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This paper considers the inverse problem of material elastic properties identification from

vibrational testing data. The present work aims to describe the approach that uses different kinds

of optimizations to allow fast inverse problem solution using single modern multicore CPU or

GPU. This includes choosing the model that allows to minimize the computational cost still

reproducing the experimental results with good quality. The model for mid-surface symmetric

isotropic and composite plates that are moving in vibrational stand is provided. The inverse

problem is formulated in terms of the loss function minimization and the solution is computed with

stochastic global optimization algorithm and second-order local optimization algorithm, which uses

automatic differentiation of the forward problem solver to compute the derivatives. The paper

describes parallelization for CPU and GPU and also the approach to reduce RAM usage to fit

into single server RAM or single GPU VRAM. The numerical experiments presented in the paper

demonstrate the solutions for complex rheologies and geometries: laminated composite plates,

isotropic materials with frequency dependent elastic properties, perforated samples.
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Introduction

This paper considers the inverse problem of material elastic properties identification from

vibrational testing data. Inverse problems are typically very computationally intensive. They

are commonly solved using large scale clusters to achieve high quality of the solution. However,

for the problem we consider, it is desirable to fit into simple hardware setup. If the problem can

be solved using a single computer, the solver can be taken close to vibrational testing stands

and integrated into engineering procedures. The present work aims to describe the approach

that uses different kinds of optimizations to allow fast inverse problem solution using modern

multicore CPU or GPU.

Composite materials are widely used in modern engineering projects, sometimes new mate-

rials are tailor-made for a certain problem. The experimental status of such materials may lead

to lack of reliable data on their elastic properties, that are crucial for engineering estimations

and numerical simulations. Moreover, even if the elastic properties of the material are considered

to be known, an exact specimen may have different kinds of flaws caused by issues during the

material production and further handling. The present work uses the data from the vibrational

testing of the specimen to identify its elastic properties. The results of this work will contribute

to the methods of nondestructive testing. The choice of the input data is based on the fact that

vibrational testing is a routine procedure in many areas. So, if the vibrational data is available,

it is desirable to get an additional information from this data. It is worth noting that the target

problem of this paper should not be confused with nondestructive health monitoring methods

based on known vibration signatures.
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Similar problems were considered by different groups of authors. The paper [9] presented

an approach that is very close to the one we used, but the authors simulated the response of

a beam specimen, and we consider plates. Completely different approaches exist also, the one

to mention is Dynamic Mechanical Analysis [2], but it requires small samples of the material of

certain shapes, and it is not an option for our use case.

The approach used in this work is based on the results presented earlier by several authors.

The work [24] used the experimental stand similar with the one refered to in the present work, the

authors measured a mechanical impedance of a triangular aluminum plate in an atmosphere and

in a vacuum chamber to study an energy dissipation processes. In [23] the different models for

damping in composite materials are overviewed. Several works showed that different materials

may have significantly different frequency dependencies of elastic properties [10, 15–17]. The

usage of frequency-dependent dynamic moduli in [21] provided better explanation of a dynamic

behaviour of a specimen made of two steel plates connected by a polymer layer. In [4] a framework

is suggested, which allows to introduce into the model the phenomena of viscous, thermoelastic

and viscoelastic damping and the damping due to sound radiation. The exact approach we use

was first introduced in [1], the present work extends it and adapts to more complex rheologies

and geometries.

The paper is structured as follows. Section 1 covers the choice of the model that allowed to

minimize the computational cost still reproducing the experimental results with good quality.

Section 2 describes the algorithmic approaches taken that allowed for effective parallelization

both on CPU and GPU. The algorithmic part also covers the approach to reduce RAM usage to

fit into single server RAM or single GPU VRAM. Section 3 presents the computational results

to demonstrate the quality of the solution for complex rheologies and geometries.

1. Mathematical Model

In present work we consider the boundary value problem for the equation of motion of thin

plate in the given experimental setup. One edge of the plate is clamped in the vibration stand,

which generates sinusoidal oscillations with adjustable frequency, another edge is free. Both edges

of the plate have the accelerometers installed on them, which allows for experimental acquisition

of frequency-response function of plate oscillations. The forward problem is formulated as follows:

obtain frequency response for the plate with known properties. Consequently, the inverse problem

is to compute the unknown elastic moduli of the material from experimentally obtained frequency

response and geometrical properties of the plate.

1.1. Forward Problem

The equations of motion for the plate was derived using the following assumptions:

• the plate is thin, so its height is much less than its length and width;

• the Kirchhoff-Love kinematic hypothesis is applicable: straight lines normal to the mid-

surface remain straight and normal to the mid-surface after deformation, the thickness of

the plate does not change during a deformation;

• the plate is symmetric with respect to the mid-surface and has the same height for every

in-plane point;

• if the plate consists of several laminae, each lamina has constant thickness.
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The resulting equations of motion are [19]:

2eρẅ(x, y, t)− 2e3

3
ρ∆ẅ(x, y, t) +∇ · ∇ ·M(x, y, t) = 0, (x, y) ∈ Ω,

where w is the transverse movement of the plate, e = 1
2h is half of the plate thickness, Ω is a

non-empty connected open subset of R2, which represents mid-surface of a plate, ρ is the density

of the material, M is the tensor of moments:

(
Mxx Mxy

Mxy Myy

)
=

e∫

−e

(
σxx σxy

σxy σyy

)
z2 dz.

For a linear elastic material:



Mxx

Myy

Mxy


 =



D11 D12 D16

D12 D22 D26

D16 D26 D66







∂2

∂x2w
∂2

∂y2w
∂2

∂x∂yw


 = D




1 ν 0

ν 1 0

0 0 1−ν
2







∂2

∂x2w
∂2

∂y2w
∂2

∂x∂yw


 ,

where D = Eh3

12(1−ν2) is flexural rigidity, ν = ( E2G − 1) is Poisson’s ratio, E is Young’s modulus,

G is shear modulus.

In case of laminated plates the classical laminate theory (CLT) [8, 19] is used to deter-

mine Dij components. In present work, orthotropic laminae are considered. Consider the k-th

orthotropic lamina with axes (x1, y1)k which are associated with the transverse and normal di-

rections to the reinforcing fibers. These axes are rotated by angle ϕk counterclockwise about the

plate axes (x, y). In (x1, y1)k axes Hooke’s law is formulated as:



σ1

σ2

σ6



k

=



Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



k



ε1

ε2

ε6



k

, (1)

where Qij are components of tensor Qk which depend on engineering constants E1, E2, G12, ν12:

ν21 =
E2ν12

E1
, Q11 =

E1

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q12 = ν12Q22,

Q66 = G12, Q16 = Q26 = 0.

The equation (1) in (x, y) axes:



σxx

σyy

σxy



k

=



Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



k



εxx

εyy

γxy



k

. (2)

Here Qk = T(ϕk) ·Qk ·Tᵀ(ϕk), rotational tensor T in (x, y) axes:

T(ϕk) =




cos2 ϕk sin2 ϕk −2 sinϕk cosϕk
sin2 ϕk cos2 ϕk 2 sinϕk cosϕk

sinϕk cosϕk − sinϕk cosϕk cos2 ϕk − sin2 ϕk


 .
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The Dij components for the laminate with N laminae are then calculated as

D =



D11 D12 D16

D12 D22 D26

D16 D26 D66


 =

N∑

k=1

zk∫

zk−1



Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



k

z2dz. (3)

In the equation above, z corresponds to a coordinate along axis, which is normal to the

mid-surface. Also, the following rule is applied: z0 = −e, zN = e, zk − zk−1 = hk – thickness

of k-th lamina. Each lamina is orthotropic and has constant thickness across the plate so the

general formula is:

Dij =
1

3

N∑

k=1

(
Qij
)
k

(z3
k − z3

k−1).

Considering the oscillations as harmonic w = u(x, y, ω)eiωt and introducing the damping

via complex dynamic moduli [12] with loss factor β such as Dij = Dij(1 + iβ), we arrive at the

equation of motion in frequency domain (4) with boundary conditions (5) on the clamped end,

which oscillates with amplitude g0, and (6) on the free end [20].

− 2eρω2

(
u− e2

3
∆u

)
+∇ · ∇ · (D · ∇ ⊗∇u)) = 0, (4)




u = g0

∇u · n = 0
(x, y) ∈ Γc, (5)




−2

3e
3ρω2∇u · n +∇ ·M · n +∇(M · n · τ ) · τ = 0

M · n · τ = 0
(x, y) ∈ Γf . (6)

1.2. Inverse Problem

Let θ be the vector of unknown model parameters (for an isotropic material θ = (E,G, β)ᵀ,

for an orthotropic one θ = (E1, E2, G12, ν12, β)ᵀ, and
{

(ωk, u
exp
k )

}N
k=1

– discrete frequency re-

sponse acquired in the experiment. Then, solving the inverse problem is equal to finding the

minimum of a loss function (7)

L(θs) = min
θ∈Θ

L(θ) = min
θ∈Θ


 1

Nexp

Nexp∑

m=1

(log(|u(ωm, θ)|)− log(|uexp(ωm)|))


 , (7)

where u(θ, ωk) is a solution of a forward problem with parameters θ and frequency ωk, Θ is the

admissible set of parameters, θs is a solution vector.

2. Numerical Method and Algorithms

2.1. Forward Problem

The system of equations (4)–(6) is solved numerically using FEM with Morley elements [13].

The matrices obtained after spatial discretization are not dependent on frequency ω and ten-

sor D. This makes the following optimization possible: matrices are calculated once and stored

in memory, so the global matrix of linear system is obtained via linear combination with coeffi-
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cients, which depend on ω and values in tensor D. So, forward problems for different vectors of

unknowns θ can be solved independently using parallel computations.

The algorithm described above was implemented in Python using FreeFem++ [7] for FEM

matrices operations and jax [3] for automatic differentiation of forward problem solver and

JIT compilation for CPU and GPU targets. In present, work two implementations were used.

The first one is GPU-accelerated solver which is based on dense matrix operations provided by

jax. The second solver uses CPU to operate on sparse matrices. After FEM discretization the

sparsity pattern of the resulting linear system is determined so all constant matrices are stored

as 1D arrays. This solver uses UMFPACK [6] to solve the resulting sparse linear system and

OpenMP [5] to implement parallel computations for linear systems with different frequencies ω.

The computation of forward problem with CPU solver takes around 1.5 seconds on a single

core of Intel i7-11370H CPU for a rectangular isotropic plate with reasonably dense spatial

mesh and 1000 frequencies. The computation requires around 1.5 GB RAM. The efficiency of

the parallel version is about 70%. This allows to achieve forward problem computation time less

than 0.5 seconds when using single multi core CPU. These results allow to solve the inverse

problem on a single machine as well.

2.2. Inverse Problem

The minimization of loss function (7) is implemented with global and local optimization

algorithms. Global optimization uses differential evolution algorithm [22] to find the approximate

minimum when the bounds on each parameter are given. Then, local optimization based on

trust-region method [14] is used to improve the solution from global optimization. The local

optimization uses gradients and Hessian matrices calculated via automatic differentiation. Also,

the data compression algorithm [11] is used to decrease the amount of points in discrete frequency

range which results in lower RAM consumption.

3. Results

3.1. Composite Laminates

Three numerical experiments were conducted using the algorithm for laminates described

above. Plates with lamina from carbon-fiber reinforced polymers (CFRP) were chosen, the ref-

erence parameters were taken from [18]. The modeling covered the plate under investigation and

also the accelerometer with mass 1.7 g and radius 3.8 mm. The results of numerical simulation

may provide a valuable insight on how the experimental procedure could be improved.

3.1.1. Laminate with plies of woven fabric

In this case, the material has reinforcing fibers in two orthogonal directions with plain

weave. This symmetry allows for the following simplification: two engineering constants are

equal E1 = E2 and the number of unknown elastic moduli is reduced by one. The parameters

of the plate are listed in Tab. 1.

Using these parameters the forward problem was solved in frequency range from 0 to 2500 Hz.

The result of this calculation was considered to be the reference data. Then, the parameters of

the specimen were considered unknown, and the inverse problem was solved in respect to the

reference data. The results are presented in Fig. 1 and in Tab. 2. These results show that the
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inverse problem can be solved with high accuracy for such parameter configuration even for

really large bounds for global optimization.

Table 1. Woven fabric sample parameters

Parameter Value

Dimensions, [mm] 100× 20× 1.5

Ply orientation, [degrees] (0, 30, 0)

Density ρ, [kg · m−3] 1400

E1, E2, [GPa] 61.0

G12, [GPa] 4.9

ν12, [1] 0.04

Loss modulus β, [1] 0.02

0 500 1000 1500 2000 2500
,  Hz

10 2

10 1

100

101

102

|u
|

Reference
Optimization result

Figure 1. Woven fabric sample: frequency responses for reference parameter values and values

from the inverse problem solution

Table 2. Results for plate with woven plies

Parameter E1, GPa G12, GPa ν12

Reference value 61.0 4.9 0.04

Parameter bounds for global optimization 3–130 1–40 0.01–1.0

Optimization result 60.99 4.899 0.0404

Relative error, % −2.2 · 10−4 −0.014 0.9

3.1.2. Thin anisotropic plate

In this experiment, the material consists of thin unidirectional plies with the parameters

presented in Tab. 3. The forward problem was solved in frequency range from 0 to 2700 Hz. The

inverse problem was solved for two different frequency ranges: 0–1700 Hz and 0–2700 Hz. The
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results are presented in Fig. 2 and in Tab. 4. The results show that the quality of solution may

benefit from narrowing the frequency range in case when there are many peaks present in AFC.

Table 3. Thin sample parameters

Parameter Value

Dimensions, [mm] 100× 20× 0.45

Ply orientation, [degrees] (0, 35, 0)

Density ρ, [kg · m−3] 1100

E1, [GPa] 67.4

E2, [GPa] 17.7

G12, [GPa] 11.34

ν12, [1] 0.47

Loss modulus β, [1] 0.02

0 500 1000 1500 2000 2500
,  Hz

10 2

10 1

100

101

|u
|

Reference
Optimization result

0 250 500 750 1000 1250 1500
,  Hz

10 1

100

101

102
|u

|
Reference
Optimization result

Figure 2. Thin plate: results for wide (left) and narrow (right) frequency ranges

Table 4. Results for thin plate with unidirectional plies in wide/narrow frequency range

Parameter E1, GPa E2, GPa G12, GPa ν12

Reference value 67.4 17.7 11.3 0.47

Parameter bounds for global optimization 30–200 1–50 1–50 0.01–2.0

Optimization result 72.2/68.6 17.8/18.1 11.4/11.3 0.45/0.471

Relative error, % 7.2/1.8 0.7/2.4 0.3/0.007 −3.5/0.2

3.1.3. Thick anisotropic plate

In this experiment, the laminate consists of 11 unidirectional plies with the parameters

presented in Tab. 5. The forward problem was solved in frequency range from 0 to 2500 Hz.

The results are presented in Fig. 3 and in Tab. 6. The relative error of inverse problem solution

is higher in comparison to thin plate case, which means that accuracy may decrease for plates

with many laminae.
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Table 5. Parameters for thick plate

Parameter Value

Dimensions, [mm] 100× 20× 1.4

Ply orientation, [degrees] (0, 35, 45, 90, 45, 0, 45, 90, 45, 35, 0)

Density ρ, [kg · m−3] 1400

E1, [GPa] 62

E2, [GPa] 45

G12, [GPa] 21

ν12, [1] 0.42

Loss modulus β, [1] 0.02

0 500 1000 1500 2000 2500
,  Hz

10 2

10 1

100

101

102

|u
|

Reference
Optimization result

Figure 3. Thick plate: inverse problem solution and reference AFC

Table 6. Results for thick plate

Parameter E1, GPa E2, GPa G12, GPa ν12

Reference value 62.0 45.0 21.0 0.42

Bounds for optimization 3–150 10–70 1–50 0.01–2.0

Optimization result 63.33 47.55 21.3 0.352

Relative error, % 2.2 5.7 1.4 −16.2

3.2. Isotropic Samples

Several numerical experiments were performed for isotropic metallic samples, since real

experimental data was available for such specimens. These experiments aim to demonstrate

that the presented approach can work for real life samples taking into account relatively complex

geometry and rheology.

3.2.1. Frequency dependence

As it was mentioned in Introduction, there are evidences that different materials possess

significantly different frequency dependence of elastic moduli. There is no common theory in

this area that covers all the materials and frequency ranges. Different authors typically use

empirical formulae derived from experimental data. The present work used two most common

approaches. The first one is linear increase or decrease of moduli as given by (8). The results
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that can be achieved with this approximation are presented in Fig. 4. The change of moduli on

2000 Hz were 30 % of the initial values.

E = E0 (1± αω) , (8)

ν = ν0 (1± βω) .

0 250 500 750 1000 1250 1500 1750 2000
,  Hz

10 1

100

101

102

|u
|

Constant moduli
Linear decrease
Linear increase

Figure 4. Synthetic calculations with frequency dependent elastic moduli

The second commonly used approximation is expressed as (9). When using the second

approximation, {αE , βE , αν , βν} become additional sought coefficients of inverse problem. This

makes the inverse problem harder but allows to capture more complex material behaviour.

E = E0

(
1 + αEe

βEω
)
, (9)

ν = ν0

(
1 + ανe

βνω
)
.

To test this approximation, the inverse problem was solved twice using the real experimental

data for a steel plate. The first solution was obtained without taking frequency dependence

into account. The second solution was calculated using the approximation (9). The frequency

response results are presented in Fig. 5. The final parameters for the solution without frequency

dependence are: {E = 192.47 GPa, ν = 0.23, β = 0.0091}. The results for the solution with

frequency dependence are presented in Tab. 7. One can see that the frequency dependence for

the specimen under testing can be considered neglectable in the frequency range used in the

experiment. However, this experiment demonstrated that the solution of the inverse problem

remains stable when we introduce frequency dependence of moduli.

Table 7. Results for frequency dependent elastic moduli

Parameter αE βE αν βν E0 ν0 β

Value −2.57 · 10−4 6.5 · 10−4 −4.0 · 10−4 10−3 192.47 0.23 0.0091

3.2.2. Perforated plates

Another numerical experiment performed was about testing the possibility to represent

highly perforated specimens using effective parameters. The motivation behind this experiment

is the fact that calculations of perforated plates with real geometry require a large amount
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Figure 5. Inverse problem solution with frequency dependence of elastic moduli

of time and memory to represent the holes in details. An example of such perforated plate

with generated mesh on it is displayed in Fig. 6. A possible way to solve this problem is to

determine effective parameters of solid plate that has the same frequency response function as

the perforated one.

Figure 6. An example of perforated plate with mesh on it

During this experiment, the plate was taken perforated by one central line of holes along

length, total linear size of holes was kept constant but their radius was varied. An effective density

of a solid plate was calculated as ρ = ρ0

(
1− πr2N/xy

)
, where ρ0 is real material density, r –

radius of each hole, N – number of holes, xy – square of plate. An inverse problem was solved

for each value of radius to determine effective elastic moduli. The results are presented in Fig. 7,

the values are presented relative to the moduli on the solid plate without perforation.

This approach was tested for the inverse problem solution. The results are presented in Fig. 8.

Red line represents real experimental vibrational data for 2 mm thick aluminum plate with

19 holes of 1.5 mm radius. Green line is the result of solving the direct problem for a solid plate

with an effective density and elastic moduli calculated from the dependence presented in Fig. 7.

Blue line is the result of solving the inverse problem for a solid plate using these effective density

and elastic moduli as an initial guess.

One can see that the effective parameters estimated from these simple relations do not

deliver good quality solution. It is an expected result since the relations in Fig. 7 were derived
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Figure 7. Effective elastic moduli of perforated plate with respect to holes radius: Young’s

module (left) and Poisson coefficient (right)

0 200 400 600 800 1000 1200 1400 1600 1800
,  Hz

10 1

100

101

102

|u
|

Experimental data
Initial guess from estimation
Inverse problem result

Figure 8. Using perforated plate effective parameters for inverse problem solution

from a sample of certain geometry and rheology, one can not expect that all the specimens from

other materials will behave exactly the same. However, these effective parameters can be used

as a good initial approximation that reduces the time to final solution.

Conclusion

The present work considers the inverse problem of material elastic properties identification

from vibrational testing data. The major focus of the paper is to describe the approach that uses

different kinds of optimizations to allow fast inverse problem solution. The methods presented

allow to achieve forward problem computation time less than 0.5 seconds using single modern

multicore CPU or GPU. This fact makes it possible to solve the inverse problem on a single

machine as well. The numerical experiments presented in the paper demonstrate the applicability

of the approach for complex rheologies and geometries: multilayered laminated composite plates,

isotropic materials with frequency dependent elastic properties, perforated samples.
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Several directions, outlined in the present paper, require further research. The inverse prob-

lem for thick laminates was solved, but the quality of the solution may be improved. The concept

of frequency dependency of elastic moduli should be studied further to become applicable for a

larger scope of materials. The approach for perforated specimens effective properties should be

refined in future work using the experimental data for different materials.
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