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The article presents a numerical implementation of the surface movement method for linear

programming. The base of this implementation is the new AlFaMove algorithm, which builds on

the surface of a feasible polytope an optimal objective path from an arbitrary boundary point to

a point that is a solution to a linear programming problem. The optimal objective path is a path

along the faces of the feasible polytope in the direction of maximizing the value of the objective

function. To calculate the optimal movement direction, the pseudoprojection operation on a linear

manifold is used. The pseudoprojection operation is a generalization of the orthogonal projection

and is implemented using an iterative projection-type algorithm. The proposition is proved that,

for a linear manifold that is the intersection of hyperplanes, the pseudoprojection coincides with

the orthogonal projection. It is also proved that, in the case of a linear manifold, pseudoprojection

makes it possible to calculate the movement vector in the direction of maximum increase of the

objective function. A parallel implementation of the AlFaMove algorithm is described. The results

of computational experiments on a cluster computing system are presented to demonstrate the

high scalability of the proposed numerical implementation.

Keywords: linear programming, surface movement method, numerical implementation,

AlFaMove algorithm, parallel implementation, cluster computing system, scalability evaluation.

Introduction

The age of big data and Industry 4.0 generated large-scale linear programming (LP) prob-

lems including millions of variables and millions of constraints [4, 8, 12, 13]. In many cases,

the object of linear programming is problems related to the optimization of non-stationary

processes [2]. In non-stationary LP problems, the objective function and/or constraints change

during the computational process. Also in this class of problems, there are applications in which

it is necessary to perform optimization in real time. Highly scalable methods and parallel algo-

rithms for linear programming are needed to solve such problems.

The simplest approach to solving non-stationary optimization problems is to consider each

change as the appearance of a new optimization problem that needs to be solved from scratch [2].

However, this approach is often impractical, because solving a problem from scratch without

reusing information from the past can take too long. Thus, it is desirable to have an optimization

algorithm capable of continuously adapting the computation process to a changing environment,

reusing information obtained in the past. This approach is applicable for real-time processes if

the algorithm tracks the trajectory of the optimal point fast enough. In the case of large-scale

LP problems, the latter requires the development of scalable methods and parallel algorithms

for linear programming.

To date, the most popular methods for solving LP problems are the simplex method [3]

and the interior-point methods [20]. These methods are capable of solving problems with tens

of thousands of variables and constraints. However, the scalability of parallel algorithms based

on the simplex method, in general case, is limited to 16–32 processor nodes [10]. As regards the

interior-point algorithms, in general case, they are not amenable to effective parallelization. This
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limits the use of these methods for solving large-scale non-stationary LP problems in real time.

In accordance with this, the task of developing scalable methods and efficient parallel algorithms

for linear programming on cluster computing systems remains urgent.

In recent paper [11] a theoretical description of the new surface movement method for linear

programming was presented. This method builds an optimal objective path on the surface of

the feasible polytope2 from an arbitrary boundary point to a solution of the LP problem. The

optimal objective path is a path along the faces of the feasible polytope in the direction of

maximizing the value of the objective function. Algorithm 1 proposed in this paper, in Step 15,

requires finding a point with the maximum value of the objective function on the boundary of

a hyperdisk. At the same time, the paper does not provide a numerical algorithm that allows

you to perform this step. In this article, we present and evaluate the AlFaMove algorithm,

which eliminates the gap. The rest of the paper is organized as follows. Section 1 presents the

theoretical background on which the surface movement method and AlFaMove algorithm are

based. Section 2 is devoted to the description of the pseudoprojection operation, which allows you

to find a movement vector along the optimal objective path for a linear manifold resulting from

the intersection of hyperplanes. Section 3 provides a formalized description of the AlFaMove

algorithm, which is a numerical implementation of the surface movement method. Section 4

describes a parallel version of the AlFaMove algorithm. Section 5 provides information on the

software implementation of the AlFaMove algorithm and the results of experiments on a cluster

computing system to evaluate its scalability. Conclusion summarizes the results and provides

further research directions.

1. Theoretical Background

This section contains the necessary theoretical basis used to describe the AlFaMove algo-

rithm. We consider a LP problem in the following form:

x̄ = arg max
x∈Rn

{〈c,x〉 |Ax 6 b} , (1)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, m > 1, c 6= 0. Here, 〈·, ·〉 stands for the dot product of two

vectors. We assume that the constraint x > 0 is also included in the matrix inequality Ax 6 b
in the form of −x 6 0. The linear objective function of the problem (1) has the form

f(x) = 〈c,x〉 .

In this case, the vector c is the gradient of the objective function f(x).

Let ai ∈ Rn denote a vector representing the ith row of the matrix A. We assume that ai 6= 0

for all i ∈ {1, . . . ,m}. Denote by Ĥi a closed half-space defined by the inequality 〈ai,x〉 6 bi,

and by Hi – the hyperplane bounding it:

Ĥi = {x ∈ Rn|〈ai,x〉 6 bi} ; (2)

Hi = {x ∈ Rn|〈ai,x〉 = bi} . (3)

Let us define a feasible polytope

M =
⋂

i∈P
Ĥi, (4)

2The feasible polytope is the feasible region of the LP problem.
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representing the feasible region of LP Problem (1). Note that M , in this case, is a closed convex

set. We assume that M is bounded, and M 6= ∅, i.e., LP Problem (1) has a solution.

Let us define a recessive half-space [17].

Definition 1. The half-space Ĥi is called recessive if

∀x ∈ Hi, ∀λ > 0 : x+ λc /∈ Ĥi. (5)

The geometric meaning of this definition is that a ray outgoing in the direction of the vector c

from any point of the hyperplane bounding the recessive half-space has no points in common

with this half-space, except for the beginning one. It is known [17] that the following condition

is necessary and sufficient for the half-space Ĥi to be recessive:

〈ai, c〉 > 0.

Denote

I = {i ∈ {1, . . . ,m} |〈ai, c〉 > 0} , (6)

i.e., I represents a set of indexes for which the half-space Ĥi is recessive. Since the feasible

polytope M is a bounded set, we have

I 6= ∅.

Define

M̂ =
⋂

i∈I
Ĥi. (7)

Obviously, M̂ is a convex, closed, unbounded polytope. We will call it recessive. Let us denote by

Γ(M) the set of boundary points of the feasible polytope M , and by Γ(M̂) the set of boundary

points of the recessive polytope M̂3. According to Proposition 3 in [17] we have

x̄ ∈ Γ(M̂),

i.e., a solution to LP problem (1) lies on the boundary of the recessive polytope M̂ .

Following [9], we can define an orthogonal projection onto a hyperplane.

Definition 2. Let be given the hyperplane H = {x ∈ Rn|〈a,x〉 = b}. The orthogonal projection

πH(v) of a point v ∈ Rn onto the hyperplane H is defined by the equation

πH(v) = v − 〈a,v〉 − b
‖a‖2

a. (8)

The following proposition provides a way to calculate the optimal path on a hyperplane.

Proposition 1. Let be given a hyperplane H with the normal a ∈ Rn, which including the

point u ∈ Rn:

H = {x ∈ Rn |〈a,x〉 = 〈a,u〉} . (9)

Let a linear function f(x) : Rn → R with gradient c ∈ Rn be defined:

f(x) = 〈c,x〉 . (10)

3A boundary point of a set M̂ ⊂ Rn is a point in Rn for which any open neighborhood of it in Rn has a nonempty

intersection with both the set M̂ and its complement.
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Figure 1. Illustration to proof of Proposition 1

(the dashed line denotes the hyper-circle of radius ‖w − u‖ centered at the point u)

Let the vectors a and c be linearly independent (not collinear, and there is no zero vector among

them). Denote

v = u+ c. (11)

Build the orthogonal projection πH(v) of point v onto the hyperplane H:

w = πH(v). (12)

Then the vector d = w−u uniquely determines the direction of maximum increase of the linear

function f(x) defined by equation (10).

Proof. Assume the opposite is true: there exists a point w̃ ∈ H such that

〈c, w̃〉 > 〈c,w〉 , (13)

‖w̃ − u‖ = ‖w − u‖, and w̃ 6= w (see Fig. 1). Here and further on, ‖ · ‖ denotes the Euclidean

norm. Calculate 〈c,w〉. According to the definition 2, the orthogonal projection πH(v) of point

v onto the hyperplane H defined by equation (9) is calculated as follows:

w = v − 〈a,v − u〉
‖a‖2

a.

Substituting the right side of equation (11) instead of v, we obtain

w = u+ c− 〈a, c〉
‖a‖2

a. (14)

Using (14), we figure out

〈c,w〉 = 〈c,u〉+ ‖c‖2 − 〈a, c〉
2

‖a‖2
. (15)

Since a and c are linearly independent, in accordance with the Cauchy–Bunyakovsky–Schwarz

inequality we have

〈a, c〉2 < ‖a‖2 · ‖c‖2.

This implies

‖c‖2 − 〈a, c〉
2

‖a‖2
> 0. (16)
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Now calculate 〈c, w̃〉. Let ũ = πL(w̃) be the orthogonal projection of point w̃ onto the

line L passing through the points u and w. By construction, there is a number n satisfying the

condition

− 1 6 δ < 1 (17)

such that

ũ = u+ δ(w − u).

Define

ṽ = u+ δ(v − u). (18)

Then, the point ũ is the orthogonal projection of the point ṽ onto the hyperplane H defined by

equation (9), and can be calculated as follows:

ũ = ṽ − 〈a, ṽ − u〉
‖a‖2

a.

Substituting the right side of equation (18) instead of ṽ, we obtain the following equation from

here:

ũ = u+ δ

(
v − u− 〈a,v − u〉

‖a‖2
a

)
.

Using (11), we make the replacement v − u = c:

ũ = u+ δ

(
c− 〈a, c〉
‖a‖2

a

)
. (19)

Obviously

w̃ = (w̃ − ũ) + ũ. (20)

Replace the second summand in (20) with the right-hand side of equation (19):

w̃ = (w̃ − ũ) + u+ δ

(
c− 〈a, c〉
‖a‖2

a

)
.

Using (1), we obtain

〈c, w̃〉 = 〈c, w̃ − ũ〉+ 〈c,u〉+ δ

(
‖c‖2 − 〈a, c〉

2

‖a‖2

)
.

By construction, vector w̃ − ũ is orthogonal to vector v − u = c. Therefore, 〈c, w̃ − ũ〉 = 0.

Thus, equation (1) is transformed to the form

〈c, w̃〉 = 〈c,u〉+ δ

(
‖c‖2 − 〈a, c〉

2

‖a‖2

)
. (21)

Comparing (15) and (21), and taking into account (16) and (17), we obtain

〈c, w̃〉 < 〈c,w〉 ,

which contradicts(13).
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Returning to the LP (1) problem, we can say the following. Let u ∈ M ∩ Γ(M̂), and there

is a single recessive hyperplane Hi′ (i′ ∈ I) such that u ∈ Hi′ . In this case, the vector d,

which determines the direction of the optimal objective path at the point u, in accordance with

Proposition 1, can be calculated as follows:

d = c− 〈ai′ ,u+ c〉 − bi′
‖ai′‖2

ai′ . (22)

In the next section, we consider the case when two or more hyperplanes pass through the point u.

2. Pseudoprojecting onto Linear Manifold

Let J ⊆ {1, . . . ,m}, J 6= ∅, and
⋂
i∈J

Hi 6= ∅. In this case, the set of indices J defines a

linear manifold L in the space Rn:

L =
⋂

i∈J
Hi. (23)

Denote by kL the dimension of the linear manifold L. For 0 < kL < n− 1, the manifold L is not

a hyperplane, and, to determine the movement vector d along this manifold in the direction of

maximum increase in the objective function value, the equation (22) cannot be used, since such

a linear manifold cannot be defined by a single linear equation in the space Rn. However, we

can find the specified vector d using the pseudoprojection operation [17]. Define the projection

mapping ϕ(·):

ϕ(x) =
1

|J |
∑

i∈J
πHi

(x). (24)

It is known [18] that the mapping ϕ(x) is a continuous L-Fejér mapping, and the sequence of

points

{
xk = ϕk (x0)

}∞
k=1

(25)

generated by this mapping converges to a point belonging to L:

xk → x̃ ∈ L.

Using the mapping ϕ(·), let us define the pseudoprojection on a linear manifold formed by the

intersection of hyperplanes.

Definition 3. Let J ⊆ {1, . . . ,m}, J 6= ∅, ⋂i∈J Hi 6= ∅, and ϕ(·) be the projection mapping

defined by equation (24). The pseudoprojection ρJ (x) of the point x ∈ Rn onto the linear

manifold L =
⋂
i∈J Hi is the limit point of the sequence (25):

lim
k→∞

∥∥∥ρJ (x)−ϕk(x)
∥∥∥ = 0.
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Figure 2. Illustration to proof of Lemma 1

An important feature of the pseudoprojection onto a linear manifold is that the pseudoprojection

coincides with the orthogonal projection in this case. To prove this fact, we need the following

lemma.

Lemma 1. Let the hyperplane Hi′ and the linear manifold L belonging to this hyperplane be

given in the space Rn:

Hi′ = {x ∈ Rn| 〈ai′ ,x〉 = bi′};
L =

⋂
i∈J

Hi;

i′ ∈ J .

Denote by P the linear manifold that is the orthogonal complement to L:

P = L⊥. (26)

Then for any point v belonging to the linear manifold P , its orthogonal projection πHi′ (v) onto

the hyperplane Hi′ also belongs to the linear manifold P :

∀v ∈ P : πHi′ (v) ∈ P.

Proof. Denote by p the orthogonal projection of the point v onto the hyperplane Hi′ :

p = πHi′ (v). (27)

Without loss of generality, we can assume that p ∈ L (see Fig. 2). Suppose that the point p

does not belong to the linear manifold P . Let us by q denote the intersection point of a linear

manifold L with its orthogonal complement P :

q = L ∩ P.

Since P is the orthogonal complement to the linear manifold L, the point q is the orthogonal

projection of the point p onto the linear manifold P :

q = πP (p). (28)
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Figure 3. Illustration to proof of Proposition 2 for n = 3

Consider the triangle 4(v,p, q). By virtue of (27), the angle ∠p with the vertex at the point p

is right. But this is only possible if p = q, that is p ∈ P .

The following proposition proves that a pseudoprojection on a linear manifold coincides with

an orthogonal projection.

Proposition 2. Let the following conditions hold:

J ⊆ {1, . . . ,m}, (29)

L =
⋂

i∈J
Hi, L 6= ∅; (30)

where Hi = {x ∈ Rn| 〈ai,x〉 = bi}. Denote by πL(x) the orthogonal projection of the point

x ∈ Rn onto the linear manifold L. Then,

ρL(x) = πL(x),

i.e., the pseudoprojection onto the linear manifold L coincides with the orthogonal projection.

Proof. Fix an arbitrary point v0 ∈ Rn. Consider the linear manifold P containing the point v0

and being the orthogonal complement to the linear manifold L:

v0 ∈ P = L⊥. (31)

Denote by v̄ the intersection point of the linear manifold L with its orthogonal complement P :

L ∩ P = {v̄}

(see Fig. 3). Make the orthogonal projection of the point v0 onto the hyperplane Hj for an

arbitrary j ∈ J :

p0 = πHj
(v0).

According to Lemma 1, we have

πHj
(v0) ∈ P.
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It follows from this and from (24) that

v1 = ϕ(v0) ∈ P.

This means that the sequence {
vk = ϕk (v0)

}∞
k=1

converges to the point v̄ of the intersection of the linear manifold L with the linear manifold P ,

i.e., ρL(v0) = v̄. On the other hand, by virtue of (31), we have πL(v0) = v̄. Therefore,

∀x ∈ Rn : ρL(x) = πL(x).

The proposition is proven.

The procedure for approximate computation of a pseudoprojection on a linear manifold is

presented in the form of Algorithm 1. Let us briefly comment on the steps of this algorithm.

Algorithm 1 Computing of pseudoprojection ρJ (x)

Require: Hi = {x ∈ Rn|〈ai,x〉 = bi} ; J ⊆ {1, . . . ,m}; J 6= ∅; ⋂
i∈J

Hi 6= ∅
1: function ρJ (x)

2: k := 0

3: x0 :=x

4: repeat

5: Σ := 0

6: for i ∈ J do

7: Σ := Σ + (〈ai,xk〉 − bi)ai/‖ai‖2
8: end for

9: x(k+1) :=xk − Σ/ |J |
10: ξmax := 0 . Maximum residual

11: for i ∈ J do

12: ξi := ‖ 〈ai,xk+1〉 − bi‖
13: if ξi > ξmax then

14: ξmax := ξi

15: end if

16: end for

17: k := k + 1

18: until ξmax < εξ . Small parameter εξ > 0

19: return xk
20: end function

Step 2 sets the iteration counter k to zero. Step 3 sets the initial approximation x0. Step 4

begins the iterative loop of calculating the pseudoprojection. Steps 5–8 calculate the sum from

the right side of equation (24) with the current approximation xk. Step 9 finds the next ap-

proximation xk+1. Steps 10–16 calculate the maximum residual ξ for the next approximation

with respect to all hyperplanes Hi involved in the computation. Step 17 increases the iteration

counter by one. Step 19 returns the new approximation xk as a result.
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Algorithm 2 Calculation of movement vector d̄ = D(u)

Require: Hi = {x ∈ Rn|〈ai,x〉 = bi}; u ∈ Γ(M)

1: function D(u)

2: U := ∅ . U – set of indices of hyperplanes Hi passing through point u

3: for i = 1 . . .m do

4: if 〈ai,u〉 = bi then

5: U :=U ∪ {i}
6: end if

7: end for

8: d̄ := 0

9: f :=−∞ . f – value of objective function f(x) = 〈c,x〉
10: ec := c/‖c‖
11: v :=u+ δec . Large parameter δ > 0

12: for J ∈ P(U)\∅ do . P(U) – set of all subsets of the set U
13: w :=ρJ (v)

14: d :=w − u
15: ed :=d/‖d‖
16: if (u+ τed) ∈M then . Small parameter τ > 0

17: if 〈c,u+ τed〉 > f then

18: f :=〈c,u+ τed〉
19: d̄ :=d

20: end if

21: end if

22: end for

23: return d̄

24: end function

3. AlFaMove – Along Faces Movement Algorithm

In this section, we describe the new AlFaMove (Along Faces Movement) algorithm, which is a

numerical implementation of the surface movement method [11]. The AlFaMove algorithm builds

a path on the surface of the feasible polytope from an arbitrary boundary point u0 ∈M ∩Γ(M̂)

to a point x̄ that is a solution to LP problem (1). Moving along the faces of an feasible polytope

is performed in the direction of maximizing the value of the objective function. The path built

as a result of such movement is called the optimal objective path.

The basis of the AlFaMove algorithm is the procedure D(u), which calculates at the bound-

ary point u the movement vector d̄ along the face of the feasible polytope M in the direction

of maximum increase in the value of the objective function. Procedure D(u) is presented in the

form of Algorithm 2. Geometrical representation of the operation of this algorithm is shown in

Fig. 4. Let us briefly comment on the steps of Algorithm 2. Steps 2–7 construct the set U , which

includes the indices of all hyperplanes Hi passing through the point u. Step 8 resets the direction

vector d̄. In Step 9, the infinitesimal number4 is assigned to the variable f , which stores the

value of the objective function. Step 10 calculates the unit vector ec parallel to the vector c. In

4In the case of double-precision floating-point format that occupies 64 bits in computer memory, the infinitesimal

number is −1 · 10308.
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=

Figure 4. Geometrical representation of Algorithm 2

Step 11, the point v is constructed by adding the vector δec to the vector u (see Fig. 4). Here, δ

is a “large” positive parameter: the greater the δ, the more accurately the direction vector d̄

will be calculated. However, when the δ parameter is increased, the time for calculating the

pseudoprojection ρJ (v) in Step 13 will also increase. The for loop in Step 12 iterates through

all possible combinations of indices of the hyperplanes passing through the point u. Each such

combination J corresponds to the linear manifold L =
⋂
i∈J Hi, which also passes through the

point u. Step 13 calculates the point w by pseudoprojecting point v onto the linear manifold

corresponding to the combination J . Step 14 calculates, for the current linear manifold, the

vector d, which determines the direction of maximum increase in the values of the objective

function. Step 15 calculates the unit vector ed parallel to the vector d. Step 16 checks that the

small movement from point u in the direction d does not exceed the boundaries of the feasible

polytope. Step 17, in turn, checks if the value of the objective function at the point (u + ed)

is greater than the maximum value obtained in previous iterations of the for loop. If so, then

the last value is stored as the maximum (Step 18), and the last direction is assigned to vector d̄

(Step 19). After all possible combinations have been checked, the vector d̄ is returned as a result

(Step 23). If none of the combinations passed the check in steps 16–17, the zero vector will

be returned as a result. This means that any movement from point u along the surface of the

feasible polytope does not lead to an increase in the value of the objective function.

Now, everything is ready to describe the AlFaMove algorithm that solves the LP problem (1).

The Algorithm 1 from the paper [11] will serve as a basis for us. The implementation of the

AlFaMove algorithm in pseudocode is presented in the form of Algorithm 3. Let us comment on

the steps of this algorithm. Step 1 reads the initial approximation u0. This can be an arbitrary

boundary point of the recessive polytope M̂ , satisfying the following condition:

u0 ∈M ∩ Γ(M̂).

This condition is checked in Step 2. To obtain a suitable initial approximation, an algorithm can

be used that implements the Quest stage of the apex method [17]. Step 3 calculates the initial

movement vector d0. To do this, the function D(·) is used, implemented in the Algorithm 2.

It is assumed that d0 6= 05. This condition is controlled in Step 4. Step 5 sets the iteration

counter k to zero. Step 6 begins the repeat/until loop, which performs movement along the

5The equality of the vector d0 to the zero vector means that the point u0 is a solution to LP problem (1).
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Algorithm 3 AlFaMove

Require: Ĥi = {x ∈ Rn|〈ai,x〉 6 bi} ; M =
m⋂
i=1

Ĥi; M̂ =
⋂
i∈I

Ĥi; i ∈ I ⇔ 〈ai, c〉 > 0

1: input u0

2: assert u0 ∈M ∩ Γ(M̂)

3: d0 :=D(u0)

4: assert d0 6= 0

5: k := 0

6: repeat

7: uk+1 :=µ(uk,dk)

8: dk+1 :=D(uk+1)

9: k := k + 1

10: until dk = 0

11: output uk . Solution to LP problem (1)

12: stop

faces of the feasible polytope until the movement vector dk becomes equal to the zero vector. In

this case, the last approximation uk is a solution to LP problem (1). Step 7 calculates the next

approximation uk+1 using the vector function µ, the definition of which will be given below.

Step 8 calculates the movement vector dk+1 for the next approximation uk+1. Step 9 increases

the iteration counter k by one. If the last movement vector is equal to the zero vector, then the

repeat/until loop is terminated at Step 10, after that, Step 11 outputs the coordinates of the

point uk as a solution to the LP problem (1). Step 12 terminates the AlFaMove algorithm.

The vector function µ(·) used in Step 7 of Algorithm 3 is defined as follows. Denote

Q = {i ∈ {1, . . . ,m} | 〈ai,u〉 < bi ∧ 〈ai,d〉 > 0} . (32)

Then

µ(u,d) = arg min
i∈Q
{‖u− x‖ | x = γi(u,d)} . (33)

Here, γi(u,d) denotes a vector function that calculates the oblique projection of the point u

onto the hyperplane Hi relative to the vector d:

γi(u,d) = u− 〈ai,u〉 − bi〈ai,d〉
d.

Figure 5 illustrates the action of the function µ. The figure suggests that the hyperplanes H4

and H5 do not satisfy the inequality 〈ai,u〉 < bi in equation (32). Hyperplanes H3 and H6 do

not satisfy the inequality 〈ai,d〉 > 0 in equation (32). Thus, Q = {1, 2}. Since

‖u− γ1(u,d)‖ < ‖u− γ2(u,d)‖ ,

then µ(u,d) = γ1(u,d).

The following theorem ensures the convergence of Algorithm 3 to a solution of LP prob-

lem (1) in a finite number of iterations.

Theorem 1. (Convergence of AlFaMove algorithm) Let the feasible polytope M of LP prob-

lem (1) be a bounded nonempty set. Let x̄ be a solution to LP problem (1). Then, the sequence
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Figure 5. Action of function µ:

µ(u,d) = γ1(u,d)

of approximations {uk}Kk=1 generated by Algorithm 3, is finite (K < +∞), and, 〈c,uK〉 = 〈c, x̄〉,
i.e., uK is a solution to LP problem (1).

Proof. Denote by dAlFaMove the vector dk+1, calculated in step 8 of Algorithm 3. In accordance

with steps 13 and 14 of Algorithm 2, the following equation holds:

dAlFaMove = ρJ (v)− u.

According to Proposition 2, it follows that

dAlFaMove = πJ (v)− u, (34)

where πJ (v) denotes the orthogonal projection of the point v onto the linear manifold

L =
⋂
i∈J Hi. According to Proposition 1, this means that the vector dAlFaMove uniquely de-

termines the direction of maximum increase in the objective function value of LP problem (1).

And this, in turn, means that Algorithm 3 is a numerical implementation of the surface move-

ment method [11], i.e., the approximation sequences of
{
ukAlFaMove

}
and

{
ukSMM

}
, generated

respectively by Algorithm 3 from this article and Algorithm 1 from [11], coincide. Thus, the

convergence of the AlFaMove algorithm directly follows from the convergence of the surface

movement algorithm, ensured by Theorem 1 from article [11].

4. Parallel Version of AlFaMove Algorithm

The most compute-intensive operation in the AlFaMove algorithm (Algorithm 3) is the op-

eration D(·), which calculates the direction vector at Step 8 in the repeat/until loop. When

solving large-scale LP problems, it takes more than 90% of the processor time. This is explained

by the fact that the vector function D(·), implemented as Algorithm 2, uses, at Step 13, the

pseudoprojection operation ρJ (·)6, which repeatedly applies the mapping ϕ(·) defined by equa-

tion (24) to the starting point v. This iterative method uses the orthogonal projection of a point

onto a hyperplane as an elementary operation and belongs to the class of projection methods.

It is known that in the case of large-scale LP problems, the projection method may require

6See Definition 3 and Algorithm 1.
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significant time costs [6]. In addition, it should be noted that Algorithm 2 at Step 12 iterates

through all non-empty subsets of the set U , which includes the indices of hyperplanes passing

through the point u. For example, if 30 hyperplanes pass through a point, then we will have

230 − 1 = 1 073 741 823 non-empty subsets. To iterate through such a number of subsets, we

will need the power of a supercomputer. Therefore, we have developed a parallel version of the

AlFaMove algorithm, presented as Algorithm 4. Parallel Algorithm 4 is based on the BSF par-

Algorithm 4 Parallel version of AlFaMove algorithm

master lth worker (l = 0, . . . , L− 1)

1: input n,m,A, b,u0

2: k := 0

3: repeat

4: Broadcast uk
5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16: Gather Lreduce
17: (dk, fk) :=Reduce(⊕,Lreduce)
18: if dk = 0 then

19: exit := true

20: else

21: uk+1 :=µ(uk,dk)

22: k := k + 1

23: exit := false

24: end if

25: Broadcast exit

26: until exit

27: output uk, fk
28: stop

1: input n,m,A, b, c

2:

3: repeat

4: RecvFromMaster uk
5: U :=[ ]

6: for i = 1 . . .m do

7: if 〈ai,uk〉 = bi then

8: U :=U ++ [i]

9: end if

10: end for

11: K := 2|U| − 1

12: L := NumberOfWorkers

13: Lmap(l) :=[lK/L, . . . , (l + 1)K/L− 1]

14: Lreduce(l) :=Map(Fuk
,Lmap(l))

15: (dl, fl) :=Reduce(⊕,Lreduce(l))
16: SendToMaster (dl, fl)

17:

18:

19:

20:

21:

22:

23:

24:

25: RecvFromMaster exit

26: until exit

27:

28: stop

allel computation model [14] designed for cluster computing systems. The BSF model uses the

master–worker parallelization scheme and requires the representation of the algorithm in the

form of operations on lists using higher-order functions Map and Reduce. In Algorithm 4, the

higher-order function Map takes, as the second parameter, the list Lmap = [1, . . . ,K] contain-

ing the ordinal numbers of all subsets of the set U , with the exception of the empty set. Here,
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K = 2|U| − 1. As the first parameter, Map takes the parameterized function

Fu : {1, . . . ,K} → Rn × R,

which is defined as follows:

Fu(j) = (dj , fj);

dj =




ed, if (u+ τed) ∈M ∧ 〈c,w〉 > 〈c,u〉;
0, if (u+ τed) /∈M ∨ 〈c,w〉 6 〈c,u〉;

fj =




〈c,u+ ed〉, if (u+ τed) ∈M ∧ 〈c,w〉 > 〈c,u〉;
−∞, if (u+ τed) /∈M ∨ 〈c,w〉 6 〈c,u〉,

(35)

where

w = ρσ(j)(u+ δc/‖c‖), (36)

and

ed =
w − u
‖w − u‖ .

The semantics of the function Fu(·) is uniquely determined by Algorithm 2. The function σ(·)
used in equation (36) maps the natural number j ∈ {1, . . . ,K} to the jth subset of the set

that includes all the elements of the list U . To do this, the number j is converted to a binary

representation consisting of |U| bits. Each bit corresponds to the hyperplane index from the

list U in natural order. If the bit contains 1, then the corresponding index is included in the

subset σ(j). If the bit contains 0, then the corresponding index is not included. For example,

let the hyperplanes H2, H4, H7, H9 pass through the point u. In this case, U = [2, 4, 7, 9] and

K = 24 − 1 = 15, i.e., 15 different non-empty subsets can be formed from the set of elements

of the list U . For instance, let us find the fifth subset. The function σ(·) converts the number 5

into the binary representation of 4 bits 0101 and returns the subset {4, 9} as a result. In such

a way, the higher-order function Map (Fu,Lmap) converts the list Lmap of ordinal numbers of

subsets into the list of pairs (dj , fj):

Map (Fu,Lmap) = [Fu(1), . . . ,Fu (K)] = [(d1, f1), . . . , (dK , fK)] .

Here, dj (j = 1, . . . ,K) is the movement unit vector, and fj is the value of the objective function,

which is reached at the point u+ dj .

Denote by Lreduce the list of pairs generated by the higher-order function Map:

Lreduce = Map (Fu,Lmap) = [(d1, f1), . . . , (dK , fK)] .

Define the binary associative operation

⊕ : Rn × R→ Rn × R,

which is the first parameter of the higher-order function Reduce:

(
d′, f ′

)
⊕
(
d′′, f ′′

)
=





(d′, f ′) , if f ′ > f ′′;

(d′′, f ′′) , if f ′ < f ′′.
(37)
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Higher-order function Reduce reduces the list Lreduce to a single pair by sequentially applying

the operation ⊕ to all elements of the list:

Reduce (⊕,Lreduce) = (d1, f1)⊕ . . .⊕ (dK , fK) = (dj′ , fj′),

where, according to (37)

j′ = arg max
16j6K

fj .

Parallel Algorithm 4 uses the master–worker approach and includes L + 1 process: one

process is the master and L processes are the workers. The master process performs general

computing management, distributes work between worker processes, receives results from them

and generates the final result. For simplicity, we assume that the subset number K is a multiple

of the number of workers L. In Step 1, the master reads the initial data of the LP problem and

the coordinates of the starting point u0. In step 2, the master sets the iteration counter k to zero.

Steps 3–26 implement the main loop repeat/until calculating the solution to LP problem (1).

In Step 4, the master broadcasts the current approximation uk to all workers. In Step 16, the

master receives from the workers the partial results, which are reduced to the single pair (dk, fk)

in Step 17. If the condition dk = 0 is met in Step 18, then a solution is found (we assume that

d0 6= 0). In this case, the master assigns the value true to the Boolean variable exit in Step 19.

If dk 6= 0, then the master calculates the next approximation uk+1 in Step 21, increases the

iteration counter k by one in Step 22, and assigns the value false to the Boolean variable exit in

Step 23. In Step 25, the master broadcasts the value of the Boolean variable exit to all workers.

If the Boolean variable exit takes the value true, then the repeat/until loop ends in Step 26.

In Step 27, the master outputs the last approximation uk as a result, and the quantity fk as

the optimal value of the objective function. Step 28 terminates the master process.

All workers execute the same code, but on different data. In Step 1, the lth worker

(l = 1, . . . , L) reads the initial data of the LP problem. The repeat/until loop of the worker

(steps 3–26) corresponds to the repeat/until loop of the master. In Step 4, the worker receives

the current approximation uk from the master. After that, the worker forms its own sublist

Lmap(l) of the subset ordinal numbers to be processed (steps 5–13). The sublists of different

workers do not overlap:

l′ 6= l′′ ⇔ Lmap(l′) 6= Lmap(l′′), (38)

and their concatenation gives a complete list:

Lmap = Lmap(0) ++ . . .++ Lmap(L−1). (39)

In Step 14, the worker calls the higher-order function Map, which forms the sublist of pairs

Lreduce(l), applying the parameterized function Fuk
, defined by the equations (35), to all elements

of the sublist Lmap(l). In Step 15, the higher-order function Reduce transforms this list into the

single pair (dl, fl) by sequentially applying the binary operation ⊕, defined by the equation (37),

to all elements of the sublist Lreduce(l). The result is sent to the master in Step 16. In Step 25, the

worker receives the value of the Boolean variable exit from the master. If this variable takes the

value true, then the worker process is terminated. Otherwise, the repeat/until loop continues

to run. The exchange operators Broadcast, Gather, RecvFromMaster and SendToMaster

perform implicit synchronization of the master process and worker processes.
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5. Computational Experiments

We implemented the parallel version of the AlFaMove algorithm in C++ using the

BSF-skeleton [15], which is based on the BSF parallel computation model [14]. The BSF-skele-

ton encapsulates all aspects related to parallelizing a program based on the MPI library. The

source codes of the parallel implementation of the AlFaMove algorithm are freely available

in the GitHub repository at https://github.com/leonid-sokolinsky/AlFaMove. The devel-

oped program has been tested on a large number of LP problems from various sources. All

these problems in MTX format [1] are available at https://github.com/leonid-sokolinsky/

Set-of-LP-Problems. As tests, we also used synthetic problems obtained using the random

problem generator LP FRaGenLP [16]. These problems are available at https://github.com/

leonid-sokolinsky/Set-of-LP-Problems/tree/main/Rnd-LP. We were unable to test the Al-

FaMove implementation on problems from the Netlib-LP repository [5], since, in all these prob-

lems, the number of hyperplanes passing through the starting point u0 exceeded the number

30, which corresponds to the number of possible combinations equal to 1 073 741 824. The C++

compilers available to us do not accept arrays of such sizes.

Using the developed program, we evaluated the scalability of the AlFaMove algorithm. In

these experiments, we used the parameterized LP problem called “cut-off vertex hypercube”,

for which the space dimension n is a parameter. The constraints of this problem contain the

following 2n+ 1 inequalities:





x1 6 200

x2 6 200
...

xn 6 200

x1 + x2 · · · + xn 6 200(n− 1) + 100

x1 > 0, x2 > 0, · · · , xn > 0.

(40)

The gradient of the objective function is given by the vector

c = (1, 2, . . . , n) . (41)

It is necessary to find the maximum of the objective function. The problem has the unique solu-

tion at the point (100, 200, . . . , 200) with the maximum value of the objective function equal to

100(n2+n−1). For an arbitrary n, this problem can be obtained in MTX format using the FRa-

GenLP generator, if the number of random inequalities is set to 0. With various n, these LP prob-

lems are available at https://github.com/leonid-sokolinsky/Set-of-LP-Problems/tree/

main/Rnd-LP under the names lp rnd<n>-0, where the dimension of the space is specified as

<n>.

Computational experiments were carried out on the supercomputer “Lomonosov-2” [19],

whose specifications are shown in Tab. 1.

All computations were performed with double precision, at which a floating-point number oc-

cupies 64 bits in computer memory.

In the first series of experiments, the dependence of the speedup and parallel efficiency of

the AlFaMove algorithm on the number of processor nodes for the cut-off vertex hypercube

problem was investigated. The results of these experiments are shown in Fig. 6. The speedup

α(L) was defined as the ratio of the time T (1) of solving a problem in the configuration with
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Table 1. Specifications of “Lomonosov-2” computing cluster

Parameter Value

Number of processor nodes 1487

Processor Intel Haswell-EP E5-2697v3, 2.6 GHz, 14 cores

Memory per node 64 GB

Main network InfiniBand FDR

Control network Gigabit Ethernet

Operating system Linux CentOS 7
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Figure 6. Speedup and parallel efficiency of the AlFaMove algorithm,

n – number of variables in LP problem (40)

a master node and a single worker node to the time T (L) of solving the same problem in the

configuration with a master node and L worker nodes:

α(L) =
T (1)

T (L)
.

Parallel efficiency β(L) was calculated using the equation

β(L) =
T (1)

L · T (L)
.

Computations were performed for the dimensions 16, 18 and 20. The number of constraints was

33, 37 and 41 respectively. In all cases, the vertex of the feasible polytope with the following

coordinates was chosen as the initial point:

x1 = 0, . . . xn/2 = 0, xn/2+1 = 200, . . . xn = 200. (42)

The experiments demonstrated good scalability of the AlFaMove algorithm on the cut-off vertex

hypercube problem, starting from the dimension n = 18. In this case, the algorithm demon-

strated speedup close to linear. At smaller dimensions, the cost of exchanges and latency begin

to dominate the computational costs, which leads to a significant decrease in the algorithm scal-

ability boundary7. For n = 16, this boundary was equal to 180 nodes. Experiments also shown

7The scalability boundary refers to the maximum number of processor nodes, up to which the speedup increases.
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multiprocessor configurations (L – number of processor nodes)

that with an increase in the problem dimension, the parallel efficiency on a small number of

processor nodes (less than 120) decreases. However, with a larger number of processor nodes,

the opposite trend is observed. So, for the dimension n = 16, the parallel efficiency was 61% on

20 processor nodes, after which it decreased to 23% on 220 nodes. At the same time, for n = 20,

the parallel efficiency was equal to 50% and 40%, respectively.

In the next series of experiments, the dependence of runtime on the dimension of the cut-off

vertex hypercube problem was investigated for various multiprocessor configurations with the

number of processor nodes L = 60, L = 120 and L = 180. The results of these experiments are

shown in Fig. 7. The dimension ranged from n = 16 to n = 24 in increments of 2. For the dimen-

sion n = 24, each of the lists Lmap and Lreduce included 16 777 215 elements. This is the maximum

size allowed by the compiler used. The vertex of the feasible polytope with coordinates (42) was

always chosen as the initial point. In all the studied configurations, the experiments showed an

exponential increase in the runtime with an increase in the problem dimension. However, con-

figurations with a large number of processor nodes demonstrated considerably shorter running

time of the AlFaMove algorithm.

In the third series of experiments, we investigated the behavior of the AlFaMove algorithm

on the Klee–Minty cube. The feasible region of this problem is a hypercube with perturbed

corners defined by the following inequalities:





x1 6 5

4x1 + x2 6 25

8x1 + 4x2 + x3 6 125
...

2nx1 + 2n−1x2 · · · + 4xn−1 + xn 6 5n

x1 > 0, x2 > 0, · · · , xn > 0.

The gradient of the objective function is given by the vector

c =
(
2n−1, 2n−2, . . . , 2, 1

)
.

It is necessary to find the maximum of the objective function. The problem has the unique

solution at the point (0, . . . , 0, 5n) with the maximum value of the objective function equal
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to 5n. In article [7], Victor Klee and George Minty showed that the classical simplex method,

starting at x = 0, goes through all 2n hypercube vertices performing 2n− 1 iterations in solving

this problem. It is known that many optimization algorithms for linear programming exhibit

poor performance when applied to the Klee–Minty cube. We applied the AlFaMove algorithm

to Klee–Minty cubes of dimension from 5 to 9. The experimental results presented in Tab. 2

show that the AlFaMove algorithm found a solution in 2n − 1 iterations in all cases, while the

simplex method performed 2n − 1 iterations.

Table 2. Experiments with Klee–Minty cubes

Dimen- AlFaMove
Simplex

sion n Scalability

boundary

Time

(sec.)

Relative

error δ

Iteration

number

Iteration

number

5 10 0.2 0.9 · 10−12 9 31

6 15 2 0.2 · 10−12 11 63

7 20 13 0.8 · 10−11 13
127

8 25 126 0.8 · 10−11 15
255

9 30 1445 0.2 · 10−10 17
511

The relative error was calculated by the equation

δ =

∣∣∣∣
fexact − fapprox

fexact

∣∣∣∣ ,

where fexact is the exact maximum value of the objective function, fapprox is the value calculated

by the AlFaMove algorithm. The iterations of the simplex method were calculated using the on-

line calculator available at https://www.pmcalculators.com/simplex-method-calculator.

Experiments also showed that in the case of Klee–Minty cubes, the scalability boundary of the

AlFaMove algorithm increased linearly with increasing the problem dimension. At the same

time, an exponential increase in runtime was observed.

Conclusion

The article presents the AlFaMove algorithm, which is a numerical implementation of the

surface movement method for linear programming. The key feature of this method is to find out

the optimal path along the surface of the feasible polytope from the initial point to a solution

of a linear programming problem. The optimal path is understood as a path along the surface

of the feasible region in the direction of maximizing the values of the objective function. The

scientific significance of the proposed algorithm lies in the fact that it opens up the possibility

of using feed forward artificial neural networks to solve non-stationary multidimensional linear

programming problems in real time. The theoretical basis of the AlFaMove algorithm is the

operation of constructing the pseudoprojection onto linear manifolds that form the feasible

polytope flat sides of different dimensions.

Pseudoprojection is implemented on the basis of the Fejér process and is a generalization

of the concepts of orthogonal projection on a linear manifold and metric projection on a convex
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set. In the case of a hyperplane, the pseudoprojection turns into the orthogonal projection. It is

proved that the hyperplane path constructed by the gradient of the objective function and the

orthogonal projection is optimal. The projection-type algorithm is presented for constructing

a pseudoprojection onto linear manifold formed by the hyperplane intersections. It is proven

that the pseudoprojection point coincides with the orthogonal projection point in this case.

A formalized description of the AlFaMove algorithm, which builds the optimal path on the

surface of the feasible polytope, is presented. The AlFaMove algorithm is based on the procedure

for calculating the vector of movement along the face of the feasible polytope from the current

approximation in the direction of maximizing the values of the objective function. A formalized

description of this procedure is outlined.

Projection-type algorithms are characterized by a low rate of convergence, depending on the

angles between the hyperplanes forming the linear manifold. It is also noted that the calcula-

tion of the movement vector is a combinatorial-type enumeration problem with high space and

time complexity. A parallel version of the AlFaMove algorithm designed for cluster computing

systems is presented. The parallel version is implemented in C++ using the BSF-skeleton based

on the BSF parallel computation model. Computational experiments were conducted on a clus-

ter computing system to evaluate the scalability of the AlFaMove algorithm. The experiments

showed that a linear programming problem with 24 variables and 49 constraints demonstrates a

speedup close to linear on 320 processor nodes of the cluster. Problems of a larger dimension led

to a compiler error caused by exceeding the maximum acceptable size of arrays. The experiments

with the Klee–Minty cube shown that the scalability boundary of the AlFaMove algorithm also

increases linearly with increasing the problem dimension.

As directions for further research, we outline the following. We plan to design a new, more

efficient method for constructing a path on the surface of a feasible polytope, leading to a solution

of a linear programming problem. The main idea is to decrease the number of enumerating

combinations of hyperplanes when determining the direction of movement. This can be achieved

by restricting the paths of movement only to the edges of the polytope (segments of linear

manifolds of dimension one). The problem of space complexity can be solved by using stochastic

methods of choosing the movement direction.
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