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Adapting large language models (LLMs) to morphologically rich languages like Russian
presents a major challenge, as multilingual models often exhibit limited transfer due to predomi-
nantly English-centric pre-training. This study investigates knowledge distillation (KD) as a more
effective alternative to supervised fine-tuning (SFT) for the final calibration stage of language
adaptation. We introduce an efficient offline top-K distillation approach that transfers knowledge
from a 32B Russian-adapted teacher model to a 4B student model through tokenizer alignment
and direct logit transfer. Experimental results demonstrate that KD consistently surpasses SFT,
achieving up to a 4.22% performance improvement, with top-100 distillation yielding the highest
gains (3.27% on average) albeit with increased memory consumption (62 GB vs. 7 GB for top-10).
Moreover, the advantages of KD are most pronounced for student models with lower adaptive
capacity (i.e., smaller LoRA « values). These findings underscore the efficacy of KD as a practi-
cal and scalable approach for language adaptation, while emphasizing the necessity of balancing
performance improvements against computational efficiency.
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Introduction

Large Language Models (LLMs) such as Qwen , DeepSeek , Llama , and GPT
have rapidly advanced the state of the art in NLP. Despite nominal multilinguality, their pre-
training data is heavily dominated by English, which limits performance in underrepresented
languages. The gap is particularly pronounced for morphologically rich languages like Russian,
where inflectional complexity and orthographic variation amplify subword fragmentation under
default tokenizers. As a result, language adaptation — porting an existing LLM to a target
language and tokenizer while preserving its instruction alignment and skills — remains a practical
necessity.

A common adaptation pipeline involves extending the model’s tokenizer, performing con-
tinued pre-training, and then conducting supervised fine-tuning (SFT) to align the model with
language-specific instructions. While this approach improves fluency, SFT relies on hard tar-
gets and may not be the most effective way to transfer knowledge, especially when adapting a
smaller model under the guidance of a much larger, more capable one. A more potent alternative
is knowledge distillation, where a “student” model learns from the full output distribution of
a “teacher” model. However, distillation is often complicated by tokenizer mismatches, making
direct logit transfer between different models problematic.

This paper investigates logit distillation as a superior alternative to SF'T within a language
adaptation pipeline. Our core methodology resolves the tokenizer mismatch problem by first
aligning the vocabularies of the teacher and student models through a shared extension of
Russian-specific tokens. This enables a direct and clean transfer of knowledge. Concretely, we
leverage a pre-existing 32B Qwenmodel, which was fully adapted for Russian. We then use it
as a teacher to guide the adaptation of a 4B Qwen student model. Our primary contribution
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is a comprehensive comparison showing that replacing the final SFT stage with tokenization-
aligned logit distillation results in a more powerful and efficient Russian language model.

To ensure reproducibility and to facilitate the development of language-specific models, we
publicly release our code on GitHu

The remainder of this paper is organized as follows. Sectionreviews prior work on mul-
tilingual large language model adaptation and knowledge distillation. Section describes the
model adaptation pipeline based on tokenization alignment and the Learned Embedding Prop-
agation (LEP) technique. Sectionpresents the proposed logit distillation approach designed
to improve training efficiency and stability. Sectiondetails the datasets used for adaptation
and fine-tuning, while Sectionoutlines the evaluation framework and benchmarks employed
to assess model performance across diverse linguistic and reasoning tasks. Section@reports ex-
perimental results and analysis. Sectiondiscusses the main limitations of our study, and the
paper concludes with a summary of key findings and outlines directions for future research.

1. Background

Several adaptation methods have been proposed to overcome the limitations of multilingual
LLMs for languages such as Russian. The most straightforward method for such adaptation
is supervised fine-tuning (SFT) on target-language instructions . A more complex but effi-
cient variant is to perform tokenization vocabulary adaptation before the SFT step, which
can better align the model’s internal representations with the target language’s morphology.
The fine-tuning process itself is an active area of research, with methods including classical
SFT, reinforcement learning from human feedback (RLHF) to align outputs with human pref-
erences , and knowledge distillation, where a smaller “student” model learns from a larger
“teacher” models outputs to transfer knowledge efficiently . Among these, knowledge distil-
lation is particularly promising for language adaptation, as it enables the creation of compact,
language-specific models without full retraining. However, fine-tuning is not without challenges,
as modern LLMs have dense knowledge distributions, and improper fine-tuning can lead to
forgetting, where the model loses previously learned capabilities.

2. Model Adaptation

Our work builds upon the methodology proposed by Tikhomirov et al. for adapting large
language models (LLMs) to target languages, with a focus on addressing the challenges posed by
morphologically rich languages like Russian. This approach systematically modifies the model’s
tokenization and internal representations to better capture language-specific nuances, followed
by a calibration phase to optimize performance on target-language tasks. The adaptation process
consists of the following steps:

1. Construction of a new tokenization vocabulary: A language-specific vocabulary is
created to account for the morphological and linguistic characteristics of the target language,
augmenting the original tokenizer’s vocabulary.

2. Training embeddings for new vocabulary elements: New token embeddings are
trained to represent the added vocabulary items, ensuring compatibility with the model’s

architecture and preserving semantic richness.
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3. Alignment of the base language model with the new vocabulary: The model’s
parameters are adjusted to align with the updated tokenizer, ensuring seamless integration
of the new embeddings into the model’s existing knowledge .

4. Transfer of core linguistic knowledge: Core linguistic knowledge is transferred to the
target version of the model using the Learned Embedding Propagation (LEP) method .

5. Calibration of the adapted model: The adapted model is fine-tuned on task-specific
examples in the target language to optimize performance.
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Figure 1. Language adaptation scheme

The fifth step — calibration of the adapted model — is the primary focus of our research.
Calibration is critical, as it ensures that the model not only understands the target language’s
linguistic structures but also performs effectively on downstream tasks. To address this, we ex-
plore efficient yet computationally effective calibration methods, comparing classical supervised
fine-tuning (SFT) with knowledge distillation. Classical SFT directly optimizes the model on
labeled target-language data, while knowledge distillation transfers task-specific knowledge from
a larger teacher model to a smaller student model.

In our experiments, we selected a relatively small student model to enable extensive exper-
imentation, thereby providing deeper insights into the benefits of our proposed methodology.
Specifically, we used an adapted version of the 4B Qwen3 model, evaluating its performance
on both English and Russian-specific benchmarks to assess the trade-offs between efficiency,
computational cost, and task performance. Our findings aim to provide practical guidelines for
adapting LLMs to low-resource languages with complex morphologies.

3. Distillation Methodology

Knowledge distillation is a well-established technique for transferring knowledge from a
larger “teacher” model to a smaller “student” model, enabling efficient model compression while
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preserving performance . Its flexibility lies not only in the variety of distillation
methods but also in the ability to experiment with the teacher model’s configuration and outputs.

As previously mentioned, the student model is an adapted version of the 4B Qwen3 following
the Learned Embedding Propagation (LEP) step . In this step, we applied the LEP procedure
described in to propagate the newly learned token embeddings and linguistic knowledge
from the base 4B Qwen3 model to the instruction-tuned 4B variant. The method approximates
full re-training with a newly adapted tokenizer through a series of learned linear operators
that align embedding spaces between the source (multilingual) and target (Russian-adapted)
vocabularies. Before LEP, the base model underwent re-tokenization with an extended Unigram-
based vocabulary optimized for Russian morphology and subsequent fine-tuning of embeddings
and internal layers on approximately 150 GB of Russian text data constructed as a combination
of the rulm @ and Fineweb-2 corpora. LEP then transferred these updated embeddings and
LoRA adapter weights onto the instruction-tuned 4B checkpoint, allowing the resulting model
to preserve instruction-following capabilities while achieving native-level Russian tokenization
and representation quality. This approach substantially reduces the computational cost of full
re-training.

For the “teacher” model, we chose RuadathwenS—SZ which has been pre-adapted for
Russian-language tasks and is currently the largest and most capable publicly available model
using the same tokenization.

Simultaneously storing both models in memory for distillation is challenging due to their
sizes, and directly training the student model on the teacher’s full output distributions is com-
putationally expensive, especially when aiming for an efficient adaptation methodology that
balances quality and resource demands.

To address these challenges, we adopt a top-k offline distillation approach , which
separates the teacher logit generation and student training phases to reduce computational
overhead. In the first step, we generate and store the top-k logits produced by the teacher model
for each token in the training dataset, where k is a tunable hyperparameter that controls the
trade-off between information retention and memory efficiency. This precomputation eliminates
the need to load the teacher model during student model training, significantly reducing memory
requirements. In the second step, we train the student model using these precomputed logits. To
further enhance efficiency, we employ parameter-efficient fine-tuning via Low-Rank Adaptation
(LoRA) adapters, which minimize the number of trainable parameters while maintaining per-
formance . The student model is trained on the same dataset used to generate the teacher’s
logits, ensuring consistency in the knowledge transfer process.

Our training objective combines two loss functions: (1) a classical supervised fine-tuning
(SFT) loss, specifically Cross-Entropy between the true tokens and the student’s predicted
tokens, to calibrate the model for Russian-specific tasks; and (2) a Kullback—Leibler Divergence
(KLDivLoss) term that aligns the student’s output distribution with the teacher’s precomputed
top-k logits . This combination enables the student model to learn both from ground-truth
data and the teacher’s “dark knowledge” — patterns in the teacher’s output probabilities that
enhance generalization . Our combined loss function adopts the formulation proposed by
Raman et al. , integrating Cross-Entropy and Kullback—Leibler Divergence to balance task-

Shttps://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct
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specific calibration and knowledge transfer from the teacher model.

Sq
Lfinal = Lcg + A <1—6XP (- t.+€>> Lxp, (1)

where:
e LcE is the cross-entropy loss between the student predictions and the ground-truth labels;
e Lxp is the knowledge distillation loss, computed as the KL divergence between the students
and teachers probability distributions over the top-K tokens;
e s; is the student logit corresponding to the ground-truth token at position i;
e {; is the teacher logit for the ground-truth token at position 4 (if the token is not in the
teachers top-K, t; is set to 0);

€ is a small constant added for numerical stability;

A is a scaling coefficient (denoted as loss multi in our implementation).

4. Data

The quality of training data is paramount in any training process, whether pre-training or
fine-tuning, as it directly influences model performance. Fine-tuning, in particular, is a delicate
process, as inconsistencies or contradictions between new training data and the data used for
prior training can result in neutral or even negative outcomes. To ensure effective fine-tuning
for Russian language adaptation, we selected the RefalMachine/ruadapt_hybrid_instruct
dataseﬁ which comprises approximately 80,000 instruction samples tailored for Russian-
language tasks.

This dataset was originally introduced as part of the RuAdapt framewor and was specif-
ically designed to serve as calibration data for Russian instruction-tuned models. It consists
of high-quality synthetic examples generated by the Qwen3-235B-A22B model using prompts
drawn from the GrandMaster-PRO-MAX collection. For each prompt, three candidate re-
sponses were produced, and the shortest valid response written in Russian and free of non-cyrillic
symbols was retained. The resulting dataset captures a broad spectrum of instruction-following
behaviors while maintaining linguistic consistency with the target language.

5. Evaluation

For evaluation in our experiments, we utilized the 11mtf framewor an open-source toolkit
designed to assess the performance of instruction-tuned language models in both few-shot and
zero-shot scenarios. This framework supports flexible evaluation across diverse tasks, enabling
comprehensive analysis of model capabilities on Russian-specific benchmarks. The 11mtf frame-
work also standardizes prompt templates and scoring procedures, ensuring reproducibility of the
reported results.

To obtain a balanced picture of model performance, we evaluated the models in the zero-
shot setting on a diverse suite of datasets that cover multiple linguistic and reasoning abilities.

Specifically, the following benchmarks were used:

®https://huggingface.co/datasets/RefalMachine/ruadapt_hybrid_instruct
"https://github.com/RefalMachine/ruadapt
Shttps://github.com/RefalMachine/11lmtf_open
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e NEREL , a Russian named entity recognition benchmark derived from news and
Wikipedia texts, testing the models ability to identify and classify named entities in con-
text.

° Sumnﬂ a summarization dataset based on Russian news articles, assessing the models
capacity for text compression and important information extraction.

e MultiQ and USE (from MERA ), multi-domain question-answering and semantic un-
derstanding benchmarks that evaluate reasoning and general comprehension abilities across
diverse Russian topics.

e Copy, a diagnostic test of generation robustness that measures the models tendency to
produce repetitive or degenerate outputs under constrained input prompts.

e FLORES (ru—en and en-ru) @, a multilingual machine translation benchmark used to
measure cross-lingual generalization and translation consistency between Russian and En-
glish.

¢ enMMLU and ruMMLU, multilingual general knowledge and reasoning benchmarks
adapted from the Massive Multitask Language Understanding dataset, providing a stan-
dardized measure of factual recall and reasoning accuracy across academic domains.

e IFEval (en and ru versions) , a meta-evaluation suite for instruction-following behavior
that quantifies how well a model adheres to explicit task instructions and constraints.

e ruOpinionNE , a sentiment analysis dataset focusing on Russian social media and
news, testing contextual polarity and stance detection.

e ruParam , a benchmark for paraphrase and semantic similarity detection in Russian,
designed to measure semantic coherence and lexical flexibility.

Together, these benchmarks cover a wide range of linguistic competencies, including named
entity recognition, summarization, question answering, translation, reasoning, and adherence
to instructions. This diversity allows us to evaluate both general language understanding and
the effectiveness of Russian-specific adaptation. All evaluations were conducted in the zero-shot
setting, using the default templates provided by 11lmtf, to ensure fair comparison across models
and reproducibility of results.

6. Experiments

The distillation process is undoubtedly more computationally demanding. To assess its effec-
tiveness, we conducted a series of experiments comparing classical supervised fine-tuning (SFT)
with knowledge distillation during the calibration stage of model adaptation. Our central ques-
tion is whether knowledge distillation can improve model performance over classical SFT, and
whether the potential gains justify its additional cost.

6.1. Supervised Fine-Tuning

For the supervised fine-tuning (SFT) stage, we employed LoRA adapters . Building on
prior experiments, we fixed the LoRA rank at 128 and treated LoRA « together with the learn-
ing rate as tunable hyperparameters. Since our distillation approach introduces two additional
hyperparameters — top-K and A — we first identified the optimal values of LoRA « and the
learning rate using classical SFT, and only then extended the setup to knowledge distillation.

%nttps://huggingface.co/datasets/IlyaGusev/gazeta
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Table 1. Comparison of different hyperparameter configurations

(a — LoRA alpha, Ir — learning rate) across multiple evaluation benchmarks

Config . ru en ru en ru ru ru
a Ir mean | NEREL Summ MultiQ USE flores copy babllong IFEval IFEval MMLU MMLU opinionga param
le-4 | 0.484 0.489 0.225 0.200 0.034  0.507  0.940 0.504 0.712 0.636 0.705 0.621 0.088 0.632
64 | 2e-5 | 0.468 0.478 0.154 0.186 0.029 0.504  0.985 0.490 0.688 0.560 0.706 0.620 0.088 0.600
5e-5 0.483 0.475 0.223 0.195 0.041 0.507 0.950 0.509 0.704 0.621 0.708 0.624 0.097 0.631
le-4 | 0.483 0.495 0.224 0.194 0.037 0.508 0.945 0.504 0.717 0.601 0.706 0.620 0.092 0.634
128 | 2e-5 | 0.472 0.480 0.181 0.183 0.028 0.506  0.980 0.494 0.684 0.582 0.706 0.622 0.084 0.603
5e-5 | 0.482 0.478 0.223 0.193 0.031  0.508 0.955 0.507 0.693 0.608 0.705 0.620 0.091 0.653
le-4 | 0.490 0.497 0.223 0.200 0.043 0.508  0.940 0.510 0.726 0.636 0.707 0.623 0.106 0.647
256 | 2e-5 | 0.479 0.477 0.205 0.185 0.025 0.507  0.980 0.498 0.702 0.584 0.706 0.621 0.100 0.634
5e-5 | 0.477 0.479 0.223 0.195 0.031 0.507  0.955 0.514 0.682 0.590 0.705 0.618 0.095 0.609
le-4 | 0.494 0.503 0.222 0.195 0.039 0.507  0.950 0.516 0.738 0.617 0.704 0.623 0.112 0.692
512 | 2e-5 | 0.475 0.475 0.218 0.189 0.028 0.506  0.970 0.509 0.710 0.584 0.707 0.620 0.088 0.568
5e-5 | 0.488 0.484 0.224 0.191 0.036 0.506  0.970 0.500 0.713 0.608 0.705 0.621 0.096 0.694

From a performance perspective, we selected the four most promising configurations for
further investigation of the distillation approach. These configurations were chosen based on
their average performance across a diverse set of benchmarks, ensuring robust generalization.
The selected configurations are: (1) a = 128, Ir=1e — 4, (2) a = 256, Ir=1e — 4, (3) a = 512,
Ir=1e — 4, and (4) a = 512, Ir=>b5e — 5.

6.2. Knowledge Distillation

We adopted the LoRA rank, «, and learning rate values from the selected SFT config-
urations, while treating top-K and A as the main hyperparameters of interest in this series
of experiments. Each chosen SFT setup was compared against eight distillation variants, with
A € {0.1,0.2,0.5,1} and top-K € {10,100}. The top-K parameter controls the number of
top-ranked teacher model predictions used in the distillation process, while A balances the con-
tribution of the distillation loss against the supervised loss. To ensure a fair comparison, we
maintained identical training conditions (e.g., batch size, training epochs, and dataset) across
SFT and distillation experiments.

The results, presented into (Table@shows more detailed results), demonstrate
that knowledge distillation consistently enhances model performance over the SFT baselines.
The most significant improvement was observed for the SFT baseline with a = 128 and lr=1e-4.
When distilled with top-K=100 and A\ = 0.5, this model achieved an aggregate score of 0.503, a
4.22% increase over its SFT counterpart. This highlights the potential of distillation to further
refine already fine-tuned models.

The Influence of top-K. A clear pattern emerges when comparing top-K values: using
a larger context from the teacher model (top-100) generally yields superior results compared
to a smaller one (top-10). For instance, with the v = 128 baseline, the average improvement
for top-100 variants was 3.27%, compared to 2.82% for top-10. However, this performance gain
comes at a significant computational cost. Storing precomputed logits for top-100 required 62 GB
of memory, whereas top-10 required only 7 GB — an 8.9-fold reduction. This trade-off makes
top-10 a resource-efficient option for achieving modest gains, while top-100 is preferable when
maximizing performance is the priority and resources permit.

Tuning the Distillation Weight A. Our experiments show that A = 0.2 emerges as a
robust and generally effective choice for the distillation weight. It delivered the highest perfor-
mance gains in the majority of our tested configurations. However, the single best result (4.22%
growth) was achieved with A = 0.5 in the o = 128 setup. This suggests that while A = 0.2 is a
strong starting point for tuning, the optimal value can vary depending on other hyperparameters.

2025, Vol. 12, No. 4 11




Distillation for Adaptation Language Models to Russian Language

Table 2. SFT a=128, Ir=1e-4 Table 3. SFT a=256, Ir=1e-4
Base . Aggregate | Growth, Base . Aggregate | Growth,
Config Variant Score % Config Variant Score %
SFT SFT
a=128, Ir=1ec-4 B 0.483 a=256, lr—le-4 — 0.490 —
A=0.1 0.498 3.17 A=0.1 0.500 2.16
a=128, A=0.2 0.497 2.95 =256, A=0.2 0.503 2.67
Ir=1e-4, Ir=1e-4, -
top-10 A=0.5 0.495 2.56 top-10 A=0.5 0.500 2.13
A=1 0.495 2.58 A=1 0.500 2.08
Avg. Growth Top-10 2.82 Avg. Growth Top-10 2.26
Max. Growth Top-10 3.17 Max. Growth Top-10 2.67
A=0.1 0.498 3.20 A=0.1 0.497 1.57
a=128, A=0.2 0.498 3.15 =256, A=0.2 0.500 2.04
Ir=1e-4, Ir=1e-4,
top-100 A=0.5 0.503 4.22 top-100 A=0.5 0.499 1.84
A=1 0.495 2.50 A=1 0.496 1.33
Avg. Growth Top-100 3.27 Avg. Growth Top-100 1.70
Max. Growth Top-100 4.22 Max. Growth Top-100 2.04
Table 4. SFT a=512, Ir=1e-4 Table 5. SFT a=512, Ir=>5e-5
Base . Aggregate | Growth, Base . Aggregate | Growth,
Config Variant Score % Config Variant Score %
SFT SFT
a=512, Ir=1e-4 o 0.494 a=512, Ir=>5e-5 o 0.488 o
A=0.1 0.496 0.38 A=0.1 0.491 0.61
a=s12, 2=0.2 0.502 1.63 a=s12, 2=0.2 0.494 1.06
Ir=1e-4, Ir=>5e-5,
top-10 A=0.5 0.496 0.41 top-10 A=0.5 0.491 0.56
A=1 0.499 1.00 A=1 0.489 0.18
Avg. Growth Top-10 0.86 Avg. Growth Top-10 0.60
Max. Growth Top-10 1.63 Max. Growth Top-10 1.06
A=0.1 0.502 1.66 A=0.1 0.496 1.56
a=512, A=0.2 0.503 1.83 a=512, A=0.2 0.497 1.80
Ir=1e-4, Ir=>5e-5,
top-100 A=0.5 0.501 1.46 top-100 A=0.5 0.494 1.16
A=1 0.501 1.40 A=1 0.488 —0.14
Avg. Growth Top-100 1.59 Avg. Growth Top-100 1.10
Max. Growth Top-100 1.83 Max. Growth Top-100 1.80

7. Limitations

While the proposed approach demonstrates consistent improvements in performance and
efficiency over standard knowledge distillation baselines, several limitations remain that should
be addressed in future work.

First, the observed performance gains are relatively modest (approximately 2-4% across
benchmarks). Although the experiments show improvements, they suggest that further opti-
mization of the distillation procedure is necessary to fully exploit the potential of cross-model
knowledge transfer.

Second, the current study investigates only a single teacher—student configuration
(Qwen3-32B — Qwen3-4B), as the 32B teacher model is currently the largest available model shar-
ing the same tokenizer. Nevertheless, we believe that the proposed methodology is generalizable
and can be applied to other model combinations, potentially leading to greater improvements.

Third, although the method is designed to improve training efficiency, we did not include
quantitative measurements such as training throughput, total duration, or GPU-hour cost per
epoch. Our analysis focused primarily on algorithmic efficiency and qualitative reductions in
computational overhead (e.g., precomputed logits, use of LoRA). A more detailed profiling of
hardware utilization and memory footprint will be presented in future work.
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Finally, all experiments were conducted within a single computational environment and
evaluated on a fixed set of Russian-language benchmarks described in Section

Conclusion

This study evaluated the effectiveness of knowledge distillation (KD) relative to clas-
sical supervised fine-tuning (SFT) during the calibration phase of large language model
adaptation for Russian. Our experiments, which distilled knowledge from a Russian-adapted
RuadaptQwen3-32B teacher model into a 4B Qwen3 student, conclusively demonstrate that KD
is a superior approach for enhancing model performance.

A key finding from our research is the fundamental trade-off between performance and com-
putational efficiency, governed by the top-K hyperparameter. Incorporating a broader knowledge
context from the teacher (top-100) consistently yielded superior results, achieving average per-
formance gains of up to 3.27%. This performance, however, comes at a significant cost, requiring
62 GB of memory for the precomputed logits. Conversely, a top-10 configuration emerges as a vi-
able, resource-efficient alternative, providing modest gains with a substantially smaller memory
footprint of just 7 GB.

Our analysis also provides practical tuning guidelines. We found that a distillation weight
of A = 0.2 offers a robust and effective starting point across most configurations. Furthermore,
we observed that the benefits of distillation are most pronounced for models with a lower LoRA
«, indicating that simpler student models with less adaptive capacity gain the most from the
teacher’s guidance.

Our findings provide a practical roadmap for adapting large language models to morpho-
logically complex languages like Russian, demonstrating that knowledge distillation effectively
enhances the adaptation pipeline while emphasizing the importance of strategically balancing
hyperparameters such as top-K, A, and « with the available computational budget to achieve
optimal performance.
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Appendix

Table 6. Comparison of different hyperparameter configurations
(a — LoRA alpha, Ir — learning rate) across multiple evaluation benchmarks

2 Ir top A mean | NEREL Summ MultiQ USE flores copy babl;lllong IF;]I:/al IF‘]‘;val M:/?LU MI:/FLU opir:‘iznne pa:‘l:)m
0.1 | 0.498 0.485 0.224 0.219 0.089  0.508  0.950 0.508 0.721 0.628 0.708 0.624 0.107 0.704
10 0.2 | 0.497 0.494 0.226 0.223 0.113  0.509  0.940 0.512 0.719 0.627 0.709 0.621 0.104 0.665
0.5 | 0.495 0.489 0.225 0.226 0.134  0.506  0.940 0.503 0.717 0.638 0.707 0.620 0.097 0.635
198 le-d 1 0.495 0.479 0.224 0.226 0.162  0.505  0.945 0.498 0.708 0.612 0.708 0.622 0.105 0.644
0.1 | 0.498 0.482 0.226 0.222 0.116  0.510  0.950 0.517 0.713 0.623 0.708 0.623 0.102 0.685
100 0.2 | 0.498 0.488 0.225 0.225 0.126  0.508  0.945 0.515 0.713 0.634 0.706 0.623 0.100 0.666
0.5 | 0.503 0.495 0.224 0.234 0.165 0.506  0.955 0.518 0.726 0.603 0.708 0.621 0.107 0.679
1 0.495 0.494 0.225 0.230 0.161  0.503  0.960 0.500 0.702 0.603 0.708 0.619 0.093 0.636
0.1 0.502 0.487 0.224 0.225 0.087  0.508  0.945 0.512 0.750 0.632 0.706 0.619 0.107 0.725
10 0.2 | 0.503 0.496 0.225 0.221 0.117  0.509  0.955 0.515 0.708 0.645 0.707 0.621 0.108 0.709
0.5 | 0.500 0.489 0.224 0.225 0.147  0.507  0.950 0.500 0.728 0.632 0.706 0.622 0.100 0.671
256 led 1 0.500 0.492 0.226 0.219 0.170  0.505  0.960 0.493 0.726 0.619 0.706 0.623 0.101 0.657
0.1 | 0.497 0.483 0.225 0.221 0.102  0.509  0.960 0.515 0.719 0.643 0.705 0.621 0.093 0.670
100 0.2 | 0.500 0.492 0.224 0.221 0.155  0.508  0.960 0.507 0.721 0.623 0.706 0.622 0.107 0.649
0.5 | 0.499 0.498 0.225 0.218 0.164  0.506  0.960 0.490 0.710 0.630 0.708 0.621 0.111 0.642
1 0.496 0.490 0.225 0.230 0.159  0.504  0.965 0.498 0.702 0.621 0.705 0.616 0.099 0.636
0.1 | 0.496 0.491 0.221 0.218 0.112  0.507  0.965 0.506 0.721 0.628 0.706 0.622 0.103 0.642
10 0.2 | 0.502 0.510 0.227 0.222 0.109  0.508  0.960 0.522 0.730 0.619 0.707 0.622 0.093 0.693
0.5 | 0.496 0.498 0.225 0.219 0.121  0.506  0.960 0.511 0.726 0.614 0.707 0.625 0.113 0.619
led 1 0.499 0.495 0.225 0.225 0.151  0.507  0.960 0.506 0.726 0.617 0.706 0.622 0.112 0.630
0.1 | 0.502 0.500 0.223 0.225 0.112  0.508  0.960 0.521 0.710 0.638 0.705 0.621 0.101 0.700
100 0.2 | 0.503 0.502 0.224 0.223 0.125  0.509  0.960 0.507 0.728 0.638 0.705 0.620 0.118 0.676
0.5 | 0.501 0.498 0.226 0.225 0.151  0.507  0.965 0.491 0.721 0.628 0.706 0.621 0.113 0.659
512 1 0.501 0.490 0.228 0.234 0.167  0.503  0.960 0.507 0.726 0.610 0.707 0.619 0.106 0.650
0.1 | 0.491 0.482 0.225 0.216 0.056  0.506  0.955 0.508 0.719 0.623 0.707 0.622 0.115 0.653
10 0.2 | 0.492 0.480 0.226 0.221 0.076  0.507  0.955 0.501 0.701 0.614 0.707 0.623 0.120 0.660
0.5 | 0.491 0.468 0.228 0.220 0.104  0.507  0.960 0.506 0.715 0.628 0.706 0.620 0.104 0.618
505 1 0.489 0.467 0.230 0.225 0.105  0.504  0.955 0.497 0.723 0.623 0.705 0.618 0.102 0.605
0.1 0.496 0.487 0.224 0.220 0.073  0.507  0.960 0.513 0.713 0.628 0.705 0.619 0.113 0.685
100 0.2 | 0.497 0.486 0.226 0.225 0.093  0.507  0.955 0.502 0.721 0.634 0.706 0.618 0.118 0.671
0.5 | 0.494 0.474 0.229 0.222 0.102  0.506  0.960 0.503 0.717 0.617 0.705 0.617 0.120 0.646
1 0.488 0.484 0.229 0.231 0.112  0.503  0.965 0.486 0.717 0.595 0.706 0.617 0.093 0.601
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