
Micro-Workflows Data Stream Processing Model for Industrial

Internet of Things

Ameer B. A. Alaasam1 , Gleb I. Radchenko1 ,

Andrei N. Tchernykh1,2,3

c© The Authors 2021. This paper is published with open access at SuperFri.org

The fog computing paradigm has become prominent in stream processing for IoT systems

where cloud computing struggles from high latency challenges. It enables the deployment of com-

putational resources between the edge and cloud layers and helps to resolve constraints, primarily

due to the need to react in real-time to state changes, improve the locality of data storage, and

overcome external communication channels’ limitations. There is an urgent need for tools and

platforms to model, implement, manage, and monitor complex fog computing workflows. Tra-

ditional scientific workflow management systems (SWMSs) provide modularity and flexibility to

design, execute, and monitor complex computational workflows used in smart industry applica-

tions. However, they are mainly focused on batch execution of jobs consisting of tightly coupled

tasks. Integrating data streams into SWMSs of IoT systems is challenging. We proposed a micro-

workflow model to redesign the monolith architecture of workflow systems into a set of smaller

and independent workflows that support stream processing. Micro-workflow is an independent

data stream processing service that can be deployed on different layers of the fog computing

environment. To validate the feasibility and practicability of the micro-workflow refactoring, we

provide intensive experimental analysis evaluating the interval between sensor messages, the time

interval required to create a message, between sending sensor message and receiving the message

in SWMS, including data serialization, network latency, etc. We show that the proposed decou-

pling support of the independence of implementation, execution, development, maintenance, and

cross-platform deployment, where each micro-workflow becomes a standalone computational unit,

is a suitable mechanism for IoT stream processing.

Keywords: stream processing, fog computing, cloud computing, scientific workflow, micro-

workflow, IoT.

Introduction

The Industrial Internet of Things (IIoT) comprises networked objects, cyber-physical assets,

associated information technologies, cloud and edge computing platforms. It enables real-time

data processing and exchange of processes, products, and service information within the indus-

trial environment to optimize overall production value [7]. An essential feature of computing

services in IIoT are on-site processing, ensuring security requirements, and data pre-processing

before sending it to the cloud. Thus, there is a need for an intermediate processing power be-

tween industrial IoT and cloud [1]. Fog computing provides such resources by moving some of

the data processing tasks from the cloud to fog nodes located closer to the network’s edge.

IIoT applications require real-time processing of data streams and signals from multiple

sensors (data sources). Event-Driven Architecture (EDA) is the most adapted to this type of

applications [3]. EDA is a system architecture made up of highly decoupled, single-purpose

event processing components which asynchronously receive and process events [28]. EDA, by

its nature, is extremely loosely coupled and highly distributed [12]. A monolithic architecture

does not provide the efficiency and flexibility required to support large-scale IIoT systems that

require native EDA support and a multilayered fog computing infrastructure.

1South Ural State University, Chelyabinsk, Russia
2CICESE Research Center Ensenada, Mexico
3Ivannikov Institute for System Programming of the RAS, Russia

DOI: 10.14529/jsfi210106

82 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-2084-8899
https://orcid.org/0000-0002-7145-5630
https://orcid.org/0000-0001-5029-5212


Due to the complexity in controlling a distributed application workflows, Workflow Man-

agement Systems (WFMSs) are often used to assist in the data and task partitioning, providing

robust means of describing applications, the control, data dependencies, and the logical reason-

ing necessary for distributed execution [31]. But a number of challenges appear with WFMSs,

for example, the tasks of the workflow are tightly coupled by means of intricate dependencies

between them [35]. Also, the features of data visualization and data stream input/output are

limited support in current WFMSs [5]. Thus in [2, 27], the concept of Micro-Workflows has

been presented. The Micro-Workflow approach supports the redesign of monolith workflows

into independent smaller workflows, maintaining stream processing and independent lifecycle

management.

This paper presents the micro-workflows model supporting the decoupling process of tightly

coupled dependencies in monolith workflow to be refactored in the form of independent smaller

micro-workflows, connected via event streaming platform. The Micro-Workflow model can solve

a number of problems when using traditional workflow management systems in highly distributed

environments, such as fog computing systems to support IIoT. Also, we provide an overview of

current IIoT and fog computing challenges in areas such as monolithic application architecture,

virtualization, containerization, computational workflows, and data flow management.

The rest of this paper is organized as follows. Section 1 discusses the road from a mono-

lithic into a loosely coupled system architecture, the challenges of fog and cloud computing, the

required virtualization infrastructure, and discusses the importance and challenges of computa-

tional workflows and data flow management in fog environments. Section 2 provides the proposed

model of the micro-workflow architecture. Section 3 provides the experiments and results, while

conclusions are provided in Section 3.3.

1. The State of the Art

1.1. From Monolith to Loosely-Coupled Architecture

An event-driven architecture includes sensors and other sources of data; processors that

fuse data from multiple sensors and detect patterns over time and deduce events that occurred

or predict events; responders for initiating actions in response to events; communication links

for transferring information between components; and administrative software for monitoring,

tailoring and managing the application [10]. EDA is an extremely loosely coupled system ar-

chitecture that is made up of highly decoupled, single-purpose event processing components

that asynchronously receive and process events [12, 28]. Microservice architecture is considered

the most promising in designing loosely coupled systems targeted at event processing today.

The microservice approach is based on dividing a computing system into small independent

computing services, each implementing its particular aspect of the application’s business logic.

This approach can overcome many of the significant disadvantages of the so-called monolithic

architecture, such as the challenges of distributing the computational load, the presence of a

single point of failure, and the challenges of ensuring continuous system operation during mainte-

nance or upgrades while allowing independent development, deployment, scaling and migration

of microservices from one computational resource to another [29]. Despite the benefits of this

approach, such flexibility does not come for free. For example, communication costs increase

due to the need to organize data exchange between microservices, which, in turn, increases the

complexity of data flow management and integration of highly distributed components of the

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 83



system. Thus, moving to a more loosely coupled design is a multi-objective problem that requires

in-depth research to find the best solution to the various issues that arise from decoupling.

1.2. From Cloud to Fog Computing

In highly distributed industrial IoT systems, cloud computing-based solutions become un-

acceptable due to high latency and network congestion caused by an inability to process the

data-flow from the enormous amount of devices in an acceptable time [21]. Thus, Fog comput-

ing manages this problem by moving some computational tasks closer to the data sources. Fog

Computing is a virtualized platform that provides storage, compute, and networking between

end devices and Cloud Computing Data Centers, typically, but not exclusively, located at the

edge of the network [6]. Fog nodes can collect, cache, and pre-process data from IIoT sensors

before or instead of sending it to the cloud. Another scenario may require certain parts of the

system to process data in near-real time. In this case, computing services can be deployed on

the nearest fog node to provide a faster response time.

On the other hand, Cloud servers provide significant replication, load balancing, and re-

silience capabilities. Fog nodes, which are logically decentralized and geographically distributed

at network edges, cannot provide this resilience level. For example, finding and resolving a point

of failure in a fog computing environment is more complicated than doing that in the cloud [14].

Also, moving toward fog means increasing the computing decoupling, where parts of computing

are moved physically to the fog nodes at the edge of the network. Increased component decou-

pling can lead to difficulties in supporting such systems. For example, the emergence of a large

number of independent geographically decoupled components entails significant overhead due to

the appearance of a large number of points of failure [18]. The problems of efficient workload

allocation, the distribution of computational tasks between edge and cloud resources, and the

heterogeneous infrastructure of edge devices need to be solved [8].

1.3. Virtualization Infrastructure

In cloud or fog computing, ensuring resource sharing and dynamic resource provisioning is

a fundamental challenge. Virtualization technologies used at various levels (including hardware

and application platforms) are used for this purpose. However, large overheads associated with

the use of Virtual machines (VMs) can limit the efficiency of computational resources [34]. The

challenges associated with using fog-level VMs are even more significant due to the limited

resources, processing power, and network traffic at the edge of the network where fog nodes are

deployed. This problem can be addressed by containerization technology which allows running

containers as separate processes directly on the kernel of hosting OS, providing lightweight

isolation for the processes. However, using containerization also facing significant challenges

related to the difficulty of containerizing the stateful computational units due to limited data

portability support in containers compared to VM [4]. Therefore, if live migration between fog

nodes is required, it is a challenge to use container technology without data loss. Thus, finding

solutions that reduce the overhead of the virtualization infrastructure, and at the same time

ensuring a level of data availability and state recovering, is a very active and vital research area

in fog computing.

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

84 Supercomputing Frontiers and Innovations



1.4. The Computational Workflow

The Digital Twin concept combines a control system, real-time simulation, a system for

intelligent data analysis, and decision-making when developing industrial processes and sys-

tems [26, 32]. This is made possible by data flow and control signals connecting real-world

objects and their digital models. Experience in implementing such digital twins shows that the

simulation of complex technological processes requires the joint work of a large number of in-

dependent computing components, each of which is responsible for implementing its part of

the computational process. Such an approach in the field of the smart industry is already im-

plemented using scientific workflow systems. For example, in [20], a specific workflow suit has

been developed for product performance degradation assessment and prediction based on Kepler

scientific workflow management system (Kepler MS). The authors of [19] used Kepler in smart

manufacturing to optimize temperatures across a commercial industrial scale furnace in the

steam methane reforming process used to manufacture hydrogen gas. They used Kepler work-

flows to combine MATLAB and ANSYS packages to manage Computational Fluid Dynamics

(CFD) calculations. For distributed computing, additional instances for CFD calculations may

be deployed when running in parallel using the MPI message-passing scheme.

Scientific workflows (SWF) are a cornerstone of modern scientific computing. They are

used for complex computational applications that require robust management for big data that

are typically stored and processed at heterogeneous, distributed resources [30]. SWF systems

make scientists focus on their research rather than on details of computation management. For

example, the Pegasus framework allows users to represent workflows at an abstract level while

it takes care of the execution systems particulars [11]. Similarly, the main goal of the Kepler

MS is to support different execution scenarios where a user can develop and use its modules to

manage different execution behaviors in different environments, including private computational

resources [25]. The unique features of Kepler are that the underlying workflow engine handles

the provenance, reproducibility aspects of the code, performs orchestration of data flow, and

automates execution on heterogeneous computing resources [33].

However, several issues arise regarding the use of the WFMs. Workflows are executed as

a batch processing model, where a set of data is collected and fed into a workflow as a batch,

which is processed sequentially within the corresponding workflow [15]. The workflow tasks, in

this case, are closely related to each other due to the complex dependencies between them.

Also, workflow jobs may generate a large amount of intermediate data during the workflow

lifecycle [35]. In such tightly coupled behavior, a heavy data transfer among workflow tasks

can cause a significant slow down in execution [22]. Thus, to manage and efficiently execute

workflows, it is necessary to consider the features of this type of computing process, including

the limitation of resources over time and planning features, taking into account the location

of resulting and intermediate data [16]. One solution for such a monolith behavior problem

is to divide it into smaller elements. For example, the authors in [17] proposed to divide the

problem of workflow into two smaller subproblems; the first to allocating multiple workflows

into multiple data centers, and the second for allocating the tasks of each workflow into the

computing resources inside each data center. However, still, each traditional workflow working

in batch execution mode over tightly coupled tasks. Another challenge is that the features of

data visualization and data stream input/output are limited support in current WFMSs [5].

Such complexity increased in case of fog computing systems, where the execution environment

itself decoupled over multiple separated geographical locations. Thus, to fit fog computing EDA

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 85



requirements, the computing system itself should be decoupled into fine-grained services that

support independent deployment and lifetime management.

1.5. The Data Flow

When organizing the computational process for systems such as the Digital Twin, the data

management process organization is essential. In addition to fundamental factors such as volume

and data type, several key factors influence the complexity of the data management process

organization related to the properties of the computing environment that supports Digital Twin.

First, the digital twin requires combining stream data processing from sensors with batch

data processing when performing intelligent analysis or big data processing tasks. Second, the

multi-layered and geographically distributed nature of the underlying fog computing environ-

ment requires the organization of the data flow management system as a distributed system

consisting of independent components, the communication between which is organized through

message exchange. Moreover, data processing for industrial applications often requires the abil-

ity to predict the state of the system. Such a service needs to know information about state

history to perform prediction. This behavior is called stateful, which means that the system

must identify the input data source and determine what other input data came from the same

source [24]. This requirement makes the lifetime management of services that are responsible

for data flow processing considerably more challenging.

However, managing state data inside a computational service itself is considered a bottle-

neck, so it should be stored in a separate resource [23]. An example of such a concept is presented

in [9], where the authors proposed a three-layered IoT data workload processing architecture

consisting of two layers for data management (messaging layer for data input/output and volatile

layer - to cache the updated results), while all the processing is concentrated in the third layer.

In the other case [13], the authors built a digital twin system, where a central data layer based

on a publish-subscribe architecture using MQTT messaging protocol broker linked together a

physical object, a digital twin, and a web-based controlling dashboard integrated with the CAD

system.

2. Micro-Workflow Model

In works [2, 27], the concept of Micro-Workflow was presented in an abstract form. The

current work expands this concept to be an in-detail representation with the details of creating a

Micro-Workflows oriented from the partitioned workflow. Also, it defines the inputs and outputs

and their accurate representation, how this model helps solve a set of challenges in using workflow

in fog computing.

The Micro-Workflow concept supports redesigning a monolithic workflow into a set of

smaller, loosely-coupled Micro-Workflows (MWF). Each MWF acts as an independent service

supporting stream data processing, independent deployment, and communication via the stream-

ing middleware.

2.1. The Monolith Workflow

A workflow application can be represented as a Directed Acyclic Graph (DAG):

W = (V,E), (1)

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

86 Supercomputing Frontiers and Innovations



where:

W – the monolith workflow;

V – a set of vertices representing computational tasks;

E – a set of directed edges connecting vertices.

Each vertex vi in V can have input and output edges. Let’s define the in-degree and out-

degree of a vertex vi in W by deg+(vi) and deg−(vi) respectively. Let the vertex v1 in V be the

initial vertex of the W that has no predecessors. Let n be the total number of vertices in V ,

so vn would be the final vertex that does not have any successor tasks. An edge (vi, vj) ∈ E

represents the data that is going as one of the outputs produced by vi to be as one of the inputs

of vj . Figure 1 shows an example of workflow W where n assumed to be 5.

Figure 1. An example of workflow W where n assumed to be 5

2.2. The Sub-Workflow

We say that the workflow W is divided into a set of sub-workflows S = (S1, . . . Sk) , Si =

(Vi, Ei), when:

1. ∀i = 1 . . . k (Vi ⊂ V, Ei ⊂ E) ;

2. ∀v ∈ V, ∃Si (v ∈ Vi) ;

3. ∀i, j (i 6= j =⇒ Si ∩ Sj = ∅) .
Figure 2 illustrates an example of workflow W partitioned into two sub-workflows S1 and

S2.

2.3. Sub-Workflow Edges Classification

Let us define the following classes of edges and vertices, associated with the sub-workflow

Si:

• EINTi: a set of internal edges, located inside of the sub-workflow Si:

EINTi = {(vk, vl) ∈ E : vk, vl ∈ Si} (2)

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 87



Figure 2. An example of workflow W partitioned into two sub-workflows S1 and S2

• EINPUTx: a set of input edges with an initial vertex outside the sub-workflow Si and an

end vertex inside Si:

EINPUTi = {(vk, vl) ∈ E : vk /∈ Si, vl ∈ Si} (3)

• EOUTi: a set of output edges with an initial vertex inside the sub-workflow Si and an end

vertex outside Si:

EOUTi = {(vk, vl) ∈ E : vk ∈ Si, vl /∈ Si} (4)

• V INPUTi: a set of vertices in Si that located on the head end of EINPUTi edges as well

as vertices that have no input edges:

V INPUTi = {vl ∈ Si : (vk, vl) ∈ EINPUTi} ∪
{
v ∈ Si : deg− (v) = 0

}
(5)

• V OUTi: a set of vertices in Si that located on the tail end of EOUTi edges as well as

vertices that have no output edges:

V OUTi = {vk ∈ Si : (vk, vl) ∈ EOUTi} ∪
{
v ∈ Si : deg+ (v) = 0

}
(6)

2.4. Micro-Workflow Construction

To convert a sub-workflow Si into a micro-workflow MWFi, we need to extract all Si vertices

from the workflow W and provide communication mechanisms linking MWFi with the event

streaming platform via dedicated “Consumer vertex” (cvi) and “Producer vertex” (pvi) nodes.

The cvi vertex acts as a source of MWFi, providing consumption of the input data stream from

the event streaming platform and distributing it between the vertices in V INPUTi. The pvi

vertex acts as a sink that collects the output from the V OUTi set and transmits it as a message to

the event streaming platform. In this case, we can define the generation of MWFi = (MVi, MEi)

from the sub-workflow Si = (Vi, Ei) as follows:

1. MVi = Vi ∪ {cvi, pvi};

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

88 Supercomputing Frontiers and Innovations



2. ECVi = {(cvi, v) : v ∈ V INPUTi} ;

3. EPVi = {(v, cpi) : v ∈ V OUTi} ;

4. MEi = EINTi ∪ ECVi ∪ EPVi.

Figure 3 shows the set of micro-workflows produced through the extraction of sub-workflows

of the monolithic workflow W shown in Fig. 2.

Figure 3. The result of applying the Micro-Workflow model

2.4.1. Implementation of data stream processing in micro-workflows

Micro-workflow concept integrates classical workflow and streaming data processing models.

A set of dedicated channels (data stream stores) is formed in the event streaming platform

structure to organize the interaction of micro-workflows via message exchange. Each message is

a data set that includes a timestamp of message generation, information about the data source,

and a structured collection of essential data itself. The following data stream stores are required:

• DS0 is responsible for collecting, storing, and providing messages that contain the data

sets necessary to initialize the computational process in the workflow.

• DSi is responsible for receiving messages containing intermediate data from MWFi and

passing them to dependent micro workflows.

• DSout is responsible for collecting, storing, and providing messages containing workflow

result data.

Instead of the initial workflow node, the data sets needed to start the computational process

are fed into the DS0 data stream store of the event streaming platform in the form of messages.

The processing of messages from the data stream store is organized as follows.

• CVi of the corresponding MWFi retrieves the subsequent message from DSi−1.

• Based on the analysis of the received message, CVi generates data transfer along the ECVi

edges to the nodes responsible for the direct execution of the computational process.

• After data processing tasks have been completed and data has been sent along the edges

of EPVi, PVi generates an outgoing message to DSi or DSout if it is the final result.

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 89



Using this approach to partition a monolithic workflow into a set of independent micro-

workflow computing services brings the following advantages:

• decoupling a strongly coupled computational process in time and space, switching to an

asynchronous communication model;

• supporting independent micro-workflows deployment on different nodes in a distributed

computing environment, taking into account the data source’s geographical location, the

required computing resources, etc.

• the possibility of seamless integration of IoT device data into the data processing process

at any stage of the computing process;

• the ability to independently scale individual micro-workflows;

• the transfer of the computational process of the micro-workflow to a different compu-

tational node, without loss of intermediate data, and the need to repeat previous data

processing.

3. Experiments

To evaluate the refactoring practicability and possible overhead of dividing the workflow into

micro-workflows, we consider data processing from a typical DEBS 2012 data challenge4 task.

As part of this task, it is necessary to provide near-real-time processing of industrial Internet of

Things data that transmits information about the state of manufacturing equipment.

Figure 4. The organization of the experiment

Based on the proposed micro-workflow approach and model, the DEBS 2012 Query 1 mono-

lith workflow has been refactored into two micro-workflows. Each of the micro-workflows has

been implemented using the Kepler workflow system and has been packed in a separate Docker

container. We have used Apache Kafka5 as an event streaming platform to organize the mes-

sage exchange between the micro-workflows. The data stream stores have been implemented

as Kafka topics. The organization of the experiment is presented on the Fig. 4. To organize

the data exchange between the Kepler workflow and the Apache Kafka platform, we have im-

plemented specialized Kepler actors: KafkaConsumer, which acts as a consumer vertex, and

KafkaProducer, which acts as a producer vertex for corresponding micro-workflows. We have

4https://debs.org/grand-challenges
5https://kafka.apache.org/

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

90 Supercomputing Frontiers and Innovations



also developed the sensors simulator that feeds the initial sensors data stream into the DS0 topic

of the Apache Kafka.

The sensor simulator receives data from the pre-recorded sensor readings database, serializes

the messages in a predetermined format, and transmits them to the DS0 Kafka topic. Before

generating and sending the following message in both experiments, we add a delay of 8 ms after

receiving a successful message reception confirmation from Apache Kafka. On the one hand, this

allows to approximate the data generation frequency to the one determined in the initial data

stream (about 10 ms). On the other hand, we are able to keep the exact value of the introduced

delay in both experiments.

The structure of the first micro-workflow MWF1 is presented on the Fig. 5. MWF1 is

a micro-workflow that consumes the sensor data from the DS0 Kafka topic and processes it

using the DetectStateChange Kepler actor. The data processing results are published to the

intermediate Kafka topic DS1.

The structure of the second micro-workflow MWF2 is presented on the Fig. 6. MWF2

consumes the data from the DS1 Kafka topic. It implements the second stage of data processing,

including the correlation of the change of state of the sensor and the change of state of the valve

by calculating the time difference between the occurrence of the state changes. The correlation

estimation is performed in the CorrelateStateChange Kepler Actor.

Figure 5. The two options of running MWF1 in the developed Kepler model

3.1. Micro-Workflow Deployment Parameterization

Before launching the micro-workflow, it is necessary to configure its parameters, including

the information needed to communicate with the outside world. The micro-workflow should be

provided with information about the location of the endpoint address of the event streaming

platform (Apache Kafka in our case), the location of the message schema repositories, and the

identifiers of the data stream stores for reading and writing messages.

In our previous work [27], we have implemented the parameterization using remote desktop

access to the GUI of each workflow and manually enter all execution parameters to the work-

flow. In this paper, we improve the implementation of the micro-workflow deployment model

using the headless option. In this case, micro-workflow parameters can be provided as execution

parameters into the docker container at the micro-workflow container’s launch. The execution

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 91



Figure 6. MWF2 in the developed Kepler model

starts with new parameters automatically without GUI access. Figure 5 schematically shows the

two options for organizing the launch of the micro-workflow described above.

In the current experiments, we have developed a Docker image that contains micro-workflow

implementations using Kepler (Kepler MWF). To run a container, we need to pass the environ-

ment variables into the process. These variables include:

• MWF: the name of MWF;

• KAFKASERVER: the location of the Kafka server;

• KAFKAPORT: the port of the Kafka server endpoint;

• SCHEMAREGISTRY: the location of schema registry server;

• SCHEMAPORT: the port of the schema registry server endpoint;

• TOPICSOURCE: Kafka source topic;

• TOPICDESTINATION: Kafka destination topic.

Figure 7 shows the docker run command schema used to run a micro-workflow container.

Figure 7. Docker command schema used to run a micro-workflow container

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

92 Supercomputing Frontiers and Innovations



3.2. Experiment Deployment

We have implemented two deployment layouts for our micro-workflows during the exper-

iment: a local deployment on a single node and a deployment in a distributed environment,

where each micro-workflow has been deployed on a separate node.

The first deployment (see Fig. 8) on a single node acts as a benchmark for evaluating

system performance, excluding delays introduced by network equipment and data exchange over

the network. The streaming middleware, sensor emulator, MWF1, and MWF2 each packed in

separate containers, deployed on a single computing node (Intel Core i7-4600U 2.1 GHz dual-core

processor with 8 GB of RAM).

The second deployment is implemented on the resources of the Tornado Supercomputer at

South Ural State University (Fig. 9). The Sensor Emulator virtual machine (VM1) simulates

the process of IoT sensor data generation. It consumes data from DEBS 2012 database and

publishes it sequentially into the Kafka input topic, deployed in the Landoop container (VM2).

We partition the original DEBS 2012 first query workflow into two Micro-Workflows, MWF1 and

MWF2, and pack each Micro-Workflow in a separate container, deployed on VM2 and VM3

virtual machines. There is no direct connection between the Virtual machines and nodes. All the

communications need to cross a network server. Both VM1 and VM3 run on the same physical

node (4 GB RAM and 4 cores of Intel Xeon X5680 CPU). VM2 runs on a separate physical

node (12 GB RAM and 8 cores of Intel Xeon X5680 CPU). The interconnection between virtual

machines is organized via an external physical node that acts as a virtual router, connected via

a Gigabit Ethernet network.

Figure 8. Local deployment on a single node

3.3. Evaluation

The following evaluation criteria are proposed to estimate the feasibility and overhead of

the micro-workflow refactoring:

• AVsm: the average interval between sensor messages.

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 93



Figure 9. Deployment in a distributed computing environment on three nodes

• AVtat (average processing time): the average time interval required to create one final

message by a micro-workflow. The interval counted from the second requested original

message has been received from the original Kafka topic to the time the final message sent

to Kafka.

• AVdv (average delivery time): average time interval between sending sensor message and

receiving the message in MWF, including data serialization, message transfer from VM1

to VM2.

• AVl12: the average network latency between VM1 and VM2.

The comparison results of the experiments are presented in Tab. 1.

Table 1. The comparison results

Parameters Single node Distributed mode

Testing time 24 hours 24 hours

Total messages 9 180 056 7 328 844

AVsm 9.5 ms 11.8 ms

AVtat 1.3 ms 3.2 ms

AVdv 1.2 ms 4.4 ms

AVl12 0 ms 3.5 ms

Analysis of the results of the experiment allows us to draw the following conclusions:

• Application of the workflow partitioning mechanism into independent micro-workflows

allows providing IoT data processing in streaming mode, close to real-time. The average

processing time in both experiments has been significantly less than the sensor’s period of

initial data generation.

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

94 Supercomputing Frontiers and Innovations



• Computational processes of individual micro-workflows can be distributed across nodes

in a distributed computing network. With such distribution, the data processing time

increases by at least the latency between the computing network’s corresponding nodes

and the node where the event streaming platform is located.

Conclusion

We propose a model of workflow applications for stream processing in highly distributed

environments such as fog computing. The ability to move part of computing from/into different

nodes at a different level is the required by system architecture of fog computing. We show how

tightly coupled dependencies in monolith workflow can be decoupled and refactored in the form

of smaller and standalone micro-workflows and how define inputs and outputs of each result-

ing micro-workflow. Such decoupling supports the independence of implementation, execution,

development, maintenance, and cross-platform deployment of micro-workflows as standalone

computational units. An important direction of further research is to automate the refactoring

workflow process into micro-workflows.

Acknowledgements

The reported study was funded by the Ministry of Science and Higher Education of the

Russian Federation (government order FENU-2020-0022) and by RFBR, project number 19-37-

90073.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Aazam, M., Zeadally, S., Harras, K.A.: Deploying Fog Computing in Industrial Internet of

Things and Industry 4.0. IEEE Transactions on Industrial Informatics 14(10), 4674–4682

(2018), DOI: 10.1109/TII.2018.2855198

2. Alaasam, A.B.A., Radchenko, G., Tchernykh, A., Borodulin, K., Podkorytov, A.: Scien-

tific Micro-Workflows: Where Event-Driven Approach Meets Workflows to Support Digi-

tal Twins. In: Proceedings of the International Conference Russian Supercomputing Days

(RuSCDays’18), 24-25 Sept. 2018, Moscow, Russia. vol. 1, pp. 489–495 (2018)

3. Alaasam, A.B.A., Radchenko, G., Tchernykh, A.: Stateful Stream Processing for Digital

Twins: Microservice-Based Kafka Stream DSL. In: 2019 International Multi-Conference on

Engineering, Computer and Information Sciences (SIBIRCON), 21-27 Oct. 2019, Novosi-

birsk, Russia. pp. 0804–0809. IEEE (2019), DOI: 10.1109/SIBIRCON48586.2019.8958367

4. Alaasam, A.B.A., Radchenko, G., Tchernykh, A., González Compeán, J.L.: Analytic

Study of Containerizing Stateful Stream Processing as Microservice to Support Digital

Twins in Fog Computing. Programming and Computer Software 46(8), 511–525 (2020),

DOI: 10.1134/S0361768820080083

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 95

http://dx.doi.org/10.1109/TII.2018.2855198
http://dx.doi.org/10.1109/SIBIRCON48586.2019.8958367
http://dx.doi.org/10.1134/S0361768820080083


5. Badia, R.M., Ayguade, E., Labarta, J.: Workflows for science: a challenge when facing the

convergence of HPC and Big Data. Supercomputing Frontiers and Innovations 4(1), 27–47

(2017), DOI: 10.14529/jsfi170102

6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of

things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Comput-

ing, 13-17 Aug. 2012, Helsinki, Finland. pp. 13–15. Association for Computing Machinery,

New York, NY, USA (2012), DOI: 10.1145/2342509.2342513

7. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things

(IIoT): An analysis framework. Computers in Industry 101(December 2017), 1–12 (2018),

DOI: 10.1016/j.compind.2018.04.015

8. Cao, J., Zhang, Q., Shi, W.: Challenges and Opportunities in Edge Computing, pp. 59–70.

Springer, Cham (2018), DOI: 10.1007/978-3-030-02083-5 5

9. Carvalho, O., Roloff, E., Navaux, P.O.: A Distributed Stream Processing based Architecture

for IoT Smart Grids Monitoring. In: Companion Proceedings of the 10th International

Conference on Utility and Cloud Computing, 5-8 Dec. 2017, Austin, Texas, USA. pp. 9–14.

ACM, New York, NY, USA (2017), DOI: 10.1145/3147234.3148105

10. Chandy, K.M.: Event Driven Architecture. In: Encyclopedia of Database Systems, pp.

1040–1044. Springer US, Boston, MA (2009), DOI: 10.1007/978-0-387-39940-9 570

11. Deelman, E., Singh, G., Su, M.H., et al.: Pegasus: A framework for mapping complex

scientific workflows onto distributed systems. Scientific Programming 13(3), 219–237 (2005),

DOI: 10.1155/2005/128026

12. Goyal, P., Mikkilineni, R.: Policy-Based Event-Driven Services-Oriented Architecture

for Cloud Services Operation & Management. In: 2009 IEEE International Conference

on Cloud Computing, 21-25 Sept. 2009, Bangalore, India. pp. 135–138. IEEE (2009),

DOI: 10.1109/CLOUD.2009.76

13. Haag, S., Anderl, R.: Digital twin – Proof of concept. Manufacturing Letters 15, 64–66

(2018), DOI: 10.1016/j.mfglet.2018.02.006

14. Hao, Z., Novak, E., Yi, S., Li, Q.: Challenges and Software Architecture for Fog Computing.

IEEE Internet Computing 21(2), 44–53 (2017), DOI: 10.1109/MIC.2017.26

15. Hirales-Carbajal, A., Tchernykh, A., Roblitz, T., Yahyapour, R.: A Grid simulation

framework to study advance scheduling strategies for complex workflow applications. In:

2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops

and Phd Forum (IPDPSW), 19-23 April 2010, Atlanta, GA, USA. pp. 1–8. IEEE (2010),

DOI: 10.1109/IPDPSW.2010.5470918

16. Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., et al.: Multiple Workflow Scheduling

Strategies with User Run Time Estimates on a Grid. Journal of Grid Computing 10(2),

325–346 (2012), DOI: 10.1007/s10723-012-9215-6

17. Iturriaga, S., Nesmachnow, S., Tchernykh, A., Dorronsoro, B.: Multiobjective Workflow

Scheduling in a Federation of Heterogeneous Green-Powered Data Centers. In: 2016 16th

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

96 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.14529/jsfi170102
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1016/j.compind.2018.04.015
http://dx.doi.org/10.1007/978-3-030-02083-5_5
http://dx.doi.org/10.1145/3147234.3148105
http://dx.doi.org/10.1007/978-0-387-39940-9{_}570
http://dx.doi.org/10.1155/2005/128026
http://dx.doi.org/10.1109/CLOUD.2009.76
http://dx.doi.org/10.1016/j.mfglet.2018.02.006
http://dx.doi.org/10.1109/MIC.2017.26
http://dx.doi.org/10.1109/IPDPSW.2010.5470918
http://dx.doi.org/10.1007/s10723-012-9215-6


IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),

16-19 May 2016, Cartagena, Colombia. pp. 596–599. IEEE (2016), DOI: 10.1109/CC-

Grid.2016.34

18. Kalske, M., Mäkitalo, N., Mikkonen, T.: Challenges When Moving from Monolith to Mi-

croservice Architecture. In: Current Trends in Web Engineering, 5-8 June 2017, Rome, Italy,

pp. 32–47. Springer, Cham (2018), DOI: 10.1007/978-3-319-74433-9 3

19. Korambath, P., Wang, J., Kumar, A., Davis, J., Graybill, R., Schott, B., Baldea, M.:

A Smart Manufacturing Use Case: Furnace Temperature Balancing in Steam Methane

Reforming Process via Kepler Workflows. Procedia Computer Science 80, 680–689 (2016),

DOI: 10.1016/j.procs.2016.05.357

20. Li, X., Song, J., Huang, B.: A scientific workflow management system architecture and

its scheduling based on cloud service platform for manufacturing big data analytics. The

International Journal of Advanced Manufacturing Technology 84(1-4), 119–131 (2016),

DOI: 10.1007/s00170-015-7804-9

21. Luo, J., Yin, L., Hu, J., Wang, C., Liu, X., Fan, X., Luo, H.: Container-based fog computing

architecture and energy-balancing scheduling algorithm for energy IoT. Future Generation

Computer Systems 97, 50–60 (2019), DOI: 10.1016/j.future.2018.12.063

22. Miranda, V., Tchernykh, A., Kliazovich, D.: Dynamic Communication-Aware Scheduling

with Uncertainty of Workflow Applications in Clouds. In: High Performance Computer

Applications, 9-13 March 2015, Mexico City, Mexico, Communications in Computer and

Information Science, vol. 595, pp. 169–187. Springer, Cham (2016), DOI: 10.1007/978-3-

319-32243-8 12

23. Naseri, M., Towhidi, A.: Stateful Web Services: A Missing Point in Web Service Standards.

In: Proceedings of the International MultiConference of Engineers and Computer Scientists

2007 (IMECS 2007). pp. 993–997. Hong Kong, China (2007)

24. Peiffer, C., L’Heureux, I.: System and method for maintaining statefulness during client-

server interactions. (12) United States Patent (US8346848B2) (2013), https://patents.

google.com/patent/US8346848B2/en

25. Plociennik, M., Zok, T., Altintas, I., et al.: Approaches to Distributed Execution of Scientific

Workflows in Kepler. Fundamenta Informaticae 128(3), 281–302 (2013), DOI: 10.3233/FI-

2013-947

26. Qamsane, Y., Chen, C.Y., Balta, E.C., et al.: A unified digital twin framework for real-time

monitoring and evaluation of smart manufacturing systems. In: 2019 IEEE 15th Inter-

national Conference on Automation Science and Engineering (CASE), 22-26 Aug. 2019,

Vancouver, BC, Canada. pp. 1394–1401 (2019), DOI: 10.1109/COASE.2019.8843269

27. Radchenko, G., Alaasam, A.B., Tchernykh, A.: Micro-Workflows: Kafka and Kepler Fusion

to Support Digital Twins of Industrial Processes. In: 2018 IEEE/ACM International Con-

ference on Utility and Cloud Computing Companion (UCC Companion), 17-20 Dec. 2018,

Zurich, Switzerland. pp. 83–88. IEEE (2018), DOI: 10.1109/UCC-Companion.2018.00039

A.B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

2021, Vol. 8, No. 1 97

http://dx.doi.org/10.1109/CCGrid.2016.34
http://dx.doi.org/10.1109/CCGrid.2016.34
http://dx.doi.org/10.1007/978-3-319-74433-9{_}3
http://dx.doi.org/10.1016/j.procs.2016.05.357
http://dx.doi.org/10.1007/s00170-015-7804-9
http://dx.doi.org/10.1016/j.future.2018.12.063
http://dx.doi.org/10.1007/978-3-319-32243-8{_}12
http://dx.doi.org/10.1007/978-3-319-32243-8{_}12
https://patents.google.com/patent/US8346848B2/en
https://patents.google.com/patent/US8346848B2/en
http://dx.doi.org/10.3233/FI-2013-947
http://dx.doi.org/10.3233/FI-2013-947
http://dx.doi.org/10.1109/COASE.2019.8843269
http://dx.doi.org/10.1109/UCC-Companion.2018.00039


28. Richards, M.: Software Architecture Patterns. O’Reilly Media, 1005 Gravenstein Highway

North, Sebastopol, CA 95472 (2015)

29. Savchenko, D., Radchenko, G., Taipale, O.: Microservices validation: Mjolnirr platform

case study. In: 2015 38th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 25-29 May 2015, Opatija, Croatia.

pp. 235–240. IEEE (2015), DOI: 10.1109/MIPRO.2015.7160271

30. da Silva, R.F., Pottier, L., Coleman, T., Deelman, E., Casanova, H.: WorkflowHub: Com-

munity Framework for Enabling Scientific Workflow Research and Development. In: 2020

IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), 12 Nov. 2020, GA,

USA. pp. 49–56. IEEE (2020), DOI: 10.1109/WORKS51914.2020.00012

31. Simpkin, C., Taylor, I., Harborne, D., Bent, G., Preece, A., Ganti, R.K.: Efficient orchestra-

tion of Node-RED IoT workflows using a Vector Symbolic Architecture. Future Generation

Computer Systems 111, 117–131 (2020), DOI: 10.1016/j.future.2020.04.005

32. Tao, F., Sui, F., Liu, A., et al.: Digital twin-driven product design frame-

work. International Journal of Production Research 57(12), 3935–3953 (2019),

DOI: 10.1080/00207543.2018.1443229

33. Yang, P.C., Purawat, S., U. Ieong, P., et al.: A demonstration of modularity, reuse, re-

producibility, portability and scalability for modeling and simulation of cardiac electro-

physiology using Kepler Workflows. PLOS Computational Biology 15(3), e1006856 (2019),

DOI: 10.1371/journal.pcbi.1006856

34. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and re-

search challenges. Journal of Internet Services and Applications 1(1), 7–18 (2010),

DOI: 10.1007/s13174-010-0007-6

35. Zheng, C., Tovar, B., Thain, D.: Deploying high throughput scientific workflows on container

schedulers with makeflow and mesos. Proceedings of the 17th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID 2017), 14-17 May 2017,

Madrid, Spain pp. 130–139 (2017), DOI: 10.1109/CCGRID.2017.9

Micro-Workflows Data Stream Processing Model for Industrial Internet of Things

98 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/MIPRO.2015.7160271
http://dx.doi.org/10.1109/WORKS51914.2020.00012
http://dx.doi.org/10.1016/j.future.2020.04.005
http://dx.doi.org/10.1080/00207543.2018.1443229
http://dx.doi.org/10.1371/journal.pcbi.1006856
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1109/CCGRID.2017.9

	A. B. A. Alaasam, G.I. Radchenko, A.N. Tchernykh

