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The technology aimed at high-performance computing is presented for modeling the sea dy-

namics problems based on 4D variational data assimilation technique developed at the Marchuk

Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). The technology

is based on the multicomponent splitting method for the mathematical model of sea dynamics

and the minimization of cost functionals related to the observation data by solving an optimality

system that involves the adjoint equations with observation data and observation error covari-

ances. Efficient algorithms for solving the variational data assimilation problems are presented

based on modern iterative processes with a special choice of iterative parameters. The technology

is illustrated for the Baltic Sea dynamics model with variational data assimilation to restore the

initial states and the heat fluxes on the sea surface.

Keywords: sea dynamics modeling, variational data assimilation, observations, sea surface

temperature.

Introduction

In recent years, there has been an increasing interest in research methods and numerical

solution of inverse and data assimilation problems, which play a fundamental role in the theoret-

ical understanding and mathematical modeling of processes and phenomena from various fields

of knowledge. The data assimilation technique is widely used in geosciences to develop high-

performance computational technologies that combine the flows of real data and hydrodynamic

forecasts using mathematical models. It received the greatest applications in meteorology and

oceanography, where observations of the atmosphere and ocean are assimilated into atmospheric

and oceanic models in order to obtain the initial and/or boundary conditions (and other model

parameters) for further modeling and forecasting [1, 7, 8, 12, 15, 16, 18, 22, 25].

A significant progress in solving data assimilation problems has been the use of variational

methods and, in particular, optimal control methods. The development of this direction at the

INM RAS was initiated by Academician Guriy I. Marchuk [18]. These approaches were the main

content of research of G.I. Marchuk and his scientific school in various fields of mathematics and

applications [1, 4, 5, 18, 25].

The variational data assimilation allows, on a unified methodological basis, to solve the

problems of initializing hydrophysical fields, assessing the sensitivity of a model solution, identi-

fying model parameters, etc. The main idea of the method is to minimize some functional that

describes the deviation of the model solution from the observational data, and the minimum

of this functional is sought on the model trajectories, in other words, in the subspace of model

solutions. The problem is formulated in a four-dimensional space-time domain and requires the

solution of a coupled system of direct and adjoint equations in forward and backward time, re-

spectively, which is very complicated from the computational point of view. The problem adjoint
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to the original nonlinear problem has a more complex form, and for solving the adjoint problem,

it is required to store 4D arrays of the solutions of the direct problem in machine memory.

Ocean general circulation models are very complex systems, which are based on nonlinear

differential equations describing the evolution of three-dimensional fields of currents, tempera-

ture and salinity, as well as pressure and density [9, 11, 13, 21], and require the development

of efficient numerical methods for a long-time integration. This underlines the importance of

high-performance computing for such problems. The ocean hydrodynamics INMOM model (INM

ocean model) is described by primitive equations in the sigma-coordinate system, which is solved

by finite-difference methods [11, 24, 27]. Its numerical implementation is based on the method

of splitting according to physical processes and spatial coordinates [17, 27], which allows us to

split the complex problem into a number of simpler ones and solve it in time using explicit or

implicit schemes.

This paper is based on the talk given at the Lomonosov Moscow State University Seminar

“Supercomputer Modelling of the Earth System” (headed by V.A. Sadovnichy) and presents

some approaches to solving the problems of variational data assimilation, developed at the INM

RAS last year. As an application, a mathematical model of sea dynamics is considered with

a block of variational assimilation of data on sea surface temperature taking into account the

covariance matrices of observation errors. On the basis of variational assimilation of observational

data, algorithms are proposed for solving inverse problems of restoring initial conditions and

heat fluxes on the sea surface. This is the novelty of this paper compared to the previous

studies [3–6, 25]. The results of numerical experiments for the Baltic Sea area are discussed.

The article is organized as follows. Section 1 is devoted to the the mathematical model of

sea dynamics using the splitting method. In Section 2 we give the statement of the variational

data assimilation problem and formulate the algorithms for its solution. Section 3 contains the

results of numerical experiments for the Baltic Sea water area. The main results are discussed

in the Conclusions.

1. Mathematical Model of Sea Dynamics

We consider the system of equations of sea hydrothermodynamics in geographical coordi-

nates under hydrostatics and Boussinesq approximations [2, 19], in the domain D of variables

(x, y, z) for t ∈ (0, t̄):





d~u

dt
+

[
0 −f
f 0

]
~u− ggradζ +Au~u+ (Ak)2~u = ~F − 1

ρ0
gradPa−

− g

ρ0
grad

z∫

0

ρ1(T, S)dz
′
,

∂ζ

∂t
−m ∂

∂x
(

H∫

0

Θ(z)udz)−m ∂

∂y
(

H∫

0

Θ(z)
n

m
vdz) = f3,

dT

dt
+
(
Ū ,Grad

)
T +ATT = fT ,

dS

dt
+ (Ū ,Grad)S +ASS = fS ,

(1)

where Ū = (u, v, w) is the velocity vector, ζ is the sea surface level function, T is the temperature,

S is the salinity, ~u= (u, v) , ρ1 (T, S) = ρ0βT
(
T − T (0)

)
+ ρ0βS

(
S − S(0)

)
+ γρ0βTS (T, S) is

the water density, Pa is the atmospheric pressure, ~F = (F1, F2) is the forcing, fT , fS are the

functions of the ‘internal’ sources, ρ0 = const ≈ 1 is the mean density, T (0), S(0) are the reference
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values of temperature and salinity, βTS (T, S) is the sum of all other terms of the expansion of

the function of state ρ = ρ (T, S), f3 ≡ f3 (x, y, t) is the function related to the tide-generating

forces, βT , βS , γ, g = const, Aϕϕ ≡ −Div (âϕGradϕ), m = 1/(r cos y), n = 1/r, r = R − z ≈ R,

Θ(z) ≡ (R− z)/R≈ 1, R is the Earth radius.

The operators Aϕϕ ≡ −Div(âϕGradϕ) involve âϕ = diag((aϕ)ii), where (aϕ)11 = (aϕ)22 ≡
µϕ, (aϕ)33 ≡ νϕ , and ϕ may take the values u, v, T, S. We assume that µu = µv ≡ µ,

νu = νv ≡ ν, and µ, ν, µT , µS , νT , νS are diffusion coefficients that are supposed to be

positive bounded functions. The fourth order operator (Ak)2, with Ak taken for Aϕ = Ak, is

defined by the matrix k̂ = diag{kii} with nonnegative diagonal elements kii that are viscosity

coefficients in respective directions. We consider f = f(u) = l + mu sin y ≡ l + f1(u), where

l = l(y) is the Coriolis parameter l = 2ω sin y, and ω is the Earth angular rotaton speed.

The boundary Γ ≡ ∂D of the domain D is represented as a union of four disjoint parts ΓS ,

Γw,op, Γw,c, and ΓH , where ΓS ≡ Ω is the “unperturbed” sea surface, Γw,op is the liquid (open)

part of the vertical lateral boundary, Γw,c is the solid part of the vertical lateral boundary, and

ΓH is the sea bottom. The characteristic functions (indicator functions) of the parts ΓS , Γw,op,

Γw,c, and ΓH of the boundary Γ are denoted by mS , mw,op, mw,c, and mH , respectively. These

functions are equal to 1 on the corresponding parts, otherwise they are equal to zero.

The unit outer normal vector to Γ is denoted by
−→
N ≡ (N1, N2, N3), with

−→
N = (0, 0,−1) on

ΓS and
−→
N = (N1, N2, 0) on Γw = Γw,op

⋃
Γw,c, and ~n ≡ (N1, N2) ≡ (n1, n2) is the unit outer

normal vector to ∂Ω. We assume also that |N3| > 0 on ΓH . The components N1, N2, N3 are

defined by the chosen parametric representation of the corresponding part of the boundary. For

the velocity vector Ū = (u, v, w) on the boundary Γ, the normal components are denoted by

Un : Un = Ū ·−→N = uN1 +vN2 +wN3. Below we put U
(+)
n ≡ (|Un|+Un)/2, U

(−)
n ≡ (|Un|−Un)/2,

with Un = U
(+)
n − U (−)

n on Γ.

The hydrostatics approximation means that
∂P

∂z
= gρ, where P is the pressure, ρ = ρ0 +ρ1.

This equation is used to find P after solving the system (1). Due to this relation, the pressure

gradient in (1) is divided into three terms: the gradients of the atmospheric pressure, sea surface

elevation, and water column pressure deviation.

We consider the equations (1) in D × (0, t̄) with the following boundary and initial condi-

tions [2].

Boundary conditions on ΓS :








H∫

0

Θ~udz


~n = 0 on ∂Ω,

U (−)
n u− ν ∂u

∂z
− k33

∂

∂z
Aku = τ (a)

x

/
ρ0, U

(−)
n v − ν ∂v

∂z
− k33

∂

∂z
Akv = τ (a)

y

/
ρ0,

Aku = 0, Akv = 0,

U (−)
n T − νT

∂T

∂z
+ γT (T − Ta) = QT ,

U (−)
n S − νS

∂S

∂z
+ γS(S − Sa) = QS ,

(2)

where τ
(a)
x , τ

(a)
y are the tangent wind stress components along the axes Ox and Oy, respectively,

on the sea surface z = 0, γT , γS are the coefficients of relaxation to the specified values of

temperature Ta and salinity Sa, respectively, k33 is the vertical viscosity coefficient, ν is the

turbulent exchange coefficient, and QT , QS are the surface heat and salinity fluxes, respectively.
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We have also Un|z=0 = −w|z=0, where w = w(u, v) is defined by the formula

w(x, y, z, t) =
1

r
(m

∂

∂x
(

H∫

z

rudz′) +m
∂

∂y
(
n

m

H∫

z

rvdz′)), (x, y, t) ∈ Ω× (0, t̄). (3)

Boundary conditions on Γw,c (on the “solid” part lateral wall):

Un = 0, AkŨ = 0,
∂Ũ

∂Nu
· τw + (

∂

∂Nu
AkŨ) · τw = 0,

∂T

∂NT
= 0,

∂S

∂NS
= 0, (4)

where τw = (−N2, N1, 0), Ũ ≡ (u, v, 0) ≡ (~u, 0), ∂ϕ/∂Nϕ ≡ −→N · âϕ ·Gradϕ, ϕ = u, T, S.

Boundary conditions on Γw,op (on the “liquid” part lateral wall):





U (−)
n (Ũ · ~N) +

∂Ũ

∂Nu
· ~N = 0, AkŨ = 0

U (−)
n (Ũ · τw) +

∂Ũ

∂Nu
· τw + (

∂

∂Nu
AkŨ) · τw = 0,

U (−)
n T +

∂T

∂NT
= QT , U

(−)
n S +

∂S

∂NS
= QS ,

(5)

where QT , QS are the heat and salinity fluxes, respectively.

Boundary conditions on ΓH (on the bottom):





w = um
∂H

∂x
+ vn

∂H

∂y
, AkŨ = 0,

∂T

∂NT
= 0,

∂S

∂NS
= 0,

∂Ũ

∂Nu
· τx + (

∂

∂Nu
AkŨ) · τx = τ (b)

x /ρ0 ,
∂Ũ

∂Nu
· τy + (

∂

∂Nu
AkŨ) · τy = τ (b)

y /ρ0,

(6)

where τx, τy is the system of unit orthogonal vectors of the coordinate system corresponding to

x and y directions; τ
(b)
x , τ

(b)
y are the projections of the bottom friction vector on the axes Ox,

Oy, respectively.

Initial conditions for u, v, T, S, ζ:

u = u0, v = v0, T = T 0, S = S0, ζ = ζ0, for t = 0, (7)

where u0, v0, T 0, S0, ζ0 are the given functions.

The problem of large-scale sea dynamics in terms of the functions u, v, w, ζ, T, S consists

in solving the system (1)–(7). If the functions u, v, ζ, T, S are found, then the function w is

determined by formula (3).

The main features of the numerical model of sea dynamics INMOM are the simultaneous

use of the splitting method [17, 27] and the σ-coordinate system [24, 27] for (1)–(7). These two

components are used in tandem to build efficient computer technology for 4DVAR ocean data

assimilation.

The transition to the σ-system can be carried out at the stage of considering the original

problem (1)–(7) before applying suitable splitting schemes and other numerical procedures [20].

In order to approximate the model (1)–(7) in time, we use the splitting method that allows

us to represent the solution of the original nonlinear system by subsequent solutions of simpler

problems (steps of the splitting method). Let us introduce the grid on [0; t̄]: 0 = t0 < t1 < ... <

tJ−1 < tJ = t̄, ∆tj = tj − tj−1 and consider problem (1)–(7) on (tj−1, tj), assuming that the

vector of the approximate solution φk ≡ (uk, vk, ξk, Tk, Sk), k = 1, 2, ..., j − 1 at the previous

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 7



intervals, is already defined. To approximate the problem, we use one of the schemes of the total

approximation method [17], which consists in the implementation of the following steps.

Step 1. Consider the problem

Tt +
(
Ū ,Grad

)
T −Div (âT ·Grad T ) = fT in D × (tj−1, tj) (8)

under corresponding boundary and initial conditions.

Step 2. Solve the problem

St + (Ū ,Grad)S −Div(âS ·Grad S) = fS in D × (tj−1, tj) (9)

under appropriate boundary and initial conditions.

Step 3. The system





u
(1)
t +

[
0 −l
l 0

]
u(1) − ggradζ = ~F − 1

ρ0
grad


Pa + g

z∫

0

ρ1(T̄ , S̄)dz
′




in D × (tj−1, tj),

ζt − div

(
H∫
0

Θu(1)dz

)
= f3 in Ω× (tj−1, tj),

u(1) = uj−1, ζ = ζj−1 for t = tj−1, u
(1)
j ≡ u(1)(tj) in D

(10)

is solved under corresponding boundary conditions, and the function ζj ≡ ζ(1) is taken as an

approximation to ζ on (tj−1, tj). Then the following problems are solved:





u
(2)
t +

[
0 −f1(ū)

f1(ū) 0

]
u(2) = 0 in D × (tj−1, tj),

u(2) = u
(1)
j for t = tj−1, u

(2)
j ≡ u(2)(tj) in D,

(11)





u
(3)
t + (Ū ,Grad)u(3) −Div(âu ·Grad)u(3) + (Ak)2u(3) = 0 in D × (tj−1, tj) ,

u(3) = u(2) for t = tj−1 in D,

(12)

where u(3) = (u(3), v(3)), Ū (3) = (u(3), w(3)(u(3), v(3))). After solving (12), the vector u(3) ≡
~uj ≡ (uj , vj) is taken as an approximation to the exact vector ~u on D × (tj−1, tj), and the

approximation wj ≡ w (uj , vj) to the vertical component of the velocity vector is calculated

by (3).

It is seen that step 3 consists of 3 substeps, and by the superscripts in parentheses we denote

the value of the solution at the corresponding substeps. The underline stands for 2D vectors,

and the overline stands for 3D vectors.

Steps 1 and 2 may be also subsplitted, each into several substeps, based on the method

of splitting according to spatial coordinates [20, 27]. The differential operator of the three-

dimensional transport-diffusion heat and salt problems (8) and (9) is represented as a sum of

simpler non-negative operators, which allows to split the problems into a number of simpler ones

and solve them in time using explicit or implicit schemes.

When steps 1–3 are implemented, after the first step we get an approximation to T , after the

second an approximation to S, and after the third step we get an approximation to ~u = (u, v)

and ζ. Therefore, the subproblems at these steps are independent of each other and may be

solved in parallel. This is very important for high-performance computing.
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2. Variational Data Assimilation Technology

Comprehensive monitoring of the main characteristics of natural environment and climate,

which is important both for everyday life and for reducing the consequences of natural and man-

made disasters, requires the new effective methods and algorithms for the variational assimilation

of remote sensing data in atmospheric, ocean and climate models to be developed for high-

performance computing. The purpose is to estimate the unknown model inputs: the initial

state of the system, the boundary conditions, the source terms, distributed coefficients, etc. The

problems are formulated as optimal control problems (deterministic or stochastic) involving cost

functions associated with observations, and the minimization is considered on the trajectories

(solutions) of the model under consideration [1, 4, 5, 15, 16, 18, 25].

We will demonstrate the data assimilation technology for the case when in problem (1)–(7)

the initial state T 0 and the total heat flux function Q = −νT
∂T

∂z
on ΓS are unknown and treated

as additional “controls”. The cost function is related to observations and has the form:

J(T 0, Q) =
α

2

t̄∫

0

∫

Ω

|Q−Q(0)|2dΩdt+
β

2

∫

D

|T 0 − T (0)|2dD +
1

2

J∑

j=1

J0,j ,

J0,j ≡
tj∫

tj−1

∫
Ω

(T |z=0 − Tobs)R−1(T |z=0 − Tobs)dΩdt,

(13)

where Q(0) = Q(0)(x, y, t), T (0) = T (0)(x, y, z) are the given functions, Tobs is the function of

observations on the sea surface Ω, R is the observation error covariance operator, and α, β =

const > 0 are the regularization parameters. The functions Q(0), T (0) are usually chosen as first

approximations (so-called “background”) for the unknown Q and T 0. The aim of variational

data assimilation is, using Q(0) and T (0), to find better estimates for Q and T 0, consistent with

the model solution and observations, for further modelling and forecast.

We consider the following variational data assimilation problem: find a solution to (1)–(7)

and functions T 0, Q, such that functional (13) takes the minimum value:

J(T 0, Q) = inf
T 0,Q

J(T 0, Q).

The gradient of the functional J(T 0, Q) with respect to T 0, Q is defined by the adjoint

state T ∗ as follows:

J ′Q = α
(
Q−Q(0)

)
+ T ∗ on Ω,

J ′T 0 = β
(
T 0 − T (0)

)
+ T ∗|t=0 in D.

(14)

The nesessary optimality condition J ′Q = J ′T 0 = 0 leads to the optimality system, which de-

termines the solution of the formulated problem of variational data assimilation. The optimality

system includes the direct problem (1)–(7), the adjoint problem, and the optimality conditions

in the form:

α
(
Q−Q(0)

)
+ T ∗ = 0 on Ω,

β
(
T 0 − T (0)

)
+ T ∗|t=0 = 0 in D.

(15)

Equations (14) are obtained by differentiating the cost function (13) with respect to T 0 and Q

and using the classical representation of the result through the adjoint problem [18]. The adjoint

state T ∗ is the solution of the adjoint problem, which in the case of applying the splitting method
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is determined at Step 1 in the form:

−T ∗t −Div
(
ŪT ∗

)−Div (âT ·Grad T ∗) = 0 in D × (tj−1, tj) ,

T ∗ = 0 for t = tj ,

−νT
∂T ∗

∂z
= R−1(T |z=0 − Tobs) on Ω.

(16)

The adjoint problem (16) involves the observation data Tobs and the observation error covariance

operator R in the boundary condition on the sea surface.

The optimality system that determines the solution of the formulated problem of variational

data assimilation reduces to the sequential solution of the subproblems on t ∈ (tj−1, tj), j =

1, 2, . . . , J.

To find an approximate solution of the optimality system, with the simultaneous determi-

nation of T 0, Q by variational assimilation of Tobs we can use the following iterative algorithm.

If Qk is the already constructed approximation to Q on (tj−1, tj), and T 0
k is the approximation

to T 0, then after solving the forward and adjoint problems with Q ≡ Qk, T
0 = T 0

k , the next

approximations Qk+1, T
0
k+1 are computed by:

Qk+1 = Qk − γk(α(Qk −Q(0)) + T ∗) on Ω× (tj−1, tj) , (17)

T 0
k+1 = T 0

k − γk(β(T 0
k − T (0)) + T ∗|t=0) on D (18)

with the parameters γk chosen so that the iterative process (17)–(18) is convergent [3]. After

computing Qk+1, T
0
k+1, the solution of the direct and adjoint problems is repeated with the

new approximations Qk+1, T
0
k+1, and then Qk+2, T

0
k+2 are calculated, and so on. Iterations are

repeated until a suitable convergence criterion is met.

The convergence properties of similar iterative algorithms were studied in previous works of

the authors. For example, in the case β = 0, for γk one can take the parameters

γk =
1

2

tj∫

tj−1

∫

Ω

(T |z=0 − Tobs)R−1(T |z=0 − Tobs)dΩdt
/ tj∫

tj−1

∫

Ω

(T ∗)2|z=0dΩdt

which may significantly accelerate the convergence of the iterative process [3].

The formulated algorithm allows us to solve the considered four-dimensional variational data

assimilation problem. Each step of the assimilation procedure according to (17)–(18) requires

solving the forward and adjoint problems. With the use of the σ-coordinate system, the model

solution domain does not depend on time: its horisontal boundaries do not change, and the

vertical coordinate changes from zero to unity. This allows using the uniform grid in the vertical

direction, which is convenient for numerical implementation. The use of the method of splitting

with respect to geometric coordinates makes it possible to numerically solve the subproblems

independently of each other. These calculations can be done in parallel, which is important for

high-performance computing.

3. Numerical Experiments for the Baltic Sea Water Area

To carry out numerical experiments on the assimilation of satellite observation data on

the sea surface temperature, the water area of the Baltic Sea was selected. In all experiments,
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the problem of recovering the initial and boundary conditions was considered in one iterative

procedure of the form (17)–(18). The model of the dynamics of the Baltic Sea was chosen as

the main model [26]. This model uses the method of splitting both in spatial variables and in

physical processes, which greatly simplifies the application of the theory of adjoint equations for

the formulation and solution of the data assimilation problems. It also allows the use of OpenMP

technology for those processes that can be calculated independently of each other.

The second distinctive feature of the model considered is the use of the sigma-coordinate

system. The approximation of the model on the “grid C” [26] was used. This model was sup-

plemented by the variational data assimilation procedure described in the previous section. The

model was started running with zero initial conditions and run with atmospheric forcing ob-

tained from reanalysis, of about 20 years, and after that the result of calculation was taken as

an initial condition for further running of the model. The assimilation procedure worked only

during some time windows.

Meteorological characteristics were used to calculate the atmospheric impact in the INMOM

model [10], including using the bulk formulas for calculating turbulent flows on the sea surface.

The values of the mean climatic heat flow Q(0) calculated in this way were used in the data

assimilation procedure as a background. To start the assimilation procedure, the function T (0)

was taken as a model forecast for the previous time interval. For other functions in the boundary

conditions their climatic values were taken.

The daily mean observations Tobs for the experiments were obtained from the Coperni-

cus Marine Service (https://www.marine.copernicus.eu). Numerical calculations used the DMI

Sea Surface Temperature reprocessed analysis aimed at providing daily gap-free maps of sea

surface temperature, at 0.02◦ x 0.02◦ horizontal resolution, using satellite data from infra-red

radiometers [14]. The data obtained were verified and interpolated on the computational grid

of the numerical model [23]. Based on the observational data on the surface temperature, the

covariance matrices of data errors R [6] were constructed, which are used to calculate the cost

functional (13) and its gradient in the course of the numerical solution of the problem.

(a) Data for January 15, 2017 (b) Data for February 15, 2017

Figure 1. Daily mean SST observation data, ◦C

A number of calculations were made between January and March 2017. The grid step in

the model was 3.5 km in space, with 27 vertical levels. The time step in the experiments was

V.P. Shutyaev, V.I. Agoshkov, V.B. Zalesny, E.I. Parmuzin, N.B. Zakharova

2022, Vol. 9, No. 1 11



5 minutes. In all experiments, the regularization parameters were chosen the same and equal to

α = β = 10−5.

Let us consider some of the calculation results. Figure 1 shows the daily mean sea surface

temperature (SST) fields for January 15 (Fig. 1a) and February 15 (Fig. 1b) obtained from

Copernicus Marine Service and used as observational data in numerical experiments. In the

model with the assimilation procedure, these data are used 2 times a day to adjust the initial

and boundary conditions, i.e. the functions T 0 and Q.

(a) Model calculation without assimilation (b) Model calculation with data assimilation

Figure 2. Daily mean SST, January 15, 2017, ◦C

(a) Model calculation without assimilation (b) Model calculation with data assimilation

Figure 3. Daily mean SST, February 15, 2017, ◦C

Figures 2 and 3 show the results of calculations using the model without variational data

assimilation (Fig. 2a and 3a) and with temperature assimilation of sea surface data (Fig. 2b and

3b). It can be seen from the presented calculations that the use of the assimilation procedure

makes it possible to correct the calculations of the model and bring them closer to the actually

observed data. In wintertime, the sea ice block is used in the model [26], however, the assimilation

does not use the points in the regions with ice, because we have no observation data at these

points. Note that the model without assimilation in the southern part of the Baltic Sea and

in the Gulf of Bothnia gives somewhat underestimated SST values, and the deviation from the
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observed values may reach 2.5◦C. Application of the assimilation procedure allows bringing this

deviation to 1–1.5◦C. It is not possible to completely remove this deviation using only the daily

averaged observational data, and it is necessary to use additional data sources for a more reliable

correction of the model.

(a) Baroclinic kinetic energy (b) Barotropic kinetic energy

Figure 4. Difference in energies calculated without assimilation and using variational assimila-
tion, cm2/sec2

Figure 4 shows the differences in the values of the baroclinic and barotropic kinetic energies

of the system as a function of time, obtained from model calculations without using the data

assimilation procedure and with using this procedure.

Numerical experiments show that the influence of assimilation on the value of the baro-

clinic and barotropic energies of the system is insignificant. According to the calculations, the

difference in energies when calculated by the model without assimilation and using the assimi-

lation procedure does not exceed 1%. So, the values of the baroclinic kinetic energy vary in the

range from 4 cm2/sec2 to 28 cm2/sec2, while the difference in values at calculation according

to the model with and without data assimilation lies in the range from –0.08 to 0.06 cm2/sec2

(see Fig. 4a). Similar results are obtained for barotropic kinetic energy. With values from 3 to

17 cm2/sec2, the difference in calculations with and without assimilation varies from –0.012 to

0.023 cm2/sec2 (see Fig. 4a).

From these and many other our numerical experiments it follows that when only the sea

surface temperature is assimilated, the values of the velocities change faintly. Nevertheless, all

hydrophysical fields obtained in the course of computations using the variational assimilation of

observational data remain consistent and physical.

The iterative procedures used for the four-dimensional variational assimilation of the sea

surface temperature in the Baltic Sea showed good convergence, and no more than 10 iterations

were required to obtain the optimal heat flux Q and the initial state T 0. In some experiments,

the parameters of the iterative process can be calculated based on the features of the system

itself, and in this case it is possible to achieve convergence of the process in 3–5 iterations.

Numerical experiments has shown that the inclusion of the data assimilation procedure in-

creases the calculation time by about 10%, which can be reduced by using parallelization. Due to

the fact that some procedures of the numerical model use implicit schemes, it is quite difficult to

build a full parallel model for the version used for experiments in this work. Nevertheless, where
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possible, the procedures were parallelized using the OpenMP methods. A series of calculations

has been run to evaluate performance and acceleration when using the OpenMP technology.

The Tab. 1 shows some test results calculated for 144 steps of the model.

Table 1. Test results

Number of threads Computation time, s Speed-up

1 178.37 1.00

2 118.93 1.49

4 77.31 2.31

When using the OpenMP methods, it was possible to speed up the model calculations by

2.3 times. The assimilation code has also been accelerated using the OpenMP technology. In the

assimilation procedure, for all grid nodes in which there are observation data, the same oper-

ations are performed, therefore, such nodes were grouped into sets of 32, and the assimilation

procedure was rewritten in such a way that each mathematical operation necessary for assimi-

lation was performed in the most nested loop of 32 elements. On a 4-core Intel Core i7-3770K

processor with 8 threads, the program code was accelerated by about 4 times due to parallel

computations using the OpenMP technology.

Numerical experiments for the Baltic Sea dynamics model confirmed the feasibility of the

presented computational technology and demonstrated that the assimilation can improve the

predictive properties of the model.

Conclusions

The paper presents the results obtained by the INM RAS researchers on the 4D technology

of variational data assimilation for sea dynamics problems, which is based on the development of

efficient numerical algorithms for problems of variational assimilation of observation data for a

model of marine hydrothermodynamics. Based on the variational assimilation of the observation

data, we propose the algorithms for solving inverse problems to restore the heat fluxes on the

sea surface and the initial states of the model under consideration. These algorithms have shown

their efficiency for the models based on the use of the method of splitting with respect to physical

processes and geometric coordinates, which made considered problems easier at each implemen-

tation step. The numerical experiments for the Baltic Sea dynamics model have shown the ability

to apply the proposed variational assimilation algorithms to modelling hydrothermodynamics

problems of marine areas and demonstrated a good proximity of the obtained solutions to real

observation data. The reported technology belongs to a class of computational technologies that

combine the flows of real data and hydrodynamic forecasts using mathematical models.
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