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The application of deep learning to wind time series for multi-step prediction obtains good

results at short horizons. The accuracy of a wind forecast is highly dependent on the specific

structure of wind in the specific location, as many local features influence wind behaviour. The

characterization of the complexity of a site for wind prediction is defined as forecastability or

predictability and can be obtained from the inner structure of the meteorological time series

observations from a site. We analyze the time series structure searching for properties that have

a high correlation with the prediction result, properties that can create measures that have the

potential to describe the forecastability of a site. The best measures will show a high correlation

with the accuracy of the predictions. In this work, we analyze wind time series from 126,692 wind

locations in the US, where we apply several deep learning methods first, and then we verify several

forecastability descriptors with the accuracy deep learning results. We require High-Performance

Computing (HPC) resources for this task as the deep learning algorithms have sensible resource

requirements and are applied to a large set of data. The measures defined and explored in this work

are based on several techniques that decompose or transform the wind time-series. By combining

several of these measures, we can obtain better predictors of the site complexity, which will allow

us to evaluate the future error of a prediction on this site. Forecastability measures can contribute

to a wind site multi-dimensional description, becoming a valuable tool for wind resource analysts

and wind forecasters.

Keywords: wind forecasting, time series, wind time series, deep learning, CNN, convolutional

networks, forecastability.

Introduction

Wind-generated electricity is becoming a relevant component of the generation mix. While

it keeps growing, some projections of future CO2 free generation mix estimate a high wind

generation dependency with percentages close to 40% in most countries [10]. These projections,

which are a couple of decades away, are ambitious, but we can find countries which operate

electricity systems with over 20% of wind-generated electricity, like Denmark (41%), Ireland

(28%), Portugal (24%), Germany (21%) or Spain (19%) [22]. The largest global economies, the

United States and China, have an installed capacity of 105 GW and 236 GW, respectively,

accounting for over 50% of the total worldwide wind energy generation capacity, which has been

650 GW by the end of 2019.

Renewable energy has an intrinsic property, its intermittency, that challenges the stability of

electrical systems. In a stable grid, demand must balance generation, which requires continuous

forecasting to orchestrate the multiple energy generation origins to match the predicted demand.

To predict wind energy output, we must predict the intensity of wind in the future, being wind

a complex weather feature to model. Its formation depends on many local features, requiring

meteorological models that work with a very high resolution not widely available today. When

evaluating the potential of a wind generation location, we need to assess many dimensions, like

the wind strength, the wind seasonality, the site accessibility, or the connectivity to the existing

grid.
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The basic and possibly, essential feature is the wind intensity as it defines the potential

amount of energy that can be generated. However, for the energy generated to become econom-

ically viable, it needs to be predictable. Otherwise, its value decreases. In a scenario where the

balancing of demand and production is complex, and demand-response markets are appearing,

the prediction requirements for a site are critical. There is noticeable economic value from accu-

rately assessing the predictability of a geographical location for wind electricity generation [1].

(a) Wind Speed Mean (m/s) (b) Wind Speed Variance (c) Site Elevations (m)

Figure 1. Geographical representation of wind speed mean, wind speed variance and site eleva-

tion for the NREL dataset

Previous Works in Forecastabilty

Wind generators must commit their electricity generation in advance, and for this reason,

they predict their park outputs several time-points in the future (like 6, 12, 24 hours). If the

real output is not aligned with the prediction, the park owner is economically penalised by the

electricity system operator. A wind park easy to forecast will obtain better returns than one

that is difficult, and in this sense, we can affirm that good forecastability increases the returns

of a wind site.

Forecastability has appeared in the literature on wind prediction literature recently. The

definition of this novel term can be found in an article from Rogers [19], where he defines several

measures that correlate with the wind prediction. In this article, the measures are defined as

Measure-correlate-predict (MCP) algorithms, a definition that evolves in subsequent papers as

forecastability. We can find more recent works in this area like:

Girard et al. analyzed in [9] how the forecast error economically impacts wind parks in

Denmark, using as source information the penalties incurred by the different wind farm owners

provided by the Danish transmission system operator (TSO). In this work, they conclude that,

in the assessment phase, forecastability has low value for the producer in an isolated wind park

but increases its value if several locations are grouped together or if the wind park is already

in production. This work is focused on the producer side and does not analyze the impact that

forecastability may have on the overall electricity system. The market imbalance cost reduction

impacts the site assessment and the operation phases. This research found that it can also impact

maintenance and downtime for off-shore wind farms, as a low prediction quality increases the

complexity to find episodes of good weather to access the wind turbines at sea.

Sanz Rodrigo et al. in [11] go more in-depth in applying forecastability properties to the

assessment phase of a wind park finding that the capacity factor is significantly more relevant

than predictability. However, it has value to determine the stability of the system and thus its

resilience. The study uses Denmark and Ireland data but proposes to include sites located in a

much broader area creating a virtual clustering. In the example, by adding sites from France

and Spain, the prediction error is reduced 10%.
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2021, Vol. 8, No. 1 9



A site can be described by a time series generated from past meteorological measures. As

predictability depends on the local wind features and wind can be described by a time series,

some inner properties of the time series can describe the forecastability, forming the basis for

the approach followed in the next two works.

Feng et al. in [7] analyse the characterisation of the time series structure by applying decom-

position, linearity analysis of entropy. This approach is used in a subsequent work [8] where the

defined characterisations are applied to wind sites in North America, analysing the relationship

of the uncertainty in forecastability to spectral entropy using regression approaches.

Article Structure and Objectives

This article explores and analyses some novel forecastability measures and analyses how their

combination improves the characterisation of the prediction error. The prediction is obtained

using several deep learning approaches at different time horizons.

The defined forecastability measures are defined from different time series properties, like

series decomposition, spectral analysis or aggregation methods. We work with 103 individual

measures, and we validate their forecastability by comparing them with deep learning predictions

on the US geography. The data used is from the NREL Wind dataset, which has 126,692 wind

sites in North America [6]. The amount of data used for predictions and the multiple validations

have required the use of High-Performance Computing infrastructure.

This article offers several contributions, as follows:

1. A proposal of forecastability measures that can have a practical use to determine the fore-

casting complexity of a site.

2. Verify the accuracy of the proposed measures using 126,692 representative sites from all

different typologies of wind locations.

3. Obtain combinations of measures with higher correlation and potential regression ability to

each time series.

The remainder of the paper is organised as follows. Section 1 describes the National Renew-

able Laboratory (NREL) dataset. Section 2 reveals the deep learning prediction models applied

to the data. Section 3 develops different forecastability measures and their mathematical foun-

dation, and in Section 4 we describe the experimental organisation with the measure exploration

approach, regression strategy and individual measure contribution to the predictions. The article

closes with some conclusions and with some insights on future work.

1. The Wind Toolkit Dataset from the National Renewable

Laboratory (NREL)

The NREL dataset is a wind dataset that contains wind time series, composed of several

weather variables and created by the NREL laboratory in the US. Comprises 126,692 sites

distributed evenly in the US geography, which are located in a grid of 2x2 km. Each time series

is seven years long, from January 1st 2007 to December 31st 2013, sampled every 5 minutes

(over 730,000 steps long) and contains the following observations for each site: wind speed,

wind direction, humidity, pressure and temperature [6].

The dataset contains a high diversity of wind patterns as they cross many climatic re-

gions, ranging from the seas (Atlantic and Pacific) to the mountain peaks in the Rockies. The

highest site is number 125,659, located at the North Star Mountain in Colorado, at latitude:

Forecastability Measures that Describe the Complexity of a Site for Deep Learning...

10 Supercomputing Frontiers and Innovations



39.38160216, longitude: –106.101776, above 3,000 m of altitude. Figure 1 illustrates a geograph-

ical representation of the wind-speed mean, wind-speed variance, and site elevation for the sites

in the dataset, and we can see how different boundaries are drawn on each map, observing

variability of winds or altitudes in the geography.

The NREL is a synthetic dataset, with data obtained from global meteorological models

with some post-processing and cross-verified with real observed data. Its value lies in the large

number of sites that allow experimentation on a wide diversity of wind time series. It is a large

dataset and requires sizeable amounts of computing resources, but it provides the validation of

results using a wide diversity of wind locations.

2. Deep Learning Methods Applied to Wind Prediction

Wind prediction can refer to the wind speed or electricity generated forecast (if applied to

wind electricity generation turbines). There are many methods and approaches used for wind

prediction. We can group them into two major categories, one set of methods based on weather

prediction modelling and another set based on time series. For short-term prediction, time series

are more accurate, and for longer-term ones, weather modelling is preferred.
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Figure 2. Experimental framework designed to apply several deep learning architectures to the

NREL dataset

For this work, we will use deep learning prediction trained on wind time series. As wind is

a complex phenomenon, the time series reflect this complexity, showing non-linearity and non-

stationarity properties, which imply that the best performing forecasting algorithms must cope

with both properties. Deep learning neural networks can model non-linear functions becoming

a good candidate for the wind modelling.

J. Manero, J. Béjar
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There are several published results on the application of neural networks methods to wind

forecasting using Multi-Layer Perceptron models (MLP) [12, 16, 20], Recurrent Neural Networks

(RNN) [3, 13], and some are using Convolutional Networks (CNN) [23] (for a complete literary

review see [15]).

In this work, we use a multi-step prediction approach. Multi-step consists of predicting a

set of results in the future in one algorithm execution. The alternative, and more common, is

the single-step that predicts a single point in the future. Multi-step prediction is not as widely

researched as single-step but has some practical advantages over a single step [2].

We define an experimental methodology and a framework to design and validate the different

deep learning architectures on the NREL dataset illustrated in Fig. 2. This methodology is based

on three main steps or phases. First we transform the data for better neural network ingestion

(z-normalisation, averaged) and we define an input model (based on .json structure) to define

the architecture description (layer structure, kernels, regularisation strategies, neurons, training

data structure).

Then we develop the implementation of each deep learning architecture using open-source

deep learning frameworks (see Section 2.1) and then we train each one with five years of data

and validate with two. The evaluation is made using different methodologies like MSE, R2 or

RMSE for each wind site and each predicted step (for example for 12 hours ahead we obtain

12 error measures), for an experiment, we obtain 126,692 values that combined are considered

as a probability distribution.

In the last phase we analyse and validate each experiment for a site. For an horizon H is

the sum of the individual error values for each prediction step,
∑H

1 Ŷi, and the result of an

experiment across all the dataset is the average of the values from all sites (see Tab. 1)3.

Table 1. R2 (cumulative for all steps) for deep learning models

multi-step prediction at different horizons (1 hour, 6 hours and

12 hours). Models abbr. are: CNN: Convolutional Neural Network,

CNN-sep: Convolutional separable, MLP: Multilayer perceptron,

RNN: Recurrent neural network

Model Description 1h 6h 12h

MLP Multi Layer Perceptron 0.82 4.39 7.25

RNN Recurrent Neural Network 0.81 4.35 7.15

CNN Convolutional Neural Network 0.81 4.40 7.23

CNN-sep Convolutional non-separable Network 0.82 4.43 7.32

The deep learning architectures belong to one of the three main categories, MLP, CNN and

RNN. The CNN combines convolutional layers with fully connected layers to generate the output

sequence. RNN have several typologies, using encoder-decoder constructions, or just combining

the RNN with fully connected layers (similar to the CNN).

The results and conclusions for the experimentation are the following (for a detailed de-

scription of the experiments see [16]).

3The code and some evaluation notebooks are available at http://github.com/castorgit/Articles-2020 and http:

//github.com/castorgit/Wind code
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• RNN: Recurrent Neural Networks are the architecture of choice for sequences, however,

the best models use small input sequence windows of fixed size, and for this problem the

CNN and MLP obtain better results.

• MLP: Multi-layer perceptrons obtain good results with architectures 2 or 3 layers depth

with 512–1024 neurons each. Deeper architectures do not obtain better results.

• CNN: The convolutional 1-dimensional standard operation obtains better performance

than the MLP, and the separable convolution shows the best results (see [4]), with filters

(3x3, 9x9) and 2 or 3 layers depth.

Figure 3. Accuracy of convolutional separable networks applied to the NREL dataset - blue less

accurate, dark red more accurate

Table 1 shows the results of 4 main (RNN, MLP, CNN and CNN separable) architectures,

that have been validated for prediction on 3 different horizons (1, 6 and 12h ahead).

The results, in this article, are always represented using R2, which is the coefficient of

determination, which is a good measure to rate the accuracy of a regression, it is a number in

the interval [−∞..1] which is the ratio between the explained variation and the total variation

from the regression.

R2 = 1−
∑N

i (yi − ŷ)2
∑N

i (yi − ȳ)2
(1)

An important conclusion from the experiments with the DL experiments is the high cor-

relation between the accuracy results from the different architectures. The Pearson correlation

between the deep learning methods is > 0.95, which shows that the site wind pattern structure

is more important than the DL specific approach to determine the complexity of a site or, for-

mulated in a different way, that the DL architectures have better results in easy sites and worse

results in difficult places. In this research we will try to understand what makes wind-time series

complex for prediction.

To improve clarity in the analysis in the next sections we use as representative the results

from the best performing architecture, which correspond with the CNN separable architecture

that uses a 1-dimensional separable convolution in 2 layers.
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2.1. Technical Assessment and HPC Requirements

From the software point of view the deep learning experimental architectures have been

developed from scratch using Python 3.6, and using some add-on standard packages, being the

most relevant:

• machine learning platform: Tensorflow 1.14.0;

• deep learning library: Keras 2.2.4;

• Scikit-learn machine learning library: 0.21.4;

• statistical support: statsmodels 0.11.

The number of sites (126,692) and the length of the time series (7 years of data) are opti-

mal for an extensive experimentation with deep learning, however, the computer requirements

recommended the use of an HPC resource. Thanks to the availability of such infrastructure we

performed the experimentation on almost one-hundred alternative DL architectures.

The experiments have been supported by a NVIDIA GPU based computer at the Super

Computing Centre [17]. The HPC resource used is the Minotauro cluster which is build with

BULL and it has 39 bullx R421-E4 servers, each composed of:

• 2 Intel Xeon E5-2630 v3 (Haswell) 8-core processors (each core at 2.4 GHz, and with

20 MB L3 cache);

• 2 K80 NVIDIA GPU Cards;

• 128 GB of Main memory, distributed in 8 DIMMs of 16 GB – DDR4 @ 2133 MHz - ECC

SDRAM;

• 1 PCIe 3.0 x8 8GT/s, Mellanox ConnectX-3FDR 56 Gbit;

• 4 Gigabit Ethernet ports.

The full HPC machine provides a Peak Performance of 250.94 TERAFLOPS distributed as

226.98 TERAFLOPS (K80) + 23.96 TERAFLOPS (Haswell).

3. Basic Forecastability Measures

In this section we describe forecastability measures that come from four major categories,

basic statistics Section 3.1.1, time series decomposition Section 3.1.2, aggregation and stability

Section 3.1.3 and spectral analysis Section 3.1.4. First we describe the theoretical foundation in

Section 3.1 of each one and then we describe the experimentation in Section 3.2.

3.1. Theoretical Foundation of the Basic Forecastability Measures

If we plot the prediction error (measured inR2) from the convolutional separable architecture

across all US sites, we obtain Fig. 3. In this illustration, we can see how the accuracy results

clearly define different geographical wind regions. We can observe how the rocky mountains split

the map in two, with a turbulent area in the plains and more stationary wind regions by the

seas (either in the Pacific or in the Atlantic oceans). With this geographical mapping in mind,

we can see how prediction defines groups of sites, pointing to a relationship between the site

time series structure and the complexity (or accuracy) of the prediction. This idea guides this

work as we try to find the relationships between the internal structural elements in the time

series and the prediction error obtained with the DL algorithms.

We perform an exploration of measures in four steps, first we use some basic statistic char-

acterisation measures, like mean or variance, then we verify the use of time series decomposition,
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we design some new approaches using aggregation and combination models and we finalise with

entropy analysis.

We split this chapter in two sections, the first section contains the theoretical descriptions

for each measure, and the second section describes the experimentation using these methods

and the results obtained on the NREL dataset.

3.1.1. Basic statistic descriptive indexes

We consider basic descriptive indexes as the ones that have a simple statistical formulation,

like mean, median, variance or standard deviation σ. We include elevation in this group, to see

how the location altitude influences the prediction result.

In Fig. 1 we can see a geographical plot of Mean, Variance and Elevation of wind speed. In

this map we can see how the measures define boundaries between different wind regions, but we

need to understand how these measures are related with the prediction accuracy.

3.1.2. Measures based on time series decomposition techniques

If a weather phenomena repeats in cycles, it generates some kind of seasonal pattern in the

wind time series, like a day-night flow, or heat-cold changes, or seasonal modifications of wind

over the years. A good forecastability predictor will identify these patterns and, if for locations

with high seasonality, the predictability measure can be quite effective.

In a time series, seasonality is identified by finding sub-sequences with a large auto-

correlation coefficient. To find if a series has seasonal patterns, the best way is to decompose

the series in components, using methods that split the series into different components.

Time series decomposition can be additive or multiplicative, depending on the operation

(sum or multiplication) used to combine the individual elements of the series as can be seen in

(2, 3).

Additive decomposition is the best choice if the time series does not hide a growth or decrease

trend over time. When the variation of the pattern is proportional to the mean or level of the

series then the multiplicative can be more appropriate, this happens with economic time series

which show increases and decreases proportional to time.

Additive decomposition is more aligned with wind time series, as the mean of a wind time

series is usually constant over time. For this reason the model applied in this work is the additive

approach.

The objective in the decomposition is to split the series Wt in the three components, seasonal

(St), trend (Tt) and residual (Et). Depending on the type, the series can be formulated like:

Wt = St + Tt + Et additive (2)

Wt = St × Tt × Et multiplicative (3)

There are several decomposition methods. The classical method is the moving average,

based on using the moving average on the series to isolate the trend-cycle, after removing the

seasonality in the series (by applying filters or other approaches). In this work we name this

method as the ‘classical’ approach Wtc, Stc, Ttc, Etc.

The STL (Seasonal and Trend decomposition using LOESS) is another widely used method

for time series decomposition [5]. The LOESS method (locally estimated scatterplot smoothing)
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uses the LOESS smoothing algorithm to extract smooths estimates of the three components,

this method requires to specify the seasonal period.

A refinement of the decomposition consists in calculating the strength of the trend fT or

seasonality fS in the time series, following the framework proposed by Wang et al. in [24].

For data with strong trend, the seasonality adjusted data (deseasonalized data) Wt−St has

more variation than the residual component, for data without trend the two variances would be

the same. In this sense we define the strength of trend as:

fT = 1− var(Et)

var(Wt − St)
. (4)

Strength of seasonality is defined in the same way, but in this case the variance used is the

detrended data, Wt− T

fS = 1− var(Et)

var(Wt − Tt)
. (5)

A time series with seasonality strength fS equal to 0 has no seasonality, and when fS is

close to 1 it is an indicator for strong seasonality.

3.1.3. Measures based on aggregation and stability properties

Other measures that can be defined on fub-series combination features. In this section we

describe methods that are based on tiled (non-overlapping) windows.

The first one is stability Stab, consisting of the variance of the means, The second one is

lumpiness Lump or the variance of all the windows variances.

Stab and Lump are calculated obtaining sub-series of length period from the complete series

(usually 12h, 24h, 3m, 6m), where Lump is the mean of each sub-series and Stab is the standard

deviation.

Lump(P ) =
1

(N − P )

N−P∑

j=1


 1

P

j+P∑

i=j

xi


 , (6)

Stab(P ) =
1

(N − P )

N−P∑

j=1



√√√√ 1

P

j+P∑

i=j

(xj − x̄)2


 , (7)

where N =
Series length

Period
(8)

In this experimentation we calculate Lump and Stab for periods of 12, 24 hours, one week,

one, three months and six months.

3.1.4. Spectral entropy analysis measures for wind time series

Entropy is a measure of the uncertainty of a random variable. In time series it can be used

as a property to quantify the series, and it has been used in wind time series to decompose the

signal and improve forecasting [21].

In this work we have used two different entropy calculations approaches, sample entropy

and spectral entropy.
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Sample entropy (named SampEnt in this work for convenience) assesses the complexity of

the time series, a large value indicates high complexity while a small one indicates low complexity

or more regular series. It was initially created for physiological time series signals [18].

H(x,m, r) = −log
(
C(m+ 1, r)

C(m, r)

)
, (9)

where m is the embedding dimension (= order), r is the radius of the neighbourhood (default =

0.2std(x)), C(m+ 1, r) is the number of embedded vectors of length m+ 1 having a Chebyshev

distance inferior to r and C(m, r) is the number of embedded vectors of length m having a

Chebyshev distance inferior to r.

Spectral entropy (SpecEnt in this article) is defined to be the Shannon Entropy of the Power

Spectral Density (PSD) of the data:

H(x, sf) = −
fs/2∑

f=0

PSD(f)log2[PSD(f)], (10)

where PS is the normalised PSD, and fs is the sampling frequency.

3.2. Experimentation with the Basic Forecastability Measures

We have performed a set of experiments.
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Figure 4. Experimental framework for forecastability measures validation

3.2.1. Correlations with the basic statistical measures

In Tab. 2 we show the correlations between three basic measures (wind-speed mean, wind-

speed variance and site elevation) and the DL prediction.

The more significative correlation is with the wind-speed mean, and at lower level with the

variance and the site elevation.
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Table 2. Correlations between basic statistical measures and a DL prediction with

a 12h ahead horizon

Measure Pearson Correlation with DL prediction

Wind-speed variance 0.3113

Wind-speed mean –0.5913

Terrain elevation (site altitude) –0.2759

Representing the relationship between the measures and the predictions we obtain three

scatterplots (see Fig. 5) where we can observe visually how the different measures adjust to the

prediction.

(a) Mean vs DL prediction (b) Variance - DL prediction (c) Site elevation - DL

Figure 5. Scatterplots of Wind-speed mean, Wind-speed variance and site elevation with DL

(best model convolutional separable network)

3.2.2. Correlation results between decomposition aggregations and spectral measures and

DL prediction

We apply the different method approaches to each site, and then we calculate the Pearson

correlation between each measure and the deep learning prediction. The results from all the

different approaches are presented in Tab. 3.

We use two different decomposition methods, the STL (using LOESS) or the Least Squares.

Both methods obtain quite similar results with some better correlations using the STL, because

the smoothing method is more sophisticated and fits better the specific characteristics of wind

data. We can see the comparison between the two decomposition methods in Fig. 6, where the

scatterplots for fT and fS are presented side by side. In both cases using the STL method obtains

better adjustment to the prediction, with higher correlation. The best correlations are obtained

with 12 and 24 hours periods.

It is remarkable how the strength of Trend obtains a correlation of 0.888 which is extremely

high, which points very good forecastability properties.

In Fig. 6 we illustrate with a scatterplot the relationship between the reference Deep Learning

prediction and the fS and fT calculated with the LOESS and Least Squares methods, and in

Tab. 3 the values are calculated on the NREL dataset.
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Table 3. Pearson Correlations between Time Series decomposition measures

(ft strength trend and fs strength seasonality), time horizons and DL Prediction

across 126,692 sites

Decomposition

STL Least Squares

12h 24h 1m 12h 24h 1m

Strength Trend fT 0.834 0.888 0.473 0.812 0.841 0.420

Strength Seasonal fS –0.199 0.153 –0.042 –0.151 0.110 –0.012

Aggregation / Combination

12h 24h 1w 1m 3m 6m

Lump 0.247 0.282 0.324 0.352 0.346 0.117

Stab –0.282 –0.058 0.110 0.075 0.038 –0.086

Spectral Analysis

Spectral Entropy SpecEnt –0.835

Sample Entropy SampEnt –0.641

In the scatterplot figures we can observe how the LOESS model generates a cloud of ponts

slightly better adjusted than the Least squares, and how the strength trend St obtains a higher

correlation using the LOESS method versus the strength seasonality in a 24 hours period using

the least squares method (Pearson correlation 0.888 vs 0.841) (see Fig. 7).

When it comes to aggregation measures we find different values depending on the period,

being the most effective periods 1 week, 1 month and 3 months.

With Spectral analysis we obtain a high correlation with Spectral Entropy SpecEnt where

the observed correlation is –0.835 and for SampEnt (sample entropy) is –0.641 (see Tab. 3 and

Fig. 7).

3.2.3. Discussion on the basic forecastability measures results

We can observe the existence of correlations between basic measures and prediction, the

strongest correlations are found in fT and SpecEnt. The correlations are high and close to 0.8.

However, we can see that both of them have a set of sites that seem not to be inside the cloud

(a) ft STL vs DL (b) ft L.Squares vs DL (c) STL fs vs DL (d) L.squares fs vs DL

Figure 6. Scatterplot of decomposition measures for fT and fS using two alternative methods,

the STL and Least Squares. The X axis shows the DL prediction
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points, that can be seen as a tail in the scatterplot figures (see Fig. 6 and Fig. 7). Analysing

the outlier points we can see that the points do not belong to a particular area in the map, but

are randomly distributed over the map. We propose some further analysis on these points to

identify what makes them to have low correlation.

Aggregating a combination of measures obtains results with lower correlations, contributing

to the defintion of better forecastability measures. The following sections analyse this contribu-

tion and how the combination by regression can obtain better predictability.

(a) SampEnt vs DL (b) SpecEnt vs DL (c) Lump24h vs DL (d) Stab24h vs DL

Figure 7. Spectral Analysis measures compared to deep learning prediction (CNN separable

2 layers) with horizon 12 hours ahead

4. Defining Complex Forecastability Measures

In this section we combine elementary measures to improve the forecastability of the re-

sults. To identify the best combinations we use the following methodology. In Section 3.2 we

analyse the individual correlations, discussed in Section 3.2.3, after this preliminary analysis, in

this section, we explore all the possible individual correlations in Section 4.1 and explore the

measure importance using Principal Component Analysis (PCA) in Section 4.2. Then we build

combinations using regression that obtain the highest predictive value in Section 4.3.

4.1. Analysis of Correlations with All the Individual Measures

In Section 3.2.1 we have analysed the correlation between the wind-speed variable and its

transformation with the prediction. Now in the analysis we include all the possible defined

measures which are the result of combining the measures Lump, Stab, fT , SpecEnt with dif-

ferent periods (24h, 12h, 1 month, 3 months, 6 months), for each variable (wind direction sin,

wind direction cos, temperature, pressure, density, wind speed). The correlation matrix or con-

fussion matrix can be seen in Fig. 8. We visualise high correlation clusters in this figure, The wind

speed measures show a cluster, and the rest of measures (wind direction, pressure, temperature

and density in another one. Dark green areas show negative correlation,

Our conclusion, after analysing this figure, is that we can complement the wind speed mea-

sures with other, but due to high correlation between pressure, density, direction or temperature,

we do not need to choose the whole set, with a reduced representation we can obtain all the

information required for the combined measure exercise.

Forecastability Measures that Describe the Complexity of a Site for Deep Learning...
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Figure 8. Correlations between measures

4.2. PCA Analysis and Measure Importance

To identify the variance contribution we perform a PCA analysis using the dimensions wind-

speed, temperature and density, and using the prediction at 12h ahead horizon for the graphical

representation (see Fig. 9). As a further exploration for the measure combination we perform a

Principal Component Analysis (PCA), this method allows to reduce the dimensionality of the

measures (considered as features). In this exploration we use measures based on wind speed,

temperature and wind density. The PCA component decomposition in 3 dimensions reduces the

dimensionality of the measures into 3, the PCA components show the underlying structure in

the data by finding a set of axis (2-dimensional or 3-dimensional) that when applied to the data

we maximize the data variance.

The amount of variance explained by the PCA on the three dimensions is [0.68504753

0.26162715 0.03701629], which amounts for a 94.67% with the first two components and 98.37%

with the three components, showing that just with the two dimensions PC1 and PC2 we cover

most of the variance.
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(a) Wind speed & prediction 12h (b) Temperature & prediction 12h

(c) Density & prediction 12h

Figure 9. 3D PCA scatterplots using wind speed, temperature, density, with several measurs

(Lump, Stab, fT , SpecEnt) to identify the variance contribution on each dimension

We will use the PC1, and PC2 components in some of our regressions, discarding PC3 as it

has low informative value.

4.3. Regression based on Multiple Measures

The next step consists of building a predictive measure, by combining the best features,

that will have the highest forecastability capability of the wind prediction result.

This predictor allows to characterise the time series ‘forecastability’, where a high value

determines that the series has potential for an accurate prediction using deep learning and a low

result points to a time series that will have low accuracy prediction.

We consider the predictor as a function built using individual features or characterisation

measures (based on decomposition or spectral analysis). This function can be considered a

regression that combines each one of the individual indexes. To develop this function we try

several regression models (see Tab. 4) using different techniques. Firstly we try regressions using

several measures as regression variables, these models use one or several measures. Secondly we

Forecastability Measures that Describe the Complexity of a Site for Deep Learning...
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we introduce some non-linearity by applying a support vector machine approach. We test all the

models with the deep learning representative (CNN convolutional with separable convolutions)

crating several models, each one with more information and variables.

The first regression model is based on the two measures that show the highest correlation

with the prediction (SapEnt and fT ) (see Fig. 10a).

We can consider a multi-variable xi regression model to be formulated as:

y = β0 + β1xi1 + · · ·+ βnxin + ε, (11)

where the measures correspond to the xi variables. To obtain the coefficients βi, we transform

the the objective into an optimisation problem where the goal is to reduce the residual ε term

(sum of squares between the target and the regression). The specific optimisation technique

defines the nature of the regression method, and it may influence the accuracy of the result.

For this work we try two methods, the OLS (Ordinary Least Squares) and the LOESS (Locally

Estimated Scatterplot Smoothing). The first optimisation algorithm applied is the OLS (see

Fig. 10a). Using this approach and combining the two most relevant measures ft and SpecEnt

we obtain results that are between 0.82 and 0.84 R2 on the different horizons (see Tab. 4). Using

only the two best measures we obtain a prediction result with a correlation over 0.9 and R2 of

0.84.

Correlation is not a good measure to validate a regression, and other measures are better

tailored for this task. In this case we are using the R2 or coefficient of determination (described

in 1. We keep regression to have a reference with the individual measures, but the quality of the

regression must be analysed using the R2 in this section and in Tab. 4.

An R2 result of 0.84 is very high, and can be interpreted as a relevant approximation. We

illustrate this result in Fig. 10a with a scatterplot where the x axis is the regression result,

and the y axis is the original prediction. We observe that the obtained cloud of points is quite

adjusted to the optimal line, showing a better fit than the plot of the individual measures (see

Fig. 7).

The second model is obtained using an alternative regression approach, the LASSO approach

with two variables, in this case the result is very similar, with a correlation and R2 equal to

the least squares. LASSO is widely used and performs the regression by penalizing the sum of

the absolute values of the weights βj , it has the property to reduce the weight of some features,

simplifying the model, however in this application as we use only two the results are similar to

the OLS. As we can see in Fig. 10a and in Fig. 10b the scatterplots are quite similar.

For the third approach we use the LASSO properties for feature selection, to use all the mea-

sures and restrict the less relevant. We include in this regression measures with lower correlation

(a) Linear regression with
SpecEnt and fT

(b) Loess Regression with
only SpecEnt and FT

(c) Lasso Regression with
feature selection

(d) SVM regression with all
measures

Figure 10. Comparison of regressions using the best individual features
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(like SampEnt, Lump or Stab) and the LASSO models the regression with all the features, the

final model assigns low weights to the less relevant features, (Lump1w, Trend12h, Stab1w) but

extracts information from the rest.

This result obtains a correlation of 0.94 with an R2 of 0.88, showing results that have very

high predictability character. The scatterplot in this case (see Fig. 10c) shows a slightly shrinked

cloud of points.

As the regression does not improve by linear methods, we use a SVM Support Vector

Machine. SVM are well known models proposed by Vapnik able to represent non-linearity by

representing the data into a higher dimensional space. To do so we use a kernel function that

performs the transformation. The kernel used for this regression is a Gaussian RBF (Radial

Basis Function). We have very good results obtaining a coefficient R2 of 0.950 and a correlation

of 0.975 (for 12 hours ahead horizon), being the best regression by far. In Fig. 10d we illustrate

the scatterplot of this regression were we can see how the cloud of points adjusts closer compared

to the linear regressions.

Table 4. Pearson Correlations and R2 values for regressions and measures

(only wind speed)

Prediction 1h 6h 12h

Evaluation corr R2 corr R2 corr R2

Strength Trend ft 0.92 - 0.90 - 0.83 -

SpecEnt Spectral Entropy –0.71 - –0.77 - –0.83 -

Regression 2 measures 0.90 0.82 0.92 0.85 0.92 0.84

LASSO 2 measures 0.91 0.82 0.92 0.85 0.92 0.84

LASSO all measures 0.96 0.92 0.94 0.89 0.94 0.88

SVM 0.98 0.95 0.98 0.97 0.97 0.95

Conclusions and Future Work

In this article we propose several forecastability measures based on time series properties.

We propose these measures as predictors of the accuracy of a method used on this site (as wind

time series are originated on a single location). We propose the different measures and we build

a regression model combining them that shows an almost perfect fit with the prediction (R2 of

0.95).

We consider predictions performed using deep learning architectures and the comparisons

are made with the best performing approach the convolutional separable models (see [14]). The

predictions and measures are performed in the largest wind dataset available, the NREL dataset

(126,691 sites), which allows to process a wide set of wind examples, but requiring sizeable

resources that have been provided by an HPC infrastructure.

The conclusions from this experimentation are:

• Time series decomposition is a powerful tool to create measures that are correlated with

prediction, in this way we find the fT index based on the series trend that has a very high

correlation with the predictions.
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• Applying Signal Analysis decomposition we obtain a measure SpecEnt that has a very high

correlation, and another measure SampEnt which has shown some valuable correlation

with prediction.

• Two new measures defined using entropy analysis, Lump and Stab, have some correlation

with the predictions.

• The combination of several measures using a linear regression approach, or a non-linear

SVM obtains correlations very close to 1 with R2 results over 0.95.

With these results, we can conclude that there are forecastability measures highly adjusted

to deep learning predictions. In this way, we can obtain a prior evaluation of a time series

predictability, that allows us to understand the complexity of the prediction for this site and

therefore the economic value for energy commitment to the grid. Wind forecasters, wind farm

developers and power system operators can benefit from the use of these predictor measures

that characterise time series from a specific location. Adding these measures to the tool-set

offers a new powerful characterisation tool. We can rate how easy or complex is a site before

any prediction is performed.

As future work we propose to evaluate new combinations of individual indexes using linear

and non-linear modelling and to apply finance modelling to the indexes to convert forecastability

measures into economic values that allow the wind speed industry to take decisions based on

site evaluation wind predictability.

Another possibility is to work in the definition of deep learning architectures that adapt

themselves depending on the forecastability results for a specific location, in this way the pre-

diction algorithm self-adapts to the data characteristics thus improving the result accuracy.
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