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This paper is concerned with developing the methods for solving inverse problems of low-
frequency ultrasound tomography under scalar wave models using supercomputer technologies.
Unlike X-ray tomography, the inverse problem considered is posed as a problem of minimizing a
non-convex residual functional. The multistage iterative method (MSM) is proposed as a method
for obtaining an approximate solution to the inverse problem. Convergence of the method to the
exact solution is achieved via the use of low-frequency sounding signals at the initial stages of the
iterative method. The method is illustrated on model problems focused on ultrasound tomographic
diagnostics of soft tissues in medicine. Finite-difference time-domain method is used to solve the
wave equation, which accounts for most of the computational complexity of the method. The
multistage method reduces the computation time, since the initial stages use low-resolution finite
difference grids. The effectiveness of the MSM method is investigated on GPU and SIMD-capable
CPU computing platforms. Numerical simulations showed that modern processors equipped with
AVX-512 FPUs are capable of solving small-scale problems of wave tomography. For large-scale
tasks, GPUs equipped with fast on-board memory are preferred. The numerical algorithm is
data-parallel and well-suited for GPU architecture. The proposed method can be used in medical
imaging and nondestructive testing applications.

Keywords: ultrasound tomography, coefficient inverse problem, gradient method, numerical
simulation.

Introduction

At present, it is hard to imagine a field of science or technology where tomographic imaging
is not used. First tomographs that appeared in the middle of the latest century used X-ray
radiation. However, the history of tomography can well begin at the beginning of the latest
century, when X-rays have been discovered (Nobel Prize of the year). At the same time, Radon’s
solution of the inverse problem of reconstructing a function of two variables given its linear
functionals has been published [1]. This result essentially solved the mathematical problems of
tomography in a linear model. However, it took humanity half a century of intensive scientific
research to develop first X-ray tomographs.

Currently, various tomographs (X-ray, MRI, positron emission tomography) are widely used
in medicine, science and technology. All these technologies are united by the fact that, from a
mathematical point of view, the problems of interpreting the data of tomographic experiments are
inverse problems that can be solved within the framework of linear mathematical models. Solving
such problems does not presently pose serious mathematical concerns. Personal computers are
sufficient for data interpretation in a linear problem.

At the end of the latest century, it became possible to research a very interesting field of wave
tomography, which employs ultrasonic, electromagnetic, seismic or optical radiation for sounding.
For all these problems, it is necessary to use nonlinear mathematical models to interpret the data
of tomographic experiments.

The progress in wave tomography developments has been driven by several factors. The
first is the development of modern methods for solving inverse problems. First results obtained
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by Academician Tikhonov in the 60s [2, 3] were continued in the works of his students and
followers [4–6]. By the end of the nineties, exhaustive results had been obtained in the field of
solving ill-posed linear and nonlinear problems. Tikhonov brought the concept of a regularizing
algorithm as a method for the approximate solution of the inverse problem. Within the framework
of this concept, effective numerical methods have been developed for solving a wide range of
problems in mathematical physics [7–11]. Important results were obtained in the field of using
iterative schemes for the approximate solution of nonlinear inverse problems [5]. Intensive research
was carried out in the field of solving coefficient inverse problems of mathematical physics [12, 13]
Fast-growing supercomputer technology was another factor that contributed to the development
of wave tomography. The solution of inverse problems under the wave model requires ample
computational resources due to large problem dimensions and its nonlinearity. It is impossible
to solve inverse problems of wave tomography without the use of supercomputers [14, 15].

In short, the situation with wave tomography at the moment can be characterized as follows.
Most works on wave tomography consider scalar wave models that take into account the effects
of diffraction, refraction, and even multiple scattering. The inverse problem in this case can
be posed as a problem of minimizing the residual functional between the experimental data
(measured wave field at the detectors) and the wave field computed using the mathematical
model of wave propagation. The most important recent result in wave tomography is the ability
to calculate the gradient of the residual functional explicitly [16–18]. This result makes it possible
to use gradient-based methods for minimizing the residual functional to obtain an approximate
solution to the inverse problem. Since the functional is not convex and has local minima, the
problem of finding the global minimum of the functional arises. Despite the large number of works
on this topic [19–21] this problem is unsolvable in a general case. In this paper, it is proposed to
narrow the search area using additional information in order to find the global minimum of the
residual functional.

Using additional information in solving inverse problems is not a new approach. In [4, 5]
it was proposed to use such information about the sought-for functions as their monotonicity
or convexity for constructing approximate solutions to ill-posed problems. In a finite-difference
approximation, the problem reduces to minimizing a functional on a convex polyhedron with
known vertices. Effective numerical algorithms have been developed for this approach.

To solve the problems of wave tomography, the authors propose a multistage iterative method
(MSM) that uses additional prior information specific to these inverse problems. As a possible
application of wave tomography, medical tomographic imaging for differential diagnosis of breast
diseases is considered. Several groups of researchers are intensively working in this field [22–24].
These developments are currently at the stage of prototypes. At the moment, the main problem is
constructing effective algorithms for data interpretation. This paper demonstrates that MSM can
effectively find an approximate solution to inverse problems of tomographic image reconstruction
in application to medical ultrasound imaging of soft tissues. The question of choosing the optimal
computing platform for the proposed method is discussed.

Developing ultrasound tomography devices is a challenging task. A natural question arises:
what advantages ultrasound tomography can provide in comparison with existing diagnostic
methods. Let us try to give an answer to this question using the example of medical diagnostics,
where ultrasound devices have been successfully used for a long time. To discuss the problem
more specifically, we will narrow the field of medical diagnostics to soft tissue imaging. Unlike
conventional ultrasound instruments, ultrasound tomographs can characterize the inspected tis-
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sues. Just as in X-ray tomography, the doctor can obtain the value of the sound wave velocity
at any point of the image. This result opens up the possibility of classifying neoplasms by the
speed of sound in them. Neural networks can automate the tissue classification process [25]. Why
cannot this be done using standard ultrasound diagnostic devices? Both X-ray and ultrasound
tomography employ sounding waves transmitted through the object. Conventional ultrasound
instruments detect only reflected waves, and this information is principally insufficient for tissue
characterization. Finally, unlike X-ray tomography, ultrasound tomography is completely safe
and therefore can be used for regular screening.

The article is organized as follows. Section 1 describes the inverse problem of wave tomogra-
phy and the solution method. In Section 2 we introduce the proposed multistage iterative method.
Section 3 describes the finite difference numerical method employed in the solution algorithm,
Section 4 describes the parallel implementation of the solution algorithm. Section 5 compares the
performance of the algorithm on various CPU and GPU computing systems. Section 6 presents
model problems to demonstrate the proposed multistage method. Conclusion summarizes the
study and points directions for further work.

1. Formulation of the Inverse Problem of Wave Tomography
and its Solution Method

In this study, we consider the waves described by the scalar wave equation. In the scalar
model, the scalar wave field u(r, q, t), which represents the acoustic pressure, can be computed
from the given initial data using the equation

c(r)utt(r, q, t)−∆u(r, q, t) = δ(r − q)g(t) (1)

u(r, q, t = 0) = ut(r, q, t = 0) = 0. (2)

Here, c−0.5(r) = v(r) is the speed of sound in the medium, r ∈ R2, ∆ is the Laplacian
operator with respect to r, δ is the Dirac delta function, which defines a point source at q. The
sounding pulse emitted by the source is described by function g(t). Short broadband sounding
pulses with a useable frequency range of 100–600 kHz and a duration up to 50 µs can be used
for sounding in medical ultrasound tomography. The sounding pulses are further discussed in
Section 6.

Detectors

Emitters

Object

G

S

Figure 1. Ultrasound tomographic imaging scheme
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The inverse problem of ultrasound tomography can be formulated as follows. Figure 1 shows
the scheme of ultrasound tomographic imaging. The object with an unknown speed of sound
v(r) occupies region G. The object G, emitters and detectors of ultrasound are placed in a
homogeneous medium with a known speed of sound v0 = c0

−0.5 = const. The emitters are
located at coordinates qj . A total ofM emitter positions j = 1, . . . ,M are located around region
G. Measurements of the wave field u(r, q, t) are taken on a circle S surrounding region G.

Function g(t), which describes the sounding pulse, is known. In the inverse problem, the
objective is to determine an unknown function v(r) at r ∈ G, using experimental data U(s, qj , t)

obtained at the boundary S (s ∈ S) for emitter positions qj , j = 1, . . . ,M . Thus, the wave field
u(s, qj , t) from equations (1)–(2) satisfies the following equation for all emitter positions qj :

u(s, qj , t)|s∈S = U(s, qj , t). (3)

The system of equations (1)–(3) defines the inverse problem. Thus, solving inverse problem
of ultrasound tomography in the scalar model involves reconstructing the unknown wave velocity
v(r) in region G according to equations (1)–(3).

The residual functional Φ(c) of the argument c(r) is the difference between the experimental
data and the data computed from equations (1)–(2). The residual functional for a computed
wave field on the boundary S determined by a given speed of sound c(r) can be written as

Φ(c) =

M∑

j=1

1

2

T∫

0

∫

S

(u(s, qj , t)− U(s, qj , t))
2 dsdt. (4)

Here U(s, qj , t) are the experimental data on the boundary S for the time interval (0, T ),
and u(s, qj , t) is the wave field obtained via solving the direct problem (1)–(2), which depends on
the specified coefficient c(r). For multiple sounding wave sources, the residual functional is the
sum over j = 1, . . . ,M of the residual values obtained for each source. For each fixed source j,
the integral is summed over time (0, T ) and over the boundary S – for all the detectors receiving
the signal from the selected source. Mathematically, the inverse problem is posed as a problem
of finding a function c̄(r) that minimizes the residual functional (4) c̄(r) : min

c(r)
Φ(c) = Φ(c̄) The

c̄(r) function is taken as an approximate solution to the inverse problem. Gradient methods have
proven effective for minimizing the residual functional Φ(c). A rigorous mathematical formulation
for the gradient of the residual functional has been obtained in [17, 18, 26]. The gradient of the
functional (4) has the form

Φ′(c) =

M∑

j=1

T∫

0

1

2
wt(s, qj , t)ut(s, qj , t) dt, (5)

where u(s, qj , t) is the solution of the main problem (1)–(2) and w(s, qj , t) is the solution of the
conjugate problem (6)–(7). Both solutions depend on c(r) coefficients [14, 18].

c(r)wtt(r, qj , t)−∆w(r, qj , t) = u(s, qj , t)− U(s, qj , t)|s∈S , (6)

w(r, qj , t = T ) = wt(r, qj , t = T ) = 0. (7)

The inverse problem of wave tomography in the considered formulation is a nonlinear coeffi-
cient inverse problem. In nonlinear problems, typically, the residual functional (4) is not convex,
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which means that the functional may have local minima. As a consequence, gradient methods
for minimizing the residual functional from an arbitrary initial approximation may converge to
a local minimum, but not to the global one.

2. The Main Idea of the Multistage Method for Obtaining
Approximate Solutions to Nonlinear Inverse Problems
of Ultrasound Tomography

As shown in Section 1, inverse problem of ultrasound tomography can be solved by minimiz-
ing the residual functional (4), which may have local minima. There are many works concerned
with finding global minima of functionals. However, this problem has no solution in a general
case. In problems of wave tomography, an important prior information is present, which is that
the area of convergence of iterative processes of minimizing the residual functional strongly de-
pends on the wavelength of the sounding radiation. If the central frequency of the sounding
pulses tends to 0, then passing to the limit in equation (1) reduces it to a linear integral equation
with respect to the unknown function c(r). This idea of using linear models in problems of wave
diagnostics is actively discussed in [7, 27–30].

It would seem that this result opens up wide possibilities for solving inverse problems of
nonlinear wave tomography, but this is actually not the case for several reasons. The first reason
is that in real ultrasound imaging, the center frequency of the sounding wave determines the
resolution, and generally all medical ultrasound devices have center frequencies of 1 MHz or
higher. It is not possible to obtain experimental data in the frequency range close to zero.

The second reason is that the experimental data are measured with some error. In order to
use the linear approximation, it is necessary to calculate the second derivative of measured wave-
forms, which is poorly conditioned. Nevertheless, the idea of using low frequencies in problems
of ultrasound diagnostics is fruitful, and this idea is used in the proposed multistage iterative
method (MSM) for obtaining an approximate solution to the inverse problem of ultrasound
tomography.

In this article, the capabilities of the MSM method are illustrated using the problems of
ultrasound tomographic imaging of soft tissues in medicine, namely, breast imaging. The problem
of early-stage breast cancer diagnosis is one of the most important problems of modern medicine.
A characteristic feature of soft tissue imaging is that the difference between the speed of sound
in soft tissues and the speed of sound in surrounding water v0 is quite low and does not exceed
15%. It seems natural to use the known speed of sound v0 in a homogeneous medium surrounding
an object in region G as an initial approximation in iterative processes. However, as it will be
shown via numerical simulations, the choice of an initial approximation in the form of a constant
v0 in nonlinear problems does not guarantee convergence to the global minimum of the residual
functional.

Multistage iterative method (MSM) proposed in this study for solving coefficient inverse
problems of ultrasound tomography ensures convergence of the gradient descent algorithm to the
global minimum. By increasing the mean wavelength of the sounding signal we expand the range
of initial approximations from which the gradient descent method of minimizing the residual
functional converges to the global minimum. This idea is at the heart of the MSM method, and
it is demonstrated in this study on a large number of model problems that simulate the problem of
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ultrasound tomographic imaging for breast cancer diagnosis for various configurations of objects
and sounding pulses.

In a practical implementation of the MSM method, experimental data for two (or more)
frequency bands with different central frequencies f1 and f2, f1 < f2 are used. First, the inverse
problem is solved via an iterative gradient descent method for minimizing the residual functional
using the lowest frequency band f1. The initial approximation is chosen as a constant equal
to the speed of sound v0 in the environment. Then, at the second stage, the inverse problem is
solved via an iterative method using a higher frequency band f2. The result of solving the inverse
problem at the first stage at a lower frequency f1 is used as an initial approximation of the speed
of sound for the gradient descent method at the second stage.

The described scheme of MSM method application consists of two stages. In a real situation,
it may be necessary to apply several successive stages for three or more frequency bands. The
number of stages depends on the task of ultrasound tomography considered. It is important that
at each stage the initial approximation is close enough to the point of the global minimum of
the residual functional for the frequency band used at that stage. Numerous model calculations
have shown that a five-stage method is optimal for tomographic imaging of soft tissues with
low-frequency ultrasound in the 100 – 600 kHz band. To ensure the convergence of the MSM
method to the exact solution of the inverse problem, the first stage should be carried out using a
wavelength λ = 12 mm (the central frequency of the pulse is 125 kHz). Subsequent stages were
carried out using wavelengths of 8, 6, 4 mm, and the last stage uses λ = 3 mm (500 kHz). The
wavelength of 3 mm provides a high spatial resolution of the method – 1–1.5 mm in application
to soft tissue imaging.

The following model problem illustrates the capabilities of the MSM method. The parame-
ters of model problems correspond to breast ultrasound tomography. The variation of the speed
of sound in model problems does not exceed 15%. In order to ensure the convergence of the iter-
ative process, the developed methods of ultrasound diagnostics use significantly lower sounding
frequencies compared to conventional medical ultrasound devices.

The following parameter values were used in the numerical simulations. The speed of sound
in the medium surrounding the object is v0 = 1.5 mm/µs (water), the speed of sound in the
object varies from 1.4 mm/µs to 1.7 mm/µs. The calculations were carried out for five frequency
bands with central frequencies of 125, 188, 250, 375 and 500 kHz (mean wavelengths of sounding
pulses equal to 12, 8, 6, 4 and 3 mm, respectively). The size of the two-dimensional computational
domain was 25×25 cm, the size of the finite difference grid for the 500 kHz band was 1600×1600

points, for the 125 kHz band – 480×480 points. In the calculations, the sources and receivers were
located around the object. There were 24 source positions in total, located on a circle 200 mm
in diameter. The receivers were located with a step of ≈ 1 mm on a circle 165 mm in diameter.

Figure 2 presents the results of solving an inverse problem. Figure 2a shows the original image
of the object (simulated phantom). Figure 2b plots the residual functional (4) for three frequency
bands with mean wavelengths of λ = 3 mm, 6 mm and 12 mm. The abscissa corresponds to the
parameter α in the interval (–0.1, 1.4), which determines the value of the function c(r) by the
following formula c(r;α) = (1 − α)c0 + αc̄(r). Here, c−0.5(r) = v(r) is the wave velocity in the
medium, c−0.50 = v0 = const. For α = 1, we get c(r) = c̄(r), which is the exact solution and the
residual functional equals to 0. For α = 0, c(r) = c0, which corresponds to the initial approx-
imation of the iterative process. For short wavelengths λ = 3 mm and 6 mm, the value of the
residual functional in the interval 0 < α < 1 first increases with α, and only then decreases to 0.
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a) b) c)

d) e)
Figure 2. Numerical simulation: a – exact image (phantom); b – plots of the residual functional
(4) for wavelengths λ = 3 mm, 6 mm and 12 mm; c – an image reconstructed using a wavelength
λ = 3 mm from an initial approximation c0 = const, d – an image reconstructed using a wave-
length λ = 12 mm from an initial approximation c0 = const, e – an image reconstructed via the
multistage method

This illustrates the idea that the iterative gradient descent process for these wavelengths stops
at a local minimum of the residual functional if the iterative process is started from an initial
approximation of c(r) = c0. For the wavelength λ = 12 mm, the residual functional decreases
monotonically to 0 as the parameter α changes from 0 to 1. This result allows us to assume that
the initial approximation c(r) = c0 lies in the vicinity of the global minimum of the residual
functional if the mean wavelength equals to 12 mm or longer. The global minimum is reachable
from the initial approximation via the gradient descent method in this case.

To ensure the convergence of the iterative gradient descent process, a five-stage method
has been used. For λ = 12 mm, the iterative process was started from an initial approximation
of c(r) = c0. The resulting approximate solution was used as an initial approximation for the
second stage with a mean wavelength λ = 8 mm, and so on. The result of the iterative process for
λ = 4 mm was used as an initial approximation for the last stage with λ = 3 mm. The difference
between wavelengths should be sufficiently small for the global minimum to be reachable from
the initial approximation via the gradient descent method at each stage.

Figure 2c shows the image reconstruction results for a sounding pulse wavelength of
λ = 3 mm, where c0 = const is chosen as the initial approximation for the iterative process.
In this case, the iterative process stops at a local minimum, and the resulting solution is very
different from the original image. Figure 2d shows the image reconstruction results for a sounding
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pulse wavelength of λ = 12 mm; c0 = const is chosen as the initial approximation. In this case,
the initial approximation lies in the vicinity of the global minimum, and an approximate solution
to the inverse problem is obtained. However, due to the large wavelength, the spatial resolution
of the resulting image is rather low.

Figure 2e shows the image reconstruction results using the multistage method with 5 stages.
The central wavelength at the last stage is λ = 3 mm. The image obtained at the first stage for
λ = 12 mm (shown in Fig. 2d) was used as an initial approximation for the iterative process
using a wavelength λ = 8 mm at the second stage, and so on for wavelengths of 6 mm, 4 mm
and 3 mm. The multistage method made it possible to avoid the iterative process stopping at a
local minimum and to obtain the resulting high-quality image.

It turns out that the MSM method not only provides convergence to an approximate solution
to the problem, but also significantly reduces the computation time. This issue will be discussed
in more detail in Section 6.

3. Numerical Approximation of the Wave Equation

Finite-difference time-domain method (FDTD) was employed to solve equations (1) – (2). We
define a uniform rectangular finite difference grid: xi = ih, yj = jh, tk = kτ ; i, j = 1, ..., N, k =

1, ...,M , where h is the spatial discretization step, and τ is the time step. A second-order finite
difference scheme approximates equation (1):

cij
uk+1
ij − 2ukij + uk−1ij

τ2
−

Lk
ij

h2
= 0.

Here, ukij = u(xi, yj , tk) are the values of u(r, q, t) at point (i, j) at the time step k for a fixed q; cij
and aij are the values of c(r) and a(r) at point (i, j). The first term approximates c(r)utt(r, q, t),
the second term approximates a(r)ut(r, q, t). The discrete Laplacian is denoted by Lk

ij . A fourth-
order numerical approximation [31] on a 5×5-point stencil is used for the discrete Laplacian:

Lk
ij =

i+2∑

m=i−2

j+2∑

n=j−2
vmnu

k
mn. (8)

The parameters h and τ are related by the Courant stability condition c−0.5τ < h/
√

2.
For the problem considered, we used a time step equal to τ = 0.3c0.50 h, which ensured the
stability of the finite difference method. The number of operations required to compute a wave
propagation simulation is proportional to O(N3), where N is the number of grid points along
spatial dimensions. The number of points N is chosen so that the precision of the wave simulation
for the selected wavelength range is sufficient. Thus, computational complexity of the numerical
method scales as a third power of wave frequency and spatial image resolution.

An approximate solution to the inverse problem is obtained via an iterative gradient descent
method. Each iteration involves solving direct (1)–(2) and conjugate (6)–(7) problems in order to
compute the gradient of the residual functional, which requires simulating the wave propagation
process in forward and reverse time.

The numerical method was implemented in software for GPU and SIMD-capable CPU com-
puting platforms. The discrete Laplacian computation (8) is the most compute-intensive opera-
tion in this method. The flowchart of the SIMD algorithm for computing the discrete Laplacian
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is shown in Fig. 3. The Laplacian is spherically symmetrical, which makes it less computationally
expensive than a convolution problem in a general case.

×

Laplacian coefficient
vector

Partial sums

Input vector
Result vector

Shift
(rename)

Register matrix

Figure 3. SIMD Discrete Laplacian computation algorithm

Y-marching method was employed to compute the convolution using registers for temporary
storage. The results are calculated sequentially in vertical direction. Using the input data vector
and horizontally adjacent cells, partial sums are computed and stored in the register matrix,
which contains the data for 5 lines of the image. The result vector is computed by multiplying
the register matrix by the Laplacian coefficient vector. The algorithm advances to the next line
by shifting the lines in the register matrix up and reloading the last line from the input vector.
The data is shifted via renaming the registers.

Modern processors (AVX, AVX-512, ARM NEON-class FPUs) typically have 32 SIMD reg-
isters, each of which holds a vector of 8 32-bit floating point elements for AVX FPU, 16 elements
for AVX-512 FPU and 4 elements for ARM NEON FPU. There are three partial sums per line
and five lines in the register matrix; thus, the input vector can be two registers long for the single
wave simulation (u(r, q, t) for the direct problem (1)–(2)) and one register long for the dual wave
simulation (u(r, q, t) and w(r, q, t) for the conjugate problem (6)–(7)).

The computations on multi-core CPUs were parallelized using OpenMP. MPI interface was
used for data exchange between computing nodes (CPU sockets or GPU devices). Figures 4a, b
illustrate the order of computations for multi-core CPUs and GPUs, respectively.

Span

Vector

Computing
Core 2

Core 2 Core 3

Core 1

Thread block

Span

Vector

a) b)
Figure 4. Parallelizing the computations on multi-core processors (a) and GPU (b)

For efficient use of cache memory, the length of the vertical segment (“Span”) of the Y-
marching method was limited to some specified value. The span length typically ranges from 5
to 40 pixels. On multi-core CPUs, individual spans are computed in sequence along the horizontal
dimension. The data of the previous span remains in the cache memory and is used to compute
a part of the next span. The optimal span length depends on the image size and CPU cache
properties and can be determined for each system via performance tests. The better the data fits
into the cache, the larger span lengths are preferred. An equal amount of data is distributed to
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each computing core. For GPU, the computations are performed in parallel within each thread
block. The thread block size can be adjusted for better performance.

4. Parallel Implementation of the Inverse Problem Solution
Algorithm

Figure 5a illustrates the direct problem solution algorithm. The algorithm simulates the
wave field propagating through an inhomogeneous medium. A predefined numerical phantom
simulates the object being imaged. The phantom specifies the speed of sound c(r) in the imaging
plane. Ultrasound emitters and detectors are placed in a circular formation around the phantom,
as shown in Fig. 1.

Input
c(r)

Initial
pulse

generation

Emitters and detectors
placement

Wave
simulation

Wave data

Output

Approximate
c(r)

Direct
problem

Gradient
computation

Memory 
buffer

Wave data

Input

Output image

Iterative
update

a) b)
Figure 5. Direct (a) and inverse (b) problem solution algorithms

The wave field is simulated sequentially in time, starting from the initial pulse that is com-
puted as a spherical wave radiating from the emitter position. The resulting wave field at the
detector positions for each emitter is recorded in the output data.

Figure 5b illustrates the inverse problem solution algorithm. An approximate solution to
the inverse problem of wave tomography is computed via the iterative gradient descent method.
An initial approximation of c(r) coefficients is set at the beginning of the iterative process. The
direct problem is solved for the current approximation of c(r).

The boundary values of computed u(r, q, t) wave field are stored in the memory buffer. The
buffer is used to reverse the wave propagation direction of u(r, q, t) in formula (5). At the gradient
computation stage (Fig. 5b) the data from the buffer are applied to the boundary of the com-
putational domain in reverse time in order to compute u(r, q, t) in reverse time simultaneously
with w(r, q, t).

The w(r, q, t) wave is computed from u(r, q, t) and the input wave data, and the gradient
is computed using formula (5). The current approximate solution is updated by adding the
computed gradient to the c(r) coefficient array, and the process is repeated. The iterative process
continues until the residual functional ceases to decrease. At the end of the process, the resulting
approximate solution is the output of the inverse problem solution algorithm.

The iterative gradient descent method permits parallelizing the computations contained
within a single iteration.

Figure 6a illustrates the parallelized computing process. Computation of the gradient of the
residual functional can be subdivided into independent sub-tasks for each ultrasound emitter.
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Node

Parallel-processed

Sequential-
processed

Node ...

Batch

Batch

Batch

Batch processing

Data 1

Core 1

Data 2

Core 2

Data 3

Core 3 Core 4

a) b)
Figure 6. Parallelizing the computations on multi-core processors (a) and GPU (b)

The total number of emitters in wave tomography typically ranges from 10 to 100. The emitters
are divided evenly between the computing nodes.

For each node, the computations are grouped into one or more batches executed sequentially.
A batch consists of the data for several ultrasound emitters that are processed in parallel. For
GPUs, the batch size is determined by the GPU memory capacity. A typical modern GPU can
process most ultrasound tomography problems within its on-board memory as a single batch.
For CPUs, the batch size is optimized for maximum performance, and typically is chosen close
to the CPU last-level cache size. The data for a single emitter can amount to several megabytes;
thus, small batch sizes of 1–2 emitters are common for CPUs.

Figure 6b illustrates the order of computations within a batch. The computations performed
for each ultrasound emitter are identical and consist of a direct problem solution (wave simula-
tion) and a gradient computation that involves simulating two wave fields u(r, q, t) and w(r, q, t).
The only difference between emitters is in the data contents. Thus, wave fields for multiple emit-
ters can be processed as a single data array in order to divide the computations evenly between
computing cores.

The result of each iteration is the gradient of the residual functional, which is the sum of
partial gradients computed for each ultrasound emitter. The partial gradients are summed up
within each node, and then summed up over nodes using MPI interface. Data exchanges between
nodes occur only once per iteration and therefore do not incur any noticeable delay.

5. Computing Performance for Different Computing Platforms

The software implementation of the algorithm has been tested on multiple computing plat-
forms: Intel Haswell-EP (14 cores, AVX2 FPU), Intel 6240R (12 cores, AVX-512 FPU), NVidia
Tesla P100 and NVidia Tesla V100 GPUs.

The multistage method involves solving inverse problems of wave tomography using data
with bandwidth gradually increasing from stage to stage. Since the computation time strongly
depends on the finite difference grid size, at each stage of the multistage method the grid size is
chosen as the smallest size that still provides sufficient accuracy of the finite difference scheme.
The computation time for a multistage task is the sum of the time intervals spent on each stage.
To estimate the computation time for multistage tasks, the performance of computing platforms
was tested on the computations of separate iterations of the gradient descent method for various
grid sizes.

A.V. Goncharsky, S.Y. Romanov, S.Y. Seryozhnikov

2022, Vol. 9, No. 1 97



CPU performance significantly depends on cache utilization, as external memory is much
slower than cache memory. Thus, for optimal performance we choose the batch size (the amount
of data to be processed in parallel by the CPU, Fig. 6a) close to the CPU cache size. In order to
optimize the computations, performance tests were conducted to determine the optimal batch
size for parallel processing on each target system. The batch sizes determined may differ form
the physical CPU cache size due to the use of an additional memory buffer (Fig. 5b).
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Figure 7. CPU performance depending on batch size

Figure 7 plots CPU performance depending on batch size. Output data rate is measured
in the tests as the number of computed gradient pixels per second in gigapixels/s. Each pixel
of a reconstructed image uses 32 bytes of data. The tests showed that using too large batch
sizes results in a performance decrease due to cache misses. Too small batch sizes are also non-
optimal because the task execution time for a small batch becomes very short and the thread
synchronization latency becomes noticeable, especially on a fast CPU such as Intel 6240R. As a
result, a batch size of 22 Mb was chosen for computations on Intel CPUs.

A single simulation frame uses N ×N pixels of output, where N is the grid size along each
dimension. Wave simulation requires approximately N time steps for the computed wave to reach
the detectors. The wave simulation is performed for every ultrasound emitter in order to compute
the gradient of the residual functional. The multistage method uses multiple grids with different
resolutions. To determine the computing time for a task, we determine the computing time for a
single wave simulation and multiply that by the number of emitters and the number of gradient
descent iterations.

A series of tests were conducted to determine the computing time for each grid resolution.
Figure 8a plots the computing devices’ performance depending on the finite difference grid size.
For Intel CPUs, the performance decreases for larger grids, as such grids do not fit in the CPU
cache. For GPUs the performance may slightly increase with increased grid size due to more
parallelism being available on larger grids. The NVidia Tesla P100 and NVidia Tesla V100 GPUs
tested are equipped with sufficient amount of VRAM to process the whole inverse problem as a
single batch in parallel.

Figure 8b plots the computing time per iteration per emitter corresponding to the output
rate shown in Fig. 8a. The time scale is logarithmic in this plot. The number of operations to
compute a wave simulation scales as a third power of the grid size. Employing smaller grids to
complete the first iterations quickly in the multistage iterative method significantly decreases
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Figure 8. Device performance depending on finite difference grid size (a); corresponding com-
puting time per iteration per emitter (b)

the total computing time compared to performing all the iterations using the highest-resolution
grid.

Table 1. Multistage method parameters

Stage 1 2 3 4 5
Resolution, px 480 640 800 1200 1600

Wavelength, mm 12 8 6 4 3
Iterations 30 30 30 30 30
Time, sec 3 7 15 50 120

Numerical simulations showed that on average 30 iterations are sufficient at each stage of the
multistage method to obtain an approximate solution suitable for the next stage, or to obtain
the final result at the last stage. Multistage method parameters suitable for medical imaging for
breast cancer diagnosis are summarized in Tab. 1. The computing time row in Tab. 1 lists the
actual times achieved on a computing node of “Lomonosov-2” supercomputer [32] equipped with
two NVidia Tesla V100 GPUs working in parallel.

Time to completion (CPU*minutes)
0 10 20 30 40 50 60 70 80
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NVidia P100

Intel 6240R

Intel Haswell-EP

Figure 9. Overall performance of the computing devices

Using these parameters, the total computing time required to complete the inverse problem
solution can be estimated for each computing device. Figure 9 shows the computing time for
the devices tested. For example, to obtain 30 images per hour in a medical imaging setup (one
image is a single cross-section of an object) a computing cluster of either 4 NVidia Tesla V100,
8 NVidia Tesla P100, 12 Intel 6240R or 36 Intel Haswell-EP processors would be needed.
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Provided that almost all the data is cached, Intel 6240R with AVX-512 FPU is only 1.5 times
behind NVidia Tesla P100 GPU. Thus, CPU or GPU clusters can be used for image reconstruc-
tion using the multistage method with image sizes up to 1600 pixels. Such grid sizes are sufficient
for low-frequency wave tomography of relatively small objects, where the object size is on the or-
der of 25–30 wavelengths. For higher frequencies or larger objects, larger grids would be required,
putting CPU systems at a significant disadvantage compared to GPUs.

GPUs were found to be the preferred architecture for solving direct and inverse problems of
wave tomography, especially for higher-resolution images. GPU performance on a typical FDTD
algorithm is approximately proportional to its memory throughput. The numerical algorithm
is data-parallel and requires neither synchronized data exchanges between computing cores nor
cache coherence. Thus, the algorithm can benefit from the specific structure of graphics proces-
sors.

6. Model Problem Examples

The multistage iterative method for solving inverse problems of wave tomography proposed
in this study is designed primarily to ensure convergence of the gradient iterative method to the
global minimum. Approximate solutions of the inverse problem are computed using gradually
increasing sounding pulse bandwidth and image resolution.

It may seem that an experimental setup with 5 different ultrasound emitters is needed to
use a 5-stage iterative method in practice. However, the input data for multiple stages can
be produced from a single experimental measurement via application of a low-pass filter to the
broadband signal. This approach requires the signal to contain sufficiently strong low frequencies.
Broadband ultrasound transducers with a usable frequency range of 100 to 600 kHz can be used
for this task.
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Figure 10. Sounding pulses: a – waveform with a mean wavelength of 3 mm; b – waveform with
a mean wavelength of 6 mm; c – frequency spectra of the sounding pulses

Figure 10a shows the waveform of a broadband sounding pulse with a mean wavelength
of 3 mm used in the presented numerical simulations at the last stage of the MSM method.
Figure 10b shows the sounding pulse with a mean wavelength of 6 mm used for an intermediate
stage of the MSM method. Figure 10c shows the frequency spectra of these two sounding pulses.
The spectrum of the longer wave with a central frequency of 250 kHz is a part of the spectrum
of the shorter wave with a central frequency of 500 kHz. A short pulse contains both low and
high frequencies, lower parts of the spectrum can be filtered and used for low-resolution stages.
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Lower-resolution approximations can be computed much faster; thus, the multistage iterative
method can be used to improve computing time even if multiple stages are not necessary for
convergence. Figure 11 presents an example of a low-contrast phantom, the image of which can
be reconstructed via the gradient descent method using a wavelength of 3 mm and a constant
initial approximation.

a) b)

c) d) e)
Figure 11. Single-stage and multistage reconstruction: a – exact image, b – image reconstructed
at 3 mm wavelength from a constant initial approximation, c – image reconstructed at the first
stage from a constant initial approximation, d – image reconstructed at the 3rd stage, e – image
reconstructed using at the final stage

Figure 11a shows an exact image of the phantom. Figure 11b shows an image reconstructed
using the gradient method from a constant initial approximation and with a pulse wavelength of
3 mm. Even without using the multistage method, the image is reconstructed quite accurately.
However, to solve this inverse problem, 100–120 gradient descent iterations are required.

Figures 11c–e show approximate solutions obtained at various stages of the multistage
method. Figure 11c shows an image reconstructed at the first stage of the multistage method
from a constant initial approximation using a wavelength of 12 mm and a grid size of 480× 480

points. Figure 11d shows an image reconstructed at the third stage of the multistage method
using a wavelength of 6 mm and a grid size of 800 × 800 points. Figure 11e shows an image
reconstructed at the last stage of the multistage method using a wavelength of 3 mm and a grid
size of 1600× 1600 points.

Figure 11 demonstrates that the image Fig. 11e obtained via the multistage method is
closer to the original than the image in Fig. 11b obtained via the gradient descent method with
fixed parameters and a constant initial approximation. Although the parameters of the iterative
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method are the same for Fig. 11b and Fig. 11e, a better image quality in Fig. 11e is achieved due
to a better initial approximation being used in the last stage of the MSM method. Instead of a
constant, an image computed at the previous stage is used, which is much closer to the exact
image than a constant.

In this example, the multistage method can reduce the computation time and improve the
image quality. The parameters of the multistage method are listed in Tab. 1. The total number
of gradient descent iterations at all stages is 150, however, only 30 of them are performed in a
high resolution of 1600× 1600. These iterations are the most time-consuming. Starting from an
initial approximation computed at the previous stage instead of a constant initial approximation,
only 30 iterations at the highest resolution are sufficient to complete the process.

First stages of the multistage method require significantly less computation time than the
last. The total computation time in this example is 195 seconds, of which the last stage takes
120 s. In 195 seconds, it is possible to perform 48 high-resolution gradient descent iterations,
which is usually not enough to reconstruct an image with good accuracy. Thus, the multistage
method allows us to reduce the computation time.

a) b)

c) d) e)
Figure 12. Complex phantom example: a – exact image, b – image reconstructed at 3 mm wave-
length from a constant initial approximation, c – image reconstructed using 12 mm wavelength
from a constant initial approximation, d – image reconstructed using 6 mm wavelength at the
3rd stage, e – final image after 5 stages

Figure 12 shows an example of reconstructing a complex internal structure of an object.
Figure 12a shows the exact image of the model object (phantom) In this example, the gradient
descent process does not converge using a constant initial approximation and a short sounding
pulse with a wavelength of 3 mm. Figure 12b shows the reconstruction result for this case.
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The iterative process stops at a local minimum of the residual functional and the image is not
reconstructed. To obtain a tomographic image of such an object, it is necessary to apply the
multistage method.

At the first stage, an approximate solution is computed using a constant initial approxi-
mation, a central wavelength of 12 mm and a grid size of 480 × 480 points. The result of the
first stage is shown in Fig. 12c. This image has a low resolution, but is sufficiently close to the
original. It is used as an initial approximation for the next stage of the multistage method. In
total, 5 stages are performed according to Tab. 1. The image quality gradually improves from
stage to stage. This means that the images can be analyzed before the whole reconstruction pro-
cess is completed – as early as the sought-for image features are resolved. This property of the
multistage method can improve image analysis time in practical applications. Highest-resolution
stages take considerably more time to compute. Figure 12d shows the result of the third stage of
the multistage method with an average wavelength of 6 mm and a grid size of 800× 800 points.
Figure 12e shows the result of the last stage with an average wavelength of 3 mm and a grid
dimension of 1600×1600 points. Thus, the MSM method ensures the convergence of the iterative
process of gradient-descent minimization of the residual functional and allows for high accuracy
tomographic image reconstructions via wave tomography technology.

Conclusion

This article discusses the methods of ultrasound tomography, which can be used to inspect
various objects, for example, in nondestructive testing or in medical imaging such as tomographic
imaging of soft tissues for early-stage breast cancer diagnosis. A characteristic feature of ultra-
sound tomography is that it takes into account not only the reflected radiation, but also the
radiation transmitted through the object, similarly to X-rays. It is well known that the higher
the frequency, the higher the spatial resolution can be achieved in ultrasound imaging. Con-
ventional medical ultrasound diagnostic devices usually employ frequencies above 1 MHz. The
tomographic methods considered in this study use low frequencies in the 100–600 kHz band
for medical ultrasound tomography. The proposed MSM method uses low frequencies for initial
stages of the method to ensure its convergence and high frequencies for final stages to achieve
high resolution.

The article discusses a supercomputer implementation of the multistage iterative method
(MSM) for solving nonlinear inverse problems of ultrasound tomography. From a mathematical
point of view, the problem is posed as a problem of minimizing the residual functional, which is
not convex and has local minima. The method is based on a prior information which is typical for
most inverse problems of wave tomography. The effectiveness of the MSM method is illustrated
on a large number of model problems focused on ultrasound tomographic diagnostics of soft
tissues. As shown in the article, the MSM method completely covers the problem of constructing
an approximate solution in the problems of medical ultrasound tomographic diagnostics of soft
tissues.

In contrast to previous works [33, 34], this article considers the inverse problem of ultrasonic
tomography in the wave model without taking into account the absorption of the medium. The
numerical algorithms have been adapted for SIMD-capable CPUs. The performance of comput-
ing systems is compared for different sizes of the computational grid and for a multistage run.
To ensure the convergence of the iterative process of solving the inverse problem, filtering the
spectrum of a broadband sounding pulse is proposed. This approach greatly simplifies the exper-
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iment compared to using multiple narrow-band emitters. In this study, a significant acceleration
of the algorithm has been achieved due to the use of smaller grids for lower frequencies. The
method has been tested on phantoms of a complex structure close to reality.

Both CPU- and GPU-based computing clusters can be used to implement the MSM method
in practice. It is shown that GPU supercomputers have an advantage, especially for large volumes
of data. The numerical algorithm is data-parallel an well-suited for GPU architecture. Modern
processors equipped with AVX-512 FPUs are capable of solving small-scale tasks that fit in the
CPU cache memory. For large-scale tasks, it is always better to use a GPU equipped with fast
on-board memory.

Recently, a new processor architecture has been developed, consisting of several hundred
thousand computing cores located on a single silicon wafer. For problems of wave tomography,
this line of work is also of great interest. Wafer-scale processors manufactured by Cerebras are
designed for machine learning tasks. A specific feature of such tasks is a large number of opera-
tions being performed on a fixed data array. Wave tomography problems have the same property
– the operation of wave propagation simulation is performed many times on the same data array
in the iterative process. On an actual problem of physical process simulation, the wafer-scale
system has achieved a performance of 860 TFlops [35]. To date, the wafer-scale architecture
has the highest performance-to-memory ratio and is thus the most promising architecture for
implementing large-scale wave tomography applications.

To conclude, we note that the use of supercomputer technologies for solving wave tomog-
raphy problems opens up the possibility of using complex mathematical models describing such
physical processes as diffraction, refraction, multiple scattering, and so on. Under such models,
the inverse problems are nonlinear and the methods developed in this study can be used to solve
such problems. First of all, the developed solution methods focus on the problems of medical
ultrasound tomography and inverse problems of electromagnetic sounding.

The paper discusses the possibilities of solving inverse problems of wave tomography in
the framework of scalar wave models. From a physical point of view, only one type of wave
propagates in a scalar medium – longitudinal compression wave. This model is ideal, for example,
for ultrasound tomographic screening for breast cancer diagnosis. However, the scalar model is
no longer adequate to reality in such cases as, for example, obtaining ultrasound tomographic
images of a knee joint. Unlike in soft tissues, multiple types of waves propagate in solid bodies.
There are works concerned with solving direct problems of wave propagation in solids. In some
works, attempts are made to solve inverse problems of ultrasound imaging in solids [36, 37].
These problems typically arise in the field of nondestructive testing. Solving inverse problems
in vector models is a much more complicated task, compared to scalar models. Solving such
problems is impossible without the use of supercomputers.
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