
A Case for Energy-Efficient Acceleration of Graph Problems

using Embedded FPGA-based SoCs

Pradeep Moorthy 1, Nachiket Kapre 1,2

c© The Authors 2015. This paper is published with open access at SuperFri.org

Sparse graph problems are notoriously hard to accelerate on conventional platforms due to

irregular memory access patterns resulting in underutilization of memory bandwidth. These bot-

tlenecks on traditional x86-based systems mean that sparse graph problems scale very poorly, both

in terms of performance and power efficiency. A cluster of embedded SoCs (systems-on-chip) with

closely-coupled FPGA accelerators can support distributed memory access with better matched

low-power processing. We first conduct preliminary experiments across a range of COTS (commer-

cial off-the-shelf) embedded SoCs to establish promise for energy-efficiency acceleration of sparse

problems. We select the Xilinx Zynq SoC with FPGA accelerators to construct a prototype 32-

node Beowulf cluster. We develop specialized MPI routines and memory DMA offload engines to

support irregular communication efficiently. In this setup, we use the ARM processor as a data

marshaller for local DMA traffic as well as remote MPI traffic while the FPGA may be used as

a programmable accelerator. Across a set of benchmark graphs, we show that 32-node embedded

SoC cluster can exceed the energy efficiency of an Intel E5-2407 by as much as 1.7× at a total

graph processing capacity of 91–95 MTEPS for graphs as large as 32 million nodes and edges.

Keywords: energy efficiency, sparse graphs, embedded SoCs, FPGAs.

Introduction

During the pioneering years of HPC, computer architects built systems exclusively from

specialized vector hardware; such as the Cray-I [1] and other bespoke machines like the NEC

SX-3 and Fujitsu Numerical Wind Tunnel. The early 90s saw x86-based systems rise in popularity

due to their low cost, simplicity and standardization of the ISA/floating-point system (Intel 8087

was an early example of IEEE-754 compliant processor hardware). Beowulf clusters of these x86

platforms began as low cost hobbyist alternative to state-of-art HPC systems. Based on the idea

of connecting relatively inexpensive COTS computers to solve a particular problem collectively,

the first such cluster was developed in 1994 by connecting 16 Intel DX4 processors with 10Mbps

Ethernet. This eventually paved way for the creation of the first cluster based supercomputer

in 1997, the ASCI Red, which employed 7,246 Intel x86 Pentium Pro processors linked using a

custom-interconnect architecture. Peaking the TOP500 list for nearly three years, it set out the

foundation for the dominance of x86 cluster systems we see today.

The same era saw the introduction of Reduced Instruction Set Architecture (RISC) based

systems in place of Complex Instruction Set Architecture (CISC) machines in the form of Pow-

erPC processors used in the IBM BlueGene. This supercomputer series was launched in 2004 to

exploit the low power capabilities of RISC instead of CISC chips by combining multiple Pow-

erPC processors onto each chip. Thus, the usage of multiple low power processors, typically RISC

based, in place of a single power hungry “fat” processor was recognized as a way to improve en-

ergy efficiency. In lieu of PowerPC hardware, ARM chips have been gaining more interest in the

research community since they are fabricated extensively in mobile devices to deliver low power

at low cost. The largest ARM-based cluster studied was the Tibidabo cluster [2], which consisted

of 192 NVIDIA Tegra-2 SoCs, interconnected using 1GbE network. The study concluded the

1Nanyang Technological University, Singapore
2nachiket@ieee.org

DOI: 10.14529/jsfi150307

76 Supercomputing Frontiers and Innovations

Ethernet

Cables
Netgear Switch

Power

Supply

Router
Cooling

Fans

32 Zedboards

Figure 1. Zedwulf Cluster: 32 Zynq Z7020 SoC boards

lack of high-bandwidth I/O interfaces such as 10GbE/InfiniBand and the absence of hardware

support for interconnection protocols on the Tegra-2’s ARM Cortex-A9 processor as the sole

limiting factors in adopting the SoC for HPC usage. While the present day performance gap

between HPC-grade x86 processors and commercial ARM processors can be as high as an order

of magnitude, large graph problems with low spatio-temporal locality can eliminate the perfor-

mance gap between the two architectures while retaining the energy efficiency advantages. To

investigate this claim, we prototype a Beowulf cluster composed of 32 Xilinx FPGA-based Zynq

SoC boards, interconnected using a Gigabit Ethernet Switch. We map sparse-graph oriented

irregular computations of varying dimensions to stress the memory and network throughputs of

the cluster nodes. Fig. 1 shows a photograph of our “Zedwulf” (ZedBoard+Beowulf) cluster.

In this paper, we make the following key contributions:

• Microbenchmarking of COTS SoCs: We analyze the memory potential and network

characteristics of various embedded SoCs using micro-benchmarking tools.

• Prototype a 32-node Zynq SoC cluster: We prototype physically a 32-node Zynq

SoC cluster using the Xilinx Zedboard and Microzed platforms.

• Communication optimization for sparse-graph access on the Zynq cluster: We

develop customized Message Passing Interface (MPI) routines and DMA engines optimized

for irregular access exhibited by graph problems.

• Performance and power evaluation of the Zynq cluster vs an x86 server node:

We benchmark our cluster for a few representative sparse graphs and compare against the

Intel E5-2407 CPU.

1. Microbenchmarking COTS SoC Platforms

We first evaluate a range of COTS embedded SoC-based platforms listed in tab. 1 to assess

their feasibility for scaling to larger-scale systems. Our characterization experiments focus on a

P. Moorthy, N. Kapre

2015, Vol. 2, No. 3 77

single chip and measure raw compute throughput, memory performance as well as MPI support

for these systems.

Table 1. Comparing datasheet specifications and microbenchmarking of various COTS SoCs

Zedboard Microzed Parallella Intel Galileo 2 Raspberry Pi Beaglebone
Black

Technology 28nm 28nm 28nm 32nm 40nm 45nm
SoC Xilinx Xilinx Xilinx Intel Broadcom TI

Zynq 7020 Zynq 7010 Zynq 7010 Quark X1000 BCM2835 AM3359
Processor ARMv7, FPGA ARMv7, FPGA ARMv7, FPGA, i586 ARMv6 ARMv7

Epiphany III
Clock Freq. 667 MHz CPU 667 MHz CPU 667 MHz CPU 400 MHz 700 MHz 1 GHz

250 MHz FPGA 250 MHz FPGA 250 MHz FPGA
On-chip 32 KB L1 32 KB L1 32 KB L1 16 KB L1 16 KB L1 32 KB L1
Memory 512 KB L2 512 KB L2 512 KB L2 128 KB L2 256 KB L2

560 KB FPGA 560 KB FPGA 240 KB FPGA -
Off-chip 512 MB 1024 MB 1024 MB 256 MB 512 MB 512 MB
Memory 32b DDR3-1066 32b DDR3-1066 32b DDR3-1066 32b DDR3-800 32b DDR2-400 16b DDR3-606

DMIPS 1138 1138 1138 237 862 1778
Coremark 1591 1591 1782 526 1314 2457
Network3 57 MB/s 59 MB/s 32 MB/s 18 MB/s 10 MB/s 21 MB/s
L1 B/W 7.7 GB/s 7.7 GB/s 7.5 GB/s 2.8 GB/s 2.7 GB/s 7.6 GB/s
L2 B/W 1.4 GB/s 1.4 GB/s 1.4 GB/s - 1.4 GB/s 3.4 GB/s
DRAM Seq. 654 MB/s 641 MB/s 537 MB/s 270 MB/s 187 MB/s 278 MB/s
DRAM Rnd. 32 MB/s 32 MB/s 28 MB/s 12 MB/s 10 MB/s 11 MB/s
Power 5 Watts 3.6 Watts 7.5 Watts 4 Watts 3.75 Watts 3.25 Watts

Recent academic studies have examined the feasibility of HPC systems based on mobile

SoCs [3] for HPC-oriented workloads and investigated the status of networking support in these

SoCs. Additionally, there are many contemporary hobbyist clusters built from Apple TV [4],

Raspberry Pi [5], and Beagleboard xM [6] that use off-the-shelf devices for delivering proof-

of-concept systems with high power efficiency. These studies are insightful but it remains to be

seen if pure ARM-based SoCs have future prospects in the cluster computing space.

Our preliminary experiments on the Intel Galileo 2 platform indicate the Quark SoC would

not be competitive at this stage with its under-powered 400 MHz 32b CPU when compared to

ARM-based embedded SoC platforms. It reported the lowest DMIPS score of 237 and had poor

Ethernet throughput of 10 MB/s (100M Ethernet NIC). Occupying the lower-end of the ARM

spectrum, the Raspberry Pi reported a 3x higher DMIPS/Coremark score than the Galileo

2. Nevertheless, its relatively slower DDR2 memory limits the overall performance gains. The

Beaglebone Black further doubles the compute performance to 1778 DMIPS. However, the

16b 400 MHz DDR3 memory barely keeps up with its superior compute capabilities constraining

overall performance. Besides, these devices are also limited by 100 Mb/s network links. The Zynq

SoC-based platforms (Zedboard, Microzed and Parallella) overcome some of these shortcomings

by coupling the Zynq SoC to a 1 Gb/s network link and a respectable 32b DDR3 1066 MHz

memory. The Zedboard and Microzed delivered the highest sequential and random access

memory bandwidths. Complemented by the Gigabit Ethernet connectivity, these platforms av-

eraged bi-directional network throughput at a high 60 MB/s. Nonetheless, that corresponds

only to a network efficiency of 24%. This behavior is attributed to the slower clock rate of the

ARM cores (35% slower ARM CPU relative to the Beaglebone running at 1 GHz). In addition

to the Zynq SoC, the Adapteva Parallella [7] platform also attaches an Epiphany floating-

3 Intel MPI Benchmark Suite result for MPI Sendrecv for all systems in 2-node configurations

A Case for Energy-Efficient Acceleration of Graph Problems using Embedded...

78 Supercomputing Frontiers and Innovations

DRAM
512MB

SD
Card

~27 MBps
(50%)

USB2 limit

ARMv7
32b CPU

FPGA
Logic

~400 MBps
(25%)

Zynq Z7020 SoC

~60MBps
(60%)

~650MBps sequential (25%)
~30MBps random (6%)

147μs
ping

5.1—6.4 W/card

Figure 2. A Zynq node (Zedboard) with peak and achieved bandwidths

point co-processor as a separate chip thereby improving its compute capability substantially. We

recorded comparable DMIPS and memory bandwidth scores on the Zedboard/Microzed, but the

network throughput saturated at a disappointing 32 MB/s. The high local DRAM and remote

MPI throughputs suggest that the Zedboard can become a viable candidate for energy-efficient

operation for sparse irregular workloads. It is worth noting that these Zynq platforms are de-

velopment systems with extraneous supporting logic for audio, video and configurable IOs that

can be eliminated in a pure datacenter/HPC-focused design.

2. Zedwulf Organization

The Zedwulf cluster is composed of 32 Zedboards (Rev. D) or 32 Microzed (eval. kit),

interconnected using a Netgear GS748T 48-port Gigabit Smart Switch. With a rated switching

capacity of 96 Gb/s, the switch can sustain 2 Gb/s duplex bandwidth per 1GbE Ethernet link

connecting each Zedboard. We powered the system using a Seasonic Platinum 1KW PSU from

the PCIe EPS12 power rail with fuse protection. We stacked the Zedboards on top of each other

in three columns with 10/11 boards on each column. We provided air cooling from 2 fans placed

on either sides of the stack (4 fans total) as shown in fig. 1. While every Zedboard has a SanDisk

Ultra 32 GB SD card attached to host the OS, the master node has an additional Samsung

840 Pro SSD attached to the USB2 port using a SATA-USB adapter. We setup the SSD as

the primary secondary storage device for our cluster to hold our large graphs and it offers a

convenient lower latency solution for quickly loading and distributing sub-graphs. A single Zynq

node with various interface bandwidths is shown in fig. 2. We also built a 32-node Microzed

cluster by simply replacing the Zedboard with Microzeds.

The Zynq is a heterogeneous multicore system architecture consisting of a dual-core ARM

Cortex-A9 on the Processing System (PS) and a FPGA fabric on the Programmable Logic (PL).

Residing on the same chip, the PS and PL are interconnected using AXI on-chip buses. This

contrasts to traditional FPGA implementations, whereby the latter is connected to an x86 host

using PCIe buses. This approach allows ARM processors to benefit from low-latency links to

the FPGA which allow tightly-coupled CPU-based control of FPGA operation.

We configured each Zedboard to run Xillinux-1.3a, an Ubuntu-12.04 based Linux distribu-

tion with Xillybus drivers to communicate with the FPGA using an AXI 2.4 GB/s channel. We

P. Moorthy, N. Kapre

2015, Vol. 2, No. 3 79

compiled software libraries such as MPI and other utilities with gcc-4.6.3 with appropriate

optimization flags enabled. We use NFS (Network File System) to synchronize files (graphs)

across all 32 nodes. We setup MPI to use Myrinet Open-MX patch to deliver a marginal im-

provement in network latency. We also choose MPICH over OpenMPI as it provided a 20–30%

lower latency and higher bandwidth in our initial stress benchmarks.

3. Communication Optimization

Graph processing is a communication-dominated algorithm that can often be organized

as lightweight computations on vertices and message-passing along edges. We map bulk-

synchronous parallel (BSP) graph computations of the style used in neural network evaluation,

page-rank calculations, and sparse matrix-vector multiplication. We map these evaluations to

our cluster by careful optimization of local communication (irregular memory access) and re-

mote communication (MPI access) and compare it against simple x86-based implementations

that leverage multi-threading and compiler optimizations.

3.1. MPI Optimization

Partitioning the graph structure to fit across multiple Processing Elements (PEs) creates

network traffic which connect local vertices to vertices present in other PEs. Unlike local edges,

which connect vertices present within the same PE, updating remote edges is typically an order

of magnitude slower as the data needs to be transferred from the origin PE to the target PE using

the ARM CPUs to handle network packet transfers. Hence, there is an inherent need to reduce

the time spent in fulfilling the network operations for maximizing performance gains while using

distributed systems. We designed an optimized graph-oriented global scatter technique [8] using

the Message Passing Interface (MPI) library.

FPGA Logic

ARMv7 CPU

MPI
Handler

Streaming
Datapath

Recv.
MPI
Handler

Send
Recv.

Send

1ACP

FPGA Logic

ARMv7 CPU

Streaming
Datapath

ACP

2

3

Zynq SoC Zynq SoC

MPI/Ethernet

Figure 3. Sequence of steps for synaptic communication along edge of sparse graph. Step 1©
and Step 3© operate over the ACP links, while Step 2© is managed by the MPI library over

Ethernet

Our approach leveraged coalesced data transfers between PEs to take advantage of the

network bandwidth, rather than being limited by the high network latencies. The high-level

packet flow in the system is shown in fig. 3. We used MPI type indexed API to encode the send

A Case for Energy-Efficient Acceleration of Graph Problems using Embedded...

80 Supercomputing Frontiers and Innovations

and receive buffer displacements in an MPI friendly manner. We then employed MPI Sendrecv

as the building block of our scatter routine. The send-recv operations were scheduled in a periodic

fashion to avoid network contention across MPI nodes. This coalesced approach of edge updates

offered the speedup of 60× when compared to performing fine-grained message transfers. We

show a simplified code sketch of our MPI optimization in fig. 4.

// build MPI data structure from graph

for(j=0:total_proc-1) {

send_type=MPI_Datatype();

recv_type=MPI_Datatype();

MPI_Type_indexed(send_count, send_addr,send_type);

MPI_Type_indexed(recv_count, recv_addr,recv_type);

MPI_Type_commit(send_t);

MPI_Type_commit(recv_t);

}

// Loop over multiple bulk-synchronous steps

for(BSP steps) {

// Manage local messages

// Send MPI data between nodes

for(j=0:total_proc-1) {

// scheduling to avoid conflicts

int target = (rank+j)%total_proc

int source = (total_proc+rank-j)%total_proc;

MPI_Sendrecv (send_buf, recv_buf, ...);

}

MPI_Barrier();

// Do compute stuff

}

Figure 4. Basic MPI Communication Skeleton that shows how the MPI Datatype is built and

the mechanism of using MPI SendRecv for sparse communication

First, we translate the sparse graph adjacency lists into MPI-compatible data types that

encode the graph structure as a series of addresses and counts for send and receive between

all-possible pairs of MPI nodes. This is done for those edges that cross compute node (SoC

board) boundaries. We perform a coalesced transfer to one MPI target in a single function

call to avoid MPI overheads of finer-grained messages. To achieve this coalesced transfer, we

setup the MPI Datatype using MPI Type indexed to encode a custom sequence of blocks with

source and destination positions. We employ the Passive Target Communication paradigm here,

using MPI Win lock and MPI Win unlock functions for executing Remote Memory Access (RMA)

calls. We exploit opportunities for overlapping communication in the system by (1) having

simultaneous epoch sessions in progress, ensuring load-balanced scheduling of message transfers

in a cyclic fashion, and (2) replacing local MPI Put with simple array-indirection.

P. Moorthy, N. Kapre

2015, Vol. 2, No. 3 81

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

Figure 5. MMU Optimization: Scatter-Gather operation

3.2. Memory Access Optimization

For each vertex in the graph, the graph processor needs to fetch adjacent vertex data from

local memory wherever possible. The graph data is conventionally stored in a compressed sparse

format (row based or column based), which is a memory storage optimization for sparse graph

structures. However, memory access patterns can still result in frequent cache misses under this

memory organization scheme.

While the FPGA on the Zedboard has 560KB of on-chip memory, they can barely accom-

modate 100-1000s of graph vertex and edges. Using the off-chip DRAM memory carelessly would

result in poor DRAM bandwidth utilization. Hence, we designed a Memory Management Unit

(MMU) for Zedwulf to optimize irregular data transfers. We configure the AXI DMA IP block

to use low-level AXI descriptor chains to encode the sparse graph access sequence. With our

approach we are able to improve random DRAM access throughput for graph operations by as

much as 3–4×.

We operate the MMU in optimized Scatter-Gather mode [9]. This allows the AXI DMA engine

to avoid requiring frequent assistance from the CPU and enables somewhat independent oper-

ation. In this mode, instead of programming the internal registers for each DMA transfer, the

CPU only needs to construct a one-off linked list of AXI descriptor commands for the complete

A Case for Energy-Efficient Acceleration of Graph Problems using Embedded...

82 Supercomputing Frontiers and Innovations

series of transfers. This can be done once at the start and reused repeatedly for iterative BSP-like

graph algorithms. The descriptor chain is stored locally on the FPGA fabric in BlockRAMs and

coupled to the AXI DMA engines over an AXI-HP interface. It can even be constructed on-the-fly

based on the compressed sparse-row representation of the graph, but we do not explore this at

present.

XScuGic InterruptController;

struct axi_desc_t {

u32 next;

u32 base_addr;

u32 control;

u32 status;

};

struct axi_desc_t axi_desc[GRAPH_ACCESSES];

// Initialize graph access pattern as DMA descriptor chain

for (i=0; i<GRAPH_ACCESSES; i++) {

// create an entry in linked list

axi_desc[i].base_addr = base_addr[i];

axi_desc[i].control = length[i];

Xil_Out32(BRAM_ADDR + i*ALIGN + NXTDESC, axi_desc[i].next);

// copy other fields to BRAM

}

// Initialize DMA engine

Xil_Out32(DMAREG_ADDR + MM2S_CURDESC, BRAM_ADDR);

Xil_Out32(DMAREG_ADDR + MM2S_DMASR, 0x0000000);

Xil_Out32(DMAREG_ADDR + MM2S_DMACR, 0x5001);

// Perform DMA on the descriptor chain

Xil_Out32(DMAREG_ADDR + MM2S_TAILDESC, BRAM_ADDR + (GRAPH_ACCESSES-1)*ALIGN);

Figure 6. Scatter-Gather-Mode AXI DMA device driver

In fig. 5 we show the three-step configuration flow for the Scatter-Gather DMA mode.

In scatter-gather mode we represent the irregular list of accesses as a linked list of

<base addr>,<length> tuples stored in local on-chip FPGA BlockRAM. We instruct the DMA

engine to get length bytes starting from base addr location of the graph representation. Instead

of forcing the interrupt after each transfer, we are able to perform a set of back-to-back transfers

directly without interrupting the host until after the full sequence has been transferred. This

ability to avoid frequent CPU interrupts coupled with FPGA-based storage of AXI descriptor

chain provides low-latency turnaround times between consecutive DMA transactions. This is

loaded once at the start over AXI-GP ports from the CPU. We represent this in fig. 6 in the

InitializeDescriptors function. The address of the next descriptor is specified in each de-

scriptor. The head and tail descriptors are provided to the DMA engine and it will process one

descriptor after another.

P. Moorthy, N. Kapre

2015, Vol. 2, No. 3 83

0.48

0.83

0.58

0.46

0.35

0.14

0.32

0.069

0.24

more efficientmore efficientmore efficientmore efficientmore efficientmore efficientmore efficientmore efficientmore efficient
less efficientless efficientless efficientless efficientless efficientless efficientless efficientless efficientless efficient

0.00

0.25

0.50

0.75

1.00

E5−
24

07

m
icr

oz
ed

_4

ze
db

oa
rd

_4

m
icr

oz
ed

−a
rm

_4

ze
db

oa
rd

−a
rm

_4

ra
sp

be
rry

_4

be
ag

le_
4

ga
lile

o_
4

pa
ra

lle
lla

_2
E

ne
rg

y
E

ffi
ci

en
cy

 M
et

ric
 (

M
T

E
P

S
/W

at
t)

Figure 7. Performance-Power Tradeoffs across embedded SoCs platforms (4-node and 2-node

SoCs) and a single x86 node (“-arm 4” versions exclude FPGA and only use ARM). Graph

size is 32 million vertices and 32 million edges

4. Results

We analyze the performance and energy-efficiency of various embedded clusters for sparse

graph processing. We perform bulk-synchronous evaluation on randomly-generated graphs

(Erdos-Renyi [10] technique) with upto 32 million vertices and 32 million edges that can safely

fit within the limited memory available on the embedded platform. For the first experiment,

we setup 4-node clusters of each unique embedded platform (except Parallella with 2 nodes)

and compare it against one x86 node. We scale our setup for the second experiment where we

compare the 32-node Zedboard and 32-node Microzed clusters against a single x86 node. The

code running on the single x86 node is parallelized using OpenMP pragmas to use all available

cores (4 cores for the E5-2407). For completeness, our power measurements include the Ethernet

switch and PSU along with the Zynq boards.

In fig. 7 we plot processing efficiency (MTEPS/W) across various embedded and x86 plat-

forms. The Galileo 2 and Raspberry Pi clusters have the lowest performance while demanding

high power usage. The Beagle cluster doubles the performance achieved while consuming 10%

less power, thereby improving the power efficiency. The 2-node Parallella cluster nearly matches

the performance of the 4-node Beaglebone but it needs more power for the extra Epiphany

co-processor. The Zedboard and Microzed boards offer the highest energy efficiency when using

the FPGA accelerators instead of simply relying on their ARM CPUs. The Microzed stands out

with its 30% less power use over the Zedboard as it eschews unnecessary development support

(audio, video, IO chips) in favor of a low-cost implementation.

In fig. 8 we show the performance (in MTEPS, millions of traversed edges per second) of the

x86 node and the Zynq clusters plotted against their measured power consumption. We are able

to marginally exceed the energy efficiency of the x86 node (0.48 MTEPS/W vs. 0.58 MTEPS/W)

when using the Zedboard cluster. However, the lower-power and cheaper Microzed-based cluster

is able to deliver a 1.7× improvement in energy efficiency (0.83 MTEPS/W) due to its lean

design.

This measured 0.83 MTEPS/W energy efficiency figure is within striking distance of the

1.89 MTEPS/W5 possible in the SMALL DATA category of the Green Graph500 list. We look

5http://green.graph500.org/lists.php, July 2015 list, University of Luxembourg

A Case for Energy-Efficient Acceleration of Graph Problems using Embedded...

84 Supercomputing Frontiers and Innovations

0.5 M
TEPS/W

0.5 M
TEPS/W

0.5 M
TEPS/W

0.5 M
TEPS/W

0.5 M
TEPS/W

0.5 M
TEPS/W

0.5 M
TEPS/W

0.
7

M
TE

PS/W

0.
7

M
TE

PS/W

0.
7

M
TE

PS/W

0.
7

M
TE

PS/W

0.
7

M
TE

PS/W

0.
7

M
TE

PS/W

0.
7

M
TE

PS/W

● ●

0

25

50

75

100

50 100 150
Total System Power (W)

M
T

E
P

S
M

ill
. o

f t
ra

ve
rs

ed
 e

dg
es

/s
ec

on
d

●

●

E5−2407

microzed_32

microzed_16

microzed_4

zedboard_32

zedboard_16

zedboard_4

Figure 8. Energy Efficiency of Zynq FPGA cluster against an x86 node (4-node, 16-node and

32-node Zynq setups). Graph size is 32 million vertices and 32 million edges

forward to implementing the Graph500 benchmarks on larger problem sizes with larger cluster

of Zynq nodes in the near future that builds upon this work.

5. Conclusions

We show how to use the Zynq SoC with ARMv7 32b CPUs supported by FPGA-accelerators

to prototype energy-efficient HPC systems for sparse graph acceleration. For a range of graphs

up to 32 million nodes and edges, we are able to deliver a performance of 91–95 MTEPS at

an energy-efficiency of 0.58 MTEPS/Watt (32-node Zedboard), and 0.83 MTEPS/Watt (32-

node Microzed) which exceeds the x86 efficiency of 0.48 MTEPS/Watt by as much as 1.7×.

While the Zynq SoC we evaluated in this study is promising, performance gains were limited

by (1) slow 1G Ethernet speeds of 50% peak, (2) limited DRAM capacity per node 512 MB, (3)

poor CPU-FPGA link bandwidth of 400 MB/s, and (4) extraneous devices and interfaces for

audio/video processing. Upgraded Zynq SoCs optimized for data-center processing that address

these concerns can further improve performance and energy efficiency of these systems.

6. Future Work

While the Zynq SoC we evaluated in this study is promising, performance gains were limited

by a variety of factors. The slow network transfers that saturate at only 50% of peak 1G Ethernet

speed and MPI stack overheads result in a communication time that is roughly 2× worse than

network performance of the x86. The limited DRAM capacity of 512 MB per node constrained the

size of the largest graphs we could evaluate in this study. The poor CPU-FPGA link bandwidth

of 400 MB/s meant that data-transfer time dominated FPGA runtimes. The Zedboard platform

chosen in this study contains extraneous devices and interfaces that can be removed for HPC-like

scenarios that reduces size, power and cost to be a better candidate for a future study. It may

even be prudent to evaluate the smaller Z7010 SoC (cost $56/chip compared to $100/chip for the

Z7020) with a smaller FPGA fabric for better balanced design. To improve the programmability

of the FPGA design, the use of arrays of soft-processor tiles [11] overlayed on top of the FPGA

but fully-customized to particular graph problems would be a promising approach. The Parallella

P. Moorthy, N. Kapre

2015, Vol. 2, No. 3 85

platform with specialized high-performance I/O banks could be used as a superior interconnect

alternative to Ethernet for sparse low-latency communication between SoC chips.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Richard M. Russell. The CRAY-1 Computer System. Commun. ACM, 21(1):63–72, January

1978. DOI: 10.1145/359327.359336.

2. Nikola Rajovic, Alejandro Rico, Nikola Puzovic, Chris Adeniyi-Jones, and Alex Ramirez.

Tibidabo: Making the case for an ARM-based HPC system. Future Generation Computer

Systems, 2013. DOI: 10.1016/j.future.2013.07.013.

3. Nikola Rajovic, Paul M Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, and Mateo

Valero. Supercomputing with commodity CPUs. In the International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–12, New York, New

York, USA, 2013. ACM Press. DOI: 10.1145/2503210.2503281.

4. Karl Fürlinger, Christof Klausecker, and Dieter Kranzlmüller. The AppleTV-cluster: To-

wards energy efficient parallel computing on consumer electronic devices. Whitepaper,

Ludwig-Maximilians-Universitat, 2011. DOI: 10.1007/978-3-642-23447-7 1.

5. Simon J Cox, James T Cox, Richard P Boardman, Steven J Johnston, Mark Scott, and

Neil S O’Brien. Iridis-pi: a low-cost, compact demonstration cluster. Cluster Computing,

17(2):349–358, June 2013. DOI: 10.1007/s10586-013-0282-7.

6. E Principi, V Colagiacomo, S Squartini, and F Piazza. Low power high-performance com-

putingon the Beagleboard platform. In Education and Research Conference (EDERC), 2012

5th European DSP, pages 35–39, 2012. DOI: 10.1109/ederc.2012.6532220.

7. Linley Gwennap. Adapteva: More Flops, Less Watts. Microprocessor Report, pages 1–5,

June 2011.

8. P. Moorthy and N. Kapre. Zedwulf: Power-performance tradeoffs of a 32-node zynq soc

cluster. In Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd

Annual International Symposium on, pages 68–75, May 2015. DOI: 10.1109/fccm.2015.37.

9. N. Kapre, Han Jianglei, A. Bean, P. Moorthy, and Siddhartha. Graphmmu: Memory man-

agement unit for sparse graph accelerators. In Parallel and Distributed Processing Sympo-

sium Workshop (IPDPSW), 2015 IEEE International, pages 113–120, May 2015.

10. Paul Erdös and Alfréd Rényi. {On the evolution of random graphs}. Publ. Math. Inst.

Hung. Acad. Sci, 5:17–61, 1960.

11. N. Kapre. Custom fpga-based soft-processors for sparse graph acceleration. In Application-

specific Systems, Architectures and Processors (ASAP), 2015 IEEE 26th International Con-

ference on, pages 9–16, July 2015. DOI: 10.1109/asap.2015.7245698.

Received June 3, 2015.

A Case for Energy-Efficient Acceleration of Graph Problems using Embedded...

86 Supercomputing Frontiers and Innovations

