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This article concerns the developing of supercomputer methods for solving inverse problems
of ultrasonic tomography in application to nondestructive testing of thin plates using Lamb waves.
Such problems are computationally expensive, as longitudinal, shear, and other waves propagate
in solids, requiring the use of vector elastic models of wave propagation. Iterative methods for
solving the inverse problem have been developed. The methods are based on gradient descent
methods of minimizing the residual functional. Efficiency of the proposed algorithms is illustrated
on model problems. The field of wave tomography, which is currently under development, requires
powerful computing resources. Parallel computations in this study have been performed on general-
purpose processors of the Lomonosov supercomputer complex. Solving the Helmholtz equation is
the core element of the developed algorithms for solving inverse problems of wave tomography.
The most demanding computations involve solving linear equations with large-scale sparse matrices
using LU-decomposition method. The algorithms were implemented using linear algebra libraries
with serial and parallel code. Effectiveness, scalability and performance of the method has been
evaluated on CPU computing platforms.

Keywords: supercomputer, mathematical modeling, guided wave tomography, inverse problems,
Lamb waves.

Introduction

This paper concerns the developing of developing ultrasonic tomographic imaging methods
for non-destructive testing of solids. Immediately after the advent of the first medical X-ray
tomographs, the idea of ultrasonic tomographic imaging devices arose. Solving this problem
would eliminate the use of ionizing radiation in medical imaging. Ultrasonic tomography opens
up fundamentally new possibilities for nondestructive imaging of solids. However, developing
wave tomography devices has proven much more complex than X-ray ones, primarily due to
the mathematical challenges involved. While the inverse problems in X-ray tomography can be
solved using linear mathematical models, wave tomography imaging requires solving nonlinear
inverse problems.

Over the past 20 years, breakthrough results in ultrasound tomography have been achieved
in soft tissue diagnostics. One of the key challenges in modern medicine is the diagnosis of
breast cancer in the early stages of the disease. This problem can be successfully solved using
ultrasound tomography . A unique feature of breast cancer diagnostics is the ability to
interpret tomography data in a scalar wave model, since soft tissues are more than 90% water.
Mostly the pressure waves propagate through soft tissues. However, even in this simple model,
the inverse problem is nonlinear, and its solution requires the use of supercomputers @ Efficient
iterative algorithms for interpreting experimental data have been developed using the explicit
formulation of the gradient of the residual functional between the calculated and measured wave
fields at the detectors . Effectiveness of the developed methods has been evaluated on
supercomputers using various computing platforms @ .

Inverse problems of ultrasound tomography in NDT are much more complex, since the
mathematical model must describe the propagation of both longitudinal and shear waves. The
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displacement of a point is described by a vector, and a system of second-order differential
equations is constructed for the components of the displacement vectors . The inverse
problem is reduced to minimizing a functional dependent on three unknowns: density and two
elasticity coefficients as functions of spatial coordinates. As in the scalar case, a representation
for the gradient of the residual functional with respect to these three parameters is obtained in
the vector elastic model . Thus, from a mathematical standpoint, in both the scalar
and vector models, the objective is to solve a coefficient inverse problem for differential equations.
Iterative methods for finding an approximate solution employ the explicit representation for the
gradient of the residual functional.

However, in this formulation, the inverse problem is computationally very expensive. For
a number of practically important non-destructive testing (NDT) problems, the use of sim-
pler mathematical models appears promising . One such problem is ultrasonic diagnostics
of defects in thin plates . This study evaluates the supercomputer implementation of the
ultrasonic tomographic imaging method for NDT using Lamb waves. Capabilities of the approx-
imate solution method for the inverse problem of detecting surface defects in metal plates are
examined in detail. Solving the Helmholtz equation is the core element of the proposed imaging
algorithms. A specialized scalar model for thin-plate defect diagnostics allows for determining
not only shapes, but also the depth map of defects. Even in this simplified model, a super-
computer is required to implement the developed algorithms in practice. The effectiveness of
tomographic image reconstruction algorithms on a CPU platform is discussed in detail.

The article is organized as follows. Sections are devoted to the formulation and
model computations of the direct problem of ultrasound tomography. Sectionsare
devoted to the formulation and model computations of the inverse problem. Sectioncontains
performance analysis of a supercomputer implementation. summarizes the study.

1. Statement of the Direct Problem of Ultrasound Tomography
in a Vector Elastic Model

The object of tomographic imaging in this study is a thin, homogeneous flat plate, the
thickness of which is on the order of the central wavelength of the sounding pulse (Fig. .
Defect detection in thin plates and pipes is a pressing practical issue . The specificity of
this problem is that Lamb waves of different modes propagate in thin plates and pipes. Defects
in the imaged sample can be internal, associated with a local change in the parameters of the
medium, or surface defects, associated with a local change in the plate thickness. First, we
present the formulations of the direct and inverse problems for the case of internal defects.

Figure |1| shows a diagram of a tomographic imaging experiment, including sources and
detectors of ultrasonic radiation. The sources sequentially emit ultrasonic sounding pulses, which
are recorded by the detectors.

__-Sourses__

“Detectors -

Figure 1. Scheme of the tomographic experiment
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We assume that the sounding waves propagate in isotropic, linear, perfectly elastic media
described by the Lame parameters and the density of the material. To simulate the wave prop-
agation process in elastic media, the problem is often formulated in terms of particle velocity
and stress. The dynamic equations in R? describing wave propagation in an elastic volumetric
plate in the velocity-stress formulation have the form of a first-order hyperbolic system
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Here u (t,7) = (u1,u2,u3) is the shear velocity vector, o (t,r) = 0;; is the stress tensor of size

3% 3; u(r), A(r) are the Lame coefficients; p (r) is the bulk density; f (¢,7) = fi; is the tensor

defining the external force. For these equations, we should also specify the initial conditions of
rest at the time ¢t =0

v (0,z) =0, o(0,2) =0. (2)

When solving the direct problem of elastic wave propagation, the functions p (7), A (r),
p (r) are known, and the components of the wave field for each point of the region 2 are to be
determined. Boundary conditions are applied on the boundary 902 of the plate Q. The lateral
sides of the boundary I'COf2 are assumed stationary with the following boundary conditions

u (t,r) |[p= 0. (3)

The rest of the boundary (the upper and lower sides of the plate) 9\ I" is assumed a free
boundary, i.e., no external forces act on 9 \ I', and we apply the conditions

o (tv T) n ‘8Q\F: 07 (4)

where n is the outer normal vector to the boundary at point .
In all the computations presented, the following sounding waveform was used as the external
disturbance

C'sin (2mpt) sin (2mvet), 0 <t < 3/wo,

f33(x1, 22,23 = 0,t) = { (5)

0, otherwise,

and the remaining components of the force tensor f;; = 0. Here wy is the central frequency of
the sounding pulse. The constant C' determines the amplitude of the external disturbance. For
the simulations presented below, we assume C = 1 GPa/us = 1076 kg/(mm - pus?). The time
dependence of the pulse is a smooth function with a zero time derivative at the boundaries and
a zero integral over the time of action. Under these conditions, the pulse spectrum does not
contain very low and very high frequencies. The external disturbance is applied at a certain
point on the upper surface of the plate.
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2. Statement of the Inverse Problem of Ultrasonic
Tomographic Imaging of Internal Defects in a Plate
in Elastic Vector Models

Let us consider the inverse problem of ultrasonic tomography for the velocity-stress equa-
tions for detecting internal defects in a plate. Figureshows a diagram of ultrasonic tomog-
raphy of a plate. A defect with three unknown parameters of the medium (u(r), A (7), p(7))
occupies a region G. A plate © has a known constant thickness dy and parameters (uo, Ao, po)
outside the defect G. Ultrasound emitters and detectors are placed around the defect G on the
surface of the plate. The emitters are located at points q; with a total of M emitter positions
j=1,..., M. Wave field v(t, 7; g;) is measured at the boundary S surrounding the region G. Let
V(t, s; q;) denote the experimental data collected for detector position s€S, source position gj,
j =1,...,M, over the time interval [0,7]. A known function f (¢,7) describes the sounding
pulse. In the inverse problem, the goal is to determine the unknown parameters of the medium
(w(r),A(r),p(r)) for reG, knowing the measured experimental data V (¢, s; qJ) The displace-
ment function v(t,7;q;; 1, A, p) is obtained by solving the main problem for Velocmes
and stresses, followed by integrating the velocity function using the formula v( fo
The wave field v(t, s;q;; 1, A, p) computed for the parameters (u(r), A (7) ,,0(7’)) must satlsfy
the equation v (t, S, qj; I, A, ﬁ) = V/(t,s;q;), where scS, for all source positions g; and for the
exact (unknown) values of the parameters (z (r),\(r),p(r)).

Let us introduce the residual functional ®(u, A, p) of the arguments (u(r), A(r), p(r)), which
is the difference between the experimental data and the computed data

(A, p) ] . 2/ / (t,5,q5; 11, A, p) — V (L, 83 q5)) dsdt. (6)

For multiple wave sources, the residual functional is the sum of the values j = 1,..., M
obtained for each source. For each fixed source j, the integrals over the time interval [0, 7]
and over the boundary S are calculated for all the detectors in S. Mathematically, the inverse
problem is posed as the problem of finding functions (7z(r), A(r), p(r)) that minimize the residual
functional (T(r), X(r), p(r)) : /rln){rfly ®(u, \,p) = ®(f, A, p). The functions (f(r), \(r), p(r))
constitute an approximate solution to the inverse problem.

To minimize the residual functional, we use gradient descent methods. A rigorous mathemat-
ical formulation for the gradient of the residual functional ® (u, A, p) with respect to parameters

(1, A, p) was obtained in and has the following form:

(75 11, As p) Z]_ / v(t,7;q5; 11, A, p)) - €(h(t, 75 q55 1, A, p))dt,
(T, A p) —ijl/ div(v(t,7; qj; 1 A, p)) - div(h(t, 75 @55 1, A, p)) it (7)
T
O (15 1 Ay p) :ZFl/o (ve(t, 75 q55 11, A ), ha(E, 75 q55 11, A )t

Here, e(v(t,7)) = (Dv(t,7) + (Dv(t,7))T)/2; Dv is the Jacobian of v(t,) with respect to 7;
and similarly for h(t, 7). In the first line, the operator (A : B) = 3, A;; B;; denotes the element-
wise scalar product of two matrices, and in the third line (-,-) is the scalar product of vectors
from R3. Equation uses the displacement functions v(t,7; qj; 1, A, p) and h(t,r;qj; 11, A, p).
The displacement function wv(t,r;q;; i, A, p) is obtained by solving the main problem f
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for velocities and stresses, followed by integrating the velocity function using the formula

wlt,r) = /0 w(t,r)dt, (8)

where the initial conditions of rest are used for w(t,r). Function h(t,r;q;; i, A, p) is obtained
from the solution of the following adjoint velocity-stress problem @ . for the given values
(11, A, p) followed by integration of the velocity function using formula .

{mr)f’“gi"") — div o(t,r) = u(t, s;q5; 1, A, p) — Ult, s; q5), o)

97(Lm) — opu(r) 2Lr) | \(r)div wit, T) 1.
wit=T,7,q5;1,\,p) =0, ot =T,7,q51,\,p) =0, w(t,r)|[r=0, o(t,r)n [sor=0. (10)

T
h(t,r,qj;p, A, p) = —/ w(t,r, qj; @, A, p)dt. (11)
t

Here, e(t, 7)=(Dw(t,r)+(Dw(t,7))T)/2 ; Dw is the Jacobian of w(t,r); I is the identity matrix.
For numerical integration over time in formulas in order to obtain v(t, T, qj; 1, A, p),
it is convenient to use the formula for 1ntegrat10n in reverse time w(t fo (t,r)dt =
fOT (t,r)dt — ft t T) dt where the value fo ,7)dt is computed in advance during solving
the main problem . In order to compute the gradient using formulas , the functions
vi(t,T,q5; 1, A, p) and ht(t, T, q;; b, A, p) are replaced by w(t, s, qj; i1, A, p) and w(t, 7, qj; (1, A, p),
respectively, which are obtained explicitly from the solution of the main and adjoint problems.
If the lateral boundaries of the plate €2 are located sufficiently far away, it is convenient to re-
place boundary condition 1h u(t,r) |r= 0 with some boundary transparency condition on I
in the computations of the main and adjoint problems. Iterative gradient-descent methods have
proven highly effective in solving inverse coefficient problems. It is expected that the inverse
problem in the presented formulation can be solved using high-performance computers.

3. Statement of the Inverse Problem of Ultrasonic Tomography

for Detecting Surface Defects in a Plate Using a Scalar
Model

To solve the inverse problem of detecting defects inside a plate rigorously, it is necessary to
formulate the inverse problem in a three-dimensional vector model, as described in Section
However, such a formulation is associated with a huge amount of computations, which is a
demanding task even for HPC systems.

F igure shows a tomographic scheme for examining surface defects on a plate. Let the
defect represent a localized change in plate thickness d(r); outside the defect, the plate thickness
is constant and equal to dy (Fig. . Ultrasonic radiation sources 1 are located around the defect.
The wave field is recorded on line 2. The case where the defect is located on the side opposite
to the sources and detectors (lower side on Fig. is of greatest interest.

Based on a number of considerations, among the various Lamb wave modes, the Ay mode
is suitable for tomographic imaging. Let us consider a simplified formulation of the inverse
problem for detecting surface defects. For a plate thickness that smoothly varies in the region
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Plate

J\Q\

Corrosion

(a) location of sources 1 and detectors 2 (b) mathematical model of a 2D inverse problem
of plate thickness reconstruction d(r)

Figure 2. Scheme of tomographic diagnostics of surface defects

of defects, the propagation of Lamb waves of Ay mode is approximately described by a two-
dimensional scalar wave model with varying wave velocity in the defect region. We introduce a
two-dimensional coordinate system XY on the lower surface of the plate, where the sources and
detectors are located. A point r on the surface thus has the coordinates r = (z,y)€R?. The
propagation of vertical oscillations of Ay mode Lamb waves on the lower surface of the plate
is approximately described by a two-dimensional scalar model. Since the wave velocity of Ag
mode depends on the frequency, we use the Helmholtz equations for a certain set of frequencies
from the spectrum of the sounding pulse

Avu(wi,,q5) + (wi/c(r, wi, d(r)))*w(wi, v, q5) = F 5(r — q;), (12)

where u(w;, 7, ;) is a scalar wave at a point rcR? on the lower surface of the plate; w; is the
sounding frequency (i = 1,...,N); g; €R? (j =1,...,M) is the position of the source on the
lower surface of the plate; ¢(r,w;,d(r)) is the velocity of Ay mode waves, which depends on the
frequency w; and plate thickness d(r) at a point 7 in accordance with the dispersion relation .
F' is the amplitude of the sounding wave. Non-reflecting boundary condition is applied at the
boundary of the computational domain.

The inverse 2D problem is to determine the thickness d(r) that minimizes the residual
functional ®(d(r)), which depends on the thickness d(r)

o) =Y > /S (w(wi, 5, g, d(r)) — Ulw;, s, q3))*ds. (13)

Here, U (w;, s, q;) are the experimental data, which represent vertical oscillations of the Ay mode
Lamb wave at the detector locations s. The gradient of the residual functional can be computed
explicitly

N 2 (w; c(w;, d(r)) & w; 2
o) 3 03223,(d53~>> : (5;17(% ! 2 <co<ul~>> fetulu . gy, dr)2(vi.r. 4. dr)

(14)
where z(w;,r,q.d(r)) is the solution to the adjoint problem ; c(w;, d(r)) and its derivative
is determined from the dispersion relation . Knowing the gradient, we can use iterative
gradient-descent methods for minimizing the residual functional in order to solve the inverse
problem.
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4. Model Computations

4.1. Numerical Method for Solving the Direct Problem of Elastic Wave
Propagation in a Solid Body

For the numerical solution of the system of equations of the dynamic elasticity theory ,
a standard explicit finite-difference scheme on staggered grids is used . The grid consists
of integer and half-integer nodes. We will use the following notation

(w1); = ih1,  (T1)iq12 = (E+1/2)h1,  (22); = jha, (72)j11/2 = (5 + 1/2)ha,
(z3)k = khs, (23)g41/2 = (K +1/2)hs, 1" =nr, "2 = (n+1/2)r,

where h,,, is the grid step along the coordinate x,,, and 7 is the time step. Discretized functions
at integer and half-integer grid points are introduced

()16 = W ((@1)iv1/2, (@2)5, (@3)k: 1), (U2) 410k = u2((@1)i, (#2) 54172, (23)k, 1),

(us)? s pe1j2 = (@) (225 (@8)is /2 ), (001)l > = ona(@1)i, (w2);, (wa)p, tF172),

(022)?;11/2 = o9a((x1)i, (w2);, (w3)r, t"T1/2), (033)?,;7/1/2 = o33((x1)i, (v2)5, (23, t"T2),
(023):74132 k12 = = 093((21)i, (22) j+1/25 (£3) k1125 §+L/2),
(013)?_:11//22] b1z = = 013((1)i41/2, (€2)5, (¥3) 4125 {n+1/2),
(012)?:11//22#1/2 L = 012((21) i1 /2, (£2) 412, (23, gr1/2y,

To construct an explicit finite-difference scheme, the following approximations for time deriva-
tives are used Dy | f]év K = ( f;\f;rll(ﬂ f;VJII(/2> /7, where f is the differentiated function.
Lowercase subscripts denote integer values, while uppercase subscripts are used for both in-
teger and half-integer values. Spatial derivative of f with respect to x1 is approximated as
D, [f]l JK = (flj\j-1/2,J,K - fI]\LI/Q,J,K) /T

Approximations of other spatial derivatives are constructed similarly. The numerical ap-
proximation of the system of equations takes the following form:

Piv1/2.jxDilw ]?-;11//22,j p = D1 [011]?;11//22,]‘,19 + Dy [012]?4:11//22,]‘,1@ + Ds [013]?4:11//22,]',197
Pig+1/2k De[u ]14:11//22] p=D1 [012]2;{?2,13 + D2 [022]?,;{?2,13 + D3 [023]Z;j{?2,k’
Pi,j 172 Dilu 3]?3 2121/2 Dy [‘713]?]'_11121/2 + Dy [‘723]?;11121/2 + Ds [033]?;2121/27
Dyfo11 ( igk 215 k) Difuall; o + NijeDalua]is o + NijaeDslus]i s + [fu1li ks

Difoalij = NigrDilwalij e + Nk + 20 5.6) D2uali; o + Aij e Daluslij , + [f22lij
? AijrDilualij g + NijeDaluli; x + (Nijr + 2 5x) Dalusli; x + [f33]7 .k
[

loa]i,

[o22]3;,

[o33]
tl0237 41 /0 k172 = Migr1y2k+1/2(D2[usly 10 k1o T Daluel?ji o p12) + [f23]7 01 /2 54125
[o13]},

[o12]}"

)

t1033

S O O

i
t1013li+1/2,5,k+1/2 = Hi+1/2,5, k+1/2(D3 [u1]2+1/2,j k+1/2 + Dy [Ud]z+1/2,] k+1/2) [fl3]?+1/2,j,k+1/27
i

t1012li41/2,5+1/2,k = Hi+1/2,j+1/2, k(D1lug ir1/2,541/2k T D, [Ul]z+1/2 J+1/2, k)t [le]?+1/2,j+1/2,k'
(15)

The stability condition for scheme ll has the form of cp\/ (# + % + #) <1, where ¢, is the
1 2 3

longitudinal wave velocity in the mafterial.
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4.2. Model Computations of the Direct Problem of Wave Propagation
in Thin Plates

The problem of computing the wave field in thin plates is of particular interest in this work.
Due to the complex effects of interference in thin plates, the resulting waves are so-called normal
waves or Lamb waves. We consider Lamb waves in plates with a thickness comparable to the
wavelength. Lamb waves have different modes, each traveling at a different speed. A distinction
is made between symmetric modes (denoted as Si) and asymmetric modes (denoted as Ai) of
Lamb waves. In symmetric modes, the upper and lower surfaces of the plate move in opposite
directions along the Z-axis perpendicular to the surfaces, while in asymmetric modes the surfaces
move in the same direction.

An important feature of Lamb waves is that for a given plate thickness only the zero-order Ag
and Sy modes are excited for frequencies below a certain threshold frequency. As the frequency
increases, additional higher-order modes appear. In tomographic experiments, it is advisable
to use the frequencies below this threshold frequency to avoid the appearance of additional
modes. The fewer modes are present, the simpler and more reliable are the experimental data
obtained. The Ay mode is excited much more easily than the Sy mode by striking the plate
from above. Furthermore, with this type of pulse excitation, as shown by model computations,
the amplitude of the Ay mode is significantly higher than the amplitude of the Sy mode. The
propagation velocities of the Ag and Sy modes in the frequency range under consideration differ
by approximately a factor of 2, which allows for reliable separation of these modes in processing
the experimental data for solving inverse problems of thin plate diagnostics.

As an example, we present a computation of the wave field in a plate (Fig.|3) with a notch-
shaped defect, with a depth smoothly increasing from zero toward the defect center as a cosine
function. The parameter values used in the computation effectively excite only the Ay Lamb
wave mode:

e w = 75 kHz is the central frequency of the pulse;

e R = 5 mm is the radius of the circle of force application;
e L= 62.5 cm is the plate length;

e d= 1.0 cm is the plate thickness;

a1 = 106.3 mm, b; = 156.3 mm are the coordinates of the center of the force application;

L =85 cm; h = 0.5 cm are the diameter and maximum depth of the defect.

100
50

. 0o
-50
-100

(a) 25 us (b) 50 us (c) 75 ps

150
| 100

50

=50

=100

Figure 3. Velocity us on the plate surface at different moments of time
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As can be seen from this figure, the defect significantly distorts the wavefront (the defect is
highlighted by the black line in Fig. This distortion appears due to the fact that the residual
plate thickness under the defect is 70% of the initial plate thickness, which leads to a decrease
in the propagation velocity of the Ay Lamb waves, since their velocity decreases with decreasing
plate thickness.

4.3. Numerical Method for Solving the Inverse Problem of Plate Thickness

Reconstruction

The inverse problem of plate thickness reconstruction was solved using a two-dimensional
scalar model approximation, described by the Helmholtz equation for a certain set of
frequencies. To numerically solve the inverse problem of minimizing the residual functional
® (d(r)) (13), an iterative process was constructed consisting of the following steps:

1. The initial approximation at the first iteration is d; (r) =dp=const, where dy is the thickness
of the plate without defects.

2. For a given d,, (r), the direct problem (12) of computing the wave field is solved using the
finite difference approximation .

3. Using the simulated measured values of the wave field on the detectors U (wj, s,q;) and
computed u (w;, s, qj,d (r)) for a given d (r), the adjoint problem is solved in finite difference
approximation.

4. Using the obtained values z (w;, 7, g, d (r)) and u (w;,r, g;,d (1)), the gradient of the residual
functional @, (d (r)) is computed by formula .

5. Knowing the gradient, we compute the next iterative approximation using the formula
dpt1 () =dy, (r) -y (n) @, (d (r)). The step size at the first iteration is determined based on
prior considerations. If the value of the residual functional increases at the next iteration,
v (n) 1is reduced by a factor of 2. The process returns to step 2.

The Helmholtz equation is discretized on a uniform rectangular grid, and the correspond-
ing derivatives are approximated by finite differences using standard formulas. The discretized
Helmholtz equation takes the following form:

Uir1j — 2ui + Uiy A 2uij + uij—1 n w

= F. 1
Au? Ay 2w, iy = For 10

The system of algebraic equations is constructed as the indices 4, j run through all the values
within the workspace. The matrix of this system is sparse and stored in CSR format. The Eigen
library is used for sparse matrix manipulation and solving the problem. We will discuss the
implementation details in Section

4.4. Model Computations of the Inverse Problem of Plate Thickness

Reconstruction

A series of computational experiments were conducted on solving the inverse problem of
surface defect imaging. The experiment involved solving the forward problem using a three-
dimensional vector wave model and recording the detector data. These data were then used
as simulated experimental data to solve the inverse problem for a two-dimensional scalar wave

equation.
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The direct problem was solved for a three-dimensional thin steel plate (Fig. with a
thickness d and a size of L x L. Free boundary conditions were applied on the upper and lower
boundaries. The size of the computational domain and the locations of the sources and detectors
were chosen such that the wave reflected from the boundary of the computational domain arrived
at the detector sufficiently later than the wave reflected from the defect. A square workspace is
located in the center of the computational domain. Defects, which are cylindrical depressions on
the underside of the plate, are located within the workspace. Sources and detectors are located
at the edges of the workspace on the upper side of the plate.

The sources generate sounding pulses defined by formula . The detectors are uniformly
distributed around the perimeter of the workspace and record the vertical component of the
displacement velocity us(t,r) on the upper side of the plate. Data is recorded with the same
time step as in the forward problem calculation. For each source-detector pair, the data recorded
is a function of time. For each detector, the data undergoes a Fourier transform, and the result
is used as U(w, s;¢;) to solve the inverse problem for the Helmholtz equation. An example of
a recorded signal is shown in (Fig. , and a plot of the Fourier transform modulus for one
detector is shown in (Fig. [4b).
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Figure 4. Signal and its spectrum and comparison us in vector model with ug in scalar model

A key aspect in solving the inverse problem in a scalar two-dimensional wave model described
by the Helmholtz equation is the correct selection of the amplitude and phase of the source
perturbation and the wave propagation velocity for each harmonic. These parameters cannot be
obtained explicitly with the required accuracy, even if the source and medium parameters in the
forward three-dimensional problem for an elastic vector medium are known. In a real physical
experiment, these parameters are unknown or approximate, making the case even worse.

In order to determine the missing parameters, data fitting was performed on a single-source
problem with standardly positioned detectors on a defect-free plate. The vector model was used
to compute the wave field at the detectors, perform a Fourier transform, and obtain complex-
valued data at the detectors for the selected frequency. The phase, velocity, and amplitude of
the harmonics in the scalar model were determined by minimizing the norm of the difference
between the complex-valued data at the detectors for a given frequency in the scalar and vector
problems.
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Figure shows the data fitting error between the two models. Blue line represents the
data from the vector model, red line represents the data from the scalar model, and yellow
line represents their difference. The root-mean-square fitting error is approximately 0.02%. The
procedure for determining these parameters was performed for each frequency used in solving
the inverse problem.

To demonstrate the algorithm for solving the inverse problem of plate thickness imaging,
a computational experiment was conducted with 12 sources located 10 cm inwards from the
midpoints of the sides of a 30 x 30 cm square computational domain. 1200 detectors were placed
equally spaced around the perimeter of the square. The computations used 41 frequencies in the
range of 23-147 kHz. The simulated sample object contains a collection of defects in the form

of cylindrical depressions.
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Figure 5. Simulation experiment

Figureshows the sample, the gradient at the first iteration, and the reconstructed image
after 50 and 140 iterations. The results demonstrate that defects are localized with high accuracy,
and their shape is precisely reconstructed. A large number of model simulations were performed
with defects of varying shapes and depths. These simulations demonstrated that the developed
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algorithm reliably detects both point-like and extended defects, precisely reconstructs their shape
and depth, and has high spatial resolution.

5. Performance Analysis of a Supercomputer Implementation
for Solving Inverse Problems of Ultrasound Tomography
Using the Lamb Wave

Solving the inverse problems under consideration requires huge computational resources.
During the iterative solution process, the Helmholtz differential equation must be solved
for both the direct and the adjoint problem at each iteration, for each source position, and for
each frequency used. Typical numbers of sources and frequencies can vary from a few to several
dozen. For the model computations presented in Section 12 sources and 41 frequencies were
used, in which case the Helmholtz equation must be solved 12 x 41 x 2 = 984 times for every
iteration.

A finite-difference approximation was used for the Helmholtz equation, resulting in a system
of linear algebraic equations (SLAE), the solution of which is the most computationally expensive
and time-consuming task. Third-party linear algebra libraries were used for SLAE solution. The
SLAE matrix has a size equal to the number of grid points and is highly sparse, with a fill-factor
of approximately 0.0008%. The matrix is stored in CSR format. For the model computations
from Section the matrix size was approximately 6.4-10° x 6.4-10° with the number of nonzero
elements approximately 3.2 x 105. Note that the matrix in this problem is not symmetric.

An inverse problem solution algorithm was implemented using C++ language plus MPI for
parallelization, and Eigen library to fill in the matrix, the right-hand side, and solving the
SLAE. In this Section, we analyze the performance of the developed application for solving in-
verse problems. The computations were performed in the “compute” section of the Lomonosov-2
supercomputer . In this section, each node contains a single 14-core Intel Xeon E5-2697 v3
CPU with 64 GB of RAM. The application was run on 164 processes. Intel MPI 2017 was used
to compile and run the distributed MPI version. For this performance analysis, the program
was configured to run for ~5 minutes, this was achieved by reducing the number of iterations.
The iterations are essentially identical, so the overall picture in this case matches the program’s
behavior when using the number of iterations used for real-life calculations.

First, it was necessary to determine the optimal number of processes per node. This program
is quite memory-intensive, and in such cases, it is sometimes beneficial to occupy only a part of
processor cores in order to reduce memory contention. Experiments with 8 to 14 processes per
node were performed in the “compute” section, with 10 launches of every experiment performed
in order to obtain enough statistics. A smaller number of processes per node was not considered
in this case because it involves too many compute nodes, which was considered inexpedient.

Tableshows the minimum execution times obtained. We consider the minimum value, not
average or mean, because supercomputers often experience different external factors that can
slow down a user program (such as influence of other users’ applications running concurrently,
the overload of distributed file system, OS noise, etc.). This leads to periodic anomalous or simply
slower executions, which have notably longer execution times and are of no interest in our case.
But we note that the average execution time behaves generally similarly to the minimum time.
Considering the minimum time allows us to estimate how quickly a program can potentially
execute under the chosen parameters, without the influence of external factors.
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Table 1. Program execution time with different numbers of processes per node

Processes per node 8 9 10 11 12 13 14
Minimum execution time, s 360 360 294 222 222 228 228

It can be seen that the program executes the slowest at 89 processes per node, then the
execution time begins to decrease, reaching a minimum at 11-12 processes per node. This is
presumably due to the fact that fewer compute nodes are required as the number of processes
per node increases, and, as a result, the amount of data transferred between nodes decreases
(i.e., the communication decreases). The execution time then increases slightly, likely due to the
aforementioned effect of memory contention between processes on the node. Thus, the minimum
execution time is achieved at 11-12 processes per node. However, it should be taken into account
that when running user programs on a supercomputer, a queuing system is used, and the more
nodes a program requires, the longer it will usually wait in the queue for the required number
of nodes to become available. Given that the difference in execution time between the versions
with 11-12 and 14 processes per node is small (a slowdown of ~3%), but fewer nodes are used
(difference in two nodes, or 16.7%), it is recommended to run this program on 14 processes per
node, thereby utilizing all available processor cores. This will both speed up the job’s progress
through the queue and reduce the overall resource consumption in terms of node-hours, thereby
saving resources for other users’ jobs.

Next, we analyzed the program’s performance, using 14 processes per node. First, we ex-
amined the MPI usage in the program. mpiP 3.5 profiling tool was used for this purpose.
Analysis of its results showed that program processes spend 3-10% of their execution time on
MPI, which can be considered as a good result for a program running on 164 processes and
12 compute nodes. It should be noted that MPI usage characteristics do not differ significantly
for individual processes, i.e., there is no significant imbalance in the program.

Approximately 70-75% of the execution time spent on MPI is accounted for by just two
MPI_Allreduce calls, with almost all of the remaining time accounted for by two MPI_Bcast
calls. It is interesting to note that both MPI_Allreduce calls are responsible for transferring a
tiny amount of data — less than 0.1% of the total amount of transferred data (while MPI_Bcast
calls are responsible for transferring the rest of the data). Therefore, if there is a need to optimize
MPI usage, these MPI_Allreduce calls can clearly be singled out as the main candidates, since
they account for the majority of the time, but they transfer very little data. One could assume
that the reason for their long execution is related to imbalance caused by some processes reaching
this MPI operation earlier and simply waiting for the other processes to start, but this is not
always the case. In some cases, all involved processes spent significant time performing these
operations. The exact reasons for this behavior are currently unknown; however, the total time
spent on MPI in the current program configuration is quite small, so further detailed analysis
and optimization in this direction is not of great interest at the moment (this may change in the
future if a larger number of processes are involved, likely leading to the increase of MPI share
in execution time).

After studying MPI usage, an analysis of the execution efficiency of one individual process
was conducted. The program is generally well-balanced, so the overall results for one process pre-
sented below hold true for others as well. The analysis was performed using Intel VTune 2019.5
and Intel Advisor 2019.5.
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Initially, the most general performance characteristics of parallel programs were studied:

e The average number of cycles per instruction (CPI) is ~0.5, i.e., two instructions are

executed per clock cycle on average, which is high for real-world HPC applications.

e The utilization of processor cores is also quite high, at 85-90%.

e The Retiring metric, which roughly shows the percentage of time the CPU was fully utilized

by performing useful operations, is of interest as well. This metric is calculated using a
Top-down approach proposed by Intel , the goal of which is to identify the dominant
bottlenecks in an application performance. For this program, the value of this metric is
45-55%, which indicates a fairly efficient HPC program (according to Intel, an expected
range of Retiring value for well-tuned HPC programs is 30-70% )

Intel VTune allows collecting various useful information using the Top-down approach. How-
ever, Hyperthreading is enabled on compute nodes in the “compute” partition, making some
Top-down metrics unavailable in VTune. Therefore, to analyze these metrics, we conducted spe-
cial launches of the program in the “pascal” partition of the Lomonosov-2 supercomputer. The
nodes in this partition are equipped with a different processor — a 12-core Intel Xeon Gold 6126.
However, the comparison showed that the overall picture provided by Top-down approach al-
most does not change across runs in different partitions, so here we show a more complete list
of metrics after running in the “pascal” partition.

Figure@shows the Top-down metrics for this program provided by Intel VTune. It can be
seen that there are no issues with data prefetch or instruction preparation (Bad Speculation and
Front-End Bound metrics, respectively). In this case, the application is classified as Back-End
Bound (50%), meaning that processor slots were frequently only partially occupied, with the
main reason for this being memory management (Memory Bound = 29%). It should be noted
here that Core Bound in the screenshot is just slightly lower than Memory Bound, and this is
the only noticeable difference from what is observed in the “compute” section (being of primary
interest for us), where Core Bound is 10%, being a small value. Therefore, we do not consider

this issue, since it does not occur when running in “compute”.

Elapsed Time : 290.979s

Clockticks: 9,166,742,000,000
Instructions Retired: 17,216,290,000,000
CPIRate 0.532
Retring 46.2%  of Pipeline Slots
Front-End Bound : 2.6% of Pipeline Slots
Bad Speculation 0.8% of Pipeline Slots
Back-End Bound : 50.4% ® of Pipeline Slots
Memory Bound 29.4% M of Pipeline Slots
L1 Bound : 19%  of Clockticks
L2 Bound : 0.9%  of Clockticks
L3 Bound : 12%  of Clockticks
DRAM Bound 21.6% * of Clockiicks
Memory Bandwidth 22.8% ® of Clockticks
Memory Latency - 11.9% ® of Clockiicks
Local DRAM 100.0% R of Clockticks
Remote DRAM : 0.0%  of Clockticks
Remote Cache 0.0%  of Clockiicks
Store Bound 12%  of Clockticks
Core Bound : 21.0% ®* of Pipeline Slots
Average CPU Frequency 29 GHz
Total Thread Count: 21
Paused Time : 0s

Figure 6. Top-down metrics obtained by Intel VTune
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In terms of memory usage, this program exhibits no issues with any cache levels (L1/L2/L3
Bound values are very small). However, some problems with RAM can be noted. These include
mainly memory bandwidth issues (the program reaches maximum bandwidth to RAM, likely
causing a slowdown) as well as some memory latency issues (the program has to wait for data
from RAM, as the retrieval process takes notable time). The values for these metrics are not
very high, meaning the issues are apparently not that significant, but they are still present.

The presence of performance issues with RAM is as well confirmed by studying the values
of performance monitoring counters also provided by VTune. They show that when accessing
L3 cache, there are 2.5 misses for every hit on average (and L3 miss necessitates an access
to RAM), which is a very poor indicator. Furthermore, one L3 cache miss occurs for every
200 memory accesses, meaning the L3 is used quite heavily. This suggests that memory access
is organized not in the most efficient manner, leading to fairly frequent RAM accesses and,
consequently, waiting for data from memory.

The vectorization level using Intel Advisor was also studied. It revealed that the program
is not vectorized at all: only 0.1% of the execution time is spent in vectorized code fragments.
Furthermore, vectorization does not use the newer AVX instructions, only SSE and SSE2. This,
however, is currently not particularly significant given that almost all the code is scalar.

A separate study of the most computationally intensive fragments (those that consume the
most time during program execution) was conducted. A general analysis on the level of modules
revealed that the program spends >90% of its execution time within its own code, with another
~5% executing MPI functions, 1.5% interacting with the OS kernel (vmlinux), and ~1% calling
the libm math library. Within the program itself, almost all of the time is spent executing the
code from the aforementioned Eigen library.

Thus, the following conclusions can be drawn from the analysis performed. The program
demonstrates relatively high performance, with MPI operations taking up only a small portion
of the program’s execution time — ~5% of the total runtime, which is quite low for a program
with 164 processes. Certain performance issues with RAM usage were noted; they do not signif-
icantly slow down the program but do represent a potential area for optimization. Vectorization
is essentially absent, which is also a clear candidate for optimization (if this area is further to be
explored, a detailed analysis of the non-vectorized code fragments will be required to determine
the feasibility of vectorization). However, everything discussed regarding memory and vector-
ization applies to the usage of external Eigen library, as almost all execution time not spent on
MPI is spent working with it, which significantly complicates the possibility of making changes
and optimizations. One of the possible solutions in this case is to switch to using other libraries
for solving SLAE like MKL.

Conclusion

This study examines the challenges of supercomputer implementation of ultrasonic tomo-
graphic imaging of internal and surface defects for nondestructive testing of solids. It has been
shown that the imaging problem of ultrasonic imaging of thin plates using Lamb waves is a coef-
ficient inverse problem, i.e., it involves determining unknown coefficients in differential equations
describing wave propagation in scalar and vector models.

It has been shown that a scalar two-dimensional model is quite suitable for detecting surface
defects. A simplified formulation of the inverse problem assumes that the propagation of Lamb
waves of mode Ag is approximately described by the Helmholtz equation. The experimental data
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were obtained from a numerical solution of the direct problem in a 3D elastic model in time
domain. An explicit expression for the residual functional gradient with respect to the plate
thickness was formulated for a range of frequencies. Iterative methods have been developed to
solve the inverse problem. The methods are based on gradient descent methods to minimize the
residual functional. Efficiency of the proposed algorithms is illustrated on model problems.

Within this simplified model, tomographic imaging technique makes it possible to recon-
struct the shape, size, and depth of defects. Solving the Helmholtz equation is the core element
of the developed algorithms for solving inverse problems of wave tomography. The most de-
manding computations involve solving linear equations with large-scale sparse matrices using
LU-decomposition method. The algorithms were implemented using linear algebra Eigen li-
brary. The performance analysis of the solution of the inverse problem in the scalar formulation
of the Helmholtz equation (with Eigen library used for solving SLAE) was performed on the
Lomonosov-2 supercomputer.
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