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The solution of systems of linear algebraic equations is among the time-consuming problems

when performing the numerical simulations. One of the possible ways of improving the corre-

sponding solver performance is the use of reduced precision calculations, which, however, may

affect the accuracy of the obtained solution. The current paper analyzes the potential of using

the mixed precision iterative refinement procedure to solve the systems of equations occurring as

a result of the discretization of elliptic differential equations. The paper compares several inner

solver stopping criteria and proposes the one allowing to eliminate the residual deviation and

minimize the number of extra iterations. The presented numerical calculation results demonstrate

the efficiency of the adopted algorithm and show about the decrease in the solution time by a

factor of 1.5 for the turbulent flow simulations when using the iterative refinement procedure to

solve the corresponding pressure Poisson equation.

Keywords: systems of linear algebraic equations, elliptic equations, algebraic multigrid meth-

ods, iterative refinement, mixed precision calculations.

Introduction

The solution of systems of linear algebraic equations (SLAEs) is a typical task when per-

forming most of the high performance computing-related applications. This issue motivates the

researchers to both develop novel mathematical algorithms for solving SLAEs and improve the

implementation aspects to provide better correspondence between the numerical methods and

modern compute platforms hardware.

The use of reduced precision floating-point numbers [4, 8, 14] or lower size integer num-

bers [19] is a well-known way to improve the performance of the calculations, which is discussed

in the literature for some time. The reduced precision floating-point calculations can be bene-

ficial for both memory-bound and compute-bound applications [18]. Decreasing the size of the

data types allows decreasing the amount of memory traffic. Besides, multiple more floating-point

arithmetic operations can be performed per each CPU processor cycle for the vectorized code

sections when performing the calculations.

A new wave of interest in the topic of mixed precision calculations is associated with the

emergence of the compute devices bringing the hardware support for the half-precision floating-

point numbers (e.g., NVIDIA Pascal and Volta GPUs). While the driving force of this innovation

is related to machine learning applications, the potential of fold calculations speed up compared

to the double precision calculations raised the interest in many other areas including numerical

modeling. For example, the use of mixed precision calculations is among the key directions of

improving the performance for the exascale systems and computational codes [2]. The publica-

tion [2] reviews the popular linear algebra algorithms and libraries of numerical methods capable

of using mixed precision calculations and highlights the current achievements and future research

trends.

The iterative methods for solving large sparse SLAEs, which this paper focuses on, belong

to the memory-bound applications with very low compute intensity of the order O(10−1) [7, 18].

Thus, the use of mixed precision can be an attractive way to increase the compute intensity
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and significantly improve the performance of the calculations. Reducing the precision of the

floating-point numbers for the whole linear solver, however, may lead to a significant iterative

process convergence rate degradation or even to divergence. The potential of using the single

(or even lower) precision calculations depends on the properties of the specific SLAE, but for

many practical applications, like structural mechanics problems or incompressible turbulent flow

calculations, the use of single-precision for the whole solver is unacceptable.

The compromise and widely accepted variant is the use of reduced precision floating-point

calculations when performing the preconditioning while preserving operations with the SLAE

matrix and solution vector in the basic precision. This approach does not affect the resulting

solution tolerance and is more robust compared to performing the whole solver with reduced

precision. However, a significant portion of calculations is still performed with the basic precision,

which reduces significantly the potential calculations speedup.

An alternative way of utilizing the mixed precision calculations is the use of the iterative

refinement procedure [17]. Initially developed in the 1940s, this method receives great atten-

tion in the light of recent activity with introducing the mixed precision calculations in iterative

methods for solving SLAEs [3, 5]. These publications show promising results with attractive

speedup numbers. The conjugate gradient (CG) method with adaptive geometric multigrid pre-

conditioner was considered by the developers of the QUDA library, and the combination of the

top-level 64-bit solver with inner 32-bit CG solver and 16-bit preconditioner was analyzed. The

proposed methods combination allowed to speed up the corresponding SLAE solver for NVIDIA

Volta GPUs compared to the basic solver performed in double precision by a factor of 4–6. In [3]

the authors investigated the combination of CG solver with a lightweight plain Jacobi (diagonal)

preconditioner and the top-level iterative refinement procedure. The outer solver calculations

were performed in double precision, and the preconditioned CG solver was performed in the

single precision. The solver was evaluated with 123 SLAEs, and in about 60 % of the cases, the

total energy consumption improvement by a factor of 1.1–1.8 was demonstrated compared to

the preconditioned CG solver performed in double precision.

While the results mentioned above show good potential in using mixed precision calculations,

the numerical methods and test matrices considered have their specific, which hardens the

conclusion on the applicability of the methods proposed to the wider range of applications.

Additionally, the energy consumption results presented in [3] can only give a rough estimate

to the real calculation time improvement by using the mixed precision iterative refinement

procedure. The current paper focuses on the applicability of mixed precision calculations to solve

the elliptic equations, and, specifically, the pressure Poisson equation occurring in incompressible

flow simulations. For example, high-fidelity turbulent flow simulations require multiple solutions

of SLAEs, and the corresponding time to solve these SLAEs typically prevails in the overall

calculation time. This aspect motivates the further tuning of numerical methods applicable for

solving the corresponding SLAEs, and the use of iterative refinement with reduced precision

solvers can be an attractive option.

The rest of the paper is organized as follows. The first section outlines the potential speedup

due to the use of reduced precision calculations. The second section presents the iterative re-

finement procedure and highlights the main algorithm pitfalls. Various residual replacement

strategies used to resolve some of these problems are discussed. The description of the XAMG

library used in the numerical experiments to demonstrate the efficiency of the iterative refine-

ment procedure is presented in the third section. The fourth section discusses the results of the
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numerical experiments and the evaluation of the mixed precision iterative refinement procedure

for modeling incompressible turbulent flows. The conclusion section summarizes the paper.

1. Potential of Mixed Precision Calculations

Before discussing the aspects of the iterative refinement procedure, it is important to esti-

mate the potential performance gain due to reducing the precision of floating-point calculations.

The object of interest is the algorithm combining the Krylov subspace method (specifically,

BiCGStab [15]) with the classical algebraic multigrid preconditioner and Gauss-Seidel smoother.

This combination of the methods represents a robust and scalable solver, which can be effec-

tively used to solve various SLAEs, including the ones derived from the elliptic partial differential

equations.

The methods mentioned above consist of the combination of linear operations with vectors

and matrix-vector multiplications. Accounting that both of these operations are memory-bound,

the expected calculation time reduction would be in proportion with the corresponding reduction

in the amount of memory accesses. The overall execution time, Texec, is a sum of vector operations

time, Tvec, and matrix-vector multiplications time, Tmat:

Texec = Tvec + Tmat =
Σvec + Σmat

B
, (1)

where Σ is the amount of memory traffic when performing the corresponding operations, and

B is the memory bandwidth of the compute system.

Reduction of the floating-point data size, e.g., from 8 to 4 bytes, leads to a twofold decrease

of the amount of memory traffic for the vector operations and the corresponding calculation time.

The matrix-vector operations also demonstrate significant calculation speedup, but it is typically

less than by a factor of 2 due to the use of specialized sparse matrix storage formats and the need

to store additional integer indices. For example, for the CSR data storage format [12], the overall

amount of memory traffic when performing matrix-vector multiplication can be represented as:

Σmat = n I(C + 1) + nF (2C + 1). (2)

Here n is the matrix size, I and F are the sizes of the integer and floating-point data types

respectively, and C is the average number of nonzero elements per each matrix row. The ratio of

the amount of data for 8 and 4 byte floating-point numbers shows the potential of the reduced

precision matrix-vector operations speedup (expecting here that I is equal to 4 bytes):

P =
n 4(C + 1) + n 8(2C + 1)

n 4(C + 1) + n 4(2C + 1)
=

5C + 3

3C + 2
. (3)

In the typical case C � 1 the expression above reduces to P ≈ 1.67.

Using the expression (1), one can expect the overall speedup due to using the reduced

precision floating-point calculations. Generally, the speedup lies in the range of 1.7–1.9 in case

the overall convergence rate is not affected by the round-off errors. The use of mixed precision

calculations for the preconditioner only further decreases the potential speedup, as only a portion

of vector and matrix-vector operations in (1) is performed with reduced precision. In practice,

this speedup depends on the size of the multigrid matrix hierarchy and can be roughly estimated

in the range of 5–30 %.
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Algorithm 1 Mixed precision iterative refinement algorithm.

1: x0 – initial guess (basic precision)

2: r0 = b−Ax0 (basic precision)

3: k = 0

4: while not converged do

5: rk → r̂k (convert to reduced precision)

6: solve Âŷk = r̂k (reduced precision)

7: ŷk → yk (convert to basic precision)

8: xk+1 = xk + yk (basic precision)

9: rk+1 = b−Axk+1 (basic precision)

10: k = k + 1

11: end while

The iterative refinement procedure, discussed in detail in the sections below, requires some

additional calculations compared to the pure 32-bit solver. Even in case the SLAE solver is

not suffering the convergence rate degradation due to lower precision calculations, the expected

speedup will be lower than for the 32-bit solver. In the negative scenario, the overall calculation

time can be even higher than that for the basic precision solver.

Summarizing the discussion above, the following conclusions can be stated:

• performance of iterative refinement procedure combining 64-bit and 32-bit floating-point

calculations is expected to be lower than for the pure 32-bit solver and to not exceed the

range of 1.7–1.9;

• mixed precision iterative refinement procedure can be found useful in case the obtained cal-

culations speedup will exceed the one for the method configuration with the preconditioner

only performed with reduced precision.

2. Iterative Refinement Procedure

The main idea of the mixed precision iterative refinement procedure is to combine two

iterative algorithms, the inner iterative method operating with reduced precision and the outer

method operating with the basic precision. The mixed precision iterative refinement algorithm

is presented in Algorithm 1. The calculations start with computing the initial residual vector r

in basic precision (line 2). The residual is converted to lower precision (line 5) and the reduced

precision solver is used to get the solution update ŷ (line 6). The obtained vector is converted back

to basic precision (line 7) and accumulated with solution vector x (line 8). Finally, the residual

vector is recalculated in basic precision (line 9) and is used to control the overall convergence.

This rather simple algorithm, however, has several pitfalls when used in practice:

1. The outer loop of the iterative refinement procedure performs some additional calculations,

like the calculation of residual vector, requiring matrix-vector multiplication, vector updates,

and floating-point data conversion. These operations provide some overhead compared to

the original solver performed in basic precision, and the number of outer iterations should

be minimized to minimize the corresponding overhead.

2. To compete with the reduced precision preconditioner calculations, the number of inner

solver iterations should not exceed 20–30 %. For the iterative methods considered in this

paper the typical number of iterations of the basic solver is in the range 10–20. This means,
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an increase in the cumulative number of inner solver iterations in the range 3–5 is permissible,

otherwise the use of iterative refinement procedure will lead to the calculations slowdown.

3. The Krylov subspace iterative methods (e.g., CG, BiCGStab) use recurrent expressions to

calculate the residual vector at the next iteration. The long recurrent chains are sensitive

to the accumulation of the round-off errors, and as a result, the deviation of this residual

from the true one, r = b − Ax, may be observed. This issue can lead to the situation

when the convergence of the recurrent residuals will be accompanied by the true residuals

stagnation. The use of reduced precision calculations for the inner solver can even complicate

the situation, as the calculations with reduced precision can accelerate the accumulation of

the round-off errors.

The problem of residuals deviation for the Krylov subspace iterative methods has been

analyzed in the literature, e.g., in [3, 13, 16]. The observed convergence issue in some cases can be

resolved by the correction of the recurrent residuals, which can be done in several ways. In [13, 16]

the authors propose the reliable updates to correct the recurrent residual with the true one and

several criteria when these updates must be performed. Alternatively, in [3] the inner solver

restarts are considered for the mixed precision iterative refinement algorithm. Following [3], the

proper choice of the conditions to perform the restarts allows this approach to outperform the

reliable updates strategy.

It should be noted that the publications mentioned above use for the numerical evaluation

the lightweight iterative methods with the simple preconditioner or even without it. The typical

number of iterations till convergence in the presented results is counted by at least several

hundred, and several additional residual checks or extra iterations do not play a significant role.

The current paper focuses on the algorithms with robust preconditioners performing typically

10–20 iterations. In that case, the penalty for the several extra iterations can be critical, and the

applicability of the corresponding residual replacement algorithms must be analyzed in detail.

To the best of our knowledge, there are no publications discussing the applicability of the mixed

precision iterative refinement algorithms with robust and fast converging iterative methods.

3. XAMG Library

The performance evaluation results presented in this paper are performed with the XAMG

library [9, 10]. The XAMG library is a novel open-source project which implements sparse linear

algebra subroutines and solvers in modern C++. The library provides the implementation of

a set of widely used numerical methods for solving large sparse SLAEs, including the Krylov

subspace iterative methods, classical algebraic multigrid method, and others. The XAMG library

focuses on the optimized implementation for the solve part of the methods and reuses the hypre

library [1] for the multigrid hierarchy matrices construction.

The library design feature is a template-based generalization of basic objects and subrou-

tines. This feature makes it possible to implement a few important design principles. First, the

specialization of the number of right-hand side vectors as a template parameter allows for a

generalization of the subroutines for an arbitrary number of right-hand sides in the solution.

The specialization of the generalized subroutines takes place automatically in compile time, and

the automated vectorization of loops is being done without additional effort. Second, all the data

types for base library objects are also specialized with template parameters, so the features like

the advanced sparse matrix formats and reduced precision storage options can be implemented

with ease.
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The library consists of four major groups of elements: (i) matrices and vectors data struc-

tures, representing basic data objects; (ii) basic sparse linear algebra subroutines gathered in

“blas” and “blas2” groups; (iii) solver classes inherited from an abstract interface, which ex-

poses the main library function “solve()”; (iv) solver parameter classes. The solver classes are

arranged in a structure allowing easy addition of the new numerical methods. The solvers can

be combined with each other as well. The established solver parameters subsystem supports the

solver code extension and code combinations.

An important design feature of the XAMG library is the hierarchical hybrid parallel pro-

gramming model. This model, called MPI+ShM, is integrated into basic data objects and basic

subroutines of the library. The MPI+ShM model implies that MPI ranks, which appear to be

placed on the same compute node, allocate and use the common POSIX shared memory regions

to store the vector data structures. The communication and data access within a single com-

pute node is performed using these shared memory regions. This hybrid approach to parallel

programming improves the productivity and scalability of basic library subroutines compared

to a pure MPI-only parallel programming model. It makes it possible to get leading scalability

figures on modern multicore and manycore HPC systems.

To summarize, the XAMG library is a flexible tool to implement new iterative methods and

their combinations and do experiments with their traits and parameters. On the other hand, the

MPI+ShM hybrid model ensures the good productivity and scalability of the resulting code. It

makes the XAMG library an attractive platform for the research made in this work.

4. Numerical Experiments

The current section presents results of the numerical experiments investigating the appli-

cability of the mixed precision iterative refinement procedure to accelerate the solution of the

SLAEs, and, specifically, the ones obtained as a result of the spatial discretization of the pressure

Poisson equation when modeling incompressible turbulent flows. The investigation is performed

for the SLAE solver comprising the BiCGStab method with algebraic multigrid preconditioner

and symmetric Gauss-Seidel smoother. The four solver configurations with the same numerical

method configurations are considered. The basic solver configuration performs all the calcula-

tions with double precision. The mixed solver configuration assumes the use of reduced precision

for the preconditioning when operating with the constructed multigrid matrices hierarchy. The

IR solver utilizes the mixed precision iterative refinement procedure with the inner solver, cor-

responding to the basic solver, but performed in the single precision. Finally, the reduced solver

configuration performs all the calculations with single precision. All the numerical experiments

are performed on the Lomonosov-2 supercomputer (compute nodes with single 14-core Intel

E5-2697v3 processor); the calculation runs utilize all available 14 physical CPU cores per node.

4.1. Testing Methodology

The evaluation of different approaches of introducing the reduced precision calculations in

the iterative SLAE solvers is performed in several steps. The first test series confirms the po-

tential speedup limits by performing the same calculations in double precision (basic), in single

precision (reduced), and for the double-precision solver with reduced precision precondition-

ing calculations (mixed). The various inner solver stopping criteria, affecting the frequency of

residual replacement in the mixed precision iterative refinement algorithm (IR) and the corre-
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sponding solver convergence rate, are investigated in the second test series. The third group of

tests compares the convergence rates and calculation times for basic, mixed, and IR solver config-

urations. Finally, the turbulent flow simulations are performed with various solver configurations

to demonstrate the potential decrease in the solution time in the real calculations.

The two groups of test SLAEs are used in the tests. The first one corresponds to the

discretization of the 3D Poisson equation in the cubic domain (“cube”) with the uniform grid

and constant right-hand side vector. The size of the grid varies in the range of 1003–5003. The

second group includes the two test systems corresponding to the pressure Poisson equation in the

computational domain used for the simulation of the turbulent flow in a channel with a matrix

of wall-mounted cubes [6] (“channel with cube”; the geometry of the computational domain and

the corresponding computational grid are presented in Fig. 1); the size of the grids is equal to 2.3

and 9.7 million unknowns. The right-hand side vectors are chosen corresponding to the physical

problem statement, and they are defined as the divergence of the random velocity fields. Both

groups of the test matrices are available with the internal data generator of the integration test

application provided with the XAMG library [10].

(a) Computational domain (b) Computational grid

Figure 1. Sketch of the computational domain and the computational grid

4.2. Performance Tests

4.2.1. Performance limitations

The performance evaluation starts with the numerical experiments, demonstrating the real

calculation time reduction with mixed precision calculations and the calculations with the solver

operating in single precision. This test series performs the constant number of iterations and

focuses on the calculation time reduction as an upper bound estimate for the calculation results

that can be observed with the iterative refinement procedure (in case the convergence rate is

not affected by the reduced precision calculations).

The calculations presented in this section are performed with the single node of the

Lomonosov-2 supercomputer for the “cube” test system with 1503 unknowns and the “channel

with cube” system with 2.3 million unknowns, and with 4 compute nodes for the “cube” system

with 5003 unknowns. The obtained calculation results are summarized in Tab. 1. These include
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the single iteration times and the corresponding speedup compared with the basic solver config-

uration performed in double precision. The speedup by a factor of about 1.1 can be expected for

the mixed solver configuration and by a factor of 1.65 – for the reduced solver configuration op-

erating with 32-bit floating-point numbers. The results presented are similar for all test matrices

considered and are in agreement with the proposed theoretical estimates (see, section 1).

The obtained calculation times are also compared with the ones for the well-known open-

source hypre library, which allows using the same numerical method configurations as in XAMG.

The hypre library does not provide the functionality to utilize the mixed precision calculations,

thus only double precision calculations are performed, which correspond to the basic configu-

ration of the XAMG library. The results presented in Tab. 1 demonstrate an advantage of the

XAMG library compared to hypre: the decrease in the execution time is about 10–15 %. Some

more details on comparing the performance of the XAMG and hypre libraries can be found

in [9].

Table 1. The single iteration calculation times for the XAMG and hypre libraries

and the corresponding decrease in the solution time compared to the double precision

solver (speedup) for different solver configurations and test matrices

Test case
basic mixed reduced hypre

time, s time, s speedup time, s speedup time, s

Cube, 1503 0.151 0.143 1.06 0.091 1.66 0.170

Cube*, 5003 1.65 1.51 1.09 1.01 1.64 1.91

Channel with cube, 2M 0.123 0.109 1.12 0.076 1.62 0.139

*The corresponding calculations are performed with 4 compute nodes

4.2.2. Residual replacement

The choice of the inner solver stopping criteria is among the key practical aspects affect-

ing the usability of the mixed precision iterative refinement procedure. The current paragraph

analyzes and compares some of them, including the periodic restarts and the explicit residual

replacement [3]. The corresponding experiments are performed for two test matrices, the “cube”

case with 1503 unknowns and the “channel with cube” case with 2.3 million unknowns and in-

vestigate 8 different combinations of the parameters responsible for stopping the inner solver and

residual replacement. The frequency of the periodic restarts is chosen according to the typical

number of iterations till convergence, which varies in the range 10–20: the experiments with

restarts every 1, 2, 3, and 5 iterations are performed. The explicit residual deviation checks once

in t = 100 iterations with the allowed deviation ratio γ = 10 were used in [3]. In our case, these

values are inapplicable because the periodicity of the residual checks outnumbers significantly

the expected number of iterations till convergence. Alternatively, the residual deviation checks

every t = 2 and 3 iterations with the allowed deviation ratio γ = 1.01 and 2 are considered. The

decrease of the initial residual norm by a factor of ε = 10−8 is used as the convergence criterion.

The obtained calculation results are presented in Tab. 2. The restarts for the inner solver

performed every iteration lead to the convergence degradation due to the loss of the informa-

tion about the already constructed Krylov subspace basis. An increase in the number of inner

solver iterations leads to the overall solver convergence acceleration. However, reduction of the
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frequency of restarts strengthens the residual deviation effect, and for the case with restarts

once in 5 iterations, the overall number of iterations starts to increase. Summarizing the results

presented in the table, the frequency of restarts every 2–3 iterations can be outlined as the

one providing the best convergence rate for the SLAEs and numerical method configurations

considered.

The explicit residual deviation check assumes explicit control of the deviation of the true

and recurrent residuals every t iterations and the inner solver restart only in case the residual

deviation exceeds the limiting value γ. The presented calculation results show that the use of a

high deviation ratio is inefficient: the higher value γ only tightens the inner solver restart, while

performing the inner solver with even slightly deviated residuals reduces the solver efficiency

in terms of the true residual decay. The decrease of the deviation value γ allows reducing in

some cases the overall number of iterations, and, consequently, the calculation time. However,

the obtained calculation times with explicit residual deviation checks are systematically higher

than the ones for the periodic restarts approach, which provides a simple and efficient way to

avoid the residual deviation issue and convergence rate degradation.

Table 2. Comparison of various inner solver stopping criteria

Stopping criteria Cube, 1503 Channel with cube, 2M

Method Parameters Time, s Iter. Time, s Iter.

Periodic restart

t = 1 1.54 15 (15) 1.01 12 (12)

t = 2 1.14 6 (12) 0.79 5 (10)

t = 3 1.13 4 (12) 0.79 4 (10)

t = 5 1.12 3 (12) 0.86 3 (11)

Explicit residuals check

t = 2, γ = 2 1.32 2 (14) 1.04 3 (13)

t = 3, γ = 2 1.22 2 (13) 1.09 3 (14)

t = 2, γ = 1.01 1.24 3 (13) 0.88 3 (11)

t = 3, γ = 1.01 1.22 2 (13) 0.87 3 (11)

4.2.3. Single SLAE tests

The next step of performance evaluation focuses on the investigation of various solver con-

figurations with a set of test matrices. The three solver configurations (basic, mixed, and IR

solvers) with four “cube” SLAEs and two “channel with cube” SLAEs are analyzed. The IR

solver is performed with the inner solver periodic restarts every 3 iterations.

The overall solution times and the number of iterations (for the IR solver – the number

of outer iterations and the cumulative number of inner iterations) are collected in Tab. 3. For

all the test cases considered the observed calculation results, in general, demonstrate similar

behavior. The basic and mixed solver configurations converge in the same number of iterations:

the use of reduced precision for the multigrid hierarchy preconditioning calculations does not

affect the overall convergence rate. The speedup for the mixed solver varies in the range 1.06–

1.13, and these values correspond to the basic theoretical estimates. The IR solver demonstrates

even faster convergence than the basic one, decreasing the number of iterations by 1–3. The

reduction in the number of iterations for the IR solver on par with the lower calculation time
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for the inner solver performed in reduced precision allows obtaining the significant speedup for

all the test systems considered, which varies in the range 1.67–1.88.

Table 3. The calculation times, the number of iterations, and the achieved relative speedup for

the several test matrices and solver configurations

Test case
basic mixed IR

time, s iter. time, s iter. speedup time, s iter. speedup

Cube, 1003 0.53 13 0.50 13 1.06 0.30 4 (11) 1.74

Cube, 1503 2.11 14 1.99 14 1.06 1.12 4 (12) 1.88

Cube, 2003 5.69 15 5.34 15 1.07 3.10 5 (13) 1.83

Cube*, 5003 39.5 24 36.3 24 1.09 22.0 7 (21) 1.80

Channel with cube, 2M 1.35 11 1.20 11 1.13 0.79 4 (10) 1.71

Channel with cube*, 9M 2.12 14 1.88 14 1.13 1.27 5 (13) 1.67

*The corresponding calculations are performed with 4 compute nodes

The calculation times presented in Tab. 3 show a stable tendency in decreasing the number

of iterations for the IR solver configuration. Despite the use of lower precision for the inner

solver calculations, the corresponding number of iterations till convergence is decreased in all

the cases considered by about 10–15 %. To investigate the reasons for this effect, the same

calculations were repeated for the double precision solver with residual replacement. This test

series reproduced the same effect of reducing the number of iterations for the basic solver with

residual replacement, observed for the IR solver configuration (Tab. 4). Despite an additional

amount of calculations to perform the residual replacement and solver restarts, the use of this

technique can be advantageous even for double precision calculations.

Table 4. The calculation times and the number of iterations for the IR and

double precision and solver configurations with residual replacement

Test case
basic + RR IR

time, s iterations time, s iterations

Cube, 1003 0.46 4 (11) 0.30 4 (11)

Cube, 1503 1.87 4 (12) 1.12 4 (12)

Cube, 2003 5.11 5 (13) 3.10 5 (13)

Cube*, 5003 35.5 7 (21) 22.0 7 (21)

Channel with cube, 2M 1.26 4 (10) 0.79 4 (10)

Channel with cube*, 9M 1.85 4 (12) 1.27 5 (13)

*The corresponding calculations are performed with 4 compute nodes

4.2.4. Turbulent flow calculations

The results presented in the previous paragraph demonstrate attractive speedup for the

mixed precision iterative refinement procedure which can be easily incorporated into practical

applications. The final stage of the performance evaluation considers the test runs for the direct

numerical simulation of incompressible turbulent flow with three solver configurations and shows

the practical calculations speedup.
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The turbulent flow simulations are performed with in-house computational code, based on

the second order in space and third order in time computational algorithm, operating with

curvilinear orthogonal coordinates [11]. This algorithm requires three solutions of pressure Pois-

son equation per each time step; the SLAE matrix remains unchanged during the calculations

allowing to perform the construction of the multigrid matrix hierarchy only once at the initial-

ization stage. The calculations are performed for the test case of modeling the turbulent flow in

a channel with a matrix of wall-mounted cubes, described in subsection 4.1, on the grid with

2.3 million unknowns. The test runs are performed with 8 compute nodes and model short time

interval of T = 3 time units, which corresponds to about 1100 time steps.

The results of the three test runs are outlined in Tab. 5. These include the linear solver

calculation times and the overall simulation time. The simulation with the basic solver config-

uration takes 486 seconds, where 455 seconds are spent with the SLAE solver. The cumulative

number of iterations performed by the linear solver is about 30000. The run with the mixed

precision solver takes 452 seconds and shows the speedup by a factor of 1.08. The convergence

rate of the linear solver remains unaffected by the reduction of the preconditioner calculations

precision – the number of iterations to solve the corresponding SLAEs is about the same as for

the basic solver configuration. The lowest calculation times are observed with the IR solver con-

figuration. The overall simulation time takes 323 seconds, which is 1.5 times faster than the one

with the basic solver configuration. The linear solver fraction of the calculation time is reduced

by a factor of 1.56 and takes 292 seconds. The IR solver requires about 9800 iterations for the

outer solver and about 26000 iterations for the inner solver. The overall number of iterations

for the IR solver is about 10 % less than for the basic solver, which indicates that the regular

residual replacement allows to reduce the round-off errors and increase the convergence rate.

Table 5. The calculation times, the total number of iterations, and the achieved speedup for

the direct numerical simulation of turbulent flow performed with several linear solver

configurations

Stage
basic mixed IR

time, s iter. time, s iter. speedup time, s iter. speedup

SLAE solver 455 29978 421 29982 1.08 292 9816 (25687) 1.56

Total 486 452 1.08 323 1.50

Conclusions

The paper investigates the efficiency of the several approaches of introducing the reduced

precision calculations for solving large sparse systems of linear algebraic equations, and, specifi-

cally, the ones occurring when solving the elliptic differential equations. These include the use of

reduced precision calculations for the preconditioning and the mixed precision iterative refine-

ment procedure, combining the outer solver performed with basic precision and the inner solver

operating with reduced precision. The paper reviews the examples of using the mixed precision

iterative refinement procedure known in the literature and significantly extends them with the

obtained calculation results for the numerical methods with robust preconditioners. The various

residual replacement strategies are discussed and the optimal one for the test cases considered

is proposed.
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The results of the numerical experiments performed for several test matrices are presented.

These results show that the use of reduced precision calculations for the preconditioner allows

decreasing the solution time by only about 10 %, while the use of mixed precision iterative

refinement procedure with the proper choice of the residual replacement strategy can provide the

SLAE solver speedup by a factor of 1.8. The proposed residual replacement algorithm is examined

by performing the calculations of incompressible turbulent flow. The several runs performed for

the direct numerical simulation of the turbulent flow in a channel with a matrix of wall-mounted

cubes demonstrate about 1.5 times decrease in the solution time due to acceleration of the

pressure Poisson equation SLAE solver when using the mixed precision iterative refinement

procedure.
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