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The article presents and evaluates a scalable algorithm for validating solutions to linear pro-

gramming problems on cluster computing systems. The main idea of the method is to generate a

regular set of points (validation set) on a small-radius hypersphere centered at the solution point

submitted to validation. The objective function is computed at each point of the validation that

belongs to the feasible region. If all the values are less than or equal to the value of the objective

function at the point that is to be validated, then this point is the correct solution. The parallel

implementation of the VaLiPro algorithm is written in C++ through the parallel BSF-skeleton,

which encapsulates all aspects related to the MPI-based parallelization of the program. We provide

the results of large-scale computational experiments on a cluster computing system to study the

scalability of the VaLiPro algorithm.

Keywords: linear programming, solution validator, VaLiPro, parallel algorithm, cluster com-

puting system, BSF-skeleton.

Introduction

The era of big data [1, 2] has generated large-scale linear programming (LP) problems [3].

Such problems arise in economics, industry, logistics, statistics, quantum physics, and other

fields. To solve them, high-performance computing systems and parallel algorithms are required.

Thus, the development of new parallel algorithms for solving LP problems and the revision of

current algorithms have become imperative. As examples, we can cite the works [4–9]. The devel-

opment of new parallel algorithms for solving large-scale linear programming problems involves

testing them on various benchmarks. One of the most well-known benchmark repositories of

linear programming problems is the Netlib-Lp benchmark suite [10]. The solutions to all the

problems from this repository are known. At the same time, in practice, it is often necessary to

test a new algorithm on certain problems with unknown solutions. When testing an LP solver

on such classes of problems, there is a need for validation (certification) and refinement of the

obtained solution.

Several works have been devoted to the problem of certification and refinement of LP solu-

tions. The paper [11] presents the LPlex system, which verifies and repairs a given solution to

an LP problem for feasibility and optimality using exact arithmetic to guarantee the correct-

ness of the results. The LPlex system can solve medium to large LP problems to optimality.

Based on exact arithmetic (integer, rational, or modular), LPlex implements a module to detect

block structures in matrices [12] and supports LU-factorizations of sparse matrices, the Bareiss

method [13, 14], and the Wiedemann method [15]. The main drawback of the approach is that

LPlex fails if the certified solution is not close enough to the optimal one. Koch [16] modified

this approach to computing optimal solutions for the full set of Netlib-Lp instances. Rather

than attempting to repair a nonoptimal basis with rational pivots, Koch recomputes a floating-

point solution using greater precision in the floating-point representations. He employed the

long double type that specifies 128-bit values. In [17], Applegate and co-authors extend Koch’s

methodology with an implementation that dynamically increases the precision of floating-point
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computations until a rational solution satisfying the optimality condition is obtained. They mod-

ify the conventional simplex algorithm by changing every floating-point type into the rational

type provided by the GNU multiple precision arithmetic library (GMP) [18] and replacing every

arithmetic operation in the original code with the corresponding GMP operations. The program

starts with the best native floating-point precision and then increases it by about 50 % at each

iteration (keeping the precision value a multiple of 32 bits to align with the typical word size).

The main drawback of this approach is that the use of the multiple-precision arithmetic in the

case of large and complex LP problems has high overheads. In [19], Panyukov and Gorbik try

to overcome this disadvantage by using parallel computing on distributed memory. In this pa-

per, they utilize rational arithmetic and propose two approaches for parallelizing the simplex

method. The first method is based on the decomposition of the simplex tableau by columns.

The second method is based on the modified simplex method using the inverse matrix and ex-

ploits the decomposition of the original matrix by columns and that of the inverse matrix by

rows. However, the results of computational experiments are not sufficiently convincing for the

following reasons: there is no comparison with the best sequential solutions; the computations

were performed using only three sparse LP problems (the number of nonzero elements did not

exceed 5 %); and, in addition, the scalability bound of the proposed parallel algorithm was only

16 processors. Another original approach is suggested by Gleixner and co-authors in [20]. This

paper describes an iterative refinement procedure for computing extended-precision or exact

solutions to LP problems. Arbitrarily precise solutions can be computed by solving a sequence

of closely related LPs with limited-precision arithmetic. These LPs share the same constraint

matrix as the original problem instance and are transformed only by modification of the objec-

tive function, right-hand sides, and variable bounds. This implementation is publicly available

as an extension of the academic LP solver SoPlex.

All the methods discussed above concentrate on refining the approximate solution that

has already been found. If the found solution is too far from the correct one, which means

that there is an error in the algorithm, then the use of these methods becomes impractical. In

addition, all of these algorithms have high computational complexity and do not allow efficient

parallelization on large cluster computing systems. The method proposed in this article focuses

on debugging and validating new LP algorithms on cluster computing systems. It is implemented

as a parallel program, VaLiPro (Validator of Linear Program), which shows good scalability on

multiprocessor computing systems with distributed memory. The rest of the paper is organized

as follows. Section 1 provides a formal description of the proposed method for validating solutions

to LP problems and presents a sequential version of the VaLiPro algorithm. The parallel version

of the VaLiPro algorithm is discussed in section 2. Section 3 describes the implementation of

the VaLiPro parallel algorithm in C++ using the BSF-skeleton. Here, we present the results

of computational experiments on a cluster computing system, which confirm the efficiency of

the proposed approach. In conclusion, we summarize the obtained results and expose plans for

using the VaLiPro validator in the development of an artificial neural network capable of solving

large-scale LP problems.

1. Method for Validating Solutions to LP Problems

Let the following linear programming problem be given in the Euclidean space Rn:

x̄ = arg max {〈c, x〉 | Ax 6 b, x ∈ Rn} , (1)
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Figure 1. Plotting the points of the validation

set V on a three-dimensional sphere with d = 5

where c is the vector of the objective func-

tion coefficients. Here and below, 〈·, ·〉 stands

for the dot product of vectors. Let us define

M = {x ∈ Rn | Ax 6 b} as the feasible region

of problem (1). By definition, the set M is

convex and closed. From now on, we assume

that M is a nonempty bounded set, i.e., prob-

lem (1) has at least one solution. Let x̃ ∈ Rn

be an approximate solution of problem (1) ob-

tained using some LP solver that must be cer-

tified.

The main idea of the VaLiPro validation

method is to construct a finite set of points V

covering a hypersphere S of small (compared

to the size of the polytope M) radius ρ cen-

tered at the certified solution point x̃:

V ⊂ S =
{
x ∈ Rn

∣∣ ‖x− x̃‖2 = ρ2
}
.

Here and below, ‖ · ‖ denotes the Euclidean norm. Let us compute the maximum of the objective

function on the set V ∩M :

v̄ = arg max
{
〈c, v〉

∣∣ v ∈ V ∩M
}
.

If
∣∣〈c, v̄〉 − 〈c, x̃〉

∣∣ < ε, then the approximation x̃ is considered correct. Otherwise, x̃ is considered

an incorrect solution. Here, ε ∈ R>0 is a small positive constant that is a parameter of the

validation algorithm.

Let us describe the method for constructing the validation set V . It is known [21] that the

coordinates of any point v = (v1, . . . , vn) lying on the surface of the hypersphere S defined by

the equation

‖x− x̃‖2 = ρ2

can be represented as follows:

v1 = ρ cos(φ1);

vj = ρ cos(φj)

j−1∏

i=1

sin(φi) (j = 2, . . . , n− 2);

vn−1 = ρ sin(θ)
n−2∏

i=1

sin(φi);

vn = ρ cos(θ)

n−2∏

i=1

sin(φi),

(2)

where 0 6 φj 6 π (j = 1, . . . , n− 2) and 0 6 θ < 2π. Let us explain the method for generating

the validation set V using a three-dimensional sphere (see Fig. 1). Fix an odd number of parallels

d > 3 (poles are excluded). Set

ϕ = π/d. (3)
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Algorithm 1 Generating points of the validation set

Parameters: d, ρ

a) With duplicates b) Without duplicates

1: ϕ := π/d

2: for jn−1 = 0 . . . (2d− 1) do

3: θ := jn−1ϕ

4: for jn−2 = 0 . . . d do

5: φn−2 := j(n−2)ϕ

6: . . .

7: for j2 = 0 . . . d do

8: φ2 := j2ϕ

9: for j1 = 0 . . . d do

10: φ1 := j1ϕ

11: $ := 1

12: v1 := ρ cos(φ1)

13: for l = 2 . . . n− 2 do

14: $ := sin(φl−1)$

15: vl := ρ cos(φl)$

16: end for

17: vn−1 := ρ sin(θ)$

18: vn := ρ cos(θ)$

19: output v

20: end for

21: end for

22: . . .

23: end for

24: end for

25: stop

1: ϕ := π/d

2: for jn−1 = 0 . . . (2d− 1) do

3: θ := jn−1ϕ

4: for jn−2 = 1 . . . d− 1 do

5: φn−2 := j(n−2)ϕ

6: . . .

7: for j2 = 1 . . . d− 1 do

8: φ2 := j2ϕ

9: for j1 = 1 . . . d− 1 do

10: φ1 := j1ϕ

11: $ := 1

12: v1 := ρ cos(φ1)

13: for l = 2 . . . n− 2 do

14: $ := sin(φl−1)$

15: vl := ρ cos(φl)$

16: end for

17: vn−1 := ρ sin(θ)$

18: vn := ρ cos(θ)$

19: output v

20: end for

21: end for

22: . . .

23: end for

24: end for

25: stop

In the plane (x1, 0, x3), we set the angles 0, ϕ, . . . , (2d − 1)ϕ starting from the axis (0, x). At

the intersection with the sphere, the resulting rays give the set of points {v0, . . . , v2d−1}, which

uniquely define d parallels. Then, on the plane (x1, 0, x2), set the angles 0, ϕ, . . . , (2d − 1)ϕ

from the axis (0, x1) and define d meridians in the same way. The intersections of parallels and

meridians, excluding the poles, give the points that form a validation set on the three-dimensional

sphere.

The described method for generating points of the validation set for n > 3 in the general

case is given in Algorithm 1a. The nested loops with the headers in steps 2, 4, . . . , 7, and 9

generate the following spherical coordinates of a validation point:

(ρ, φ1, φ2, . . . , φn−2, θ) . (4)
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Algorithm 2 Function g (calculat-

ing the point v by its number k)

1: function g(k, d, ρ)

2: un−1 :=
⌊
k/ (d− 1)n−2

⌋

3: un := un−1

4: k := k mod (d− 1)n−2

5: for j = (n− 3) . . . 0 do

6: uj :=
⌊
k/(d− 1)j

⌋
+ 1

7: k := k mod (d− 1)j

8: end for

9: $ := 1

10: ϕ := π/d

11: v1 := ρ cos(u1ϕ)

12: for j = 2 . . . (n− 2) do

13: $ := $ sin(uj−1ϕ)

14: vj := ρ cos(ujϕ)$

15: end for

16: $ := $ sin(un−2ϕ)

17: vn−1 := ρ sin(un−1ϕ)$

18: vn := ρ cos(unϕ)$

19: return (v1, . . . , vn)

20: end function

In steps 11–18, the spherical coordinates are converted

to Cartesian coordinates by Equations (2). Multiplying

the quantities of iterations of for-loops with headers 2,

4, . . . , 7, and 9, we conclude that Algorithm 1a outputs

2d(d+ 1)n−2 validation points. However, there will be

duplicates among the output points. The computational

experiments showed that if one sets the dimension n = 4

and the number of parallels d = 5, then Algorithm 1a

generates 189 duplicates with a total number of points

equal to 360, which is more than 50 %. The duplicates

are generated at iterations in which φi = 0 or φi = π,

which corresponds to ji = 0 and ji = d (i = 1, . . . , n−2).

The reason is that one of the factors sin(φi) in (2) is

equal to zero in this case, and therefore the variations

of other factors cannot change the value of the corre-

sponding coordinate. This issue can be solved without

a major revision of Algorithm 1a, by changing the start

values and end values of the control variables in loop

headers 4, . . . , 7, and 9, as is done in Algorithm 1b.

This algorithm generates a validation set without du-

plicates but, at the same time, it loses a certain number

of unique points. With n = 4 and d = 5, this quantity

is 11, which is less than 7 % of the whole set after re-

moving duplicates. Experiments have shown that such

a loss does not significantly affect the accuracy of the validation algorithm. The number of points

of the validation set V generated by Algorithm 1b is determined by the following equation:

|V | = 2d(d− 1)n−2. (5)

The main drawback of Algorithm 1b is that the number of nested loops depends on the problem

dimension, which does not allow using the dimension as a program parameter. To overcome

this drawback, we use a vector-valued function that calculates the coordinates of a point by

its sequential number k in the point sequence generated by Algorithm 1b (counting starts from

zero). The definition of this function is given in Algorithm 2.

The final implementation of the VaLiPro method, using the vector-valued function g, is

given in Algorithm 3. An additional parameter of this algorithm is the small positive constant

ε (by default, ε = 10−6), which compensates for possible numerical errors when comparing the

values of the objective function in Step 5. Let us make several brief comments on the steps of

Algorithm 3. Step 1 reads the source data of LP problem (1), the algorithm parameters, and the

solution x̃ that is to be certified. Step 2 calculates the angle ϕ according to Equation (3). Step 3

begins the loop that varies the point number k from 0 to 2d(d− 1)n−2 − 1 as per Equation (5).

Using the vector-valued function g (see Algorithm 2), Step 4 computes the next validation

point v. Step 5 checks whether v belongs to the feasible region of problem (1) and compares the

objective-function values at the points v and x̃. If the objective function takes a larger value

at the point v, and this point is feasible, then the control is passed to Step 9, which prints a

message stating that the certified solution is not correct. Otherwise, the next iteration of the loop
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Algorithm 3 Validation of the LP solution x̃

1: input n,A, b, c, d, ρ, ε, x̃

2: ϕ := π/d

3: for k = 0 . . . 2d(d− 1)n−2 − 1 do

4: v := g(k, d, ρ)

5: if Av 6 b & 〈c, v〉 > 〈c, x̃〉+ ε goto 9

6: end for

7: output “Solution is correct”

8: goto 10

9: output “Solution is incorrect”

10: stop

proceeds. If the loop ends naturally, the control is passed to Step 7, which outputs a message

saying that the solution is correct. After that, the control is passed to Step 10, which completes

the execution of the algorithm.

2. Parallel Algorithm for Validating LP Solutions

According to Equation (5), the cardinality of the validation set generated by Algorithm 3

depends exponentially on the space dimension. Therefore, Algorithm 3 has high computational

complexity for large dimensions. To reduce computational overheads, we developed a parallel

version of Algorithm 3, given as Algorithm 4 below. The parallel algorithm is based on the BSF

parallel computation model [22, 23], which exploits the master–slave paradigm [24]. According

to the BSF model, the master node serves as a control and communication center. All slave

nodes execute the same code but on different data. The BSF model assumes the algorithm

representation in the form of operations on lists using the higher-order functions Map and

Reduce defined by the Bird–Meertens formalism [25]. The higher-order function Map transforms

the original list W = [w0, . . . , wK−1] into the list Z = [z0, . . . , zK−1] by applying the function fx̃

to each element:

Z = Map(fx̃,W ) = [fx̃(w0), . . . , fx̃(wK−1)] .

In the case considered here, the elements of the list W are the sequential numbers of the vali-

dation set points, that is,

W = [0, . . . ,K − 1] ,

where K = 2d(d− 1)n−2. The Boolean function fx̃ : {0, . . . ,K − 1} → {true, false} is defined as

follows:

fx̃(w) =

{
true

∣∣ A · g(w) 6 b ∧ 〈c, g(w)〉 6 〈c, x̃〉 ;
false

∣∣ A · g(w) > b ∨ 〈c, g(w)〉 > 〈c, x̃〉 ,
where the vector-valued function g computes the coordinates of the validation point by its

number w. The function fx̃ returns true if the point g(w) belongs to the feasible region and if

the value of the objective function at this point is less than or equal to the value of the objective

function at the point x̃. Otherwise, the function fx̃ returns false. Thus, the list Z = [z0, . . . , zK−1]

contains Boolean indicators for all points of the validation set. If at least one element in this list

has the value false, then the point x̃ is an incorrect solution of problem (1).
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Algorithm 4 Parallel algorithm for validating an LP solution

Master Slave (l=0,. . . ,L-1)

1:

2:

3:

4:

5:

6:

7: RecvFromSlaves [s0, . . . , sL−1]

8: s := Reduce(∧, [s0, . . . , sL−1])

9: if s = true then

10: output “Solution is correct”

11: else

12: output “Solution is incorrect”

13: end if

14: stop

1: input n,A, b, c, d, ρ, ε, x̃

2: L := NumberOfSlaves

3: K := 2d(d− 1)n−2

4: Wl := [lK/L, . . . , (l + 1)K/L− 1]

5: Zl := Map (fx̃,Wl)

6: sl := Reduce(∧, Zl)

7: SendToMaster sl

8:

9:

10:

11:

12:

13:

14: stop

The higher-order function Reduce transforms the list Z = [z0, . . . , zK−1] into a single Boolean

value s by iteratively applying the conjunction operation to all the elements of the list Z:

s = Reduce(∧, Z) = z0 ∧ . . . ∧ zK−1.

In Step 4 of Algorithm 4, the l-th slave sets its own part Wl of the list W :

Wl = [lK/L, . . . , (l + 1)K/L− 1] .

Here, L denotes the number of slaves. For simplicity, we assume that K is a multiple of L. In

Step 5, the slave applies the Map function to its sublist Wl. In Step 6, the resulting sublist of

Boolean values is folded into a single Boolean value sl by applying the Reduce function, taking

the conjunction operation as the first parameter. In Step 7, the l-th slave sends the value sl to

the master. In the same Step 7, the master receives all the calculated values from the slaves. In

Step 8, the master folds the list of received values into a single Boolean value s using the Reduce

function. In steps 9–12, the master examines the calculated Boolean value s and outputs the

corresponding conclusion.

3. Software Implementation and Computational Experiments

We implemented the parallel Algorithm 4 in C++ through the parallel BSF-skeleton [26],

which is based on the BSF parallel computation model [22, 23] and encapsulates all aspects

related to the parallelization of the program using the MPI library [27]. The source code of

the VaLiPro parallel program is freely available at https://github.com/leonid-sokolinsky/

BSF-LPP-Validator. Using this program, we conducted large-scale computational experiments

on the cluster computing system “Tornado SUSU” [28]. The specifications of this system are

given in Tab. 1.
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Table 1. Specifications of the “Tornado SUSU” computing cluster

Parameter Value

Number of processor nodes 480

Processor Intel Xeon X5680 (6 cores, 3.33 GHz)

Processors per node 2

Memory per node 24 GB DDR3

Interconnect InfiniBand QDR (40 Gbit/s)

Operating system Linux CentOS

For experiments, we used random LP problems generated by the program FRaGenLP [29]

with the following parameters: α = 200 (the length of the bounding-hypercube edge), θ = 100

(the radius of the large hypersphere), ρ = 50 (the radius of the small hypersphere), Lmax = 0.35

(the upper bound of near parallelism for hyperplanes), Smin = 100 (the minimum acceptable

closeness for hyperplanes), amax = 1000 (the upper absolute bound for the coefficients), and

bmax = 10 000 (the upper absolute bound for the constant terms). The experiments were con-

ducted for the following dimensions: n = 15, n = 17, and n = 19. The numbers of inequalities

were 46, 52, and 58, respectively. The solutions to the LP problems were obtained using the apex

method [8]. Throughout the experiments, we used the following VaLiPro parameters: d = 5,

ρ = 1, and ε = 10−6. The results of the experiments are shown in Fig. 2. The verification of a

solution for a problem of dimension n = 19 with a configuration consisting of the master node

and one slave node took 17 minutes. The verification of a solution for the same problem with

a configuration consisting of the master node and 310 slave nodes took 4 seconds. The analysis

of the results showed that the scalability bound (the maximum of the speedup curve) of the

algorithm significantly depends on the dimension of the problem. For n = 19, the parallel ver-

sion of the VaLiPro algorithm demonstrated near-linear scalability up to 310 processor nodes.

For n = 17, the scalability bound was approximately 260 nodes, and for n = 15, this bound

decreased to 60 processor nodes. This is because a problem of such a small dimension is not

able to load such a large number of processor nodes: the time spent on data transfer over the

network begins to dominate over the time spent on calculations, and the processors begin to

stand idle.

Conclusions

The article presents the parallel algorithm VaLiPro for validating linear programming solu-

tions on cluster computing systems. The main idea of the validation algorithm is to generate a

regular set of points on a small-radius hypersphere centered at the solution point that is to be cer-

tified. The solution is considered correct if all points of the validation set belonging to the feasible

region have lower values of the objective function than does the solution point being certified. The

implementation of the parallel algorithm VaLiPro was performed in C++ using the parallel BSF-

skeleton, which encapsulates in the problem-independent part of its code all aspects related to

the parallelization of a program using the MPI library. The source code of the developed parallel

program is freely available at https://github.com/leonid-sokolinsky/BSF-LPP-Validator.

The proposed validation method is generic and suitable for linear programming problems of any

kind. The advantage of the parallel VaLiPro algorithm is the near-linear speedup starting with
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Figure 2. Speedup curves of the VaLiPro parallel algorithm for various dimensions

a problem dimension of 19. The main drawback that limits the practical use of the suggested

method is the exponential growth of the number of points in the validation set as the dimension

of the space increases; this results in the exponential growth of the computational complexity. In

practice, the proposed algorithm can be effectively used for LP problems with a space dimension

of no more than 20. The described algorithm was used together with the FRaGenLP generator

and the apex method to prepare a training dataset of 70 000 examples, which will be used to

develop an artificial neural network capable of solving multidimensional linear programming

problems.
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