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The article is devoted to direct numerical modeling of viscous weakly compressible

Kolmogorov-type flows in a square calculation cell. Several different conditions are observed. One

of them is dominated by a large vortex with a well-defined average profile. In another state, strong

chaotic large-scale fluctuations prevail. In the third state, laminar flow is observed. The nature of

the realized state depends on the coefficient of kinematic viscosity of the liquid, the amplitude of

the external pumping force, and the bottom friction coefficient. At constant values of the kinematic

viscosity and the wave vector, a small value of the friction coefficient leads to the appearance of

the first state. As the bottom friction coefficient increases, there is a transition from a flow with

one large vortex to a laminar flow through a series of states with several unstable vortices, which

we call chaotic flow. A rank analysis of the values of vorticity, energy, and pressure, as well as

the frequency of their occurrence, is proposed. It is shown that for chaotic, vortex, laminar and

transitional regimes of fluid motion, the inflection point in the rank frequency distributions of the

above fields is a universal characteristic for classifying various types of flow.
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Introduction

Two-dimensional models for describing vortex flows are widely applied in atmospheric,

oceanic, and astrophysical research [19]. The applicability conditions for these models are met

for processes, the horizontal scales of which are much larger than the vertical one, and it can be

assumed that the main flow movement occurs in two horizontal directions. In 1959, A.N. Kol-

mogorov proposed to study the simplest model, which is the two-dimensional motion of a viscous

fluid prompted by the action of a periodic (along one of the coordinates) field of an external force

(pumping) [2]. The first theoretical works [4, 28] devoted to two-dimensional vortex structures

reveal a fundamental difference in their behavior from three-dimensional ones. In the spatial

case, it is known that there is a direct cascade of energy [23], which, due to nonlinear inter-

action, transfers energy from the integral scale, on which energy is pumped, to smaller scales

up to the dissipative one, determined by viscosity, on which kinetic energy is converted into

heat. In the planar case, the situation is the opposite: a reverse energy cascade occurs, in which

energy is transferred from small scales to larger ones. Quantitatively, this is manifested in the

different behavior of the energy spectrum and the influence of internal dynamic characteristics

on it. Thus, in the works [29–32] the formation of sharp vorticity gradients in two-dimensional

hydrodynamic turbulence and their influence on turbulent spectra due to flow anisotropy are

considered. The energy accumulation on the scale of the system size leads to the emergence of

intense large-scale motion, including large vortices [26]. The tendency towards the formation of
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large vortices has been indicated in the research devoted to two-dimensional turbulence, both

experimental [47] and numerical [6, 9, 45, 46]. Large coherent vortices were observed in nu-

merical simulation [10, 11, 42, 50] based on the solution of the two-dimensional Navier–Stokes

equation with no-slip boundary condition. A similar coherent vortex structure was created in

laboratory experiments in a square container [17, 49, 51]. Large vortices were obtained by nu-

merical simulation of static pumping with various types of large-scale dissipation, as reported

in [7, 48]. A whole series of computational works has been devoted to studying the properties of

a coherent vortex [14, 25, 27, 33]. The first attempt to establish the profile of the average veloc-

ity of a coherent vortex was made in [33], where periodic boundary conditions and short-term

time-correlated pumping were introduced. The authors show the appearance of a stable vortex

dipole. In [25, 27], in a similar formulation, the average velocity profile of a coherent vortex was

numerically found, which exhibits isotropy properties at a distance of the order of the vortex

radius. Note that, in addition to Kolmogorov pumping, the presence of bottom friction has a

significant effect on the formation of such flows, which is introduced into the system of equations

under study by adding a term with a coefficient called the bottom friction coefficient [5].

In [14], Kolmogorov-type flow regimes in a square cell that occur at various values of the

friction coefficient are numerically investigated. Three types of flow are most clearly classified:

laminar, chaotic, and vortex flows. Transitional regimes arise between them, which are difficult

to attribute to one type of flow [43], since they change their characteristics over time and are

formed through a sequence of bifurcations during the change from a laminar flow to a chaotic

flow regime, as well as during the transition from a chaotic to a vortex flow. In [13], the conditions

for the existence of a vortex regime were identified and it was shown that it is observed at a

sufficiently small value of the friction coefficient. The remaining flows occur when the coefficient

is increased. However, this coefficient cannot be directly measured during a physical experiment

in which the above flow regimes are observed. The measured characteristic for a two-dimensional

flow during a physical experiment is the velocity field. Therefore, a natural problem arises to

formulate an algorithm for processing the velocity field, which can be used to answer the question

of what state (laminar, chaotic, vortex, or transitional) the hydrodynamic system is in. This

will allow us to determine the value of the friction coefficient corresponding to a numerical

experiment with the same parameters as in a physical experiment. In [21], for the first time,

a method was proposed to classify structure on the analysis of rank distributions [22, 39] for

the vorticity field and the frequency of occurrence of various values of this parameter. In [21],

a differential characteristic of the vorticity distribution was revealed for various flow regimes

of a viscous, slightly compressible fluid that occurs in a square region under the influence of

a constantly acting force. This characteristic is determined by the coordinates of the inflection

point for the rank distribution of the frequency of occurrence of vorticity. At the same time,

numerical modeling has shown that there is no inflection point for the laminar regime; in the

case of chaotic motion, it is formed, and when switching to the vortex flow regime, it shifts to

the region of high ranks. Thus, the appearance of an inflection point can be used to analyze the

types of flows. Since earlier [13, 14] flows were studied at various values of the pumping force and

the bottom friction coefficient and a rank analysis was performed only for the vorticity field [21],

it is necessary to perform a rank analysis of flow regimes for other characteristics of the model:

energy and pressure, as well as to investigate the behavior of the corresponding inflection points

of the rank curves. This paper presents a solution to this problem.
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Let us briefly describe the content of the work. Section 1 presents a system of equations

for the Kolmogorov-type flow and the results of a numerical experiment to identify the types of

flows depending on the bottom friction coefficient. In Section 2, the general idea of construct-

ing rank distributions for analyzing system properties is formulated. Sections 3, 4 and 5 are

devoted to the analysis of the rank distributions of their values and the corresponding occur-

rence rates for vorticity, energy, and pressure. The appearance of an inflection point for the rank

distributions of the frequency of occurrence of the studied characteristics is shown when the

flow regimes change. The article ends with Discussion and Conclusion. For steady-state laminar

flow, Appendix provides the construction of an analytical solution and the corresponding rank

distribution, and a comparison with the results of numerical simulation is performed.

1. Model Relations and Calculation Results

We study the two-dimensional motion of a viscous weakly compressible fluid in a square

cell Ω, satisfying the system of Navier–Stokes equations. The corresponding equations of conti-

nuity (1), momentum variation (2), (3), and weak compressibility (4) are presented below:

∂ρ

∂t
+∇(ρV̄ ) = 0, (1)

∂ρu

∂t
+∇(ρuV̄ ) = −∂p

∂x
+ ρG sin ky + µ∆u− ζu, (2)

∂ρv

∂t
+∇(ρvV̄ ) = −∂p

∂y
− ρG sin kx+ µ∆v − ζv, (3)

dp = c2ρ0
dρ

ρ
. (4)

Here ρ is the density of the liquid (ρ0 = 1000 kg/m3 is the initial density); V̄ = (u, v) is the

velocity vector, the components of which are equal, respectively, to u and v; µ = 0.1 Pa · s is the

dynamic viscosity of the liquid; p is pressure; ζ is the coefficient characterizing the presence of

bottom friction; G = 0.15 m/s2 is the amplitude of the external force; k = 5 m−1 is the spatial

frequency of the external force; c is the speed of the disturbance propagation. The right-hand

sides of equations (2) and (3) contain the terms ρG sin ky and −ρG sin kx, which model the

action of the pumping force. The components −ζu and −ζv characterize the bottom friction

force. For velocity, the no-slip condition is required at the boundary of the calculation cell:

V̄ |∂Ω = 0. The boundary condition for pressure is ∇np|∂Ω = 0, here ∂Ω is the outer boundary

of the computational cell Ω, n̄ is a vector perpendicular to the boundary surface.

The dimensionless parameter characterizing the formed flow regime is the Reynolds number

Re = ρ0VmaxL/µ, here L = 2πm is the size of the computational area, Vmax is the maximum

modulus of the flow velocity. The end time of the calculation was selected after the system

reached a statistical stable state.

The initial conditions are undisturbed pressure and velocity fields: P0 = 105 Pa,

u = v = 0 m/s.

In equation (4) the speed of the disturbance propagation is c = 100 m/s. The choice of such

a speed value allows us to achieve a compromise between the time step and the stability of the

calculations. For the McCormack scheme, the following relationship between the time step, the

space step, and other quantities has been empirically established [1], ensuring the stability of

the scheme:
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∆t ≤ σ∆x(
Vmax +

√
2c
)

(1 + 2/Remin)
, (5)

here σ is the safety factor, ∆x ≈ 1.2 · 10−2 m is the spatial step, Vmax ∼ c/10. Let us consider

the case of a coarse computational grid, as the most favorable in terms of computational time.

For laminar flow Re = 900 and we assume the minimum Remin ∼ 200, and we choose the

coefficient σ equal to 1. Then from formula (5) it follows that ∆t ≤ 8 · 10−5 s. If σ = 0.5, then

∆t ≤ 4 · 10−5 s. For the calculations presented in this paper, a time step of ∆t = 2.5 · 10−5 s was

used.

The numerical solution of the Navier–Stokes equations is based on the artificial compress-

ibility method [1]. In this case, the hyperbolic part of the equations is solved by the explicit

McCormack method [37], whereas the parabolic part is solved by the standard finite difference

method. The McCormack scheme has a second order of accuracy in space and time.

The McCormack scheme is used for the numerical solution of hyperbolic equations, since

it has good dissipative and dispersion properties. In addition, it enables to study the behavior

of quantities with large gradients, including discontinuities. To understand how suitable this

numerical tool is for modeling turbulence, a test was performed, presented in [12, 15]. Overall,

the McCormack scheme showed similar results to those that can be obtained using algorithms

based on the CABARET scheme and the OpenFOAM finite volume method.

The numerical code is parallelized using the OpenMP library, designed for computers with

shared memory. The calculations used the number of cores up to 384.

In [43], three main flow regimes were obtained: laminar, in which the fluid motion pattern

retains its initial shape and does not change over time; chaotic (or turbulent), characterized by

the presence of randomly moving vortices of various sizes and lifetimes; and vortex, in which a

single large coherent vortex appears, it occupies almost the entire computational area and exists

for a long time. In the course of a numerical experiment, the dependence of the flow type on the

value of the bottom friction coefficient α = ζ/ρ0 was analyzed. In order to identify it, numerical

experiments were performed for various values of α and fixed values of G,µ. The dimensions of

the parameters α, G,µ are equal to s−1, m/s2, Pa · s. It should also be emphasized that we did

not set out the task of obtaining results that could be used as the basis for describing physical

experiments on turbulence. Discussions with experimental scientists led us to the conclusion that

at this stage of the numerical experiment it is necessary to develop a mathematical model that

could qualitatively identify new effects of vortex motion. Therefore, the values of the simulation

parameters, in particular, regarding viscosity, were selected based on the principle of “saving”

computing resources. The experiments were carried out in the range for α from 10−4 to 1 and

allowed us to identify the presence of transitional flow regimes occurring between the main

regimes [43].

Figure 1 shows the vorticity fields of the forming flow depending on the value of α, all other

simulation parameters are fixed. The value of the bottom friction coefficient α = 1 corresponds

to the stationary distribution of the velocity field determined by the pumping force. We call this

laminar regime (Fig. 1a). When the coefficient α is in the range from 10−1 to 3 · 10−1, a flow

is formed (Fig. 1b) which is transitional from laminar to chaotic (Fig. 1c). This type of flow

is characterized by the appearance of a system of vortices with positive and negative vorticity

(Fig. 1b). Their position and shape have small deviations from the stationary distribution of the

vorticity field. As the bottom friction coefficient decreases, the amplitude of vortex oscillations

around their stationary position increases, as well as their size and shape change. The criterion
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(a) laminar (α = 1, Re = 900) (b) laminar-turbulent (α = 3 · 10−1, Re = 3 · 103)

(c) turbulent (α = 3 · 10−2, Re = 95 · 103) (d) turbulent-vortex (α = 2 · 10−3, Re = 180 · 103)

(e) vortex (α = 10−4, Re = 250 · 103)

Figure 1. Vorticity fields with fixed parameters G = 0.15, µ = 0.1,
and various α for different types of flow

for the transition to a chaotic regime (Fig. 1c) is the separation of vortices from their initial

location and their chaotic movement around the cell. The chaotic flow in the figure corresponds

to the value of the bottom friction coefficient in the range from α = 10−2 to α = 10−3. A

decrease in the bottom friction coefficient to α = 10−4 leads to the appearance of a vortex

regime (Fig. 1e), which is characterized by the formation of one large structure occupying the

entire computational cell. Also, at the value of α = 2 · 10−3, a regime transitional between the
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chaotic and vortex ones is observed (Fig. 1d), which is characterized by the alternate existence

of a chaotic flow and a coherent vortex.

2. A Method for Analyzing Flows according to Rank

Distributions

As it is known, frequency-rank distributions have been used for a long time in various fields

of human activity in describing quantitative characteristics of observed phenomena. The fact of

their application was discovered in the first half of the twentieth century and is associated with

works that have become classical in the field of demography [3], scientometrics [35], biology [18],

seismology [20], linguistics [52], etc. It should be noted that, for frequency-rank distributions,

foreign researchers [41] use the term “power-law distributions”. In [8], the authors give a large

number of examples from physics, earth sciences, biology, ecology, paleontology, computer and

information sciences, and engineering and social sciences and show that they manifest a power-

law distribution with the corresponding parameters. In the modern Russian literature devoted

to the problem of rank distributions, we point out the paper [44], in which, as applied to ecology,

modern surveys on rank distributions are discussed, and also the paper [36], which contains a

rank analysis of technical systems.

Among the rank distributions, a special place is occupied by distributions described by

the laws of Zipf, Pareto, Lotka, Mandelbrot, and others. Rank distributions involve the rank r

(number) of an object and the frequency E of occurrence of the considered characteristics of

the object: the rank is set and the frequency of occurrence is assigned to it. In particular, if,

for some rather large text, one compiles a list of all words that occur in the text and then

rank these words in decreasing order of the frequency E of their occurrence in the text, then,

according to the Zipf’s law [44], the multiplication of the rank r of a word and the frequency of

occurrence E is constant: rE = const. Modifications of the Zipf’s law were proposed for other

rank distributions; however, there are sufficiently many phenomena for which the description of

their characteristics is inconsistent with the above laws.

This stimulated researchers both to search for dependencies approximating empirical data

more accurately and to formulate general models leading to rank distributions. In linguistics,

when analyzing texts, Mandelbrot’s model representations are known [38], in which he explains

the Zipf’s law using the concept of value of the optimal word code under the assumption that

the text consists of words, separated by spaces, and is generated by some random process. A

comparison of this approach with others is presented in the survey [34]. During the same decade,

A.N. Kolmogorov, one of the founders of the probability theory, outlined in his works a way to

revise the probability theory [24], from the viewpoint of the algorithmic approach. According to

his approach, the notion of randomness was defined by him as the maximally complicated one.

If one explains every random event in a deterministic way, then the algorithm for its occurrence

will be very complex, and the decoding of this algorithm will require a very long code. The more

complex the description of information, the longer is the required decryption algorithm, and

this, according to Kolmogorov, is close to randomness.

A.N. Kolmogorov’s concept obtained a constructive implementation in the works of

V.P. Maslov, which enables us to study the behavior of observable characteristics without di-

viding them into deterministic and random ones. His approach differs essentially from that of

Zipf, as well as from that of all other researchers who have studied this problem. Namely, he
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used another representation in which the number of repeating values of a quantity is regarded

as the observed quantity. Let us explain the general approach of V.P. Maslov [39, 40].

Let there be repeating values among the values xi:

x1 = x2 = . . . = xN1
, xN1+1 = xN1+2 = . . . = xN2

, . . . , xNk−2+1 = xNk−2+2 = . . . = xNk−1

xNk−1+1 = xNk−1+2 = . . . = xNk
,

k∑

i=1

Ni = N,

i.e., the family of numbers N1, N2, . . . , Nk specifies how many times the values xN1
, xN2

, . . . , xNk

are repeated. Let ni, i = 1, . . . , p, denote the number of xi with the same frequency of their

occurrence Ei,

N1 = . . . = Nn1
≡ E1, Nn1+1 = . . . = Nn2

≡ E2, . . . , Nnp−2+1 = . . . = Nnp−1
≡ Ep−1,

Nnp−1+1 = . . . = Nnp
≡ Ep,

and the values Ei are ordered, i.e., 0 ≤ Ei ≤ Ei+1. According to the terminology adopted in

linguistics, the frequencies of occurrence Ei form a dictionary [40], and ni is the number of

words with the same frequency of occurrence. In this consideration, the frequency Ei acts as

an observable value and the number of values ni with this frequency characterizes the number

of realized values Ei. With fairly general assumptions, V.P. Maslov proposed a formula relating

the rank rs of the s-th word to frequency:

rs =

s∑

i=1

1

exp(βEi + σ)− 1
. (6)

Here, the parameters β and σ are given by the normalization conditions (the exact formula-

tion of this assertion in the form of a theorem is given in [39]). Thus, formula (6) implements

an algorithm of deterministic calculation of the cumulative probability. In this consideration,

the frequency Ei acts as a random variable, and the number ni of words with this frequency

characterizes the number of occurrences of this random variable. This distinguishes Maslov’s

consideration from the approach adopted in linguistic statistics. The idea of using a new kine-

matic set of variables in the study of the behavior of the observed characteristics of the system

was earlier constructively implemented in the work of V.A. Fock on the secondary quantization

method [16]. This method was used to construct a wave function when describing a system of

quantum particles. According to Fock’s idea, it is convenient to analyze the equation for this

function not in the configuration space, but in the space of occupation numbers or, in the ter-

minology of quantum mechanics, in the Fock space. In other words, to describe the system, one

should select a set of variables to which Fock has moved using the canonical transformation.

In fact V.P. Maslov proposed a representation in which frequency is considered as an ob-

servable, and the number of values of the initial variable with this frequency characterizes the

number of realized frequency values. With this approach, the Maslov frequency is similar to

the Fock’s canonically conjugate variable (energy), and the number of realized frequency values

corresponds to the number of occupation.

In [21] we constructed an algorithm for classifying Kolmogorov-type flows using the knowl-

edge about their velocity field. The main difficulty in analyzing the characteristics of a chosen

dynamical system was the formation of information that is suitable for creating a corresponding

algorithmization procedure. We used the theoretical concepts of V.P. Maslov that suggest an
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interpretation of the information data as a semiotic system in which the values of the vorticity

of the velocity field are regarded as signs [21]. The rank analysis was performed first for spe-

cific values of vorticity, which enables us to obtain its distribution. Then, the rank curves were

constructed for the frequency of the vorticity recurrence, which correspond to the flow regime

as a whole. To obtain the functional dependence of rank on frequency based on formula (6),

we used the parameterization for the frequency of occurrence proposed by V.P. Maslov. It was

shown that it is possible to identify different fluid motion regimes for Kolmogorov-type flows by

comparing them with the graphs of the rank distributions of the vorticity.

Since it was assumed that, in the process of evolution of the system, some forms of order are

created in it, it follows that, from the point of view of semiotics, the patterns in the distribution

of different signs should occur. Therefore, we will consider the values of energy and pressure as an

additional set of signs for which we construct rank distributions of their values and frequencies

of their occurrence. It is shown that the rank curves of the vorticity, energy, and pressure fields

and their frequencies are divided depending on the type of flow. This behavior can be used

to identify and analyze different flow patterns. When conducting a rank analysis, the curves

obtained make it possible to establish an unambiguous relationship between behavior a graph

of the rank curve and the corresponding type of flow.

The construction of a rank distribution for a parameter X of an arbitrary physical system

can be performed in two ways. The value of X is considered for 100 time steps starting from

700th iteration, which corresponds to reaching a statistical stationary state. For each moment

in time, the value of X is calculated in each cell of the computational domain. After that, the

values of X obtained for all moments in time are combined into one data array. It is sorted in

ascending order of the value of X, and each value is assigned a serial number (rank). The rank

is understood as the ordinal number in the ascending (or descending) sequence of values of X.

When using the second method, we move in the description of the system from the variableX

to the frequency E of occurrence of this variable. The values of E are sorted from lower to higher,

and for the resulting array of values, a distribution is constructed for E depending on the rank r.

The implementation of the first approach does not lead to any difficulties. In the algorithmic

implementation of the second approach, we identify the minimum Xmin and maximum values of

Xmax of the variable X in the computational domain. Setting ∆ = (Xmax −Xmin) /N , where

N is the number of intervals selected a priori (in what follows, N = 100), we subdivide the

segment [Xmin, Xmax] into intervals of length ∆. In this case, the calculated values of Xk fall

within one of these intervals. Calculating the number of values of Xk that fall within one of the

intervals, we obtain the frequency Ek of occurrence of the parameter X. As a result, we have an

array of length N containing the frequency of occurrence Ek. Finally, this array is sorted: the

largest value of the frequency of occurrence Ek is assigned the largest ordinal number (rank)

of r, and the smallest value of Ek is assigned the smallest rank of r. Note that traditionally,

when considering chaotic flows, a single-point probability density function (PDF) is used. PDF

vorticity distributions were constructed for laminar, turbulent, and vortex flow regimes. For the

same regimes, rank dependencies of the vorticity frequency of occurrence were constructed [21].

Both in case of rank analysis and in case of constructing a PDF distribution, the same values

of the vorticity frequency of occurrence are used. The difference between these approaches lies

in different data processing: when performing rank analysis, the frequency of occurrence is

distributed depending on the rank, and in case of PDF analysis, the frequency of occurrence is

distributed depending on the value of vorticity.
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3. Rank Analysis of Vorticity

In accordance with the idea proposed above, we will perform the construction of rank curves

for the vorticity value using the rank analysis methodology described in Section 2. Figure 2a

shows the vorticity distribution for different bottom friction coefficients. Note the characteristic

behavior of the plotted graphs. The curves corresponding to different flow regimes are arranged

in a certain sequence. This is clearly seen in the graph for negative vorticity (Fig. 2a). The

graph corresponding to the laminar regime can be approximated by a linear function, for which

the bottom friction coefficient α is 1. In Appendix, an analytical solution has been built for

this regime. As α decreases to 10−1, the shape of the rank distribution graph changes, and

the curvature of the graph increases in the area of higher ranks. This corresponds to a regime

change from laminar to chaotic. Various forms of turbulent flows are observed in the range of

the bottom friction coefficient from 10−1 to 10−3. When α changes from 10−3 to 10−4, a large

coherent vortex formation regime is realized. Separately, it is worth noting that due to the

averaging of 100 output over time, the total number of ranks with this approach is about 107.

Figure 2b shows the vorticity frequency of occurrence E graphs for various flow regimes. The

laminar and vortex regimes correspond to convex functions with different asymptotic behavior.

Note that the rank distribution graphs for the turbulent regime have a characteristic S-shape.

Analysis of the rank distribution curves for the vorticity frequency of occurrence reveals the

presence of an inflection point on the graph. The red dots in Fig. 2b indicate the inflection

points.
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Figure 2. Rank analysis of vorticity for different type of flows

Thus, considering the entire range of the bottom friction coefficient α, the following proper-

ties of the constructed distributions can be distinguished. First, when the flow regimes change,

the inflection point appears in the graphs of the corresponding rank distributions. Secondly,

for each type of flow, this inflection point has its own rank. The dependence of the inflection

point rank on α on a logarithmic scale is shown in Fig. 2c. The gray triangles in this graph

correspond to the vortex regime, which is characterized by high inflection point ranks and low

values of the bottom friction coefficient (the range of α is from 10−3 to 10−4). For the laminar

regime, the inflection point has small ranks, which correspond to the orange triangles on the

graph (the range of α is from 1 to 10−1). For this regime, an analytical solution is constructed

in Appendix, for which the frequency distributions of vorticity are indicated. Comparison of
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them with numerical results shows a satisfactory correspondence between them. The turbulent

type of flow occurring in the range of α from 10−1 to 10−3 has a wide range of rank values for

the inflection point, ranging from large to small. The dependence of the rank of the inflection

point on the friction coefficient α can be approximated using the relation:

r =
A

1 +B(α/α0)γ
. (7)

Here α0 is the dimensional coefficient equal to 1 s−1; A,B and γ are the fitting parameters

corresponding to the values 95, 78 and 2.1 for this graph.

4. Energy Rank Analysis

Let us consider another parameter of the flow, energy, and perform a rank analysis for

it. Figure 3a shows the energy distribution for different bottom friction coefficients. Note the

characteristic behavior of the plotted graphs. The curves corresponding to different flow regimes

are arranged in a certain sequence. This is clearly seen in Fig. 3a. The graph corresponding

to the laminar regime can be approximated by a linear function, for which the bottom friction

coefficient is α = 1. As α decreases to 10−1, the shape of the rank distribution graph changes,

the curvature of the curve changes in the area of high ranks, and the energy value increases.

This corresponds to a regime change from laminar to chaotic. In the range of changes in the

bottom friction coefficient from 10−1 to 10−3, various forms of turbulent flows and a further

increase in energy in the range of higher grades are observed. When α changes from 10−3 to

10−4, a large coherent vortex regime is realized. The energy reaches its maximum value for

this regime. The localization of the energy on the macroscopic scale of pumping corresponds to

the formation of the Kraichnan reverse energy cascade [28] for this system. It is worth noting

separately that due to averaging over 100 issues over time, the total number of ranks with this

approach is approximately 1.8 · 107. There are more of them than in the vorticity analysis, since

only negative vorticity was used for consideration.

The results of the rank analysis of the energy frequency of occurrence for different flow

regimes are shown in Fig. 3b. The convex functions of the rank distribution with different

asymptotic behaviors correspond to the laminar and vortex regimes. Note that the rank dis-

tribution graphs for the turbulent regime have a characteristic S-shape. Analysis of the rank

distribution curves of the energy frequency of occurrence, as in case of vorticity, reveals the

presence of an inflection point on the graph. The red dots in Fig. 3b indicate the inflection

points. In the region of high ranks, localization of curves corresponding to laminar, chaotic, and

vortex regimes is noticeable. In particular, for laminar regime, the frequency of occurrence of

energy depends almost linearly on the rank and its value does not exceed 0.02. An increase in

the frequency of energy occurrence to 0.09 for the ranks in the range from 80 to 100 corresponds

to the turbulent regime. For the vortex regime, there is a sharp increase in the frequency of

occurrence to 0.14, starting from a rank equal to 95.

Considering the entire range of the bottom friction coefficient α, we can again identify two

characteristic properties of rank distributions. Firstly, when the flow regimes change, an inflec-

tion point appears on the corresponding graphs. Secondly, for each type of flow, the inflection

point has its own rank and its dependence on α is shown in Fig. 3c. For vortex and turbu-

lent regime, the position of the inflection point is localized in the region of high ranks. In the

course of transition from a chaotic regime to a laminar one, corresponding to the range of the
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Figure 3. Rank analysis of energy for different type of flows

bottom friction coefficient from 10−1 to 1, there is a sharp change in the rank of the inflec-

tion point to the minimum values. The graph of the dependence of the inflection point rank

on the bottom friction coefficient can also be approximated by dependence (7) with coefficients

A ∼ 91, B ∼ 200, γ ∼ 4.8.

5. Pressure Rank Analysis

Figure 4a shows the pressure distribution for various coefficients α. Note that the graph in

Fig. 4a has partial symmetry with respect to the horizontal straight line corresponding to the

initial pressure distribution. For the laminar regime, localization of the rank curves relative to

this distribution is observed. The transition to turbulent and vortex regime leads to a change in

density and, as a result, a deviation (negative for small ranks and positive for large ranks) of the

pressure value. The localization of curves corresponding to laminar, chaotic, and vortex regime

is noticeable. The total number of ranks, similar to the previous paragraph, is about 1.8 · 107.

For the laminar regime, localization of the rank curves relative to this is observed. For

laminar regime, its value does not exceed 0.5 percent of the initial distribution. In turbulent

regime, there corresponds an increase in pressure deviations of up to 5 percent. For the vortex

regime, there is a sharp increase in pressure deviations of up to 15 percent. Let us now consider

the results of a rank analysis of the pressure frequency of occurrence for various flow regimes

(Fig. 4b). Convex functions of rank distributions with different asymptotic behavior correspond

to the laminar and vortex regimes. For the turbulent regime, a characteristic S-shaped pattern

is realized for the rank distribution graphs. Analysis of the rank distribution curves for pressure

frequency, as in case of vorticity and energy, reveals the presence of an inflection point on the

graph.

Thus, considering the entire range of changes in the value of the friction coefficient α, we

observe the appearance of an inflection point on the graphs of the corresponding rank distribu-

tions, while for each type of flow the inflection point has its own rank. The red dots in Fig. 4b

indicate the inflection points. The dependence of the inflection point rank on α is shown in

Fig. 4c. For vortex and turbulent regimes, the value of this rank is localized in the region of

its high values. When switching from a chaotic regime to a laminar one, corresponding to the
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range of the bottom friction coefficient from 10−1 to 1, there is a sharp change in the rank of

the inflection point to the minimum values.
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Figure 4. Rank analysis of pressure for different type of flows

The graph of the dependence of the inflection point rank on the bottom friction coefficient

can also be approximated by the dependence (7) with coefficients A ∼ 90, B ∼ 2.6, γ ∼ 1.8.

Discussion

Earlier, the problem of analyzing the rank distributions for vorticity, energy, and pressure

was formulated. The calculation results obtained in this paper demonstrate that the constructed

rank curves for these quantities have similar behavior. It consists in the fact that for laminar

flows, the behavior of the corresponding quantities, depending on the rank, is approximated by

a linear function. When the flow regimes change, the graphs become significantly nonlinear in

the area of high ranks. The analysis of the rank distribution of the frequency of occurrence for

vorticity, energy, and pressure showed that when the flow regime changes, an inflection point

appears for the graphs of all the indicated of the frequency of occurrence. Thus, the appearance

of an inflection point can be used to analyze the types of fluid motion. The dependence of the

inflection point rank on the bottom friction coefficient, which is responsible for changing the flow

regime in the numerical experiment, makes it possible to establish a relationship between the

internal parameter, the bottom friction coefficient and the velocity field observed in the physical

experiment.

Conclusion

The problem of two-dimensional flow of a viscous fluid in a square cell under the influence of

an external force (Kolmogorov-type flow) and the presence of bottom friction is considered. The

analysis of the emerging flow types during the transition from the laminar flow type to the vortex

flow occurs through a series of bifurcations, including the turbulent flow type. The use of rank

distributions in analyzing the obtained flows allows us to look at vortex hydrodynamic processes

from a new perspective and supplement the characteristics of flow regimes with such parameters

as the inflection point of the frequency of vorticity, energy and pressure. This method makes

it possible to determine how the rank curves for vorticity, energy, and pressure fields and their
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frequencies are divided according to the flow type, which can be further used for identifying and

analyzing various flow regimes. When performing a rank analysis, the obtained curves allow us

to establish an unambiguous relationship between the behavior of the graph of the rank curve

and the corresponding type of flow. Thus, the proposed approach makes it possible to classify

flow regimes according to a given velocity field.

In our work, we consider the general idea of rank analysis for a system with a spatiotemporal

internal structure, that is, endowed with some forms of order. It has been shown numerically

that for the Kolmogorov problem, laminar, turbulent, and vortex flow regimes appear for each

fixed value of the driving force, depending on the values of the bottom friction coefficient. In

case of each of the structures, the rank distributions of the observed values were constructed

and a comparison was made to the selected flow regime, which in a sense is characteristic of this

system distribution.

Appendix

The laminar (stationary) solution in the linear approximation satisfies the equations

− ∂p

∂x
+ ρG sin ky + µ∆u− ζu = 0, −∂p

∂y
− ρG sin kx+ µ∆v − ζv = 0. (8)

The vorticity is equal to

ω =
∂v

∂x
− ∂u

∂y
.

Assuming ρ = const, we obtain from (8) the following equation for vorticity:

−µ∆ω + ζω + ρGk[cos kx+ cos ky] = 0.

The solution for ω is given by the formula

ω =
ρGk

ζ + k2µ
[cos kx+ cos ky].

The graph (Fig. 5) shows the frequency distributions of negative vorticity, obtained numer-

ically (blue line) and analytically (red dotted line).
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