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Delay-sensitive applications are becoming more and more in demand as a result of the develop-

ment of information systems and the expansion of communication in cloud computing technologies.

Some of these requests will be overlooked in cloud environments due to the communication delay

between the processing center and the client’s request. The ‘fog-based computing paradigm’, a

novel processing model, can be added to cloud computing to help with the aforementioned issues.

The performance of computing systems is always influenced by latency. In this paper, we focus

on balancing the load on the fog nodes to lower the latency. It is also a crucial component of fog

computing devices. It necessitates the use of load-balancing algorithms to select the optimal hosts,

resulting in an even distribution of the load on the available resources. We provide a load-balancing

approach based on the Ant-colony optimization algorithm’s latency rate for responding to tasks.

A random data set evaluation of this model reveals shorter response times than those of earlier

strategies suggested in this field.
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Introduction

One of the biggest problems in the distributed computing environment is load balancing.

Numerous requests made by thousands of users and customers necessitate the utilization of a lot

of hardware and bandwidth. A load balancer assists in distributing the burden among the many

nodes and making sure that none of them are overwhelmed. It also expedites the completion of

the most recent work among the sources that use the phrase [38]. Distributed systems like fog

and cloud computing need an effective load-balancer.

Delivery time also dramatically increases as the number of delay-sensitive requests and the

computational load on fog nodes both rise. As a result, some nodes must assign jobs to nodes

that are less busy. Fog computing systems, on the other hand, have several connected processors

that work independently. Every processor has a distinct processing capacity and an initial load.

To reduce processing time and CPU downtime, the load is spread among processors based on

their processing speeds. Since load balancing is meant to boost performance, its absence in

distributed systems is a major issue [15, 48].

Environments that are both homogenous and diverse present a problem for load balancing

methods in fog computing. In a homogenous group, all fog nodes have the same capacity and

characteristics. Because they are unable to make use of the heterogeneous nature of resources,

these nodes rarely adapt to fog settings. Each fog node in a heterogeneous group has a unique

capacity, set of processing capabilities, and set of attributes [11]. Depending on the demands of

the jobs, the load balancer can choose several nodes. In our suggested paradigm, we presume

that all fog nodes are heterogeneous and that each fog node has distinct capacities and hardware

architecture.
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The nature of the tasks has a big impact on how well load-balancing algorithms work. There-

fore, the greater optimization would be possible, the more information about the tasks would

be available at the time of decision-making. Having a general understanding of job execution

times and the precise due date for each task increases the likelihood of obtaining the ideal load

distribution. Having a set time for each activity to be completed is uncommon; yet, this is an

ideal condition. For this reason, a variety of strategies have been taken into consideration for

organizing and generating thoughts for the duration of task execution. The maximum execution

time needed for each task is taken into account in our proposed approach during load balancing.

An optimization strategy must be used since selecting the optimum hosts (load distribu-

tion on resources) is an endless sort of problem with multiple viable solutions. In this study,

we employ the Ant-colony algorithm and the meta-heuristic methodology. Glover introduced

the term “meta-heuristics” in 1986 in order to help people solve difficulties by identifying solu-

tions that are close to ideal [19]. The meta-heuristic algorithms use governing mechanisms that

mimic certain methods found in nature, social behavior, physical laws, etc. to achieve complete

exploration of the search space. Meta-heuristic algorithms begin with an initial collection of in-

dependent variables and evolve to find the objective function’s global minimum and maximum.

We encountered the similar issue when balancing the system’s load, thus we used one of the

well-known meta-heuristic algorithms, called Ant-colony, in our proposed model.

We start with balancing the workload between tasks and fog nodes as input for the issue in

our suggested model. Depending on the nature of the problem, the list of inputs may change. The

current study takes into account a list of tasks with due dates and set intervals for each request.

Taking into account the distance to the fog node, each assignment must be completed within

the allotted amount of time. You might categorize these lists as static or dynamic. Requests are

posted online to the computing system in the dynamic list. In contrast, it is believed that we

have a collection of tasks whose order is flexible in the static model. The current study makes

the assumption that there are a number of delay-sensitive jobs that ought to be.

It is crucial to know how many fog nodes there are and which ones are capable of carrying

out the necessary activities. The list of fog nodes is supplied in our study so that the capacity,

traits, and processing power of each node can be noted. The solution to load balancing issues

in a fog environment depends on the problem’s objective function. The goal of the issue can be

to raise the quality-of-service metrics (QoS), which include optimum resource utilization and

decreased throughput, costs, response times, latency, and energy usage. To assess how well the

problem satisfies the established aim, the problem’s goal must be modeled. The goal of the

current work is to decrease latency in order to speed up task reaction times.

In the following sections of the present paper, we first explained related work. The current

definition of load balance, types of load balancing mechanisms, and reasons for its need, benefits,

and criteria of load balance in fog environment. The Ant-colony algorithm will be explained ac-

cording to the classification of previous models. The proposed model is introduced and discussed,

and lastly, the research results will be presented.

1. Related Work

Using optimization models, the load balance issue in fog situations can be assessed. Using

meta-heuristic models to offer close to optimal solutions for such issues in an acceptable amount

of time is one method to problem solving. Large-scale, complicated problems are thought to be

amenable to the use of meta-heuristic models, which fall into two categories:
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• The first category: is based on individuals and modifies a candidate solution.

• The second category: is population-based and improves several solutions.

In addition, biological behaviors can be categorized based on process strategies in the classi-

fication of reproductive strategies or inspired by natural phenomena. Given those various mech-

anisms have been proposed for load balancing in a fog environment. Some of these mechanisms

are based on meta-heuristic algorithms, such as the bee algorithm, particle swarm, hill-climbing,

and Ant-colony algorithm. Ant-colony Optimization algorithm is one of the most popular opti-

mization algorithms with the ability to adapt to the system environment and the flexibility to

solve any optimization problems. The present research uses Ant-colony algorithms to balance

the load in the fog computing environment [43].

Zahid et al. [57] discussed a Hill Climbing technique to manage the load on VMs with the

aim of reducing the response time, processing time, and delay. In the proposed framework, four

different regions are taken, with each region containing a fog with a cluster of buildings. Results

from the simulation reveal that the proposed strategy performs satisfactorily.

Kamal et al. [25] addressed the issue of load balancing by employing a heuristic approach

for solving a Constraint Satisfaction Problem (CSP). The algorithm first checks the assignment

conflicts and then randomly assigns VMs to requests. The proposed approach is compared in

terms of processing time, response time, and cost with Throttled and Round Robin algorithms.

It helps in allocating optimal resources to requests, thereby providing better simulation results.

Naqvi et al. [35] has proposed a bio-inspired algorithm called Ant-colony optimization for

load balancing. The Ant-colony optimization algorithm is the swarm-based genetic algorithm.

It works on the mechanism of real ants using pheromones in order to explore their path. In the

same way, the allocation path of the cloudlets is identified based on the minimal path cost in a

probabilistic manner.

In the paper [29], a meta-heuristic scheduler Smart Ant-colony Optimization (SACO) task

offloading algorithm inspired by nature is proposed to offload the IoT-sensor applications tasks

in a fog environment. The proposed algorithm results are compared with Round Robin (RR),

throttled scheduler algorithm, and two bio-inspired algorithms such as modified particle swarm

optimization (MPSO) and Bee life algorithm (BLA). The numerical result shows the significant

improvement in latency by the proposed Smart Ant-colony Optimization (SACO) algorithm

in task offloading of IoT-sensor applications comparison to Round Robin (RR), throttled, and

MPSO and BLA. The proposed technique reduces the task offloading time by 12.88, 6.98, 5.91,

and 3.53% in comparison to Round Robin (RR), throttled, MPSO, and BLA.

In this study [40], utilizing a hybrid optimization algorithm, they introduced a novel energy-

aware technique for load balance management in the fog-based VANET. A VANET network is

made up of mobile nodes without any infrastructure. The mobility of nodes, limited energy

reserves, lack of central management, and providing a guarantee for the quality of services are

some of the challenges of this type of network compared to wired networks. The existing nodes

of VANET networks are free to move in any direction. This study aimed to present an energy-

aware model based on load balancing using the ACO algorithm. Algorithm implementation and

routing models were fully described. Then, the effect of increasing the number of nodes on the

amount of energy consumed by the fog-based VANET and the residual energy in the battery

were investigated. Also, the number of residual nodes was increased by increasing the length of

routing periods in the proposed model with the ant and ABC optimization algorithm.
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The simulation results in the NS2 environment showed that with increasing the number

of nodes, the amount of energy consumed by the fog-based VANET increases. Also, as the

number of nodes increases, the amount of residual energy will decrease, making the proposed

algorithm outperform the other two algorithms. Examining the amount of residual energy within

the periods revealed that the amount of residual energy decreased with increasing periods. The

results indicate the good performance of the proposed model compared to the other four models.

In this paper [5], the cost-aware Ant-colony optimization-based load balancing model is pro-

posed to minimize the execution time, response time, and cost in a dynamic environment. This

model enables to balance of the load across the virtual machines in the data center and evaluates

the overall performance with various load-balancing models. As an average, the proposed model

reduces carbon footprint by 45% as compared to existing models.

In this paper [20], they propose a multi-objective fog computing task scheduling algorithm

based on an improved Ant-colony algorithm, which optimizes the Ant-colony algorithm to make

it more suitable for the characteristics of the fog node, uses time and cost (TAC) to compre-

hensively consider the cost of the node, and introduce the critical factor in task allocation to

improve the convergence speed of the algorithm. Different simulation experiments show that the

efficiency of the improved Ant-colony algorithm is enhanced in processing time, cost, and load

balance.

In this research [7], they have proposed a new algorithm called Ant-colony Optimization-

based Light Weight Container (ACO-LWC) load balancing scheduling algorithm for scheduling

various process requests. Initially, the task allocation was done in a round-robin fashion. The

CPU usage and memory usage were maintained within a particular optimal range to achieve

effective load balancing in this algorithm. Here, the load balancing scheduling was done based on

Ant-colony Optimization. Performance analysis showed that the proposed ACO-LWC algorithm

achieved better stability performance. Further, the TPS of the cluster for 50 applications was

found to be 120, 231, and 1042 for the least connection, round-robin, and proposed ACO-LWC,

respectively. Similarly, the response time for the least connection, round-robin, and the proposed

scheme with 60 applications was identified as 5282 ms, 2865 ms, and 1593 ms. Furthermore,

analysis shows that the overall run time is very low for the proposed scheme. There is around

2.08 times reduction in run time compared to the least connection and 1.607 times reduction in

run time compared to the round-robin algorithm.

2. Proposed Model

In this section, we describe the process of using the Ant-colony algorithm in load distribution

problem in our proposed model.

2.1. Ant-colony Algorithm

The Ant-colony optimization model is based on the actual movement of ants in nature.

Ant-colony optimization algorithms are inspired by natural phenomena and biological behaviors

and approach finding near-optimal solutions using a probabilistic model [16].

2.2. Problem Inputs

The problem inputs are mentioned in the following:
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• List of fog nodes: This list includes the processing power of each node in terms of the

number of cycles per second (cycle/s). Along with this list, the capacity of each fog node

is also considered.

• To-do list: This list includes tasks that must be processed in fog nodes. This list is included:

the minimum processing power required in terms of bits per second, the volume of tasks

in megabytes, the distance of the task producer service from the surrounding fog nodes in

meters, and the deadline of each task.

• Fixed parameters: In the Ant-colony optimization algorithm, several fixed parameters are

used, the values of which are selected based on [58].

2.3. Latency Model

Latency is the time that each processor spends to process requests, i.e., from the moment the

request is transmitted until the customer receives the request after the processing. For nodes

in the fog environment that are close to the end devices, it is possible to collect data from

sensors / IoT devices and process, analyze, and store them on the network edge. It should be

done with minimal delay. The present study aimed to minimize the latency of each task on the

fog nodes [28]. The completion time for each task includes the execution time of each task and

its transmission time. The execution time of task i on node j is calculated using equation (1) [45]

TEij(t)=
task sizei · task proci

fnode procj
. (1)

In this equation, task sizei indicates the size of task i, task proci indicates each task’s

capacity, and fnode procj indicates the capacity of the node j. At any given time (t), the transfer

time, which is the time spent for sending task i to node j, is calculated using equation (2)

TRij=
task sizei

task distij · task deadlinei
. (2)

In this equation, task distij indicates the distance of task i to node j, and task deadlinei

indicates the specified time for each task. Lastly, the total delay is calculated using equation (3)

total delayij (t) =TRij (t) +TEij (t) . (3)

2.4. Mapping of Load Balancing Parameters on the Ant-colony Parameters

As mentioned at the beginning of this section, the load balancing problem uses delay time

to reduce the response time. In the case of load balancing in the target fog environment, the load

balance between the fog nodes is set so that the objective function, which is the rate of delay, is

met and minimized. It can be described as assigning n independent tasks to m fog nodes. Ants

place a list of tasks for processing on the fog nodes. Each task has specific processing power,

size, and distance from the fog nodes, and also, based on the specific time limit set for each task,

the tasks can be executed on their appropriate fog node. For each fog node, a certain amount

of processing power is considered in cycle/s. As mentioned before, the Ant-colony algorithm is

an optimization algorithm, and each optimization algorithm has a certain number of iterations

in which the problem is led toward the optimal solution.
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2.5. Quantification of the Initial Solution

Every meta-heuristic optimization problem requires starting with an initial solution to ex-

plore the search space. The first step in the optimization algorithm is to create an initial so-

lution to start the optimization process. In the Ant-colony algorithm, like other meta-heuristic

algorithms, the initial solution must be applied as one of the inputs to the problem. Initial

quantification of pheromones is also performed at this stage. The initial pheromone is given to

prevent the ants from staying in place and not moving at the starting point. As a result, the

initial solution is made using Initial quantification. In the present study, the initial number of

pheromones is determined based on the random assignment of each task to the node, and their

delay time is calculated. The pheromone left by the ants along the way indicates the tendency

of the tasks toward the fog node.

2.6. Pheromone Factor

The number of pheromones in the different pathways drives the ants to reach the goal. In

the ant pheromone cloning algorithm, pheromones indicate the desirability of the path. In our

proposed model, the delay time factor is used in place of pheromones. The higher the pheromone,

the shorter the latency in assigning task i to node j. Equation (4) introduces the pheromone

factor

τij=
1

ε · delayij + (1−ε) · distij
, (4)

where ε is a constant parameter, and its value is determined [58].

2.7. Heuristic Information

Apart from pheromone pathways, another vital factor in the Ant-colony optimization algo-

rithm is the selection of a suitable heuristic, which will be used in combination with pheromone

information to construct solutions. At each stage of constructing a solution, the candidate se-

lected for transfer depends on two factors: the pheromone factor and the heuristic factor. Since

innovative information is calculated for all the movements in all the ants, it is, therefore, an

essential factor that affects the performance of the Ant-colony algorithm. The heuristic infor-

mation is expressed by the symbol ηij . This information indicates the ant’s degree of interest

and attention to explore new paths leading to a better fog node. In our proposed model, the

calculation of heuristic information is done based on equation (5)

ηij=
1

delayij(s0)
. (5)

Problem’s defaults: The following points are considered as defaults to solve the problem:

• Initial assignment of tasks to fog nodes is done.

• Each ant receives a list of tasks and information on the fog nodes from the controller.

• Fixed parameters are based on the values given in the paper [58].

• The algorithm leads toward a near-optimal solution using iterative processes.

• The purpose of the problem is to reduce the response time by considering the delay time

parameter.
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2.8. Building a Solution (Motion Transfer Law)

The movement of the ant k to place task i on node j is similar to the Pseudo-Random

proportional law (equation (6))

j =

{
maxu∈Ωk(i)

{
[τiu

α] ·
[
ηiu

β
]}
, if q ≤ qO

l, otherwise
. (6)

In this equation, α and β are weighting coefficients or compatible parameters. These parameters

determine the amount of pheromone in the path and the heuristic functions used, respectively.

It affects the probability of choosing a particular path. L is a random variable obtained from the

probability distribution of equations (7). q is a uniform random number in the range [0, 1] and

qO is a parameter between zero and one, which controls the balance between discovering routes

traveled so far and searching for unmet routes. If q is more minor than qO, this process is called

exploitation, and we select the fog node in the set Ωk(i) that has the highest value according to

equation (6). If q is more significant than qO, the fog node in the set Ωk(i) is randomly selected

using the law of probability distribution pij
k; i.e., the probability that the ant k puts task i on the

fog node j. This process, called exploration, improves random search and reduces complexity.

Exploitation helps ants quickly converge to a high-quality solution while, at the same time,

exploration prevents stagnation through providing a more comprehensive search space

pij
k=





τij
α · ηijβ∑

u∈Ωk(i)
τiuα · ηiuβ

, if j∈Ωk(i)

0, otherwise

, (7)

where τij indicates the amount of the pheromones at points (i, j). Ωk(i) is a set of fog nodes

that can accept i functions. The remaining nodes of ant k are based on node i to construct an

acceptable answer. If α = 0, the algorithm works greedily so that the selection of the next node

does not take into account the number of pheromones; therefore, the selection of the nearest

route takes precedence. If β = 0, the algorithm considers only the number of pheromones,

regardless of the path length.

2.9. Updating the Pheromones

In the Ant-colony optimization algorithm, the pheromone needs to be updated. The number

of pheromones can increase or decrease. The amount of pheromone increases with sedimentation

and decreases with evaporation. The deposition of new pheromones is based on the fact that

pheromone pathways indicate the information in some solutions, and the movement in these

reasonable solutions is built following the other ants’ solutions. However, pheromone evaporation

is a practical implementation of forgetting that prevents the algorithm from over-converging to

non-optimal regions, leading to the search for new and desirable regions in the search space. In

our proposed algorithm, the pheromone upgrade process consists of two stages: local pheromone

upgrade and global pheromone upgrade when task i is placed on fog node j, the decrease

in pheromone level between task i and fog node j is applied by the local upgrade given in

equations (8)

τij (t) = (1−ρL) τij (t− 1) +ρL · τ0
ij . (8)

An Ant-colony Based Model for Load Balancing in Fog Environments

10 Supercomputing Frontiers and Innovations



In which τ0 is the level of the initial pheromone and ρL is the local pheromone evaporation

parameter (0<ρL<1). The global pheromone upgrade applies after the solution for all the ants

for one repetition has been completed. Since all non-dominated solutions or the Pareto set

are considered optimal or good solutions for optimization problems, we assume that all non-

dominated solutions are the same and of high quality and that all dominated solutions must be

eliminated. Therefore, the global update is applied to each solution s of the Pareto set using

equation (9)

τij (t) = (1−ρg) τij (t− 1) +
ρg · λ

total delay
(s0). (9)

In which:

λ =
Nant

t−Niter.s + 1
. (10)

In equation (10), ρg (0<ρL<1) is the pheromone evaporation parameter in the global update,

and non-dominated global solutions, in the form of Pareto sets, are stored in an external set.

In equation (10), Nant shows the number of ants, and Niter.s shows the number of repetitions

in the solution of s in the external set. λ is the coefficient of adaptation, which helps control the

pheromone’s information in an external set over time. The global pheromone upgrade aims to

increase the ants’ learning.

2.10. Pseudo-code

Implementation performed in the following psuedo-code is shown in below.

To determine the fog node (in addition to equation (6)), the probability of the fog node

productivity is considered. It is in the range of 30 to 80%.

Based on the flowchart shown in Fig. 1, the fixed values (list of tasks and information on

the fog nodes) are received as input for the problem. Then, to determine the initial amount

of pheromone, random assignment of tasks is performed on the fog nodes, and their latency

is calculated and stored as the initial pheromone. It then enters the repeating loop, and the

solution of each ant is made. Each ant makes the solution by sorting the list of tasks at their

disposal according to the deadlines in ascending order. Then, remove the first task from the

beginning of the list and find the appropriate fog node according to equation (6). The ants also

check the productivity of the fog node over and over again. The local pheromone is upgraded

based on equations (8), and the ant stores its solution in the optimal solutions. After all the

ants make the solution in one repetition, the set of solutions made by the ants are examined, the

best ones are left in the list, and the global pheromone upgrade is done based on equations (9).

These steps are repeated to ensure that the best solutions remain in the s optimal set. s optimal

represents all assignments or assignments that have the shortest response time for tasks.

Since fog calculations are always under investigation and fog nodes have unpredictable be-

haviors, the real test platform is not yet available to most researchers, and they use simulation

and modeling tools to evaluate their work. Since the results of cases such as real-time scheduling

can be different from simulation, it can be concluded that implementing the mechanisms dis-

cussed in actual experiments is still challenging. Any proposed model to prove its claim; requires

the presentation of acceptable results and comparison of the model with other previous models.

A data set appropriate to the problem must first be selected and then simulated or modeled

inappropriate software to evaluate a model. By using the design proposed in this work, the load
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Algorithm 1 The proposed model’s algorithm

Input: fog node list, job list[size, deadline, process]

Output: pare to set, s optimal

set values of n ant, n itr, n itrmax, pl, pg, qO, α, and β

initialize primary pheromone based on random allocation . initialization

while n itr < n itrmax do . iterative loop

for ant k do . construct solution

while job list is not empty do

sort job list based on the deadline

get j i from job list

choose fog node with eq. 6-3 to place j i

flag underload← 0

flag overload← 0

detect()

if fog node[utilization] > 0.8 then

flag overload← 1

else if fog node[utilization] < 0.3 then

flag underload← 1

end if

remove j i from job list

apply local pheromone update based one eq 8-3

end while

add ant k solution to s optimal

end for

for s i in s optimal do . construct optimal solution

apply local pheomone update based one eq 9-3

end for

n itr ← n itr + 1

end while

balance between the fog nodes can be created so that in addition to reducing the delay, the

response time of the tasks is also reduced.

3. Evaluation

The load balancing problem in the fog environment is implemented based on the Ant-colony

algorithm in Python. The reason for choosing Python for this implementation is to provide the

libraries needed for implementation. Since Python is a dynamic language, it has advantages

such as brevity in coding, no function limitation, and the ability to replace functions during the

performance. Due to its explicit nature, Python, compared to other languages such as Java or

C++, helps improve productivity and reduce development time.

An Ant-colony Based Model for Load Balancing in Fog Environments
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No

For s in s_optimal

Global pheromone
update

n = n + 1

Figure 1. The proposed model’s flowchart

3.1. Evaluation Data Set

Evaluation data sets can be examined in two categories: real and artificial data sets. Real

data sets are data published by reputable companies used for evaluation. Artificial data sets are

produced by different statistical models and are determined based on their parameters. In our

proposed model, we use a random data set. In this set, the volume of tasks and their deadlines

and processing power are generated and stored randomly. Also, to ensure the obtained results,

200 evaluation tests have been performed, and the announced results are the average of these

200 evaluations.

3.2. Evaluation Criteria

The objective function for our proposed model can be extended to a multi-objective function.

Therefore, in this study, we focused on one objective. Our proposed model considers response

time as the primary evaluation criterion [1] and shows that making a decision based on delay

time can also reduce response time.
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3.3. Evaluating the Proposed Model

Our proposed algorithm is implemented with Python programming language and evaluated

on three servers. These servers had 24-core physical specifications with an E5-2650 v3 processor

and a frequency of 2.3 GHz. Several virtual machines, including an 8-core virtual machine with

32 GB of random memory as the fog control node, 150 dual-core virtual machines with 4 GB of

random memory as fog nodes, and 400 Mbps bandwidth are defined on these servers. Table 1

lists the features related to the tasks.

Table 1. Features related to the tasks Description

Description Value Parameter

The size of each task 10–150 MB Task-size

Task processing power 500–2500 Cycle/s Task-list

3.4. Evaluation Results

We evaluated our proposed model based on the algorithms given in the paper [45]. The

criterion measured was the task response time. The following Tab. 2 to Tab. 5 shows the response

times for evaluated models. This experiment was repeated with the number of tasks 400, 600,

1000.

Table 2. Table related to 400 tasks

The Proposed model The model in [45]

Average response time

per task (milliseconds)

12 20

Run time (hours) 1 1.15

Figure 2. Response time for 400 tasks

It can be seen in the above tables and the resulting graphs that, as the number of tasks

increases, the execution time to find the load balance between the fog nodes increases. Conse-

quently, the average response time of tasks also increases as the load density on the fog nodes

increases, and it becomes more challenging to find the correct node for each task over time.

Table 5 shows the average latency based on the number of tasks.
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Table 3. Table related to 600 tasks

The Proposed Model The model in [45]

Average response time

per task (milliseconds)

20 25

Run time (hours) 0.06 0.1

Figure 3. Response time for 600 tasks

Table 4. Table related to 1000 tasks

The Proposed model The model in [45]

Average response time

per task (milliseconds)

27 38

Run time (hours) 0.13 6

Figure 4. Response time for 1000 tasks

Conclusion

Due to the Internet of Things explosive expansion, processing speed improvements, and

mobile technology, fog-based processing is crucial. This effective processing approach meets

the requirements of delay-sensitive applications and eases the network bandwidth bottleneck.

One of the key problems with this architecture is load balance, which prevents overloading

(and hence lowers the system’s efficiency). In order to effectively utilize the resources, decrease

response time and latency, and so boost system efficiency, it is necessary to balance the load
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Table 5. Average latency based on the number of tasks

Tasks 400 600 1000

Average latency of each

task (milliseconds)

9.8 15.3 20.2

amongst the fog nodes using efficient algorithms. In the current work, we demonstrated how

the Ant-colony optimization algorithm, along with the delay criterion and the addition of the

load criterion for the fog environment, may be utilized to balance the load on the fog nodes and

speed up task completion. The load on the fog nodes must be balanced in order to minimize

the latency, but identifying the ideal host (load distribution on resources) for loads is an NP-

hard task. Because it takes a while to obtain the precise solution, optimization procedures are

employed. The Ant-colony algorithm makes a choice based on the latency criterion and the

inclusion of the load criterion in the fog computing environment because meta-heuristic models

offer better opportunities to create a compromise between the complexity of the search process

and optimization. The optimization parameters and mapping load distribution parameters are

then thoroughly described. Finally, we designed the load balance between the fog nodes in such

a way that reaction time was also lowered in addition to lowering latency using the simulation

and comparison with the algorithm described in the paper [45]. We also saw that when the

number of tasks increased, it took longer to find a load balance between the fog nodes, which

increased the tasks’ average response times (due to the increase in density and volume of load

on the fog nodes and therefore finding the correct node for each task getting more difficult).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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