
Improving Efficiency of Hybrid HPC Systems Using

a Multi-agent Scheduler and Machine Learning Methods

Vladimir S. Zaborovsky1 , Lev V. Utkin1 , Vladimir A. Muliukha1 ,

Alexey A. Lukashin1

c© The Authors 2023. This paper is published with open access at SuperFri.org

One of the promising directions for improving hybrid reconfigurable high-performance com-

puter platforms operating in the mode of collaborative applied computing centers is their inclusion

as an active component in the machine learning ecosystem, which opens up new opportunities to

enhance the actual outperformance of solving various application tasks by intellectualizing the

management of available computing resources. The task scheduler operation is crucial in improv-

ing the efficiency of hybrid supercomputer platforms, which combine dozens of processor blocks

with different architectures, including specialized graphics and reconfigurable accelerators. To form

an optimal order of jobs in the HPC queue, the article proposes to apply deep survival machine

learning models, which increase the accuracy of the estimated time of the tasks successful ex-

ecution and the required amount of computing resources. The main peculiarity of the machine

learning models is that they are trained on censored heterogeneous data collected from previous

periods of task execution observations using a multi-agent scheduler. In order to ensure high ac-

curacy, the random survival forest is used as a part of the machine learning model which provides

survival and hazard functions in the framework of the survival analysis. A specific weighted clus-

tering procedure is proposed to divide tasks in accordance with their execution times as well as

the feature vectors. Various numerical experiments with actual data illustrate the outperformance

of the presented approach.

Keywords: high performance computing, hybrid computing systems, machine learning, multi-

agent scheduler, random survival forest, survival analysis, survival function, XAI.

Introduction

A modern supercomputer is a very complex technical system that simultaneously performs

quadrillions (a number with 15 zeros) operations used to solve complex mathematical computa-

tions and process huge amounts of data that arise in the process of solving various scientific and

engineering problems. Supercomputer users, whose number is steadily growing every year, are

interested in the real result of their calculations, and not just the peak performance of the super-

computer, which is nominally expressed in the number of floating-point arithmetic operations

per second. As the performance of supercomputers increases, the complexity of their use also in-

creases. Therefore, users need to have a deep knowledge not only in the field of their professional

activity but also real skills in the most efficient use of available computing resources to consume

the real performance of a supercomputer. In this process, the task scheduler plays an important

role, combining different groups of processors, including graphics (vector) and reconfigurable

(FPGA) accelerators, into a consistent hybrid computing field available for a specific user task.

To improve the efficiency of the scheduler for a wide range of applied tasks, machine learning

models with attention mechanisms are proposed. These models allow calculating with high ac-

curacy the probability of successful completion of a user task in a given time interval, as well as

evaluating specific task parameters that can greatly affect the actual performance of the hybrid

platform. The system parameters, machine learning models, and promising transformer-based

architecture presented in the article were obtained based on the analysis of the functioning of a

1Peter the Great St.Petersburg Polytechnic University, St.Petersburg, Russian Federation

DOI: 10.14529/jsfi230207

104 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0003-2284-9833
https://orcid.org/0000-0002-5637-1420
https://orcid.org/0000-0002-3583-7324
https://orcid.org/0000-0002-1906-2207

hybrid supercomputer cluster of St. Petersburg Polytechnic University with a peak performance

of more than 1 PFlops.

One of the tools for dealing with the task completion problem is survival analysis [7] which

is used in many applied areas [13, 20, 27]. A comprehensive review of survival analysis methods

and their implementation by the machine learning models can be found in [27]. An important

peculiarity of the survival models is that their outcomes are functions (the survival function,

the hazard function, the cumulative hazard function, etc.) as predictions instead of point-valued

data which are predicted by most machine learning models.

All survival models can be divided into three groups. The first group consists of parametric

models for which a probability distribution of time to event is known, but its parameters are

unknown. The second group contains semi-parametric models for which it is assumed that a

functional dependence between features and the model outcomes is known. The well-known Cox

proportional hazards model [4] belongs to the second group. Models of the third group are called

non-parametric. They assume that the probability time-to-event distribution is unknown, and

the relationship between features and the model outcomes is also unknown. The Kaplan–Meier

model [27] is one of the models from the third group.

Following the Cox model, many its extensions have been proposed, which use the non-

linear relationship between covariates and the time of event [20]. A lot of models are based on

neural networks. However, the difficulty to train a neural network, when the number of training

examples is restricted, led to applying another approach based on using the random survival

forests [2], which can be regarded as an extension of the original random forest [3] to the case of

survival analysis. It turns out that the random survival forests are a powerful and efficient tool

for survival analysis due to their several useful peculiarities. First of all, random forests require

a few tuning parameters [9]. Random forests are highly data adaptive and can deal with both

low and high dimensional data [26]. Therefore, we use the random survival forests as a basic

model for analyzing the task completion time.

Our contributions can be summarized as follows:

1. Collection of job execution data and comprehensive statistical analysis of performed jobs

taking into account domain and user characteristics.

2. Survival analysis for computing probabilistic characteristics of the task completion time

(survival functions, expected times of the task completion, etc.) is proposed to be applied.

One of the reasons for using survival analysis is the availability of many tasks which have

been terminated due to several reasons and are considered as censored data.

3. The predictions of the task completion time by means of a set of the random survival forests

are proposed to be performed. The random survival forest is a powerful and efficient tool

for the case when the number of training data is limited.

4. A specific procedure for clustering training data and for training several random survival

forests is proposed, which allows us to take into account the fact that tasks may be quite

different and they should be separated into clusters with a homogeneous structure. This

approach is supplemented by a specific procedure of computing predictions for new tasks.

5. A simple approach for taking into account the user history is proposed, which is reduced to

computing probability distributions of different task completion events. The corresponding

probability distributions are concatenated with the initial feature vector obtained for the

analyzed user.

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 105

6. We consider questions how to explain prediction of the task completion time in order to

have an opportunity for the user to change the task parameters or just to understand why

the corresponding task can be completed unsuccessfully.

7. An approach of integrating the developed prediction model into the existing environment

of a hybrid supercomputer environment by integration of the predicted execution time of a

job to a scheduler.

The article is organized as follows. A description of the supercomputer analyzed and of its

component (the Slurm Task Scheduler) is given in Section 1. General approaches to improving

the efficiency of the SCC are discussed in Section 2. Elements of survival analysis are considered

in Section 3. The main algorithm for the task completion prediction is provided in Section 4.

Ways for improving the proposed algorithm based on survival analysis are described in Section 5.

Section 6 considers the important question of interpretation of the machine learning analysis re-

sults. Numerical experiments with the analysis of results are considered in Section 7. Concluding

remarks and perspectives are discussed in the Conclusion section.

1. Current Situation in the Supercomputer Center

“Polytechnic”

1.1. Description of the Supercomputer Center “Polytechnic”

Supercomputing Centre “Polytechnic”(hereinafter SCC) is a hybrid high performance com-

puting system consisting of several computing clusters with different architectures (homoge-

neous and heterogeneous) located in a single information and computing field and connected

using 56 Gb/s Infiniband FDR, as well as a common storage Luster, with a volume of about

1 PB, which allows file exchange between different computing clusters. All SCC systems provide

more than 1.5 PFlops performance on double-precision floating point computation and more

than 2.5 PFlops on single and half-precision computations that are typically used for training

machine learning algorithms.

All registered users get access to SCC resources from the dedicated server using the terminal

client protocol. SCC resources are managed using the Slurm Workload Manager. The principle

of its operation is as follows (Fig. 1): the user requests some resource (processor cores, memory,

etc.), placing his task in the queue; the system, based on the user’s priorities and the current

filling of the queue, selects the moment of task launch. A queue is a sequence of tasks that must

be solved on a specific computing resource (a group of nodes). At the same time, each node at

the current time can be occupied by only one task of one user. Thus, the node is assigned to the

exclusive use of the task hosted on it, and other tasks on the busy node will not be executed.

The life cycle of a task created by a user in the SCC consists of four stages:

• user connection to the console of the control node of the SCC through a client (for example,

PuTTY for Windows OS, or built-in SSH client for Linux OS);

• creating and running a task in the console in interactive or batch mode;

• execution of the task on the selected resources of the SCC;

• completion of the task.

SCC provides different systems by dividing resources into multiple queues (partitions in

SLURM terminology). Currently, the following clusters are available:

• Tornado: homogeneous cluster with 28-core and 64 GB of RAM nodes;

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

106 Supercomputing Frontiers and Innovations

Figure 1. Structure and information flows of the supercomputer center “Polytechnic”

• Tornado-k40: heterogeneous cluster with 28-core, 64 GB of RAM, and 2 Tesla GPUs

nodes;

• Cascade: homogeneous cluster with 48-core and 192 GB of RAM nodes;

• NV: heterogeneous cluster with 48-core, 768 GB of RAM, and 8 Tesla GPUs nodes.

Every job is submitted into a particular partition with specific resources available. All clus-

ters are connected to the same storage. That provides users with the ability to use different

compute resources for the different stages of numerical simulations and data processing.

1.2. Description of the Slurm Task Scheduler

Slurm is a cluster management and task planning system. It performs three main functions:

• distributes access to resources (computing nodes) for users;

• provides an environment for launching, executing and monitoring tasks on dedicated nodes;

• manages the task queue.

The user can submit tasks in two modes via the command line – interactive and batch

modes.

In interactive mode, the user can act according to two algorithms. In the first case, resources

are requested, the application necessary for operation is launched on the head node of the SCC,

and then the user is working on the application. In the second case, a connection is made to the

selected node, and the rest of the actions are performed on this node.

In batch mode, the user prepares the task script in the command window: determines the

parameters for launching a task, configures the working environment necessary for the appli-

cation to work, and determines the task launch sequence. After that, the task is placed in the

corresponding queue.

Job configuration supports a large number of different parameters like the number of cores

or the amount of GBs RAM per process. But the most important parameters are the amount

of compute resources (nodes) and the time of their allocation.

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 107

Additionally, the number of processors per subtask, the amount of memory in the node, the

amount of memory in the processor, the number of subtasks in the task, the start time of the

task, and others can be specified. The user has the ability to select a variety of options for a

detailed description of how the task should be performed.

The Slurm forms a separate job queue for each type of SCC computing resource. While

creating a task, users independently select the required resources. Due to the qualification of

most users in the field of parallel programming, they prefer to use traditional CPU-based nodes.

And often they use only 1–2 nodes for their task. Thus, different clusters within the SCC are

loaded differently. An example of the loading of computing clusters of the SCC “Polytechnic”is

shown in Fig. 2.

All tasks were divided into classes depending on the field of science: Astrophysics, Bioin-

formatics, Biophysics, Energy, Geophysics, Informatics, Mechanical Engineering, Mechanics,

Physics and Radiophysics. For clarity, in Fig. 2, each of the classes is indicated by its own color:

• Astrophysics is turquoise;

• Bioinformatics is red;

• Biophysics is pink;

• Energy is green;

• Geophysics is yellow;

• Informatics is black;

• Mechanical Engineering is blue;

• Mechanics is gray;

• Physics is lime;

• Radiophysics is orange;

• Uncertain Tasks are purple.

2. Approaches to Improving the Efficiency of the SCC

One of the promising directions for increasing the efficiency of using supercomputer resources

is the use of various task parameters to adapt the process of its solution.

Currently, SPbPU considers two main areas of adaptation of the work of the SCC:

1. The use of intelligent technologies and machine learning methods for a preliminary assess-

ment of the effectiveness of solving a new problem based on statistical data on solving similar

problems in the past.

2. Development of methods for adapting the SCC hardware to the requirements of a specific

task by using reconfigurable computers.

2.1. Application of Machine Learning Methods to Optimize the Parameters

of Tasks Received by the SCC

In this work using a machine learning approach to improve the real performance of SCC is

proposed. The hybrid supercomputer cluster should act as an active component of the machine

learning ecosystem (Fig. 3). In this mode, the supercomputer generates a multiset of calculation

data, as well as information on how the application tasks affect the cluster resources. Although

all data are in principle available to users, their interpretation requires high skill and, therefore,

is much more difficult in practice. Obviously, most of this data can be used for machine learning

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

108 Supercomputing Frontiers and Innovations

(a) Homogeneous “Tornado”Group nodes

(b) Heterogeneous “Tornado”Group nodes

(c) Homogeneous “Cascade”Group nodes

Figure 2. Uneven loading of cluster nodes of the supercomputer center “Polytechnic”

of intelligent blocks cluster scheduler, including for constructing a user qualification model that

characterizes the description confidence level and script parameters for the executable task.

As a result, the intelligent block of the Slurm scheduler can generate estimates of the effi-

ciency of using available resources, as well as generate a statistical metric of confidence in the

results obtained, including recommendations for improving the efficiency of calculations. All

data generated by the intelligent block of the Slurm scheduler, along with the direct results of

calculations, are provided to users, and are also taken into account as parameters in the trained

model of his qualification profile.

The machine learning ecosystem infrastructure built in this way, which includes both the

supercomputer itself and its various users, allows you to analyze the entire course of calculations

performed and fixing the trajectory of each application process, organizing an effective machine

learning process of the resource scheduler, including for the tasks of new users.

In this case, the training sample includes both “successful”and “unsuccessful”sets of com-

pleting tasks, that carry out important information characterizing the so-called “survivor’s er-

ror”. Generating an explanation of why the application task “survived”or why it was not com-

pleted within the time specified by the scheduler will speed up the user’s understanding of the

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 109

Figure 3. Structure and information flows of the supercomputer center “Polytechnic”

specifics of using supercomputer resources. At the same time, the dispatcher will be able to

predictively calculate the parameters of the description of the applied task, which increase the

probability of its successful completion, as well as “learn”to respond to new tasks, including

reconfiguration of accelerators used to solve special applied tasks.

2.2. Multi-agent Scheduler of Reconfigurable Computational Resources

To expand the capabilities of the SCC in terms of solving specialized tasks, a cluster of

Tertius-2 nodes containing FPGA appeared as part of our hybrid SCC in 2022. The work on

the integration of the reconfigurable nodes (reconfigurable computation units – RCU) into the

computational field of the SCC is in progress. The following scheme for integrating RCU into

the structure of the SCC “Polytechnic”is proposed in Fig. 4. The advantage of the proposed

scheme is the presence of regular mechanisms for integrating the RCU into the computational

field of the SCC “Polytechnic”, as well as the implementation of the possibility of direct control

of RCU by the Multi-agent scheduler after the initialization procedure.

According to research works [11, 12] the multi-agent scheduler (MAS) is an effective decen-

tralized method of managing a distributed computing cluster, including a heterogeneous one.

In general terms, the process of solving problems with the use of RCU consists of the

following steps:

1. Upon request from the MAS RCU to Slurm, the latter allocates RCU resources to full

control of the MAS by launching a software agent on each allocated RCU.

2. Among the tasks received from the user, the AI module for reconfigurable system (AIM)

selects those that can be solved in the RCU using the RCU firmware that exist in the

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

110 Supercomputing Frontiers and Innovations

Figure 4. Proposal for the integration of reconfigurable nodes under the control of a multi-agent

scheduler into the SCC “Polytechnic”

firmware library. A task descriptor is formed as a set of parameters characterizing the

selected task.

3. AIM, if necessary, decomposes the input data of the task into blocks that can be processed

by the RCU, and for each of the blocks, the preferred solution method is selected from the

existing RCU configuration modules in the library.

4. AIM transmits the generated task descriptions with a descriptor to any of the bulletin board.

5. Each software agent on the RCU independently polls all bulletin boards to find the most

suitable user tasks. For each of the tasks on the bulletin board, using the information

generated by the AIM, the agent determines whether it can be performed.

6. If the agent can compute the task, it, using information from the AIM, determines which

RCU configuration module from those available in the library it should use for this.

7. If the agent decides to solve a problem, if necessary, it downloads the recommended RCU

configuration module from the library and loads it into the RCU, executes the task in the

RCU computational field, and sends the results to the required address.

8. The statistics of the task execution time on the RCU are stored for the subsequent use of

additional training of the AIM.

In the course of future work, it is planned to consider the possibility of IM integration

directly on each MAS software agent.

As part of the work in 2023, the library will contain at least two RCU firmware designed for

solving matrices up to 4000 by 4000 using the LU decomposition method and solving diagonal

matrices with 3, 5, and 7 diagonals using the Jacobi method. In the future, the list of RCU

firmware in the library can be expanded.

Upon request from MAS to Slurm, the latter allocates RCU resources for full management

by launching a certain software agent on each allocated RCU (it is a task for Slurm).

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 111

With the use of AIM, among the tasks arriving at the SCC, there are computationally

time-consuming tasks that can be solved in the RCU using the configuration modules existing

in the library. The data of tasks, if necessary, are divided in the AIM of the SCCs into parts

corresponding to the capabilities of the RCU. As a result, a task is formed with a descriptor (set

of parameters) for solving on the Tertius-2 RCU, and all this is transferred to any of the MAS

bulletin boards to ensure the possibility of a parallel solution in the RCS.

A software agent (hereinafter PA) is software for managing and adapting resources of a

heterogeneous computing cluster for solving problems of a dynamic search for a load for an

agent-controlled computing resource and adaptive reconfiguration of hardware components of

the RCU, constantly running on the universal processor of the RCU and, together with other

MAS agents, forming a single computing – communication space.

The software agent can receive data about its parameters from the RCU. In addition, the

SCC already has software that allows you to monitor the parameters of all RCUs.

Each of the PA, in case of readiness of its RTM for work and the absence of tasks currently

performed on its RTM, independently interrogates all DOs to find the most suitable user tasks.

For each of the tasks on the DO, using the information generated by the RCC IM and

attached to the task, the agent determines whether it can complete it. If it can fulfill the task,

it, using information from the IM SKTS, determines which RCU configuration modules from

those available in the library must be used. If the agent decides to solve a problem, if necessary,

it downloads the configuration module from the library and loads it into the RCU, executes the

task in the RCU computational field, and sends the results to the required address.

Depending on the mode of operation of the RCS, in the event of a long idle time or at

the command of the operator, the agent can complete its work and return control to the RBC

Slurm.

The first step in increasing the efficiency of a supercomputer is to minimize the average time

jobs are spending in the queue. For making a denser queue, Slurm needs a reliable information

about the task execution time. As studies have shown, the results of which are given below,

users significantly overestimate the task execution time and the Slurm is forced to look for a

larger slot in queue to put the task in it. This situation negatively affects the length and density

of the queue.

Machine learning models are proposed to be used for more accurate estimation of the task

execution time. The input of such models is the vector of task’s parameters xi = (xi1, ..., xim),

and the output is the expected execution time of this task. The values of the individual pa-

rameters of the task i in vector xi are taken from the data of the Slurm processes: scontrol,

sacct, and sbatch. For example, xi1 is the ID of the user running the task, and xi2 is the ID of

the user’s group, followed by the requested number of computing nodes, and so on, including

meta-parameters of the executable file, such as included libraries. A description of the machine

learning methods used in the work is given below.

3. Some Elements of Survival Analysis and Preliminaries

3.1. Basic Concepts of Survival Analysis

We represent a dataset D of tasks in the framework of survival analysis as a set of triplets

of the form (xi, δi, Ti), where xi = (xi1, ..., xim) is the feature vector which contains all available

information about the i-th task represented by m features; Ti is the i-th task completion time.

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

112 Supercomputing Frontiers and Innovations

In contrast to the standard regression analysis, there is the additional component δi of the

dataset which is the indicator function so that δi = 1 if we observe a successful task completion,

and δi = 0 if the i-th task has not been successfully completed. In the first case (δi = 1),

time Ti corresponds to the time between the baseline time and the time of the successful task

completion. This case corresponds to the uncensored observation. In the second case (δi = 0),

Ti is the observation time, i.e., the time moment when the task is terminated due to several

reasons, and we have the censored observation. The aim of survival analysis is to predict the

completion time of a new task characterized by the feature vector x by using the training dataset

consisting of n examples (xi, δi, Ti), i = 1, ..., n.

Important concepts in survival analysis are the survival and hazard functions. The survival

function, denoted as S(t|x), is the probability that the task x is not completed up to the time t,

that is S(t|x) = Pr{T > t|x}. The hazard function or the hazard rate h(t|x) is the rate of the

task completion at time t given that no tasks completed before time t. It can be written as

h(t|x) = lim
∆t→0

Pr{t ≤ T ≤ t+ ∆t|T ≥ t|x}
∆t

=
f(t|x)

S(t|x)
, (1)

where f(t|x) is the density function of the task completion.

The hazard function can also be expressed though the survival function as follows:

h(t|x) = − d

dt
lnS(t|x). (2)

Hence, we can express the survival function through the cumulative hazard function H(t)

as

S(t|x) = exp

(
−
∫ t

0
h(z|x)dz

)
= exp (−H(t|x)) . (3)

It can be seen from the above that the functions depend on the vector x.

There are several well-known models used in survival analysis. First, we should mention the

non-parametric Kaplan–Meier model for estimating the survival function. However, the Kaplan–

Meier estimator gives the average view of objects (tasks) and does not take into account the

task features x. Therefore, we cannot evaluate how the task features influence the survival prob-

abilities. The first model which allows us to estimate the survival or hazard functions depending

on the vector x is the Cox proportional hazards model [4]. According to the model, the hazard

function at time t given the feature vector x is defined as

h(t|x) = h0(t) exp
(
xbT

)
, (4)

where h0(t) is an arbitrary baseline hazard function; b = (b1, ..., bm) is an unknown vector of

regression coefficients or parameters.

The survival function S(t|x) is computed as

S(t|x) = (S0(t))exp(xbT) . (5)

Here S0(t) is the baseline survival function. It is important to point out that S0(t) as well

as h0(t) do not depend on x and are estimated by using the Kaplan–Meier estimator.

The main peculiarity of the Cox model is the linear combination of features. On the one hand,

it simplifies the model and allows us to use it in the interpretation of the model predictions. On

the other hand, it restricts the Cox model use because real datasets usually have a more complex

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 113

structure. Various modifications have been proposed to generalize the Cox model by replacing

the linear relationship with some non-linear functions, for example, with neural networks [5, 20],

the support vector machine [14, 22].

3.2. Random Survival Forests

Despite the availability of many machine learning models for survival analysis, they require a

large amount of training data to obtain reasonable estimations. One of the efficient models deal-

ing with small and heterogeneous data is the random survival forests [10]. A general algorithm

of constructing RSFs can be represented as follows:

1. Q bootstrap samples of size N are selected from the original data, where Q is a hyperpa-

rameter defining the number of survival trees in the random survival forests.

2. A survival tree is constructed by using a single bootstrap sample so that each node of the

tree is split using the candidate feature that maximizes survival difference between daughter

nodes. The depth of the trees is also a hyperparameter.

3. The survival function or the cumulative hazard function at each leaf of a tree is calculated

by using the Kaplan–Meier estimator or the Nelson–Aalen estimator.

4. The ensemble cumulative hazard function or the ensemble survival function is obtained by

averaging the cumulative hazard functions over all trees.

One of the important peculiarities of the tree construction is a splitting rule. Several splitting

rules are reviewed in [27]. The most popular rule is the log-rank rule which separates nodes of

the decision tree by selecting the split that yields the largest log-rank test [25]. The best split is

given by the greatest difference between two daughter nodes which is given by the largest value

of the log-rank test.

If we denote the cumulative hazard estimate of the k-th tree as Hk(t|x), then the ensemble

cumulative hazard estimate for the random survival forest consisting of Q trees is determined

as follows [10]:

H(t|x) =
1

Q

Q∑

k=1

Hk(t|x). (6)

In fact, the above expression can be regarded as the mean function over all cumulative hazard

functions predicted by each tree in the random survival forest. The obtained function will be

used later for computing the survival function and the expected time to the task completion.

In order to verify whether the obtained survival function is the best one from the optimal

hyperparameters point of view, the C-index is used.

3.3. C-index

An important question in survival analysis is how to compare the machine learning survival

models. One of the measures for comparison is the C-index (the concordance index) proposed by

Harrell et al. [6]. The C-index allows us to estimates how good the model is at ranking survival

times. This is the probability that the task completion times of a pair of tasks are correctly

ranking [19]. In order to formally define the C-index, we first define inadmissible pairs. A pair is

not admissible if the task completion events are both right-censored or if the earliest time in the

pair is censored. The C-index is calculated as the ratio of the number of pairs correctly ordered

by the model to the total number of admissible pairs. If the C-index is equal to 1, then the

corresponding survival model is supposed to be perfect. If the C-index is 0.5, then the model is

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

114 Supercomputing Frontiers and Innovations

no better than random guessing. By using the predicted survival function S(t|x), we can write

the C-index as [27]:

C =
1

M

∑

i:δi=1

∑

j:Ti<Tj

1 [S(Ti|xi) > S(Tj |xj)] . (7)

Here M is the number of all comparable or admissible pairs; 1[·] is the indicator function

taking the value of 1 if its argument is true, and of 0 – otherwise.

Another definition of the C-index is

C =

∑
i

∑
j 1 [Ti < Tj] · 1

[
T̂i < T̂j

]
· δi

∑
i

∑
j 1 [Ti < Tj] · δi

, (8)

where T̂i is the predicted survival duration; i and j are indices of all examples from the dataset,

i, j = 1, ..., n.

4. Algorithm for the Task Completion Prediction

A goal of the proposed algorithm of training the random survival forest is to predict the

probabilistic characteristics of the task completion, including the survival function and the

expected task completion time. At the first stage of study when the dataset of examples is

restricted, we propose to apply the random survival forest as one of the efficient models dealing

with the limited number of training data. The random survival forest consists of Q survival

trees.

Every vector x consists of m features which include the most important ones: UserID (the

ID of a user), GroupID (the ID of the group on behalf of which the task was queued), NumNodes

(the number of nodes requested or allocated for the task), NCPUs (the total number of processors

allocated to the task), NumTasks (the total number of subtasks in the task), CPUs/Task (the

ratio of the total number of processors to the number of subtasks), ReqB:S:C:T (the number

of different hardware components requested for the task), Socks/Node (the desired ratio of

the number of sockets to the number of compute nodes), NtasksPerN:B:S:C (the number of

subtasks required to run on a specific number of hardware components), CoreSpec (the number

of cores reserved), MinCPUsNode (the minimum ratio of the number of processors to the number

of nodes), MinMemoryNode (the minimum ratio of memory in MB to the number of nodes),

JobID (the task identification number), Priority (the task priority determined by the SLURM

scheduler), etc. It should be noted that the completion times Ti of different tasks are changed in

a large interval of time. The distribution of tasks in accordance with their completion times is

shown in Fig. 5. It can be seen from this distribution that the number of “long” tasks is rather

small in comparison with tasks completed in a short time. This causes a difficulty for training

the random survival forest because survival trees are mainly trained on the “short” task and do

not take into account the “long” tasks. In order to overcome this problem, we propose to cluster

all training examples into K groups which are separated by using the completion time T as well

as the feature vector x. However, the completion time is more important in comparison with

the feature vector because it determines the presented distribution of tasks. At the same time,

the vector x should be also used. Therefore, we propose to introduce weights w0 and w1 of the

completion time as well as the feature vector, respectively, in the clustering procedure so that

w0 + w1 = 1, w0 > w1. The weighted K-means clustering procedure is used, where the distance

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 115

Figure 5. Distribution of tasks in accordance with their completion times

between the centroid c of points from a cluster Ck and the vector x are computed as follows:

dist(c,x ∪ T) =

√
w0

(
T − c(T)

)2
+ w1

∥∥x− c(f)
∥∥2
, (9)

where c(T) and c(f) are two parts of the centroid vector corresponding to the completion time

and the feature vector, respectively, so that c(T) ∪ c(f) = c.

The cluster procedure divides the dataset D into K clusters D1, ..., DK such that D1 ∪ ...∪
DK = D. Now we can train K random survival forests on K obtained datasets (clusters). In

sum, we have K models for predicting the survival function. The next question is how to use

these models to obtain prediction for a new task x. We do not know the cluster for x and cannot

determine it because we do not know the completion time T for the task. Therefore, we propose

the following procedure for solving this problem. The new task is fed to K random survival

forest, and we obtain K survival functions S1(t|x), ..., SK(t|x). It is obvious that only one of

the survival functions is correct. In order to select the unique result, we propose the following

approach. By having survival functions, we compute K expected times to the task completion

E1(x), ..., EK(x), where Ek(x) =
∫∞

0 Sk(t|x)dt. Since the number of observations is finite, say n,

and it is assumed that all times to the task completion are different, then this integral is reduced

to the sum:

Ek(x) =

n∑

i=1

Sk(ti|x)(ti − ti−1), t0 = 0. (10)

Assuming that the time to the task completion for the new task x is Ek(x), we obtain

vectors x∪Ek(x), i = 1, ...,K. A simple rule for selecting the cluster for x is to find the smallest

distance between the obtained vector and the centroid, i.e., we select the k-th cluster and the

k-th survival function Sk(t|x) if there holds

k = arg min
j=1,...,K

dist(cj ,x ∪ Ej(x)). (11)

In order to find the optimal or suboptimal hyperparameters, we use the C-index given in

(7) or (8), which can be regarded as a measure of the model quality.

Finally, we can write a scheme of the following algorithm for training and testing the survival

model and for computing the survival functions of a new task.

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

116 Supercomputing Frontiers and Innovations

1. Initial data: dataset D = {(xi, δi, Ti), i = 1, ..., n}. Hyperparameters: the number of random

survival trees Q in the forest, the number of examples N from the dataset for constructing

random trees; the number of clusters K, weights w0 and w1.

Training part:

2. Divide the dataset D into two subsets: training Dtrain and testing Dtest.

3. Divide all examples from the dataset Dtrain into K clusters D1, ..., DK by using the K-means

algorithm based on the distance metric given in (9) with weights w0 and w1.

4. Train K random survival forests consisting of Q trees on datasets D1, ..., DK by randomly

selecting N examples for every tree, respectively.

Testing part:

5. Take examples x from the testing subset Dtest.

6. Compute the cumulative hazard function H
(k)
i (t|x) for the i-th tree from the k-th random

forest, i = 1, ..., Q, k = 1, ...,K.

7. Compute the ensemble cumulative hazard function H(k)(t|x) for the k-th random forest by

using (6) for all k = 1, ...,K.

8. Compute the survival function Sk(t|x) from H(k)(t|x) by using (3) for all k = 1, ...,K.

9. Compute expected times Ek(x) to the task completion by using (10) for all k = 1, ...,K.

10. Compute distances dist(cj ,x∪Ej(x)), j = 1, ...,K, and find k corresponding to the smallest

distance.

11. Output Sk(t|x).

12. Compute the C-index by using (7) or (8) and the testing dataset Dtest. If the C-index does

not satisfy the model requirements, then the hyperparameters are changed and go to Step 1,

otherwise it is supposed that the model is successfully trained and can be used for new tasks.

5. Improving the Algorithm

One of the difficulties when the proposed algorithm is implemented is the restricted informa-

tion about a user. Indeed, we did not use a history of tasks that had been previously performed

by the user. This information may significantly improve the algorithm and enhance the quality

of predictions.

Suppose that there are R events of the task unsuccessful termination and S events of the

task successful completion when the user ran tasks. The unsuccessful terminations of the task

may be due to the following reasons:

• termination of the task as a result of the intended stop when the program execution time

exceeded the time requested by the user (r1);

• termination of the task as a result of division by zero (r2);

• termination of the task as a result of an infinite loop (r3);

• termination of the task as a result of an unknown failure (r4);

• termination of the task due to lack of memory (r5).

Here r1, ..., r5 are numbers of unsuccessful terminations.

The successful completion of the task can also include the following events:

• the ratio of the program execution time and the time requested by the user does not exceed

20% (s1);

• the ratio of the program execution time and the time requested by the user is between

20% and 40% (s2);

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 117

• the ratio of the program execution time and the time requested by the user is between

40% and 60% (s3);

• ...

• the ratio of the program execution time and the time requested by the user exceeds 100%

(s6).

Here s1, ..., s6 are numbers of different events of the task successful completion.

Let us construct two probability distributions π = (π1, ..., π5) and ϕ = (ϕ1, ..., ϕ6) defined

as

πi = ri/R, i = 1, ..., 5, ϕj = sj/S, j = 1, ..., 6.

The above implies that the user history can be represented by means of the above features

in the form of the two distributions. Hence, we extend the feature vector x of a user by the prob-

ability distributions π and ϕ. If a new user is analyzed, we can consider the uniform probability

distribution to characterize the new user. Another way for taking into account the new user is

to add two additional features which take values of 0 if the user is not new and has some history

of the task performance, and of 1 if the user is new. It is interesting to point out that these

additional features can be in interval [0, 1] indicating uncertainty of the historical observation.

In particular, when the number of runs by the user is small, then values of the two additional

features should be close to 1, otherwise they are close to 0. The choice of the uncertainty measure

is a direction for further research.

6. Interpretation of the Machine Learning Analysis Results

One of the important problems to optimize the computer performance is to explain why

the user task is characterized by the obtained survival function or the expected time to the

task completion. This problem can be referred to the direction called the eXplainable Artificial

Intelligence (XAI). Methods of XAI try to answer the question which features of an example

significantly influence a prediction of a machine learning model. Most methods are explained

locally, that is, they explain a prediction of a single example, and assume that the analyzed

machine learning model is a black box which means that we know only its input and output

data. A lot of the explanation methods are based on local approximating the unknown prediction

function at a point by means of the linear function of features because coefficients of the function

can be regarded as quantitative impacts on the prediction.

One of the first local explanation methods is the Local Interpretable Model-agnostic Expla-

nations (LIME) [23], which uses linear model to approximate predictions of black-box models.

According to LIME, the explanation is derived from a set of synthetic examples generated ran-

domly in the neighborhood of the explained example. Every synthetic example has a weight

depending on its proximity to the explained example. However, LIME cannot be applied to sur-

vival machine learning models because the output of the models is not a point, but the function

(the cumulative hazard function or the survival function).

To overcome this difficulty, another method called SurvLIME (Survival LIME) has been

proposed in [16]. The main idea behind SurvLIME is to approximate the black-box survival

model predictions by using the Cox model. It can be seen from (4) that the hazard function

in the Cox model contains the linear function of features. This implies that coefficients of the

linear function can be viewed as quantitative impacts on the predicted hazard function. In

other words, SurvLIME uses the Cox model as an explainable meta-model or an approximation

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

118 Supercomputing Frontiers and Innovations

of the cumulative hazard function or the survival function predicted for an example by the

black-box model. According to SurvLIME, a set of examples {x1, ...,xL} around the explained

point x are generated and then fed to the black-box survival model, which produces a set

of cumulative hazard functions {H(t|x1), ...,H(t|xL)}. Simultaneously, the cumulative hazard

functions HCox(t|xk,b), k = 1, ..., L, of the Cox model as functions of coefficients b are computed

for all generated examples {x1, ...,xL} by using(4). The parameters b of the Cox model are

calculated by minimizing the average distance between the cumulative hazard functions of the

Cox model and the black-box survival model. Many numerical results with using real open

datasets provided in [16] demonstrate that SurvLIME is an efficient method for explaining

the survival models. Moreover, following the results obtained in [16], an open-source Python

package that implements the SurvLIME algorithm has been presented in [21]. Another method

for explaining the survival model predictions is called SurvNAM [24]. It is based on applying of

the generalized additive model g1(x1) + ...+ gm(xm) instead of the simple linear model. Here gi

is a univariate shape function of one variable (feature). Two ideas underlying SurvNAM are the

following. First, the functions gi(xi) are usually unknown and any assumptions about their form

may lead to incorrect results. Therefore, it is proposed to implement the functions by means

of simple neural networks with a single-feature input. This idea allows to implement arbitrary

functions. The training weights of the networks are parameters of the explanation model. In

sum, the whole model represents m fully connected neural networks implementing the functions

gi(xi), which are connected by the summation operation. The second idea is that the whole

explanation neural network model implementing the generalized additive model is trained again

by using the extended Cox model where the linear combination of features xbT is replaced with

the generalized additive model g1(x1) + ...+ gm(xm).

Finally, the algorithm of the explanation model SurvLIME in terms of the considered task

completion problem is the following.

1. Initial data: the explained example x; the standard deviation σ for generating the perturbed

examples; the number of the generated examples.

2. Generate random examples x1, ...,xL around the explained point x having the normal dis-

tribution with the expectation x and the predefined standard deviation σ.

3. Find the cumulative hazard functions Hk1(t|x1), ...,HkL(t|xL) as predictions of the random

survival forest (the random forest). Index kj corresponds to the optimal cluster which is

selected when the generated example xj is fed to the black-box model (the random forest).

4. Find the vector bopt which minimizes the function of distances:

bopt = arg min
b

L∑

j=1

dist(Hkj (t|x1), HCox(t|xk,b)).

Results of the interpretation by means of SurvLIME and SurvNAM allow the user to de-

termine which features significantly influence the survival function or the expected time to the

task completion, and how the feature can be changed to obtain the reasonable survival function

which ensures to complete the task in a required time with a certain probability.

7. Analysis of Tasks Statistics and Survival Functions

A structured form of the computational process metadata was obtained. It includes the

parameters for launching the task, which the user has specified when have queued the task for

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 119

execution to the Slurm. The considered form of data representation can be used in the machine

learning methods for task schedulers.

A JSON file structure has been developed. It consists of all 89 possible attributes for tuning

the sbatch SLURM command of version 21.08. Attributes, according to the custom entity, have

been structured and distributed into 5 different groups: User Information, Job Accounting,

Resource Management, Job Control, and Job Interaction.

The structure of the database for storing data about the tasks launched on the SCC was

also proposed. It consists of three tables scontrol, sacct and sbatch, corresponding to the sources

of the collected data. Each table contains an integer field ID of the task, as well as two fields

of the VARCHAR(500) type, which allows us to dynamically allocate memory for the size of

the attribute loaded into it, not exceeding 500 characters. These two fields allow to specify a

key-value pair for an attribute and its corresponding value.

A special program was also developed for extracting, lexical processing and sending task data

to the developed database. The program has been tested on a laboratory stand by running test

tasks. As a result, 60 attributes are collected in the scontrol table for each task, 107 attributes

are collected in the sacct table, and in the sbatch table as many records are stored as the number

of parameters specified by the user during the startup script. The user, on average, specifies no

more than 8 parameters in the startup script. In total, for each task ID, the database contains

about 180 parameters, while some fields may be empty if Slurm was unable to obtain information

on these attributes.

A program for the collection of statistical data of the SCC was developed. The program

is called by the event of allocation of resources for the task, as well as by the event of the

completion of the task. Thus, at the output of the program, two corresponding databases are

formed. The running time for each call is about 4–5 seconds due to waiting for requests from the

SCC control computer to the remote database server, so the program runs in the background

so as not to cause any delay in the scheduler. As a result of the work of the statistics collection

program, more than 400,000 tasks from users were collected in 2022, and more than 200,000

tasks were collected in 2023.

To solve the problem of optimizing the structure of the queue, machine learning models have

been developed and implemented to predict one of the parameters of the task: its execution

time, taking into account the current load of the SCC nodes. During the analysis of the data,

the following problems were identified:

• a large spread of the estimated execution time value (from several seconds up to two

weeks);

• a strong imbalance of tasks across the ranges to which they belong (more than 53 percent

are tasks that take less than 10 minutes);

• insufficient amount of information in the available factors on which the target value is

estimated.

Various machine learning models have been implemented, including regression models, data

classification and clustering models, and survival models, which also allow the use of data on

tasks that were forced to complete by Slurm.

Figure 6 shows the error matrix based on user ratings, normalized by the number of tasks

falling within each range. The matrix shows that more than 89 percent of all tasks with an actual

duration of [0, 10] minutes indicate an approximate execution time from 1 hour to 15 days. In

most cases, users significantly overestimate the time it takes to complete tasks.

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

120 Supercomputing Frontiers and Innovations

Figure 6. Error matrix based on user ratings, normalized by the number of tasks falling within

each range

Users behavior studies were conducted to assess the impact of these data on the tasks. Users

and virtual users of geovation were separated due to significant differences in their data. The

following estimations were received:

• more than 90 percent of users posted less than 100 tasks;

• more than 60 percent of virtual users of geovation posted from 30 to 60 thousand tasks

and two posted more than 100 thousand tasks;

• more than 64 percent of users completed tasks in a very short time (less than 10 minutes);

• more than 92 percent of non-geovation users used just one compute node for their tasks.

The information obtained during the research showed that some of the tasks are executed

exactly at the time that the user set and after that Slurm forcibly terminated them. So there

is a set of tasks whose real execution time is not known, since they were forcibly terminated

before they were completed. Survival models are used to work with such data. Kaplan–Meier

model was used to estimate the distribution of the required time and processor time for tasks

in various areas of knowledge (Fig. 7). Visual analysis of the obtained estimations of survival

functions in various fields of knowledge allows to establish that tasks in the fields of geophysics

and mechanics require stochastically more time to be successfully completed than tasks from

other fields of knowledge, and the shortest tasks in terms of processor time usage are typical for

bioinformatics.

Conclusion

Obviously, an NLP outline of the description of applied tasks can be added to the machine

learning ecosystem so that the user can conduct a dialogue with the supercomputer in terms

of meaningful queries in the context of applied tasks. Using the capabilities of a pre-trained

transformer (Fig. 8), which generates the source code of the description of the applied task

in response to the meaningful request, the user can analyze the accuracy of the formulated

queries and in a recursive mode, conducting a meaningful interaction with a supercomputer,

that inevitably improves his qualifications and task understanding.

Let us point out several perspective directions for further research and development.

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 121

(a) 1.2 ∗ 106 seconds

(b) 4 ∗ 105 seconds (c) 1 ∗ 105 seconds

(d) 1 ∗ 104 seconds (e) 1 ∗ 103 seconds

Figure 7. Kaplan–Meier estimations of task execution time distributions in various fields of

knowledge with detailed area of task execution times not exceeding

We have proposed the specific weighted scheme of clustering, which allows us to take into

account the difference between predicted times of the task completion as well as the difference

between the feature vectors. However, a more interesting approach is to assign weights to each

feature. Moreover, these weights should not be hyperparameters, but they have to be trained

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

122 Supercomputing Frontiers and Innovations

Figure 8. Proposal for the integration of reconfigurable nodes under the control of a multi-agent

scheduler into the SCC “Polytechnic”

during the training of the whole system. This approach has two advantages. First, it allows us

to make the clustering procedure to be more flexible and enhance the prediction quality. Second,

it allows us to supplement the explanation procedure. The obtained weights of features show

the importance of features and answer the question of which features are important from the

clustering point of view. However, in order to implement the training of weights, the random

survival forests have to be replaced with neural networks to train in an end-to-end manner.

This requirement leads to the second perspective which is to develop a transformer to solve

the survival problems and process multi-modal data. By collecting training data, we obtain the

opportunity to totally or partially avoid the random forests and to construct the neural network

models. However, the idea of the task description in terms of the natural language requires the

development of more complex and efficient structures based on the attention mechanism and

transformers. It should be noted that transformers have been proposed to solve the survival anal-

ysis problems [8, 28]. However, these transformers do not take the peculiarities of the problems

which are solved when the task completion time optimization problem is solved. Another inter-

esting idea is to combine the random survival forests and the transformer. It has been partially

solved for original random forests in [15]. However, this approach cannot be directly used in sur-

vival analysis. New approaches are needed to develop an efficient multi-modal transformer-based

system.

It is important to note that one of the perspective directions is to adapt the trained system to

changes in the supercomputer structure, for example, to new additional computer blocks which

can be supplemented in some time. In this case, we cannot directly use the trained model and

need to re-train the whole prediction system. In order to avoid that, we propose to apply ideas

of the heterogeneous treatment effect [1, 17] or transfer learning [18, 29]. These approaches allow

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 123

us to do hard computations for training the system when the structure of the supercomputer

has been changed.

“A network is a computer”, a slogan that had originally been used by Sun Microsystems

in the early 1980s, became a basic truism of computer science: “computers must be networked,

otherwise they are... not computers”. Today we propose two new extensions of former slogan,

namely “A frontier ML system is HPC”, and vice versa “HPC is a frontier ML system”. These

two slogans have not become truism yet but they clearly reflect ideas of our article and obvious

computer evolution tendency – frontier high-performance computing systems become not only

a driving force of global digital transformation process, but also active part of machine learning

ecosystem.

Acknowledgements

The research is partially funded by the Ministry of Science and Higher Education of the Rus-

sian Federation as part of state assignments “Development of a Multi-Agent Resource Manager

for a Heterogeneous Supercomputer Platform Using Machine Learning and Artificial Intelli-

gence” (topic FSEG-2022-0001).

The results of the work were obtained using computational resources of the supercomputer

center in Peter the Great Saint-Petersburg Polytechnic University (https://scc.spbstu.ru).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Alaa, A., van der Schaar, M.: Limits of estimating heterogeneous treatment effects: Guide-

lines for practical algorithm design. In: Proceedings of the International Conference on

Machine Learning, pp. 129–138. PMLR (2018)

2. Bou-Hamad, I., Larocque, D., Ben-Ameur, H.: A review of survival trees. Statistics Sur-

veys 5, 44–71 (2011). https://doi.org/10.1214/09-SS047

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001). https://doi.org/10.

1023/A:1010933404324

4. Cox, D.: Regression models and life-tables. Journal of the Royal Statistical Society, Series B

(Methodological) 34(2), 187–220 (1972). https://doi.org/10.1111/j.2517-6161.1972.

tb00899/x

5. Faraggi, D., Simon, R.: A neural network model for survival data. Statistics in Medicine

14(1), 73–82 (1995). https://doi.org/10.1002/sim.4780140108

6. Harrell, F., Califf, R., Pryor, D., et al.: Evaluating the yield of medical tests. Journal of the

American Medical Association 247, 2543–2546 (1982). https://doi.org/10.1001/jama.

1982.03320430047030

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

124 Supercomputing Frontiers and Innovations

https://scc.spbstu.ru
https://doi.org/10.1214/09-SS047
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/j.2517-6161.1972.tb00899/x
https://doi.org/10.1111/j.2517-6161.1972.tb00899/x
https://doi.org/10.1002/sim.4780140108
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1001/jama.1982.03320430047030

7. Hosmer, D., Lemeshow, S., May, S.: Applied Survival Analysis: Regression Modeling of

Time to Event Data. John Wiley & Sons, New Jersey (2008) https://doi.org/10.1007/

s00362-010-0360-3

8. Hu, S., Fridgeirsson, E., van Wingen, G., Welling, M.: Transformer-based deep survival

analysis. In: Survival Prediction-Algorithms, Challenges and Applications, pp. 132–148.

PMLR (2021)

9. Ishwaran, H., Kogalur, U.: Random survival forests for R. R News 7(2), 25–31 (2007).

https://doi.org/10.1214/08-AOAS169

10. Ishwaran, H., Kogalur, U., Blackstone, E., Lauer, M.: Random survival forests. Annals of

Applied Statistics 2, 841–860 (2008). https://doi.org/10.1214/08-AOAS169

11. Kalyaev, A., Kalyaev, I., Khisamutdinov, M., et al.: An effective algorithm for multia-

gent dispatching of resources in heterogeneous cloud environments. In: 5th International

Conference on Informatics, Electronics and Vision (ICIEV), pp. 1140–1142. IEEE (2016).

https://doi.org/10.1109/ICIEV.2016.7760177

12. Kalyaev, I.A., Kalyaev, A.I. Method and Algorithms for Adaptive Multiagent Resource

Scheduling in Heterogeneous Distributed Computing Environments. Autom Remote Con-

trol 83, 1228–1245 (2022). https://doi.org/10.1134/S0005117922080069

13. Katzman, J., Shaham, U., Cloninger, A., et al.: Deepsurv: Personalized treatment recom-

mender system using a Cox proportional hazards deep neural network. BMC Medical Re-

search Methodology 18(24), 1–12 (2018). https://doi.org/10.1186/s12874-018-0482-1

14. Khan, F., Zubek, V.: Support vector regression for censored data (SVRc): a novel tool for

survival analysis. In: 2008 Eighth IEEE International Conference on Data Mining. pp. 863–

868. IEEE (2008). https://doi.org/10.1109/ICDM.2008.50

15. Konstantinov, A., Utkin, L., Lukashin, A., Muliukha, V.: Neural attention forests:

Transformer-based forest improvement (Apr 2023), arXiv:2304.05980. https://doi.org/

10.48550/arXiv.2304.05980

16. Kovalev, M., Utkin, L., Kasimov, E.: SurvLIME: A method for explaining machine learn-

ing survival models. Knowledge-Based Systems 203, 106164 (2020). https://doi.org/10.

1016/j.knosys.2020.106164

17. Kunzel, S., Stadie, B., Vemuri, N., et al.: Transfer learning for estimating causal effects

using neural networks (Aug 2018), arXiv:1808.07804. https://doi.org/10.48550/arXiv.

1808.07804

18. Lu, J., Behbood, V., Hao, P., et al.: Transfer learning using computational intelligence: A

survey. Knowledge-Based Systems 80, 14–23 (2015). https://doi.org/10.1016/j.knosys.

2015.01.010

19. May, M., Royston, P., Egger, M., et al.: Development and validation of a prognostic model

for survival time data: application to prognosis of HIV positive patients treated with an-

tiretroviral therapy. Statistics in Medicine 23, 2375–2398 (2004). https://doi.org/10.

1002/sim.1825

V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

2023, Vol. 10, No. 2 125

https://doi.org/10.1007/s00362-010-0360-3
https://doi.org/10.1007/s00362-010-0360-3
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1109/ICIEV.2016.7760177
https://doi.org/10.1134/S0005117922080069
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1109/ICDM.2008.50
https://doi.org/10.48550/arXiv.2304.05980
https://doi.org/10.48550/arXiv.2304.05980
https://doi.org/10.1016/j.knosys.2020.106164
https://doi.org/10.1016/j.knosys.2020.106164
https://doi.org/10.48550/arXiv.1808.07804
https://doi.org/10.48550/arXiv.1808.07804
https://doi.org/10.1016/j.knosys.2015.01.010
https://doi.org/10.1016/j.knosys.2015.01.010
https://doi.org/10.1002/sim.1825
https://doi.org/10.1002/sim.1825

20. Nezhad, M., Sadati, N., Yang, K., Zhu, D.: A deep active survival analysis approach for

precision treatment recommendations: Application of prostate cancer. Expert Systems with

Applications 115, 16–26 (2019). https://doi.org/10.1016/j.eswa.2018.07.070

21. Pachon-Garcia, C., Hernandez-Perez, C., Delicado, P., Vilaplana, V.: SurvLIMEpy: A

Python package implementing SurvLIME (Feb 2023), arXiv:2302.10571. https://doi.org/

10.48550/arXiv.2302.10571

22. Polsterl, S., Navab, N., Katouzian, A.: An efficient training algorithm for kernel survival sup-

port vector machines (Nov 2016), arXiv:1611.07054v. https://doi.org/10.48550/arXiv.

1611.07054

23. Ribeiro, M., Singh, S., Guestrin, C.: “Why should I trust You?” Explaining the predictions

of any classifier In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016). https://doi.org/

10.1145/2939672.2939778

24. Utkin, L., Satyukov, E., Konstantinov, A.: SurvNAM: The machine learning survival model

explanation. Neural Networks 147, 81–102 (2022). https://doi.org/10.1016/j.neunet.

2021.12.015

25. Waititu, H., Koske, J., Onyango, N.: Analysis of balanced random survival forest using dif-

ferent splitting rules: Application on child mortality. International Journal of Statistics and

Applications 11(2), 37–49 (2021). https://doi.org/10.5923/j.statistics.20211102.03

26. Wang, H., Zhou, L.: Random survival forest with space extensions for censored data. Artifi-

cial Intelligence in Medicine 79, 52–61 (2017). https://doi.org/10.1016/j.artmed.2017.

06.005

27. Wang, P., Li, Y., Reddy, C.: Machine learning for survival analysis: A survey. ACM Com-

puting Surveys (CSUR) 51(6), 1–36 (2019). https://doi.org/10.1145/3214306

28. Wang, Z., Sun, J.: SurvTRACE: Transformers for survival analysis with competing events.

In: Proceedings of the 13th ACM International Conference on Bioinformatics, Computa-

tional Biology and Health Informatics, pp. 1–9. ACM (2022). https://doi.org/10.1145/

3535508.3545521

29. Weiss, K., Khoshgoftaar, T., Wang, D.: A survey of transfer learning. Journal of Big Data

3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

Improving Efficiency of Hybrid HPC Systems Using a Multi-agent Scheduler and...

126 Supercomputing Frontiers and Innovations

https://doi.org/10.1016/j.eswa.2018.07.070
https://doi.org/10.48550/arXiv.2302.10571
https://doi.org/10.48550/arXiv.2302.10571
https://doi.org/10.48550/arXiv.1611.07054
https://doi.org/10.48550/arXiv.1611.07054
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.neunet.2021.12.015
https://doi.org/10.1016/j.neunet.2021.12.015
https://doi.org/10.5923/j.statistics.20211102.03
https://doi.org/10.1016/j.artmed.2017.06.005
https://doi.org/10.1016/j.artmed.2017.06.005
https://doi.org/10.1145/3214306
https://doi.org/10.1145/3535508.3545521
https://doi.org/10.1145/3535508.3545521
https://doi.org/10.1186/s40537-016-0043-6

	V.S. Zaborovsky, L.V. Utkin, V.A. Muliukha, A.A. Lukashin

