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The paper presents a computational technology of numerical simulation of turbulent flow over

a hinged rotor on high-performance heterogeneous computer systems. A key part of the technology

is the developed mathematical model describing the complex motions of triple-hinged rigid blades

of a helicopter under the action of external and aerodynamic forces and its implementation using

an original unstructured mesh-deformation algorithm. The mesh-deformation method exploits

an auxiliary web-structured mesh with its elastic compression-expansion controlled by low-cost

quasi-one-dimensional strand-based algorithms. The mechanics model is verified by solving the

pendulum problems. To demonstrate the correctness of the developed techniques, the problems on

taper stabilization and blade motion under cyclic control for model helicopter rotors are considered.

All the presented computations are carried out using the code NOISEtte for solving aerodynamics

and aeroacoustics problem. The code implements higher-accuracy methods of computational fluid

dynamics on unstructured mixed-element meshes and operates with a high efficiency on modern

supercomputers with arbitrary architectures including CPU cores and GPU accelerators.
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computational fluid dynamics, turbulent flows, unstructured mesh, mesh deformation, higher-
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Introduction

Numerical simulations of turbulent flows generated by real helicopter rotors are the problems

that require large computing resources and therefore modern high-performance supercomputers

to solve them. The complexity of simulating non-stationary turbulent flows in such problems is

aggravated by the need to correctly take into account the non-trivial mechanics of the hinged

rotor blades. Nowadays efficient implementation of high-fidelity computational fluid dynamics

for hinged rotors combined with proper blade mechanics presents a challenge to the global

community involved in numerical simulation of helicopter problems. That is why among a huge

number of publications devoted to numerical investigation of helicopter rotors and estimation of

their aerodynamic and acoustic properties (see, for instance, [4, 17, 23–25]) only a few of them

consider real hinged rotors in coupling with blade mechanics.

In most of papers on hinged rotors, the authors use the computational techniques offered by

commercial CFD codes or even combinations of them. Thus, the CFD codes are often combined

with MBDyn [1] and CAMRAD [16] packages, to provide the blade mechanics. The paper [14]

studies the hinged rotor problem with the help of FINFLO solver for rotary wing applications.

The team of Prof. George Barakos from University of Glasgow U.K., one of the strongest

university teams involved in helicopter research in Europe, develops their own software. Let

us highlight the work [20] where they consider both blade cyclic control and flapping motions

prescribed by the given laws. To achieve the target thrust coefficient, the special trimming

method is used.

Another important phenomenon of hinged rotor is aeroelasticity of helicopter blades. Among

the publications considering this feature there are, for instance, the papers [6] and [21]. However

it appears difficult to combine it with well-developed CFD and blade mechanics.
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In general, it can be said that to date no commonly accepted CFD platform has been

developed for the numerical solution of the hinged rotor problem. In this situation, new efficient

methods adapted to the rapidly growing performance of modern supercomputers are still in

great demand.

A goal of this paper is to present a computational technology to simulate turbulent flows

generated by helicopter rotors with three-hinged rigid blades in different flight modes. The

developed methods are implemented within the code NOISEtte [5] for solving aerodynamics

and aeroacoustics problems on unstructured mixed-element meshes. The proposed technology

combines a turbulent flow model (among those from RANS to scale-resolving hybrid RANS-LES

methods implemented in NOISEtte) with a novel mathematical description of blade mechanics

and original numerical techniques to maintain the blade motions on a moving unstructured

mesh.

The paper is organized as follows. Section 1 describes a coupled simulation of turbulent air-

flow and articulated blade dynamics in helicopter rotors, solved with mesh deformation across

multiple reference frames. Section 2 presents mathematical models and numerical methods in-

volved in the framework of turbulent flow simulation. Section 3 describes the models governing

the blade mechanics and the corresponding numerical methods. Section 4 is devoted to the mesh

deformation technique. Section 5 contains the numerical results. The Conclusion summarizes the

results of the work.

1. General Scheme of Numerical Simulation of Hinged Rotor

Problems

Numerical simulation of a helicopter rotor with articulated blades involves modeling the

motion of each blade as its key component. The spatial position of the blade depends on the

acting inertial forces caused by its rotation and externally given cyclic control, gravity and

aerodynamic forces arising from the motion (i.e., rotation and forward motion) of it in the air.

Accounting for aerodynamic forces requires the simulation of the flow near the helicopter rotor,

and the aerodynamic forces themselves depend on the position of the blade.

Thus, the computation of the flow near a helicopter rotor and the motion of each rotor blade

must be carried out jointly at a discrete time step within the selected model for describing the

fluid and the model for the blade motion.

In helicopter applications, a liquid medium near rotors is viscous compressible turbulent flow

of air. As a model for describing it, the Reynolds-averaged Navier–Stokes system of equations

(RANS) closed by different turbulence models is widely used. It should be noted that, depending

of the problem, the Euler or Navier–Stokes equations can be also applicable. The best descrip-

tion of turbulent flow is currently provided by scale-resolving hybrid RANS-LES (Large Eddy

Simulation) models, however the implementation of these models requires high computational

costs.

The mathematical model that determines the movement of the articulated blades of a heli-

copter rotor presents a system of nonlinear ordinary differential equations written in the form

of the law of conservation of angular momentum.

The general algorithm for the joint solution of the gasdynamics equations and the equations

of rotor blade motion at each discrete time step can be written as the following stages:

1. Determination of the pressure field from the simulation of flow over the helicopter rotor.
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2. Calculation of the aerodynamic forces acting on the blade, basing on the pressure distribu-

tion on its surface.

3. Calculation of the blade displacement and determination of its new spatial position at a

new time step.

4. Deformation of the computational mesh for making it consistent to the new blade position

and preparation of initial information needed for computations at the next time step.

5. Returning to point 1.

The above algorithm involves three main processes: simulation of turbulent flow around the

helicopter rotor, modeling of blade movements, and deformation of the computational mesh.

To simulate the turbulent flow around hinged rotor, to model the motion of its blades and to

implement the corresponding mesh movement, it is convenient to consider the following different

frames of reference (FR):

– Helicopter frame of reference (HFR). The origin of the FR coincides with the center of the

rotor hub. The Oz axis is co-directed with the axis of rotation of the rotor shaft, the Ox

axis is co-directed with the line of the zero-azimuth position of the blade downstream, the

Oy axis complements the FR to the right-hand system. This FR can be also considered as

absolute.

– Rotating, non-inertial, frame of reference (RFR). The origin of the FR coincides with the

center of the rotor hub. The Oz axis is co-directed with the axis of rotation of the rotor

shaft, the Ox axis is directed parallel to the longitudinal axis of the blade at zero angles

of flapping and lagging, the Oy axis complements the FR to the right-hand system.

– Blade, non-inertial, frame of reference (BFR). Its description is given in detail in the

section devoted to modeling the blade motion.

2. Mathematical Models and Numerical Methods for Turbulent

Flow Simulation

2.1. Governing Equations

Let us model the viscous compressible gas flow by the RANS system of equations with

Spalart–Allmaras (SA) turbulence model in the form of the conservation laws of mass, momen-

tum and total energy. Consider these equations in an integral form suitable for implementing an

arbitrary Lagrangian-Eulerian approach (ALE) for constructing numerical finite-volume schemes

on moving meshes and/or in a non-inertial RFR. It is important to note here that in all the

FR under consideration we use the flow velocity components determined in the absolute HFR.

Below we designate the velocity in the HFR as “absolute velocity”.

When considering the RANS system in the RFR, the rotation of the axes of this FR occurs

around the rotor shaft axis with a time-independent angular velocity vector ω with magnitude

equal to the rotation speed of the helicopter rotor. In contrast to the HFR case, the absolute

velocity in the RFR is projected to the rotating axes which results in the appearance of an

additional term responsible for the velocity turn in the governing gasdynamic equations. With

this description, the streamlined rotor remains motionless, and the direction of the upstream

flow changes dependently to the azimuthal angle ψ = |ω|t. Note that at the discretized level the

linear tangential velocity V ω = ω × r of the blade rotation, where r is the radius-vector, can

be interpreted as a stationary velocity of mesh movement in the HFR.
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To write the system of Navier–Stokes equations in the form of conservation laws, we intro-

duce the vector of conservative variables

Q = (ρ, ρu, E, ρν̃)ᵀ ,

where u = (u1, u2, u3) is the velocity vector in HFR, ρ is the density, E = ρu2/2 + ρε is the

total energy, ε is the specific internal energy, p = ρε (γ − 1) is the pressure defined by the ideal

perfect gas state of equation, the constant γ is the specific ratio, ν̃ is turbulent eddy viscosity.

Let C(t) be the computational cell on a given mesh with volume |C(t)| and Q be the integral

average of Q(t) over this cell. Then

d

dt

∫

Ci(t)

QdV =
dQi |Ci(t)|

dt
, |Ci(t)| =

∫

Ci(t)

dV, Qi =
1

|Ci(t)|

∫

Ci(t)

QdV

and the RANS system implementing ALE approach can be written as shown in [10] as

dQi |Ci(t)|
dt

+

∫

∂Ci(t)

FC (Q) · ndS −
∫

∂Ci(t)

Q (V c · n) dS

=

∫

Ci(t)

FD (Q,∇Q) dV +

∫

Ci(t)

S (Q,∇Q) dV.

(1)

Here ∂Ci(t) is the boundary of cell, n is the unit external normal to the boundary ∂Ci(t), V c

is the velocity of the moving-cell boundary. In general, when using the RFR, the boundary-cell

velocity is the vector sum of the mesh deformation rate V d and the linear tangential rotation

velocity V ω.

System (1) includes composite vectors FC and FD, each component of which FCi and FDi
in coordinate direction xi (i = 1, 2, 3) represents the convective transport and diffusion flux

vectors, respectively.

The components of convective transport flux vector are given as functions of the physical

variables ρ, u, p:

FCi (Q) = (ρui, ρuui + pei, (E + p)ui, ρν̃ui)
ᵀ ,

where ei = (δi1, δi2, δi3)
ᵀ is the row-vector of the identity matrix and δij is the Kronecker symbol.

The diffusion flux vector is defined as a vector-function of physical variables and their gradients

as

FDi (Q,∇Q) = (0, τi1, τi2, τi3, τijuj + qi, kd(∇ρν̃)i)
ᵀ ,

where the components of the viscous stress tensor τij , the heat flux vector qi, and the diffusion

coefficient kd are defined according to the RANS system with the closing SA model (see, for

example, [3]).

Vector S(Q,∇Q) is the source term describing the influence of the external forces that are

not related to the transport of conservative variables Q

S (Q,∇Q) = (0,−ρ(ω × u), 0, SSA)ᵀ ,
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where SSA is the source term in the SA equation describing turbulence generation and turbulence

destruction (a complete description can be found, for example, in [3]), the term −ρ(ω × u) in

the momentum equation determines the velocity vector turn to the angle equal to −|ω|t when

using the RFR.

Note that when using a movable (deformable) computational mesh with the mesh velocity

depending on time and spatial coordinates, it is necessary to recompute the new positions of all

the nodes and rebuild the final (control) volumes at each time step. When using the RFR the

mesh velocity does not depend on time so the geometry of the mesh elements does not change,

and the mesh is transported as a rigid body together with the rotor.

2.2. Higher-Accuracy Quasi-One-Dimensional Reconstruction-Based

Methods

To solve system (1) we use the CFD/CAA NOISEtte code [5] which exploits vertex-centered

algorithms on unstructured mixed-element meshes. According to the NOISEtte framework for

the discretization of the convective terms, the family of EBR (Edge-Based Reconstruction)

finite-volume schemes is used [2, 7, 8]. A higher accuracy of EBR schemes is achieved thanks to

the edge-based quasi-one-dimensional reconstruction of variables involved in the flux calculation

according to one or another Riemann solver. For the problems considered in the paper, as

a Riemann solver, we use the Roe method. For the discretization of the diffusion terms, the

standard P1-Galerkin method and the method of averaged element splittings (AES) are used [9].

The time integration is implemented using the backward time differentiation formulas of the first

and second orders. To solve the nonlinear algebraic systems, the Newton method is used. The

corresponding linear systems are solved using the biconjugate gradient stabilized method.

2.3. Parallel Implementation

All the above mentioned models, methods and algorithms have effective and robust par-

allel implementation within the CFD/CAA NOISEtte code (see [5, 12]). The NOISEtte code

is written in C++ using MPI, OpenMP and OpenCL frameworks for parallel implementation.

It consists of a core computational library and connectable functional modules that are linked

to console applications for preprocessing, running simulations, and postprocessing results. The

code is designed to provide the maximum portability and can be used on Windows and Linux,

on a wide range of computing systems from workstations to hybrid supercomputers. It has been

tested on various computing architectures, including multicore CPUs (Intel, AMD, IBM, ARM,

Elbrus), multi-core accelerators (Intel Xeon Phi KNC, KNL), GPUs (Intel, AMD, NVIDIA),

systems on a chip combining central and graphics processors.

A parallel implementation of the computational algorithm is based on hierarchical multilevel

model (see [12, 13]). At the top level, the MPI standard is used to couple multiple nodes of

a cluster system. Then, the second-level mesh partitioning is used to further distribute the

workload among computing devices of hybrid cluster nodes, such as CPUs and GPUs. MPI

parallelization uses asynchronous, non-blocking exchanges and allows communications to be

hidden behind computations to improve parallel efficiency, which is especially important for

GPU computing. To reduce the data transfer overhead, multi-threaded message processing is

used as well.

I.V. Abalakin, V.G. Bobkov, T.K. Kozubskaya, A.V. Lipatov

2025, Vol. 12, No. 1 77



3. Mathematical Models and Numerical Methods for Rotor

Mechanics

3.1. Description of Three-Hinged Blade and Its Kinematics

The hinged attachment of the blade implies the attachment of it to the hub by means of

the following three hinges: 1) a flap hinge (FH) allowing the blade to move in the vertical plane

(flapping motion); 2) a lag hinge (LH) allowing the blade to move in the horizontal plane (lagger

motion); 3) and an pitch hinge (PH) allowing the blade to rotate around its longitudinal axis

(pitching motion).

�

�

lFH

lLH

l PH

Figure 1. Schematic representation of an articulated blade

The sequence of hinges is specified as FH→LH→PH, with the distances between them

defined as: lRH is the distance from the hub center to the LH, lLH is the distance from the FH

to the LH and lPH is the distance from the LH to the PH (see Fig. 1).

The modeling of the articulated blade motion is carried out under the following assumptions:

– The blade is considered an absolutely rigid body, meaning it does not deform under load.

– The mass of the blade is concentrated along its longitudinal axis to simplify the analysis

of its motion.

– The moments created by the control system lever relative to the FH and LH are assumed

to be zero, i.e., no external torques are applied at these hinges.

– The dimensions of the hinges are small compared to the blade which allows them to be

treated as point connections.

– Only the blade has mass, the hinges and hub are considered massless.

The kinematics of the blade is determined by the following angular values:

– Flapping angle β is the angle between the plane of rotation of the rotor and the longitudinal

axis of the blade.

– Lagging angle ξ is the angle between the plane passing through the azimuthal position

of the blade (i.e., the plane perpendicular to the rotor’s plane of rotation at a specific

azimuth) and the longitudinal axis of the blade.

– Pitching angle ϕ is the angle between the chord of the blade section at 0.7R (where R is

the radius of the rotor) and the plane of rotation of the rotor.
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3.2. Blade Dynamics

The problem of determining the spatial position of the blade depending on the aerodynamic

and inertial forces acting on it includes solving the equations for finding the angles β, ξ, ϕ under

the following assumptions:

• The helicopter moves in forward flight mode, that is, in a straight line and at a constant

velocity (a particular case is the hover mode).

• The blade control, or the change in its pitch angle ϕ, is determined by an externally

specified control law

ϕ (ψ) = ϕ0 + ϕ1 cos (ψ) + ϕ2 sin (ψ) + kβ β + kξ ξ, (2)

where ψ is the azimuth angle, ϕ0 is the collective pitch, ϕ1 and ϕ2 are the control param-

eters, kβ is the pitch-flap coupling, kξ is the pitch-lag coupling. Note that the influence

of aerodynamic forces on the pitch angle occurs implicitly through the flapping angle and

lagging angle.

�

�

yRFR

zRFR

xRFR

zBFR

yBFR

xBFR

Figure 2. The helicopter frame of reference and the blade frame of reference

The blade movement is considered in the BFR which is defined as follows: the FR origin

coincides with the center of LH, the Oz axis is co-directed with the LH axis, the Ox axis is

directed along the blade, and the Oy axis complements the FR to the right-hand system (see

Fig. 2).

3.3. Governing Equations

Let us denote the current distance from the start of the blade by r and introduce vector g

which is the vector of gravity acceleration defined in the BFR. Let us also determine the values

of blade mass per unit length as ρ and the aerodynamic force per unit length as qa

ρ(r) =
dm(r)

dr
, qa(r) =

dF a(r)

dr
.

Then the equations for finding the angles β, ξ can be written in the form of the following laws

of conservation of angular momentum [19].
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The equation for flapping hinge is

β̈

R∫

0

((lPH + r) cos ξ + lLH)2ρ dr =

R∫

0

(Azqaz +Bzgzρ) dr +

R∫

0

(Czω
2 +Dzωξ̇ + Ezβ̇ξ̇)ρ dr.

(3)

The equation for lagging hinge is

ξ̈

R∫

0

(lPH + r)2ρ dr =

R∫

0

(Ayqay +Bygyρ) dr +

R∫

0

(Cyω
2 +Dyωβ̇ + Eyβ̇

2)ρ dr.

(4)

Here the coefficients Az, Ay, Bz, By, . . . , Ey are the nonlinear functions depending on the

variables β, ξ.

The terms in the right-hand side of these equations are the moments of forces relative to

FH and LH. They can be divided into moments of external and inertial forces. The factors in

front of β̈ and ξ̈ are the moments of inertia of the considered mass-geometric model of the blade

relative to FH and LH

JFH =

∫ R

0
((lPH + r) cos ξ + lLH)2ρ dr,

JLH =

∫ R

0
(lPH + r)2ρ dr.

The laws of conservation of angular momentum (3) and (4) can be written in the vector

form as

J
dωrel
dt

= MEXT + M I , (5)

where J is the tensor of the blade momentum defined as the momentum JPH and JLH referred

to PH and LH

J =

(
JFH 0

0 JLH

)
.

Here ωrel = (β̇, ξ̇)ᵀ is the vector of angular velocities of relative rotation,

MEXT =
(
MEXT/FH ,MEXT/LH

)ᵀ
is the vector of external forces moments,

M I =
(
MI/FH ,MI/LH

)ᵀ
is the vector of inertial forces moments.

The solution of system (5) describes the flapping and lagging motions of the blade assuming

that the cyclic pitch and the collective pitch of the rotor are given analytically.

The aerodynamic force vector Fa is obtained from the solution of RANS equations. Note

that it is defined in the absolute HFR and before using in the system of equations (5) it must

be projected onto the BFR as

FBFR
a = ABFR

HFRF
HFR
a ,

where ABFR
HFR is the transfer matrix.
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By solving the system (5), we find the values of the angles and angular velocities β, β̇, ξ, ξ̇

at the next time step, and thereby determine the position of the blade relative to the hinges and

the mesh velocity at the next time step.

3.4. Numerical Methods

In general, a system of ordinary differential equations (ODE) can be written in the form

β̈ = fβ(β, β̇, ξ, ξ̇),

ξ̈ = fξ(β, β̇, ξ, ξ̇).
(6)

Let us introduce the new vector Y of unknown components defined as y1 = β, y2 = ξ,

y3 = β̇ = ẏ1 and y4 = ξ̇ = ẏ2 and denote the right-hand side vector F as

Y =




y1

y2

y3

y4


 , F =




F1

F2

F3

F4


 =




y3

y4

fβ(y1, y3, y2, y4)

fξ(y1, y3, y2, y4)


 . (7)

Then the system (6) can be identically transformed to the first-order autonomous ODE system:

Ẏ = F (Y ). (8)

The system (7)–(8) is solved by a multi-step Taylor Series Method. This method is some-

times called the linearized Runge–Kutta method or the Runge–Kutta method with minimal

storage [15, 18]. Let Y n = Y (tn), then, according to this method, the unknown vector at the

next time step Y n+1 = Y (tn + ∆t) is defined as

Y (0) = Y n,

Y (k) = Y n + αk∆tF (tn,Y (k−1)), k = 1, . . . ,m,

Y n+1 = Y (m),

where the coefficients αk are

αk =
1

m− k + 1
.

This multi-step method for a linear autonomous system has the m-th order of accuracy, for

a nonlinear system only the second. Note that for small deviation angles β and ξ, the system

(7)–(8) can be considered as linear and therefore solved with an order of accuracy equal to the

number of integration steps m.

4. Elastic Mesh for Cyclic Pitch Control and Flapping Motions

Previously in [11] we introduced a computational method for simulating the motion and

deformation of a body in a fluid or gas dynamic environment, focusing on maintaining the quality

of the computational mesh during the body movement. The method is particularly suitable for

the problems involving the motions controlled externally and/or by the aerodynamic forces such

as the cyclic pitch control and flapping motions of helicopter rotor blades. Due to its ability to
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handle small displacements and rotations while maintaining mesh quality, it can be effectively

applied to simulate the flow around hinged rotors. An articulated blade typically undergoes

cyclic pitch, flapping, and lead-lag motions. These movements can be described using the Euler

angles and small displacements, which align well with the method assumption of small linear

and angular motions.

Ω2

Ω1

Ω3

Figure 3. Deformation zones near the rotor blade

Following the method, a computational domain is divided into three subdomains. The first

domain Ω1 contains the rotor blade and its immediate vicinity. The mesh nodes in this region

move with the blade, ensuring accurate resolution of the boundary layer and thereby calculation

of aerodynamic forces. Domain Ω3 includes the nodes far from the blade that remain either

motionless or rotating with the rotor depending on the chosen FR. Domain Ω2 is the deformation

region where the mesh nodes move to accommodate the blade motion while preserving the mesh

topology and quality. The deformation in domain Ω2 relies on constructing an auxiliary web-

structured “strand mesh” which connects the moving and stationary regions via radial strands.

An inner surface (∂Ω1) is defined around the blade, while the outer surface (∂Ω2) is constructed

concentrically (see Fig. 3). Elastic radial strands connecting these surfaces allow the mesh to

deform smoothly as the blade moves.

The compression-stretching of the auxiliary mesh is controlled by one-dimensional laws

acting along each strand and providing smooth changes in the size of mesh cells. Note that this

approach requires very little additional computing resources. Moreover, the web structure of

strand mesh simplifies the interpolation of flow variables from it to the main unstructured mesh.

The implemented algorithm [11] allows to move nodes in the deformation region according

with the blade displacements while maintaining the initial unstructured mesh topology and

preventing its tangling. As for the hinged rotor problems, the auxiliary mesh is automatically

constructed at the beginning of the computation if the minimum and maximum hinge angles

can be defined (see Fig. 4). Then it is used within the whole simulation.

5. Numerical Results

5.1. Pendulum

In the pendulum test, the algorithm implementing the motion of a pendulum under the

influence of gravity on a deformable unstructured mesh is verified. In this problem, the combined

operation of the implemented rotor blade mechanics and the mesh deformation algorithm are
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(a) Initial blade strand mesh (b) Deformed blade strand mesh

(c) Initial blade computational mesh (d) Deformed blade computational mesh

Figure 4. Strand mesh deformation and corresponding computational mesh deformation

verified without taking into account the impact of aerodynamic forces. The pendulum represents

a rigid rod 3 meters long with no hinges. An auxiliary strand mesh is built large enough to cover

a region of possible rod deflection of angles up to 20◦ (see Fig. 5).

(a) β = π/18 (b) β = 0

Figure 5. Computational (blue) and strand (red) meshes for pendulum cases

It is assumed that the pendulum is described by set of N different point units with mass mi

located at a distance ri, i = 1, . . . , N from the suspension point. The motion of such pendulum

is described by the equation

β̈ + g

∑N
i=1miri∑N
i=1mir2i

sinβ = 0.
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If the angle β is assumed small enough and the linearized equation becomes valid, the

solution can be given by the formula

β (t) = β (0) cos

(√
g

∑N
i=1miri∑N
i=1mir2i

t

)
.

In the first case, the radial velocity ω = 0, the azimuthal blade displacement ψ = 0, the zero

hinges displacements lV H = lHH = lPH = 0, the initial hinges angular velocities β̇ (0) = ξ̇ (0) = 0

and the initial pendulum position is set by the deflection angle β (0) =
π

18
, ξ (0) = 0.

The rest case parameters are the following: the mass distribution: dmi

(ri
R

)
=

[
0.25 1

1 kg 1 kg

]
, the pendulum length R = 3 m, the gravity acceleration g = (9.8, 0, 0) m/s2.

For the given parameters, the solution for a small flapping angle is:

β (t) =
π

18
cos

(√
9.8 · 5

17
t

)
. (9)

Figure 6 shows a comparison of the numerical solution with the analytical one (9) for the

linearized equation. It can be seen that the solutions coincide in amplitude, but there is a little

phase discrepancy between the numerical solution and the exact solution of linear equation. The

magnitude of this error decreases with decreasing the initial angle of deflection, otherwise, with

the diminishing influence of nonlinearity.

60 65 70 75 80 85 90 95 100

-10

-5

0

5

10

15

b°

t (s)
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Figure 6. Evolution of deflection angle for pendulum

5.2. Rod Rotation Cases

In the following two cases, the algorithm implementing the motion of a rotating rigid body

under the influence of inertial forces on a deformable unstructured mesh is verified. The configu-

ration setup is the following: the radial velocity ω = 1 rad/s, the azimuthal blade displacement

ψ = 0, the hinges displacements lHH = 10 m, lV H = lPH = 0, the hinges angular velocities:

β (0) = 0.02π, β̇ (0) = 0.01π rad/s, ξ (0) = ξ̇ (0) = 0 and no gravity acceleration g = (0, 0, 0).

The blade length is 3 m and the mass distribution of single point unit is dmi

(ri
R

)
=

[
0.5

2 kg

]
.
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Analytically, for small angles, the motion in terms of the evolution of the angle β under the

action of centrifugal forces due to the rotation is described by the equation:

β̈ + (1 + ε)ω2
eβ = 0,

where ε = 1 + SHH · lHH/JHH , SHH =
∑
dmi(lV H + (lPH + ri) cos ξ) is the center of mass of

the rod along the OyBCS axis, and JHH =
∑
dmi(lV H + (lPH + ri) cos ξ)2 is the moment of

inertia of the rod relative to the OyBCS axis. This linear equation has the following solution:

β (t) = β0 cos
(
ωet
√

1 + ε
)

+
β̇0

ωe
√

1 + ε
sin
(
ωet
√

1 + ε
)

or, for the given configuration:

β (t) = 0.02π cos
(
t
√

3
)

+
0.01π√

3
sin(t
√

3).
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Figure 7. Evolution of rotating rod flapping angle

Figure 7 demonstrates a comparison of the numerical solution with the analytical one of the

linear equation. It can be seen that the numerical solution practically coincides with the exact

solution.

Now let us consider the test on the motion of the rod in terms of the angle ξ determining

its lead-lag movement. The test configuration is similar to the previous one except the hinges

angular velocities given as β (0) = β̇ (0) = 0, ξ (0) = 0.02π, ξ̇ (0) = 0.01π rad/s.

For small angles, the lead-lag motion is analytically described by the following equation:

ξ̈ + ν2ω2
eξ = 0,

where ν2 = SV H(lHH + lV H)/JV H , SV H =
∑
dmi (lPH + ri) is the center of mass of the rod

along the OzBCS axis, and JV H =
∑
dmi (lPH + ri)

2 is the moment of inertia of the rod relative

to the OzBCS axis. This linear equation has the following solution:

ξ (t) = ξ(0) cos (νωet) +
ξ̇(0)

νωe
sin (νωet)

or, for the given configuration:

ξ (t) = 0.02π cos
(
t
√

1.6
)

+
0.01π√

1.6
sin
(
t
√

1.6
)
.
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Figure 8. Evolution of rotating rod lead-lag angle

In Fig. 8, a comparison between the numerical solution and the analytical one of the linear

equation is shown. As in case of the flapping angle, the numerical and exact solutions are

practically indistinguishable.

5.3. Model Hinged Rotor in Hover

In this case, the algorithm implementing the flapping motion of an articulated blade and the

work of flap hinge under the influence of aerodynamic forces on a deformable unstructured mesh

is verified. During the rotation of the hinged rotor, the FH allows the blades to freely perform

flapping motions. Over time, the flapping angle, the same for all the blades, should stabilize,

forming a taper of the rotor.

In the test case under consideration, the flow around a hinged rotor with two hinged blades,

rectangular in plan and made on the basis of NACA0012 airfoil without twist, is simulated.

The rotor radius is 1.142 meters, and the blade chord is 0.1903 meters with the aspect ratio

equal to 6. The pitch angle is fixed at 8◦. The horizontal hinges are located at a distance of

0.05 meters from the rotor axis, which allows the blades to perform flapping movements. Each

blade has mass of 1 kg, the center of mass is located in the middle of the blade mid-span. The

rotational speed is 650 RPM, corresponding to the tip speed of 77.7 m/s and the tip Mach

number of 0.23. The environmental parameters are chosen to ensure a Reynolds number of 104,

reducing the requirements for boundary layer cell height to satisfy the condition y+ < 1. The

Reynolds number is determined using a viscosity coefficient of 0.0413 Pa·s. The flow simulation

is based on solving the RANS equations with the SA turbulence model.

At the pre-processing stage, the deformation zone covered with the strand mesh is automat-

ically built for each blade (see Fig. 9, left). The inner cylindrical part contains the blade surface

with the surrounding boundary layer elements (hexahedrons and triangular prisms).

The computational domain represents a cylindrical region with the diameter and height of

60 meters and the axis coinciding with the rotor axis. An unstructured mesh is constructed on

the blade surface, and the prismatic boundary layer consisting of hexahedrons and triangular

prisms is then built starting from the surface, transitioning isotropically to tetrahedrons with

increasing the distance from the surface. The near wall cell size is chosen to ensure the condition

y+ < 1. The computational mesh in whole contains 2.8×105 nodes and 8.6×105 volume elements

(see Fig. 9, center, right).
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(a) Initial computational and

strand meshes

(b) Computational mesh,

flapping angle 0

(c) Computational mesh,

flapping angle 3.7◦

Figure 9. The mesh pattern near the blade: the strand mesh and the unstructured

computational mesh deformations

During the computation, at each time step, the aerodynamic forces acting on the blade are

calculated based on the pressure distribution on the blade surface. These forces are fed to the

input of the algorithm of the hinged rotor mechanics. The angular velocities of the blade motion

are determined basing on the current force distribution along the blade span with considering

the presence of hinges. Then, on the base of the location on the current time step and the angular

velocities, the new position of the blade is calculated.

Within the computation after 20 revolutions, the thrust, torque, and coning angle of the

rotor stabilize and reach the steady-state values (see Fig. 10, where vertical lines indicate the

beginning of each rotor revolution).
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Figure 10. Two-bladed rotor characteristics evolution

To assess the reliability of the numerical result, one can check the fulfillment of the equilib-

rium condition at specific moments in time from the perspective of d’Alembert’s principle. In

the considered problem formulation, from the standpoint of this principle, the following forces

act on the blade: the gravitational force, the aerodynamic force, and the inertial force, which

consists of the terms arising from the rotation with the speed ω and the acceleration β̈. The

equilibrium condition in the hinge is written as:

−Mω −Mg +MAD −Mβ̈ = 0,

where Mβ̈ = J · β̈ and J is the moment of inertia of the blade relative to the hinge.
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The values of the moments of inertial forces and gravitational force Mω, Mg and Mβ̈ can be

determined from the blade configuration and the data on its spatial position. To determine the

moment of aerodynamic forces relative to the hinge, it is necessary to evaluate it in the BFR

and integrate it with respect to the corresponding level arm length (for details see [19]).

These equilibrium equations are checked for each simulation time step. The measure of the

discrepancy is estimated as

Merr =
MAD −Mω −Mg −Mβ̈

|MAD|
.

The result is presented in Fig. 10b. The maximum relative error Merr in the equilibrium

equation is less than 4×10−4. This error corresponds to a change in the blade mass in the current

configuration of approximately 0.1%, from which it can be concluded that the equilibrium is

maintained and the algorithm is implemented correctly.

5.4. Model Hinged Rotor in Forward Flight

In this test case, the computation exploits the whole computational method including the

mesh deformation algorithm, and the algorithms implemented the hinged rotor blade mechanics

and turbulent flow simulation. The case represents the simulation of the flow around a model

hinged rotor in forward flight. In such flight regime, the cyclic collective pitch control intended

to reduce the aerodynamic force and moment oscillations is required. Thus, the test problem is

considered in a setup with the cyclic pitch control and free flapping motions of the blades in the

horizontal hinge.

Let us consider the model hinged rotor of four articulated blades. Each blade is based on

NACA23012 airfoil with linear twist. The rotor radius is 2.442 meters, and the blade chord is

0.16 meters. The horizontal hinges are located on the rotor axis and allow the blades to perform

flapping motions. The distribution of elementary masses along the blade span is given in Tab. 1.

Table 1. Four-bladed rotor mass distribution

r/R 0.0335 0.0570 0.0887 0.1673 0.2137 0.2636 0.3219 0.3721

m, kg 0.9111 0.8146 0.2585 0.1831 0.1345 0.1427 0.1333 0.1311

r/R 0.4291 0.5431 0.6572 0.7712 0.8292 0.8683 0.9116 0.9541

m, kg 0.2507 0.3066 0.2866 0.1937 0.1050 0.0876 0.0890 0.1392

The rotational speed of 840 RPM is constant with the tip velocity of 215 m/s corresponding

to the tip Mach number of 0.63. The environmental parameters are as follows: the air density is

1.2051 kg/m3, the pressure is 101325 Pa. The Reynolds number calculated based on the blade

chord and the tip speed is 2.7 × 106. The flow simulation is carried out by numerically solving

the RANS equations with the closing SA turbulence model.

The simulation of turbulent flow around the helicopter rotor in forward flight takes into

account the complex curvilinear motion of the articulated blades. In this setup, the rotor angle

of attack is zero, the upstream flow velocity is 60 m/s, and the blade pitch angle at the section

r/R = 0.7 is ϕ0 = 12.6◦ (or 11.1◦ with the pitch-flap coupling, see the details below). The cyclic

pitch control is governed by the following law for the blade azimuthal position ψ:

ϕ (ψ) = ϕ0 + a1 sinψ + b1 cosψ + kβ, (10)
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where the coefficients have the following values: ϕ0 = 12.6◦, a1 = −4.5◦, b1 = 1◦, k = −0.5.

The computational mesh is constructed in such a way that the initial blade pitch angle

corresponds to the law (10) at the initial time moment with the flapping angle β = 5◦. Thus,

the initial blade pitch angle in the mesh is set to ϕ(ψ = 0, β = 5◦) = 11.1◦. Note that this

step is not mandatory as the blade is positioned correctly through the mesh deformation at the

initial stage of the computation; however, such mesh prescription improves the robustness and

expands the limitations of the mesh deformation algorithm.

Figure 11. Computational mesh for the model four-bladed hinged rotor

As in the previous case, the unstructured mesh is constructed on the blade surface, and a

prismatic boundary layer consisting of hexahedrons and triangular prisms is built starting from

the surface and transitioning isotropically to tetrahedrons with increasing the distance from

the surface (see Fig. 11). The nearwall cell size is chosen to ensure the condition y+ < 1. The

constructed computational mesh contains 4.8× 106 nodes and 9× 106 volume elements.

To reach a quasi-steady state, eight full rotor revolutions are needed. As practice shows, in

the presence of an upstream flow (under the oblique flow conditions), it is enough to reach a

periodicity of the aerodynamic characteristics. The evolution of thrust and torque confirms this

(see Fig. 12).
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Figure 12. Evolution of four-bladed rotor thrust and torque
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The overall flow pattern obtained by the simulation meets the expectations: the turbulent

wake and tip vortices are carried downstream; the largest regions of negative gauge pressure are

observed on the surface of the advancing blade while the smallest ones are on the blade moving

downstream (Fig. 13).

(a) Rotor upper surface (b) Rotor lower surface

Figure 13. Gauge pressure distribution

Figure 13 shows the distribution of gauge pressure on the upper and lower surfaces of the

rotor. As expected, the region of low pressure is the largest on the surface of the advancing blade

(1) making the greatest contribution to rotor thrust at this azimuth. The last is well seen in the

blade and rotor thrust charts (Fig. 14). The thrust maxima correspond to the azimuth of 82◦

and the multiples of them in 90◦ increment. Similarly, the thrust minima occur at the azimuth

of 34◦ and the multiples thereof with a step of 90◦.
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Figure 14. Distribution of rotor and blades thrust over one rotor revolution

Note that the deviation from the average thrust and torque values (and, consequently, their

coefficients, see Fig. 15a) does not exceed 4.2% and 2.1%, respectively. Additionally, the influence

of cyclic control leads to a significant reduction of the amplitude of fluctuations in the transverse

and lateral forces, as expected (see Fig. 15b, where cT is the thrust force coefficient, cH is the

horizontal force coefficient and cS is the side force coefficient).
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Figure 15. Distribution of rotor aerodynamic and force coefficients over one rotor revolution

Conclusion

This paper presents a way of numerically simulating the turbulent flow near a helicopter

hinged rotor, i.e., the rotor consisting of articulated rigid blades. As practice shows, accounting

for hinged-blade motions within its rotation is extremely needed for designing new helicopters

since it may strongly contribute to their aerodynamic and acoustic properties. At the same

time, from a computational point of view, taking these movements into account significantly

complicates the numerical simulation. The latter is built basing on an efficient coupling of

high-fidelity computational gas dynamics and mechanics of hinged blades, and requires special

computational techniques to implement it. In particular, robust economic solutions are needed

to provide the proper mobility of a hinge blade under the action of inertial forces, gravity and

external cyclic control. The resulting complete computational algorithm is one way or another

highly resource-intensive, so the use of high-performance supercomputers is in great demand for

solving such problems.

In the future, the authors intend to develop this method, to continue its verification and

validation, and to extend it to the case of interacting helicopter rotors both for co-axial and

spaced apart formulations.
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