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We employ the dynamic runtime system OmpSs to decrease the overhead of data motion

in the now ubiquitous non-uniform memory access (NUMA) high concurrency environment of

multicore processors. The dense numerical linear algebra algorithms of Cholesky factorization and

symmetric matrix inversion are employed as representative benchmarks. Work stealing occurs

within an innovative NUMA-aware scheduling policy to reduce data movement between NUMA

nodes. The overall approach achieves separation of concerns by abstracting the complexity of the

hardware from the end users so that high productivity can be achieved. Performance results on

a large NUMA system outperform the state-of-the-art existing implementations up to a twofold

speedup for the Cholesky factorization, as well as the symmetric matrix inversion, while the

OmpSs-enabled code maintains strong similarity to its original sequential version.

Keywords: Dense Matrix Computations, Dynamic Runtime Systems, Software Productivity,
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Introduction

Multicore Non-Uniform Memory Access (NUMA) machines are increasingly common in high

performance computing, and a primary challenge of extreme computing today (see, e.g., the in-

ternational exascale campaign [13]) is in expanding the number of cores per node in strong

scaling. In contrast, expanding the number of nodes, which has already reached 105 for the

BlueGene/Q system ranked #3 in the November 2014 TOP500 list, in weak scaling is well

understood, at least for typical scientific SPMD codes based on load-balanced domain decompo-

sition run on performance-reliable nodes [21]. In the last decade, dense linear algebra software

underwent drastic algorithm and software stack redesigns, to maintain pace with the hardware

evolution towards high concurrency. The Standard dense numerical algorithms and their state-of-

the-art implementations in LAPACK [5] and ScaLAPACK [7] rely on the bulk synchronous parallel

model for performance purposes. This model will display increasing vulnerability to synchro-

nization going forward. Parallel programming models based on fine-granularity computations

have shown promising results to weaken global synchronizations and to reduce data motion.

In particular, task-based programming models have been successfully developed and integrated

in several high performance dense linear algebra libraries (i.e., PLASMA [1] and Libflame [30]).

Along with “taskifying” existing dense numerical algorithms, one of the main challenges is to

deal with the actual scheduling of these tasks and the ever-changing hardware with its NUMA

complexity.

While the potential of multicore NUMA architectures can be exploited with considerable ease

for algorithms with good load balance at arbitrary concurrency, such as matrix multiplication,

there are others in which load balance and data locality cannot be maintained simultaneously,

1Extreme Computing Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi

Arabia, email: Rabab.Alomary, David.Keyes, Hatem.Ltaief@kaust.edu.sa
2Barcelona Supercomputing Center, Centro Nacional de Supercomputación, Barcelona, Spain, email:

Guillermo.Miranda, Rosa.M.Badia, Xavier.Martorell, Jesus.Labarta@bsc.es
3Artificial Intelligence Research Institute (IIIA) - Spanish National Research Council (CSIC)
4Universitat Politècnica de Catalunya
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and the cost of accessing remote NUMA nodes comes with performance penalties. This is the

case of the Cholesky factorization and the symmetric matrix inversion algorithms studied in this

paper, which are representative benchmarks of dense factorizations and more advanced dense

matrix operations, respectively. These compute-intensive operations are the basic blocks for

many scientific applications (e.g., in statistics and machine learning), which require the explicit

calculation of the inverse of large covariance matrices [2]. The trade-off between load balance

and data locality is the key not only to the future of algorithms with time-varying work per unit

memory, such as the Cholesky factorization and even more for the symmetric matrix inversion,

but also to the future of hardware that is less performance-reliable due to compromises required

to reduce the energy of computation. As future hardware is operated closer to unit signal to

noise ratio in voltage level and as core clock rates are varied to maintain safe thermal dissipation

levels, work stealing will be required to maintain load balance even for algorithms with regular

work per unit memory ratios throughout their execution. Work stealing that does not cost more

in performance than the imbalance it is designed to rectify is challenging to arrange.

The authors herein consider a limited type of “distance-aware” work stealing that respects

the critical path of execution and the realities of NUMA. We have extended some of the func-

tionalities of the OmpSs task-based programming model [6], [15] to efficiently handle NUMA

architectures through an innovative distance-aware scheduling policy to reduce data movement

between NUMA nodes, for instance, while performing work stealing. We have chosen OmpSs

as the programming model because it provides a simple and non-intrusive interface (OpenMP-

like) to program challenging hardware systems by abstracting the hardware complexity from

end users, while keeping high productivity in mind. This new scheduling policy is aware of the

NUMA architecture on which it is running, spreads work over the available cores, and imple-

ments stealing to prevent starvation.

On shared-memory systems composed of tens of NUMA nodes and for asymptotic matrix

sizes, the Cholesky factorization and the symmetric matrix inversion achieve up to a twofold

improvement in flop rate relative to less discriminating policies, while improving performance

by a twofold speedup over the best existing implementations for both dense matrix operations

on the same hardware overall.

This paper is structured as follows. We continue with the related work in Section 1. Section 2

describes the OmpSs framework and presents its different components. In Section 3, we briefly

recall the Cholesky factorization and the symmetric matrix inversion. The implementation details

of the scheduling policy are given in Section 4. In Section 5, we present the performance impact

of the scheduling policy on various systems and compare against the state-of-the-art commercial

and open-source high performance dense numerical libraries. Section 6 shows performance traces

of both algorithms to support our performance results, and we conclude in Section 6.

1. Related Work

The volume of literature on NUMA-aware work stealing indicates the importance of adapting

many classes of algorithms, linear algebra among them, to strong scaling within shared memory.

Our review cannot be complete within page scope, but focuses on contributions that provide

the context for ours.

Runtime frameworks for scheduling dense linear algebra algorithms have been well studied

in the last few years [10, 20, 23, 24, 26]. The key idea is the redesign of the numerical algorithms

so that more parallelism can be exposed and a runtime system is then employed to concurrently
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schedule the computational tasks. This is the approach adopted by the PLASMA and FLAME

high performance dense linear algebra libraries. The PLASMA library [1] provides a collection of

dense linear algebra operations and is intended eventually to supersede LAPACK [5]. It can use

internally a static (originally introduced in [22]) or a dynamic runtime system [29]. It has shown

significant improvement compared to the existing approaches [4]. The FLAME library [30] provides

similar functionalities and relies on the dynamic runtime system SuperMatrix [11] to execute

the algorithms-by-blocks. These are high-productivity runtime systems in the sense that the

user does not need to adapt to the architecture at the source-code level. However, although the

scheduling frameworks of both libraries aforementioned provide features for data locality, work

stealing and task priority on shared-memory systems, they do not offer scheduling policies to cope

with challenging NUMA architecture. Moreover, Jeannot [19] has proposed a symbolic mapping

with a static data allocation on NUMA machines, specifically for the Cholesky factorization.

The main idea is to group threads by NUMA nodes to exploit the memory hierarchy. This static

methodology precludes work stealing and may further impede performance for load imbalanced

applications.

Recently, LAWS [12] proposes a runtime library for Divide and Conquer applications in

NUMA systems. It features a work stealing algorithm designed for NUMA systems, very focused

in reducing remote memory accesses and last-level cache pollution. However, it does not take

into account that distances between nodes might differ across the whole system; the applications

targeted are recursive, unlike Cholesky; their tasks use the same amount of data, which allows

the auto tuning of the cut-off threshold.

Drebes [14] presents a scheduling and allocation algorithm for the OpenStream language.

While similar to this paper in topic and features (detection of the node with the most data for

a given task, locality aware stealing that takes into account distances between NUMA nodes),

there are considerable differences: a task is assigned to a thread based on its input location

only, experimental results are validated only up to 64 threads, a slab allocator is used that may

give incorrect information about the node where a memory chunk is allocated which in turn,

according to the paper, results in a speedup of 0.99 over their base line (random stealing).

There are also standalone dynamic runtime system libraries for general purpose. HPT [28]

presents an abstraction for task parallelism and data movement. The memory hierarchy is rep-

resented as a tree where workers belong to leaf nodes. In this approach, a task assigned to a

memory place (cache, NUMA node, etc.) will be executed only by workers below its assigned

place. For instance, a task assigned to an L3 cache can run in any core below that cache, but

not in the cores that share a different L3 cache. In the scheduling policy described in this paper,

we further leverage this principle to tackle NUMA node locality. The Wool library [16] presents

an efficient work stealing approach, but it does not take into account data locality. Wool re-

quires the programmer to modify the source code, whereas we use OmpSs to annotate the source

code, with very few modifications. Furthermore, Wool tasks must be independent and therefore,

the scope of applications susceptible to adhere to this restriction is rather narrowed. Recently,

Muddukrishna [25] proposes some ideas to preserve locality in an OpenMP runtime/compiler in-

frastructure, but the evaluation was performed in a 48-core machine, and using benchmarks

(such as the matrix multiplication) that do not have dependencies between tasks as complex as

the dense matrix operations experimented in this paper. Last but not least, providing locality

hints has been proposed and studied in Broquedis et al. [8], where scheduling hints are used

to choose the best thread and data distribution. Their approach was evaluated using a 16-core
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machine, while our experimental platforms are additionally composed by a 8-node, 48-core and a

128-node, 1024-cores NUMA systems. Similarly, ForestGOMP runtime maps nested thread teams

to the underlying hardware resources.

2. The OmpSs Framework

OmpSs is a high-level, task-based, parallel programming model supporting SMPs, heteroge-

neous systems (like GPGPU systems) and clusters. OmpSs consists of a language specification,

a source-to-source compiler for C, C++ and Fortran; and a runtime. The OmpSs programming

model is powered by the Nanos++ runtime, which provides services to support task parallelism

using synchronizations based on data-dependencies. Data parallelism is also supported by means

of services mapped on top of its task support.

2.1. The Nanos++ Dynamic Runtime System

Figure 1 depicts the infrastructure of the Nanos++ dynamic runtime system. Nanos++

interfaces the application with the underlying hardware architecture. A core component of the

runtime is in charge of handling data movement and ensuring coherency, so that the program-

mer does not need to deal with memory allocation and movements. Another core component

is the module of scheduling policies, which will ultimately integrate the distance-aware work

stealing policy introduced in this paper. OmpSs also supports heterogeneous programming and

that is reflected in the modular support for different architectures in Nanos++ (SMP, CUDA,

OpenCL, simulators such as tasksim, etc.). Nanos++ provides also instrumentation tools to help

identifying performance issues.

Figure 1. The Nanos++ infrastructure

2.2. Task-Based Programming Model in OmpSs

In OmpSs, data dependencies are contained in a directed acyclic graph (DAG). Tasks are

blocked until all their dependencies are satisfied. Once a task is released, the scheduler is then in

charge of taking the proper runtime decisions. Each scheduling policy defines a certain behavior.

For instance, a simple policy might implement a global first-in, first-out (FIFO) queue, where
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tasks are executed in the order of dependency release; or we could define a policy that holds

one queue per worker thread, where tasks are sorted based on a priority value selected by the

programmer. The thread management consists in a pool of worker threads that start to execute

work once it becomes available. When a worker thread is aware of new available work, it will

query the scheduling policy, which will provide a new task to the worker if it so decides. For

instance, in a NUMA aware scheduling policy that ensures locality on top of every other aspect,

if a worker thread is requesting new work and the scheduling policy only has work for threads

of other NUMA nodes, it will not give a new task to the demanding worker thread, for the

sake of enforcing locality. Regarding data dependencies, Nanos++ delegates that component

to plugins, in a similar way to scheduling policies. As this runtime is designed to work with a

wide range of applications, some may be simple (when it comes to specify dependencies) and do

not need the added complexity inherent to the handling of more complex dependencies (such as

non-contiguous memory regions) that other applications rely on.

2.3. OmpSs Tools for Performance Analysis

Nanos++ has an instrumentation plugin system used to obtain traces of the executions. In

this paper, we have chosen the plugin that works with Extrae, the core instrumentation package

developed by the Performance Tools group at Barcelona Supercomputing Center, and Paraver,

a very flexible data browser developed by the same group. Together, they enable programmers

to analyze the behavior of the applications, identify potential problems and understand how

they can be solved. Extrae uses different interposition mechanisms to inject probes into tar-

get applications so as to gather information regarding the application performance. Nanos++

features an instrumentation module with support for Extrae, thus, obtaining traces for OmpSs

applications is just a matter of running them with the instrumentation plugin enabled. As for

Paraver, Nanos++ comes with a vast set of Paraver configuration files that convert tracing

events to human-readable information that can be displayed as timelines (such as user functions

duration), histograms (e.g., thread state to know how much the application was running, idling

and the overhead introduced by the runtime) and three-dimensional histograms.

3. The Cholesky Factorization and the Symmetric Matrix

Inversion Algorithm

This Section briefly recalls the standard block and the new tile variants of the Cholesky

factorization and the symmetric matrix inversion. Further algorithmic details can be found

in [3, 10, 11].

3.1. Block Algorithm Variant

Computing the Cholesky factorization is the first step toward solving dense systems of

linear equations for symmetric positive-definite matrices, which arise in many scientific applica-

tions [17]. Based on the Cholesky factorization, the symmetric matrix inversion is also important

for the computation of the variance-covariance matrix in statistics [18]. The state-of-the-art dense

linear algebra library LAPACK [5] uses block algorithms. The computation is basically split into

successive sequences composed by two phases: (1) the panel computation phase, mainly based

on level 2 BLAS, in which the transformations are accumulated within a panel of the matrix
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and (2) the update of the trailing submatrix, in which the transformations from the panel phase

are applied at once to the trailing submatrix in terms of level 3 BLAS operations. One of the

bottlenecks with such approach is the creation of unnecessary synchronization points between

the phases. Moreover, LAPACK extracts its performance for the most part from the parallel mul-

tithreaded BLAS. The parallel paradigm behind it is very similar to the OpenMP fork-join model,

which further exacerbates the issue related to artifactual synchronization points. The design

of the block algorithms for calculating the Cholesky factorization and the symmetric matrix

inversion also fall into this category. The original matrix is reduced using the Cholesky factor-

ization A = LLT (using the DPOTRF routine), where L is a lower triangular square matrix

with positive diagonal elements. Following the factorization, there are two additional dense op-

erations for the symmetric matrix inversion: (1) triangular matrix inversion A = L−1 (using

the DTRTRI routine) and (2) triangular matrix product A = L−TL−1 (using the DLAUUM

routine). The block variant of the Cholesky factorization and the symmetric matrix inversion

are therefore very limited in terms of parallelism and cannot fully benefit from now commonly

available highly-parallel processing units.

#pragma omp task inout([NB][NB]A) priority(HIGHEST)

void DPOTRF(double *A);

#pragma omp task inout([NB][NB]A)

void DTRTRI(double *A);

#pragma omp task inout([NB][NB]A)

void DLAUUM(double *A);

#pragma omp task input([NB][NB]A) inout([NB][NB]C) priority( NT - k )

void DSYRK(double *A, double *C);

#pragma omp task input([NB][NB]A) inout([NB][NB]C) priority( NT - k )

void DTRSM(double *A, double *C);

#pragma omp task input([NB][NB]A) inout([NB][NB]C) priority( NT - k )

void DTRMM(double *A, double *C);

#pragma omp task input([NB][NB]A, [NB][NB]B) inout([NB][NB]C)

void DGEMM(double *A, double *B, double *C);

for k = 0 to NT−1 do

// Stage 1: Cholesky factorization A = LLT

DPOTRF(Ak,k);

for m = k+1 to NT−1 do

DTRSM(Ak,k, A
T
m,k);

end for

for m = k+1 to NT−1 do

DSYRK(Am,k, Ak,k);

for n = k+1 to m−1 do

DGEMM(Am,k, A
T
n,k, Am,n);

end for

end for

// Stage 2: Calculate A = L−1

for m = k+1 to NT−1 do

DTRSM(Ak,k, Am,k);

for n = 0 to k−1 do
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DGEMM(Am,k, Ak,n, Am,n);

end for

end for

for m = k+1 to k−1 do

DTRSM(Ak,k, Ak,m);

end for

DTRTRI(Ak,k);

//Stage 3: Compute A−1 = L−T × L−1

for n = 0 to k−1 do

DSYRK(AT
k,n, An,n);

for m = n+1 to k−1 do

DGEMM(Ak,m, AT
k,n, Am,n);

end for

end for

for n = 0 to k−1 do

DTRMM(AT
k,k, Ak,n);

end for

DLAUUM(Ak,k);

end for

Algorithm 1: Tile OmpSs-enabled distance-aware Cholesky factorization and symmetric ma-

trix inversion algorithms.

3.2. Tile Algorithm Variant

The idea behind tile algorithms is to transform the original matrix data with column-major

data layout into tile data layout. The parallelism becomes then exposed to the user, thanks

to the task fine granularity. Indeed, the matrix tiles can be seen as the fundamental unit of

computations of the numerical algorithms. The rigid panel-update sequence, previously described

in Section 3.1, is now replaced by an out-of-order task execution flow, where computational tasks

operating on tiles from different loop iterations can concurrently run. The algorithmic complexity

of the block variant of both dense matrix computation algorithms does not change with the tile

variant and is equal to 1/3n3 and n3 for the Cholesky factorization and the symmetric matrix

inversion algorithm, respectively.

The sequential program can now be represented as a DAG, where nodes stand for tasks and

edges correspond to data dependencies. The strong and artifactual synchronization points, seen

in block algorithm variant, are considerably alleviated using tile algorithms. For instance, the

next panel factorization can proceed while the updates of the previous panel have not finished yet,

as long as data dependencies on the corresponding tiles are satisfied. Now, it is up to a runtime

system to schedule all generated tasks and to enforce their inter-task data dependencies. In

particular, the OmpSs programming model has the advantage of being non-intrusive and relies on

simple pragmas, similar to OpenMP programming model syntax. In fact, OpenMP 3.0 onwards,

the tasking concept has been integrated to further help supporting mainstream applications.

Algorithm 1 shows the parallel OmpSs-enabled version of the tile sequential Cholesky factorization

(stage 1 only) and the symmetric matrix inversion (all stages) for an NT ×NT tile symmetric

positive-definite matrix A with a tile size NB. It is still the user’s duty to describe the data
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directions (input, output and inout) for each computational task, through compiler directives

(i.e., pragmas).

4. Distance-Aware Work Stealing Scheduling Policy

This section provides implementation details of the new distance-aware work stealing

scheduling policy and its incorporation into Nanos++ runtime.

4.1. Task queues

In order to maintain data locality, we have a task queue per NUMA node. This queue is a

linked list sorted by task priority: the programmer is able to specify the priority of each task as

a way to outline the critical path. Sorting is performed on insertion, thus the queue is sorted at

any given time (ensuring the execution of tasks based on priorities as much as possible).

Priority-sorted linked lists are not a burden, given the granularity of the tasks of the ex-

periments we carried. To prove that point, we developed a synthetic benchmark creating 10000

tasks lasting one microsecond each. There was no statistically measurable difference between a

vector-based queue and a linked list based queue in total execution time or in runtime overhead

when analyzing execution traces.

Threads belonging to a NUMA node are only able to retrieve tasks from their node’s queue.

This is accomplished by obtaining the number of NUMA nodes and the node corresponding to

each worker thread from the Portable Hardware Locality (hwloc) library [9], and assigning each

thread the number of the queue it should query.

4.2. Data distribution and locality detection

The runtime is able to track the location of the data and schedule tasks in the node with

the highest number of bytes. To track the locality, it assumes a first touch policy and looks for

initialization tasks. The criteria to detect such tasks is plain and simple: tasks with an output

dependency (at least one) where it is the first time that data will be written. In our Cholesky

implementation those tasks are the ones that initialize a block of the matrix.

Initialization tasks are scheduled in round robin across the available NUMA nodes, enabling

us to use a similar data distribution. When a task of that type is executed, the data it initializes

will be marked as located in the NUMA node of the running thread.

Otherwise, when a non initialization task is submitted, the number of bytes accessed by each

node will be computed, based on the dependency information provided by the programmer, and

the task will be scheduled in the node with the largest amount of data.

Note that once work stealing is introduced, the locality information becomes a hint that the

runtime will always follow unless there is starvation in the local node.

Kurzak [23] described an implementation of the Cholesky factorization using static schedul-

ing where threads work only on a one-dimensional cyclic distribution in order to keep locality.

4.3. Distance-aware work stealing

We choose to steal from neighbor nodes following a round-robin approach, with each node

having an independent node index for stealing: steal from nodes in a cyclic way. In a NUMA

architecture where some nodes are further than others, the distance-aware work stealing schedul-
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ing policy ensures a thread will only steal tasks that are as close as possible. Thankfully, this

information is provided by the Linux kernel. The distance between nodes provided by the op-

erating system is not an accurate measure of the practical latency. The OS first tries to get

this information by reading the System Locality Information (SLIT) table in the BIOS and if

it fails, it may generate its own table, even if the vendor has explicitly provided a SLIT table.

For instance, assume a system with 8 nodes, with the distance between node 1 and node 3 is

21 and between node 1 and node 4 is 42. In fact, these distances are default values from the

BIOS SLIT table and they do not necessarily mean that the latency of accessing memory of

node 3 from node 1 is half of accessing node 4. We can only be sure that node 4 is further

from 1 than 3, and this is the reason why we only consider valid steal targets adjacent nodes.

If in the previous example there was a node 5 with distance 22, it could still have a latency

higher enough than node 3 that would hamper performance and eliminate any benefit of work

stealing. We observed when comparing executions with and without work stealing, where the

execution time of the tasks was noticeably worse with work stealing. In the execution without

work stealing we discovered small gaps between a finalized task and the next one that were not

present in the work stealing trace. The reason for such gaps is that the coming tasks are not yet

available in the corresponding ready queue. As worker threads are constantly looking for work,

with work stealing is enabled we observed that delaying for a small number of iterations (of the

OmpSs runtime loop that looks for work for a given thread before giving up) would prevent those

situations, thus increasing locality at the cost of a lower balance factor. This is controlled via a

user defined variable, which can be set to zero to disable waiting. Please note that if that value

is set to a large number it could effectively disable work stealing: worker threads will have to

wait so long that they might find work available in their local queues before allowed to steal. To

sum up, stealing does not come for free: while it reduces load imbalance, it obviously reduces

data locality for stolen tasks. In other words, some tasks will take longer to complete and that

is the reason why work stealing cannot be allowed to be performed indiscriminately.

These mechanisms we have described are able to improve load balance, while minimizing

an increase in task execution time, as highlighted in the next Section.

5. Experimental Results

This Section highlights the impact of the distance-aware with work stealing scheduling policy

in terms of performance (Gflop/s) and compares the new OmpSs-enabled Cholesky factorization

and symmetric matrix inversion against existing commercial and open-source high performance

dense linear algebra libraries.

5.1. Environment Description

Experiments were performed on three NUMA systems. System (A) is a quad processor AMD

Magny-Cours 6172 with four sockets, twelve cores each, running at 2.1GHz with two NUMA

nodes per socket (there are two dies in each physical package), with four HyperTransport links

by socket resulting in a maximum distance between NUMA nodes of two hops. System (B) is an

AMD Istanbul 8439 SE Processor with eight sockets, six cores each, running at 2.8GHz with one

NUMA node and three HyperTransport links per socket. Both systems have 128GB of memory.

It is noteworthy to mention that the NUMA nodes of system (B) are unequally distant and

further away from each other compared to the NUMA nodes of system (A), as this system (B)
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is composed of two 4P boards connected via two HyperTransport connectors, for a maximum

distance of three hops between nodes. The third system (C) is an SGI Altix 1000 UltraViolet

shared-memory machine based on Intel Nehalem EX processors featuring 128 sockets, eight cores

each, running at 2.0GHz with one NUMA node per socket. This system has 4 TB of global shared

memory in a single system image. We compared the Cholesky factorization and the symmetric

matrix inversion using OmpSs against PLASMA v2.4.5, Libflame v5.0, LAPACK v3.4.2, and Intel

compiler/MKL v10.1.015 on systems (A) and (B) and v11.1.038 on system (C). The PLASMA

(providing QUARK as well as a static runtime system) and Libflame (using SuperMatrix) libraries

are compiled with the sequential MKL BLAS, while LAPACK uses the multithreaded MKL BLAS.

PLASMA and Libflame have been tuned for the underlying hardware by selecting an optimal block

size. The command numactl --interleave=all has been executed to ensure a fair comparison

against LAPACK and MKL implementations, which uses static data distribution. Moreover, in order

to prevent false sharing, memory is aligned to the page size using posix memalign. Otherwise,

the distance-aware scheduling policy would be working with invalid locality information. Last

but not least, all performance graphs in Gflop/s report the theoretical peak performance of the

different system. The idea is to provide a good (but not realistic) upper-bound on all performance

curves.

5.2. Distance-Aware Scheduling Policy Optimization Analysis

One of the main critical tasks of the Cholesky factorization and the symmetric matrix

inversion is the matrix multiplication kernel DGEMM. Based on its number of tasks (called in

the inner loop of Algorithm 1) and its execution time, we observed that it was the utmost task

to focus on, when it comes to increasing the overall performance.

Figure 2. Task execution time histogram of DGEMM ’s tasks on System (A)

with the distance-aware scheduling policy
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Figure 2 shows the task execution time histogram (horizontal axis) for DGEMM ’s tasks,

when distance-aware scheduling policy is turned on (work stealing mode) or not (no work stealing

mode). A high value in the vertical axis represents a high concentration of DGEMM ’s tasks for

that particular time interval, and a low one means a small concentration. The other kernels

involved in the dense matrix computation algorithms have been removed from the timing trace

diagram for simplicity of presentation. Ideally, we should have an almost vertical line. This

directly translates to very little variation (no scattered points across the horizontal and therefore,

high concentration of tasks). In the case with no work stealing we have a situation very similar

to the ideal one, where a very high data locality results in the system taking more or less the

same time to execute tasks.

On the contrary, when work stealing takes effect, Figure 2 shows that most of DGEMM ’s

tasks have slightly shifted to the right of the histogram, because they take longer to terminate.

There is also higher variability compared to the distance-aware without stealing policy. This

indicates that threads have accessed data from remote NUMA nodes. Indeed, transferring data

between farther NUMA nodes through the various hops creates a huge performance penalty

because of the higher memory latency required when accessing distant nodes compared to local

memory or adjacent NUMA nodes. Note that a perfect data distribution on large NUMA system

is challenging due to the nature of the dense matrix computation algorithms and the complexity

of the system studied here. Numerical algorithms using hierarchical data representation (e.g.,

fast multipole method [27]) or divide-and-conquer mechanism can better leverage such hardware

architecture, hence the challenge.

These observations validate our initial concern that work stealing introduces a performance

penalty and that we should only steal from adjacent nodes to mitigate its negative impact.

The next Section demonstrates whether the OmpSs framework is still able to compensate the

work stealing overhead by diminishing load imbalance and ultimately increasing the overall

performance (Gflop/s).

5.3. Performance Impact of Various Scheduling Policies

Figure 3 and 4 show the performance impact of various scheduling policies on the Cholesky

factorization and the symmetric matrix inversion using systems (A) and (B), respectively, where

the matrix size is increased in 4K increments along the horizontal axis until an asymptotic

performance is reached. Due to the proximities of the NUMA nodes on system (A), Figure 3a

does not show any difference whether we are running with or without the distance-aware policy.

There is still a slight performance improvement, when work stealing is turned on (320 Gflop/s

i.e., 80% of peak), thanks to a better data locality management. However, when NUMA nodes

are farther, as in system (B), we can clearly distinguish the performance impact of scheduling

policies. Figure 3b captures this discrepancy. The distance-aware with work stealing scheduling

policy scores a 30% and 15% improvement in Gflop/s compared to the distance-aware without

stealing and the distance-oblivious scheduling policies, respectively and reaches 390 Gflop/s i.e.,

72% of peak. Although the symmetric matrix inversion presents more complex memory accesses

due to two additional computational stages besides the Cholesky factorization, the distance-

aware with work stealing scheduling policy is able to maintain as similar performance impact as

the Cholesky factorization, on system (A) (Figure 4a) and system (B) (Figure 4b).

The performance impact is even further amplified with large number of NUMA nodes from

system (C), as shown in Figures 5 and 6 for the Cholesky factorization and the symmetric matrix
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Figure 3. Performance impact of various scheduling policies on the Cholesky factorization

inversion, respectively. The distance-aware with work stealing scheduling policy become critical

to sustain performance, as the number of NUMA nodes increases. On 32 sockets (256 threads),

the distance-aware with work stealing scheduling policy achieves roughly fourfold and twofold

performance improvement against the distance-aware without stealing and the distance-oblivious

scheduling policies, respectively.

5.4. Performance Comparisons Against State-of-the-Art High Performance

Dense Linear Algebra Libraries

Figures 7 and 8 show performance comparisons of the OmpSs-enabled Cholesky factorization

and symmetric matrix inversion, respectively, with distance-aware with work stealing scheduling

policy against existing high performance dense linear algebra implementations: PLASMA (provid-

ing two scheduler types: static and QUARK), Libflame (SuperMatrix), the commercial Intel MKL

and the open-source LAPACK library. For the PLASMA library, only the scheduler type achieving

the best performance is reported.

On system (A) (Figure 7a), the LAPACK implementation of the Cholesky factorization per-

forms the worst due to the inefficient panel-update sequences, which generated lots of syn-

chronizations, as previously mentioned in Section 3.1. The performance of the Intel MKL variant
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Figure 4. Performance impact of various scheduling policies on the symmetric matrix

inversion algorithm

increases substantially but still seems to suffer from memory accesses, as indicated by the curve’s

dips. The Cholesky implementations of OmpSs, PLASMA and Libflame have similar performance

behavior on this system (A) with clustered NUMA nodes. On system (B) (Figure 7b), the

OmpSs implementation scores up to 30% improvement against PLASMA with the dynamic sched-

uler QUARK (open-source package) for asymptotic sizes and more than twofold speedup against

Intel MKL (commercial package).

Figures 8a and 8b show the performance of the symmetric matrix inversion on systems (A)

and (B), respectively. The performance of the LAPACK symmetric matrix inversion is extremely

low on both systems, again due to the lack of parallelism and data locality as well as artifactual

barriers. The Cholesky factorization using the distance-aware with work stealing scheduling

policy from OmpSs outperforms Libflame up to 50% across all matrix sizes and PLASMA by up

to 50% and 25% for small and large matrix sizes, respectively.

The Cholesky factorization using static scheduler from PLASMA gives lower performance than

QUARK and is not reported in Figures 7 and 8. The dynamic scheduler QUARK has thread binding,

affinity mechanisms and is able to deal with load imbalance coming from thread starvation

on these systems with rather small number of NUMA nodes. However, the overhead of the

work stealing strategy as implemented in QUARK becomes significant in presence of large number
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Figure 5. Performance impact of various scheduling policies on the Cholesky factorization on

system (C)

of distant NUMA nodes and exceeds the overhead of load imbalance generated by the static

scheduler due to idling of many worker threads. For the following subsequent graphs, we will

therefore only refer to PLASMA static scheduler.

Figures 9 and 10 highlight the performance comparisons against existing Cholesky factor-

ization and symmetric matrix inversion implementations on system (C). The OmpSs-enabled

Cholesky factorization using the distance-aware with work stealing scheduling policy outper-

forms PLASMA (static scheduler) and Libflame implementations up to 65% on eight NUMA

nodes and up to 200% on 32 NUMA nodes. MKL and LAPACK Cholesky (similarly for the sym-

metric matrix inversion) have not been run beyond eight sockets because performance would

have been extremely low anyway. By the same token, the OmpSs-enabled symmetric matrix in-

version using the distance-aware with work stealing scheduling policy is capable of sustaining

the Cholesky factorization performance against the same other implementations i.e., twofold
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Figure 6. Performance impact of various scheduling policies on symmetric matrix inversion

using system (C)

performance improvement. Although the OmpSs dynamic runtime system associated with the

new scheduling policy seems to decently exploit the underlying NUMA architecture, it is note-

worthy to mention that the best performance achieved by the distance-aware with work stealing

scheduling policy represents only 40% of the theoretical peak of system (C) on 32 sockets. It is

well-known that a system’s theoretical peak performance is a loose upper bound. We can still

identify possible reasons for this low sustained peak performance. The shared-memory system is

a shared resource and other users’ applications running at the same time may engender memory

bandwidth saturation causing further overheads. The overhead of the OS for ensuring cache

coherency may also explain it, which is typical for such a the large memory system. There is

also, of course, room for improvement at the runtime level and also further tuning of the tile

size for large matrix sizes may further pay off.
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Figure 7. Performance comparisons against existing Cholesky factorization implementations

6. Performance Traces

To further analyze the performance results shown in Section 5, the OmpSs-enabled Cholesky

factorization and symmetric matrix inversion have been instrumented in order to generate traces

using the Extrae tracing and the Paraver libraries.

Figures 11 and 12 show the execution traces of distance-oblivious and distance-aware (with

and without work stealing) scheduling policies of the Cholesky factorization and the symmet-

ric matrix inversion algorithm on system (B) using 48 cores, respectively, with a matrix size

30720× 30720. The horizontal axis represents the timeline, the vertical axis the threads and the

colors refer to different tasks. Figures 11a and 12a, representing traces for both dense matrix

computation algorithms based on the distance-oblivious scheduling policy, show rather long but

compact timelines.

Figures 11b and 12b represent traces for both dense matrix computation algorithms based

on the distance-aware without stealing scheduling policy. These figures show shorter timelines

but reveal severe idle time. This is mainly due to thread starvation, which engenders significant

load imbalance between NUMA nodes. Targeting only data locality should not exclusively be

the main concern for high performance applications. In fact, performance can be hindered by

excessively hinting for data locality.
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Figure 8. Performance comparisons against existing symmetric matrix inversion

implementations

Figures 11c and 12c highlight traces for both dense matrix computation algorithms based

on the distance-aware with stealing scheduling policy. The timelines are now even shorter than

distance-aware without stealing scheduling policy, despite a slightly longer elapsed time for

DGEMM kernel, as detailed previously in Figure 2. The distance-aware with stealing scheduling

policy is able to compensate the overhead of increased DGEMM ’s elapsed time by removing

most of stalls in the execution trace. One can now visualize the benefit of stealing from adjacent

nodes, where tasks are continuously scheduled without gaps until the end of execution.

Conclusions and Future Work

We have demonstrated the role for the distance-aware scheduling policy, which increases

data locality, to significantly improve the performance of two important dense linear algebra

algorithms with time-varying work per unit memory at relatively high programmer productiv-

ity. We have also highlighted that work stealing in addition to distance-aware scheduling policy

is paramount to attenuate load imbalance and to be ultimately effective on NUMA systems.

Performance results on a large NUMA system outperform the best state-of-the-art existing im-

plementations up to a twofold speedup for the Cholesky factorization as well as the symmetric
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Figure 9. Performance comparisons against existing Cholesky factorization implementations

on system (C)

matrix inversion algorithm. Developed in the context of the OmpSs framework, this new system-

atic scheduling policy approach allows the OmpSs-enabled code to maintain strong similarity to

its original sequential version.

One of the challenges we faced is that the distance between NUMA nodes provided by the

operating system does not proportionally translate into access times. A future refinement would

be to compute an accurate distance matrix offline and provide that information to the runtime.

The Portable Hardware Locality library has facilities to export the system topology information

in an XML file, modify the topology information (in our case, the node distance), and use the

modified XML file as the topology information. With this, we could relax the conditions for

work stealing and allow stealing from non-adjacent nodes if the access time is feasible. Another

way would be to modify the System Locality Information Table in the BIOS, but this is usually

difficult in production supercomputers.
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Figure 10. Performance comparisons against existing symmetric matrix inversion

implementations on system (C)

Other tasks in dense linear algebra are generally combinations of routines of similar time-

varying load character and easier-to-handle regular workloads. The policy demonstrated herein

should be applicable to such general tasks on multicore NUMA architectures, with benefits

proportional to the fraction of dynamically varying workload. Many high profile computational

tasks beyond dense linear algebra, such as sparse linear algebra, adaptive algorithms for partial

differential equations, and complex physics/multiphysics simulations should also be amenable

to performance improvements through the same philosophy, if not identical heuristics. Beyond

multicore NUMA, multi-GPU systems and hybrid architectures introduce trade-offs between

load balance and data locality that will require locality-aware work stealing. We believe that

the mechanisms of OmpSs and similar programming models possess great potential in practically

extending the performance portability of scientific simulation.
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Figure 11. Traces of the Cholesky factorization using various scheduling policies on

system (B)
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Figure 12. Traces of the symmetric matrix inversion algorithm using various scheduling

policies on system (B)
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