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The present paper covers specific parallel implementation details of the nonlinear harmonics

(NLH) method within an implicit time integration framework. The NLH method plays an impor-

tant role in industrial turbomachinery applications as it accounts for unsteady effects in modelling

of compressors and turbines on a base of low-cost stationary approaches: the flow is modelled using

the Reynolds-Averaged Navier–Stokes approach, the mixing plane method is used for the rotor-

stator interface, and only one periodic sector of a blade passage per row is considered. The main

focus is on the adaptation of the linear solver used in the Newtonian process of the implicit scheme.

The goal of this work is to significantly reduce memory consumption and improve performance.

This goal is achieved by using a specialized block sparse matrix storage format, adapted linear

solver preconditioners with approximate inverse diagonal blocks, and a combination of single- and

double-precision real number formats.

Keywords: turbomachinery, rotor-stator interaction, non-linear harmonics method, unstruc-

tured mesh, parallel CFD, supercomputer.

Introduction

The nonlinear harmonics (NLH) method, first proposed in [1] and later applied to realistic

turbomachines [2, 3], accounts for unsteady effects in simulations of compressors and turbines

using low-cost stationary approaches. The flow is modeled on a base of the Reynolds-Averaged

Navier–Stokes (RANS) approach. Only one periodic sector of blade passage per row is considered,

which is crucial due to the typically large number of blades in each row, from tens to hundreds.

In particular, the NLH is incorporated [4, 5] into the commercial solver Cadence Fidelity Fine

Turbo, well known as one of the most efficient simulation tools for turbomachinery.

Figure 1. Angular periodicity

The mixing plane (MP) method [6, 7] is used for rotor-stator interfaces, which assumes

uniformity of the flow in the circumferential direction at the interface. The NLH method allows

capturing the unsteady interaction between adjacent rows by transmitting the perturbations

related to the blade passing frequency through the mixing-plane interface.
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Figure 2. MP rotor-stator interfaces

The NLH technology was successfully implemented [8, 9] within a higher-accuracy numer-

ical algorithm for unstructured meshes in the NOISEtte [10] code. The code has multilevel

heterogeneous parallelization [11] by means of MPI, OpenMP and OpenCL parallel standards.

The NLH method needs to solve for each harmonic a supplementary system of transport

equations for complex harmonic amplitudes. Thus, each harmonic adds twice as many variables

per cell (real and imaginary parts) as in the baseline stationary RANS simulation. What is

worse, since the time integration is implicit, the block size of the Jacobian matrix increases from

5 to 10, which increases the storage size and computation cost of the solution by about 4 times.

Therefore, the present study is focused on reduction of this undesirable memory consumption.

The rest of the paper is organized as follows. Section 1 briefly describes the NLH technology.

Section 2 is devoted to the adaptation of the linear solver by means of a customized sparse block

matrix format. The results of memory consumption reduction and performance improvement

are presented in Section 3. Finally, the conclusions are summarized.

1. Non-Linear Harmonics Method

1.1. Mathematical Model

The NLH is based on solving the Reynolds-Averaged Navier–Stokes (RANS) equations for

simulating a turbulent compressible viscous flow:

∂Q

∂t
+∇ · FC(Q)−∇ · FD(Q) = 0, (1)

where Q = (ρ, m, E)ᵀ is the vector of averaged conservative variables, ρ is the density, m = ρu,

where u = {u, v, w} is the velocity vector, E = ρ(e+ u2/2) is the total energy, e is the specific

internal energy. The convective and diffusive fluxes read:

FC(Q) =




m

u⊗m + pI

(E + p)u


, FD(Q) =




0

σ

σ · u− q


, (2)

where I is the unit tensor, σ(u) = {σjk}(u) = µeff(∇juk +∇kuj − δjkdivu) is the stress tensor,

δjk is the Kronecker symbol, q = −γµ
Pr∇e is the heat flux vector. γ = cP /cV is the specific

heat ratio, cP and cV are the specific heat capacities at constant pressure and constant volume,

respectively. Pr = cPµ/κ is the Prandtl number, κ is the thermal conductivity coefficient. The
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perfect gas equation of state is assumed: p = (γ−1)ρe. µeff = µ+µt, µ is the dynamic viscosity,

µt = ρνt, νt is the turbulent viscosity defined by a particular turbulence model.

The conservative variables Q within the NLH method are split into the time-averaged part

Q(x) and periodic pulsations Q′(t, x):

Q(t, x) = Q(x) + Q′(t, x). (3)

The pulsation part Q′(t, x) is represented as a sum of complex harmonic components:

Q′(t, x) =
1

2

∞∑

k=1

[
Q̃ke

ikω0t + Q̃−ke
−ikω0t

]
, (4)

where i is the imaginary unit, Q̃k = Q̃a,k+iQ̃b,k, Q̃a,k = <
(
Q̃k

)
and Q̃b,k = =

(
Q̃k

)
are the real

and imaginary parts of the amplitude for k-th harmonic, respectively, Q̃−k = Q̃a,k− iQ̃b,k is the

complex-conjugate for Q̃k. The number of harmonics Nh defines how accurate the approximation

of Q′(t, x) in (4) is, the more harmonics, the more accurate it is, but at a higher computational

cost. The harmonic indices k are defined by the blade passing frequencies (BPF) ΩBPF of adjacent

rows: k = n · kBPF, n = 1, 2, ..., Nh. kBPF, in turn, is defined as kBPF = ΩBPF/Ωrot, where Ωrot

is the rotation frequency (kBPF ∈ N by definition). Thus, every domain (either rotor or stator)

has two sets of harmonic indices k, which are proportional to kBPF from adjacent domains.

According to (3), the RANS system (1) is decomposed into the system for averaged variables

and the set of systems for amplitudes of each harmonic. The system for averaged variables Q

reads:

∂Q

∂t
+∇ · FC

(
Q,Q′

)
−∇ · FD

(Q,Q′) = 0, (5)

FC
(
Q,Q′

)
= FC(Q) + FC

NLH(Q′), FD
(Q,Q′) = FD(Q) + FD

NLH(Q′). Nonlinear deterministic

stress contributions of harmonic amplitudes are of the form FC
NLH(Q′) = (0,m′ ⊗ u′, (E + p)′u′)ᵀ

and FD
NLH(Q′) = (0, 0, 0, 0,σ′ · u′)ᵀ, where σ′ = σ(u′). The system (5) is distinguished from the

system (1) by the presence of the nonlinear terms FC
NLH and FD

NLH, which are defined by Q′.
For brevity, the index k of harmonic amplitude for ωk frequency will be omitted from now on

when referring to harmonic amplitude vectors Q̃k. Thus, the system for a harmonic amplitude

vector Q̃ is

∂Q̃

∂t
+∇ · F̃C

(
Q̃,Q

)
+ iωQ̃−∇ · F̃D(Q̃,Q) = 0, (6)

F̃C =




m̃

ũ⊗m + u⊗ m̃ + p̃I(
Ẽ + p̃

)
u + (E + p)ũ


 , F̃D =




0

σ̃

σ̃ · u + σ · ũ− q̃


 , (7)

where σ̃ = σ(ũ), q̃ = −γµ
Pr∇ẽ. µeff = µ + µt, µt is defined by a turbulence model closing the

equations for averaged variables.

Linear systems of equations for harmonic amplitudes (6)–(7) are independent of each other

due to orthogonality of harmonics. The equations for averaged variables and harmonic ampli-

tudes are closed by several relations (see [8] for more details), including the following ones:

f g = f g + f ′g′; (fg)′ = f ′ g + f g′; f ′g′ = 0.5
∑Nh

k=1

[
<(f̃k)<(g̃k) + =(f̃k)=(g̃k)

]
.
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1.2. Discretization

The convective terms for harmonic amplitudes ∇ · F̃C in (6) are discretized in space on

an unstructured mesh using the edge-based reconstruction (EBR) [12] (for smooth solutions)

and shock-capturing EBR-TVD or EBR-WENO [13] schemes with the scheme [8] based on the

Roe [14] scheme for solving the Riemann problem. According to it, the numerical flux Fij at the

surface associated with the edge ij, which connects nodes i and j, is defined as

Fij =
1

2

[
F(Q̃ij ,Qi) + F(Q̃ji,Qj)

]
· nij −

1

2
Sij |Λij |S−1

ij

[
Q̃ji − Q̃ij

]
, (8)

where Q̃ij and Q̃ji are the pre-decay values of conservative harmonic amplitudes, calculated

using a EBR-based scheme, at the nodes i and j, respectively. nij = sij/|sij | is the unit vector

aligned with sij = −sji – the surface associated with edge ij. Considering moving of the control

volume with the speed V = Ωrot×r (Ωrot is the rotation vector, r = (x, y, z) is the radius vector

of the node), the flux function F(Q̃ij ,Qi) at the node i can be written as

F(Q̃ij ,Qi) =




m̃ij

ũij ⊗mi + ui ⊗ m̃ij + p̃ijI(
Ẽij + p̃ij

)
ui + (Ei + pi)ũij


− Q̃ij ·V. (9)

The F(Q̃ji,Qj) has the form similar to (9). Λij is the diagonal matrix of the eigenvalues of

Aij = d(F · nij)/dQ̃ [14]. Sij is the matrix of the corresponding eigenvectors. We should empha-

size that both Λij and Sij depend only on the averaged variables Qi and Qj . For the viscous

terms ∇ · F̃D in (6), the method of averaged element splitting (AES) [15] is used.

Since averaged variables and harmonic amplitudes do not depend on time, a pseudo-time

iterative process is used to obtain a stationary solution. To do so, the implicit time integration

backward differentiation formula (BDF) with a quasi-Newton linearization is used. As already

mentioned above, the system (6) differs from (1) by the presence of FC
NLH and FD

NLH terms. We

consider them as source terms independent of Q, so (6) is solved using the same numerical scheme

as for usual RANS without considering nonstationary perturbations. Also, it enables to perform

pseudo-time advancing for the system of averaged variables (5) and harmonic amplitudes (6)

separately. At each time step, first a sub-step for averaged variables is computed with harmonic

amplitudes frozen, then a sub-step for harmonic amplitudes is carried out with updated averaged

variables.

A semidiscrete approximation of (6) for a harmonic amplitude can be formulated as

dQ̃

dt
− Φ̃(Q̃,Q, ω) = 0,

where Φ̃ = −∇ · F̃C
(
Q̃,Q

)
− iωQ̃ +∇ · F̃D(Q̃,Q). The implicit scheme reads

(
I

τn
+ J̃

)
(Q̃n+1 − Q̃n) = Φ̃

(
Q̃n,Q

n
, ω
)
, (10)

where τn is the timestep at the n-th pseudo-time step, J̃ ≈ dΦ̃/dQ̃ – an approximated flux

Jacobian. We should emphasize that the Jacobian matrix J̃ for both convective F̃C and diffusive

F̃D fluxes depends only on averaged variables Q, while a contribution from the source term iωQ̃

depends on ω only.

A.P. Duben, A.V. Gorobets

2025, Vol. 12, No. 1 63



The parallel preconditioned BiCGStab solver [16] is applied for the Jacobi linear system.

Gauss–Seidel method-based parallel preconditioners [17] for block sparse matrices are used.

Each system of equations for harmonic amplitudes includes the coupled between each other

real and imaginary parts. Thus, the blocks of the sparse block matrices for harmonic amplitudes

are 10×10, while the system for averaged variables has blocks 5×5. This means that the NLH

method requires 4 times more memory to store the matrix and 4 times more computational cost

of the sparse matrix-vector product. Fortunately, only one matrix is stored for all the harmonics,

since the harmonics are solved one by one.

The boundary conditions for harmonic amplitudes, inlet, outlet, and solid surfaces, are

implemented in the same way as for the averaged variables.

The mixing plane (MP) method [7] is used for the rotor-stator interface. The boundary

conditions for harmonic amplitudes at the rotor-stator interface are implemented similarly to [2]

basing on the MP functionality. For the sector periodicity on the mixing-plane interface, the

NLH method uses generalized periodic conditions with phase shift for the closure of harmonic

amplitudes with different number of blades in adjacent rows, as in [18]. Further details on the

numerical method can be found in [8].

2. Linear Solver Adaptation

The NOISEtte code has an in-house heterogeneous parallel linear solver that uses the precon-

ditioned BiCGStab [16] iterative method with several preconditioners based on the Gauss–Seidel

method [17]. It supports multilevel MPI+OpenMP+OpenCL parallelization for running on nu-

merous CPUs and GPUs. The solver is a multi-system solver for systems with block sparse

matrices that share the same portrait. The matrices are stored in a block CSR (Compressed

Sparse Row) format, with dense blocks of coefficients placed linearly in memory in a row-by-row

order. Obviously, sharing one portrait across multiple matrices saves memory for storing por-

traits. In addition, the group solution for several systems at once allows to reduce the network

latency overhead in a distributed parallel mode. MPI messages in the common iterative process

are grouped, including halo update operations in sparse matrix-vector products (SpMV) and

reduction exchanges in dot products, which reduces the number of messages by several times.

As soon as the solution of one of the systems satisfies the residual criterion, it is excluded from

the solution process by setting the corresponding convergence flag. Typically, in a basic station-

ary RANS simulation, there is one system with 5×5 blocks for the 5 main variables (density,

3 velocity vector components, pressure) and from 1 to 4 additional systems for the turbulent

model variables (with block sizes 1×1 or 2×2), depending on a particular RANS model.

In the NOISEtte code, a mixed-precision approach is used, in which the Jacobian matrix is

stored in single-precision floating-point format, while the mesh functions and discrete operators

coefficients are represented in double-precision format (see [11] for details). The linear solver thus

operates mainly in single-precision format: vectors and matrices are in single-precision, while

BiCGStab scalar coefficients are in double-precision, as well as some intermediate values, such

as sum accumulators in dot products, etc. For stability reasons, inversion of diagonal blocks can

also be performed in double precision, the result of which is then converted to single precision.

This baseline solver can be directly used for the NLH method as well, but with a matrix block

size of 10×10, which is very wasteful. In order to reduce memory consumption and computational

cost, the solver has been upgraded with a customized matrix storage format and dedicated

matrix-vector product functions. The preconditioner has also been significantly redesigned for
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the new matrix format, including the matrix diagonal blocks inversion function and inverted

diagonal blocks storage.

2.1. Customized Matrix Format for Harmonics Matrices

The matrix portrait corresponds to nodal adjacency via mesh edges. In the matrices for

harmonics, each 10×10 matrix block corresponds to 5 real and 5 imaginary parts of complex

variables in nodes. If the variables in blocks are ordered accordingly, first real parts, then imagi-

nary, then the diagonal and off-diagonal 10×10 blocks have the following structure, respectively:

Aii =

(
Aii −ωυiI
ωυiI Aii

)
, Aij =

(
Aij 0

0 Aij

)
, i 6= j, (11)

where Aii are dense 5×5 blocks, ω is the frequency to which these harmonic amplitudes corre-

spond (ωk, actually), υi is the volume of i-th cell, and I is the 5×5 identity matrix.

This specific matrix structure allows to easily reduce memory consumption for matrix storage

by about 4 times. Instead of 100 values, 26 values are stored: 25 values of the 5×5 block Aii
and one more value ωυi.

Furthermore, the matrices for harmonics depend only on averaged variables except diagonal

coefficients, which contain contributions defined by the source terms iωQ̃. Thus, once the Jaco-

bian matrix is filled for the averaged variables, it can be reused for the harmonics with only the

diagonal elements of diagonal blocks being updated. To implement this memory-saving strategy,

apart from minor updates in the matrix format, all the necessary operations involving products

with matrix blocks must be provided for this customized block representation. In case of the

BiCGStab solver, only the SpMV operation needs to be updated, and the preconditioner may

also require changes.

2.2. Preconditioner with Block-Diagonal Inversion

Situation with the preconditioner based on the block Jacobi method,

xm+1
i = Aii

−1
(
bi −

∑
j 6=i Aijx

m
j

)
, or the block Gauss–Seidel method,

xm+1
i = Aii

−1
(
bi −

∑i−1
j=1 Aijx

m+1
j −∑n

j=i+1 Aijx
m
j

)
, needs more attention, because in-

verted diagonal blocks are required to obtain solution on the next iteration, m+ 1, of the inner

iterative process. Inverted diagonal blocks do not necessarily follow the original block structure,

and storage for full 10×10 blocks is required (and about 8 times more arithmetic operations for

the inversion compared to 5×5 blocks)

The matrices for harmonics could be treated as block matrices of 5×5 blocks with a

portrait 4 times larger. In this case, only one 5×5 diagonal block, Aii, needs to be in-

verted and stored for each 10×10 block Aii. This requires less computational effort to in-

vert the diagonal blocks and 4 times less memory to store it. On the other hand, the

Gauss-Seidel block method would require a double pass for each 10×10 block row then

(since it is considered as two 5×5 block rows), which is inefficient enough to overcome

all the profit. So we approximate the inverted 10×10 blocks in such a way that only the

5×5 diagonal blocks are stored, while still dealing with the 10×10 block rows in the Ja-

cobi and Gauss–Seidel methods, respectively: xm+1
i = Aii

−1
(
bi −

∑
j 6=i Aijx

m
j −Ωxmi

)
,
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xm+1
i = Ã−1

ii

(
bi −

∑i−1
j=1 Aijx

m+1
j −∑n

j=i+1 Aijx
m
j −Ωxmi

)
, where

Ã−1
ii =

(
Aii−1 0

0 Aii−1

)
, Ω =

(
0 −ωυiI

ωυiI 0

)
.

Using this approximate inversion, complemented with the minor modification by including

the extra term Ωxmi , allows saving a lot of computational effort and memory on dealing with

inverted diagonal blocks. However, it is necessary that such an approximation does not spoil

the solver convergence process (otherwise, the solver may need many more iterations, which will

overcome all the gains). To verify this, a direct comparison is made with the original variant

with full storage of 10× 10 inverted blocks, results are demonstrated in the following section.

3. Performance Analysis

3.1. Cases Description

Two model cases are used to demonstrate the performance of the modified implicit solver.

Simulations for both test cases were performed using the Menter SST [21] turbulence model.

The hexahedral meshes for the test cases are built using the TurboR&D.Mesher software [22].

The first case is an isolated rotor with 22-blade impeller, NASA Rotor-67 [19], which is

widely used for validation in turbomachinery applications. Although there is no stator, the com-

putational domain is divided into three parts, as shown in Fig. 3, so that the static subdomains

conduct the perturbations generated by the rotating impeller, which are captured by the NLH

method. The previously obtained head-capacity characteristics of the Rotor-67 are presented

in [9]. Here, the maximum efficiency regime of the rotor is considered for the performance tests.

The hexahedral computational mesh contains 3.58 million nodes (single-blade sector with pe-

riodic boundary conditions). The same number of periodicity sectors is applied to all three

subdomains.

The second case is more computationally intensive, it is part of a model axial compressor of

a gas turbine engine with a scaled number of blades (see Fig. 3, and further details can be found

in [20]). The configuration considered consists of an inlet guide vane and four stages of rotor

and stator, which in total represents 8 rotor-stator interfaces. The mesh for this configuration

contains 11.9 million nodes. As for the Rotor-67, head-capacity characteristics can be found

in [9]. The highest efficiency regime is considered here for performance tests.

3.2. Demonstration of Performance Improvement

Reduced memory consumption and increased performance are demonstrated in comparison

with the previous NLH method implementation [9] on the Rotor-67 model test case. The hex-

ahedral mesh contains about 3.6 million nodes. The total memory consumption depending on

the number of harmonics is shown in Fig. 4. It can be seen that the additional memory con-

sumption for storing the matrices for harmonics has become negligible. The performance ratio

depends on the number of harmonics, since it is the solver for harmonic systems that has been

accelerated. For instance, in the typical case of using three harmonics, a speedup of 1.6 times

has been achieved.
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(a) Rotor-67 model rotor

(b) Axial multi-stage model compressor

Figure 3. Computational domains of the cases considered
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Figure 4. Memory consumption and computation time relative to the no-harmonics

simulation for the Rotor-67 test case as a function of the number of harmonics,

comparing the previous implementation [9] (Old) and the improved one (New)

3.3. Performance of Modified Preconditioners

Now let us separately consider the acceleration of preconditioners of the linear iterative

solver. A comparison of the baseline preconditioners with full storage of 10×10 inverted blocks
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and the modified preconditioners, which use reduced 5×5 inverted blocks, is performed on ex-

ample of the Rotor-67 test case with 3 harmonics.

To maximize the possible negative effect on the BiCGStab solver convergence from the

diagonal inversion approximation, a single iteration of the Jacobi method with zero initial guess

is used, which corresponds to the block-diagonal preconditioner. The solver tolerance is set

several orders of magnitude smaller than what is typically used in practice to more accurately

measure the difference in the number of iterations, with the iteration counts averaged over many

time steps. The difference appeared to be negligible, within 2%. Then, Gauss–Seidel (GS) and

symmetric GS (SGS) preconditioners were tested, and no notable difference in the resulting

number of BiCGStab iterations was observed neither.

Finally, the SGS preconditioner with the approximate diagonal blocks inversion was tested

in practical conditions. Comparative testing showed that diagonal block inversion is accelerated

by 2.8 times, and the total time for solving linear systems for harmonics has become 1.17 times

shorter. The preconditioner solution stage, which takes most of the solver time, is now 1.15 times

faster. The overall speedup achieved for the simulation due to the preconditioner upgrade is about

8%. Memory consumption for storing the inverted diagonal of harmonic systems is reduced by

4 times, which corresponds to 6.5% reduction of the total memory used.

3.4. Parallel Performance

Since the computation time was reduced and the data exchanges remained the same, the par-

allel speedup could have notably degraded. To make sure this did not happen, parallel speedup

measurements were performed on a cluster using more than 600 cores. The cluster nodes are

equipped with two 16-core Intel Xeon CPUs (8 DDR4-3200 memory channels each). The tests

for the Rotor-67 and model multi-stage axial compressor are performed using 3 harmonics. The

speedup plots obtained are shown in Fig. 5. No notable degradation of parallel efficiency has been

observed compared to the previous version [9], which is about 1.6 times slower. For instance, on

16 nodes, the parallel efficiency (acceleration at 16 nodes relative to one node, divided by the

number of nodes and multiplied by 100%) of the multi-stage compressor simulation was 82% and

now is 83%, the difference seems to be just within the measurement accuracy. Parallel efficiency

of 77% has been obtained on the Rotor-67 case when having about 6 thousand nodes per core.

Single-node parallel performance is demonstrated on the Rotor-67 case using 3 harmonics.

The speedup relative to sequential execution is presented in Tab. 1 for various parallel execution

modes with different ratios of MPI processes and OpenMP threads. On a single 16-core CPU, the

OpenMP speedup is about 10 times. Using simultaneous multithreading with 2 threads per core

gives about 6% speedup. This can be explained by mitigating the effect of memory latency on

cache misses, since when one thread gets stuck on a memory transaction, another can proceed. It

should also be noted that the SGS predonditioner is parallelized by blocks: the matrix is sliced

among threads, and each thread applies the preconditioner to its diagonal block, at the interface

the unknowns are taken from the previous iteration, as in the Jacobi method. Therefore, the

solver convergence may degrade as the number of threads increases. To evaluate this effect,

the average number of solver iterations was measured when setting the solver tolerance several

orders of magnitude lower than is typically used in practice. The solver with 32 threads needs

on average about 12% more iterations than with 1 thread (however, the impact on the overall

convergence of the solution to the nonlinear problem is less significant).
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Figure 5. Parallel speedup on a cluster system for the Rotor-67 and model multi-stage axial

compressor using 3 harmonics

On two CPUs running one MPI process per CPU (to avoid NUMA factor), the speedup is

about 22 times. Considering that the numerical algorithm is rather memory-bound (low arith-

metic intensity per unit of memory traffic, especially for the sparse linear solver) and the number

of memory channels is 16, this acceleration can be viewed as high enough.

Table 1. Single-node performance on the Rotor-67 case using 3 harmonics

Cores CPUs MPI OpenMP Time, s Speedup

1 1 1 1 53.3 1.0

16 1 1 16 5.37 9.9

16 1 1 32 5.08 10.5

32 2 1 64 3.36 15.9

32 2 2 32 2.42 22

32 2 32 1 2.32 23

32 2 32 2 2.23 23.9

Conclusion

The NLH method reproduces unsteady effects in turbomachinery applications simulated

using low-cost RANS approaches. It allows for the modeling of only one periodic sector of a

single blade passage per row in compressors and turbines and the transmission of non-stationary

perturbations through a mixing-plane interface. An important problem with this method is

the memory consumption, which grows with the number of harmonics. In case of an implicit
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scheme, the Jacobian sparse block matrix for complex variables has a block size twice as large

and, accordingly, needs four times more memory. Reducing memory consumption is especially

critical for using the NLH method on GPUs, which have very limited memory size. In the present

work, this reduction has been achieved by using a specialized block sparse matrix storage format

and approximate inverse diagonal blocks in Gauss–Seidel based preconditioners. Compared to

our previous NLH implementation [9], the proposed modifications have reduced the memory

footprint of the Jacobian matrix for harmonics by a factor of 4, resulting in an overall reduction

in memory consumption by about 1.5 times, as well as a speedup of about 1.5×. At the same

time, parallel performance in shared and distributed memory was maintained at a fairly high

level, showing about 80% parallel efficiency when running on hundreds of CPU cores with a

payload per core of about 6 thousand mesh nodes.

The achieved reduction in memory consumption allows us to begin using GPUs in simula-

tions with the NLH method. Our further work will be aimed at porting the NLH computational

algorithm, including new solver kernels, to GPUs. This should not be very difficult, since the

computational algorithm of the NLH method implemented in the NOISEtte framework is fully

compatible with the stream processing paradigm and can rely on the existing GPU computing

infrastructure of the code. It is also planned to incorporate the NLH method for use with the

full approximation multigrid method [23], which is expected to provide a significant convergence

speedup.
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