or simply

slower executions, which have notably longer execution times and are of no interest in our case.

But we note that the average execution time behaves generally similarly to the minimum time.

Considering the minimum time allows us to estimate how quickly a program can potentially

execute under the chosen parameters, without the influence of external factors.
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Table 1. Program execution time with different numbers of processes per node

Processes per node 8 9 10 11 12 13 14

Minimum execution time, s 360 360 294 222 222 228 228

It can be seen that the program executes the slowest at 8–9 processes per node, then the

execution time begins to decrease, reaching a minimum at 11–12 processes per node. This is

presumably due to the fact that fewer compute nodes are required as the number of processes

per node increases, and, as a result, the amount of data transferred between nodes decreases

(i.e., the communication decreases). The execution time then increases slightly, likely due to the

aforementioned effect of memory contention between processes on the node. Thus, the minimum

execution time is achieved at 11–12 processes per node. However, it should be taken into account

that when running user programs on a supercomputer, a queuing system is used, and the more

nodes a program requires, the longer it will usually wait in the queue for the required number

of nodes to become available. Given that the difference in execution time between the versions

with 11–12 and 14 processes per node is small (a slowdown of ∼3%), but fewer nodes are used

(difference in two nodes, or 16.7%), it is recommended to run this program on 14 processes per

node, thereby utilizing all available processor cores. This will both speed up the job’s progress

through the queue and reduce the overall resource consumption in terms of node-hours, thereby

saving resources for other users’ jobs.

Next, we analyzed the program’s performance, using 14 processes per node. First, we ex-

amined the MPI usage in the program. mpiP 3.5 profiling tool [31] was used for this purpose.

Analysis of its results showed that program processes spend 3–10% of their execution time on

MPI, which can be considered as a good result for a program running on 164 processes and

12 compute nodes. It should be noted that MPI usage characteristics do not differ significantly

for individual processes, i.e., there is no significant imbalance in the program.

Approximately 70–75% of the execution time spent on MPI is accounted for by just two

MPI Allreduce calls, with almost all of the remaining time accounted for by two MPI Bcast

calls. It is interesting to note that both MPI Allreduce calls are responsible for transferring a

tiny amount of data – less than 0.1% of the total amount of transferred data (while MPI Bcast

calls are responsible for transferring the rest of the data). Therefore, if there is a need to optimize

MPI usage, these MPI Allreduce calls can clearly be singled out as the main candidates, since

they account for the majority of the time, but they transfer very little data. One could assume

that the reason for their long execution is related to imbalance caused by some processes reaching

this MPI operation earlier and simply waiting for the other processes to start, but this is not

always the case. In some cases, all involved processes spent significant time performing these

operations. The exact reasons for this behavior are currently unknown; however, the total time

spent on MPI in the current program configuration is quite small, so further detailed analysis

and optimization in this direction is not of great interest at the moment (this may change in the

future if a larger number of processes are involved, likely leading to the increase of MPI share

in execution time).

After studying MPI usage, an analysis of the execution efficiency of one individual process

was conducted. The program is generally well-balanced, so the overall results for one process pre-

sented below hold true for others as well. The analysis was performed using Intel VTune 2019.5

and Intel Advisor 2019.5.
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Initially, the most general performance characteristics of parallel programs were studied:

• The average number of cycles per instruction (CPI) is ∼0.5, i.e., two instructions are

executed per clock cycle on average, which is high for real-world HPC applications.

• The utilization of processor cores is also quite high, at 85–90%.

• The Retiring metric, which roughly shows the percentage of time the CPU was fully utilized

by performing useful operations, is of interest as well. This metric is calculated using a

Top-down approach proposed by Intel [32], the goal of which is to identify the dominant

bottlenecks in an application performance. For this program, the value of this metric is

45–55%, which indicates a fairly efficient HPC program (according to Intel, an expected

range of Retiring value for well-tuned HPC programs is 30–70% [32]).

Intel VTune allows collecting various useful information using the Top-down approach. How-

ever, Hyperthreading is enabled on compute nodes in the “compute” partition, making some

Top-down metrics unavailable in VTune. Therefore, to analyze these metrics, we conducted spe-

cial launches of the program in the “pascal” partition of the Lomonosov-2 supercomputer. The

nodes in this partition are equipped with a different processor – a 12-core Intel Xeon Gold 6126.

However, the comparison showed that the overall picture provided by Top-down approach al-

most does not change across runs in different partitions, so here we show a more complete list

of metrics after running in the “pascal” partition.

Figure 6 shows the Top-down metrics for this program provided by Intel VTune. It can be

seen that there are no issues with data prefetch or instruction preparation (Bad Speculation and

Front-End Bound metrics, respectively). In this case, the application is classified as Back-End

Bound (50%), meaning that processor slots were frequently only partially occupied, with the

main reason for this being memory management (Memory Bound = 29%). It should be noted

here that Core Bound in the screenshot is just slightly lower than Memory Bound, and this is

the only noticeable difference from what is observed in the “compute” section (being of primary

interest for us), where Core Bound is 10%, being a small value. Therefore, we do not consider

this issue, since it does not occur when running in “compute”.

Figure 6. Top-down metrics obtained by Intel VTune
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In terms of memory usage, this program exhibits no issues with any cache levels (L1/L2/L3

Bound values are very small). However, some problems with RAM can be noted. These include

mainly memory bandwidth issues (the program reaches maximum bandwidth to RAM, likely

causing a slowdown) as well as some memory latency issues (the program has to wait for data

from RAM, as the retrieval process takes notable time). The values for these metrics are not

very high, meaning the issues are apparently not that significant, but they are still present.

The presence of performance issues with RAM is as well confirmed by studying the values

of performance monitoring counters also provided by VTune. They show that when accessing

L3 cache, there are 2.5 misses for every hit on average (and L3 miss necessitates an access

to RAM), which is a very poor indicator. Furthermore, one L3 cache miss occurs for every

200 memory accesses, meaning the L3 is used quite heavily. This suggests that memory access

is organized not in the most efficient manner, leading to fairly frequent RAM accesses and,

consequently, waiting for data from memory.

The vectorization level using Intel Advisor was also studied. It revealed that the program

is not vectorized at all: only 0.1% of the execution time is spent in vectorized code fragments.

Furthermore, vectorization does not use the newer AVX instructions, only SSE and SSE2. This,

however, is currently not particularly significant given that almost all the code is scalar.

A separate study of the most computationally intensive fragments (those that consume the

most time during program execution) was conducted. A general analysis on the level of modules

revealed that the program spends >90% of its execution time within its own code, with another

∼5% executing MPI functions, 1.5% interacting with the OS kernel (vmlinux), and ∼1% calling

the libm math library. Within the program itself, almost all of the time is spent executing the

code from the aforementioned Eigen library.

Thus, the following conclusions can be drawn from the analysis performed. The program

demonstrates relatively high performance, with MPI operations taking up only a small portion

of the program’s execution time – ∼5% of the total runtime, which is quite low for a program

with 164 processes. Certain performance issues with RAM usage were noted; they do not signif-

icantly slow down the program but do represent a potential area for optimization. Vectorization

is essentially absent, which is also a clear candidate for optimization (if this area is further to be

explored, a detailed analysis of the non-vectorized code fragments will be required to determine

the feasibility of vectorization). However, everything discussed regarding memory and vector-

ization applies to the usage of external Eigen library, as almost all execution time not spent on

MPI is spent working with it, which significantly complicates the possibility of making changes

and optimizations. One of the possible solutions in this case is to switch to using other libraries

for solving SLAE like MKL.

Conclusion

This study examines the challenges of supercomputer implementation of ultrasonic tomo-

graphic imaging of internal and surface defects for nondestructive testing of solids. It has been

shown that the imaging problem of ultrasonic imaging of thin plates using Lamb waves is a coef-

ficient inverse problem, i.e., it involves determining unknown coefficients in differential equations

describing wave propagation in scalar and vector models.

It has been shown that a scalar two-dimensional model is quite suitable for detecting surface

defects. A simplified formulation of the inverse problem assumes that the propagation of Lamb

waves of mode A0 is approximately described by the Helmholtz equation. The experimental data
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were obtained from a numerical solution of the direct problem in a 3D elastic model in time

domain. An explicit expression for the residual functional gradient with respect to the plate

thickness was formulated for a range of frequencies. Iterative methods have been developed to

solve the inverse problem. The methods are based on gradient descent methods to minimize the

residual functional. Efficiency of the proposed algorithms is illustrated on model problems.

Within this simplified model, tomographic imaging technique makes it possible to recon-

struct the shape, size, and depth of defects. Solving the Helmholtz equation is the core element

of the developed algorithms for solving inverse problems of wave tomography. The most de-

manding computations involve solving linear equations with large-scale sparse matrices using

LU-decomposition method. The algorithms were implemented using linear algebra Eigen li-

brary. The performance analysis of the solution of the inverse problem in the scalar formulation

of the Helmholtz equation (with Eigen library used for solving SLAE) was performed on the

Lomonosov-2 supercomputer.
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