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Studies of real complex physical and engineering problems represented by multiscale and

multiphysics computer simulations have an increasing demand for computing power. The demand

is driven by the increasing scales and complexity of the scientific problems investigated or the

time constraints. Ultrascale computing systems could offer the computing power required to solve

these problems. Future ultrascale systems will be large-scale complex computing systems com-

bining technologies from high performance computing, distributed systems, big data, and cloud

computing. The challenge of developing and programming complex algorithms that can efficiently

perform on such systems is twofold. Firstly, the complex computer simulations have to be either

developed from scratch, or redesigned in order to yield high performance, while retaining correct

functional behaviour. Secondly, ultrascale computing systems impose a number of non-functional

cross-cutting concerns, such as fault tolerance or energy consumption, which can significantly im-

pact the deployment of applications on large complex computing systems. This article discusses

the state-of-the-art of programming for current and future large-scale computing systems with an

emphasis on complex applications. We derive a number of requirements regarding programming

and execution support by studying several computationally demanding applications that the au-

thors are currently developing and discuss their potential and necessary upgrades for ultrascale

execution on ultrascale facilities.

Keywords: sustainable ultrascale systems, impact factors on applications, multiscale and mul-

tiphysics applications, computational modelling.

Introduction

A glance over the historical development of computational science shows that software and

hardware developments have always been driven by the need for a continual growth. For software

this is a continuously increasing growth in complexity of algorithms, of data sizes and process-

ing requirements; for hardware these have been and are the technological inventions providing

increasing computing power and storage capabilities. Topics such as High Performance Comput-

ing (HPC), distributed systems, big data and cloud computing are well-established domains of

software and hardware development reflecting this tendency. In the near future, the growth in al-

gorithmic complexity, data volumes to be processed, and available computing power is expected
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to reach extreme scales. Successful handling of this growth and maintaining performance on

such scales requires the existing and the emerging hardware and software aspects and concerns

to be re-evaluated and adapted to the new paradigms. The generic term ultrascale computing

captures all these efforts and challenges.

Ultrascale computing systems are expected to have the form of large-scale complex sys-

tems comprising parallel and distributed components as well as heterogeneous processors, e.g.

enhanced by Graphical Processing Units (GPU), Field Programmable Gate Arrays (FPGA) or

other types of accelerators. These compute facilities might be provided by cloud architectures

that are made available to scientific computing communities in an effort to achieve scientific

cloud computing [85]. Large-scale scientific simulations often have to deal with large volumes

of data which may come from multiple sources and are diverse, complex, and have massive

scale, requiring the big data techniques to be included. Due to the complexity of ultrascale

systems, their efficient usage is a challenging task which exceeds the effort for programming

and maintaining the HPC systems that are available today. Consequently, adequate support

for developing software on different levels is needed to properly exploit the hardware potential

offered by ultrascale systems.

The experience with current HPC systems has shown that some of the available application

codes and also some of the well-developed algorithms are not suitable for the hardware, since their

internal structure and behavior lacks a high degree of parallelism and flexibility [30, 89]. This

situation is expected to be even more critical for ultrascale computing. An important starting

point for investigating the potential of ultrascale computing is to identify algorithms, applica-

tions, and services amenable to ultrascale systems. In addition, the requirements that need to

be fulfilled to port applications to ultrascale systems have to be identified. This will enable the

development of new applications that will conform to these requirements and recommendations.

In this article, we discuss a large variety of aspects which might be crucial for applica-

tion codes to be suitable for ultrascale computing systems and to exploit the compute power

for achieving a sufficiently high performance and scalability of those applications on emerging

ultrascale platforms. In this context, we highlight the issues that are important for migrating

existing parallel applications to ultrascale platforms. Application areas amenable to ultrascale

computing include earth sciences, astrophysics, chemistry such as molecular dynamics, material

sciences, life sciences such as analysis of short-read sequencing data, health science, high energy

physics such as QCD, fluid dynamics, coupled multiscale and multiphysics methods. In addition,

diverse applications for analysing large and heterogeneous data sets in social, financial, and in-

dustrial contexts are candidate areas for ultrascale computing. To illustrate the significance of

these issues, we first review the current state-of-the-art in HPC execution of a typical multi-scale

simulation with separated spatio-temporal scales. We then proceed with a review of several real

parallel applications that the authors of this article are working on and discuss the likely impact

that the ultrascale execution paradigm will have on these applications.

Ultrascale computing offers a way to provide sufficient computing resources for a persistent

increase in problem sizes and parameter sets needed to process increasingly larger computa-

tional tasks in a required amount of time. It is general consent that applications will have to be

re-designed or re-programmed substantially in order to perform efficiently on the heterogeneous

hardware and to exploit fully the available technology of ultrascale computing systems [26].

This might require new data structures, new algorithms, or even new mathematics. New pro-

gramming models for flexible coding and performance adaptation as well as more abstract and
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advanced programming interfaces and domain-specific languages might be the key components

for delivering highly sustainable and scalable applications. However, each redesign of an appli-

cation for ultrascale computing systems must take into consideration cross-cutting issues, which

include resilience and fault tolerance mechanisms, handling of data I/O, especially for a growing

amount of data on geographically distributed systems (big data), power management and energy

efficiency as well as programmability and portability with respect to the underlying ultrascale

hardware system.

This article discusses the challenges for achieving ultrascale performance from an application

perspective. The rest of the article is structured as follows: In Section 1 we discuss hardware

as well as software development and program execution issues related to ultrascale computing.

Then, in Section 2 we consider a number of specific applications from different areas and discuss

their potential and requirements for ultrascale computing. Section 2.2.7 concludes the article.

1. Hardware and software issues for programming ultrascale

computing applications

Designing applications for ultrascale computing systems includes a multitude of different

interacting challenges. Firstly, this involves programming of a functionally correct application

software that provides correct simulation results. In this context, it is useful that the appli-

cation is based on a developed mathematical formalism of the scientific problem. A numerical

computation problem, for example, can benefit from algorithms that have proven asymptotic

convergence and provide error estimates. Secondly, the ultrascale application software has to

fulfill non-functional properties, including a large variety of criteria ensuring software efficiency.

There is a whole range of hardware and software issues and challenges associated with

computing on ultrascale platforms. From user’s requirements point of view we emphasize time

constraints (closely related to the total execution time and the reservation of HPC resources),

the energy consumption, resilience (measured as the average time between consecutive failures

within the system), and the impact of speed, security and quality of service of the interconnection

networks. From the user involvement perspective, the productivity, i.e., the effort required to

develop an ultrascale application (either from scratch or adapting an existing application to a

new computing platform) is relevant. This section discusses a number of hardware and software

properties that are expected to be of utmost importance for ultrascale computing.

1.1. Hardware and infrastructure issues

The emergence of new hardware platforms aimed at achieving ultrascale performance in-

volves new heterogeneous technologies, such as accelerators (GPUs, FPGAs, or many integration

core (MIC) architectures), as well as techniques for reducing energy consumption or network

enhancements.

1.1.1. Power consumption and energy efficiency

The reduction and control of the energy consumption per flop (floating-point operation)

is essential for achieving sustainable ultrascale computing. Energy-efficient processors with fea-

tures such as power gating or DVFS (dynamic voltage frequency scaling) are designed to enable

a reduction of the energy consumption at hardware level. These energy-saving hardware features
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are supported at different software levels. At the system software level, appropriate runtime sys-

tems can be developed to map computational parts of an application to hardware resources such

that the overall energy consumption is reduced. The runtime systems are based on suitable load

balancing and scheduling methods with the goal to minimize the resulting energy consumption.

Access to energy-minimizing runtime systems at the application level opens an opportunity for

developing energy-aware ultrascale applications.

As a basis for an energy-efficient mapping of computations to hardware resources, suitable

energy models are required that capture the power and energy behavior of application pro-

grams [83]. These models have to take the computational characteristics of an application into

consideration to provide good estimates for its power consumption on a target architecture.

The availability of suitable energy models is an important requirement to address the energy

behavior of ultrascale systems from the application perspective. Accurate energy models depend

on the identification of the key influencing factors, which is still an open research question.

At the application level, it can be observed that different applications may lead to a dif-

ferent power consumptions, depending on the computational behavior of the application and

the resulting usage of hardware resources [84]. For ultrascale systems, the memory access and

communication patterns will definitely play an important role. The redesign and reimplementa-

tion of the algorithms/codes for ultrascale applications need to address the problem of extensive

communication patterns. In addition, the use of specialised architectures such as FPGAs, which

are known to have favourable flop/Joule ratios [46], can be considered for reimplementing some

frequently used kernels from scientific codes, for example, parts of the linear algebra routines.

1.1.2. Sustainable data storage and data management

Ultrascale applications have a wide variety of data storage and management requirements.

The execution time of traditional HPC applications is typically dominated by floating-point

computations, i.e. they are computationally intensive. An emerging class of ultrascale applica-

tions are big data applications [50, 92, 95], for which the application performance is determined

by the performance of data access operations. Such applications are essential in fields such as ge-

nomics, astronomy, high-energy physics, or data analysis in web-scale companies. Some complex

applications also combine computationally intensive and data intensive parts. Examples from

the life sciences domain include machine learning techniques that process, among other inputs,

high-resolution images.

Computationally intensive applications are typically executed on hardware platforms with

a centralized network-attached high capacity storage system. Such platforms may restrict the

choice of resource allocation for the distributed multiscale applications to be described in Sec-

tion 2. Applications transfer data from the storage system to the compute nodes, execute the

computations, and write the results back to the storage system. The data transfer may be trans-

parent to the applications, or exposed through a library for parallel I/O such as MPI-IO. Since

the execution time is computation bound, the I/O bandwidth does not significantly influence the

application performance. In contrast, data intensive applications require much higher I/O band-

width. To achieve high aggregated I/O bandwidth, the storage can be distributed among the

compute nodes such that the data to be processed is read directly from a local disk. The Hadoop

Distributed File System [90] (an implementation of the Google File System design [35]) provides

such a distributed storage system. Current distributed storage systems such as Spanner [22]

provide data management services for data stored on geographically separated sites.
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Data-intensive applications may be implemented using programming models such as MapRe-

duce [25] or Spark [104], high-level languages such as Pig [76], SQL-like languages such as

HiveQL [96], or libraries such as Mahout [78]. In addition, applications may require services

such as fault-tolerance [25], random I/O [21], low-latency operations [59], iterative computa-

tions [104], incremental computations [39], transaction support [22], or secure data storage.

1.1.3. Self-configurability

FPGA accelerators, being reconfigurable, offer some desirable possibilities for introducing

self-configurability in ultrascale platforms, allowing a flexible re-adjustment of the hardware

features to match the requirements of a particular application. Compared to general-purpose

computers of equivalent performance, FPGAs are characterized by a better performance to

power consumption ratio and lower cost. The combination of a general-purpose processor and

application-specific processors synthesized in a reconfigurable logic with a structure utilizing

features of the executed algorithms allows an increase of the overall performance by orders of

magnitude.

However, FPGA-based accelerators and reconfigurable computer systems (that use FPGAs

as a processing unit) face some typical problems: (1) The process of coding applications requires

a special program to perform computing tasks load-balanced between the general-purpose com-

puter and the FPGAs. (2) FPGAs require designing application-specific processor soft-cores;

(3) FPGAs are only effective for certain classes of problems and data patterns, for which the

application-specific processor soft-cores have originally been developed. Problems related to de-

signing heterogeneous computer systems with hardware accelerators, are discussed in [71].

1.1.4. Interconnection networks

The interconnection network (ICN) is a critical element of every high performance com-

puting system. It strongly determines its overall performance as well as the development and

the operating costs. Enabling future advances in ultrascale computing requires the development

of efficient, flexible, and highly scalable ICNs. The main responsibility of an interconnection

network is to provide fast and reliable data transfer with respect to point-to-point and collec-

tive communication. The requirements for communication performance of the network imply

high and stable maximal bandwidth and low latency. In a contemporary parallel system, the

ICN connects hundreds of thousands of computing nodes. As the amount of computing nodes

increases, the communication traffic and the resulting latency can rise dramatically, resulting

in a degradation of system’s computational performance. In order to overcome the scalability

limitations, the developers usually implement enhanced interconnection networks based on high

radix switches and specially tuned up topologies, routing algorithms and flow control mecha-

nisms. Furthermore, the operating system and the management of the communication between

the processes are highly optimized to efficiently utilize the communicational resources. From

user’s point of view, the underlying structure and characteristics of the network are known and

can be used for optimization of the parallel code. In a sense, it is of paramount importance

for the resulting performance to take the structure of the ICN into account when developing a

specific code for ultrascale systems.

Due to their direct influence on speed-up and scalability, and consequently the run-time and

power consumption of applications, ICNs play an important role in cooperating and coordinating
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ultrascale computing systems. Today the ICN’s performance has the same relevance as the

performance of the CPU because the execution time depends on both communication time

and computation time. The efficiency of most realistic parallel applications is determined to a

large extent by the architecture’s ICN. Matching the application communication patterns to

the architecture of the ICN can shorten the overall execution time and increase the number of

processors that can be efficiently exploited, which both leads to a higher ultimate speedup. The

throughput, performance, low latency and quality of service of the ICNs are crucial for achieving

scalability and good performance when applications are run on federated HPC resources (see,

for example the multi-scale model described in Section 2). The performance of the ICNs for

realistic multiscale applications has been studied in detail in [23].

The performance of ICNs depends on many factors with the three most relevant ones being

topology, routing, and flow-control algorithms. The routing and flow-control algorithms have

advanced to a state where efficient techniques are already developed and used [24]. Many net-

work topologies have already been present since the dawn of parallel computing and are still

widely used. With contemporary standards like Infiniband, vendors and end-users do not have

the possibility to alter the routing and flow-control. Recent initiatives in the Network Functions

Virtualization (NFV) support software-based virtual implementations of networking devices [28]

such as switches, routers, firewalls, traffic analyzers, load balancers, etc. NFV can be easily com-

bined with the concept of Software Defined Networking (SDN), which improves the performance

and manageability of network functions. The end users can apply SDN to define a number of

different topologies, based on an anticipated usage.

A further step towards a performance increase is made possible by an improved ICN topology

or by innovative technological approaches in optical networking, which could solve current ICN

bottlenecks such as message latency and non-efficient collective communication. New approaches

in Networks on Chips (NoC) with high-level node radices will be considered as an option for

further improvement of the performance on the chip level. It is expected that ICNs will be able

to adapt dynamically to the current application in some optimal way in the near future. It is

important to analyze the applications requirements regarding the currently used ICN technolo-

gies in HPC parallel systems [97], focusing on ICNs used in the present top-level systems. Based

on past and present technology trends it is also relevant to establish several proposals for fu-

ture development of ICNs that are expected to fit better the needs of high-performance parallel

computer applications [98] or to be specifically tailored to exascale applications.

Most of the applications from Section 2 are sensitive to the ICN performance because of

underlying matrix operations and advanced data structure with complex, often non-local, data

manipulation. For example, well-known parallel performance degradations that can be observed

for computations with sparse matrices, see Section 2.2.6, could be overcome in part by developing

data traffic models that try to optimize those for frequently used sparse matrix kernels. These

computations are inherently problematic on parallel architectures due to their low computation

to communication ratios.

1.1.5. Cloud computing

The cloud is a type of parallel and distributed system consisting of a collection of intercon-

nected and virtualized compute facilities, which are shared between users and can be used by

a service mechanism. Thus, the cloud can play an important role for ultrascale computing. The

term cloud computing refers both to the hardware and software providing the services and to
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the application software provided as a service over the internet [11]. A network of parallel and

distributed compute facilities belonging to different administrative domains has already been

used in grid computing, which has been successful in scientific applications usually provided as

task applications, scientific workflows, or MPI applications. However, grid computing has also

some disadvantages, such as applications not fitting to those programming models or issues of

being unable to get access to grid infrastructures. Cloud computing aims at solving these prob-

lems by, e.g., providing the entire computing stack from hardware to the application level and

a pay by use basis.

The use of cloud computing for scientific application and high performance is being discussed

and investigated recently. Programming models comprise task models, thread models, MapRe-

duce models, scientific workflows, actor models or the parameter sweep model (PSM) [100].

Popular infrastructures include Amazon EC2, Google App Engine, Microsoft Azure, or Manjra-

soft Aneka. The performance and cost are of specific interest. The Amazon EC2 infrastructure

is evaluated for the scientific code FEFF [85] and for several other scientific workflows [53].

Open-source cloud computing solutions, including Eucalyptus, CloudStack and OpenNebula,

have been studied with respect to their use and performance in geosciences [45]. A recent study

on the application of cloud computing to scientific workflows discusses data intensive appli-

cations [13]. The active scientific discussion of this topic shows that there are very promising

approaches and that cloud computing may play a very important role for scientific applications

in ultrascale computing. The integration of cloud computing and big data is a necessary next

step and first studies are given in [10].

1.2. Program Execution Issues

Program execution issues comprise properties such as scalability, resilience, security, in-

tegrity and privacy of data, which are connected with properties of the actual processing of

applications.

1.2.1. Scalability

Throughout the development history of parallel systems, scalability was one of the pivotal

features, and will remain so when moving to ultrascales. Two aspects of scalability have to

be mentioned. The first one is the scalability of the hardware resources, ensuring that adding

more such resources will allow the maintainance of the system’s properties and operability.

The second aspect is the software scalability, measured as the effect of increased computational

and communication load as well as increased input and output, which can sustain a near-peak

performance. A scalable system should allow an upscaling from few-variable small data sets

on current parallel systems to many-variable large data sets on future ultrascale systems while

maintaining high level system’s efficiency.

Two principal types of hardware scalability can be distinguished: scale-out scalability means

that more compute nodes are added to a system, and scale-up scalabilty means that more

resources are added to a node, where the previously mentioned heterogeneity at micro-level can

play a role [72]. Scalability raises difficult challenges as well in the case of substantial increase

of the size of databases where strong consistency might be needed to be replaced by the weaker

eventual consistency.
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Software scalability captures the behavior of an application on a hardware system with

substantial computing resources on which the application should exhibit satisfactory efficiency

[74]. For HPC systems, software scalability is typically related to the execution time and the

resulting speedup when running the application. We distinguish between strong scaling or fixed

size scalability, capturing the scaling behavior of a problem of fixed size running on increasing

resources, and weak scaling, capturing the scaling behavior when the problem size is increased

in line with the number of computational resources, thus keeping the computational load per

resource, e.g. the CPU core, roughly constant. However, weak scaling is much more relevant for

ultrascale execution. Many applications, such as those presented in Section 2, would struggle to

achieve very good strong scaling beyond hundreds of processors, but with a suitable load per

processor may weakly scale way beyond that. Software scalability is especially important, since

the resources of the ultrascale systems should be used efficiently without a significant re-writing

of the application code when porting it to another hardware platform.

As very different heterogeneous system architectures are expected to become available in the

near future, software adaptivity also plays an important role in the context of ultrascale systems.

Ideally, the application software should be able to adapt automatically or with minimal changes

to a new execution situation on a new architecture and a good scalability may ease this process.

Scalability for ultrascale systems requires novel or improved approaches, such as task-based

approaches or Network Functions Virtualization and Software Defined Networks as previously

discussed in Section 1.1.4.

1.2.2. Resilience

Efficient utilisation of ultrascale computer architectures in scientific computing is restricted

by possible deficiencies in the availability and reliability of the resources. To handle hardware

failures, the software needs fault-tolerance features, such as checkpointing and rollback facilities.

In particular, the possibility of unavailable resources requires that an application has frequent

checkpoints for synchronisation and correctness verification. For example in the case of a mul-

tiscale model described in Section 2, the information exchange points between the models are

the natural choice for checkpointing. Changing of the runtime system configuration caused by

failing processing elements are usually difficult to handle by deterministic numerical algorithms

and require a complete restart of the application. This can be alleviated to some extent by

checkpointing. Efficient mapping of numerical algorithms to high-end architectures should allow

for robust execution in the presence of hardware failures, either by the ability to take preemp-

tive actions before a failure affects a running application, or, by creating a (hardware/software)

fault-tolerant version of the algorithm, capable of recovering the solution within a timescale that

is much shorter than that of re-running the entire application. An example is a fault-tolerant

multigrid solver for exascale computation [47]. In addition, the computational error introduced

by this process should be mathematically bounded, e.g. easy to measure and control. Some al-

gorithms, such as iterative solution methods, can handle a certain amount of (non-repetitive)

hardware failures and regain consistence without requiring any additional hardware features,

see [19] for a more detailed discussion.

Applications for Ultrascale Computing

26 Supercomputing Frontiers and Innovations



1.2.3. Security, integrity and privacy of data

Security, integrity and privacy of data are essential in the development of state-of-the-art

ultrascale computing systems, in particular if these are cloud-based. The intrinsic heterogeneity

of such systems induces flexible and ever-changing structures in the sense of geographical and

logical distribution of the hardware resources, thus allowing scalability of the system to a very

large size. Unfortunately, this architectural concept requires numerous remote data transfers.

The problem is aggravated when we take into account that nodes distributed on different ge-

ographical points could be instructed to execute simultaneously several codes on a given data

set, which is frequently locally stored.

The transfer and storage of data poses security threats, which includes risks involved in

the transfer itself and security risks connected with the enormous scaling of the system. Each

time a new node is connected to the system, the security risks could increase, as the new node

could be infected by an ill-intended code or it could be a Trojan node. Moreover, frequent data

transfers could be intercepted and the data could be stolen and used for unwanted purposes. The

data security, especially in today’s big data world, still remains an open problem. An interesting

concept that is yet to be investigated is to consider whether computations could be performed

on coded data.

1.3. Program Development Issues

Program development may constitute a significant effort, especially for ultrascale systems,

and effective support for reducing program development time is important. In this section, we

discuss the related issues of programmability, portability, and productivity in more detail.

1.3.1. Programmability

Programmability of highly parallel, heterogeneous computing systems is a major concern for

potential applications. It expresses the ability to implement an application in such a way that

ultrascale computer systems can be efficiently exploited to ensure its high-performance execution

and good utilisation of computer resources. The term programmability includes the requirement

for portability, since parts of or the entire application may have to be ported to newer and larger

hardware platforms. Well-established and standardized programming models, such as MPI or

OpenMP, as well as portable libraries or simulation tools are important to support portability. In

the context of grid applications, such as a distributed multi-scale problem discussed in Section 2,

various flexible coupling tools have been developed to couple existing (parallel) single-scale

models. Such coupling tools should be flexible and generic as much as possible, thus minimising

the development effort and maximising software reusability [14, 16].

However, porting codes are usually not enough to achieve high performance and a redesign

or sometimes even a reimplementation of an application might be required. The complex task

of redesigning an application has to be supported by a programming environment and a concise

programming model for ultrascale applications. Such a programming model should provide an

abstract view of the coarse (top-down) structure of an application. The specific way to support

programmability is still to be investigated and proposed solutions may be application-specific.

For example, a formalism based on complex automata was developed for the design of mul-

tiscale models, and a markup language, called MML has been designed to allow their formal

description [15, 44]. The implementations based on the abstract view may include many well-
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known subsolutions and the inclusion of standards, such as MPI, seems reasonable [82]. The

requirement for the support of programmability will be investigated for specific applications in

Section 2. Programmability is also strongly related to productivity in code design for sustainable

ultrascale computing.

Task-based programming approaches in combination with suitable runtime systems can

support the software adaptivity of applications, since the task-based approach allows a hardware-

independent formulation of the application and the mapping of tasks to hardware resources can

be performed by a runtime system so that the resources are efficiently used. The task-based

programming decouples the specification of application’s computations from the actual mapping

to the computing resources. The runtime system can dynamically map tasks that are ready for

execution to the computing resources, thus providing a dynamic load balancing that can adapt to

the current execution situation of the hardware platform. This can help to enable an efficient use

of the computing resources and a good overall scalability of the application, provided that enough

tasks are available for execution at each point in time during the execution of the application. An

example of a high-level runtime system that allows the allocation of federated HPC resources for

distributed component applications, e.g. a loosely coupled multiscale model, is the Application

Hosting Environment (AHE) [38]. Task-based approaches can be used with single-processor

tasks [58], where each task is executed by a single execution unit, or multiprocessor tasks, where

each task can be executed by multiple execution units in parallel [80, 81]. In the latter case,

the actual number of execution units can be adapted to the execution situation at the time of

task execution. Task-based approaches can also be used for balancing load between CPU and

GPU by providing tasks in different versions for different platforms such as CPU or GPU and

assigning a suitable version to the platforms with free resources [66].

The task-based programming paradigm is a promising approach for developing scalable

solvers for ultrascale computers. However, it has to be taken into account that a considerable

number of large real world applications are dealing with parallel algorithms for models based on

partial differential equations (PDE). Parallelization of such algorithms is based on the paradigm

of data parallelism. It is important to investigate whether the existing parallel algorithms can

be redesigned by using the task-based templates (e.g. Monte-Carlo methods).

1.3.2. Portability

The portability of parallel codes and algorithms is an essential issue for any specialist in-

volved in parallel computing and applications. There are two aspects of portability: portability

of functionality and portability of efficiency. Clearly, the portability issues are mainly connected

to selection, definition and continuous improvement of programming languages and standards

such as MPI, OpenMP and hybrid programming MPI+OpenMP. These have served as program-

ming models very efficiently for the last 20 years. Now the situation is changing and new parallel

architectures such as manycores GPU require new ideas and tools, e.g. CUDA. Interesting ap-

proaches in this direction include several new languages that are based on a Partitioned Global

Address Space (PGAS) concept which uses a global address space that is logically partitioned

between the resources such that each resource has a portion of the address space attached to

it to support the locality of memory reference. Languages, such as Cilk, that are based on the

concept of tasks or task-based libraries also provide a useful abstraction that can support the

portability to new hardware systems, see the discussion in Section 1.2.1.
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Another way to provide portability is to use special libraries and templates or macros, well

adapted to some specialized types of problems. This is often done for stencil driven algorithms.

Examples of such libraries and toolkits are PETSc, LAPACK, ML, Hypre, CVODE [3, 4, 6–8].

These software packages are expected to be highly scalable and adaptable when used in ultrascale

systems incorporating different architecture. Due to the portability of the libraries, their use can

increase the portability of application codes. There is an interaction between the development

of scientific libraries and the usage of new programming approaches for the development of

these libraries in the sense that the usage of specific programming approaches influences the

characteristics and the efficiency of the libraries. The third way to provide portability is to

use simulation tools such as OpenFOAM, COMSOL, ANSYS [1, 2, 5], where the portability of

solvers is guaranteed by the developers of the software packages.

1.3.3. Productivity

Productivity refers to the efficiency of implementing applications on specific architectures.

The resulting application should be functional and reasonably efficient. Productivity for ultra-

scale systems involves the effort required to extend existing (parallel) applications to the new

ultrascale systems such that the available resources are sufficiently well exploited. It is clear that

a complete re-architecturing and re-implementation of the application with a new programming

model should be avoided if possible. For large applications, this would be a huge effort even if

large code blocks could be re-used. However, it would be unreasonable to expect that no change

in the software will be required in order to use it efficiently on an ultrascale system. A preferred

scenario involves applications that can be adapted with minor changes to the new platforms.

Another aspect of productivity is the extensibility of the application code to include new features

and functionalities without negative effect on its scalability and efficiency.

The reimplementation effort needs to be sustainable in the sense of making an application

reasonably efficient on various ultrascale architectures. The use of novel task-based runtime

systems which decouple the concerns of the computation specification and its mapping to com-

putational resources can be an important step towards an increase in software development

productivity for ultrascale systems. Productivity is inherently intertwined with other require-

ments discussed in previous subsections. In particular, a good portability as well as a good

scalability of an application code leads to a higher productivity.

Related to productivity are radically new cross-platform software development and perfor-

mance analysis tools aiming at increasing the capabilities of the codes to take an advantage of

the phenomenal power of ultrascale computing platforms. Examples of highly scalable debuggers

that target exa- and ultrascale systems are TotalView and Allinea, that provide troubleshooting

for a wide variety of applications including serial, parallel, multi-threaded, multiprocess, and

remote applications.

Performance analysis of parallel codes is already increasingly difficult at existing scales.

Therefore, novel paradigms and techniques to measure, track, analyse and visualize performance

data are necessary to be developed, in order to facilitate faster and more intuitive analysis of a

wide range of gathered performance data, including execution time, memory system behavior,

power consumption and resiliency to faults.
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2. Some specific applications and implementation requirements

In this section, specific applications are investigated concerning their requirements for ex-

ascale execution, as identified in Section 1. After discussing a prototype multisclae application

in Subsection 2.1, we present several specific applications in Subsection 2.2.

2.1. A prototype multiscale application

Processes and phenomena of interest in many scientific disciplines involve a complex mix

of sub-systems that may operate on inherently different spatio-temporal scales. To model ac-

curately the behaviour of such systems one needs to develop a scheme which would capture

with sufficient detail the contributions of each sub-model, and couple them seamlessly into a

global, computationally feasible system. Such models are commonly referred to as multiscale

models. Multiscale modelling has numerous applications, including astrophysics (simulation of

thermonuclear processes in stars and galaxies [34]), biology (studies of live organisms, span-

ning from genome to the entire population [88]), high energy physics (modelling of the fusion

process and nuclear reactors [41]), engineering (simulations of structures, devices and chemical

processes [69]), environmental science (climate modelling, weather prediction [57]), and material

science (nano-composites [93]), to name a few.

The main components of a multiscale method are the single scale sub-models, the scale

bridging techniques, and the deployment strategies. To emphasize the challenges related to per-

forming computer simulations of a multiscale problem on a ultrascale computing facility we

restrict our attention to a model application involving two single scale sub-models with well sep-

arated spatio-temporal scales. The single scale sub-models are assumed to be implemented as

parallel legacy codes (e.g. using MPI or OpenMP). Putting the single scale sub-models together

is the main algorithmic and software engineering challenge in multiscale modelling. This process

is referred to as the scale bridging. Domain-specific techniques, such as sampling, projection,

lifting, homogenisation (coarse graining), micro-macro coupling are the instances of scale bridg-

ing techniques. In terms of the coupling strategies, we can distinguish between tight coupling

and loose coupling. Tight coupling is a feasible alternative when spatio-temporal scales of the

sub-models are close, or partially overlap. In such cases, monolithic coupling may be an advanta-

geous option [40]. Loose coupling strategies are effective for multiscale models with sub-models

operating on well separated scales. This approach is more flexible in terms of the reuse of legacy

codes for single scale sub-models and their deployment on distributed HPC resources.

At the methodology level there is a number of challenges that are awaiting answers, for

example, finding generic theories and formalisms for model coupling, defining the minimal set of

conservation laws for scale bridging, formulating mathematically rigorous theories for multiscale

modelling, including the error analysis [43]. At the implementation level, scale bridging is usually

handled by the software middleware, commonly referred to as coupling framework [38]. In terms

of the coupling patterns, we can distinguish acyclically coupled simulations, in which the sub-

models (codes) are run sequentially, with the output of one model serving as an input of the other

(i.e. the sub-models are not mutually dependent during the execution), or cyclically coupled,

where a mutual interdependency (a feedback loop) between the sub-models exist. In the latter

case the sub-models can be run either sequentially or concurrently.

Concerning the mapping of computational tasks to a specific architecture, distributed com-

puting strategies are of particular interest for achieving ultrascale performance. An efficient
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mapping of sub-models depends on the software systems that handle the advanced reservation

of federated computational resources, monitor data transfers, and provide easy to use GUI on a

server. An example of such a system is the Application Hosting Environment (AHE) [105].

Next, we discuss how the issues covered in Section 1 affect the execution of a distributed

multiscale application. In terms of the hardware issues, mentioned in Section 1.1, power con-

sumption and energy efficiency can be addressed by deploying single scale applications on the

architectures most suitable for the underlying algorithms (see the discussion in [14]). In this

context, the use of hardware accelerators for certain sub-tasks within single scale sub-models

can be beneficial, providing that the legacy codes support such extensions. Based on the ex-

isting experience, the impact of the interconnections speed on the performance of distributed

multiscale applications is well documented (see [23]) and no drastic change of the behaviour is

forseen. If cross-site applications with significant data traffic are executed, or the applications

have requirements for interactive graphical rendering and steering, the existence of high band-

width, low latency dedicated network interconnects between the HPC sites is one of the crucial

factors for achieving high-performance execution.

In terms of program execution issues, scalability of a multiscale application depends on the

choice of HPC architectures to execute single scale sub-models [14]. This would involve consid-

erations, such as employing data locality when using large data sets (cf. Subsection 1.2.3) and

software licenses. To achieve better scalability of single scale sub-models, some reprogramming

and even redesign of algorithms may be necessary. This also applies to the attempts to improve

the resilience of single scale models, as well as utilize energy saving options if such are provided.

In terms of programming development issues, such as programmability (Subsection 1.3),

and productivity (Subsection 1.3.3), the strategy of using well-established legacy codes, coupled

together with general-purpose coupling frameworks [16], [38] and deployed flexibly on distributed

HPC resources via the virtualisation tools, such as AHE [105] is currently considered to be state-

of-the-art. However, significant programming effort may be needed in some cases to bring the

single scale models to scale well on the emerging ultrascale architectures.

2.2. Scientific Computing applications

In the remaining part of this section we present seven applied problems, that are based

on the solution of discrete systems of PDEs and lead to important classes of supercomputing

applications. During the last few decades computational mathematics and numerical simulations

have been steadily drawing much attention, enabling the development of advanced technologies

and contributing to better understanding of numerous natural phenomena that are not tractable

via classical theoretical research or lab or field experiments. Performing numerical simulation

of very complex physical, biological or social systems enables the society to address important

issues such as identifying environmental problems, improving technological processes, developing

biomedical applications, new materials, etc. In addition, numerical simulations are sometimes

the only viable option in studying large systems, for example when the experiments are too

expensive, time consuming or unethical to perform.

A significant class of mathematical models involves partial differential equations (PDEs),

which are converted into discrete models using some suitable discretization methods such as

Finite Differences (FDM), Finite Elements (FEM), Finite Volume (FVM), Isogeometric Analysis

(IgA), referred to as local methods or as Boundary Integral Methods (BEM), meshless methods or

spectral methods, referred to as global methods. Some combinations of local and global methods
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are also in use. We note that, in general, the local discretization methods give raise to very

large linear algebraic systems of equations with sparse matrices, while the matrices arising from

global methods are much smaller, but dense. The type of discretization method is tightly related

to certain data structures that in turn have a significant impact on the potential performance

of those problems, when implemented on HPC and parallel computer platforms.

The methods of choice for solving large sparse systems of linear algebraic equations are the

iterative solution methods, in particular, the preconditioned Krylov solvers, see [87].

2.2.1. Finite element based supercomputer applications

Problem 1 [FEM]: Nowadays, FEM are considered as one of the leading computational tech-

nologies for continuum (macroscopic) modelling in science and engineering. The advanced FEM-

based simulations are often inter-disciplinary and involve multiple spatio-temporal scales, leading

to practically unlimited requirements for supercomputing resources. The FEM supercomputing

applications are inherently computationally intensive. At the same time, the most frequently

used algorithms and their parallel implementations, are strongly coupled, e.g., via scalar prod-

ucts that entail global reduction operations, causing specific requirements with respect to the

balance between computations and communications. In this context, we focus on topics related

to single process problems (scalar or vector) which could be stationary (e.g. elliptic PDEs) or

time dependent (e.g. parabolic PDEs).

More than 70% of the entire computing time of FEM-based engineering simulations is spent

in solving linear algebra problems. This can be verified by using popular libraries, such as

Trilinos [8] and HYPRE [3]. The included efficient fast parallel preconditioned conjugate gra-

dients type solvers are often of (nearly) optimal complexity, see e.g. the available implementa-

tions of algebraic multigrid (AMG) methods. However, the robustness of these solvers for some

classes of problems is still a challenging problem. As an example, we mention models of strongly

heterogeneous media and/or strong anisotropy, where the well-established solution techniques

face difficulties. The same applies to singular perturbations of the elliptic PDEs, such as the

convection-diffusion problem, which is a major issue in fluid mechanics and transport phenom-

ena.

The efficient implementation of FEM models requires mesh generation and partitioning of

the graph representing the sparsity pattern of the matrices in the resulting linear systems. The

available mesh generators construct a coarse unstructured mesh (for example using Netgen),

which is then refined uniformly in parallel. This is not necessarily a computationally optimal

scenario and adaptive refinement may be a better option, but requires frequent grid reparti-

tioning to preserve the load balance. One potential solution to this problem can be the low

cost mechanism for particle distribution, described in Subsection 2.2.7. The complete parallel

generation of conforming unstructured meshes is still a challenge. The next related problem

concerns the mesh partitioning. To illustrate it, we could refer to the commonly used software

packages ParMETIS and SCOTCH. These packages are based on recursive partitioning strate-

gies balancing the measure of the sub graphs and minimizing at the same time the measure of

the interfaces. In this respect, the quality of the results could be considered as acceptable. The

problem is that the number of the neighbors is not properly controlled which leads to serious

problems mapping the graph of the algorithm onto the graph of the parallel architecture.

The last related comment concerns the more general problem of balancing local and

global communications. For parallel distributed systems with hundreds of thousands of pro-
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cessors/cores, the global communications related, e.g., to dot product, Fast Fourier Transform

(FFT), etc. have become one of the fundamental bottlenecks, indicating that some of the user

communities will have to change their way of thinking. As a consequence, most probably some of

the FFT-based codes will have to be modified to AMG solvers as a way to avoid the transposition

step reducing also avoid the logarithmic factor in the almost optimal order of computational

complexity. Similar to other approaches, AMG may have its own problems when mapped to

an architecture with a large number of processors – recent works aimed at reducing the oper-

ator complexity, improving the quality of interpolation, reducing the communication patterns

at coarse levels, exploring fine-grained parallelism, while retaining numerical robustness are

definitely of interest.

Challenges towards ultrascale FEM applications: The energy efficiency of FEM ap-

plications on ultrascale systems is one of the key challenges. New proper metrics need to be

developed and tuned to get a complex assessment of the related simulators. The fault-tolerance

issues need to be addressed in a proper way at the method, algorithm and software implemen-

tation level. Iterative solvers and the time-stepping algorithms have inherently self-correcting

mechanisms which should be developed further and tuned in the context of ultrascale computing.

The development of specific algorithm-based fault tolerance mechanisms will become increas-

ingly significant with the scale of the computer system. For example, faults that occur in the

parallel geometric multigrid solver are studied in various model scenarios in [47].

The general conclusion is that systematic algorithmic adaptations will be required if antici-

pated ultrascale hardware is to fully utilise its potential for FEM applications. Such algorithms

aim to minimize synchronizations, memory usage, and memory transfers, while extra flops on

locally cached data are almost ”free”, see e.g. [55]. In multilevel/multigrid solvers this could

be achieved by more aggressive coarsening. An important complementary approach is the hy-

bridization of algorithms (including hybrid deterministic-stochastic solvers), aimed at better fit

to the hybrid hardware architecture.

Current experience: The experience of the IICT-BAS team includes FEM supercomputing

simulations of bio-medical, environmental and engineering problems. High parallel scalability

(both, strong and weak) is obtained on heterogeneous Linux platforms, including IBM Blue

Gene/P, HPC CPU clusters, and more recently hybrid CPU/GPU/MIC clusters. The used pro-

gramming methods and environments include C, MPI, OpenMP, CUDA. Among more recently

released libraries for platforms with accelerators, we could mention PARALUTION. More infor-

mation can be found in [74, 75, 79].

2.2.2. Parallel preconditioning of multi-physics problems

Problem 2 [BlockPrec]: Recent advances in computational modelling techniques and the

increasing computing power allow us to tackle complex multi-physics and engineering prob-

lems that involve several unknown physical quantities described by a system of PDEs, such as

thermal convection, fluid-structure interaction, magnetohydrodynamics. Grouping the discrete

unknowns of the same type imposes in a natural way a block structure on the coefficient matrix.

In this context, block preconditioners are commonly deployed to accelerate the convergence of

Krylov solvers. The block structure of the coefficient matrix enables the use of existing precondi-

tioners for the constituent single-physics sub-problems and available software libraries (such as

AMG implemented in Hypre [3] or Trilinos [8]) to solve approximately the scalar subproblems.

Implementing the solution of subproblems using available highly tuned and computationally
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efficient software toolboxes reflects the programmability and productivity issues, highlighted in

Section 1. Block preconditioners also favour local interprocessor communications, as opposed

to long range communications that are prevalent in global multigrid solvers for multi-physics

problems.

Current experience: We have developed the block preconditioning framework (BPF) within

OOMPH-LIB (see http://oomph-lib.org/), an object-oriented multi-physics finite element li-

brary [29, 73, 91]. The BPF facilitates rapid development of new preconditioners, while hiding

the low-level implementation details (including parallelisation). However, the overall parallel per-

formance of any multi-physics solver crucially depends on scalar solvers (usually library codes

produced by third parties), such as algebraic multigrid (AMG). Standard AMG codes, such as

BoomerAMG [3] (developed at LLNL) perform robustly and show good scalability over hun-

dreds of processors. Novel coarsening techniques (PIMS, HIMS, non-Galerkin) and techniques

for enhanced (long-distance) interpolation are designed to reduce communication and enhance

scalability, while retaining robustness, especially for complex diffusion and convection-diffusion

problems.

Challenges towards ultrascale FEM applications: In contrast to the extensive studies

of the numerical properties of these methods, there is comparatively little work on resilience

and energy efficiency of AMG solvers (some recent results are found in [47]). AMG and the

more general multilevel and domain decomposition frameworks are among the most numerically

efficient techniques for solving large scale linear systems with sparse matrices, arising from

discrete PDE models. The numerical efficiency, usually measured in the number of iterations,

required to obtain convergent solution, relates to the underlying hierarchical structure of these

methods, that allows a fast transfer of error information through the utilization of coarse problem

representations. The implementational counterpart of the coarse data structures is the long

range communication, and this is expected to be a serious bottleneck for ultrascale systems.

Local communications are very attractive for massively parallel implementations, however in

general, these do not guarantee sufficient numerical efficiency. Therefore, upgrading the existing

and developing new optimal linear solvers that perform efficiently on ultrascale computers while

satisfying resilience and ennergy efficiency requirements is very relevant.

2.2.3. Numerical solutions of multi-physics problems using Meshless methods

Problem 3 [Meshless]: A common feature of the local discretization methods, such as DFM,

FEM, FVM, IgA, BEM, is that they rely on some discretization mesh and this fact sometimes

poses additional difficulties as resolving complex geometries, adaptive refinements that involve

local mesh refinements and derefinements, large stencils, handling moving meshes to resolve

dynamical interfaces, etc., see Subsection 2.2.1 and [73]. The latter requirements affect the par-

allelization and implementation of these methods on HPC platforms, namely, the load balancing,

the amount of local communications, etc.

A promising alternative to the mesh-based methods is the class of the so-called Local Mesh-

less Methods (LMM), based on scattered discretization points. Of particular interest are the

methods that result in algebraic systems of equations with better conditioned matrices [63].

LMM allow for easy implementation of local refinements and derefinements [61], basis augmen-

tation, increasing approximation quality, treating special features in the problem, such as sharp

discontinues or other intricate situations, which might occur in complex simulations. These po-

tential advantages can be usually accomplished by an increased number of discretization nodes
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to preserve the desired accuracy with additional work in the identification of nearest meshless

nodes that influence the solution [99]. The validation of potential benefits of LMM on ultrascale

architectures remains a significant research challenge [32].

Current experience: A parallel computational framework for solving multi-physics problems

based on LMM has been developed, (see http://www-e6.ijs.si/ParallelAndDistributedSystems/)

providing the possibility to model and perform numerical simulations of problems originating

from molecular dynamics, graph algorithms (clique) and discrete simulations (ECG simula-

tor based on Action Potential in cells), multiple transport equations (heat, bio-heat, solute,

radiation, etc.), multi-phase fluid flow (free fluid, porous media), phase change dynamics on

micro-macro levels, drift-diffusion equations (semiconductor simulations) [62], r-adaptive dy-

namic nodal distributions, all on non-uniform domains. The code is parallelized and can be

efficiently executed on multi-core computers and distributed systems [60]. The communication

issues have been studied and tested on an in-house computing cluster. The solvers are cou-

pled with an evolutionary multiobjective optimization package for automatic optimization of

parameters. The local meshless code could be extended to exascale range and could be used for

performance benchmarking on novel ultrascale hardware platforms.

2.2.4. Earth Sciences Applications

Problem 4a [GEO1]: Earth sciences include a number of scientific disciplines such as geology,

geophysics, ecology, hydrology, oceanography, climatology etc., that are relevant for the living

conditions of human society, the extraction of raw materials and circulation of wastes. Earth

System Science mixes together physics, geology, geophysics, engineering, chemistry, mathemat-

ics and computations to study interconnected systems operating on extreme time and spacial

scales where small-scale heterogeneities affect large-scale phenomena (see also the discussion

in Section 2.1). The scientific research accommodating these scales pushes and challenges the

frontiers of numerical and computational methods [31, 49, 103].

The complexity of physical, chemical and biological processes, as well as the volume of

data structures makes the HPC an imperative for the analysis, modeling and simulation of the

underlying processes. For such problems, where experiments are impossible, the extreme-scale

computer simulations can enable the solution of high resolution models and the analysis of very

large data sets, including: regional climate changes (sea level rise, drought and flooding, and se-

vere weather patterns). Climate models, developed through decades, have over one million lines

of code. At the same time the architectural changes of the computer platforms need more sophis-

ticated algorithms and computer techniques [12, 51, 52], in order to utilize fully the computing

power provided by the new hardware. Oceanographic, atmospheric and climate simulations are

typical examples of applications that require HPC to process a huge volume of data (for example,

the analysis of remote sensing data in space-time domains to evaluate environmental changes

and predict their future evolution) [9, 68, 101]. Moreover, such an analysis must be coupled with

the simulation of related environmental processes and interfaced with human activities.

A particular instance of Earth science applications is geophysical modelling and inversion.

A related work within the FP7 project HP-SEE on ”Geophysical Modeling and Inversion” is

performed in the Center for Research and Development in IT of the Polytechnic University of

Tirana in collaboration with specialists from the Faculty of Geology and Mining and of the

Academy of Sciences in Albania. It illustrates the scalability of geoscience applications in HPC

systems and the need for ultra-scale computing in order to cope with high resolution models
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required for regional and local scientific and engineering studies. The project targets inverse

problems, related to gravity anomalies using approximation based on relaxation methods with

runtimes in the range of O(N8) where N is the spatial resolution in one dimension. Geosections

are represented by 3D matrices, the structure and density of which changes during iterations.

Due to 2D to 3D mapping, the problem is, in general, very ill-conditioned.

Current experience: The implementation has been developed in C with MPI and OpenMP.

Tests have been performed on the HPCG Cluster at the Institute of Information and Com-

munication Technologies, Bulgarian Academy of Sciences, and the SGE system of the NIIFI

Supercomputing Center at University of Pécs, Hungary, with up to 1000 cores. It was possible

to achieve in a reasonable runtime a resolution with N = 80 nodes corresponding to a spatial step

of 50 meters. This may be sufficient when simulating gravity effects but the resolution should

be much higher when studying other geophysical phenomena of interest, for instance, searching

for 2D structures with thickness of the order of one meter in a complicated heterogeneous and

partially anisotropic medium for applications in other areas, such as magnetism and electricity.

The implementation maintains a balance between energy consumption and network commu-

nications. To facilitate this, each process on the individual cores does some redundant compu-

tations, thus reducing the communication at the expense of the increased energy consumption.

Problem 4b [GEO2]: Another example of a geophysical application problem that is of signifi-

cant importance and a potential impact for our society is the so-called glacial isostatic adjustment

(GIA) that comprises the response of the solid Earth to redistribution of mass due to alternating

glaciation and deglaciation periods. The processes that cause subsidence or uplift of the Earth

surface are active today. To fully understand the interplay between the different processes, and,

for example, be able to predict how coast lines will be affected and how glaciers and ice sheets

will retreat, these have to be coupled also to recent global warming trend and melting of the

current ice sheets and glaciers world wide.

Due to the extreme space and time scales involved (the simulations should be performed

on the Earth globe for time periods of about 100000 years) the GIA processes can only be

studied via computer simulations. A detailed model of the phenomena includes three-dimensional

geometry, viscoelastic and inhomogeneous material behavior, self-gravitation effects, modelled

via a coupled system of partial differential equations.

Current experience: Presently, at the Division of Scientific Computing, Uppsala University,

a two-dimensional benchmark, often used by the geophysicists, has been studied from a point

of view of accuracy as well as regarding numerical and computational efficiency. The problem

is discretized using FEM and performance studies have been done on CPU and GPU platforms

using OpenMP and MPI paradigms (cf. [27]). The long-term aim is to couple GIA modeling

with other large scale models, such as Climate and Sea-level changes, Ice modeling etc.

Problem 4c [GEO3]: Massive paralleism can be achieved when simulating environmental

systems, for instance studying surface water - groundwater interactions. The HydroGeoSphere

(HGS) software package ( [17]) is an advanced tool, allowing for modelling physics-based interac-

tions and feedback mechanisms between the two compartments. HGS is a numerically demanding

code implementing a 3D control-volume finite element hydrologic model with a fully integrated

surface-subsurface water flow and solute, including thermal energy transport.

The model parameters employed in HGS need to be calibrated in order to adequately rep-

resent a given environmental system. So-called data assimilation systems provide an alternative

to conventional model calibration systems: they allow sequential update of system states and
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model parameters whenever new data becomes available, thus guaranteeing a continuous im-

provement of the predictions. The Ensemble Kalman Filter (EnKF) [33] allows to quantify the

prediction uncertancies, thus providing an optimal data assimilation mechanism in conjuction

with HGS and the environmental data. The prediction provided by an EnKF-based simulation

is then represented by the statistical moments of the ensemble of realizations. Such modelling

systems are ideal for parallel processing, due to the high number of required simulations, and

the readjustment and the recalibration of the model parameters allowed by the EnKF data

assimilation technologies.

Current experience: At the University of Neuchatel, a cloud-based environment (OpenStack,

AWS S3 compliant object store) has been developed to provide near-real-time re-adjustment of

system states and re-calibration of model parameters whenever new monitoring data becomes

available [65, 67]. When simulating larger fine grained HGS models, parallelization is essential

because tightly-coupled highly-nonlinear partial differential equations are solved. The target

parallelization includes the assembly of the Jacobian matrix for the iterative linearization method

and the iterative solution method, in this case the preconditioned BiCGSTAB method, [48].

Performance studies of linear solvers are currently undertaken on CPU and GPU using OpenMP

and MPI paradigms.

2.2.5. OpenACC acceleration for Nek5000: spectral element CFD code

Problem 5 [CFD]: This application targets problems in Computational Fluid Dynamics

(CFD), in particular, very large scale simulations of incompressible flow problems, efficient

and robust solvers for the arising linear systems and achieving high performance efficiency on

heterogeneous HPC platforms.

Current experience: At present, the numerical simulations are performed using Nek5000 –

an open-source code for simulating incompressible flows and its discretization scheme is based

on the spectral-element method [37, 70]. In this approach, the incompressible Navier-Stokes

equations are discretized in space by using high-order, weighted residual techniques employing

tensor-product polynomial bases.

The code is widely used in a broad range of applications and more than 200 users are using

Nek5000 in the world. Within the EU project CRESTA (Collaborative Research into Exas-

cale Systemware, Tools and Applications), PDC-HPC at KTH Royal Institute of Technology

mainly focuses on software challenges using hybrid computer architectures with accelerators for

ultrascale simulations in collaboration with KTH Mechanics, EPCC, Cray UK and Argonne Na-

tional laboratory. We have ported the CFD code Nek5000 on massive parallel hybrid CPU/GPU

systems and presented a case study of porting simplified version, NekBone, to a parallel GPU-

accelerated system. We reached a parallel efficiency of 68.7% on 16,384 GPUs of the Titan XK7

supercomputer at the Oak Ridge National Laboratory. Currently the full Nek5000 code is ported

and optimized to multi-GPU systems and can run on 1,024 GPUs. The application is written

in mixed C/Fortran and requires a system with multi-GPUs.

As discussed in Section 1.3, a particular attention should be paid to portability and pro-

ductivity of ultrascale applications on heterogeneous HPC architectures. Productivity will be

decreased if codes are rewritten in a low-level language such as CUDA for GPU accelerator

systems. With the OpenACC [77] compiler directives, to port Nek5000 to GPU systems only

requires a few additional command lines of code [70].
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Nek5000 employs a multigrid preconditioner that combines the Schwarz overlapping method

with subdomain solvers based on the fast diagonalization method. A sophisticated multigrid pre-

conditioner is expected to reduce the global solution time when the Nek5000 code is ported to

multi-GPU systems. For further improvements we intend to investigate the efficient precondi-

tioner discussed in Section 2.2.2.

2.2.6. The EULAG numerical model

Problem 6 [STENCIL]: The EULAG model [86] is an ideal tool for performing numerical

experiments in a virtual laboratory using time-dependent 3D adaptive meshes and complex,

time-dependent model geometries. The flexibility is due to the unique model design that com-

bines the nonoscillatory forward-in-time (NFT) numerical algorithms and a robust elliptic solver

with generalized coordinates. The code is written as a research tool with numerous options con-

trolling the numerical accuracy, and allows for a wide range of numerical sensitivity tests. The

computational core of EULAG consists of two main parts: MPDATA advective transport algo-

rithm [94] and the Generalized Conjugate Residual (GCR) elliptic solver [18] with the Thomas

preconditioner. A more sophisticated preconditioner could be used in this context, see Sec-

tion 2.2.2.

When implementing the EULAG model, the most time-consuming parts correspond to

stencil-based computations. The suitability of stencil-based computations for ultrascale sys-

tems is studied in [56] for the CFD simulations on clusters with GPU nodes and in [102] for

mesoscale atmospheric modeling on the Tianhye-2 system with Intel Xeon Phi co-processors. In

the multi-GPU implementation, the PCI Express bandwidth and synchronization overheads are

among the main bottlenecks. An important observation for this rather complex code is that the

operations performed at the subdomain boundaries are currently performed much slower than

fast stencil operations in the subdomain interiors, which restricts the overall code performance.

In line with this observations, the algorithm proposed for Tianhye-2 is simplified as much as

possible, allowing to achieve weak scaling efficiency up to 6,144 nodes, with over 8% of the peak

performance in double precision.

Current experience: The development of the model and the implementation are a collabora-

tive effort between the Czestochowa University of Technology, Poznan Supercomputing and the

Networking Center, Institute of Meteorology and Water Management in Warsaw. The code is

ported to multi GPUs and multi Intel Xeon Phi platforms [86, 94]. The application is written

in C++/Fortran using CUDA, OpenMP and MPI standards. It requires a cluster with nodes

containing NVIDIA GPUs or Intel Xeon Phi co-processors. The application is optimized for

Fermi and Kepler GPU architectures, as well as Intel MIC architecture. Memory requirements

include about 20 GB of HDD (for input and output data), and about 16 GB of RAM per node

and about 8 GB of inter co-processor memory.

The performance of the EULAG system within a single node of cluster is mostly limited by

the low flop-per-byte ratio of computation - less than 1.7 for MPDATA, and even less than 0.2

for the GCR solver, while the minimum flop-per-byte ratio required e.q. by NVIDIA Tesla K40m

to achieve the maximum performance is 5.2. The main constraint for providing scalability of the

application across cluster nodes is the presence of global communications in the GCR elliptic

solver. As already pointed out, this is the crucial bottleneck for all sparse matrix calculations –

a low computation to fetch ratios, made even worse on multicore architectures where multiple

cores have common fetch buses.
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2.2.7. Particle–In-Cell method for particle distributions – Helsim

Problem 7 [SPACE]: Space weather refers to conditions on the Sun, in the interplanetary

space and in the Earth space environment. These conditions can influence the performance and

reliability of space-borne and ground-based technological systems, and can affect human life or

health [54].

Astrophysicists researching space weather are interested in the behavior of plasma, a high

energy and highly conductive gas, where the atoms have been broken into their nuclei and their

freely moving electrons. To study the small-scale plasma behavior, necessary to understand its

kinetic effects, the Vlasov equation, self consistently coupled with Maxwell’s equations, needs

to be solved [64]. This is commonly solved using the particle-in-cell (PIC) method [42]. In PIC,

individual macro-particles in a Lagrangian frame, that mimic the behaviour of the distribution

function, are tracked in a continuous phase space. Moments of the distribution function, such

as charge densities for plasma physics simulations, are computed simultaneously on an Eulerian

frame (fixed cells).

Current experience: The software package Helsim implements an explicit three-dimensional

electro-magnetic PIC simulation. It was developed in the ExaScience Lab in Leuven, Belgium,

with contributions from many partners in the project. A particular care of load balancing is taken

in Helism, which allows the simulation of experimental configurations with highly non-uniform

particle distributions. Moreover, Helsim includes interactive in-situ visualization capabilities.

Helsim uses the Shark Library [20] 15 to store all distributed data structures, including

the particles and the various grids. Shark is a high-level library for programming distributed

n-dimensional grids in a highly productive manner, aiming to improve programmability and

productivity while remaining portable (see Section 1.3). Broadly speaking, Shark manages the

bookkeeping and the distribution of grid data structures, and offers specific computation and

communication operations to work with the grid data. It extensively uses C++ constructs, such

as lambda-expressions, to make the work with distributed n-dimensional grids easy. The Shark

runtime system manages parallelism on three levels, which are common in today’s multicore

cluster architectures: distributed memory parallelism using one-sided communication from MPI

2/3; shared memory parallelism using a thread scheduler such as OpenMP, direct Pthreads, Intel

Threading Building Blocks (TBB), and others; and SIMD vector instructions using compiler

auto-vectorization, assisted with pragmas. The work on Shark continues in the context of the

FP7 project Exa2ct, where we are integrating with the GASPI/GPI (Global Address Space

Programming Interface) 16.

Specific for Helsim, when compared to other PIC simulators, is that particles are evenly

distributed over the cluster such that each core holds the same amount of particles, stored

according to the cell they belong to. As particles move throughout space during the simulation

a low-cost, lightweight mechanism is used to adjust the particle distributions. It was initially

opted for this dedicated mechanism but it could be worthwhile to use (or at least get inspiration

from) grid or mesh partitioning techniques as discussed in Section 2.2.1.

The 3D fields (electric field, magnetic field, etc.) are block-distributed over the cluster,

completely decoupled from the particle data structures. When particle information is propagated

to the fields (charge density and current interpolation), and vice versa (interpolating the electric

and magnetic fields to particle positions) each core uses a local representation of the grid in

15Freely available on github: https://github.com/ExaScience/shark
16See http://www.gpi-site.com/gpi2/gaspi/
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order to be able to work locally and overlap computation with communication (updating the

actual distributed grid). When done, this local information is then propagated to (and merged

with) the distributed grid.

The current version of Helsim uses a fairly simple CG solver but we are currently integrating

the state-of-the-art pipelined CG solvers developed at the lab [36]. It may be worthwhile to

explore whether preconditioning techniques might help even more, see Section 2.2.2.

Helsim also features in-situ visualisation that runs in parallel with the simulation, directly

using the data from the simulation, using a custom distributed raycasting engine. Helsim was

run on up to 32 thousands cores on the Curie T0 System in France, as well as on various smaller

clusters. The primary goal is to increase weak scaling (see 1.2.1), which is important to be able

to tackle ever larger simulations. Helsim was developed at the ExaScience Lab, a collaboration

between Imec, Intel, and all five Flemish universities.

Conclusions

We have put forward a number of hardware, software and program execution issues which

will, in our opinion, influence the development and upgrades of computing applications for future

ultrascale architectures. In this context, a prototype multiscale application and seven specific

simulation applications from science and engineering serve as a testbed for a discussion on their

current state-of-the-art and their future development directions, based on current experience.

Although each of the applications has specific demands for porting to ultrascale systems, a

pattern favouring coupled applications of increasing complexity and size as candidates for ul-

trascale execution, is clearly emerging. This means that future computational power will be

used for advanced applications simulating increasingly complex phemonena, while reusing the

existing single scale/physics models. Thus, it seems important to invest an effort into support

for programmability enabling the porting of legacy codes into a single application that couples

well-established sub-models. A variety of general or domain-specific well-established coupling

platforms already exist, and it is timely to provide the standardization, which would support

productivity for the application programmer. Full and proper understanding the algorithmic or

mathematical model behind the coupling is essential for the standardization process, which is

currently restricted to single coupled simulation codes. Mathematical standardization of model

coupling would help to create more accurate and computationally efficient ultrascale applica-

tions. In summary, there seems to be a high potential for future ultrascale applications from

the simulation problem point-of-view. A challenging task is the integration of the cross-cutting

concerns, fault tolerance and reduction of the energy consumption. An open research question is

whether these issues should be included into the simulation algorithm or being solved separately.

The work presented in this paper has been partially supported by EU under the COST pro-

gramme Action IC1305,“Network for Sustainable Ultrascale Computing (NESUS)” and is co-

authored by members of the Working group 6 on Applications of this action.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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