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This paper presents the shallow water model, formulated from the ocean general circulation

sigma model INMOM (Institute of Numerical Mathematics Ocean Model). The shallow water

model is based on software architecture, which separates the physics-related code from parallel

implementation features, thereby simplifying the model’s support and development. As an im-

provement of the two-dimensional domain decomposition method, we present the blocked-based

decomposition proposing load-balanced and cache-friendly calculations on CPUs. We propose var-

ious hybrid parallel programming patterns in the shallow water model for effective calculation on

massively parallel and heterogeneous computing systems and evaluate their scaling performances

on the Lomonosov-2 supercomputer. We demonstrate that performance per a single grid point on

GPUs dramatically decreases for small grid sizes starting from 219 points per node, while perfor-

mance on CPUs scales up to 217 well. Although, calculations on GPUs outperform calculations on

CPUs by a factor of 4.7 at 30 nodes using 60 GPUs and 360 CPU cores at 6100 × 4460 grid size.

We demonstrate that overlapping kernel execution with data transfers on GPUs increases perfor-

mance by 28%. Furthermore, we demonstrate the advantage of using the load-balancing method

in the Azov Sea model on CPUs and GPUs.

Keywords: shallow water, supercomputer modeling, heterogeneous computing systems, MPI,

OpenMP, CUDA.

Introduction

The current intensive development of climate models, particularly the ocean general circu-

lation models, is associated primarily with the rapid development of computer technology. The

emergence of teraflop and petaflop computing systems opened up the possibility of designing

ocean models of high spatial resolution, which allows to describe meso- and submesoscales of

eddy variability in the scope of long-term simulations. Today, most high-performance comput-

ing systems are heterogeneous, combining various computing processors, clearly seen from the

TOP 500 list of most powerful supercomputers in the world. Such systems can generally consist

of a large number of processors of various types. Nowadays, the main direction of developing het-

erogeneous systems is the joint use of multi-core Central Processing Units (CPUs) and massively

parallel accelerators, such as Graphics Processing Units (GPUs). Supercomputer technology is

rapidly developing in Russia, and the development trend is similar to the world one – this can be

seen from the TOP 50 list of most powerful supercomputers in the Commonwealth of Indepen-

dent States (CIS). The most powerful supercomputers of Russia, for example, “Lomonosov-2” at

Lomonosov Moscow State University, are heterogeneous computing systems. Creating a model

that effectively uses the resources of such heterogeneous computing systems is a complex and

relevant problem nowadays [1, 13]. The variety of computing systems leads to more complex

parallel programming patterns and challenges porting software for efficient usage.

The shallow water equation set is a key component in ocean general circulation models,

which is difficult enough to resolve. This system of equations in ocean models is obtained for
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barotropic adaptation by vertically integrating three-dimensional momentum and continuity

equations. Due to the high speed of the external gravity waves, the solution of the barotropic

adaptation in ocean models performs with a time step smaller by one or two orders of magni-

tude than the time step for solving three-dimensional equations [2]. Therefore the demanding

time for solving the shallow water equation set is a significant part of the total time spent for

the complete equation set of ocean hydrothermodynamics. We take the system of shallow water

equations as our starting point for evaluating various parallel methods and approaches useful for

ocean models. This paper considers the system of shallow water equations in the form presented

in the ocean general circulation sigma model INMOM (Institute of Numerical Mathematics

Ocean Model). The INMOM model is being developed at the INM RAS (Marchuk Institute

of Numerical Mathematics of the Russian Academy Sciences). For more than a decade and a

half, the model has been used as the oceanic block of the climate model INMCM (Institute of

Numerical Mathematical Climate Model). This coupled model is so far the only representative

from Russia at various stages of the international project for comparing climate models CMIP

(Coupled Model Intercomparison Project), conducted under the auspices of IPCC (Intergovern-

mental Panel on Climate Change) [10]. The model is completely written in the Fortran 90/95

programming language. The shallow water model has been formulated that can be used both as

a program block of the sigma ocean model INMOM and independently, for example, to calculate

tsunami waves, tides, and wind surges [4, 6].

This paper presents a new software architecture of the shallow water model, based on

the separation of concerns, which involves using various hybrid parallel programming patterns.

Software architecture separates the physics-related code of the model from features of parallel

implementation, thereby simplifying the support and development of the entire software package.

Our approach is influenced by the PSyKAl approach, which is also based on the separation of

concerns [3]. In contrast with the PSyKAl approach, our software architecture preserves the

original structure of loops in computational kernels at the lowest software architecture level

and adds loops over block data structures at the intermediate parallel level. That allows us to

implement the following approaches:

• load-balancing and cache-friendly calculation on CPUs;

• utilizing various parallel approaches on GPUs such as overlapping kernel execution with

data transfer, load-balancing, and effective calculation on computing nodes with multiple

GPUs per node.

Many atmospheric and oceanic general circulation models use the uniform domain decom-

position method as the baseline of parallel implementation [7, 16]. However, due to land in

most ocean areas, a block-based decomposition using non-uniform partitions and load-balancing

methods is more efficient. There are several implementations of block-based decomposition in

ocean models. For example, the parallel version of the finite element model of the Arctic Ocean

(FEMAO) uses the logical mask of wet points marking computational points for each CPU core

and uses data arrays shared by all blocks [17]. In contrast, Parallel Ocean Program (POP) [20]

and High Resolution Operational Model for the Baltic Sea (HIROMB) [24] allocate separate

data arrays for each block and organize computations in blocks, which is more cache-friendly

on CPUs. We present a block-based decomposition implemented using derived data types con-

taining blocks that are allocated separately and distribute data among processing units. A

load-balancing method using the Hilbert space-filling curves is also presented. Our novelty is an

organization of computations in blocks both on CPUs and GPUs.

A.V. Chaplygin, A.V. Gusev, N.A. Diansky

2021, Vol. 8, No. 4 75



We present various hybrid parallel programming patterns for use on massively parallel and

heterogeneous computing systems. A pure MPI and hybrid MPI-OpenMP are presented as

calculation patterns on CPUs. Hybrid approaches for calculations on CPUs have recently become

increasingly relevant and are used in many hydrodynamic models [1, 8, 21]. Our model uses the

task-based hybrid MPI-OpenMP approach, which is more efficient compared to the widespread

vector-based hybrid MPI-OpenMP approach in ocean models [6]. General-purpose computing

on GPUs is becoming increasingly popular for climate modeling too. There are examples of

successful porting of atmosphere and ocean models on GPUs, including shallow water models

[12, 18, 25]. We present three hybrid parallel programming patterns for calculations on GPUs:

hybrid MPI-CUDA, hybrid asynchronous MPI-OpenMP-CUDA, and multi GPUs per node MPI-

OpenMP-CUDA calculation patterns for effective use on heterogeneous computing systems. Our

novelty is using block-based decomposition on GPUs to achieve overlapping kernel execution

with data transfer, calculations with load-balancing, and effective calculation on computing

nodes with multiple GPUs per node. The code for GPUs is written using native CUDA Fortran

syntax instead of CUDA C common in ocean modeling.

1. Description of the Shallow Water Model

The model considered in this paper is based on a system of nonlinear shallow water equations,

which is written in an arbitrary orthogonal coordinate system in the following form:

∂rxryhu

∂t
+ Tu(u, v)− Fu(u, v)− hrxrylv + ryhg

∂ζ

∂x
= RHSu,

∂rxryhv
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∂ζ

∂y
= RHSv,

∂h

∂t
+

1

rxry

(
∂uryh

∂x
+
∂vrxh

∂y

)
= 0,

(1)

where rx, ry are the Lamé metric coefficients that arise while writing a system of equations

in an arbitrary orthogonal coordinate system; u, v are the components of the depth-averaged

horizontal velocity vector; l is the Coriolis parameter; g is the free-fall acceleration; ζ is a

deviation of the sea surface height from its undisturbed state; h = H + ζ is the total depth of

the ocean; H is the depth of the ocean at a rest state describing bottom topography.

The transport operators Tu, Tv are written in the divergent form:
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The viscosity operators Fu, Fv are written as the divergence of the stress tensor:
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1
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where K is the viscosity coefficient, and DT and DS are tension and shear components of the

stress tensor:

High-performance Shallow Water Model for Use on Massively Parallel and...

76 Supercomputing Frontiers and Innovations



DT =
ry
rx

∂

∂x

(
u

ry

)
− rx
ry

∂

∂y

(
v

rx

)
,

DS =
rx
ry

∂

∂y

(
u

rx

)
+
ry
rx

∂

∂x

(
v

ry

)
.

(4)

The gradients of atmospheric pressure and wind friction stress are generally calculated at

the right-hand side of equations RHSu, RHSv. At the solid boundary, no normal flow and free

slip are set as velocity boundary conditions.

In the form (1)–(4), the nonlinear shallow water equations are presented in the ocean general

circulation sigma model INMOM as vertically integrated momentum and continuity equations

in order to resolve fast barotropic gravitational waves at a separate stage with minimum com-

putational efforts [9]. The system of equations (1)–(4) is solved using numerical methods on the

traditional Arakawa ‘C’ structured grid. The second-order numerical schemes on the structured

grid and the explicit first-order ‘leapfrog’ scheme are used as spatial and temporal discretization

schemes in the model, respectively. Due to the explicit time scheme, our computational method

is matrix-free. More details about the form of writing a system of nonlinear shallow water equa-

tions and their numerical implementation can be found in papers [4, 9]. The shallow water model

simulates extreme surges in the Azov Sea well: numerical results match ocean model results and

actual observations [11]. Also, the model simulates the 2011 tsunami in Japan, which led to the

Fukushima disaster, and numerical results match observations [5].

2. Software Architecture

A new software architecture for the shallow water model has been developed based on the

separation of concerns. This software architecture divides program code into three layers. The

lowest layer contains all subroutines required to calculate nonlinear shallow water equations, so-

called computational model kernels. The highest layer is responsible for calling computational

kernels and describes the time cycle of the model at a relatively high level without the knowledge

of parallel data structures and parallel methods used in the model. The intermediate layer

between the first two is responsible for parallel methods and approaches used in the model.

That separation allows flexibly configuring the model for various computing systems without

changing physics-related parts of the program.

A three-layer software architecture based on the separation of concerns has proven itself

in the shallow water model of the ocean model NEMO (Nucleus for European Modeling of the

Ocean) [3]. The researchers plan to implement such software architecture in the whole ocean

model NEMO by 2022 [15].

As mentioned before, the shallow water model is completely written in the Fortran language

introducing its specifics into the software architecture. Modules, derived types (classes), inter-

faces, and macros are extensively used in the code. We remind that the code for GPUs is written

using native CUDA Fortran syntax. We describe each program layer of the model.

2.1. Kernel Layer

The Kernel layer contains all computational subroutines, so-called model kernels. The origi-

nal non-parallelized program is a set of exactly such subroutines, which are the model’s baseline.

In total, there are about 15 model kernels in the shallow water model. The model kernel is a sub-
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routine that consists of grid variables calculations without data synchronization inside. It means

that if the subroutine has several loops over grid points and data synchronizations between them,

it must be split into several subroutines (model kernels) without data synchronization inside.

The Interface layer is responsible for data synchronization between model kernel calls and will

be discussed later.

In the case of using CPUs for computing, the model kernel is a two-dimensional loop over

grid points that updates values at grid points by numerical schemes. At this level, we work

with ordinary two-dimensional arrays. Figure 1a shows a general view of the model kernel for

calculation on CPUs, where nx start, nx end, ny start, ny end are boundaries of the subdomain;

bnd x1, bnd x2, bnd y1, bnd y2 are boundaries of the subdomain including halo points; var is

a grid variable.

subroutine ke rne l ( var )

real (wp8) , intent ( inout ) : : var ( bnd x1 : bnd x2 , bnd y1 : bnd y2 )

[ . . . ]

do m = nx star t , nx end

do n = ny sta r t , ny end

var (m, n) = [ . . . ]

enddo

enddo

end subroutine

(a) Code for CPUs

a t t r i b u t e s ( g l o b a l ) subroutine ke rne l ( var )

real (wp8) , intent ( inout ) : : var ( bnd x1 : bnd x2 , bnd y1 : bnd y2 )

[ . . . ]

m = ( blockIdx%x−1)∗blockDim%x + threadIdx%x + ( n x s t a r t − 1) − 1

n = ( blockIdx%y−1)∗blockDim%y + threadIdx%y + ( n y s t a r t − 1) − 1

i f (m <= nx end + 1 .and . n <= ny end + 1) then

var (m, n) = [ . . . ]

endif

end subroutine

(b) Code for GPUs

Figure 1. The Kernel layer of the shallow water model

In the case of using GPUs for computing, the model kernel is updating values at a single

grid point instead of the usual two-dimensional loop over grid points for calculation on CPUs.

Each point in the grid corresponds to its thread on GPU. The model kernel launching on GPU

is performed by threads that cover all grid points. Figure 1b shows a general view of the model

kernel for calculation on GPUs.

In that way, 15 model kernels have been implemented for calculations on both CPUs and

GPUs.

2.2. Algorithm Layer

The Algorithm layer establishes the order of calling model kernels and is the highest software

architecture layer. The main time cycle of the model is described at this level. At this level, we
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work with abstract data structures, such as the ocean type class, which includes the main grid

variables of shallow water equations. Figure 2 shows a code example of this layer. In this example,

the sea level calculation kernel (kernel ssh) is called first, then the velocity component calculation

kernel (kernel uv). Special envoke procedure, part of the Interface, calls model kernels and will

be discussed later.

[ . . . ]

type ( ocean type ) , target : : ocean data

procedure ( empty kernel ) , pointer : : k e rne l s sh , ke rne l uv

[ . . . ]

ca l l envoke ( ocean data%ssh , k e r n e l s s h )

ca l l envoke ( ocean data%u , ocean data%v , ke rne l uv )

[ . . . ]

Figure 2. The Algorithm layer of the shallow water model

2.3. Interface Layer

The intermediate layer between the model kernel and the model kernel call is the Interface

layer at which parallel methods and approaches are implemented. In particular, the block-

based decomposition (Section 3.1), the load-balancing method (Section 3.1), the hybrid approach

using MPI and OpenMP technologies (Section 3.2), hybrid approaches using MPI, OpenMP and

CUDA technologies (Section 3.3) are implemented at the Interface layer. This layer also includes

code for processors synchronization, halo swaps, data transfers between CPU and GPU. The

Kernel layer and the Algorithm layer contain a description of physical processes in the shallow

water model. At the same time, nothing is known at these layers about features of parallel

implementation hiding from them in the Interface layer. The Interface layer allows configuring

the model to any target computing system flexibly. At this layer, we work with specific parallel

data types, for example, the data 2D real 8 type class, which contains distributed data across

blocks and processors. In the case of using GPUs for computing, parallel data types contain

symmetrical data in GPU and procedures for synchronizing this data between CPU and GPU.

Figure 3 shows the interface implementation for calculating model kernels on CPUs using

a single envoke subroutine. This subroutine calls the model kernel for each data block and then

synchronizes OpenMP threads and MPI processes (see Section 3.2 for more information about

this approach).

Figure 3 shows the interface implementation for calculating model kernels on GPUs using a

single envoke subroutine. This subroutine calls the model kernel for each data block correspond-

ing to its GPU using a special CUDA syntax. The subroutine performs data synchronization

between CPU and GPU. OpenMP threads and MPI processes are synchronized too (see Sec-

tion 3.3 for more information about this approach).

3. Parallel Methods and Approaches

The following parallel methods and approaches have been implemented in the shallow wa-

ter model based on the described software architecture: the block-based decomposition with

load-balancing; the hybrid approach using MPI and OpenMP; hybrid approaches using MPI,
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subroutine envoke ( var , k e rne l )

type ( data2D rea l8 type ) : : var

[ . . . ]

! $omp do p r i v a t e ( k ) s chedu l e ( s t a t i c , 1)

do k = 1 , b locks

ca l l ke rne l ( var%block ( k )%host )

enddo

! $omp end do nowait

ca l l sync ha lo

end subroutine

(a) Interface for CPUs

subroutine envoke ( var , k e rne l )

type ( data2D rea l8 type ) : : var

[ . . . ]

! $omp do p r i v a t e ( k ) s chedu l e ( s t a t i c , 1)

do k = 1 , b locks

cudaSetDevice (k−1)

ca l l kerne l<<<tGrid , tBlock>>> ( var%block ( k )%dev i ce )

enddo

! $omp end do nowait

ca l l c o p y d e v i c e t o h o s t

ca l l sync ha lo

ca l l c o p y h o s t t o d e v i c e

end subroutine

(b) Interface for GPUs

Figure 3. The Interface layer of the shallow water model

OpenMP and CUDA for computing on heterogeneous computing systems. Further, we describe

each parallel method and approach in the model.

Figure 4. The uniform domain decomposition method and synchronization of processors
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3.1. Block-based Decomposition and Load-balancing Method

The shallow water model uses a two-dimensional domain decomposition method as the

primary parallelization method. The initial computational domain is divided into subdomains,

and each processor is assigned its subdomain. Each subdomain has extra boundaries with halo

points which exchanges boundary data with a neighboring subdomain. Processors are synchro-

nized, and halo points are updated using MPI technology before each subdomain calculation.

The most common and easily implemented domain decomposition method is the method of

uniform subdivision into rectangular subdomains. Figure 4 demonstrates this method and the

synchronization mechanism of processors with halo points updating. The figure also shows that

the uniform domain decomposition method leads to workload imbalances among participating

processors due to land points. Some subdomains contain only land points; some subdomains

are more than half-filled with land points. Thus, some processors are idle in computing lead-

ing to performance losses. Due to islands and coasts in most ocean areas, load-balancing is an

exceptionally urgent task for ocean models, particularly shallow water models [4].

Figure 5. Load-balancing method: a) The domain is uniformly divided into blocks; b) The

Hilbert curve is formed; c) Subdomains are formed along the Hilbert curve

Therefore, an improved method of subdivision into subdomains, so-called block-based de-

composition, has been implemented in the model. This method uniformly divides the compu-

tational domain into rectangular blocks of small size. Then, subdomains are formed along the

Hilbert space-filling curves to have approximately the same amount of workload. Land blocks

are excluded from subdomains and further calculations. Each processor is assigned a certain

number of blocks, which form its computational subdomain. Figure 5 clearly shows the steps of

the described algorithm. All calculations in the model are organized in blocks, and each block

has extra boundaries with halo points, as shown in Fig. 6. Block halo points are updated before

each calculation. If a neighbor block is located on the same processor, we copy boundary values

without calling the MPI library. For halo points exchanges with blocks on other processors, we

use asynchronous MPI calls.

The block-based decomposition has another advantage in addition to the load-balanced

distribution. It is efficient memory management while computing on CPUs, and one can get a

performance increase on CPUs due to better cache behavior of smaller blocks. For hydrodynamic

models, this property is essential because most of them are strongly memory-bound, so memory

management is critical to the model’s efficiency and performance scaling [22].

The shallow water model employs the block-based decomposition for calculations on GPUs

as well as CPUs. Calculations on GPUs are also organized in blocks, and synchronizations occur

in the same way as it is done for calculations on CPUs, with the addition of halo points transfer
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Figure 6. The block-based decomposition

between CPU and GPU. The block-based decomposition allows organizing asynchronous data

transfer between CPU-GPU and overlapping calculations with memory copying and communi-

cations, leading in turn to improved performance on GPUs (see Section 3.3).

However, the block-based decomposition has a disadvantage: overheads for copying block

boundary values during synchronization. Previous work [6] showed that effective work with cache

memory compensates for copying overheads during synchronization for calculation on CPUs with

small blocks. Therefore this disadvantage can be considered insignificant. This disadvantage

becomes significant for calculations on GPUs since copying block boundary values must be

carried out between CPU and GPU. Nevertheless, as it will be shown in Section 4, it is possible

to improve performance using the block-based decomposition on GPUs for large computational

areas due to the overlapping computations with synchronizations.

Figure 7. Parallel programming patterns implemented in the shallow water model

3.2. Hybrid Approach Using MPI and OpenMP for Use on Multiprocessor

Computing Systems

Data synchronization between processors is a bottleneck in the shallow water model on

multiprocessor computing systems. With an increase in the number of computing nodes, syn-

chronization overheads increase due to the high load on the communication network. It is possible

to reduce the load on the communication network using OpenMP for parallelization on shared

memory inside a node. It is a so-called hybrid approach. The pure MPI approach creates a
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separate MPI process for each core on a node, whereas the hybrid MPI + OpenMP approach

creates only one MPI process for each node and separate threads for each core.

In the shallow water model, the task-based hybrid MPI-OpenMP approach has been imple-

mented, which distributes subdomains (blocks from block-based decomposition) across OpenMP

threads as shown in Fig. 7 compared to the pure MPI approach. Blocks are first distributed across

MPI processes using the load-balancing method. Then, blocks are distributed across available

threads within the MPI process, ensuring a uniform computational workload per thread. The

previous work [6] has showed that this approach has the advantage compared to the widespread

vector-based MPI-OpenMP hybrid approach, in which OpenMP is used only for parallelizing

two-dimensional loops over subdomains. The performance of the implemented task-based hybrid

approach is twice as high as the vector-based hybrid approach when calculating the model on

multiple computing nodes. The previous work has also showed the advantage in performance of

the task-based hybrid approach over the pure MPI approach.

3.3. Hybrid Approaches Using MPI, OpenMP and CUDA for Use

on Heterogeneous Computing Systems

In the shallow water model, calculation on GPUs has been fully supported using CUDA tech-

nology. For this purpose, we have adapted 15 model kernels to calculations on GPUs. We have

modified the Interface layer of the software architecture to utilize various calculation patterns

on GPUs in the model. As mentioned earlier, the model kernel is a single grid point calculation

on GPUs by a single thread, and it is launched by threads entirely covering the computational

domain. It is necessary to note two essential details in model kernels implementation for cal-

culation on GPUs. The first is that double precision is used everywhere in calculations, and,

second is the lack of memory optimizations. The last means that no specific data placement

optimizations on GPUs are implemented in model kernels; in particular, shared and texture

memories are not used. All memory accesses in model kernels occur immediately to the GPU’s

global memory. Modern generations of GPUs are less sensitive compared to the older ones to

data placement optimization, mostly due to improvements of global memory caches, as shown

in [14]. The authors of this paper have considered various benchmark applications, including

computational fluid dynamics solver, and showed that using different memory optimizations on

modern generations of GPUs (Pascal, Volta) overall does not produce as much speedup as older

ones. However, these results should be considered only as part of an overall picture. Further-

more, we have implemented model kernels for calculations on GPUs with minimal effort, and

adaptation on GPUs can be further automated using macros, as done in work [3].

The implementation on GPUs has been adapted to support the block-based decomposi-

tion in the shallow water model, which has proven itself on CPUs. Due to the block-based

decomposition, it is possible to balance a workload of computations on GPUs. Three paral-

lel programming patterns have been implemented for calculations on GPUs: the synchronous

MPI-CUDA pattern, the asynchronous MPI-OpenMP-CUDA pattern, the multi GPUs per node

MPI-OpenMP-CUDA pattern. Note that all patterns have not been challenging to implement

in the software architecture based on the separation of concerns. All code modifications have

been implemented at the Interface layer without affecting the Kernel and the Algorithm layers.

We describe each of the patterns in detail.
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3.3.1. Synchronous MPI-CUDA calculation pattern

In this approach, each MPI process is assigned a subdomain containing only one block and

a single GPU, as shown in Fig. 7. The subdomain calculation is performed entirely on GPU

using CUDA. After model kernel’s calculation on GPUs, processors synchronization occurs as

follows:

1. Boundary points of the subdomain are transferred from GPU to CPU synchronously, mean-

ing blocking data transfers are used.

2. MPI processes are synchronized, and halo points of each subdomain are updated. MPI

synchronization is performed entirely on the CPU.

3. The updated halo points are transferred back from CPU to GPU. Data transfer is still

synchronous.

This pattern supports calculations on multiple GPUs assuming only one block per MPI pro-

cess and does not support the block-based decomposition. Thus, there is no load-balancing of

calculations on GPUs using this pattern.

3.3.2. Asynchronous MPI-OpenMP-CUDA calculation pattern

In this pattern, the block-based decomposition is supported for calculations on GPUs. Each

MPI process is assigned a subdomain containing multiple blocks, and OpenMP threads and

CUDA streams are created for each subdomain’s block in the MPI process, as shown in Fig. 7.

The model kernel is launched for calculation on GPU for each subdomain’s block as follows:

1. Each OpenMP thread asynchronously launches the model kernel on GPU for the subdo-

main’s block. Launching is performed in the CUDA stream corresponding to the OpenMP

thread.

2. Each OpenMP thread asynchronously transfers boundary points from GPU to CPU of the

subdomain’s block. Data transfer is performed in the CUDA stream corresponding to the

OpenMP thread.

3. All CUDA streams and OpenMP threads are synchronized.

4. MPI processes are synchronized, and halo points of each subdomain’s block are updated.

MPI synchronization is performed entirely on the CPU.

5. Each OpenMP thread asynchronously transfers back halo points from CPU to GPU of the

subdomain’s block. Data transfer is performed in the CUDA stream corresponding to the

OpenMP thread.

Since modern GPUs have separate control elements for execution kernels and data transfers,

this calculation pattern organizes asynchronous data transfers and overlaps kernel execution on

GPU with data transfers between CPU and GPU using different CUDA streams. Figure 8

shows steps of this calculation pattern in comparison with the synchronous MPI-CUDA pattern

schematically. It can be seen that data transfers overlap with kernel execution in time for the

asynchronous MPI-OpenMP-CUDA pattern. This calculation pattern is completely hybrid and

designed for more efficient calculation on computing nodes with one GPU per node compared

to the synchronous MPI-CUDA pattern.
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(a) Synchronous MPI+CUDA pattern

(b) Asynchronous MPI+OpenMP+CUDA pattern

Figure 8. The synchronous MPI-CUDA and the asynchronous MPI-OpenMP-CUDA patterns

3.3.3. Multi GPUs per node MPI-OpenMP-CUDA calculation pattern

This pattern also supports the block-based decomposition for calculations on GPUs, but

differently than the asynchronous MPI-OpenMP-CUDA pattern. Each MPI process is assigned

a number of blocks and OpenMP threads as many as available GPUs on a node. Accordingly,

every GPU managed by a single OpenMP thread contains a single block subdomain on a node.

OpenMP threads independently launch CUDA kernels, allowing efficient use of every GPU

available on a node. Synchronizations are organized as in the MPI-CUDA pattern, but with

synchronization of GPUs on a node and block boundaries points gathering for synchronization

of MPI processes. The approach is completely hybrid and designed to calculate on computing

nodes with multiple GPUs per node.

4. Results and Discussions

Our experiments were performed on the Lomonosov-2 supercomputer at Lomonosov Moscow

State University [23], which is a completely heterogeneous computing system and is one of

the most high-performance supercomputers in Russia today according to the TOP500 list. We

performed our numerical experiments on the Pascal and Volta sections of the supercomputer,

which contain modern GPUs on nodes. The Pascal section includes 160 nodes with one Intel

Xeon Gold 6126 2.60GHz CPU (12 cores) and two Nvidia Tesla P100 GPUs; the Volta section

includes 16 nodes with Intel Xeon Gold 6126 2.60GHz CPU (12 cores) and two Nvidia Tesla V100

GPUs. We compiled the software code using the Nvidia HPC Fortran compiler (PGI compiler),

which supports native CUDA in Fortran and has recently become free. We used the optimization

option -fast and libraries Open MPI v3.1.5, CUDA 11.1 for compilation.

4.1. The Box Test

The first series of experiments were performed for the Box test. This test represents the

computational domain without land points and with constant sea depth. We set a gaussian

water level elevation as the initial condition, and there were no wind forcing. We made this test
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to demonstrate the performance scaling of the shallow water model without workload imbalances

on processors. We evaluated the model’s performance at different grid sizes of the computational

domain. We chose computational grids corresponding to the Azov Sea grids with a resolution of

250 meters and 62.5 meters: 1525 × 1115 points and 6100 × 4460 points. We performed model

simulations for one model day, with 86400 model steps in total.

(a) Speedup (b) Time per model step (in logarithmic scale)

Figure 9. Performance scaling on the Pascal section for the Box test with 6100 × 4460 grid size

Figure 9 demonstrates the performance scaling of various calculation patterns on CPUs and

GPUs at 6100 × 4460 grid size. Demonstrated results on the figure were obtained using 30 nodes

of the supercomputer’s Pascal section. The pure MPI and the hybrid MPI-OpenMP calculation

patterns on CPUs demonstrate close to linear (black line on the figure) scaling up to 30 nodes

(360 cores in total). However, the hybrid MPI-OpenMP calculation pattern failed to outperform

the pure MPI pattern on this supercomputer. We assume that using 30 nodes is not enough to

see the advantages of the hybrid calculation pattern over the pure MPI due to the low load on

the communication network. The multi GPUs per node MPI-OpenMP-CUDA pattern allows

performing calculations on 60 GPUs using 30 nodes and demonstrates the best calculation

time due to the efficient use of all computing resources on a node. The multi (two exactly)

GPUs per node pattern have twice better performance up to 16 nodes than one GPU per node

CUDA-MPI pattern, but then the performance difference decreases due to small subdomain

size per GPU. Calculation on a single GPU outperforms any calculation pattern on a single

CPU by a factor of 6.3. Although the performance scaling on GPUs is worse than on CPUs,

calculations on GPUs still outperform calculations on CPUs by a factor of 4.7 at 30 nodes using

60 GPUs and 360 CPU cores. We also compared the performance scaling on CPUs and GPUs

at 1525 × 1115 grid size. Figure 10 shows times per a single grid point for calculations on CPUs

and GPUs running 1525 × 1115 and 6100 × 4460 grid sizes. Performance per a single grid point

on GPUs dramatically decreases after 219 points per node, while performance on CPUs scales

up to 217 well. Accordingly, GPUs are much more sensitive to the grid size than CPUs in two

aspects. First, communication overheads, including data transfers between CPU and GPU, can

exceed the computation time and become a bottleneck in GPUs’ performance. Second, small

subdomains lead to better cache behavior for calculation only on CPUs but cannot saturate

execution and entirely hide memory latencies on GPUs.
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Figure 10. Time per single grid point (in logarithmic scale). The Pascal section of the super-

computer Lomonosov-2 was used

To further investigate performance scaling on GPUs, we tested the asynchronous MPI-

OpenMP-CUDA calculation pattern, which overlaps data transfers with kernel execution. Ex-

periments at 6100 × 4460 grid size were performed on the supercomputer’s Volta section, includ-

ing Nvidia Tesla V100 GPUs on nodes. Figure 11 demonstrates performances using a different

number of blocks in the block-based decomposition on a single GPU. We see that the asyn-

chronous calculation pattern on GPUs outperforms by 17% the synchronous calculation pattern

due to kernel execution and data transfer overlapping. Figure 12 shows performance scaling of

the asynchronous calculation pattern on GPUs using an optimal number of blocks (8 blocks

per GPU as shown in Fig. 11) compared to the synchronous calculation pattern on GPUs. This

experiment shows that the asynchronous pattern is better scaled up to 8 nodes and 28% faster

on 8 GPUs than the synchronous calculation pattern. Also, this experiment clearly shows that

overlapping kernel execution with data transfer compensates for overheads of copying blocks’

boundary values during synchronization in the block-based decomposition on GPUs. However,

this statement is valid only for sufficiently large computational domains.

Figure 11. Time per model step (in logarithmic scale) on a single V100 GPU for the Box test

with 6100 × 4460 grid size
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(a) Speedup (b) Time per model step (in logarithmic scale)

Figure 12. Performance scaling on V100 GPUs for the Box test with 6100 × 4460 grid size

4.2. The Azov Sea Test

The Azov Sea is a convenient region to test shallow water models because its dynamics

and circulation can be described well by two-dimensional numerical models, thanks to small

depth [19]. The computational domain of the Azov Sea has a relatively large number of land

points. Figure 5 shows that more than half of the blocks is entirely land when dividing the domain

into small blocks. Thus, the load-balancing method will be especially relevant here. The second

series of experiments were performed for the Azov Sea to evaluate the performance scaling of the

shallow water model with workload imbalances on processors and demonstrate the advantage

of using the load-balancing method for calculations on CPUs and GPUs. We choose different

spatial resolutions for the test: 250 meters (1525 × 1115 grid size) and 62.5 meters (6088 × 4448

grid size). It should be noted that a high resolution of the Azov Sea model is required to more

correctly describe coastal flow currents and sea level changes, which are required for practical

purposes, for example, for calculating level fluctuations in ports of the Azov Sea. Simulations

were performed for one model day, with 86400 model steps in total.

The LB metric is responsible for balancing the partitioning in terms of computing load on

processors and is defined as follows. Suppose that the partition occurs into k subdomains for

p processors, then LB is defined as:

LB(k, p) =
max1≤i≤kWi

1
p

∑k
i=1Wi

,

where max1≤i≤kWi – is the maximum workload of the i-th subdomain,
∑k

i=1Wi – is the full

workload of the entire computational domain. The workload is computed differently for cal-

culations on CPUs and GPUs. For CPUs, the workload of the subdomain is a sum of “wet”

points in the subdomain. However, for GPUs, the workload of the subdomain is a sum of any

points (“dry” and “wet”). Due to branch divergence, performance on GPUs does not drop with

increasing the proportion of “wet” points, unlike on CPUs, and we take it into account. So, for

calculation on GPUs, we uniformly distribute blocks from the block-based decomposition across

GPUs, excluding entirely land blocks. This metric shows the ratio of the maximum subdomain’s
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workload to the optimal workload. The value LB = 1 corresponds to a perfectly load-balanced

partition.

As mentioned early, the block-based decomposition divides the domain into small blocks and

distributes them across available processors. On the one hand, using a small number of blocks

in a partition leads to a high LB metric and unbalanced subdomains of processors. On the other

hand, using a large number of blocks in a partition leads to high overheads of copying blocks’

boundary values during processors synchronization, which is especially true for calculations on

GPUs since we must transfer data between CPU and GPU for each block. Therefore, the number

of blocks k in the partition is chosen adaptively for distribution across p processors according

to the following criterion:

k(p) = min
n=0,1,...

{4n s.t. LB(4n, p)− LB(4n+1, p) < 0.15}. (5)

That criterion means that optimal blocks partition is a minimum partition (4n blocks) for

which more fine partitions (4n+1 blocks and more) do not significantly reduce the value of the

LB metric. Table 1 demonstrates optimal number of blocks for calculation on CPUs according

to the described criterion; the optimal number of blocks is highlighted in the table.

Table 1. LB metrics for the Azov Sea with 250 meters resolution

Processes LB for 256 blocks LB for 1024 blocks LB for 4096 blocks

48 1.371 1.045 1.012

96 1.802 1.154 1.022

192 – 1.385 1.070

We tested the Azov Sea on the Pascal section of the Lomonosov-2 supercomputer. Figure 13

demonstrates performance scalings of the model with load-balancing compared to the model

without load-balancing on CPUs at 1525 × 1115 grid size and on GPUs at 6088 × 4448 grid

size. We considered only the pure MPI calculation pattern on CPUs and compared the asyn-

chronous calculation pattern to the synchronous pattern on GPUs. On one node, the model was

calculated without load-balancing. We used an optimal number of blocks according to crite-

ria 5. For calculations on CPUs, Tab. 1 shows an optimal number of blocks; for GPUs, we used

64 blocks for 4 nodes and 256 blocks for 16 nodes. The figure shows that load-balancing has a

significant impact on CPU computing performance: the model with load-balancing outperforms

by 30% the model without load-balancing at 16 nodes and scales superlinearly due to better

cache behavior of small blocks. For calculation on GPUs, it can be seen that the asynchronous

pattern with load-balancing outperforms the synchronous and asynchronous patterns without

load-balancing by 30% and 18% respectively at 16 nodes. Still, performance on GPUs, even

with the higher resolution of the Azov Sea, scales worse than on CPUs. As mentioned before,

GPUs are much more sensitive to the problem size than CPUs (see Fig. 10). That fact is espe-

cially relevant here because, with increasing nodes, the number of points per GPU dramatically

decreases due to the presence of land points in the computational domain.

Conclusions

In this paper, we present the three-layer software architecture of the shallow water model

based on the separation of concerns. The software architecture separates the physics-related code
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(a) Speedup of CPU version for 250m resolution (b) Speedup of GPU version for 62.5m resolution

Figure 13. Performance scaling of the Azov Sea model. The Pascal section of the supercomputer

Lomonosov-2 was used

from features of parallel implementation, simplifying the model’s support and development. We

present the blocked-based decomposition to improve the two-dimensional domain decomposition

method proposing load-balanced and cache-friendly calculations on CPUs. We support the block-

based decomposition for calculations on GPUs proposing overlapping kernel execution with data

transfer. We present various hybrid parallel programming patterns for use on massively parallel

and heterogeneous computing systems. The pure MPI and the hybrid task-based MPI-OpenMP

are presented as calculation patterns on CPUs. We develop three hybrid parallel programming

patterns for calculations on GPUs. The synchronous MPI-CUDA pattern supports calculations

on multiple GPUs assuming only one block per MPI process and does not employ block-based

decomposition. The asynchronous MPI-OpenMP-CUDA pattern overlaps kernel execution with

data transfers to more effective calculation on nodes with one GPU per node than the syn-

chronous MPI-CUDA pattern. Lastly, the multi GPUs per node MPI-OpenMP-CUDA pattern

is designed to calculate on nodes with multiple GPUs per node.

We test the shallow water model on the Lomonosov-2 supercomputer at Lomonosov Moscow

State University. First, we evaluate different calculation patterns’ scaling performances on CPUs

and GPUs at the computational domain without land points. We demonstrate that performance

per a single grid point on GPUs dramatically decreases after 219 points per node while perfor-

mance on CPUs scales up to 217 well. Although, calculations on GPUs outperform calculations

on CPUs by a factor of 4.7 at 30 nodes using 360 CPU cores and 60 GPUs at 6100 × 4460 grid

size. We demonstrate that the asynchronous MPI-OpenMP-CUDA pattern is better scaled up

to 8 nodes and 28% faster on 8 GPUs than the synchronous calculation pattern. Second, we

demonstrate the advantage of using the load-balancing method in the Azov Sea model. We show

that the load-balancing significantly impacts computing performances: calculations with load-

balancing outperform by 30% calculations without load-balancing on both CPUs and GPUs at

16 nodes.

The considered shallow water model is formulated from a barotropic solver of the ocean

general circulation sigma model INMOM. This research challenges us to extend current work to

the three-dimensional ocean model INMOM on heterogeneous supercomputers.
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