
The Roofline Analysis of Special Relativistic Hydrodynamics

Coarray Fortran Code

Igor M. Kulikov1 , Igor G. Chernykh1, Dmitry A. Karavaev1,

Vladimir G. Prigarin1, Anna F. Sapetina1, Ivan S. Ulyanichev1,

Oleg R. Zavyalov1

c© The Authors 2023. This paper is published with open access at SuperFri.org

Our previous papers are dedicated to the development of the first code for computational

astrophysics using Coarray Fortran technology. The main result of the study of the developed code

is the achievement of weak scalability at the level of MPI implementations, which allows to fully

concentrate on using Coarray Fortran for developing new program codes. Coarray Fortran is based

on the MPI directives, and helps software developer to create simple code without Send/Receive

or synchronization commands. At the same time, such scalability can be achieved due to the weak

implementation of the sequential part of the program code, which is characterized by frequent

cache misses, inefficient memory usage and poor overall performance. In this article, we propose a

method for analyzing program code performance using the roofline analysis. We used Intel Advisor

software package from Intel oneAPI toolkit. High performance and efficient work with the memory

of both individual key procedures and the code as a whole are demonstrated.

Keywords: HPC analysis, Coarray Fortran, high performance computing, roofline analysis.

Introduction

Many astrophysical phenomena, such as relativistic jets in active galactic nuclei [1], are

characterized by relativistic velocities. Relativistic jets play an essential role in several impor-

tant astrophysical processes, such as star formation, galactic binaries interaction, microquasars,

active galaxies, and quasars physics. The main tool for studying relativistic jets is the mathemat-

ical modeling using high-performance computing systems [2]. We can find a lot of astrophysical

papers dedicated to new astrophysical codes. But most of codes cannot be used for numeri-

cal simulation of real big problems, because they are not suitable to run on high-performance

computing clusters. There are different strategies to parallelize computational code. It depends

on mathematical and numerical models. In our case, because of the hydrodynamical approach,

one of the best ways to maximize the performance is to optimize efficiency on each node using

OpenMP and deep vectorization. Then we need to optimize data exchange between computa-

tional nodes of a cluster. In our research, we are using Coarray Fortran, which is based on MPI

technology but is more reliable for software development. The most important advantage of

the MPI 3.0 standard is the effective implementation of one-way communications, allowing to

move to one of the most promising parallel programming models PGAS (Partitioned Global Ad-

dress Space). Computational experiments on continuum mechanics models [3–5] have shown that

Coarray Fortran code has the same scalability as MPI code. At the same time, the complexity

of code development is noticeably reduced, which leads to the development of new libraries [7]

and language extensions [8]. We should also note that the multidimensionality of the decompo-

sition of calculations does not affect the performance of the code [9, 10]. Based on the Coarray

Fortran technology, we have developed a new code for the numerical solution of equations of

special relativistic hydrodynamics [6]. In this paper, we analyze the code’s performance using

Intel Advisor software from the Intel OneAPI toolkit.

1Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russian Federation

DOI: 10.14529/jsfi230301

4 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-1959-780X


In the next section, we briefly describe the structure of the developed code. The third section

is devoted to the analysis of software implementation using The Roofline Analysis. The Roofline

Analysis is very important for optimizing the code’s performance by vectorization of loops inside

a program. The fourth section will present the simulation results. The fifth section formulates

the conclusion.

1. Special Relativistic Hydrodynamics Coarray Fortran Code

The mathematical apparatus and parallel implementation are described in detail in [6]. We

will focus on the structure of the code presented in Fig. 1. The figure shows an enlarged block

CALL GET_TAU

CALL CO_MIN

Set Initial Profile
(density/pressure/velocity)

CALL RECONSTRUCTION

IF(this_image() < num_images()) THEN
A(1)[this_image()+1] = A(Nlocal+1)
A(Nlocal+2) = A(2)[this_image()+1]

ENDIF
SYNC ALL

CALL GODUNOV

CALL RIEMANN

CALL BOUNDARY

CALL PRIMITIVE

IF(this_image() < num_images()) THEN
A(1)[this_image()+1] = A(Nlocal+1)
A(Nlocal+2) = A(2)[this_image()+1]

ENDIF
SYNC ALL

Figure 1. Code structure

diagram of the software implementation of the main computing cycle. The GET TAU func-

tion calculates the time step in each subdomain. Then we use the Coarray Fortran reducing

function CO MIN to calculate the global minimum time step. At the next step, the RECON-

STRUCTION function is called for a piecewise parabolic representation of physical variables

(here we do not provide the entire list of functions). Its implementation requires an exchange of

I.M. Kulikov, I.G. Chernykh, D.A. Karavaev, et al.

2023, Vol. 10, No. 3 5



overlap areas using Coarray Fortran. At the next stage, the GODUNOV function is called to

implement the numerical method, which uses the RIEMANN and BOUNDARY functions.

The latter function also requires the exchange of overlap areas. Then the physical variables are

restored in the PRIMITIVE function.

2. Roofline Analysis

In our research, we used the Roofline model [11] to provide performance estimates of our as-

trophysical code running on a compute node based on two Intel Xeon Scalable 6248R processors

with 24 cores each. Each node has 192 GB DDR4 RAM. For our tests, we did not use any data

output for maximum performance. Roofline analysis was made by Intel Advisor [12] software

from Intel oneAPI [13] software package. This software calculates performance values for each

function of our code as well as the most compute-bound function. We can also compare per-

formance values with peak performance values (scalar peak, single precision peak performance

values, double precision vector peak, double precision FMA peak) of processors.

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10

L1 Bandwidth: 2
.32e+4 GB/se

c

L2 Bandwidth: 7
924.85 GB/se

c

DP Vector FMA Peak: 3956.03 GFLOPS

SP Vector FMA Peak: 7913.91 GFLOPS

DRAM Bandwidth: 2
45.24 GB/se

c

L3 Bandwidth: 1
284.07 GB/se

c

Scalar Add Peak: 342.5 GFLOPS

G
FLO

P
S

FLOP/Byte(Arithmetic Intensity)

Figure 2. Roofline analysis results. Autovectorization by compiler turned off. Computational
node: 2x Intel Xeon 6248R, 192 GB DDR4 RAM

This analysis can help to improve the performance of each function in developed code

because Intel Advisor shows loops that can be autovectorized and loops whose structure should

be improved for autovectorization. Why do we need to think about loop vectorization every

second during the development of high-performance computing software? The peak performance

of modern x86 processors from Intel or AMD as well as modern ARM processors is based on

the CPU vector units. We can see that the scalar add peak performance for our compute node

is about 342 GFLOPS and the dual precision vector FMA peak is about 3956 GFLOPS. The

difference is about 10 times. Each core of the Intel Xeon Scalable Gold/Platinum processor has

AVX512 registers and FMA mathematics instructions. These instructions can multiply and add

eight double precision values at one CPU cycle. It means that we should help the compiler

build vectorized loops for maximum performance. In this section, we will show the importance

of auto-vectorization for code performance.

Figure 2 shows the results of roofline analysis for our astrophysical code without any compiler

vectorization optimizations. The red dot is the the performance of the building parabola function

The Roofline Analysis of Special Relativistic Hydrodynamics Coarray Fortran Code

6 Supercomputing Frontiers and Innovations



of the PPML method. Green and yellow dots are the performance of the other functions such

as Riemann solver or part of a Godunov scheme. The total performance of the code is equal to

3.79 GFLOPS. The performance of the function with the longest calculation time (PPML method

realization) is equal to 1.8 GFLOPS. Also, we can see that all functions in this optimization

case are limited by the DRAM memory bandwidth.

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10

L1 Bandwidth: 2
.32e+4 GB/se

c

L2 Bandwidth: 1
.15e+4 GB/se

c

L3 Bandwidth: 1
292.73 GB/se

c

DRAM Bandwidth: 2
46.49 GB/se

c

SP Vector FMA Peak: 7912.34 GFLOPS

DP Vector FMA Peak: 3955.67 GFLOPS

Scalar Add Peak: 342.53 GFLOPS

G
FLO

P
S

FLOP/Byte(Arithmetic Intensity)

Figure 3. Roofline analysis results. AVX2 autovectorization by compiler. Computational node:
2x Intel Xeon 6248R, 192 GB DDR4 RAM

Figure 3 shows the results of roofline analysis for our code with AVX2 auto-vectorization

optimizations made by Intel’s compiler. The red dot is the the performance of the building

parabola function of the PPML method. Green and yellow dots are the performance of the

other functions such as Riemann solver or part of a Godunov scheme. The total performance of

the code is equal to 4.61 GFLOPS. The performance of the function with the longest calculation

time is equal to 2.5 GFLOPS. This is the same function as shown in Fig. 2. We can see that the

Riemann solver bandwidth in this optimization case became a little bit better than the DRAM

memory bandwidth. AVX2 optimized code works with the math-related intrinsic functions which

can use 256-bit double precision vectors containing 4 doubles. AVX2 provides instructions that

fuse multiplication and addition by using FMA intrinsics which also works with 256-bit double

presicion vectors. These vector instructions are suitable for most Intel and AMD processors. But

if you have the latest Intel Xeon Scalable processors you should use AVX512 vectorization for

better performance. The next figure will show the advantages of AVX512 vector registers.

Figure 4 shows the results of roofline analysis with AVX512 auto-vectorization optimizations

made by Intel’s compiler. The red dot is the the performance of the building parabola function

of the PPML method. Green and yellow dots are the performance of the other functions such

as Riemann solver or part of a Godunov scheme. The total performance of the code is equal to

7.73 GFLOPS. The performance of the function with the longest calculation time is equal to

3.66 GFLOPS. This is also the same function as shown in Figs. 2–4. We can see that the Riemann

solver bandwidth in this optimization case is about 435 GB/sec with a performance of about

28.4 GFLOPS. AVX512 optimized code works with the math-related intrinsic functions which

can use 512-bit double precision vectors containing 8 doubles. AVX512 provides instructions

that fuse multiplication and addition by using FMA intrinsics which also works with 512-bit

I.M. Kulikov, I.G. Chernykh, D.A. Karavaev, et al.

2023, Vol. 10, No. 3 7



0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10

L1 Bandwidth: 2
.31e+4 GB/se

c

L2 Bandwidth: 1
.16e+4 GB/se

c

L3 Bandwidth: 1
294.26 GB/se

c

DRAM Bandwidth: 2
45.65 GB/se

c

SP Vector FMA Peak: 7915.02 GFLOPS

DP Vector FMA Peak: 3955.48 GFLOPS

Scalar Add Peak: 342.7 GFLOPS

G
FLO

P
S

FLOP/Byte(Arithmetic Intensity)

Figure 4. Roofline analysis results. AVX512 autovectorization by compiler. Computational node:
2x Intel Xeon 6248R, 192 GB DDR4 RAM

double precision vectors. The average estimated speed-up of vectorized code compared to the

scalar version is equal to 5.5 times. And this is not the best result. Intel Advisor suggests some

optimizations that can help build faster code. These optimizations are to add data padding,

vectorize serialized functions, and convert some functions to Fortran SIMD-enabled functions.

For collecting the performance data, we use the same technique as in [14]. We did not

change the source of our astrophysical code during tests. We only change the target architecture

by adding −ax compiler option with a set of processor’s instructions which can be used for

target code.

3. Numerical Modeling

The formulation of the problem of the relativistic jet evolution can be found in [2]. Figure 5

shows the results of modeling the evolution of the galactic jet. From the simulation results it is

clear that a shock wave moves forward, the speed of waves propagation corresponds to the speed

of light. Behind the shock front, there is a shell that separates the shock front and the hot region

where the maximum temperature is reached. The internal part of the flow has a cocoon and

is limited by the contact surface. On the outer side of the cocoon, closer to the base, currents

of the reverse flow type propagate, which in turn interact with the jet flow. The characteristic

development time of Kelvin–Helmholtz-type instability at the base of the jet is 6000 years, which

corresponds to the results of the computational experiment.

Conclusions

Last decade, our group developed codes for numerical simulation of different astrophysi-

cal problems. We developed different codes based on the CUDA toolkit, MPI, and OpenMP

technologies as well as C++ or Fortran languages. We had some C++ implementations based

on AVX512 intrinsics, and this code version has the best performance on Intel Xeon Scalable

processors. But this code cannot be used on AMD processors till AMD starts to produce their

AVX512-based CPUs. Our latest codes are based on the Coarray Fortran extension, which was

started as an extension of Fortran 95/2003 for parallel processing. At this time, Coarray Fortran-

The Roofline Analysis of Special Relativistic Hydrodynamics Coarray Fortran Code

8 Supercomputing Frontiers and Innovations



(a) (b)

(c) (d)

Figure 5. Gas density in the equatorial plane is 10−2 cm−3 at time points: 3000 years (a),
4500 years (b), 6000 years (c), 7500 years (d)

based codes have the same performance as the MPI codes. However, the creation of the program

is much easier than that of the MPI code. Modern Fortran compilers understand this extension

and can optimize codes. In this paper, we focused on the auto-vectorization results of the Intel

Fortran compiler. We achieved two times the performance speed-up of our astrophysical code

only by the compiler options. It is possible to speed up our code more in future with some rec-

ommendations from the Intel Advisor toolkit which was used for performance evaluation. The

simulation results for the evolution of relativistic jet are in good accordance with the results

from our earlier codes based on C++ MPI/OpenMP technologies. In our future works, we will

continue to optimize our code, possibly for Advanced Matrix Extensions instruction set.

Acknowledgements

This work was supported by the Russian Science Foundation (project No. 23-11-00014)

https://rscf.ru/project/23-11-00014/.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Sotomayor, P., Romero G.: Nonthermal radiation from the central region of

super-accreting active galactic nuclei. Astronomy & Astrophysics 664, A178 (2022).

https://doi.org/10.1051/0004-6361/202243682

2. Kulikov, I.: A new code for the numerical simulation of relativistic flows on supercomputers

I.M. Kulikov, I.G. Chernykh, D.A. Karavaev, et al.

2023, Vol. 10, No. 3 9

https://rscf.ru/project/23-11-00014/
https://doi.org/10.1051/0004-6361/202243682


by means of a low-dissipation scheme. Computer Physics Communications 257, 107532

(2020). https://doi.org/10.1016/j.cpc.2020.107532

3. Reshetova, G., Cheverda, V., Khachkova, T.: A comparison of MPI/OpenMP and Coarray

Fortran for digital rock physics application. In: Parallel Computing Technologies. PaCT

2019. Lecture Notes in Computer Science, vol. 11657, pp. 232–244 Springer, Cham (2019).

https://doi.org/10.1007/978-3-030-25636-4 19

4. Reshetova, G., Cheverda, V., Khachkova, T.: Numerical experiments with digital twins

of core samples for estimating effective elastic parameters. In: Supercomputing. RuSC-

Days 2019. Communications in Computer and Information Science, vol. 1129, pp. 290–301.

Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36592-9 24

5. Reshetova, G., Cheverda, V., Koinov, V.: Comparative efficiency analysis of MPI block-

ing and non-blocking communications with Coarray Fortran. In: Supercomputing. RuSC-

Days 2021. Communications in Computer and Information Science, vol. 1510, pp. 322–336.

Springer, Cham (2022). https://doi.org/10.1007/978-3-030-92864-3 25

6. Kulikov, I., Chernykh, I., Karavaev, D., et al.: A new parallel code based on a simple

piecewise parabolic method for numerical modeling of colliding flows in relativistic hydro-

dynamics. Mathematics 10(11), 1865 (2022). https://doi.org/10.3390/math10111865

7. Wang, Y., Li, Z.: GridFOR: a domain specific language for parallel grid-based

applications. International Journal of Parallel Programming 44, 427–448 (2016).

https://doi.org/10.1007/s10766-014-0348-z

8. Kataev, N., Kolganov, A.: The experience of using DVM and SAPFOR systems in semi

automatic parallelization of an application for 3D modeling in geophysics. The Journal of

Supercomputing 75, 7833–7843 (2019). https://doi.org/10.1007/s11227-018-2551-y

9. Shterenlikht, A., Cebamanos, L.: MPI vs Fortran coarrays beyond

100k cores: 3D cellular automata. Parallel Computing 84, 37–49 (2019).

https://doi.org/10.1016/j.parco.2019.03.002

10. Guo, P., Wu, J.: One-sided communication in Coarray Fortran: performance tests

on TH-1A. In: Algorithms and Architectures for Parallel Processing. ICA3PP 2018.

Lecture Notes in Computer Science, vol. 11337, pp. 21–33. Springer, Cham (2018).

https://doi.org/10.1007/978-3-030-05063-4 3

11. The Roofline Model. https://en.wikipedia.org/wiki/Roofline model (2023), ac-

cessed: 2023-10-25

12. Intel Advisor tutorial. https://www.intel.com/content/www/us/en/docs/advisor/tuto-

rial-roofline/2021-1/run-a-roofline-analysis.html (2021), accessed: 2023-10-25

13. Intel oneAPI overview. https://www.intel.com/content/www/us/en/developer/tools/

oneapi/overview.html (2023), accessed: 2023-10-25

14. Chernykh, I., Vorobyov, E., Elbakyan, V., Kulikov, I.: The impact of compiler

level optimization on the performance of iterative Poisson solver for numerical mod-

eling of protostellar disks. In: Supercomputing. RuSCDays 2021. Communications in

Computer and Information Science, vol. 1510, pp. 415–426. Springer, Cham (2021).

https://doi.org/10.1007/978-3-030-92864-3 32

The Roofline Analysis of Special Relativistic Hydrodynamics Coarray Fortran Code

10 Supercomputing Frontiers and Innovations

https://doi.org/10.1016/j.cpc.2020.107532
https://doi.org/10.1007/978-3-030-25636-4_19
https://doi.org/10.1007/978-3-030-36592-9_24
https://doi.org/10.1007/978-3-030-92864-3_25
https://doi.org/10.3390/math10111865
https://doi.org/10.1007/s10766-014-0348-z
https://doi.org/10.1007/s11227-018-2551-y
https://doi.org/10.1016/j.parco.2019.03.002
https://doi.org/10.1007/978-3-030-05063-4_3
https://en.wikipedia.org/wiki/Roofline_model
https://www.intel.com/content/www/us/en/docs/advisor/tutorial-roofline/2021-1/run-a-roofline-analysis.html
https://www.intel.com/content/www/us/en/docs/advisor/tutorial-roofline/2021-1/run-a-roofline-analysis.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://doi.org/10.1007/978-3-030-92864-3_32

	I.M. Kulikov, I.G. Chernykh, D.A. Karavaev, V.G. Prigarin, A.F. Sapetina, I.S. Ulyanichev, O.R. Zavyalov

