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A novel penalized wall function method for simulations of wall-bounded compressible tur-
bulent flows is proposed. The new approach is based on the Reynolds-averaged Navier–Stokes
(RANS) equations to model the outer region of the turbulent boundary layer, while the inner
part is approximated by the equilibrium wall function model. The differential formulation to
match the external and the wall function solutions is reformulated in a form of the generalized
characteristic-based volume penalization method to model the transfer of the shear stress from the
outer region of the boundary layer to the wall and to impose the wall-stress boundary conditions
on the RANS solution. The exchange location is specified implicitly through a localized source
term in the boundary layer equation, written as a function of the normalized distance from the
wall. The wall-stress condition is determined by solving an auxiliary equation for the wall-stress,
ensuring the correct matching of the RANS and the wall function solutions at the exchange layer.
The proposed method noticeably reduces the near-wall mesh resolution requirements without sig-
nificant modification of the RANS solver and removes the ill-defined explicit matching procedure,
commonly used by traditional wall function-based methods. The penalized wall function approach
is implemented using the vertex-centered control volume method on unstructured computational
grids. The effectiveness of the developed penalized wall function method is demonstrated for two-
dimensional bump-in-channel flow for the Spalart–Allmaras turbulence model.

Keywords: turbulence modeling, wall function, wall-bounded compressible turbulent flow, vol-
ume penalization.

Introduction

Accurate modeling of turbulent flows of engineering interest remains to be one of the major
challenges of computational fluid dynamics. Due to prohibitively expensive computational cost of
the direct numerical simulations (DNS) of large Reynolds number turbulent flows [24], a number
of lower fidelity eddy-resolving approaches are currently actively being pursued. These methods
are based either on the Reynolds-averaged Navier–Stokes (RANS) equations [14, 16, 31, 35] or
on hybrid approaches [15, 36], in which the flow in the near-wall region is simulated using RANS-
type models, while in regions far from the walls the Large Eddy Simulation (LES) method is used.
The hybrid class of methods also includes detached eddy simulation (DES) methods [30, 32, 33]
with a smooth transition from RANS to LES solutions.

Despite relatively moderate near-wall resolution requirements of RANS, hybrid RANS-LES,
and DES approaches, these requirements are still significant and impose strict limitations on
the computational resources, considerably increase the computation time, and complicate the
computational grid construction.

Mesh resolution restrictions can be substantially reduced if the boundary solution is approx-
imated by a wall function and only external RANS solution is simulated [11, 27]. This can be
achieved by replacing no-slip wall boundary conditions with off-the-wall boundary conditions at
the exchange location away from the wall. Alternatively a weak wall function formulation can be
used to transfer the shear stress from the outer region of the boundary layer to the wall and to
impose the wall-stress boundary conditions on the RANS solution [5, 13]. A weak wall function
formulation is more preferable from the computational point of view due to its flexibility, but
it does not guarantee an exact correspondence of the boundary layer displacement thicknesses,
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mainly due to approximate nature of the solution in the near-wall region with the slip velocity
and turbulent viscosity extrapolated from the outer region of the solution, which results in a
decrease of the displacement thickness compared to the RANS solution with no-slip boundary
conditions.

In traditional wall function approaches [25] the boundary conditions are determined by
solving nonlinear equations at the matching (exchange) location, which is not known a priori
and is implicitly defined by the normalized distance from the wall, which, in turn, is a function
of the wall shear stress. For this purpose, the solution at the exchange location, is interpolated
from the nearest computational mesh points [7]. It should be noted that wall functions can
be used in conjunction with immersed boundary methods, where additional constraints at the
immersed mesh points are imposed to ensure the boundary conditions on the surface of the
obstacle [6, 10, 12].

The main idea of the proposed approach, hereinafter referred to as the Penalized Wall Func-
tion (PWF) method, is to replace the nonlinear algebraic matching condition between the exter-
nal and wall function solutions by a differential formulation based on a generalized characteristic-
based volume penalization method [8, 19] to transfer the shear stress from the outer region of the
boundary layer to the wall, while specifying exchange locations implicitly through the localized
source term in the boundary layer equation, written as a function of the normalized distance
from the wall. Such an approach, makes it possible to completely eliminate the need to explic-
itly find the exchange location, and, more importantly, reduces the system of partial differential
equations with nonlinear algebraic constraints to a system of partial differential equations with
differential feedback loop provided by characteristic penalty functions. The latter property makes
it feasible to generalize the approach to problems with flow separation based on differential equi-
librium [7, 20] and non-equilibrium [21, 26] wall functions. In general, the developed approach
noticeably reduces the near-wall mesh resolution requirements without significant modification
of the RANS solver. Note that the developed PWF method should be distinguished from hybrid
approaches utilizing immersed boundary methods to set boundary conditions on the surface of
the obstacles [6, 10], since it uses characteristic-based volume penalization to match external
and wall function solutions. Furthermore, the PWF method can also be generalized for complex
geometry flows, based on the already developed volume penalization methods [2, 8, 19, 22, 23, 37].

The rest of the paper is organized as follows. In Section 1 the governing equations of the
numerical simulations, including the Favre-averaged Navier–Stokes equations for compressible
flows and the evolution equations for turbulence models are introduced. The penalized wall
function method for turbulent flow modeling is formulated in Section 2. The numerical method
used to implement the PWF approach is briefly described in Section 3. The 2D bump-in-channel
flow configuration and the corresponding simulation results using the PWF method are presented
and discussed in Section 4. Concluding remarks are given in Section 4.1.

1. Governing Equations

1.1. Favre-averaged Navier–Stokes Equations

Compressible RANS equations are formulated in terms of Reynolds-averaged and Favre-
averaged dependent variables. Denoting Reynolds-averaging and Favre-averaging operations as
⟨𝜑⟩ and {𝜑} = ⟨𝜌𝜑⟩/⟨𝜌⟩, respectively, where 𝜑 stands for a generic physical variable, the method
involves Reynolds-averaged density ⟨𝜌⟩ and pressure ⟨𝑝⟩, together with Favre-averaged veloc-
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ity {𝑢𝑖}, temperature {𝑇}, and total energy per unit mass {𝑒}. For the sake of clarity, the cor-
responding operator symbols hereafter are omitted in the notations of Reynolds/Favre-averaged
primitive variables and simple symbols 𝜌, 𝑝, 𝑢𝑖, 𝑇 and 𝑒 are used hereafter to denote the
Reynolds-averaged density, pressure, and Favre-averaged velocity, temperature, and total en-
ergy per unit mass. Therefore, the Favre-averaged Navier–Stokes equations for the conservation
of mass, momentum, and energy in compressible flows for calorically perfect gas after incorpo-
ration of modeled turbulent terms using the Boussinesq eddy viscosity, eddy-conductivity, and
constant turbulent Prandtl number assumptions can be written in the following general form:

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑗)

𝜕𝑥𝑗
= 0, (1)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = − 𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

, (2)

𝜕𝜌𝑒

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[(𝜌𝑒+ 𝑝)𝑢𝑗 ] =

𝜕

𝜕𝑥𝑗
[𝑢𝑖𝜏𝑖𝑗 − 𝑞𝑗 ] , (3)

where

𝑝 = 𝜌𝑅𝑇, (4)

𝑒 =
1

2
𝑢𝑖𝑢𝑖 +

𝑝

𝜌(𝛾 − 1)
, (5)

𝑞𝑗 = −𝑐𝑝
(︂

𝜇

𝑃𝑟L
+

𝜇T

𝑃𝑟T

)︂
𝜕𝑇

𝜕𝑥𝑗
, (6)

𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 + 𝜏𝑖𝑗 ,

𝜏𝑖𝑗 = 2𝜇T𝑆𝑖𝑗 , (7)

𝑆𝑖𝑗 = dev(𝑆𝑖𝑗) = 𝑆𝑖𝑗 −
1

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 ,

𝑆𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
.

In the equations above, the parameter 𝑅 stands for the gas constant, while 𝑐𝑣 and 𝑐𝑝 are the
specific heat constants at constant volume and pressure, respectively. The specific heat ratio
𝛾 = 𝑐𝑝

𝑐𝑣
≡ 1.4 for diatomic gases is assumed. The term 𝑞𝑗 is the sum of both the laminar and the

modeled turbulent heat flux vectors, with 𝑃𝑟L = 0.72 and 𝑃𝑟T = 0.9 being the laminar and the
turbulent Prandtl numbers, respectively. The turbulent eddy viscosity is denoted by 𝜇T, which is
unknown and needs turbulence models for closure. The term 𝜏𝑖𝑗 is the sum of the molecular and
the Reynolds stress tensors, while 𝜏𝑖𝑗 is the Reynolds stress tensor, 𝑆𝑖𝑗 is the mean strain-rate
tensor, and 𝑆𝑖𝑗 is the deviatoric part of 𝑆𝑖𝑗 . For simplicity of consideration, constant dynamic
molecular viscosity 𝜇 is assumed, which is a good approximation for low Mach number flows
considered in this paper.

1.2. Turbulence Model Equations

Without loss of generality, the Spalart–Allmaras (S-A) turbulence model [31] is used to
illustrate the developed penalized wall function approach. The S-A model is widely used as a
turbulence model closure for the equations (6) and (7), including high-velocity flows with a
significant effect of compressibility [4].
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The standard Spalart–Allmaras model [31] in terms of 𝜌𝜈 can be written as follows:

𝜕𝜌𝜈

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝜈𝑢𝑗) = 𝑐𝑏1(1 − 𝑓𝑡2)𝑆𝜌𝜈 −

[︁
𝑐𝑤1𝑓𝑤 − 𝑐𝑏1

𝜅2
𝑓𝑡2

]︁
𝜌

(︂
𝜈

𝛿

)︂2

+
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇

𝜎
+
𝜌𝜈

𝜎

)︂
𝜕𝜈

𝜕𝑥𝑗

]︂
−
(︂
𝜇

𝜎𝜌
+
𝜈

𝜎

)︂
𝜕𝜌

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
+ 𝑐𝑏2

𝜌

𝜎

𝜕𝜈

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
,

(8)

where the eddy viscosity is computed by

𝜇T = 𝜌𝜈𝑓𝑣1, (9)

and auxiliary variables are defined as:

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3𝑣1
,

𝜒 = 𝜈/𝜈,

𝑆 = max

[︂
0.3
√︀

2Ω𝑖𝑗Ω𝑖𝑗 ,
√︀

2Ω𝑖𝑗Ω𝑖𝑗 +
𝜈

𝜅2𝛿2
𝑓𝑣2

]︂
, (10)

Ω𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
,

𝑓𝑣2 = 1 − 𝜒

1 + 𝜒𝑓𝑣1
,

𝑓𝑤 = 𝑔

[︂
1 + 𝑐6𝑤3

𝑔6 + 𝑐6𝑤3

]︂1/6
,

𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟),

𝑟 = min

[︂
𝜈

𝑆𝜅2𝛿2
, 10

]︂
, (11)

𝑓𝑡2 = 𝑐𝑡3 exp(−𝑐𝑡4𝜒2),

where 𝜈 is kinematic molecular viscosity, 𝛿(x) is the distance from the field point to the nearest
wall, and to improve the stability of calculations the variable 𝑆 is bounded from below by the
quantity 0.3

√︀
2Ω𝑖𝑗Ω𝑖𝑗 . The constant coefficients are prescribed as 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622,

𝜎 = 2/3, 𝜅 = 0.41, 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1, 𝑐𝑤1 = 𝑐𝑏1
𝜅 + 1+𝑐𝑏2

𝜎 . Note that this “standard”
version of the S-A model does not have the trip term “𝑓𝑡1” and, hence, it is argued that 𝑓𝑡2 is
not necessary, i.e., 𝑐𝑡3 = 0 is assumed.

The following boundary condition on the wall surface

𝜈 = 0 (12)

is used for consistency. When modeling external flows the constant turbulent viscosity 𝜈 = 3𝜈∞
is assumed at the inflow boundary.

2. Penalized Wall Function Method

The considerably lower computational cost of eddy-resolving approaches compared to DNS or
LES, makes RANS-based methods to be a method of choice for high Reynolds number turbulent
flow simulations in aerospace industry. However, despite relatively moderate near-wall resolution
requirements of RANS [14, 16, 31, 35], hybrid RANS-LES [15, 36], and DES [30, 32, 33] ap-
proaches, the direct resolution of flow structures of the RANS equations (1)–(3), (8) results in a
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considerable computational cost associated with a large number of mesh points in the near-wall
region. Mesh resolution restrictions can be substantially reduced if instead of resolving the solu-
tion in the vicinity of the wall, it is approximated by a wall function and only external RANS
solution is obtained [11, 27]. This can be achieved by replacing no-slip boundary conditions on the
wall with the matching conditions between the wall function and the outer turbulent boundary
layer solutions:

𝑢‖(x)
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

= 𝑢𝜏𝑓
(︀
𝛿+EL
)︀
, (13)

where the matching (exchange) location is determined from the following condition:

𝛿(x) =
𝜈

𝑢𝜏
𝛿+EL, (14)

𝑢‖(x) is the velocity component parallel to the surface at point x, �̃� and 𝑦 are generalized coordi-

nates along and normal to the wall, 𝑦+ = 𝑢𝜏𝑦/𝜈 is the normalized coordinate, 𝑢𝜏 =
(︀
𝜏w/𝜌

)︀1/2 is
the friction velocity, 𝜏w is the wall stress, 𝛿+EL is the normalized distance to the exchange location,
and 𝑓(𝑦+) is the wall function, defined as a function of the distance from the wall, normalized
by the viscous length scale. Note that Eq. (14) can be viewed as a non-linear algebraic equation
for determining the exchange location for a given coordinate �̃� on the wall. For the sake of sim-
plicity, let us start by formulating the method for two-dimensional flows. The generalization of
the method to three-dimensional flows will be provided at the end of the section.

For a given external velocity field 𝑢‖(x) and for a given normalized distance 𝛿+EL the matching
condition (13) is a non-linear algebraic equations for determining 𝑢𝜏 . A linear approximation of
Eq. (13) for the friction velocity correction 𝛿𝑢𝜏 can be written as

𝑢‖(x)
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

+
𝜕𝑢‖(x)

𝜕n

⃒⃒
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

(︂
−𝜈𝛿

+
EL
𝑢2𝜏

𝛿𝑢𝜏

)︂
≈ 𝑢𝜏𝑓

(︀
𝛿+EL
)︀

+ 𝛿𝑢𝜏𝑓
(︀
𝛿+EL
)︀
, (15)

where the normal n is defined in terms of the distance function 𝛿(x): n = ∇𝛿(x). Note that the
second term on the left hand side of Eq. (15) arises due to the change of the distance 𝛿(x) of
the exchange location when 𝑢𝜏 changes and 𝛿+EL is fixed. The solution of Eq. (15) for the friction
velocity correction 𝛿𝑢𝜏 is given by

𝛿𝑢𝜏 ≈ 𝑢𝜏

𝑢‖(x)
⃒⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

− 𝑢𝜏𝑓
(︀
𝛿+EL
)︀

𝑢𝜏𝑓
(︀
𝛿+EL
)︀

+
𝜕𝑢‖(x)
𝜕n

⃒⃒
⃒
𝛿(x)= 𝜈

𝑢𝜏
𝛿+EL

𝛿(x)
. (16)

When a strong wall function formulation is used, the friction velocity correction (16) can be used
in Newton’s method to iteratively obtain the solution of the matching condition (13).

For the weak wall function formulation, the discrete friction velocity correction (16) can be
replaced by temporal relaxation of the solution 𝑢𝜏 (�̃�, 𝑡) on the time scale 𝜂𝑓 at each point of the
generalized coordinate �̃�, defined along wall:

𝜕𝑢𝜏
𝜕𝑡

=
𝑢𝜏
𝜂𝑓

𝑢‖(x)
⃒⃒
𝛿(�̃�)= 𝜈

𝑢𝜏
𝛿+EL

− 𝑢𝜏𝑓
(︀
𝛿+EL
)︀

𝑢𝜏𝑓
(︀
𝛿+EL
)︀

+
𝜕𝑢‖(x)
𝜕n

⃒⃒
⃒
𝛿(�̃�)= 𝜈

𝑢𝜏
𝛿+EL

𝛿(�̃�)
, (17)

where for greater clarity the exchange location, implicitly defined by the equation (14), is ex-
plicitly written as 𝛿(�̃�), while the no-slip boundary condition for the velocity u at the wall is
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replaced by the no-penetration condition for the normal velocity component 𝑢⊥(x) = u · n:

𝑢⊥|𝑦=0 = 0 (18)

and the wall shear stress condition:

(𝜈 + 𝜈T)
𝜕𝑢‖
𝜕n

⃒⃒
⃒⃒
𝑦=0

= 𝑢2𝜏 (�̃�, 𝑡). (19)

For consistent wall function formulation of the Spalart–Allmaras model, the turbulent viscosity
from the outer flow region is transfered to the boundary, which can be easily achieved by replacing
the distance function 𝛿(x) in the Eqs. (8), (10) and (11) by

𝛿(x) = max

(︂
𝛿(x),

𝜈

𝑢𝜏
𝛿+EL

)︂
(20)

and changing the boundary condition (12) for turbulent viscosity to

𝜕𝜈

𝜕n

⃒⃒
⃒⃒
𝑦=0

= 0. (21)

The equation (13) with an implicit determination of the exchange location 𝛿(�̃�) complicates
the solution of the problem, since, in general, exchange locations do not coincide with mesh
points and the tangential velocity component 𝑢‖ from the nearest mesh points needs to be
interpolated to the exchange location, e.g., see [7]. The problem can be greatly simplified and
the need to interpolate the tangential velocity to exchange locations can be completely eliminated
by introducing an auxiliary friction velocity field 𝑢𝜏 (x, 𝑡), defined in the entire domain and not
only on the wall, and by replacing Eq. (17) for 𝑢𝜏 (�̃�, 𝑡) on the wall by the following partial
differential equation for the field 𝑢𝜏 (x, 𝑡):

𝜕𝑢𝜏
𝜕𝑡

−ℋ
(︁
𝛿+EL − 𝑢𝜏

𝜈
𝛿(x)

)︁ 𝑙𝑠
𝜂𝑠

𝜕𝑢𝜏
𝜕n⏟  ⏞  

transfer of 𝑢𝜏 to the wall

= 𝜒
𝛿

(︃
𝛿+EL − 𝑢𝜏

𝜈 𝛿(x)

𝜎+

)︃
𝑢𝜏
𝜂𝑓

𝑢‖(x) − 𝑢𝜏𝑓
(︀
𝛿+EL
)︀

𝑢𝜏𝑓
(︀
𝛿+EL
)︀

+
𝜕𝑢‖(x)
𝜕n 𝛿(x)⏟  ⏞  

temporal relaxation of 𝑢𝜏 in an exchange layer

+𝜈n∆𝑢𝜏⏟  ⏞  
smoothing

,

(22)

where 𝑙𝑠 and 𝜂𝑠 are, respectively, the characteristic length and time scales of transferring the
solution from the exchange layer to the wall, ℋ(𝜉) is the Heaviside function that disables the
transfer of 𝑢𝜏 in the outer region of the turbulent boundary layer, 𝜒

𝛿
(𝜉) is a localized exchange

layer masking function, for example, the Gaussian function

𝜒
𝛿
(𝜉) = exp(−𝜉2/2), (23)

𝜎+ is the normalized thickness of the exchange layer, and 𝜈n∆𝑢𝜏 is the numerical diffusion used
to smooth out the auxiliary field 𝑢𝜏 . Note that in Eq. (22), the matching condition (13) is
provided by temporal relaxation term in the spatially localized exchange layer, from which 𝑢𝜏 is
transferred to the wall for the subsequent use in the boundary condition (19). The second term
on the left hand side of Eq. (22) corresponds to the characteristic penalty function [8, 9, 19],
which on the time scale 𝜂𝑠 transfers the friction velocity to the wall.
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In order to improve the convergence of the method in the earlier stages of the transient
solution, the term 𝜕𝑢‖(x)

𝜕n in the Eq. (22) can be approximated by differentiating the wall function
solution:

𝜕𝑢‖(x)

𝜕n
≈ 𝑢2𝜏

𝜈
𝑓 ′
(︂
𝑢𝜏𝑦

𝜈

)︂
. (24)

Substituting Eqs. (14) and (24) into Eq. (22) the following stabilized penalized wall function
equation can be obtained:

𝜕𝑢𝜏
𝜕𝑡

−ℋ
(︁
𝛿+EL − 𝑢𝜏

𝜈
𝛿(x)

)︁ 𝑙𝑠
𝜂𝑠

𝜕𝑢𝜏
𝜕n⏟  ⏞  

transfer of 𝑢𝜏 to the wall

=
1

𝜂𝑓
𝜒

𝛿

(︃
𝛿+EL − 𝑢𝜏

𝜈 𝛿(x)

𝜎+

)︃
𝑢‖(x) − 𝑢𝜏𝑓

(︀
𝛿+EL
)︀

𝑓
(︀
𝛿+EL
)︀

+ 𝑓 ′
(︀
𝛿+EL
)︀
𝛿+EL⏟  ⏞  

temporal relaxation of 𝑢𝜏 in an exchange layer

+𝜈n∆𝑢𝜏⏟  ⏞  
smoothing

.

(25)

The equation (25) is the basis of the penalized wall function method. Note that despite the
fact that the developed approach has been demonstrated only in the context of the Spalart–
Allmaras model, the PWF method can be used in conjunction with any turbulence model that
allows transfer of shear stress from the outer region of the boundary layer to the wall. Note that
the choice of the exchange location 𝛿+𝐸𝐿 can affect the accuracy and efficiency of the simulations.
In general the exchange location should be chosen to be outside of the viscous sublayer region
to improve the near-wall resolution requirements and below the law-of-the-wake region, which is
problem dependent.

For three-dimensional flows, the problem can be rewritten in local two-dimensional coor-
dinates, where the coordinate �̃� along the body surface corresponds to the direction of the
tangential velocity component at the corresponding exchange location. In this case, the equa-
tion (25) can be used without modification under the assumption that the direction of the wall
shear is aligned with the tangential velocity vector at the corresponding exchange location, and
the variable 𝑢‖(x) =

⃦⃦
u‖(x)

⃦⃦
corresponds to the magnitude of the parallel velocity component

u‖(x) = u− (u · n)n. Then the boundary conditions (18) and (19) can be rewritten as follows:

u · n|𝑦=0 = 0 (26)

(𝜈 + 𝜈T)
𝜕u‖
𝜕n

⃒⃒
⃒⃒
𝑦=0

=

(︃
u‖
𝑢‖

⃒⃒
⃒⃒
𝑦=0

)︃
𝑢2𝜏 (�̃�, 𝑡). (27)

3. Numerical Method

The penalized wall function method, proposed in this paper, is implemented in the NOISEtte
flow solver [17, 18]. The system of equations (1)–(3), (8) are discretized using vertex-centered
finite-volume method, combined with quasi-one-dimensional variable reconstruction along a mesh
edge (EBR-scheme) [3], used to increase the order of accuracy. The approximation of the viscous
terms is based on Galerkin finite element method with linear basis functions. For time integra-
tion, an implicit three-layer 2nd order time integration method is used. At each stage of the
time integration the spatially discretized system of nonlinear equations is solved using Newton’s
method with the linearized space-difference system of equations at each Newton’s iteration solved
using stabilized bi-conjugate gradient method (BI-CGSTAB) [34].

Each time integration step of the main system of equations (1)–(3), (8) is preceded by
an implicit first-order time integration of Eq. (25), which for efficiency is discretized using first-
order upwind-biased finite-difference method. The Gaussian function (23) is used for the localized
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(a) Boundary conditions (b) Computational mesh in the vicinity of the bump
(mesh 2)

Figure 1. 2D Bump-in-channel flow problem

exchange layer masking function. The values of the normalized thickness of the exchange layer 𝜎+,
the length scale 𝑙𝑠, the relaxation parameters 𝜂𝑓 and 𝜂𝑠, and the initial value of 𝑢𝜏 used in the
simulation are discussed in Section 4.

4. Simulations and Results

4.1. 2D Bump-in-channel Flow

To demonstrate the effectiveness and accuracy of the proposed approach, the penalized wall
function method is applied for the two dimensional simulation of compressible turbulent flow
around a bump, also known as 2D bump-in-channel flow. The flow configuration is identical to
the NASA turbulence model verification case [1]. The simulation results are compared with the
reference solution [1], obtained using the CFL3D structured grid code [29] with the Spalart–
Allmaras model [31].

The problem is non-dimensionalized identically to the reference case [1] using the following
characteristic scales: the density of the undisturbed flow 𝜌∞, the inflow velocity 𝑈∞, the molec-
ular viscosity at the inflow 𝜇∞, and the unit length 𝐿. The 2D bump-in-channel flow problem
is solved for the Reynolds number 𝑅𝑒 = 3 × 106 and the Mach number 𝑀 = 0.2. A viscous
compressible flow around an infinitely thin plate with an origin at the point (0, 0) and a dimen-
sionless length of 1.5 with the bump of the height of 0.05 is considered. The geometry of the
bump is described as

𝑦 =

⎧
⎨
⎩

0.05
{︀

sin
(︀
𝜋𝑥
0.9 − 𝜋

3

)︀}︀4 if 0.3 < 𝑥 < 1.2,

0 if 𝑥 <= 0.3 and 𝑥 >= 1.2.
(28)

The problem set up and the boundary conditions are shown in Fig. 1a. The boundary
conditions are as follows. No-slip, adiabatic, zero eddy viscosity condition (12) are imposed
at the solid plate surfaces for the RANS simulations using Spalart–Allmaras model [31]. For the
penalized wall function method the no-slip and zero eddy viscosity conditions are replaced by
no-penetration condition (18), wall shear stress condition (19), and condition (21) for the eddy
viscosity.

The penalized wall function method is implemented as follows: the friction velocity field 𝑢𝜏
is defined in the entire computational domain with initial value of 𝑢𝜏 = 4 × 10−2. The PWF
equation (25) is integrated as a preprocessing step before each time integration step of the main

Penalized Wall Function Method for Turbulent Flow Modeling

62 Supercomputing Frontiers and Innovations



(a) RANS simulations with S-A model (b) PWF simulations

Figure 2. Distribution of the skin friction coefficient on the bump for two different resolutions

system of RANS equations (1)–(3), (8). The updated values of 𝑢𝜏 are subsequently used in
the boundary condition (19) and the distance function definition (20) when solving the RANS
equations for the next time step. The PWF equation (25) is solved for the localized exchange
layer masking function 𝜒

𝛿
defined as the Gaussian function (23) with the normalized exchange

layer thickness 𝜎+ = 50, the normalized distance at the exchange location is 𝛿+𝐸𝐿 = 100, the
nondimensional characteristic length scale 𝑙𝑠 = 1 and time scales 𝜂𝑠 = 10−2 and 𝜂𝑓 = 10−2, and
the Reichardt’s law of the wall [28] for the wall function:

𝑓Rei
(︀
𝑦+
)︀

=
1

𝜅
ln
(︀
1 + 𝜅𝑦+

)︀
+ 7.8

[︂
1 − exp

(︂
−𝑦

+

11

)︂
− 𝑦+

11
exp

(︂
−𝑦

+

3

)︂]︂
, (29)

where 𝜅 = 0.41 is the von Kármán constant.
The simulations are carried out on structured meshes with the longitudinal grid size

∆ℎ‖ ≈ 10−2, which ensures the adequate resolution of the bump curvature. The wall normal
mesh size is exponentially increasing with the growth factor of 𝑞 ≈ 1.2 and mesh resolution in
the vicinity of the wall ∆ℎ⊥.

To demonstrate the convergence of the PWF method, the simulations are carried out for
two different near-wall resolutions: ∆ℎ⊥ = 1 × 10−5 and ∆ℎ⊥ = 1 × 10−4.

The mesh resolutions are chosen so that the RANS simulations with S-A model are well
resolved for the first case, denoted as mesh 1, and unresolved for the second case, denoted as
mesh 2. The zoomed-in view of the computational mesh in the vicinity of the bump, corresponding
to the unresolved case, is shown in Fig. 1b, where for better visual perception every tenth vertical
line is shown.

The results of the PWF simulations are compared with the reference solution [1] and with
the results of the RANS simulations with the Spalart–Allmaras model [31], which are carried
out on the same computational meshes using the same solver, but with no-slip and zero eddy
viscosity (12) boundary conditions instead of the no-penetration condition (18), wall shear stress
condition (19), and condition (21) used in the PWF method.

The effect of the wall model is demonstrated in Fig. 2, where skin friction coefficient 𝐶𝑓

distribution on the bump for two different resolutions is shown for both the RANS and PWF
simulations. As can be seen in Fig. 2a, the results of the resolved RANS simulations are in good

N.S. Zhdanova, O.V. Vasilyev

2022, Vol. 9, No. 4 63



(a) RANS simulations with S-A model (b) PWF simulations

Figure 3. Streamwise velocity profiles at 𝑥 = 0.75 for the 2D bump-in-channel flow problem for
two different resolutions

agreement with the reference CFL3D solution [1], while for the second case the skin friction
coefficient is significantly underestimated due to insufficient resolution of the boundary layer,
required by the S-A model. In contrast, as can be seen in Fig. 2b, the skin friction coefficient
distributions for the PWF simulations are practically identical for both resolutions and are
in good agreement with the results of the resolved RANS simulations, which highlights the
substantially lower near wall resolution requirements for the penalized wall function method
compared to the resolved RANS simulations with S-A turbulence model. Note that the deviations
of the skin friction coefficient at the leading and trailing edges of the plate are related to geometric
singularities caused by the sudden application of either no-slip or wall shear stress conditions on
the plate for the RANS and PWF simulations, respectively.

A similar trend is observed when considering velocity profiles. A comparison of the streamwise
velocity profiles in the wall-normal direction at 𝑥 = 0.75 is given in Figs. 3a and 3b, where the
results of the RANS and PWF simulations, respectively, are shown. As can be seen in Fig. 3a the
resolved RANS simulations with S-A model are in good agreement with the reference CFL3D
solution [1], while for the unresolved case (mesh 2) the velocity profile is wrong. Substantially
lower wall resolution requirements of the PWF method are demonstrated in Fig. 3b, which shows
good agreement between the results of PWF simulations for all resolutions both in the boundary
layer and in the outer region. Moreover, as can be seen in Fig. 3b, the PWF solution in the
outer region, marked by the exchange location, is in excellent agreement with the results of the
resolved RANS simulation with S-A turbulence model.

The distribution of relative turbulent viscosity 𝜈+T = 𝜈T/𝜈 in the wall-normal direction at
𝑥 = 0.75 is shown in Figs. 4a and 4b for RANS and PWF simulations, respectively. As can be
seen in Fig. 4a the value of turbulence viscosity is substantially higher for the unresolved case,
compensating for the lack of wall normal resolution. The results of the resolved RANS simulations
with the S-A turbulence model are slightly higher then the reference CFL3D solution [1], which is
due to slightly lower resolution compared to the reference case. The eddy-viscosity for the PWF
simulations for both resolutions are identical and in the outer region (𝑦+ > 𝛿+𝐸𝐿) are slightly
lower compared to the eddy-viscosity of the resolved RANS simulation with the S-A turbulence
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(a) RANS simulations with S-A model (b) PWF simulations

Figure 4. Eddy-viscosity profiles at 𝑥 = 0.75 for the 2D bump-in-channel flow problem for two
different resolutions

model. This discrepancy is related to limiting the wall distance according to Eq. (20), which, in
turn, results in almost constant eddy-viscosity in the inner region (𝑦+ < 𝛿+𝐸𝐿).

Conclusions

A novel penalized wall function method is proposed for simulations of wall-bounded com-
pressible turbulent flows. The new approach, similar to classical wall function methods, is based
on the Reynolds-averaged Navier–Stokes (RANS) equations to model the outer region of the
turbulent boundary layer, while approximating the inner part by an analytic wall function. The
differential formulation to match the outer and wall function solutions is reformulated in a form of
a generalized characteristic-based volume penalization method for the friction velocity to model
the transfer of the shear stress from the outer region of the boundary layer to the wall and to
impose the wall-stress boundary conditions on the RANS solution. The exchange location in the
new formulation is specified implicitly through a localized source term in the boundary layer
equation, which eliminates the need to interpolate the solution to the exchange location as well
as the need to explicitly determine the position of the exchange location. The wall-stress condi-
tion is determined by solving an auxiliary equation for the friction velocity, ensuring the correct
matching of the RANS and the wall function solutions at the exchange layer. The penalized
wall function method is demonstrated for Reynolds-averaged Navier–Stokes equations with the
Spalart–Allmaras turbulence model, but can be used in conjunction with any turbulence model
that allows transfer of shear stress from the outer region of the boundary layer to the wall.

The proposed method noticeably reduces the near-wall mesh resolution requirements without
significant modification of the RANS solver. The formulation of the penalized wall function
method is general and can be used in context of any numerical method based on either structured
or unstructured meshes.

The effectiveness of the developed penalized wall function method is demonstrated for two-
dimensional bump-in-channel flow, which is characterized by the presence of a significant lon-
gitudinal pressure gradient without flow separation. The simulations demonstrate the sufficient
accuracy of the PWF solution on grids with 10 times coarser near wall resolution compared to
the resolution required by the the Spalart–Alamaras model with no-slip boundary conditions.
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Further development of PWF method includes its generalization to problems with strong
pressure gradients and flow separation, which would require the reformulation of the method in
terms of differential equilibrium and non-equilibrium wall functions.
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