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Exploratory analysis methods were used to study basic characteristics of computing systems

from TOP500 Lists. One of the peculiarities of the distribution of computing systems by perfor-

mance is that it sufficiently well obeys an analog of the empirical Zipf’s law, in which logarithm

of performance is reciprocal to the rank of computing system. Based on this observation we can

divide all systems from the lists into several performance classes: top, high, base, and entry levels.

Our analysis also revealed differences between these classes in other characteristics besides, the

computational performance, e. g., such as power consumption. For all performance classes, trends

in evolution of the basic characteristics of TOP500 computing systems were described and, where

possible, comments were provided to explain their behavior. Performance and energy efficiency of

the TOP500 List computing systems in the next 5–10 years were estimated using simple linear

models obtained by the least-square method. We have found that energy consumption needed

for entry-level supercomputers to surpass the threshold value of performance and to enter into

TOP500 List will decrease during this period.
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Introduction

Data archives of the world-wide known TOP500 List present an indispensable source of

information about technology trends, international politics, economy, sociology, and other sub-

jects concerning the area of high-performance computation. The GREEN500 rating emerged

more recently with such important aspect as measurement of energy consumed by large high-

performance computing systems. As average energy consumption increased, this aspect became

one of the most important characteristics of computing systems along with their performance,

so the latest TOP500 Lists contain information about energy efficiency of computing systems.

Our work is dedicated to the combined analysis of performance and energy efficiency for com-

puting systems from TOP500 Lists.

TOP500 List consists of 500 entries sorted by maximal performance in HPL test, Rmax.

The rating has been updated twice a year since 1993. In each edition, Erich Strohmaier, Jack

Dongarra, and other rating authors present an analysis of new data and trends. They ana-

lyze long-term trends of Rmax on TOP1, TOP100, TOP500, or other sublists, and different

aggregates such as sums of Rpeak or Rmax of all TOP500 entries.

While Rmax of Rank 1 position for both GREEN500 and TOP500 lists demonstrate sharp,

step-like increase over the last years, most aggregate numbers change more smoothly. Decades-

long trends are clearly visible in the analysis of Rmax (Rpeak) of Rank 1 or Rank 500 positions

what allowed to make the long-term predictions such as the development of petaflops machines

n the early 2000s or the emergence of the exascale supercomputer by 2018 back in 2007–2008.

By the mid 2010s the fast pace of the performance increasing slowed down, driven by slower

progress of microelectronics3 and budget limitations. By the end of the decade, the number

of new systems in each TOP500 List edition also declined dramatically to 40–50 from more

than 150 in the 2000s.
1RSC Group, Moscow, Russian Federation
2Lomonosov Moscow State University, Moscow, Russian Federation
3Proclaimed Moore’s Law “death”.
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During the same period, energy efficiency of the Rank 1 computing systems from

GREEN500 List grew by the factor of 20 over the last 10 years. However, this rapid progress

was enrolled with diminishing returns from new microelectronic technology generations com-

pared to six decades of development of computer architectures. We think that it would be useful

to characterize quantitatively how such progress of the high-end technology is supported by a

“common” supercomputer system from TOP500 List because the most performant TOP500

systems cannot rely on bleeding edge technology – they need mature solutions that can be de-

ployed at scale. At the same time GREEN500 rating is a better indicator of new technology

trends as it demonstrates the best solutions viable enough to run efficiently the complex program

stack of LINPACK benchmark. In other words, we could suppose energy efficiency became the

most important characteristic of computing system.

In our work we noted and measured the recent decline in the “TOP500 entry power ticket”,

i. e., minimal energy consumption between all TOP500 systems, Min(P ). We suppose that it

demonstrates an important trend in the current technology development: divergence of the most

energy efficient architectures from a “general case” represented in low-rank TOP500 systems.

In other words, the cutting edge advances in CPU/GPU architecture become available to the

majority of practical users only after a significant period of time.

The article is organized as follows. Section 1 is devoted to the review of related works. In

Section 2 we describe our method by which we analyze data from TOP500 Lists. Section 3 con-

tains the discussion of obtained results. Conclusion summarizes the study and points directions

for further work.

1. Related Works

TOP500 List was initiated as a source of information to identify the current trends in the

field of high-performance computing and continue Mannheim List statistics proposed by Hans

Meuer [8]. Since 2001 in addition to brief analyses performed by the rating authors in each

TOP500 issue, papers have been regularly published, in which their authors tried also to reveal

technology trends and tendencies by statistical methods [1–4, 6, 7].

The scope of analysis was broad: from low-level detailed analysis of various subsystem

designs to market share of HPC vendors and application areas. In our paper we focus on energy

efficiency of supercomputers, or more specifically, on how much power would be enough to run

supercomputer having minimal performance sufficient to appear on TOP500 List.

The work [7] presents “strawman” design solutions of future supercomputers and uses the

TOP500 trends to estimate relative performance and energy efficiency of future designs, and

especially to carry out detailed analysis of future design of memory and interconnect subsystems.

Although in this work physical and infrastructure limits were taken into consideration, economic

limitations were underexplored. In our work we analyze relations between performance and

energy efficiency in a more formal way.

Out of the most recent publications, the papers [4] and [6] seem to be the most relevant

to the subject of our study. The former article overviews the performance and energy efficiency

trends and tries to give reasons for them by observing features of new hardware architectures.

For these purposes heterogeneous systems and top-rank systems were carefully studied.

The authors of the later paper made a unique comparison of actual trends of the 2010s

with the past assessment of “Exascale Report-2008” [5], and the “Frontier” supercomputer

characteristics were compared with “strawman” models presented in 2015. As a result this work
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gives an idea how accurate such long-term projections can be. While the works [4] and [6]

focus mostly on top-rank systems, our work investigates trends in the entry-level systems of the

TOP500 Lists.

Continuing a series of their works, Abramov and Abramov [1] analyze the TOP500 Lists

of the latest years from different points of view. Together with other researchers they determine

the concentration of the most part of the aggregate performance by the top-ranks systems in

complete agreement with our observations.

2. Method

In this work we have analyzed data collected from top500.org website back to June 2013

since the first GREEN500 data became available. We used methods of exploratory data analysis

and try to figure out evolution trends for the basic characteristics of TOP500 systems.

We used the following primary data (i. e., measured data):

• maximal performance, Rmax;

• peak performance, Rpeak;

• energy consumption, power, P ;

• total number of cores, Ncores;

• number of accelerator/co-processor cores, Naccores;

and secondary data (i. e., derived quantities):

• resource usage efficiency, RUE = Rmax/Rpeak;

• energy efficiency, EE = Rmax/P.

First of all, we were interested in total energy consumption of a computational system having

performance compared with the performance of Rank 500 system because the cost of electric-

ity and the need to create special infrastructure required for the operation of computational

equipment with high energy consumption can limit the usage of high-performance systems in

practice.

Due to the specifics and quality of the used data4, we applied the following procedure for

our analysis:

1. divide computational systems from the TOP500 Lists by Rmax into several classes;

2. for each class deduce extrapolation formulae (models) describing behavior of Rmax and P

as functions of time (more precisely, as functions of TOP500 List number);

3. for two classes with strongly correlated data, transfer the model from the class having more

reliable statistical description to the class with less reliable data.

3. Discussion

The distinctive feature of the TOP500 systems is a significant difference between charac-

teristics such as maximal performance, energy consumption, or total cores number for Rank 1

computing systems and the vast majority of other computing systems in a list.

The distribution of Rmax by system ranks on a semi-logarithmic scale can be described as

an analogue of Zipf’s empirical law (see Fig. 1) and this behaviour is more or less the same for

all studied lists (see Fig. 2a).

4While the publication of Rmax is evidentally mandatory for TOP500 systems, such data as energy consumption

are practically absent for the most part of TOP500 List.
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Figure 1. Stratification of TOP500 systems by maximal performance
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Figure 2. Distribution of TOP500 systems by Rmax

The data presented in Fig. 1 show that it is quite difficult to provide an objective criterion to

divide all systems from TOP500 List into separate classes, so we formally divided the dynamic

range of log(Rmax) values into 4 approximately equal intervals, giving preference to the ease of

perception of information compared to the exact values. Thus, denoting Rmax for Rank 1 system

as Max(Rmax) we use as class boundries Max(Rmax)/4,Max(Rmax)/20, and Max(Rmax)/100,

(25%, 5%, and 1% of Max(Rmax)), instead of

log
(
Max(Rmax)

)
− log

(
Max(Rmax)

)
− log

(
Min(Rmax)

)

4
×K, K = 1, 2, 3;

what, as we believe, should not greatly change our results and conclusions. Moreover, at

Rmax = Max(Rmax)/4 the distribution changes its character, the density of points noticeably

increases and the slope of the curve decreases, i. e., the division of systems by this boundary

seems to us more or less objective and justified.

So, for the purpose of our analysis we distinguish the following types of computing systems:

• top class with Rmax > 25% of Max(Rmax);

• high class with Rmax > 5% of Max(Rmax) and Rmax < 25% of Max(Rmax);

Recent Technology Trends in High-Performance Computing ...

8 Supercomputing Frontiers and Innovations



• base class with Rmax > 1% of Max(Rmax) and Rmax < 5% of Max(Rmax);

• entry class with Rmax < 1% of Max(Rmax).

We refer further to these classes as TOP, HIGH, BASE, and ENTRY classes, respectively.

The TOP class usually comprised 2–5 computing systems (see Fig. 2b). In the HIGH class

approx. 7–33 computing systems resided. Total number of computing systems in the BASE

and ENTRY classes, i. e., with Rmax < 5% of Max(Rmax), was never less than 460 during the

reviewed period (June 2013 – June 2024), so the BASE and ENTRY classes were never less than

92% of the total number of computing systems in TOP500 List.

The ENTRY class is not only the most widespread class, but also the most diverse one in its

design and technical characteristics (see, e. g., Fig. 3). Since the number of computing systems

from the ENTRY class reached up to 90% of the total number of systems within the BASE

and ENTRY classes, they are described further as one BASE class (as it denoted in Fig. 2b),

and the term entry-level systems is reserved for computing systems with Rmax close to Rmax of

Rank 500 systems, which we will denote further as Min(Rmax).

Each of the aforementioned classes has its own statistical characteristics. The TOP and

HIGH classes include relatively few computing systems; therefore, to describe their typical

properties, it is necessary to use such robust estimators as median. Although the BASE class

is the most representative class in terms of the number of computing systems, their properties

change over a wide range of values what from a statistical point of view can be interpreted as

the presence of “outliers”, and the usage of robust estimators like median is also preferable in

this case.
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Figure 3. Scatterplots based on energy consumption and maximal performance data

for TOP500 systems

Segregation of computing systems from TOP500 List into three classes is observed not

only by their maximum (or peak) performance, but also by other extensive characteristics, first

of all, by energy consumption and total number of computing cores (see Fig. 4–Fig. 6).

The behavior of intensive quantities defined either as ratio of two different extensive quanti-

ties (e. g., energy efficiency) or as fraction (e. g., resource usage efficiency) is more complex. For

each TOP500] List maximum energy efficiency among all systems almost always was attained

by not top-level, but basic-level systems (see Fig. 5a); which is understandable because the most
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Figure 4. Basic characteristics of TOP500 systems

for different performance classes

[Max/Median/Min – maximal/median/minimal within a class]

energy-efficient technologies, due to their novelty, are first tested on relatively small computing

systems.

During the observed period the ratio of co-processor cores to total number of cores was

approximately the same for all three classes (see Fig. 6b) and was ≈ 0.7 until mid-2016, and

then increased more or less abruptly to 0.9. Therefore, it can be assumed that the difference

between classes is due to absolute value of total core number and performance per core, rather

than a fundamental difference in architecture.
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Figure 5. Computational efficiency of TOP500 systems

[Max/Median/Min – maximal/median/minimal within a class]

Similarly, the resource usage efficiency for all three classes has the same distribution with

no significant difference between the mean and median values (see Fig. 5b). Possibly it can be

explained by the fact that this characteristic depends more strongly on software settings and HPL

test running conditions rather than on hardware parameters and specifics. More precisely, the

increasing of GPU cores number in computing system hinders their usage efficiency. Indirectly

Recent Technology Trends in High-Performance Computing ...

10 Supercomputing Frontiers and Innovations



it is confirmed by the fact that starting from Lists#48–52 there was a significant growth in

the proportion of co-processor cores used in computing systems accompanied by a fall in the

resource usage efficiency (compare Fig. 5b and Fig. 6b).

Considering the evolution of the main extensive characteristics we may conclude that:

• all characteristics have revealed growth except the minimal energy consumption, Min(P ),

and energy consumption of BASE class, P (BASE), the behavior of which is more com-

plicated;

• gaps between characteristics of the top and base or entry level systems also have widened

during the observation time.

Data given in Tab. 1 and Tab. 2 illustrate these trends. Meanwhile some comments would

probably be appropriate.

For the TOP and HIGH classes the average number of cores in computing system correlated

with the average performance (see Fig. 6a). However, for the BASE class the dependence between

these two characteristics was extremely complicated. Indeed, the maximum number of cores for

the base-level systems was comparable to the minimum number of computing cores for the top-

level systems, meanwhile the performance between the base-level and top-level systems could be

different by 2–3 orders of magnitude (compare Fig. 4a and Fig. 6a).
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Figure 6. Formal performance characteristics of TOP500 systems

[Max/Median/Min – maximal/median/minimal within a class]

While the maximum energy consumption has increased steadily over time, the minimum

energy consumption could both increase and decrease (see more details later, Fig. 7b). It can be

arguably explained as follows. Usually the computing system with the maximum performance

has energy consumption near to maximum values, and therefore it sets the value of the maximum

energy consumption for the lists during its almost entire service life. Here, the most prominent

example are Tianhe-2/Tianhe-2A supercomputers.

Meanwhile, for the computing systems with minimal energy consumption and performance

the time of presence in the TOP500 Lists is mainly determined by growth rate of the entry

threshold value of Rmax
5.

5 On average, energy consumption was not reported for 250–300 systems out of 500, what evidently complicates

the analysis; one can assume technical difficulties in the reliable measuring of this parameter but by and large we

have no explanation for this fact, because, e. g., List#49 contains data for all systems.
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Table 1. Median values of basic characteristic for TOP500 systems

TOP500 List

41 63

June/2013 June/2024

Total Cores, Ncores

TOP

HIGH

BASE

786 432

186 368

16 388

7 630 848

1 305 600

79 524

Maximal Performance, Rmax, TFlop/s

TOP

HIGH

BASE

17 173.2

2 897

143.4

561 200

98 510

3 430

Power, P, kW

TOP

HIGH

BASE

8 209

2 301

431.3

26 343

6 316

798.3

Energy Efficiency, EE, GFlop/s per W

TOP

HIGH

BASE

2.14

1.15

0.49

39.54

25.44

6.01

Ncores(TOP )/Ncores(BASE) 48 96

Rmax(TOP )/Rmax(BASE) 120 164

P (TOP )/P (BASE) 19 33

EE(TOP )/EE(BASE) 4.37 6.58

Table 2. Growth factors of basic characteristics for TOP500 systems between two time

snapshots: List#41 [June, 2013] and List#63 [June, 2024]

Growth

Total Cores, Ncores

TOP

HIGH

BASE

9.7

7.0

4.8

Maximal Performance, Rmax, TFlop/s

TOP

HIGH

BASE

32.68

34.0

23.92

Power, P, kW

TOP

HIGH

BASE

3.2

2.7

1.8

Energy Efficiency, EE, GFlop/s per W

TOP

HIGH

BASE

18.5

22.1

12.2

Gap Growth

Ncores(TOP )/Ncores(BASE) 2.0

Rmax(TOP )/Rmax(BASE) 1.4

P (TOP )/P (BASE) 1.7

EE(TOP )/EE(BASE) 1.5
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The data in Tab. 1 and Tab. 2 show that computing systems from different classes evolved

differently; however, some general patterns common for all classes can be identified. For ex-

ample, the comparison of growth factors for number of cores in computing system and energy

consumption shows that, on average, energy consumption per computing core has decreased:

more for the TOP and HIGH class systems and less for the BASE class systems. For example,

theoretical growth in EE(TOP ) can be roughly estimated as 32.68/3.2 = 10.2, but empirical

growth is 18.5, i. e., 1.8 times more. For EE(BASE) these values are 23.92/1.8 = 13.3 and 12.2,

respectively.

The comparison of the growth in the total number of cores with the growth in performance

shows that the greatest increase in performance per one core has occurred in the BASE class,

32.68/9.7 = 3.37 and 34.0/7.0 = 4.85 vs. 23.92/4.8 = 4.98 (see Tab. 2). Complementing this

observation with the contrary tendency for energy consumption per computing core, it can be

assumed that the greater rate of the growth in the performance per one core for the BASE

class systems in comparison with this growth for the TOP class systems was due to the usage

of computational cores from the top-level systems of the previous generations in the present

base-level systems because, this hardware is usually already available on the market and can

be used widely. While the growth in the performance per one core for the top-level systems is

possibly connected with the usage of new types of computing cores, which require more time for

their development and production.

Thus, it seems that the growth in the total performance was mainly related with the growth

of the total number of cores for the TOP/HIGH class systems and with the growth of the

performance per core for the BASE class systems.

Studying the behavior of energy efficiency, EE, we can make the following observations

(see Fig. 5a):

• maximum energy efficiencies for the computing systems from all three classes were rel-

atively close, which indicates, the simultaneous emergence of the most energy efficient

platforms in all three classes (green lines on Fig. 3 and dotted lines on Fig. 5a);

• minimum energy efficiency of the computing systems of a higher performance class was

close to average energy efficiency of a lower performance class what probably reflects the

natural “aging” of computing systems when less energy-efficient computing systems are

replaced by more energy-efficient ones and pass into a lower performance class.

Distribution of resource usage efficiency, RUE, remained almost without significant changes

except for the sharp drop in the minimum values in the last few years. This is probably caused by

an appearance in the Top500 Lists of computing systems not initially intended for massively

parallel calculations, or perhaps due to the fact that HPL test benchmarking was executed not

using all computing resources available in such systems (see Fig. 5b).

To summarize, it can be argued that the gap in performance between the TOP and BASE

class systems was mainly widening due to the usage in the TOP class systems of large number of

increasingly more powerful computing equipment having increasingly greater energy efficiency.

No matter how the facts listed above might be trivial, taken together, they show the degree of

heterogeneity in the evolution of computing systems from TOP500 Lists.

The trends of the basic characteristics presented above show that the maximum/minimum

values of the characteristics have the greatest variability and the tendency to sharp transitions

that are difficult to predict, so more reliable information can be obtained by considering the

median values. In addition, it should be noted that extrapolation of derived quantities such

S.S. Konyukhov, A.A. Moskovsky
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as, for example, energy efficiency, EE, has an even lower degree of reliability compared to

extrapolation of primary (i. e., measured) characteristics, since derived quantities depend on

implementation of not one, but several (at least two) random variables.

On the basis of the presented information, we try to predict the energy consumption of

a typical computing system from three main classes in 5 and 10 years, as well as what the

lowest value of the energy consumption of a system, the computational performance of which

corresponds to the threshold level to enter to TOP500 List.

Our choice of a forecast horizon is based on the Bell’s empirical law [8], which states that

complete mass replacement of computing technologies occurs within 10 years on average.

The data from the TOP500 Lists on computing performance and energy consumption

show that, as a rule, changes of these two quantities had complex abrupt nature, so for their

extrapolation we used the simplest linear extrapolation designed first of all to highlight the

general global trend.

In case of the TOP or HIGH classes, such approximation seems quite sufficient. In case of

our particular interest, i. e., for the data on computational performance and energy consumption

of the BASE and ENTRY class systems, it seems reasonable for the sake of more accurate

description to take the nonlinear component into account in addition to the global linear trend

(see Fig. 7).

Thus, for quantities R = Max(Rmax), Rmax(TOP ), Rmax(HIGH), in TFlop/s, the follow-

ing formula was used:

Y = A ·X +B, (1)

where Y = log10(R) and X is TOP500 List number, and similarly, for quantities

P = Max(P ), P (TOP ), P (HIGH), in kW, the following formula was used:

Ỹ = A ·X +B, (1’)

where Ỹ = log10(P ) and X is TOP500 List number.

To take into account the nonlinear effects having local nature, a nonlinear term was added

to the linear trend (1/1’):

Y = C · log10(X) +D ·X + E, and (2)

Ỹ = C · log10(X) +D ·X + E, respectively. (2’)

We used the least squares method to obtain the coefficient values for all our models with

data from Lists#41–60 as training data and data from Lists#61–63 as test data (see Tab. 3).

In Tab. 4 and Tab. 5 the results of predicting the values of Rmax and P using the formulas

(1–2) are given. Figure 8 shows the energy efficiency values calculated as the ratio Rmax/P, where

Rmax and P were estimated by formulas (1) and (2), along with the corresponding measured

values. The dotted lines in Fig. 8 indicate the hypothetical boundaries of energy efficiency (the

red line is for the minimum and the green line is for the maximal values) estimated by the

following formulae:

Max(EE)estimated =
(
fpol(X) · fexp(X)

)1/2
,

fpol(X) = 458.5 − 20.3X + 0.2269X2,

fexp(X) = 10(0.064X−2.13);

Min(EE)estimated = 0.014X − 0.62, where X is TOP500 List number.
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Figure 7. Measured and extrapolated values for basic characteristics of TOP500 systems

Table 3. The coefficients for models (1/1’) and (2/2’)

A B C D E

Max(Rmax) 0.08337 0.90365 — — —

Rmax(TOP ) 0.08773 0.46187 — — —

Rmax(HIGH) 0.08499 −0.24883 — — —

Rmax(BASE) — — 24.4634 −0.1402 −31.6292

Min(Rmax) — — 25.2348 −0.1439125 −32.9403375

Max(P ) 0.01406 3.61809 — — —

P (TOP ) 0.02465 2.89387 — — —

P (HIGH) 0.01878 2.52791 — — —

P (BASE) — — 15.6505 −0.1141 −18.0546

Min(P ) — — 15.0905 −0.1219405 −17.79493

To derive this formulae, we performed a standard statistical trial-error procedure including:

1. the choice basis function to cope with nonlinearity;

2. the least-square procedure.

The similar behavior of the calculated energy efficiency for all three performance classes

can imply the reasonable correctness of the values of Rmax and P obtained by formulae (1) and

(2). Therefore, it can be assumed that model (2) for Min(Rmax) and Min(P ) also correctly

describes the behavior of Rmax and P for systems of the entry level. As the main result we

could suppose that energy consumption for the computing system with the performance of the

TOP500 entry threshold will decrease in the next 5–10 years (see Tab. 5).

Conclusion

1. The emphasis placed in this work on the difference between the top-level and base-level

systems made it possible not only to show the heterogeneity of the development of the

HPC area, but also served as a methodological basis for identifying the reasons for such

heterogeneous development; whereas the knowledge of such causes and relationships between

various characteristics allows to build more accurate models to describe their behavior.
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Table 4. Measured and predicted by formula (1) and (2) maximal performance

for TOP500 systems

TOP500 Maximal Performance, Rmax, TFlop/s

List Max(Rmax) Rmax(TOP) Rmax(HIGH) Rmax(BASE) Min(Rmax)

Measured

61 1 194 000 442 010 93 015 2 878 1 872

62 1 194 000 561 200 94 640 3 131 2 015

63 1 206 000 561 200 98 510 3 430 2 130

Predicted

61 975 483.7 650 728.8 86 210.47 3 117.726 2 154.970

62 1 181 925.2 796 397.7 104 845.55 3 360.430 2 332.026

63 1 432 056.0 974 675.4 127 508.75 3 599.048 2 507.113

64 1 735 122 1 192 861 155 070.8 3 830.921 2 678.261

65 2 102 326 1 459 890 188 590.6 4 053.448 2 843.518

70 5 489 718 4 008 390 501 729.9 4 945.058 3 519.391

Relative Errors, %

61 −18 47 −7 8 15

62 −1 42 11 7 16

63 19 74 29 5 18

Table 5. Measured and predicted by formula (1) and (2) energy consumption

for TOP500 systems

TOP500 Power, P, kW

List Max(P) P(TOP) P(HIGH) P(BASE) Min(P)

Measured

61 29 899.2 22 703 7 438 749 38

62 29 899.2 23 695 7 421 877.87 44.07

63 38 698.4 26 343 6 316 798.27 44.07

Predicted

61 31 905.1 23 997.7 4 814.93 844.51 51.08

62 33 285.1 25 232.5 5 042.43 837.58 49.30

63 34 724.8 26 530.8 5 280.68 827.33 47.40

64 36 226.8 27 895.9 5 530.19 813.99 45.40

65 37 793.8 29 331.2 5 791.49 797.81 43.32

70 46 705.7 37 694.7 7 295.25 684.08 32.56

Relative Errors, %

61 7 6 −35 13 34

62 11 6 −32 −5 12

63 −10 1 −16 4 8
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Figure 8. Measured and predicted values along with hypothetical estimations

of energy efficiency for computing systems from TOP500 List

2. The proposed procedure for the estimation of energy consumption of Rank 500 system

allowed us to make prognosis for the near future. Despite the increase in the threshold

value of Rmax required to include a computing system in TOP500 List, the total cost

of the energy entry ticket will decrease due to the rapid growth in the energy efficiency

of computing equipment. According to our estimations, it will decrease by 2 times in the

next 5–10 years. We expect this trend to continue in the next few years, as adoption of

thin-cored, vector and tensor-operation architectures for general numerical simulation. If

the trend continues for a few years, we could install Top500 system in facilities such as

International Space Station or Antarctic research sites (under 10 kW budget).

3. The decision to limit ourselves to the consideration of only quantitative characteristics,

related directly to the functioning of computing systems, allowed us to carry out the analysis

at a relatively simple level. However, a more complicated approach based on the inclusion

qualitive characteristics describing computing system design (for example, processor/co-

processor model, type of interconnect and so on) into consideration can increase the accuracy

of the forecast provided that machine learning methods are used that make it possible to

uniformly take into account both quantitative and qualitative characteristics of the objects

being studied.
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