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Adapting large language models (LLMs) to morphologically rich languages like Russian

presents a major challenge, as multilingual models often exhibit limited transfer due to predomi-

nantly English-centric pre-training. This study investigates knowledge distillation (KD) as a more

effective alternative to supervised fine-tuning (SFT) for the final calibration stage of language

adaptation. We introduce an efficient offline top-K distillation approach that transfers knowledge

from a 32B Russian-adapted teacher model to a 4B student model through tokenizer alignment

and direct logit transfer. Experimental results demonstrate that KD consistently surpasses SFT,

achieving up to a 4.22% performance improvement, with top-100 distillation yielding the highest

gains (3.27% on average) albeit with increased memory consumption (62 GB vs. 7 GB for top-10).

Moreover, the advantages of KD are most pronounced for student models with lower adaptive

capacity (i.e., smaller LoRA α values). These findings underscore the efficacy of KD as a practi-

cal and scalable approach for language adaptation, while emphasizing the necessity of balancing

performance improvements against computational efficiency.
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Introduction

Large Language Models (LLMs) such as Qwen [20], DeepSeek [3], Llama [4], and GPT [1]

have rapidly advanced the state of the art in NLP. Despite nominal multilinguality, their pre-

training data is heavily dominated by English, which limits performance in underrepresented

languages. The gap is particularly pronounced for morphologically rich languages like Russian,

where inflectional complexity and orthographic variation amplify subword fragmentation under

default tokenizers. As a result, language adaptation – porting an existing LLM to a target

language and tokenizer while preserving its instruction alignment and skills – remains a practical

necessity.

A common adaptation pipeline involves extending the model’s tokenizer, performing con-

tinued pre-training, and then conducting supervised fine-tuning (SFT) to align the model with

language-specific instructions. While this approach improves fluency, SFT relies on hard tar-

gets and may not be the most effective way to transfer knowledge, especially when adapting a

smaller model under the guidance of a much larger, more capable one. A more potent alternative

is knowledge distillation, where a “student” model learns from the full output distribution of

a “teacher” model. However, distillation is often complicated by tokenizer mismatches, making

direct logit transfer between different models problematic.

This paper investigates logit distillation as a superior alternative to SFT within a language

adaptation pipeline. Our core methodology resolves the tokenizer mismatch problem by first

aligning the vocabularies of the teacher and student models through a shared extension of

Russian-specific tokens. This enables a direct and clean transfer of knowledge. Concretely, we

leverage a pre-existing 32B Qwen32 model, which was fully adapted for Russian. We then use it

as a teacher to guide the adaptation of a 4B Qwen33 student model. Our primary contribution
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is a comprehensive comparison showing that replacing the final SFT stage with tokenization-

aligned logit distillation results in a more powerful and efficient Russian language model.

To ensure reproducibility and to facilitate the development of language-specific models, we

publicly release our code on GitHub4.

The remainder of this paper is organized as follows. Section 1 reviews prior work on mul-

tilingual large language model adaptation and knowledge distillation. Section 2 describes the

model adaptation pipeline based on tokenization alignment and the Learned Embedding Prop-

agation (LEP) technique. Section 3 presents the proposed logit distillation approach designed

to improve training efficiency and stability. Section 4 details the datasets used for adaptation

and fine-tuning, while Section 5 outlines the evaluation framework and benchmarks employed

to assess model performance across diverse linguistic and reasoning tasks. Section 6 reports ex-

perimental results and analysis. Section 7 discusses the main limitations of our study, and the

paper concludes with a summary of key findings and outlines directions for future research.

1. Background

Several adaptation methods have been proposed to overcome the limitations of multilingual

LLMs for languages such as Russian. The most straightforward method for such adaptation

is supervised fine-tuning (SFT) on target-language instructions [16]. A more complex but effi-

cient variant is to perform tokenization vocabulary adaptation [21] before the SFT step, which

can better align the model’s internal representations with the target language’s morphology.

The fine-tuning process itself is an active area of research, with methods including classical

SFT, reinforcement learning from human feedback (RLHF) to align outputs with human pref-

erences [17], and knowledge distillation, where a smaller “student” model learns from a larger

“teacher” models outputs to transfer knowledge efficiently [10]. Among these, knowledge distil-

lation is particularly promising for language adaptation, as it enables the creation of compact,

language-specific models without full retraining. However, fine-tuning is not without challenges,

as modern LLMs have dense knowledge distributions, and improper fine-tuning can lead to

forgetting, where the model loses previously learned capabilities.

2. Model Adaptation

Our work builds upon the methodology proposed by Tikhomirov et al. [21] for adapting large

language models (LLMs) to target languages, with a focus on addressing the challenges posed by

morphologically rich languages like Russian. This approach systematically modifies the model’s

tokenization and internal representations to better capture language-specific nuances, followed

by a calibration phase to optimize performance on target-language tasks. The adaptation process

consists of the following steps:

1. Construction of a new tokenization vocabulary: A language-specific vocabulary is

created to account for the morphological and linguistic characteristics of the target language,

augmenting the original tokenizer’s vocabulary.

2. Training embeddings for new vocabulary elements: New token embeddings are

trained to represent the added vocabulary items, ensuring compatibility with the model’s

architecture and preserving semantic richness.

4https://github.com/RefalMachine/ruadapt
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3. Alignment of the base language model with the new vocabulary: The model’s

parameters are adjusted to align with the updated tokenizer, ensuring seamless integration

of the new embeddings into the model’s existing knowledge [21].

4. Transfer of core linguistic knowledge: Core linguistic knowledge is transferred to the

target version of the model using the Learned Embedding Propagation (LEP) method [21].

5. Calibration of the adapted model: The adapted model is fine-tuned on task-specific

examples in the target language to optimize performance.

Figure 1. Language adaptation scheme

The fifth step – calibration of the adapted model – is the primary focus of our research.

Calibration is critical, as it ensures that the model not only understands the target language’s

linguistic structures but also performs effectively on downstream tasks. To address this, we ex-

plore efficient yet computationally effective calibration methods, comparing classical supervised

fine-tuning (SFT) with knowledge distillation. Classical SFT directly optimizes the model on

labeled target-language data, while knowledge distillation transfers task-specific knowledge from

a larger teacher model to a smaller student model.

In our experiments, we selected a relatively small student model to enable extensive exper-

imentation, thereby providing deeper insights into the benefits of our proposed methodology.

Specifically, we used an adapted version of the 4B Qwen3 model, evaluating its performance

on both English and Russian-specific benchmarks to assess the trade-offs between efficiency,

computational cost, and task performance. Our findings aim to provide practical guidelines for

adapting LLMs to low-resource languages with complex morphologies.

3. Distillation Methodology

Knowledge distillation is a well-established technique for transferring knowledge from a

larger “teacher” model to a smaller “student” model, enabling efficient model compression while
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preserving performance [8, 10, 11, 15]. Its flexibility lies not only in the variety of distillation

methods but also in the ability to experiment with the teacher model’s configuration and outputs.

As previously mentioned, the student model is an adapted version of the 4B Qwen3 following

the Learned Embedding Propagation (LEP) step [21]. In this step, we applied the LEP procedure

described in [21] to propagate the newly learned token embeddings and linguistic knowledge

from the base 4B Qwen3 model to the instruction-tuned 4B variant. The method approximates

full re-training with a newly adapted tokenizer through a series of learned linear operators

that align embedding spaces between the source (multilingual) and target (Russian-adapted)

vocabularies. Before LEP, the base model underwent re-tokenization with an extended Unigram-

based vocabulary optimized for Russian morphology and subsequent fine-tuning of embeddings

and internal layers on approximately 150 GB of Russian text data constructed as a combination

of the rulm [9] and Fineweb-2 [18] corpora. LEP then transferred these updated embeddings and

LoRA adapter weights onto the instruction-tuned 4B checkpoint, allowing the resulting model

to preserve instruction-following capabilities while achieving native-level Russian tokenization

and representation quality. This approach substantially reduces the computational cost of full

re-training.

For the “teacher” model, we chose RuadaptQwen3-32B5, which has been pre-adapted for

Russian-language tasks and is currently the largest and most capable publicly available model

using the same tokenization.

Simultaneously storing both models in memory for distillation is challenging due to their

sizes, and directly training the student model on the teacher’s full output distributions is com-

putationally expensive, especially when aiming for an efficient adaptation methodology that

balances quality and resource demands.

To address these challenges, we adopt a top-k offline distillation approach [2, 19], which

separates the teacher logit generation and student training phases to reduce computational

overhead. In the first step, we generate and store the top-k logits produced by the teacher model

for each token in the training dataset, where k is a tunable hyperparameter that controls the

trade-off between information retention and memory efficiency. This precomputation eliminates

the need to load the teacher model during student model training, significantly reducing memory

requirements. In the second step, we train the student model using these precomputed logits. To

further enhance efficiency, we employ parameter-efficient fine-tuning via Low-Rank Adaptation

(LoRA) adapters, which minimize the number of trainable parameters while maintaining per-

formance [12]. The student model is trained on the same dataset used to generate the teacher’s

logits, ensuring consistency in the knowledge transfer process.

Our training objective combines two loss functions: (1) a classical supervised fine-tuning

(SFT) loss, specifically Cross-Entropy between the true tokens and the student’s predicted

tokens, to calibrate the model for Russian-specific tasks; and (2) a Kullback–Leibler Divergence

(KLDivLoss) term that aligns the student’s output distribution with the teacher’s precomputed

top-k logits [10]. This combination enables the student model to learn both from ground-truth

data and the teacher’s “dark knowledge” – patterns in the teacher’s output probabilities that

enhance generalization [10]. Our combined loss function adopts the formulation proposed by

Raman et al. [19], integrating Cross-Entropy and Kullback–Leibler Divergence to balance task-

5https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct
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specific calibration and knowledge transfer from the teacher model.

Lfinal = LCE + λ

(
1− exp

(
− si
ti + ε

))
LKD, (1)

where:

• LCE is the cross-entropy loss between the student predictions and the ground-truth labels;

• LKD is the knowledge distillation loss, computed as the KL divergence between the students

and teachers probability distributions over the top-K tokens;

• si is the student logit corresponding to the ground-truth token at position i;

• ti is the teacher logit for the ground-truth token at position i (if the token is not in the

teachers top-K, ti is set to 0);

• ε is a small constant added for numerical stability;

• λ is a scaling coefficient (denoted as loss multi in our implementation).

4. Data

The quality of training data is paramount in any training process, whether pre-training or

fine-tuning, as it directly influences model performance. Fine-tuning, in particular, is a delicate

process, as inconsistencies or contradictions between new training data and the data used for

prior training can result in neutral or even negative outcomes. To ensure effective fine-tuning

for Russian language adaptation, we selected the RefalMachine/ruadapt hybrid instruct

dataset6, which comprises approximately 80,000 instruction samples tailored for Russian-

language tasks.

This dataset was originally introduced as part of the RuAdapt framework7 and was specif-

ically designed to serve as calibration data for Russian instruction-tuned models. It consists

of high-quality synthetic examples generated by the Qwen3-235B-A22B model using prompts

drawn from the GrandMaster-PRO-MAX [16] collection. For each prompt, three candidate re-

sponses were produced, and the shortest valid response written in Russian and free of non-cyrillic

symbols was retained. The resulting dataset captures a broad spectrum of instruction-following

behaviors while maintaining linguistic consistency with the target language.

5. Evaluation

For evaluation in our experiments, we utilized the llmtf framework8, an open-source toolkit

designed to assess the performance of instruction-tuned language models in both few-shot and

zero-shot scenarios. This framework supports flexible evaluation across diverse tasks, enabling

comprehensive analysis of model capabilities on Russian-specific benchmarks. The llmtf frame-

work also standardizes prompt templates and scoring procedures, ensuring reproducibility of the

reported results.

To obtain a balanced picture of model performance, we evaluated the models in the zero-

shot setting on a diverse suite of datasets that cover multiple linguistic and reasoning abilities.

Specifically, the following benchmarks were used:

6https://huggingface.co/datasets/RefalMachine/ruadapt_hybrid_instruct
7https://github.com/RefalMachine/ruadapt
8https://github.com/RefalMachine/llmtf_open
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• NEREL [13], a Russian named entity recognition benchmark derived from news and

Wikipedia texts, testing the models ability to identify and classify named entities in con-

text.

• Summ9, a summarization dataset based on Russian news articles, assessing the models

capacity for text compression and important information extraction.

• MultiQ and USE (from MERA [5]), multi-domain question-answering and semantic un-

derstanding benchmarks that evaluate reasoning and general comprehension abilities across

diverse Russian topics.

• Copy, a diagnostic test of generation robustness that measures the models tendency to

produce repetitive or degenerate outputs under constrained input prompts.

• FLORES (ru–en and en–ru) [6], a multilingual machine translation benchmark used to

measure cross-lingual generalization and translation consistency between Russian and En-

glish.

• enMMLU and ruMMLU, multilingual general knowledge and reasoning benchmarks

adapted from the Massive Multitask Language Understanding dataset, providing a stan-

dardized measure of factual recall and reasoning accuracy across academic domains.

• IFEval (en and ru versions) [22], a meta-evaluation suite for instruction-following behavior

that quantifies how well a model adheres to explicit task instructions and constraints.

• ruOpinionNE [14], a sentiment analysis dataset focusing on Russian social media and

news, testing contextual polarity and stance detection.

• ruParam [7], a benchmark for paraphrase and semantic similarity detection in Russian,

designed to measure semantic coherence and lexical flexibility.

Together, these benchmarks cover a wide range of linguistic competencies, including named

entity recognition, summarization, question answering, translation, reasoning, and adherence

to instructions. This diversity allows us to evaluate both general language understanding and

the effectiveness of Russian-specific adaptation. All evaluations were conducted in the zero-shot

setting, using the default templates provided by llmtf, to ensure fair comparison across models

and reproducibility of results.

6. Experiments

The distillation process is undoubtedly more computationally demanding. To assess its effec-

tiveness, we conducted a series of experiments comparing classical supervised fine-tuning (SFT)

with knowledge distillation during the calibration stage of model adaptation. Our central ques-

tion is whether knowledge distillation can improve model performance over classical SFT, and

whether the potential gains justify its additional cost.

6.1. Supervised Fine-Tuning

For the supervised fine-tuning (SFT) stage, we employed LoRA adapters [12]. Building on

prior experiments, we fixed the LoRA rank at 128 and treated LoRA α together with the learn-

ing rate as tunable hyperparameters. Since our distillation approach introduces two additional

hyperparameters – top-K and λ – we first identified the optimal values of LoRA α and the

learning rate using classical SFT, and only then extended the setup to knowledge distillation.

9https://huggingface.co/datasets/IlyaGusev/gazeta
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Table 1. Comparison of different hyperparameter configurations

(a – LoRA alpha, lr – learning rate) across multiple evaluation benchmarks

Config
mean NEREL Summ MultiQ USE flores copy

ru
babllong

en
IFEval

ru
IFEval

en
MMLU

ru
MMLU

ru
opinionqa

ru
parama lr

64

1e-4 0.484 0.489 0.225 0.200 0.034 0.507 0.940 0.504 0.712 0.636 0.705 0.621 0.088 0.632

2e-5 0.468 0.478 0.154 0.186 0.029 0.504 0.985 0.490 0.688 0.560 0.706 0.620 0.088 0.600

5e-5 0.483 0.475 0.223 0.195 0.041 0.507 0.950 0.509 0.704 0.621 0.708 0.624 0.097 0.631

128

1e-4 0.483 0.495 0.224 0.194 0.037 0.508 0.945 0.504 0.717 0.601 0.706 0.620 0.092 0.634

2e-5 0.472 0.480 0.181 0.183 0.028 0.506 0.980 0.494 0.684 0.582 0.706 0.622 0.084 0.603

5e-5 0.482 0.478 0.223 0.193 0.031 0.508 0.955 0.507 0.693 0.608 0.705 0.620 0.091 0.653

256

1e-4 0.490 0.497 0.223 0.200 0.043 0.508 0.940 0.510 0.726 0.636 0.707 0.623 0.106 0.647

2e-5 0.479 0.477 0.205 0.185 0.025 0.507 0.980 0.498 0.702 0.584 0.706 0.621 0.100 0.634

5e-5 0.477 0.479 0.223 0.195 0.031 0.507 0.955 0.514 0.682 0.590 0.705 0.618 0.095 0.609

512

1e-4 0.494 0.503 0.222 0.195 0.039 0.507 0.950 0.516 0.738 0.617 0.704 0.623 0.112 0.692

2e-5 0.475 0.475 0.218 0.189 0.028 0.506 0.970 0.509 0.710 0.584 0.707 0.620 0.088 0.568

5e-5 0.488 0.484 0.224 0.191 0.036 0.506 0.970 0.500 0.713 0.608 0.705 0.621 0.096 0.694

From a performance perspective, we selected the four most promising configurations for

further investigation of the distillation approach. These configurations were chosen based on

their average performance across a diverse set of benchmarks, ensuring robust generalization.

The selected configurations are: (1) a = 128, lr=1e − 4, (2) a = 256, lr=1e − 4, (3) a = 512,

lr=1e− 4, and (4) a = 512, lr=5e− 5.

6.2. Knowledge Distillation

We adopted the LoRA rank, α, and learning rate values from the selected SFT config-

urations, while treating top-K and λ as the main hyperparameters of interest in this series

of experiments. Each chosen SFT setup was compared against eight distillation variants, with

λ ∈ {0.1, 0.2, 0.5, 1} and top-K ∈ {10, 100}. The top-K parameter controls the number of

top-ranked teacher model predictions used in the distillation process, while λ balances the con-

tribution of the distillation loss against the supervised loss. To ensure a fair comparison, we

maintained identical training conditions (e.g., batch size, training epochs, and dataset) across

SFT and distillation experiments.

The results, presented in Tables 2 to 5 (Table 6 shows more detailed results), demonstrate

that knowledge distillation consistently enhances model performance over the SFT baselines.

The most significant improvement was observed for the SFT baseline with α = 128 and lr=1e-4.

When distilled with top-K=100 and λ = 0.5, this model achieved an aggregate score of 0.503, a

4.22% increase over its SFT counterpart. This highlights the potential of distillation to further

refine already fine-tuned models.

The Influence of top-K. A clear pattern emerges when comparing top-K values: using

a larger context from the teacher model (top-100) generally yields superior results compared

to a smaller one (top-10). For instance, with the α = 128 baseline, the average improvement

for top-100 variants was 3.27%, compared to 2.82% for top-10. However, this performance gain

comes at a significant computational cost. Storing precomputed logits for top-100 required 62 GB

of memory, whereas top-10 required only 7 GB – an 8.9-fold reduction. This trade-off makes

top-10 a resource-efficient option for achieving modest gains, while top-100 is preferable when

maximizing performance is the priority and resources permit.

Tuning the Distillation Weight λ. Our experiments show that λ = 0.2 emerges as a

robust and generally effective choice for the distillation weight. It delivered the highest perfor-

mance gains in the majority of our tested configurations. However, the single best result (4.22%

growth) was achieved with λ = 0.5 in the α = 128 setup. This suggests that while λ = 0.2 is a

strong starting point for tuning, the optimal value can vary depending on other hyperparameters.
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Table 2. SFT a=128, lr=1e-4

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=128, lr=1e-4
— 0.483 —

a=128,
lr=1e-4,
top-10

λ=0.1 0.498 3.17

λ=0.2 0.497 2.95

λ=0.5 0.495 2.56

λ=1 0.495 2.58

Avg. Growth Top-10 2.82

Max. Growth Top-10 3.17

a=128,
lr=1e-4,
top-100

λ=0.1 0.498 3.20

λ=0.2 0.498 3.15

λ=0.5 0.503 4.22

λ=1 0.495 2.50

Avg. Growth Top-100 3.27

Max. Growth Top-100 4.22

Table 3. SFT a=256, lr=1e-4

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=256, lr=1e-4
— 0.490 —

a=256,
lr=1e-4,
top-10

λ=0.1 0.500 2.16

λ=0.2 0.503 2.67

λ=0.5 0.500 2.13

λ=1 0.500 2.08

Avg. Growth Top-10 2.26

Max. Growth Top-10 2.67

a=256,
lr=1e-4,
top-100

λ=0.1 0.497 1.57

λ=0.2 0.500 2.04

λ=0.5 0.499 1.84

λ=1 0.496 1.33

Avg. Growth Top-100 1.70

Max. Growth Top-100 2.04

Table 4. SFT a=512, lr=1e-4

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=512, lr=1e-4
— 0.494 —

a=512,
lr=1e-4,
top-10

λ=0.1 0.496 0.38

λ=0.2 0.502 1.63

λ=0.5 0.496 0.41

λ=1 0.499 1.00

Avg. Growth Top-10 0.86

Max. Growth Top-10 1.63

a=512,
lr=1e-4,
top-100

λ=0.1 0.502 1.66

λ=0.2 0.503 1.83

λ=0.5 0.501 1.46

λ=1 0.501 1.40

Avg. Growth Top-100 1.59

Max. Growth Top-100 1.83

Table 5. SFT a=512, lr=5e-5

Base
Config

Variant
Aggregate

Score
Growth,

%
SFT

a=512, lr=5e-5
— 0.488 —

a=512,
lr=5e-5,
top-10

λ=0.1 0.491 0.61

λ=0.2 0.494 1.06

λ=0.5 0.491 0.56

λ=1 0.489 0.18

Avg. Growth Top-10 0.60

Max. Growth Top-10 1.06

a=512,
lr=5e-5,
top-100

λ=0.1 0.496 1.56

λ=0.2 0.497 1.80

λ=0.5 0.494 1.16

λ=1 0.488 −0.14

Avg. Growth Top-100 1.10

Max. Growth Top-100 1.80

7. Limitations

While the proposed approach demonstrates consistent improvements in performance and

efficiency over standard knowledge distillation baselines, several limitations remain that should

be addressed in future work.

First, the observed performance gains are relatively modest (approximately 2–4% across

benchmarks). Although the experiments show improvements, they suggest that further opti-

mization of the distillation procedure is necessary to fully exploit the potential of cross-model

knowledge transfer.

Second, the current study investigates only a single teacher–student configuration

(Qwen3-32B→ Qwen3-4B), as the 32B teacher model is currently the largest available model shar-

ing the same tokenizer. Nevertheless, we believe that the proposed methodology is generalizable

and can be applied to other model combinations, potentially leading to greater improvements.

Third, although the method is designed to improve training efficiency, we did not include

quantitative measurements such as training throughput, total duration, or GPU-hour cost per

epoch. Our analysis focused primarily on algorithmic efficiency and qualitative reductions in

computational overhead (e.g., precomputed logits, use of LoRA). A more detailed profiling of

hardware utilization and memory footprint will be presented in future work.
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Finally, all experiments were conducted within a single computational environment and

evaluated on a fixed set of Russian-language benchmarks described in Section 5.

Conclusion

This study evaluated the effectiveness of knowledge distillation (KD) relative to clas-

sical supervised fine-tuning (SFT) during the calibration phase of large language model

adaptation for Russian. Our experiments, which distilled knowledge from a Russian-adapted

RuadaptQwen3-32B teacher model into a 4B Qwen3 student, conclusively demonstrate that KD

is a superior approach for enhancing model performance.

A key finding from our research is the fundamental trade-off between performance and com-

putational efficiency, governed by the top-K hyperparameter. Incorporating a broader knowledge

context from the teacher (top-100) consistently yielded superior results, achieving average per-

formance gains of up to 3.27%. This performance, however, comes at a significant cost, requiring

62 GB of memory for the precomputed logits. Conversely, a top-10 configuration emerges as a vi-

able, resource-efficient alternative, providing modest gains with a substantially smaller memory

footprint of just 7 GB.

Our analysis also provides practical tuning guidelines. We found that a distillation weight

of λ = 0.2 offers a robust and effective starting point across most configurations. Furthermore,

we observed that the benefits of distillation are most pronounced for models with a lower LoRA

α, indicating that simpler student models with less adaptive capacity gain the most from the

teacher’s guidance.

Our findings provide a practical roadmap for adapting large language models to morpho-

logically complex languages like Russian, demonstrating that knowledge distillation effectively

enhances the adaptation pipeline while emphasizing the importance of strategically balancing

hyperparameters such as top-K, λ, and α with the available computational budget to achieve

optimal performance.
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Appendix

Table 6. Comparison of different hyperparameter configurations
(a – LoRA alpha, lr – learning rate) across multiple evaluation benchmarks

a lr top λ mean NEREL Summ MultiQ USE flores copy
ru

babilong
en

IFEval
ru

IFEval
en

MMLU
ru

MMLU
ru

opinionne
ru

param

128 1e-4

10

0.1 0.498 0.485 0.224 0.219 0.089 0.508 0.950 0.508 0.721 0.628 0.708 0.624 0.107 0.704

0.2 0.497 0.494 0.226 0.223 0.113 0.509 0.940 0.512 0.719 0.627 0.709 0.621 0.104 0.665

0.5 0.495 0.489 0.225 0.226 0.134 0.506 0.940 0.503 0.717 0.638 0.707 0.620 0.097 0.635

1 0.495 0.479 0.224 0.226 0.162 0.505 0.945 0.498 0.708 0.612 0.708 0.622 0.105 0.644

100

0.1 0.498 0.482 0.226 0.222 0.116 0.510 0.950 0.517 0.713 0.623 0.708 0.623 0.102 0.685

0.2 0.498 0.488 0.225 0.225 0.126 0.508 0.945 0.515 0.713 0.634 0.706 0.623 0.100 0.666

0.5 0.503 0.495 0.224 0.234 0.165 0.506 0.955 0.518 0.726 0.603 0.708 0.621 0.107 0.679

1 0.495 0.494 0.225 0.230 0.161 0.503 0.960 0.500 0.702 0.603 0.708 0.619 0.093 0.636

256 1e-4

10

0.1 0.502 0.487 0.224 0.225 0.087 0.508 0.945 0.512 0.750 0.632 0.706 0.619 0.107 0.725

0.2 0.503 0.496 0.225 0.221 0.117 0.509 0.955 0.515 0.708 0.645 0.707 0.621 0.108 0.709

0.5 0.500 0.489 0.224 0.225 0.147 0.507 0.950 0.500 0.728 0.632 0.706 0.622 0.100 0.671

1 0.500 0.492 0.226 0.219 0.170 0.505 0.960 0.493 0.726 0.619 0.706 0.623 0.101 0.657

100

0.1 0.497 0.483 0.225 0.221 0.102 0.509 0.960 0.515 0.719 0.643 0.705 0.621 0.093 0.670

0.2 0.500 0.492 0.224 0.221 0.155 0.508 0.960 0.507 0.721 0.623 0.706 0.622 0.107 0.649

0.5 0.499 0.498 0.225 0.218 0.164 0.506 0.960 0.490 0.710 0.630 0.708 0.621 0.111 0.642

1 0.496 0.490 0.225 0.230 0.159 0.504 0.965 0.498 0.702 0.621 0.705 0.616 0.099 0.636

512

1e-4

10

0.1 0.496 0.491 0.221 0.218 0.112 0.507 0.965 0.506 0.721 0.628 0.706 0.622 0.103 0.642

0.2 0.502 0.510 0.227 0.222 0.109 0.508 0.960 0.522 0.730 0.619 0.707 0.622 0.093 0.693

0.5 0.496 0.498 0.225 0.219 0.121 0.506 0.960 0.511 0.726 0.614 0.707 0.625 0.113 0.619

1 0.499 0.495 0.225 0.225 0.151 0.507 0.960 0.506 0.726 0.617 0.706 0.622 0.112 0.630

100

0.1 0.502 0.500 0.223 0.225 0.112 0.508 0.960 0.521 0.710 0.638 0.705 0.621 0.101 0.700

0.2 0.503 0.502 0.224 0.223 0.125 0.509 0.960 0.507 0.728 0.638 0.705 0.620 0.118 0.676

0.5 0.501 0.498 0.226 0.225 0.151 0.507 0.965 0.491 0.721 0.628 0.706 0.621 0.113 0.659

1 0.501 0.490 0.228 0.234 0.167 0.503 0.960 0.507 0.726 0.610 0.707 0.619 0.106 0.650

5e-5

10

0.1 0.491 0.482 0.225 0.216 0.056 0.506 0.955 0.508 0.719 0.623 0.707 0.622 0.115 0.653

0.2 0.492 0.480 0.226 0.221 0.076 0.507 0.955 0.501 0.701 0.614 0.707 0.623 0.120 0.660

0.5 0.491 0.468 0.228 0.220 0.104 0.507 0.960 0.506 0.715 0.628 0.706 0.620 0.104 0.618

1 0.489 0.467 0.230 0.225 0.105 0.504 0.955 0.497 0.723 0.623 0.705 0.618 0.102 0.605

100

0.1 0.496 0.487 0.224 0.220 0.073 0.507 0.960 0.513 0.713 0.628 0.705 0.619 0.113 0.685

0.2 0.497 0.486 0.226 0.225 0.093 0.507 0.955 0.502 0.721 0.634 0.706 0.618 0.118 0.671

0.5 0.494 0.474 0.229 0.222 0.102 0.506 0.960 0.503 0.717 0.617 0.705 0.617 0.120 0.646

1 0.488 0.484 0.229 0.231 0.112 0.503 0.965 0.486 0.717 0.595 0.706 0.617 0.093 0.601
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